Back to top

Natural Language Processing - Methods and Applications

Last modified by Anum Afzal 9 hours ago
   No tags assigned

People in organizations, society and institutions communicate via natural language. Typically, large amounts of unstructured information are stored in text documents. However, it is very challenging for machines to query relevant content fast and extract structured information.

Machine-based solutions for text analysis, indexing and generation are often summarized under the terms natural language processing, text mining or natural language generation. In the past decades, many different methods and solutions have been developed. The diversity of the different problems and the fast development of new technologies, e.g. machine learning, underline the large potential of these methods. 

The seminar aims to give an overview over the technological building blocks and their applications. The participants independently work on a scientific topic, based on existing literature and present and discuss their findings in a presentation and a seminar paper.

Proposed Seminar Topics:

 

Basics

1. Information Extraction 

2.Information Retrieval 

3. Topic Modelling 

4. Word Embedding 

5. seq2seq models 

Large Language Models

6. Transformer: Architecture 

7. Transformer: Applications 

8. Large Language Models: Architecture, Pre-training and Fine-tuning 

9. Efficient Transformers

10. Ethnical & Social concerns, Privacy, and Limitations of Large Language Models 

Natural Language Generation and Evaluation

11. Machine Translation ( Multilingual NLP) 

12. Text Summarization 

13. Model Hallucination  

14. Corpus-based Question Answering 

Conversational AI / Conversational Interfaces

15. Task-based & Social Conversational Agents 

16. Dialogue Management (Dialogue State Tracking & Policy) 

17. Conversational Search Systems 

Knowledge Graph in NLP

18. Graph Representations for NLP 

19. Knowledge Graph-based Question Answering

Natural Language Inference

20. Natural Language Inference 

LegalTech

21. Semantic Analysis of Legal Documents

22. LegalTech: Applications of Information Retrieval, Summarization and Simplification

Differential Privacy in NLP

23. Metric Differential Privacy in NLP

24. Privacy in Deep NLP

Explainability in NLP

25. Explainability in NLP

 

Weekly Sessions

Session Date Topic
-1

27.01.2023

11:00 - 12:00

Preliminary Meeting
1

21.04.2023

10 am - 12 pm

1) Introduction & workshop on paper writing

2) Information Extraction 

3) Word Embedding 

2

28.04.2023

10 am - 12 pm

1) Information Retrieval  

2) Topic Modelling

3

05.05.2023

10 am - 12 pm

1) seq2seq models 

2) Machine Translation ( Multilingual NLP) 

4

12.05.2023

10 am - 12 pm

1) Transformer: Architecture

2) Large Language Models: Architecture, Pre-training and Fine-tuning

5

19.05.2023

10 am - 12 pm

1) Transformer: Applications

2) Efficient Transformers

6

26.05.2023

10 am - 12 pm

Guest Lecture Volkswagen

7

02.06.2023

10 am - 12 pm

1) Text Summarization

2) Corpus-based Question Answering

8

09.06.2023

10 am - 12 pm

1) Model Hallucination

2) Task-based & Social Conversational Agents 

9

16.06.2023

10 am - 12 pm

1) Dialogue Management (Dialogue State Tracking & Policy) 

2) Conversational Search Systems 

10  

23.06.2023

10 am - 12 pm

1) Graph Representations for NLP 

2) Knowledge Graph-based Question Answering

11  

30.06.2023

10 am - 12 pm

 

1) Natural Language Inference 

2) Explainability in NLP

12  

07.07.2023

10 am - 12 pm

1) Ethnical & Social concerns, Privacy, and Limitations of Large Language Models 

2) Guest Lecture Munich RE

13

14.07.2023

10 am - 12 pm

1) Metric Differential Privacy in NLP

2) Privacy in Deep NLP

14

21.07.2023

10 am - 12 pm

1) Semantic Analysis of Legal Documents

2) LegalTech: Applications of Information Retrieval, Summarization and Simplification

 

Deliverables

Prerequisites

  • Regular attendance (not more than one missed session)
  • Active Participation during sessions

Presentations

  • 40 min:
    • 30 min presentation
    • 15 min discussion

Project/Demo

 optional. 0.3 grade bonus

Seminar Paper

  • 8 pages
  • Latex-Template provided on Moodle

Peer Review

  • 2 reviews of other seminar papers

Submissions

Deliverable

Deadline

Format

Final presentation slides

Before your talk

Powerpoint, Keynote or PDF

Code for the project

TBD

.zip

Seminar paper for peer review

28.07.23

PDF based on provided LaTex template

Peer review

04.08.23

txt-File

Revised seminar paper

11.08.23

PDF based on provided LaTex template

Files and Subpages

Name Type Size Last Modification Last Editor
Afzal NLP Seminar Kickoff 2023.pdf 1,16 MB 27.01.2023 Anum Afzal