Back to top

Natural Language Processing Knowledge Graph (NLP-KG)

Last modified Aug 21

A System for Exploratory Search of Scientific Literature in Natural Language Processing

 

 

Motivation

  • Scientific knowledge is usually available in large quantities as unstructured texts.
  • This makes getting an overview of new or unknown scientific fields difficult.
  • Furthermore, it is challenging to stay up-to-date with newly published research.
  • This is a growing challenge in NLP, where new research is being published at an exponential growth rate.
  • Structuring the NLP knowledge by linking semantically related NLP fields offers the potential for enhanced exploration of the domain.

Objective

The NLP knowledge graph is an approach to tackle the information overload challenge of researchers. It aims to help researchers in obtaining an overview of NLP-related topics and find relevant papers more efficiently. A user-friendly web application and a natural language conversational interface will be developed to make the NLP knowledge graph easy to use.

Resources

Research Activities

2024
[PDF]

Schopf, Tim; Matthes, Florian

NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 127–135, Bangkok, Thailand. Association for Computational Linguistics.

URL: https://aclanthology.org/2024.acl-demos.13 

2023

[PDF]

Schopf, Tim; Arabi, Karim; Matthes, Florian

Exploring the Landscape of Natural Language Processing Research, In Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing (RANLP 23), Varna, Bulgaria, 2023

URL: https://aclanthology.org/2023.ranlp-1.111 

2022

[PDF

Schopf, Tim; Klimek, Simon; Matthes, Florian

PatternRank: Leveraging Pretrained Language Models and Part of Speech for Unsupervised Keyphrase Extraction, In Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KDIR (IC3K 2022), Valletta, Malta, 2022

DOI: 10.5220/0011546600003335 

[PDF]

Schneider Phillip; Schopf, Tim; Vladika, Juraj; Galkin, Mikhail; Simperl, Elena; Matthes, Florian

A Decade of Knowledge Graphs in Natural Language Processing: A Survey, In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (AACL-IJCNLP 2022), Online, 2022

URL: https://aclanthology.org/2022.aacl-main.46