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Chapter 1

Introduction

1.1 Overview on Matching

Matching is one of the basic functions required in many applications like Versioning, Merging,
and Information Retrieval. The usage of matching in applications can be categorised into:

Similarity Test: In this category, the applications involve the matching process only to
test if a segment of similar data exists in two or more information objects. Sample
applications in this category are:

� Information Retrieval which is used with all kinds of databases, especially with
databases where vague queries play a dominant rule, like e.g. test databases or
image databases. The matching is used for instance to query the database for
certain feature vectors.

� Similarity Test Services. A sample usage of this kind of service in Internet is a ser-
vice to compare online catalogues. This service allows the user to enter conditions
about commodities he/she is interested in, and in return to get information about
the commodities that fulfil these conditions.

Change Detection: In this category, the applications involve the matching process to detect
the difference between two information objects. Sample applications in this category
are:

� Change Detection Services: One example of this kind of service in the Internet
is a service from NetMind called Mind-it. This service allows the user to register
a web-page of his/her interest. When the web-page is updated, the user will be
notified by Mind-it that his/her page of interest has been changed. In this sample
application, the matching process is needed to compare the cached version of the
web-page with the current version of the web-page. When the result of comparison
states that the versions are different, the notification is sent to the user (see also
[13] and [15]).

� Versioning: This application is used to compare different versions of the same
information object. The user is mainly interested in the changes between the
versions of the information object being matched. The matching process is needed
to compute the changes between the versions, which are then presented in a nice

1



2 CHAPTER 1. INTRODUCTION

and meaningful way, for instance by using different fonts and colours (see also [8]
and [1]).

� Merging: In this application, the matching is used to find both the similarity
and differences between information objects being merged. The application then
resolves the differences between the objects into one new object that contains
consistent information from the original objects. The matching implemented for
this report is also used for a merging application.

1.2 Matching Classified Networks of Content

The matching process implemented for this report focuses on matching a type of information
object called Classified Network of Content (CNC). Classified Networks of Content are a way
to categorise information (which may exist in any format, e.g. files, databases, etc.), so that it
will be easy for a user to browse through the structure while searching for a particular piece of
information. In the CNC matching process, a component of CNC is paired with a component
from another CNC based on their similarity. The pairs obtained from the matching process
represent the similar part of the CNCs. Components that do not have any matching partner
represent the difference between the CNCs, also called the delta collection.

1.3 Organisation of This Report

The following describes the structure of this report.
Chapter 1 describes the matching process in detail, and the focus application of this

report.
Chapter 2 describes what a Classified Network of Content is, and explains the general

idea behind merging. Chapter 2 also explains how CNC merging is done in four phases, and
different scenarios in which CNC merging is needed.

Chapter 3 gives a definition of matching, and conceptually describes the matching process
phase by phase.

Chapter 4 describes the Brain, one of the existing applications, which can realise the
concept of Classified Networks of Content. The implementation of the matching process based
on the Brain is explained here in detail, phase by phase.



Chapter 2

Merging Classified Network of
Content

2.1 Classified Network of Content (CNC)

Classified Networks of Content (CNC) are an effective representation of digital content. A
CNC provides a way to browse through the semantic classification of information resources.
Figure 3.3 represents a typical CNC.

The tree structure shown here is one of the commonly used structures in the information
world nowadays. It can for example be found in web catalogues like Yahoo! [6]. Therefore,
tree-structured CNCs are used here, to explain the general notion of a CNC.

In figure 3.3, each node in the graph represents one component in the CNC. The nodes
numbered between 1 and 20 are termed as classifier nodes. They build up a classification
network, here in form of a hierarchy. The rest of the nodes which are drawn below the
classifier nodes are representatives of digital content, and belong to the class represented by
their parent classifier node. They are called content nodes. The whole concept of classification
used in the CNCs can for example be found in a biological classification system for living
things.

With respect to the classification of living things, the content node is analogous to a real
living thing, e.g. a human being. With respect to the information world, the content node
represents a real information object, e.g. a document. A content node has a link to the
document that it represents. The document exists outside the CNC. The reason is because
the CNC is mainly used to browse the information and not to carry all of the information,
which will need an enormously large space, and can also be rather time consuming.

For example, look at figure 2.1: Node 1 represents a class ‘vertebrate’. A node below node
1 represents an entity that belongs to the class ‘vertebrate’, e.g. node 2 represents the class
‘mammal’ and node 3 represents the class ‘reptiles’. If the developer of CNC wants to put
the actual information object below a classifier node, then a content node must be used to
represent this information object. In the example, node 4 represents ‘human’, and it has a
link to a picture of a man.

3



4 CHAPTER 2. MERGING CLASSIFIED NETWORK OF CONTENT

Figure 2.1: A sample CNC

2.2 Scenarios of Merging CNC

The usage of computers has invaded many facets of today’s life. A wealth of information from
many disciplines, like e.g. sciences, arts, and other parts of life has been produced, processed,
and stored utilising a digital device or a computer. The present growth of the Internet makes
it easier to obtain information from all around the world. This means that the amount of
information accessible for a person or an institution is growing fast.

Developing a CNC that supports such quantity of information or even smaller subsets of it
is not a trivial task. A co-operative and long-term effort is needed to construct a high quality
CNC. The construction usually starts with one common CNC, and then updates (addition,
modification or deletion) of classification and content nodes are constantly brought back into
the CNC by many authors.

One possible scenario of constructing a CNC is as follows. Each author updates his/her
own copy of the original CNC. After the updates, each author will have his/her own updated
version. At the end of the construction, all updates from all authors must be combined again
into one CNC. This process of consistently combining all updates from all CNC copies is
called merging the CNC.

In large CNC projects, the different separately updated CNCs are merged into a single
common CNC periodically. A number of reasons make this necessary, e.g.:

� Refocusing the updates of all authors, so that each author has a clear cut responsi-
bility of what kind of updates he/she is entitled to. A better management of update
responsibilities makes conflicts at the merging process less likely to occur.

� Better coordination between authors. Often, an author needs the work results of other
authors before he/she can continue with his/her updates. Instead of creating his/her
own version of the work, which in turn will cause a conflict of overlapping updates, it
is better to get the result of the responsible authors. This is best done through the
merging process.

In the merging process, the last common predecessor of all newly updated CNC can be
either involved in the merging process, or excluded.

The merging scenario explained above, in which a common predecessor of the CNCs
exists, is called consolidation merging. In consolidation merging, most updates are assumed
non-overlapping. The merged version incorporates most of the updates from all separate
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CNC versions. This includes also the deletion of a node in one of the updated CNCs. The
overlapping updates are solved interactively by the corresponding authors. See also [12], [14],
and [16].

Another possibility is that no common predecessor of the CNCs exists. In this case, the
CNCs being merged were developed totally separately, but they all share a common focus.
This scenario is called reconciliation merging. In [12], [14], and [16], reconciliation merging
is assumed to handle a lack of complementary differences between the CNCs. Most of the
differences between the CNCs are overlapping. Reconciliation merging is executed on the
CNCs to resolve the resulting conflicts.

2.3 Merging Phases and the Role of Matching

The merging process comprises four phases. The following describes each of these phases.
From the descriptions the role of the matching process for merging can be concluded.

� Merging Configuration phase. In this phase the number of merging candidates and
the role of each is assigned. The merging policy is also determined in this phase. A
merging candidate is an information object which is involved in the merging process. A
merging policy can be seen as a set of rules on how the merging should be conducted.
For example, the merging process can incorporate all complementary insertions (via
addition of the nodes), but the user is always asked if there is a deletion of a node.

� Matching phase. In this phase the difference and the corresponding common parts of
the CNCs are computed. The matching process reveals nodes from different CNCs,
which are related to each other, and proposes them as a pair. The nodes in a pair are
not necessarily exactly the same, but a certain degree of difference between them is
tolerable. In this case, updates inside the nodes can also be merged.

Apart from the common part of the CNCs, the difference is also revealed by the matching
process. Nodes that do not have any relation with nodes from another CNC are called
singles. These single nodes are the difference between CNCs, due to node insertion or
node deletion.

� Change Detection phase. In this phase, a set of commands (an edit script) is formed for
each single update (or difference) in the CNC. The formation of the edit script takes
the result of matching phase as input. These commands will later be applied to one of
the CNC merging candidates to get a merged CNC version.

� Change Integration phase. The edit script is applied to at least one of the CNCs. This
phase may also involve user interaction.

The visualisation of merging can extend from the end of the matching phase (where the
difference has been detected and displayed) up to the end of change integration (where user
will see the result of integrating the differences).



6 CHAPTER 2. MERGING CLASSIFIED NETWORK OF CONTENT



Chapter 3

Matching

3.1 Definition of Matching

Matching an object A with an object B can be defined as the identification of which component
in object A is related to which component in object B (see figure 3.1). One special case in
focus is when the relation of the two components is the similarity between them. Once the
two components — which are similar to each other — have been found, they are referred to
as a pair.

Figure 3.1: Matching definition

Pairs from object A and object B can be obtained by comparisons of their components. A
straightforward but näıve way would be to take all components of object A one at a time, and
compare them to all components from object B. This would lead us to N × M comparisons,
where N is the number of components from object A, and M is the number of components
from object B. This way of comparison is not recommended, particularly because components
that are totally different from each other are also compared.

Section 3.5 discusses strategies to reduce the amount of comparisons by identifying and
taking into account only components that have some level of similarity.

3.2 Related Works on Matching

Most of the existing matching applications used in programmes like [10] work on flat data,
e.g. texts or documents. This works by finding the longest common sequence which exists in
both information objects being matched. [3] describes how to compute the longest common
sequence. The longest common sequence found by the system is then treated as a reference.
Other common sequences can be computed as being not changed or moved with respect to

7



8 CHAPTER 3. MATCHING

the longest common sequence. Other sequences can be considered as being inserted or deleted
from the information objects.

For structured data, not many solutions for the matching problem as given in this report
can be found. [7] describes how to efficiently find a sub-tree (called pattern tree) in a tree-
structured text database. Thus [7] describes a different case compared to the work in this
report. The result of algorithms there is the location of the pattern tree inside the tree-
structured data.

The work in [1] is more closely related to the work in this report. The described algo-
rithm focuses on finding the most efficient edit script (called minimum-cost edit script). The
implementation of [1] works on text data (LATEX documents), therefore the algorithm creates
its own nodes, node types, identifiers for each node etc. Another difference is that algorithm
in [1] is sensitive to the relative position of nodes, while this report is more sensitive to the
surrounding nodes (see section 3.5.2).

The matching in [11] uses fuzzy logic to query a catalogue database. This supports the
fact that a user who queries the catalogue and defines that he/she wants an item that costs
not more than 1000, would certainly have some interest on an item with a price of 1001 if the
item is of good quality. The fact, that the user sometimes does have some interest on items
that do not fulfil exact conditions, is also applicable in many other areas. The work in [11]
finds that boolean predicates are severely limited and not suitable for this purpose.

3.3 Matching Process Overview

The whole matching process can be divided into four phases. In the first phase, the match-
ing configuration phase, the user defines all operational parameters for the whole matching
process. These parameters determine how the matching process will be conducted.

The second phase is the identifying candidate-pairs phase, where the system reduces the
number of pairs to be computed in the next phase, the actual comparison phase. This is
because the computation in the comparison phase consumes a lot of resources.

The third phase is the comparison phase, where the system computes the similarity of
pairs proposed by the identifying candidate-pairs phase. The computation result is a value
that represents the degree of similarity between the two components in the pair.

The last phase is the evaluation phase, where the system evaluates the pairs based on their
similarity values, which are the result from the comparison phase. User interaction might be
needed in this phase. The result from this phase might be e.g. the best pair, or the best two
pairs, or even more.

3.4 Matching Configuration

The matching configuration phase defines how the whole matching process should be carried
on. The user defines in this phase information objects that will be participating in the
matching process. Analytically, the participants are also merging candidates, but it this is
not necessarily true the reverse way. A merging’s change target, for instance, does not need
to be involved in the matching process. In the case of a Network of Content, an information
object can be the whole network, or just a subset of the network.

For the matching process, the information objects have to be divided into smaller parts,
called components. What constitutes a component depends on the structure of the information
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object itself and the chosen way of decomposition. A component in a Network of Content can
be a node or a subset of the network (a collection of nodes). As an example, a document can
be seen as a Network of Content, as depicted in figure 3.2. A component of the document
can be a chapter, a paragraph, a sentence or a word, depending on the granularity defined
for the matching process.

Figure 3.2: A document as a Network of Content

The granularity is also determined in this matching configuration phase. The user defines
how fine or how coarse the system should consider a component. For the document example
above, this means that when a user defines that a component is a word, this is a relatively
fine granularity. In figure 3.2, this is indicated by a dashed curve drawn on the left part of
the Network. The word here contains three characters, which are y, o, and u. When the user
defines that a component is a chapter, then this is a relatively coarse granularity. In figure
3.2, this is indicated by a dashed curve drawn on the right part of the network. The content
of the chapter here is deeply structured. The chapter has one paragraph, the paragraph has
one sentence, the sentence has two words, and in total there are five characters at the base
of the structure. In the matching configuration phase only one granularity can be defined,
which is applied to all information objects involved throughout the matching process.

In this work, components of information objects are focused to the nodes of Classified
Networks of Content (see figure 3.3). In the figure, each of the nodes is a component, so in
total there are 36 components in the network.

In a structured information object, a component has a type. Examples of component types
in a document are a chapter, an appendix, a preface, an index, or a bibliography. Notice that
the structure of each type can be similar, but it can also be totally different. Structures of a
chapter and a preface are similar, but structures of a chapter and a bibliography are different.

A component has some values, which are termed as the component’s content. Example
of a component’s content in a document: A chapter consists of several paragraphs, which in
turn contain several sentences, which in turn contain several words. As has been shown here,
content of a component can be structured again.

Beyond its content, a component also carries another kind of information, for instance the
size of a chapter, or the chapter’s cardinal/ordinal number. This kind of information is termed
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Figure 3.3: A Classified Network of Content

as the component’s properties. It is also known as meta-information. Meta-information is
information beyond the semantic content of an information object. It describes the object’s
characteristics in order to support a variety of operations on the object like better retrieval,
administration, rights management etc. The operations can be carried out by either a human
user or by a program (see also [5] and [4]).

The component’s surrounding or its position relative to other components is termed as
its context. Example: The contexts of the second chapter are the first chapter and the third
chapter.

All four factors described above (content, context, properties, and type) are termed as
similarity factors. The similarity factors are also defined by the user in the matching configu-
ration phase. The user defines which of those factors are used in which phase of the matching
process. The main usage of the similarity factors is for the system to come up with a decision
whether two components are similar or not. This decision takes place in the comparison phase
of the matching process (see section 3.6). The other usage of those factors is for the system
to come up with candidate-pairs, which takes place in the identifying candidate-pairs phase
(see section 3.5).

In the comparison phase, the system uses a function called similarity function in order
to decide whether two components are similar or not. The similarity function has several
parameters that must be set by the user in the matching configuration phase. The parameters
can be categorised into two parts. The first category comprises all parameters related to the
algorithm used to compute the similarity between two components. The matching process
can implement many possible algorithms, and the user selects which one is suitable for the
current application. The second category is the similarity factors, which have been described
above. The similarity factors are the object of computation. The user selects which of those
factors are suitable to be used for the current application, and which algorithm is used for
each respective similarity factor. The result of similarity function is similarity value of each
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pair of components. See also section 3.6 regarding the comparison phase.
After the comparison phase, it is possible that there are more than one candidate-pair

per component. Thus, a filtering mechanism has to be applied to choose the best pairs of the
comparison result. This filtering is done in the results evaluation phase. There are several
filtering strategies used in the results evaluation phase (see section 3.7), which also have some
parameters that must be set by user in the matching configuration phase.

3.5 Identifying Candidate-Pairs

3.5.1 Identification Process

A candidate-pair is a pair with the preliminary assumption that the two components in the
pair have a certain degree of similarity between them. This assumption has to be proven in
later phases of the matching process.

A straightforward way of getting candidate-pairs for component X from Network A is to
consider all components in Network B as possible partners for component X. With this way
of finding candidate-pairs, the comparison phase will have to execute N × M comparisons.
That is; each component in network A is compared to all components in network B.

Comparison is performed on pair by pair basis. Each comparison lowers the system
performance. Therefore the number of comparisons needs to be reduced as much as necessary,
i.e. candidate-pairs which are not promising have to be excluded. In this phase, the system
makes an assumption of when two components can be considered as having a certain degree
of similarity. This assumption is based on the similarity factors. If two components do not
fulfil the assumption, they are not considered as a candidate-pair. If two components fulfil
the assumption, they are considered as a candidate-pair, but their similarity has to be proven
later in the comparison phase.

In order to avoid adding more computation complexity, which in turn will consume more
system resources, the computation of whether two components fulfil the assumption or not
in this phase needs to be as simple as possible. If this phase requires relatively complex
computation that matches the complexity of a comparison, then it will cost as much as a
comparison. Because in this phase the system needs to go through all components from both
networks, and the comparison phase needs to go through some pairs again, the total resources
consumption from both phases would be even higher than the resources consumption of N ×
M comparison steps. This, however, is against the purpose of this phase, which is to lower
the number of computing steps under N × M comparisons.

3.5.2 Similarity Factors

The assumption that two components are considered as having a certain degree of similarity is
based on either one or combination of similarity factors (see also section 3.4). This assumption
is used to obtain candidate-pairs. The following describes how similarity factors can be used
to obtain candidate-pairs.

Properties are meta-information of the corresponding component. Examples of compo-
nent’s properties are:

� Identifier
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� Creation time stamp

� Size, etc . . . .

This meta-information can be used to quickly identify candidate-pairs. Example: The
assumption is if two components have the same identifier, they must have a certain
degree of similarity. Therefore, they should be considered as a candidate-pair. Other
examples: For being considered a candidate-pair, two components need to have the same
creation time stamp, or their size may not differ more than 10 percent. In case of the last
example, good sorting and search functions are required to support the identification
process.

Some properties mentioned in this section make sense only if they are used to match
information objects, which have a common predecessor. E.g. it does not make any
sense to consider a candidate-pair based on the components’ creation time if the two
information objects were created separately. The same is true for the components’
unique identifiers. If the information objects were created separately, most probably
similar components will have different identifiers.

All of the general explanations above are also true when the information objects are
Classified Networks of Content, where a component is represented by a node in the
network.

Context: The context of a component is its surroundings (neighbouring components). The
context of a component can also be its position relative to other components inside the
information object, which in case of this report is a Classified Network of Content.

As example, see figure 3.3 again. A component in this Network of Content is a node.
Each node is one component. The surrounding nodes of the node with identifier number
17 are nodes with the following identifiers: 6 (as parent node), 29 and 30 (as child nodes),
and 16 (as sibling node). The relative position of the same node 17 is the following; It
is the second child of node 6, and node 6 is the second child of the root node (node 1).
In this network, the root node serves as a reference node. The relative positions of all
nodes are recorded from the reference node. The reference node does not always have
to be the root node. Another special node can also take the role of the reference node.

In the network example representing a document (figure 3.2), lets assume that the
granularity takes one word as one component. The surrounding components (words) of
the word ‘er’ are the words ‘you’ and ‘is’. In its relative position the word ‘er’ is the
second word in the document.

The context of components can be used to obtain candidate-pairs. In figure 3.4, the
Network of Content from figure 3.3 has been updated by changing the position of the
nodes 6 and 12 together with their subtrees.

Suppose the matching process is executed on the two Networks of Content, from figure
3.3 and from figure 3.4. The method of finding candidate-pairs by using the surrounding
context of a component proves to be useful in this case.

The nodes 16, 17, and 27 – 30 have the same surrounding in both networks even
if a whole subset of the network has been moved around. Therefore the identifying
candidate-pairs phase will propose these nodes as candidate-pairs. Node 16 from the
original network in figure 3.3 is proposed to be paired with node 16 from the network
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Figure 3.4: Moving subsets of the network

in figure 3.4, node 17 from the network in figure 3.3 is proposed to be paired with the
node 17 from the network in figure 3.4, etc . . . .

In figure 3.5, the same Network of Content from figure 3.3 has been updated by mod-
ifying the branch of node 6 into a new branch of node 37. Suppose the nodes in each
respective position have some level of similarity. Node 6 is similar to node 37, node 16 is
similar with to node 38, etc . . . . In this case, the method of finding candidate-pairs by
using the relative position context will prove to be helpful to find good candidate-pairs.
Node 6 has the same position as node 37, so they are proposed as a candidate-pair.
Node 16 has the same position as node 38, they are also proposed as a candidate-pair.
The same applies for the rest of the nodes in the branch.

In case there are two copies of a component in the Network which are exactly the
same, but have different neighbours and positions, the system can differentiate these
two components and propose the right candidate-pair for each of them by looking to
their neighbours, or by using their difference in position.

Type: Types of components also help to filter out pairs which are not promising. Compo-
nents in the information object can have different types. They can be categorised into
different types mainly by their data structure.

One possibility to categorise components into different types is their function in the
information object. For example, information object in figure 3.3, which is a Tree-like
Network of Content, has two types of nodes, i.e. classifier nodes and content nodes. The
function of a classifier node is to group other nodes (content nodes and other classifier
nodes) into a category. The function of a content node is to carry the information
content. A content node links directly to the actual content. Analogously, classifier
nodes can be seen as directories, and content nodes can be seen as files. Theoretically,
both types of nodes should have a different data structure. But as the implementation
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Figure 3.5: Updating a subset of the network

relies on a third-party system, both types of nodes are implemented with the same data
structure. Classifier nodes have a null value in the link to the content.

By defining which types can be considered in a pair, the system can filter out all other
components, whose types are not considered. As an example: By defining that both
components in a candidate-pair must have same type, then the system only look for
such candidate-pairs, therefore neglecting the possibility of having candidate-pairs of
mixed component types.

It is also possible to mix different types of nodes in a pair, for example nodes with
type X from network A can only be paired with nodes with type Y from network B.
Comparing different types of nodes requires one extra phase called schema matching,
which will be explained in section 3.6.

Content of components can also be used to find candidate-pairs, but only to a certain extent.
When using the content of components, generally only a small part of the components’
content is used. Remember that the computation in this phase must be kept simple.
Using the whole content of components in this phase would likely result in a too complex
computation.

The most accurate way — in terms of result — to find candidate-pairs is the straightfor-
ward way, because it considers all components of information object B as candidate-partners
for a component of information object A. Therefore, it considers all possible pairs. When
the identifying candidate-pairs phase is executed, it excludes some of the pairs. Therefore,
not all possible pairs are considered in the comparison phase anymore. When the identify-
ing candidate-pairs phase does not utilise correct similarity factors to find candidate-pairs, it
could happen that good candidate-pairs are not proposed. This in turn will affect the final
result of the whole matching process. The identifying candidate-pairs phase in a way balances
the speed of computation with the correctness of the result. Therefore a correct choice of the



3.6. COMPARISON, COMPUTATION OF SIMILARITY 15

similarity factors to be used plays an important role. Which similarity factors are the correct
ones, mainly depends on the information objects being compared and for what applications
the matching process is done.

3.6 Comparison, Computation of Similarity

The comparison phase computes the similarity of the two components in each candidate-
pair resulting from the previous phase (identifying candidate-pairs phase). The result of
the computation will be a value that represents the degree of similarity between the two
components in the respective pair. This phase uses the similarity function to compute the
degree of similarity between the two components in a pair. The similarity function needs two
kinds of inputs, one of which are the similarity factors.

When more than one similarity factors are defined to be used in the similarity function
in this phase, the comparison result will be several boolean or fuzzy values. Example: In a
comparison of node C and node D, the similarity function utilises all content and context of
the nodes for the comparison phase. One possible result from the utilisation of the content
of both nodes:

� Field 1 of the content from both nodes are similar.

� Field 2 from both nodes are not similar, etc . . . .

And possible result from the utilisation of the context of both nodes:

� Neighbour 1 of the Context from both nodes are similar.

� Neighbour 2 of the nodes are not similar, etc . . . .

In this case, some fuzzy approach or functions can be used to come up with one repre-
sentative value of the similarity between both nodes. Example: Because there are more than
one field in the content, the value of content-similarity can be represented by the percentage
value of how many fields match over the total amount of fields available. Match means both
fields’ values are similar or have a high probability that they are the same. The same can
be done with the context of nodes’ results. To combine the value of content-similarity and
context-similarity, both of them can be summed up with the help of weights. When, for
instance, content-similarity is more important in the decision of the nodes’ similarity then
the content-similarity can be multiplied with a larger weight. The context-similarity, which
is less important compared to content-similarity, can be multiplied with a smaller weight,
and finally the intermediate results are summed up to obtain one representative value of the
similarity between the two nodes.

One important point to be discussed here is taking the components’ type into consider-
ation to come up with a decision of similarity between two components. In comparison of
components of the same type — called instance matching — a direct map of the content’s
fields exists, since the data structures of both components are the same. Example: Field
1 is directly related to Field 1 of the other component from the other information object.
Therefore, a comparison of both respective fields can be done directly.

However, a candidate-pair can be composed of components of mixed types. Example:
Nodes with type X from network A can be paired with nodes with type Y from network B.
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To compare the components correctly, an extra phase — called schema matching — has to
be done before the actual comparison is executed. The schema matching can be considered
as a precomputation before the actual comparison. The following is an example of schema
matching: Nodes with type X from network A have two fields in their content. One field is
named ‘labour cost’ and the other is named ‘material cost’. Nodes with type Y from network
B have only one field in the content, which is named ‘total cost’. Before comparisons of
the two types of nodes can be done, a mapping of the fields should be carried out. In this
example, the ‘labour cost’ field and ‘material cost’ field each have some level of contribution
into the ‘total cost’ field. The two fields in a node of type X are mapped to the ‘total cost’
field in a node of type Y. Both ‘labour cost’ and ‘material cost’ values need to be summed
up, and then the result is compared with the ‘total cost’ value.

The complexity of schema matching is largely dependent of the type of nodes being com-
pared. It could be that only a simple mapping is needed, for instance, the field ‘taxi fares’
for nodes that represent employees who do not have a car, is mapped to the ‘gasoline cost’
field in nodes that represent employees who have a car. In another case, more complicated
pre computations of fields are needed before a comparison can be executed.

3.7 Results Evaluation

It is possible that a component is involved in more than one candidate-pair after the compar-
ison phase. That means the component has more than one candidate-pair. When only one
pair per component or some limited number of pairs is needed, as in case of this report, the
pairs should be evaluated further to decide which of them is taken and which are ignored. The
evaluation can use one or a combination of several strategies to select one pair per component:

Best Match strategy: With this strategy, the pairs are ranked by their similarity value
and the best is taken.

Threshold strategy: A threshold value is defined and every pair that has a similarity value
above the threshold is taken, otherwise the pair is ignored.

User Decision strategy: When there is more than one candidate-pair for a component,
interaction with the user is triggered to select which pair will be taken. This is because
the user has a deeper knowledge of which pair is the best.

The involvement of user makes the system a semi-automatic matching process, while a
user-involvement free system is called automatic matching process.

Which evaluation strategies should be used depends largely on the application of the
matching process. Examples: In Change Detection, Information Retrieval, and Similarity
Test applications, there is no absolute necessity to have only one pair per component, since
the user often wants to see all possible information regarding the result of the matching
process. In this case, the threshold strategy or the user decision strategy or a combination of
both is suitable for the purpose.

In merging, only one pair per component is needed. Therefore, the best match strategy
or the user decision strategy would be necessary. A combination of the best match strategy
and the threshold strategy, or a combination of the user decision strategy and the threshold
strategy is also suitable.
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Implementation

4.1 The Brain

The E-MergeNC tool, which is developed for this work, is implemented based on an already-
existing Network of Content structure developed by Natrificial LLC. called The Brain

TM
.

Natrificial offers several products. Two of them are mentioned here because of the close
relationship to this work.

PersonalBrain
TM

is a product that enables personal usage of The Brain. The product
comes in form of an executable programme. With this product, users can create and update
a Network of Content and also create, edit, delete, and access the nodes and their information
inside this Network of Content. Each of these Networks of Content is called a brain, and each
node in the Network of Content is called a thought. This work uses PersonalBrain (version
1.73) to develop the Networks of Content, which are the information objects used in the
matching process.

BrainSDK
TM

is a product that enables IT professionals to embed The Brain into their
own applications. The main part of the package is a Java API, that enables programmers to
create and update a brain; and also to create, edit, delete, and access thoughts in the brain.
This work uses BrainSDK version 2.1.

From [9] and [2], there are several differences between the PersonalBrain and BrainSDK
with regards to the Network of Content (brain) that they produce. The brain produced by
PersonalBrain contains more information compared to the one BrainSDK produces. This is
because PersonalBrain is a self-stand programme; therefore the brain it produces provides
as much information as needed for personal usage. In contrast, BrainSDK is intended to be
used as generally as possible; therefore the brain it produces contains only information that
is commonly needed by all applications referring to the API. A brain file which is produced
by PersonalBrain has the extension .brn and a brain which is produced by BrainSDK has the
extension .jbr. Included in the BrainSDK package is a brain conversion tool that converts a
.brn brain file produced by PersonalBrain into a .jbr brain file that is usable by BrainSDK.
The matching process implementation is based on .jbr brain files. The brain can be created
in a manner to exactly conform to a Network of Content.

Figure 4.1 depicts complete relationships between thoughts in a brain. The active thought
is the thought that is currently being processed by the system. A parent thought is a thought
which can be seen as a super concept of the active thought. The classification scope of
the parent thought confines a larger class, one of whose sub classes is represented by the

17
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Figure 4.1: A cluster of thoughts in a brain

active thought. The link that connects the active thought with the parent thought is called
parent–child link. The link name comes from the role of the thoughts at each end of the link.
Consequently the active thought is a child thought of the parent thought. The active thought
can further be divided into smaller sub concepts, each of which is represented by a child
thought. The link type between the active thought and a child thought is also a parent–child
link. A jump thought can be seen as a cross-reference from the active thought. The jump
thought has a relation to the active thought, but it does not fit in the hierarchical structure of
the active thought. The link type between the active thought and the jump thought is called
jump link. This means that to the jump thought, the active thought is also a jump thought.

According to [9], each thought can have from 0 up to 32 multiple parent thoughts. It can
have from 0 up to 128 children, and it can have from 0 up to 32 jump thoughts. For sibling
thoughts, it is simply the amount of other children of the parents, ranges from 0 up to ((32
× 128) − 1) siblings.

In figure 3.3, when the system is trying to find pairs for the node with the identifier
number 17, then this node is referred to as the active thought. Node 6 is referred to as the
parent thought, nodes 29 and 30 are referred to as child thoughts, and node 16 is referred to as
sibling thought. When the system is trying to find pairs for node 6, then the active thought
is node 6. The parent thought is node 1, child thoughts are node 16 and 17, and sibling
thoughts are nodes 2 and 3. As a conclusion, the relation-name of thoughts is relative to the
active thought, which is changing depending on the current thought being processed by the
system.

There is only one rule that restricts the formation of relationship between thoughts, which
is: there can be only one link between two thoughts. With this rule in hand, the brain can
be created as a full-mesh Network of Content. In a full-mesh network, each node is directly
connected to all other nodes. In order to form a tree-like Network of Content with the brain,
an important restriction must be added when creating the brain, which is: An active thought
cannot have a child thought that also appears above the active thought within the hierarchy.
Relationships between two thoughts that can cause the formation of a cyclic graph cannot
exist in the brain.

All thoughts in a brain have the same type and data structure. Each thought has the
capability to be linked to a file — the content information — outside the brain. This fact
is good enough for implementation of tree-like Classified Networks of Content. The imple-
mentation of a classifier node uses exactly the same type of node — which is a thought — as
the implementation of a content node, with some assumptions to differentiate between both
implementations. The assumptions are:

A classifier thought has a null value in its link to the content information. This practically
means that a classifier thought does not have links to any file outside the brain.



4.2. MATCHING CONFIGURATION 19

A content thought has a link to a file outside the brain, but it does not have any child
thought beneath it.

4.2 Matching Configuration

The matching process implementation is based on brains produced by BrainSDK. From [2], a
summarisation of the availability of similarity factors present in the brain has been put into
table 4.1. Table 4.1 also states which of those similarity factors are used in the matching
process implementation.

Similarity Factors Available in brain Used in implementation

Properties

Identifier,
Private/Public flag and date,

Modification flag,
ReadOnly flag,
Activation flag

Identifier
(when it is stable)

Content
Name,

Keywords,
Location

For identifying candidate-pairs,
ranges from either one to all.

For comparison,
ranges from none to all.

Context

Parent thoughts,
Child thoughts,
Sibling thoughts,
Jump thoughts

For identifying candidate-pairs,
ranges from either one to all.

For comparison,
ranges from none to all.

Node Type
none,

all thoughts are
of the same type

none,
all thoughts are

considered of the same type

Table 4.1: Similarity factors available in the brain, and implementation

4.2.1 Properties of Thought

From table 4.1, it can be seen that each thought has several properties, which are:

Identifier: Each thought has an identifier of type integer, which is unique inside a brain.
Unfortunately the identifier is unstable.

When a brain is updated, the identifier of the same thought might change. This is espe-
cially true in the case of deletion of thoughts. The identifiers are counted in incremental
order from 1 to the number of thoughts in the brain. There are no gaps between iden-
tifiers. Example: A brain contains 100 thoughts. So the thoughts are numbered from 1
to 100. When the user deletes a thought with identifier number 55, all thoughts with
an identifier larger than 55 will be shifted one step down. After the deletion, thought
number 56 gets a new identifier with number 55, thought 57 will have a new ID number
56, etc . . . . So at the end, the counting of the thoughts’ identifiers is continuous again,
from 1 to 99 (the new number of thoughts in the respective brain).
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Due to this instability, the identifier of thought can not be used each time the matching
process is performed. Before the identifier is used, the stability of thought identifiers
between two brains being processed must be detected. This is just true in case of match-
ing two brains which have a common predecessor, because searching candidate-pairs by
identifier only makes sense in this case. Section 4.3.1 describes the implementation of
detecting the stability of thought identifiers in two brains.

Private/Public flag and date: These properties of a thought are meant to protect the
content of thoughts from being freely accessed by public, when the brain is put on a
network environment, i.e. the brain is accessible via the Internet. The flag has 4 possible
values, which are:

� Private

� Public

� Private before

� Private after

For the first two options, the date value is not needed — although it is still accessible
— because the thought is always in private status or always in public status. For the
later two options, the date value is needed to specify the time-border between private
and public access to the respective thought.

Usage of these properties in the identifying candidate-pairs phase and the comparison
phase is not implemented, as the resulting benefits are not worth the effort.

Modification flag: This property indicates whether a thought has been modified in the
current session or not. When the brain is closed and opened later, the value of this
property is reset. Because this flag’s value is valid only temporarily, it cannot be used
as similarity factor.

ReadOnly flag: This property indicates whether a thought can be modified or not. Al-
though it is possible to use this property as a similarity factor, it is not implemented
because of the same reason as for the private/public flag and date fields. The benefit it
brings is not worth the effort of implementation.

Activation flag: This property indicates whether the respective thought has been activated
in the current session or not. The validity of this property’s value is also only temporary.
Therefore, it is not usable as similarity factor.

4.2.2 Content of Thoughts

Each thought in a brain has content that consist of three fields, which are:

� Name

� Keywords

� Location
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The type of each field is a string. The location field contains a link to a file — the actual
content of the thought — outside the brain.

In the implemented matching configuration phase, a user can choose to use which of
the content fields — name, keywords, and location — to use in the identifying candidate-
pairs phase and in the comparison phase. The selection of thought content is distributed
between two separate UIs, one for the identifying candidate-pairs phase, and the other for
the comparison phase.

The separate selection interfaces reflects the distribution of the general similarity test of
the whole matching process over the two phases of identifying candidate-pairs and comparing
components. For example: The definition of what is similar states that when two thoughts
have the same name and similar keywords, the two thoughts are a pair. The user can select to
use only the name of thoughts to find candidate-pairs. The result of the identifying candidate-
pairs phase will be all candidate-pairs, where both partners have the same name. Therefore,
because all couples of thoughts in the candidate-pairs are guaranteed to have same name,
it is not efficient if in the comparison phase the system must compute again whether each
couple of thoughts in a candidate-pair shares the same name. Instead, the system can directly
compute whether the keywords are similar or not. In general, the distribution of similarity
factors between the identifying candidate-pairs phase and the comparison phase can be seen
as distributing the computation complexity over the two phases of the matching process.
This, in turn also increases the efficiency of system resources’ consumption.

In the implementation, the selection options for the comparison phase ranges from none
to all. The comparison phase takes into account only the content and the context of thoughts
when deciding whether two thoughts are similar or not. When the user selects none of the
thought contents, the decision whether two thoughts are similar is based only on the context
of the thoughts.

Figure 4.2 depicts the GUI for selection of thought content for the comparison phase.
Here user can specify whether the system must compare the name of thoughts or not. If the
names must be compared, the user needs to specify the weight of the comparison result. The
same applies to the keywords and the location. For keywords there are two further entries the
user must fill in, namely the thresholds. Keywords of thoughts are composed of many words,
which are concatenated into one string. The system compares the keywords word by word.
The result of this comparison is a percentage value of how many words from both thoughts
match. By entering higher values for the thresholds, the user can put more confidence to the
result, if the system finds a pair of similar thoughts.

The selection of the thoughts’ content for the identifying candidate-pairs phase is coupled
with the selection of the thoughts’ context. Both will be described in more detail in section
4.2.3.

4.2.3 Context of Thought

The implementation of the matching process also uses the surrounding thoughts in the identi-
fying candidate-pairs and comparison phase (see also section 3.5.2). The surrounding thoughts
of an active thought are:

� Parent thoughts

� Child thoughts
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Figure 4.2: Matching configuration GUI, active thought content

� Sibling thoughts

� Jump thoughts

The identification of candidate-pairs by the thoughts’ relative position is not implemented,
mainly because at the beginning of the work the implementation is designed to operate on
full-mesh networks, which are brains without any additional restrictions. Using the thoughts’
relative position in a network, where each thought can be linked to all other thoughts, is too
complicated and time consuming.

The selection of the active thought’s context is similar to the selection of the active
thought’s content. For each category of neighbouring thoughts, e.g. parent thoughts, the
user must define which fields have to be used.

Figure 4.3 shows that a user defines all fields in the parent thoughts to be used in the
comparison phase. Figure 4.3 also shows that the similarity of parent thoughts’ keywords is
much more important than for other fields in the parent thoughts.

In the selection of similarity factors for the identifying candidate-pairs phase, the options
are context and content of the active thought. For each neighbouring thought and the active
thought user must choose at least one field — either name, or keywords, or location — to be
used to search for candidate-pairs.

Figure 4.4 shows the parameter setting for finding candidate-pairs by using the active
thought’s keywords only. The context of the active thought is not used in this example.

Figure 4.5 shows the parameter setting for finding candidate-pairs by the active thought’s
name, keywords and location, and also by all surrounding thoughts’ name, keywords and
location.
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Figure 4.3: Matching configuration GUI, context setting for the comparison phase

Figure 4.4: Matching configuration GUI, parameter setting for the identifying candidate-pairs
phase (a simple example)
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Figure 4.5: Matching configuration GUI, parameter setting for the identifying candidate-pairs
phase (a complex example)

4.2.4 Type of Thought

As stated in table 4.1, and in [2], there is no differentiation between thoughts. But when
restrictions are added to the brain in order to form a tree-like Network of Content, some
differentiation of thoughts can be made. For instance, an indicator in the keywords of each
thought can be added, indicating whether the respective thought is a content node or a
classifier node. Or it can be detected if the respective thought does not have any children
(see also section 4.1), in this case the respective thought is a content node. Otherwise, it is a
classifier node.

Although it is possible to make the differentiation, the physical data structure is still
exactly the same between the two types of nodes. Besides, if the user really wants to make
differentiation between classifier nodes and content nodes, it does not make any sense to
propose a content node and a classifier node as a candidate pair, because their roles in the
network are different.

The implemented matching process does not differentiate types of thoughts. For now a
simpler approach has been included in the implementation of the matching process (shown
in figure 4.6). The brains are divided into two parts based on the type of thoughts (classifier
thoughts and content thoughts). The system runs two threads, each executing a separate
matching process. One of the matching processes gets the two sub brains which contain only
classifier thoughts as input, the other matching process gets the two sub brains which contain
only content thoughts as input.
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Figure 4.6: Processing different types of thoughts in brains

4.3 Identifying Candidate-Pairs

The identifying candidate-pairs phase uses three similarity factors to find candidates pairs,
which will be explained below.

4.3.1 Using the Identifier to Identify Candidate-Pairs

This method of finding candidate-pairs can be activated and deactivated by the user in the
matching configuration phase, see figure 4.7.

Considering the instability of thought identifiers in the brain, the system must detect
whether the thought identifiers between the two brains are stable or not, if the user decides
to use the identifiers of thoughts to find pairs. The detection and the candidate-pairs finder
are both combined in one algorithm. It works as follows.

The system first tries to find thoughts from the two brains which have the same identifier
and name. If two thoughts have the same both identifier and name, they are proposed
as a candidate-pair. After the system has gone through all thoughts, it counts how many
candidate-pairs it has found, and compares the number of candidate-pairs to the total number
of thoughts in either brain. From that the system gets two percentage values, because each
brain might have a different number of thoughts. Only one out of two percentage values is
taken into account. The user decides whether to take the minimum, maximum or average of
the two available percentage values. The options of minimum, maximum, and average can be
seen in figure 4.7.

The resulting percentage value then will be compared to a threshold value, which is entered
by the user in the GUI in figure 4.7. If the resulting percentage value is equal or larger
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Figure 4.7: Matching configuration GUI, general settings

than the threshold, the system decides that the thought identifiers between both brains are
stable. Otherwise, they are not stable. In this case, the candidate-pairs which have been
obtained will be discarded, and the system will have to find candidate-pairs through other
methods (explained in section 4.3.2) from the beginning again. In case the system decides
that the thought identifiers between both brains are stable, the candidate-pairs which have
been obtained will be kept, and the system will have to find candidate-pairs only for the rest
of the thoughts which are not in a pair yet.

4.3.2 Using Content and Context to Identify Candidate-Pairs

As has been explained in section 4.2.3, the implementation of the identifying candidate-pairs
phase uses the context of the active thought to find candidate-pairs for it. The implemented
method of finding candidate-pairs can be explained with the following example.

As in figure 4.4, a user defines that the system uses only the active thought’s name to find
candidate-pairs. The system takes the second brain, and goes through all thoughts in that
brain. While going through the second brain, the system fills a sorted hash table. The keys
of the hash table are the thought names from the second brain. Keys are unique. The values
of the hash table are the identifiers of thoughts, which have name the same as the respective
key.

Table 4.2 shows a sample brain, which is used as the second brain. The hash table created
for this brain is shown in table 4.3. In the second brain there are two thoughts which have
the same name ‘Management’. In the hash table, the two thoughts (with identifier 3 and 5)
are represented by a single key (‘Management’), because their names are the same.

Table 4.4 shows the first brain. The system goes through the first brain, takes one thought



4.3. IDENTIFYING CANDIDATE-PAIRS 27

Thought
identifier

Thought name

1 Market
2 Finance
3 Management
4 Marketing
5 Management
6 Technical
7 Human Resource

Table 4.2: A simple brain, second brain

Name
Set of

identifiers
Finance 2
Human Resource 7
Management 3, 5
Market 1
Marketing 4
Technical 6

Table 4.3: The hash table from the second brain

Thought
identifier

Thought name

1 Finance
2 Market
3 E-Business
4 E-Marketing
5 Management
6 Technical
7 Human Resource

Table 4.4: A simple brain, first brain

at a time, extracts the thought’s name, and looks up to the hash table of the second brain to
see if the name exists as a key in the hash table. If the name exists in the second brain’s hash
table, the system will get the value. The value, together with the thought identifier from the
first brain, is filled into another hash table, called candidate-pairs list.

If e.g. the system takes the second thought in the first brain, it gets the name, which
is ‘Market’. It looks up in the second brain’s hash table, whether the string ‘Market’ exists
here as a key. It finds that the string exists, and gets the value of the key ‘Market’ which
is identifier number 1. The system then inserts a new entry into the candidate-pairs list,
with identifier number 2 (the thought’s ID in first brain) as key, and identifier number 1 (the
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thought’s ID in second brain) as value. Table 4.5 shows the complete list of candidate-pairs.
Table 4.6 shows the thought identifiers which do not have a pair. They are called singles.

Thought identifier
from the first brain

Thought identifiers
from the second brain

1 2
2 1
5 3, 5
6 6
7 7

Table 4.5: Candidate-pairs list

Single thought identifiers
from the first brain

Single thought identifiers
from the second brain

3, 4 4

Table 4.6: Singles list

If the user defines more complex parameter settings for the identifying candidate-pairs
phase, which includes the context of the active thought (e.g. like in figure 4.5), the process
of finding candidate-pairs remains principally the same, the system only works on a different
set of data.

Instead of considering only the thought name, the system can also consider e.g. parent
thoughts’ names during the whole procedure. The key of second brain’s hash table is not
only derived from active thought name, but also includes the parents’ thought names. When
the system goes through the first brain, it analogously extracts not only the active thought
name, but also the parents’ thought names, and uses each string to look up the second brain’s
hash table. In consequence, the second brain’s hash table, and the candidate-pairs list get
longer the more similarity factors are included in the process of finding candidate-pairs. The
computation also takes longer, because the system must consider more things.

4.4 Comparison, Computation of Similarity

In the comparison phase, the system uses the candidate-pairs list, the result from previous
phase. The system goes through the list pair by pair. If there are more than one thought
identifier from the second brain, the system takes the identifiers from the second brain one
by one to be paired to the identifier from the first brain. Take the third row of table 4.5 as
an example where the system will create two candidate-pairs, which are (5, 3) and (5, 5). For
each pair, the system will compare the similarity factors of the active thought, according to
the user settings in the matching configuration phase.
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4.5 Results Evaluation

For the merging implementation based on this work, the result of the matching process is
preferred to be one pair per thought. Therefore, the matching process implements several
strategies for filtering out the best pair (see also section 3.7).

The matching process implements a threshold strategy, so that every pair proposed by
system satisfies a certain level of user expectation. The threshold strategy divides the result
into three categories. Each category represents a certain level of system confidence regarding
the pairs in this category. The categories are:

Matched Pairs. These pairs are couples of thoughts which are similar with a high proba-
bility. In the subsequent merging process, matched pairs are not examined. Instead,
the user can choose a matched pair and explicitly splits it if he/she feels that the nodes
are not similar after all.

Proposed Matched Pairs. These pairs are couples of thoughts which are similar with a
lower probability. In the subsequent merging process, proposed matched pairs have to
be explicitly confirmed by the user.

Singles are thoughts which do not have any partner from the other brain. When merging,
a user can match single nodes by hand or treat them as newly inserted thoughts.

For example, the user defines that the comparison phase uses the active thought’s name,
parents’ names and children’s names. In order to be qualified as matched pair, each couple of
thoughts must have the same name, the similarity of the parents’ names must be above the
upper threshold, and the similarity of the children’s names must be above the upper threshold.
In order to be qualified as proposed matched pair, each couple of thoughts must have the same
name, and the similarity of the parents’ names must be above the lower threshold, and the
similarity of the children’s names must be above the lower threshold. If neither of those
conditions is satisfied, each thought in the compared couple is listed as single.

If there is more than one pair per thought qualified into a category, the system needs
a way to evaluate which of those pairs is best. Here weights play an important role. By
using the weights, each pair will have a weighted similarity. The computation of the weighted
similarity is also done in the comparison phase. By evaluating the pairs weighted similarity
the system can decide which pair is the best. But there is a possibility that two pairs have
the same weighted similarity. In this case the user has to decide which pair is the best.

4.6 Diagrams

Figure 4.8 shows a class diagram of the matching process implementation. Only a few im-
portant classes are included in the figure. The whole classes are packed into one Java library
called BrainMatching package.

The main class in the implementation is the class SubBrainMatching. An object of this
class represents a matching process as a whole. From this object, an interface for configuring
the whole matching process can be obtained, which is the MatchingConfiguration interface.
After the configuration is finished, the system invokes the execute method in the SubBrain-
Matching object. The getMatchingResultSet method will return another interface from which
the details of the result can be obtained.
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Figure 4.8: Class diagram of the matching process implementation
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The matching process itself is executed by several classes. ByIDPairsFinder detects
whether thought identifiers between two brains are stable or not. If the identifiers are stable
this class builds a candidate-pairs list (e.g. table 4.5) based on thought identifiers (see also
section 4.3.1). WordsIDMapBuilder builds the second brain’s hash table (e.g. table 4.3) dis-
cussed in section 4.3.2. PossiblePairsMapBuilder builds the candidate-pairs list (e.g. table
4.5) also discussed in section 4.3.2. The IdealPairsFinder controls the comparison phase and
evaluates the resulting pairs, as has been discussed in section 4.4 and 4.5.

The result of the matching process is returned as a composition of pairs, encapsulated
in the MatchingResultSetClass. Each pair is represented by a MatchingPairClass object.
From the MatchingPairClass details of the pair’s information, e.g. the level of the thoughts’
similarity, can be obtained.

A user can interact with the system’s result set, with regards to the user decision strategy
discussed in section 4.5. The interface MatchingResultSet and the interface MatchingPair also
provide a method for the user to reject a pair and a method to make a pair based on his/her
own judgements. If the user rejects a pair, the thoughts in the pair will be listed as single
thoughts. The user can also take two thoughts, each from a different brain, and make them
a pair. These two methods support the interactive mode of the matching process.

Figure 4.9 shows the same classes as in figure 4.8 in activity diagram, involved in the flow
just described above.

4.7 Evaluation of the Implementation, and Future Work

The implemented results evaluation phase filters out a candidate-pair when one of the pair’s
similarity factors falls below the respective threshold. When a candidate-pair is filtered out,
the pair is broken by the system. The two thoughts in the pair are listed as singles.

If there are two pairs or more for one thought after the first screening of the candidate-
pairs, the weights are used to select the best pair. This means that the first screening process
filters out candidate-pairs only by the level of similarity between the thoughts. The impor-
tance of similarity factors, which is also represented by weights, does not have any influence
on the first screening of candidate-pairs. For future work, it is better to filter out candidate-
pairs based on both the level of similarity between thoughts as well as the importance of the
similarity factors themselves. Existing approaches from fuzzy logic [11] can be used here.

The following is an example for the current implementation and a possible improvement.
In a matching process, two similarity factors are considered for the comparison.

� One similarity factor, e.g. the active thought’s keywords, has an upper threshold of
50%, and a weight of 3.

� The other similarity factor, e.g. the parents’ keywords, has an upper threshold of 25%
and a weight of 1.

Now, there are three pairs, lets call them pair C, pair D, and pair E.

� Pair C has a 49% similarity for its active thought’s keywords, and a 100% similarity for
its parents’ keywords.

� Pair D has a 51% similarity for its active thought’s keywords, and a 33% similarity for
its parents’ keywords.
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Figure 4.9: Activity diagram of the matching process implementation

� Pair E has a 52% similarity for its active thought’s keywords, and a 40% similarity for
its parents’ keywords.

The total weighted similarity of the pairs — a similarity which also considers the impor-
tance of each similarity factor — can be calculated as follows.

� Pair C:
(49%× 3) + (100%× 1)

3 + 1
= 61.75%

� Pair D:
(51%× 3) + (33%× 1)

3 + 1
= 46.5%
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� Pair E:
(52%× 3) + (40%× 1)

3 + 1
= 49%

In the current evaluation phase, pair C will be filtered out because its active thought’s
similarity is below the threshold, and pair E is selected as the best pair.

The values of name, keywords and location of thoughts are strings. Therefore a good
string matching is required for this work. However, this work is not about string matching,
but it is about Network of Content matching. The current matching process implementation
uses a simple string matching, included in the standard Java library. Better string matching
algorithms can be used instead of just a simple string matching, for instance, string matching
algorithms that anticipate typos, string matching algorithms that match words with sim-
ilar meanings, string matching algorithms that apply stemming, or multilingual matching
algorithms.

The implemented matching process computes pairs for all thoughts at once. As the
consequence, when the brains being processed have thousands of thoughts to be compared,
the processing time becomes intolerable. This work is used in [16], a merging process. The
merging process implemented for [16] has an interactive mode. In this case it should be
possible to compute pairs only for the current active thought seen by the user. In this way,
the compute time will be less noticeable, because the system is practically idle while waiting
for user interaction, or in between user interactions. This idle time can be used to compute
the pairs. Processing time could also be speeded up by preprocessing algorithms which can
disburden the comparison phase.

The behaviour of the matching process and its optimal result depends tightly on the
parameters set in the matching configuration phase. Therefore, the parameters’ setting is an
important issue for the user. Unfortunately, to set the parameters correctly is not a trivial
task. Some sets of default values of the parameters, which have been tested in some general
context, should be provided for each typical application of the matching process. For instance,
a set of values that have been tested on a number of brains for consolidation merging or for
reconciliation merging could be put up in advance. A selection in the matching configuration
GUI should be added for the user. The user can choose whether he/she wants to use the
pre-set values or likes to define his/her own parameter set. It should also be possible for the
user to store his/her own parameters’ setting in a file, and reload it later. In this way a user
can store many sets of parameters, which are customised to his/her own needs.
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Appendix A

Matching Configuration manual

The following is a guide for a new user of the implemented matching process. Since the
number of parameters are numerous and they all depend on what kind of matching scenario
this implementation is used for, and also on what kind of brains the implementation is working
on, the exact parameters’ setting can not be determined by numbers here. Experience on the
usage is the best guidance. The following should help to get a first idea of how to set up the
parameters.

A.1 Matching brains which have a common predecessor

In this scenario of matching, the identifiers of thoughts might be used. The percentage value
depends on the degree to which the brains have been updated. If e.g. only 10% of the brain
have been updated, the match identifier threshold value is just slightly lower than 90% (see
also figure 4.7).

This scenario can be further categorised based on what kind of update happens between
the versions of the brain.

Moving thoughts around in the brain. In this working scenario, the surrounding thoughts
might change severely. Therefore it is better to rely only on the content of the active
thought itself to find candidate-pairs and to compare the thoughts. Therefore, the key-
words threshold and the weights of the active thought’s name, keywords and location
are preferred to be much larger than what is set for the surrounding thoughts.

The threshold value of the active thought’s keywords depends on how many keywords
each thought has on the average, and on how many must match for similar thoughts.
The weights are relative values in a sense that their absolute size entered by the user
does not matter. What is important is the relation between all of weights’ values. So,
it is the same whether a user enters: 10, 20, 30 or a user enters: 1, 2, 3.

For example a classifier thought might have many child thoughts, and the user updates
the brain by splitting this classifier thought into two (or more) new classifier thoughts
and distributes the child thoughts between the new classifier thoughts. In this case, the
old classifier thought is deleted from the brain, and the two new classifier thoughts are
added to the brain. Since most of the thoughts will still have the same child thoughts,
the user can use these child thoughts together with the active thought’s content. Most of
the thoughts still have the same parents, too, but since the number of parent thoughts in

35
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a tree-like Network of Content is far less than the number of children, it is better to use
the child thoughts. In order to find candidate-pairs and compute the similarity between
the thoughts more accurately, more samples for the similarity factors are needed.

If there is no update of thought content at all, then the thresholds of the active thought’s
keywords can be set up to 100%, with weights larger than child thought weights. If the
user wants the old classifier thought (the one which is replaced by the new classifier
thoughts) to be paired with one of the new classifier thoughts, the thresholds are pre-
ferred to be small percentage values from 0% up to the maximum percentage of child
thoughts the new classifier thought gets from the old classifier thought. The smaller
the value the better the result, although this takes more memory. Other surrounding
thoughts are better ignored (uncheck the options for comparison of the respective sim-
ilarity factors). For finding candidate-pairs set the options to ‘Names and Keywords’
and ‘Thought and Children’.

In case that the new classifier thoughts are inserted beneath the old classifier, instead
of replacing the old classifier, then user can do the same thing as stated above, but the
thresholds for child thoughts is set to 0%, in order to make sure that the old classifier
thoughts are matched correctly.

Editing thoughts in the brain. If the update involves changing some of the thoughts’
names or locations without the intention of changing the thought entirely, the respective
active thought’s name or location must not be used in the comparison phase. But the
name must be used in finding candidate-pairs, since not all thought names are changed.

As a general suggestion, it not a good idea to use the location of thoughts as a similarity
factor, since the string representing the location of the actual content is only present in
content thoughts. By involving a thought’s location in the comparison phase, the system
is wasting resources when comparing classifier thoughts. Further more the location
string is usually pretty long compared to a thought’s name or keywords. Therefore, the
system will need more memory.

It is assumed that most of the editing does not change the corresponding thought
entirely, rather a slight change is made on the thoughts. Only a few thoughts are changed
drastically. This fact also represents the common practice of cooperative developing
of a Network of Content. If the majority of the thoughts is changed drastically, the
parameters for separately developed brains can be used instead.

With this assumption, the following conclusion can be made: Most of the surrounding
thoughts are still similar. Therefore, all surrounding thoughts can be used.

The threshold value of the active thought’s keywords is preferred to be smaller compared
to keywords from child thoughts. This is because more keywords exist in all child
thoughts compared to the number of keywords in the active thought. If the number of
parents is smaller than the number of children, than the threshold values for the parent
thoughts are preferred to be smaller, too. This also applies to thought names.

Weight values can be set according to the importance of the respective similarity factor.
Preferably, the active thoughts’ weight values are the largest. The second largest is the
weight for parent, child and sibling thoughts.
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A.2 Matching brains which do not have a common predecessor

For this kind of application, it is assumed that most of the differences between brains are
overlapping. The structure of classification itself is not guaranteed to be similar. Therefore,
the threshold values for all thoughts are preferred to be small. The identifiers of thoughts are
not recommended to be used. The same applies to the location of thoughts.

The names of thoughts, which represent the same concept, most probably are different.
It is better not to compare them. But use the name of thoughts for finding candidate-pairs.
Keywords fields have more values compared to the name fields, therefore it is better to use
the keywords only. Jump thoughts are better excluded. It is better to do the comparison
based by hierarchical structure only. Cross-references like jump thoughts will most likely only
make things more complicated without any promising result. For finding candidate-pairs set
the options to ‘Names and Keywords’ and ‘Thought, Children, Parents and Siblings’. For a
faster computation sibling thoughts can be excluded also.

Weight values can be set according to the importance of the respective similarity factor.
The weight values of the active thought are preferred to be the largest. The second largest is
the weight for parent, child and sibling thoughts.
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