sebis TUT

/%

ldentification of Programming Patterns in Solidity

Franz Volland, 04" June 2018, Scientific advisor: Ulrich Gallersdorfer

Chair of Software Engineering for Business Information Systems (sebis)
Faculty of Informatics

Technische Universitat Minchen

wwwmatthes.in.tum.de

Agenda TUT

From Blockchain to Solidity — A Short Introduction

() I

oy
) P
()
) I

180604 Identification of Programming Patterns in Solidity © sebis 2

From Blockchain to Solidity - A Short Introduction

BLOCK 12346

13577821
e g BLOCK 12345 R g |

98A3B821A7
/@ ACTIONS>

>

veThereum
A->B: 2ETH

A = Code
B 2 Code.do ()

©bitcoin

A->B: 2 XBT
A-> C:0.2 XBT
B—>C:1XBT

180604 Identification of Programming Patterns in Solidity

" |
e g4 BLOCK 12347 e e

programming
language

« Similar to JavaScript
« Announced 2014

-

GOIidity:

e Smart contract

© sebis 3

Motivation — Why we need Patterns for Solidity TUT

Major Hacks:
« The DAO: 3.6M =
» Parity Multisignature Wallet 2x 150k + 514k =

“We are in Cryptoland. [...] It‘s like Australia

where anything with a heartbeat will try to kill you.*
- Martin Swende (Ethereum Foundation)

Smart contracts are a worthwile target *: Patterns (after Alexander?):
» Finality of transactions » Describes a reoccurring problem
* Monetising successful attacks is straightforward » » Describes core of the solution

« Availability of contract source/byte code » Reusable solution to a problem

1 https://medium.com/@gerhard.wagner/the-phenomena-of-smart-contract-honeypots-755c¢1f943f7b

I . _ . 2 C. Alexander, The Timeless Way of Building. New York: Oxford University Press, 1979)
180604 Identification of Programming Patterns in Solidity © sebis 4

https://medium.com/@gerhard.wagner/the-phenomena-of-smart-contract-honeypots-755c1f943f7b

Research Questions

5

180604 Identification of Programming Patterns in Solidity

What are current challenges in smart contract development using
Solidity?

Are there any best practices or patterns in smart contract

development with Solidity?
How can the identified patterns be structured and categorized?

Is there a way to measure pattern usage in Ethereum smart
contracts?

Are proposed patterns accepted and implemented by smart
contract developers?

© sebis

Approach TUN

Grounded Theory approach: SIME ?HFE ﬂﬂpps

* Papers I
* DApp Portals FGITTER

oo ~ C)GitHub

* Developer Chats

» Code j==e | MMEdium

180604 Identification of Programming Patterns in Solidity © sebis

14 Identified Patterns in 4 Categories TUT

1. Guard Check Modified Gang of Four3 Taxonomy:
2. State Machine : a
9 1. Intent

2 oradl Behavioral 95
4. Randomnee 2. Motivation
5. Access Restriction 3. Applicability
6. Check Effects Interaction 4. Participants & Collaborations
8. Pull over Push 6. Sample Code
9. Emergency Stop :

7. (Gas Analysis)
10.Proxy Delegate
11.Eternal Storage 8. Consequences
12. String Equality Comparison 9. Known Uses

13. Tight Variable Packing Economic |ﬁ|
14. Memory Array Building

3 Gamma et al.: Design Patterns Elements of Reusable Object-
Oriented Software

180604 Identification of Programming Patterns in Solidity © sebis 7

Pattern Example — State Machine TUT

solidity-patterns

A compilation of patterns and best practices for the smart contract programming language Solidity

View on GitHub

State Machine

Intent

Enable a contract to go through different stages with different corresponding functionality exposed.

Motivation

Consider a contract that has to transition from an initial state, over several intermediate states, to its
final state over his lifetime. At each of the states the contract has to behave in a different way and
provide dlfferent functionality to its users. The described behavior can be observed in a multitude of

..................... e e mmmi sl i ol im w m] mm mm r mm mimm Fiamem bl T Tl s Al s e e

180604 Identification of Programming Patterns in Solidity © sebis

https://fravoll.github.io/solidity-patterns/state_machine.html
https://fravoll.github.io/solidity-patterns/state_machine.html

Investigation of Pattern Usage - Approach TUT

for each block in geth.blockchain

transactions[] = block.getTransactions()
for each transaction in transactions

if transaction.to == null

elasticsearch.post(transaction.code, transaction.timestamp)

Number of distinct deployed smart contracts on Ethereum

25000

20000

15000

Count

Data cleanup

10000

5000

08/15 10/15 12/15 02/16 04/16 06/16 08/16 10/16 12/16 02/17 04,/17 06,17 08/17 10/17 12/17 02/1s 04/18

Time (months)

0

180604 Identification of Programming Patterns in Solidity © sebis

Investigation of Ownable contract with Function Identifiers

Problem: Smart contracts are stored in bytecode on the blockchain
Bytecode

6060604052341561000157600035041663061Tdde0381146100d1578063095ea7b31461015b57806318160ddd14610191578063
23b872dd146101b6578063313ce567146101de5780633eaat86b14610207578063702082311461021a57806379ba5097F2fde3
8b5780638da5cb5b1461024e57806395d89b411461027d57806329059cbb10290578063cae9ca51146102b2578063d4eeld901
4610317578063dc39d06d1461032a578063dd62ed3el461

.

Solidity Source
contract Ownable { Code

function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;

}

Function Identifier
keccak256(“transferOwnership(address)) = 0xf2fde38b092330466c661fc723d5289090272a3e580e3187d1d7ef788506¢c557

180604 Identification of Programming Patterns in Solidity © sebis 10

Usage Results of Ownable Contract

Absolute occurences:
« Steady increase in
implementations
* Not meaningful on

its own

Relative frequency:

* Increasing usage

* Doubled usage
from 10% to over
20% in only two
months

» >20% of contracts

180604 Identification of Programming Patterns in Solidity

Count

5000

3000

2000

1000

o}

30%

Percentage
(=]
[=]
=

10%

0%

TUTI

||
08/15 10/15 12/15 02/16 04/16 06/16 08/16 10/16 12/16 02/17 04/17 06/17 08/17 10/17 12/17 oz/18 04/18
Time (months)
N ..--.---.--IlIIIIIIIIIII|I
08/15 10/15 12/15 02/16 0416 06/16 08/16 10/16 12/16 02/17 04/17 06/17 08/17 10/17 12/17 02/18 04/18

Time (months)

© sebis

11

Conclusion TUT
Pattern Catalog
oJe)
800 « Developed a structure to present patterns in the context of smart contracts in Solidity
 |dentified four categories of patterns
% |dentified 14 patterns and assigned them to their respective category

Pattern Usage Investigation

——— » Developed a method to investigate pattern usage on contract byte code with the help of

function identifiers

 Ownable is used in >20% of distinct deployed smart contracts

« Smart contract developers are in principle willing to use patterns presented to them

180604 Identification of Programming Patterns in Solidity © sebis 12

sebis

Franz Volland

Technische Universitat Miinchen

Faculty of Informatics

Chair of Software Engineering for Business
Information Systems

Boltzmannstral3e 3
85748 Garching bei Minchen

Tel +49.89.289.17135

Fra.volland@tum.de

R S— . _—

http://wwwmatthes.in.tum.de/

Evaluation of Patterns in 4 Parts

« Patterns already
validated by original
author and peer review

« Patterns were made
public and members of
developer communities
were asked for
feedback

» Little success

180604 Identification of Programming Patterns in Solidity

Literature

Community

Testing

Experts

TUTI

Static testing: code
review and with the online
compiler Remix

Dynamic testing: Ropsten
test net

Shepherding by a
blockchain expert
Iterative process to
improve pattern and
eliminate errors

© sebis 14

Usage Results of Oraclize Contract TUT

150

Absolute occurences:
 Peaks in the
beginning and end %
of oberservation o

|| I _— II"
. ingful .
Not meaningful on i delna anppinniiniii

08/15 10/15 12/15 02/16 04/16 06/16 08/16 10/16 12/16 02/17 04/17 08/17 0317 10/17 12/17 02/18 04/18

Time (months)

120

Count

14%

Relative frequency:

« High usage in the
beginning 2>
internal testing

» Usage reaches

N wh
teady | | at
steady level a) III-.“_--l-ll.ll TIT M PEEIT

Percentage
[45]
S

P
S

=
&

0315 10f15 12/15 02/16 04/16 06/16 08/16 10/16 12/16 02/17 o417 0617 08/17 10/17 12/17 02/18 04/18

Time (months)

180604 Identification of Programming Patterns in Solidity © sebis 15

Additional Attacks and Blunders

This list (original source here) is as follows:

= The DAO (obviously)

= The “payout index without the underscore” ponzi (“FirePonzi”)

s The casino with a public RNG seed

= Governmental (1100 ETH stuck because payout exceeds gas limit)
= 5800 ETH swiped (by whitehats) from an ETH-backed ERC20 token
= The King of the Ether game

®= Rubixi : Fees stolen because the constructor function had an incorrect name, allowing

anyone to become the owner
® Rock paper scissors trivially cheatable because the first to move shows their hand

= Various instances of funds lost because a recipient contained a fallback function that

consumed more than 2300 gas, causing sends to them to fail.

= Various instances of call stack limit exceptions.

Vitalik Buterin

0O 2

LATEST POSTS

Roundup Q2
,-‘.

Roundup Round Il

180604 Identification of Programming Patterns in Solidity

© sebis

16

Patterns included in Solidity Documentation

Solidity in Depth
Security Considerations
Using the compiler
Contract Metadata

Application Binary Interface
Specification

Joyfully Universal Language for {Inline)
Assembly

e Wl I

= Common Patterns

Withdrawal from Contracts

Restricting Access

2 State Machine
Example

List of Known Bugs

Contributing

Frequently Asked Questions

Exoscale.ch

& Read the Docs

180604 Identification of Programming Patterns in Solidity

The recommended method of sending funds after an effect is using the withdrawal pattern.
Although the most intuitive method of sending Ether, as a result of an effect, is a direct sena call,

this is not recommended as it introduces a potential security risk. You may read more about this on
the Security Considerations page.

This is an example of the withdrawal pattern in practice in a contract where the goal is to send the
most money to the contract in order to become the “richest”, inspired by King of the Ether.

In the following contract, if you are usurped as the richest, you will receive the funds of the person
who has gone on to become the new richest.

pragma solidity #@.4.11;

contract WithdrawalContract {
address public richest;
uint public mostSent;

mapping (address => wint) pendingWithdrawals;

function WithdrawalContract() public payable {
richest = msg.sender;
mostSent = msg.value;

}

function becomeRichest() public payable returns (bool) {

if (msg.wvalue > mostSent) ¢
pendingWithdrawals[richest] += msg.value;
richest = msg.sender;
mostSent = msg.value;
return true;

1 else {
return false;

}

© sebis 17

Programming Language Comparison

Feature

Programming Paradigm
Concurrency?
Polymorphism?
Static/Dynamic Typing?

Strong/Weak Typing?

Higher-order Functions?

Inheritance?

Interfaces?

Type inference?

Loops?
Switches?

If-Else?

180604 Identification of Programming Patterns in Solidity

Object-oriented
Multi-threading
Through overloading
Statically-typed

Strong

With Lambda expressions (Java8)

Supported

Supported

With Lambda expressions (Java8)

Supported
Supported

Supported

Contract-oriented
Serial execution
Through interfaces
Statically-typed

Strong

Not supported

Supported

Supported

Supported

Supported
Not supported

Supported

Functional
Multi-threading
Parametric & Ad-hoc
Statically-typed

Strong

Supported

Not supported

Type classes, similar

Supported

Not supported
Via Case-expression

Supported

© sebis

18

