
Chair of Software Engineering for Business Information Systems (sebis)

Faculty of Informatics

Technische Universität München

wwwmatthes.in.tum.de

Final Presentation Master’s Thesis:

Identification of Programming Patterns in Solidity
Franz Volland, 04th June 2018, Scientific advisor: Ulrich Gallersdörfer

Agenda

© sebis180604 Identification of Programming Patterns in Solidity 2

From Blockchain to Solidity – A Short Introduction

Motivation

Research Questions

Approach

Pattern Catalog & Categories

Investigation on Pattern Usage

1

2

3

4

5

6

From Blockchain to Solidity - A Short Introduction

© sebis180604 Identification of Programming Patterns in Solidity 3

BLOCK 12345

BLOCK 12346

TIME:

13577821

PREV. HASH:

98A3B821A7

<TRANSACTIONS>

BLOCK 12347BLOCK 12344 BLOCK 12348

A  B : 2 XBT

A  C : 0.2 XBT

B –> C : 1 XBT

A  B : 2 ETH

A  Code

B  Code.do()

Solidity:

• Smart contract

programming

language

• Similar to JavaScript

• Announced 2014

Motivation – Why we need Patterns for Solidity

© sebis180604 Identification of Programming Patterns in Solidity 4

Major Hacks:

• The DAO: 3.6M Ξ

• Parity Multisignature Wallet 2x 150k + 514k Ξ

• Finality of transactions

• Monetising successful attacks is straightforward

• Availability of contract source/byte code

Patterns (after Alexander2):Smart contracts are a worthwile target 1:

• Describes a reoccurring problem

• Describes core of the solution

 Reusable solution to a problem

1 https://medium.com/@gerhard.wagner/the-phenomena-of-smart-contract-honeypots-755c1f943f7b

2 C. Alexander, The Timeless Way of Building. New York: Oxford University Press, 1979

“We are in Cryptoland. […] It‘s like Australia

where anything with a heartbeat will try to kill you.“
- Martin Swende (Ethereum Foundation)

https://medium.com/@gerhard.wagner/the-phenomena-of-smart-contract-honeypots-755c1f943f7b

Research Questions

© sebis180604 Identification of Programming Patterns in Solidity 5

What are current challenges in smart contract development using
Solidity?

Are there any best practices or patterns in smart contract
development with Solidity?

How can the identified patterns be structured and categorized?

Is there a way to measure pattern usage in Ethereum smart
contracts?

Are proposed patterns accepted and implemented by smart
contract developers?

Approach

© sebis180604 Identification of Programming Patterns in Solidity 6

Grounded Theory approach:

• Papers

• DApp Portals

• GitHub

• Blogs

• Developer Chats

• Code

14 Identified Patterns in 4 Categories

© sebis180604 Identification of Programming Patterns in Solidity 7

Behavioral

Security

Upgradeability

Economic

1. Guard Check

2. State Machine

3. Oracle

4. Randomness

5. Access Restriction

6. Check Effects Interactions

7. Secure Ether Transfer

8. Pull over Push

9. Emergency Stop

10.Proxy Delegate

11.Eternal Storage

12.String Equality Comparison

13.Tight Variable Packing

14.Memory Array Building

Modified Gang of Four3 Taxonomy:

1. Intent

2. Motivation

3. Applicability

4. Participants & Collaborations

5. Implementation

6. Sample Code

7. (Gas Analysis)

8. Consequences

9. Known Uses

3 Gamma et al.: Design Patterns Elements of Reusable Object-

Oriented Software

Pattern Example – State Machine

© sebis180604 Identification of Programming Patterns in Solidity 8

https://fravoll.github.io/solidity-patterns/state_machine.html
https://fravoll.github.io/solidity-patterns/state_machine.html

Investigation of Pattern Usage - Approach

© sebis180604 Identification of Programming Patterns in Solidity 9

for each block in geth.blockchain

transactions[] = block.getTransactions()

for each transaction in transactions

if transaction.to == null

elasticsearch.post(transaction.code, transaction.timestamp)

Duplicates

removed
Data cleanup

Number of distinct deployed smart contracts on Ethereum

Pseudocode

Investigation of Ownable contract with Function Identifiers

Problem: Smart contracts are stored in bytecode on the blockchain

© sebis180604 Identification of Programming Patterns in Solidity 10

contract Ownable {
..
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;

}
..
}

6060604052341561000f5760003504166306fdde0381146100d1578063095ea7b31461015b57806318160ddd14610191578063
23b872dd146101b6578063313ce567146101de5780633eaaf86b1461020757806370a082311461021a57806379ba5097f2fde3
8b5780638da5cb5b1461024e57806395d89b411461027d578063a9059cbb10290578063cae9ca51146102b2578063d4ee1d901
4610317578063dc39d06d1461032a578063dd62ed3e1461

keccak256(‘‘transferOwnership(address)‘‘) = 0xf2fde38b092330466c661fc723d5289b90272a3e580e3187d1d7ef788506c557keccak256(‘‘transferOwnership(address)‘‘) = 0xf2fde38b092330466c661fc723d5289b90272a3e580e3187d1d7ef788506c557

6060604052341561000f5760003504166306fdde0381146100d1578063095ea7b31461015b57806318160ddd14610191578063
23b872dd146101b6578063313ce567146101de5780633eaaf86b1461020757806370a082311461021a57806379ba5097f2fde3
8b5780638da5cb5b1461024e57806395d89b411461027d578063a9059cbb10290578063cae9ca51146102b2578063d4ee1d901
4610317578063dc39d06d1461032a578063dd62ed3e1461

Solidity Source

Code

Function Identifier

Bytecode

Usage Results of Ownable Contract

© sebis180604 Identification of Programming Patterns in Solidity 11

Absolute occurences:

• Steady increase in

implementations

• Not meaningful on

its own

Relative frequency:

• Increasing usage

• Doubled usage

from 10% to over

20% in only two

months

• >20% of contracts

Conclusion

© sebis180604 Identification of Programming Patterns in Solidity 12

• Developed a method to investigate pattern usage on contract byte code with the help of

function identifiers

• Ownable is used in >20% of distinct deployed smart contracts

• Smart contract developers are in principle willing to use patterns presented to them

• Developed a structure to present patterns in the context of smart contracts in Solidity

• Identified four categories of patterns

• Identified 14 patterns and assigned them to their respective category

Pattern Catalog

Pattern Usage Investigation

Technische Universität München

Faculty of Informatics

Chair of Software Engineering for Business

Information Systems

Boltzmannstraße 3

85748 Garching bei München

Tel +49.89.289.

wwwmatthes.in.tum.de

Franz Volland

17135

Fra.volland@tum.de

http://wwwmatthes.in.tum.de/

Evaluation of Patterns in 4 Parts

Literature Testing

Community Experts

© sebis180604 Identification of Programming Patterns in Solidity 14

• Patterns already

validated by original

author and peer review

• Static testing: code

review and with the online

compiler Remix

• Dynamic testing: Ropsten

test net

• Patterns were made

public and members of

developer communities

were asked for

feedback

• Little success

• Shepherding by a

blockchain expert

• Iterative process to

improve pattern and

eliminate errors

Usage Results of Oraclize Contract

© sebis180604 Identification of Programming Patterns in Solidity 15

Absolute occurences:

• Peaks in the

beginning and end

of oberservation

period

• Not meaningful on

its own

Relative frequency:

• High usage in the

beginning 

internal testing

• Usage reaches

steady level at

little under 1%

Additional Attacks and Blunders

© sebis180604 Identification of Programming Patterns in Solidity 16

Patterns included in Solidity Documentation

© sebis180604 Identification of Programming Patterns in Solidity 17

Programming Language Comparison

Feature Java Solidity Haskell

Programming Paradigm Object-oriented Contract-oriented Functional

Concurrency? Multi-threading Serial execution Multi-threading

Polymorphism? Through overloading Through interfaces Parametric & Ad-hoc

Static/Dynamic Typing? Statically-typed Statically-typed Statically-typed

Strong/Weak Typing? Strong Strong Strong

Higher-order Functions? With Lambda expressions (Java8) Not supported Supported

Inheritance? Supported Supported Not supported

Interfaces? Supported Supported Type classes, similar

Type inference? With Lambda expressions (Java8) Supported Supported

Loops? Supported Supported Not supported

Switches? Supported Not supported Via Case-expression

If-Else? Supported Supported Supported

© sebis180604 Identification of Programming Patterns in Solidity 18

