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Abstract

The introduction of the General Data Protection Regulation (GDPR) shifted the focus of
interest towards the research field of privacy preservation techniques. This paper investigates
challenges and solutions within the research field of Privacy-Preserving Natural Language
Processing (NLP), an intersection between Privacy and Natural Language Processing (NLP)
and privacy. Since this research field is beginning, we want to know which challenges and
solutions it provides to deal with privacy-related challenges and if there is a possibility to
categorize them. Furthermore, our goal is to overview this research field to support other
researchers coordinating within the area. To achieve this goal, we apply a systematic mapping
study focusing on the challenges and the solutions provided by the research field of Privacy-
Preserving Natural Language Processing. We noticed two significant categories that interpret
NLP either as a privacy enabler or as a privacy threat. To deepen our understanding of the
privacy-related issues within the field, we also extracted use case categories and NLP-related
features to map them on the privacy-related challenges and solutions. Finally, we offer an
overview of privacy-related challenges in which use case categories they appear and how
they are solved.
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Kurzfassung

Die Einfiithrung der General Data Protection Regulation (GDPR) hat das Interesse auf das
Forschungsfeld der Techniken zur Erhaltung der Privatsphdre geweckt. Diese Arbeit unter-
sucht Herausforderungen und Losungen innerhalb des Forschungsfelds der privatsphére-
erhaltenden natiirlichen Sprachverarbeitung, einer Kombination aus Datenschutz und nattirli-
cher Sprachverarbeitung und Privatsphére. Da dieses Forschungsfeld sehr jung ist, wollen
wir wissen, welche Herausforderungen und Losungen es fiir den Umgang mit privatsphare-
erhaltenden Herausforderungen bietet und ob es eine Moglichkeit gibt, diese zu kategorisieren.
Dariiber hinaus ist es unser Ziel, einen Uberblick iiber dieses Forschungsfeld zu geben, um
andere Forscher zu unterstiitzen, die sich auf diesem Gebiet orientieren wollen. Um dieses
Ziel zu erreichen, wenden wir eine systematische Mapping Studie an, die sich auf die Heraus-
forderungen und die Losungen konzentriert, die das Forschungsfeld privatsphére-erhaltenden
nattirlichen Sprachverarbeitung bietet. Dabei sind uns zwei Kategorien aufgefallen, die NLP
entweder als Unterstiitzer der Privatsphdre oder als Bedrohung der Privatsphére interpre-
tieren. Um unser Verstdndnis der datenschutzrelevanten Themen innerhalb des Feldes zu
vertiefen, haben wir auflerdem Anwendungsfallkategorien und NLP-bezogene Merkmale ex-
trahiert, um sie auf die privatsphére-relevanten Herausforderungen und Losungen abzubilden.
Abschlielend bieten wir einen Uberblick {iber privatsphire-relevanten Herausforderungen,
in welchen Use-Case-Kategorien sie auftreten und wie sie gelost werden.
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1. Introduction

The following chapter will elaborate the motivation of this research in section 1.2, the research
objectives in section 1.2 and afterwards, in section 1.3, we illustrate how we intend to achieve
these goals.

1.1. Introduction

One of the most crucial events in terms of privacy was the introduction of General Data Pro-
tection Regulation (GDPR) in 2016. The European Union adopted this law that is recognised
across Europe. The member states had 2 years to adopt the law on their national level until
May 2018. Now, an individual has legal protection for the data that were collected based
on different factors (e.g behavior online, input data, etc.). This also means that there are
crucial legally binding consequences for anyone who is not acting accordingly [1]. One main
reason for this law is to protect the individual from the threats posed by Big Data and the
insatiable hunger of companies collecting data in any possible manner [2]. Therefore, the
GDPR enables the European Data Protection Authorities (DPA) to punish companies for a
violation of this right with a payment of up to 4 percent of the annual income [3]. There
are already several examples of EU member countries that prosecuted companies for GDPR
violations. For instance, France suing Google for insufficient legal basis for data processing
resulting in a fine of 50 million euros. The same scenario occurred to H&M in Germany and
TIM(telecommunications operator) in Italy with fines of around 35 million and 27 million
euros, respectively [4].

However, this was not the only reason for the increased interest for privacy, but rather the
result of multiple events in the past that drew the attention of the public towards it. One of
the aforementioned events is the Cambridge Analytica Scandal which only got disclosed to
the public through whistleblower Christopher Wylie. He described how his former employer
harvested data of Facebook users without their consent. With this data, Cambridge Analytica
was able to analyze the behavior of a large amount of Facebook users and target those who
were likely to change their mind and also convince others. This ”service” was purchased by
famous politicians to win voters for their side [5]. This is just one of many examples that got
leaked, however, there are many more cases of data breaches and leaks.

Living in the time of Big Data, companies are collecting more and more data from everything
possible we can get in order to analyze. This fact is reflected in the amount of publications in
the area of big data which were made between 2000 and 2019, as can be seen in Figure 1.1 [6].

The collection of data happens automatically, therefore, it is imperative to also apply an
automated approach to preserve the data privacy in order to protect not just the individual
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Figure 1.1.: Trend of the number of publications in data science and big data taken from [6]

but also companies intending to guarantee privacy of every involved individual and avoid
tremendous penalty fines. However, data privacy has the main disadvantage of usability
reduction which is a key issue and is being intensively researched. We decided to focus on the
medium that incorporates and transmits private information, namely the natural language.
The natural language occurs either in the form of voice or in written form.

Filtering out private information is a difficult tasks especially if the text is unstructured.
There are several easily detectable pieces of sensitive information, namely email and local
addresses, names, phone numbers etc., which embody some sort of uniqueness that can be
solved with algorithms (e.g. a pattern matching). However, there are also some information
types which require more sophisticated approaches in order to be detected. If the context
or the user perception of the private information varies it is complex to devise an optimal
solution because of the lack of flexibility of current methods [7]. An attempt is needed that is
robust to varying complexity levels to find sensitive information and also capable to handling
the amount of data. We consider Natural Language Processing (NLP) domain as an adequate
fit for the aforementioned challenge.

Furthermore, we must point out that there are several vulnerabilities within the NLP
domain. One paper demonstrates the ability to extract information about the training data
used to train neural networks. This trait is called unintentional memorability. Additionally,
a method is presented that can measure the unintended memorability of different neural
networks. Thus, models save information from the training set. In our case, this is especially
critical if the training set contains private information in the form of natural language [8].
Additional privacy leaks were also detected within language models. Successful attacks
already have been constructed to demonstrate the exploitability of popular state-of-the-art
language models, namely BERT, Transformer-XL, XLNet, GPT, GPT-2, RoBERTa, XLM, Ernie
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2.0. Word embeddings are reverse-engineerable without any prior knowledge and attackers
are able to retrieve up to 75 percent of the sensitive data they have been trained on [9].
Another research attempt could fully reconstruct 411 out of 600 patient data records that were
anonymized before they were used to train the published word embeddings [10].

During our mapping study, we realized that there are two challenges that can be solved with
NLP. On the one hand, we know that large unstructured text corpora can be automatically
redacted by the application of NLP to extract or replace private information. There is
a plethora of papers aiming at the aforementioned challenge, thus, we concluded that a
structured overview for this domain will be essential to not just show what kind of research
has already been done but also which gaps exist. On the other hand, it emerges the need
to preserve privacy within the tasks broadly applied in the NLP domains. Furthermore, we
discovered that plenty of papers address the problems caused by privacy policies. All the
mentioned aspects encouraged us to aggregate it in one domain. This leads us to the domain
of Privacy-Preserving Natural Language Processing (PP NLP).

1.2. Research Objectives

This thesis aims to provide a definition for PP NLP, since we realized that there will be
multiple ways of interpretation of the term during our preliminary analysis. Additionally, we
think it will helpful in the future of this research field to have a clear definition in order to
avoid repetitive research. We will provide some additional information that are the answer to
our research questions listed in Table 1.1.

1D Research Question

What privacy-related challenges exist in the area of Natural Language
RQ1 .

Processing (NLP)?

What approaches are used to preserve privacy in and with NLP tasks
RQ2 o

and how can they be classified?

What are the current research gaps and possible future research direc-
RQ3 . . . .

tions in the area of privacy-preserving NLP?

Table 1.1.: Table of Research Questions

In our overview of the research field of PP NLP, we include the privacy related challenges
which exist in the context of NLP. Simultaneously, this is the answer of RQ1. This piece of
information will support the community to see which challenges were already identified
and also ease the process of finding new ones. In order to answer RQ1, we will scan all
the papers we found in the search process for the problem statements that are trying to
solve and summarize it. Then, we propose an aggregation scheme for the findings with the
help of keywording [11]. This will ease the understanding of the research field since the
aggregation scheme will map the papers to high level terms. Further, we define the term
Privacy Preserving Natural Language Processing to clarify our understanding of the research
field which we analyze.
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After extracting and having an overview of the different privacy challenges within the NLP
domain, we aim to figure out which approaches currently exist in order to preserve the privacy
in NLP tasks and also how NLP concepts can be utilized to establish privacy. We expect to
derive patterns from these findings indicating popular privacy enhancing technologies PETs
to preserve privacy within which NLP concepts and which NLP concepts were used in order
to introduce an increased level of privacy in a certain scenario. Here, we will categorize our
findings and bring it in context with the findings of RQ1. Furthermore, our research will
point out which trends are currently emerging.

After answering RQ1 and RQ2, we will provide an overview of the privacy challenges
and their solution approaches. The answer to RQ3 will be the investigation of possible gaps
within the current research state based on the aforementioned findings and imply which
research streams are up-rising or even suggest new research streams. Additionally, other
researchers are supported in discovering further research gaps.

Additionally, we would like to devise an overview of the research field of PP NLP. With
this overview, we would like to graphically summarize the research field to ease the task
to discover new research opportunities. Therefore, a categorization of different research
streams is necessary to introduce in order to structure the overview better and improve the
readability of the graphical representation. Furthermore, we will highlight resulting trends in
the research area by showing how many papers contributed to the field.

1.3. Research Approach

Since we want to receive a broad overview over the research field of PP NLP and which
challenges and solutions are prevalent, the application of a systematic mapping study (SMS)
is suggested [12]. Therefore, we will describe the process roughly and in more detail in
chapter 4. We chose the systematic mapping study, since it supports the idea of devising a
classification scheme and structure of a software engineering field. According to Petersen, the
mapping study roughly consists of three phases, namely planning, conducting, and reporting
the mapping. The detailed process is displayed in Figure 1.2 and the process adaptations
will be further explained in chapter 4 [11]. We will utilize the systematic approach of the
SMS to conduct the collection process of papers addressing our definition in a reproducible
way. Mainly, the aim of SMS is to categorize different research streams and the analysis of
publication related information in a software engineering field of interest [13]. Instead of
focusing on the data regarding the paper publication, we inspect the challenges and solutions
in the area of PP NLP. This will be the main inspiration for the research approach of this
thesis. The number of relevant papers in the different phases of the SMS, which are explained
in the next sections, are displayed in Figure 1.3.

1.3.1. Systematic Collection of Potential Sources

After the selection of the data bases which we involved in our search process defined in table
4.3, we needed to decide which search queries have to be executed. As a result, we selected
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five search queries listed in Table 4.1. Every data base was confronted with each query which
resulted in 4424 papers. In the next step, the collected papers need to be further examined, as
suggested by Petersen [11].

1.3.2. Inclusion and Exclusion Process

After the collection of the relevant papers, we thought of inclusion and exclusion criteria
which supported us to scan through the papers and sort those out that do not fit into our
definition of PP NLP. Here, we applied the methodology of Petersen and inspected the title
and the abstract of the collected papers and included or excluded accordingly to the criteria
we agreed on [11]. At the end of this phase, 665 papers were left that addressed our topic of
interest. Now, we analyze the remaining papers and start the categorization process.

1.3.3. Analysis of Included Sources

In the last phase of the mapping study, we sorted our findings into a classification scheme
regarding the privacy related challenges and solutions according to Petersen [11]. For this
purpose, we applied the keywording of abstracts displayed in Figure 1.4. During this process
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we discovered two main streams within the selected papers, namely NLP as enabler for
privacy preserving methods and also fixed privacy related issues within NLP concepts. The
two main streams ended up to different amount of papers. NLP as enabler for privacy counts
304 papers and the second stream fixed privacy issues within NLP concepts 127 papers.
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Article
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Figure 1.4.: Keywording abstracts to build classification schemes taken from [11]




2. Foundations

In this chapter we will define our area of research and the terms applied in this work
to have the same understanding. Also, we want to propose a novel definition regarding
Privacy-Preserving Natural Language Processing.

2.1. Definitions

This section contains the definitions of the key terms that are essential in the context of
this thesis. First, the key terms privacy, its preservation techniques and Natural Language
Processing are delineated. As part of our contribution, we also propose a definition for
Privacy-Preserving Natural Language Processing.

2.1.1. Privacy

The definition of privacy is always a complicated endeavor, especially in the legal domain
because it is a term that not just differs from country to country, but from individual to
individual [14]. According to Westin, there are three levels of privacy, namely the political,
socio-cultural and personal [15]. In this thesis, we will focus on the personal level. Every
individual has a set of information that is clearly attributable to it, however, this set is dynamic
and changes from context to context and from time to time [14]. In this thesis, we call this set
of information personal data. According to the General Data Protection Regulation (GDPR),
personal data, or Personal Identifiable Information (PII), is defined as any information about
an identified or identifiable natural person, or data subject. Specifically, an identifiable natural
person, is a person that can be identified directly or indirectly by direct identifiers like a
name, an identification number or one or more factors referring to its physical, physiological,
mental, economic, cultural, or social identity [16]. The legal definitions of Personal Identifiable
Information (PII) differ from country to country. In this thesis we use the expansionism of
the European Union towards the term PII instead of the very restricted definition of PII in the
United States of America [17]. The European expanded definition of PII is, however, limited to
the realistic possibility of linkability of the information to a data subject [16]. It is also proven
that the concept of PII is not sufficient to protect the privacy of an individual, especially when
the sophistication of tools capable of inferring further information with little to no previous
knowledge is constantly improving [7]. Therefore, we need an improved categorization of
information related to an identifiable natural person. Any piece of information that might
lead to the revealing of the privacy of an individual based on its perception is also called
Privacy Sensitive Information (PSI). The combination of PSI and PII forms the super set
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Privacy Revealing Information (PRI). Most importantly, the avoidance of the mapping of PII
to PSI needs to be guaranteed at any time [7].

2.1.2. Privacy Enhancing Technologies (PETs)

Same as Y. Shen and Pearson, our understanding of privacy enhancing technologies are
applied in order to protect private information of a data subject [18]. This part will describe
our understanding of privacy preserving techniques that will frequently appear in this thesis.
Therefore, we need to define our understanding of a few terms in order to have the same
theoretical foundation.

De-identification of Personal Information

The process of De-Identification focuses on the removal of identifying information within a
data set. The data removed in this context is called Personal Information instead of Personal
Identifiable Information (PII). According to Garfinkel et al., Personal Identifiable Information
refers to information that is only attributable to one individual, however, information that
can attribute any individual are left out, although they are also important. This refers to
any kind of data type including structured and unstructured text or multimedia. After the
removal of that information, the risk is reduced for an individual to be linked to the data
set. The goal is to have an acceptable trade-off between privacy and usability, in other words,
sharing a data set without disclosing any information that might disclose the identity of an
individual. Furthermore, the terms ”de-identification” and “anonymization” are commonly
used interchangeably, but in general, they aim for the same aforementioned process [19].

Differential Privacy

Differential Privacy guarantees a certain level of privacy to an input of an individual to a
(randomized) function or a series of functions. It was designed in order to protect the privacy
of an individual or a small group of individuals in a statistical analysis. A tremendous
benefit of Differential Privacy is that even if an adversary has a lot computational power and
knowledge over the differential private data set it is impossible to re-identify the individuals
[20].

Obfuscation

The paper by Pang, X. Xiao, and J. Shen, illustrates our understanding of obfuscation in a
sense where the actual data within a text corpus like a search query is masked by for example
injecting fake queries in order to blur the intentions of the searching user or in other words
not to fully disclose the data to a third party [21].
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Synthetic Data Generation

According to El Emam, the generation of synthetic data is based on statistical models that are
reapplied in order to generate a new data set fitting into the statistical traits from the original
model. This avoids the sharing of the actual data but still allows the recipient to conduct
analysis on the synthetic data set [22].

Federated Learning

The general idea of Federated Learning is that the training of a model is not executed on a
central server but is distributed among different parties, also called clients. Every client has a
data set containing sensitive information that is not uploaded to a central server. Instead, the
client trains the global model with his locally stored data set and updates the parameters of
the model. The orchestration of the training model among the different clients is managed by
one central server [23].

Secure Multiparty Computation

As the term implies, the calculation process of an agreed function f involves several parties .
All parties are in possession of a secret x; that they do not send to any other of the parties
participating in the computation process but is used as input for the function f. Two attributes
are essential for Secure Multiparty Computation, namely the correctness of the computation
of f and the privacy of the input x; [24].

Homomorphic Encryption

According to Fontaine and Galand, Homomorphic Encryption needs to satisfy the following
equation [25]:
Vmy, my € M, E(my ©pmy) <— E(my) ©¢ E(my)

Let M and C represent all sets of plaintext and ciphertext respectively. ©pand®c denote
an operation that is validly executable on the respective plaintext or ciphertext. «<— means
that the same operation is computable like on the left side of the arrow. In other words,
Homomorphic Encryption is the process of performing operations on encrypted data with
decrypting it at any stage [25].

2.1.3. Natural Language Processing

Our understanding of NLP is equal to the definition by Liddy [26]. Through the application of
computational techniques, naturally occurring text is analyzed on multiple levels of linguistic
analysis in order to have a similar level of human-like language processing to preform a
specific set of task on it [26].

This definition is further explained in the source since a few terms a rather vaguely
formulated. By “naturally occurring text” any text is meant that is spoken or written by a
human. This language is then “analyzed on multiple levels of linguistic analysis” to translate
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the human language in a way that is also understandable for the computer to process it
[26]. This is an essential aspect for this work because we inspect not just written but also
spoken text. It is commonly known that written text is containing private information about
us like our email or our local address or our name. All of those information lead to a unique
mapping that points to an individual. But this also counts for uniqueness of our voice which
is also used for biometric authentication systems.

One level of the aforementioned level of linguistic analysis is called phonology or speech
processing. This area inspects the voice sounds by applying a set of rules in order to not just
distinguish words in a sentence but also take into account that pronunciation differs from one
to another. There are rules called phonetic rules concentrating on the sounds within a word.
Then, there are phonemic rules when words are spoken together and their pronunciation
differs. Prosodic rules aim for the fluctuation in stress and intonation in a sentence [26]. But
there are also novel approaches for the generation of voices that is based on vectors and
probabilistic models [27].

For the written text, there are multiple linguistic models that need to be considered. The
first and very fundamental level is morphology. The main subject of this topic are morphemes
the smallest particle or word chunks with meaning in linguistics [26]. Part of Speech Tagging
(POS) is the process of assigning words in a sentence their role within it for example noun,
verb, adverb etc. The tagging is based on the morphological analysis of words [28]. The word,
the composition of morphemes and lemmas, itself and its meaning is inspected on the lexical
level. If we take the verb “deliver” as a lemma and combine it with some morphemes we
receive “delivers” or “delivered” etc. [29].

According to Liddy, another level of analysis within the NLP domain is the semantic one.
The main goal of it is to investigate the contribution of meaning of sentences in order to
detect and solve the problem of disambiguity and larger text corpora taking into account
the information delivered by context of a given corpus [26]. Frequently used in the domain
of NLP is a task from information extraction called Named Entity Recognition (NER). NER
is a way to introduce structure into an unstructured text document searching for a certain
meaning on the semantic level. It is not just used in order to identify people, organizations
and institutes, but to search for certain information within a text corpus [30].

2.1.4. Privacy-Preserving Natural Language Processing

This definition of privacy preserving natural language processing is inspired by the accepted
papers from the workshop series “"PrivateNLP” [31, 32, 33]. During the mapping study, we
discovered two major topics that are handled by PP NLP. The first area is the application of
NLP in order to establish privacy in a certain scenario. Commonly, the scenario focuses on
some forms of sharing or publishing unstructured data sets with third parties in different
contexts or supports the process of coping with privacy policies or requirements. But this
can not be done before a privacy preservation technique based on NLP is executed on the
data set in order to protect the privacy of the data subjects. The challenge with privacy
policies or requirements is that the language, in which they are written, is complex and not
comprehensible at first sight. In context of agreeing on web site cookies, privacy related

10
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documents frequently challenge the user with its length. Because of that, NLP is applied in
order to ease the process of handling those kinds of documents in different ways, namely
summarization or rephrasing of privacy policies or an automatic comparison of a privacy
policy and privacy requirements. The second topic we recognized, is the privacy protection
of the data involved within a NLP process. As already mentioned in the introduction, the
exploitation of fundamental NLP concepts was demonstrated. Therefore, it is important to
extend this definition by including also the statement of Q. Feng, D. He, Z. Liu, et al. claiming
that NLP should not enclosing any information regarding the data it is trained on [34].
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In the following, we list research that is closely related to our work to stress the value of our
contribution to the field. Since, to the best of our knowledge, there is no concrete definition
for Privacy-Preserving Natural Language Processing, there are several papers interfacing
the topic. In this chapter, we point out Systematic Mapping Studies and surveys that focus
on privacy preservation techniques related to machine learning or deep learning. However,
there are some papers about the combination of privacy preservation and specific natural
language techniques. In the first part, we will have a look at Systematic Mapping Studies that
are topicwise related to our research. Afterwards, we discuss the application of NLP in the
legal domain. Then, we inspect surveys based on privacy preservation techniques and deep
learning. At the end, we inspect a workshop series addressing the topics NLP and privacy.

3.1. Systematic Mapping Studies Addressing Privacy

To the best of our knowledge, there are no systematic mapping studies addressing privacy
preservation and Natural Language Processing, but only surveys on PP ML or PP Al not NLP.
We selected two Systematic Mapping Studies analysing privacy challenges and its solutions
within a context that includes natural language.

3.1.1. Security and Privacy Concerns in Connected Cars

We chose this Systematic Mapping Study inspecting privacy and security challenges within
the domain of connected cars [35]. All research questions of this work are comparable
to ours. The first attempts to identify what kind of privacy and security-related issues
were identified by the researchers in connected cars. Here, the problems identified towards
identity management refer to unallowed access to the network and, simultaneously, to the
personal data processed and stored within it. The vehicle provider does not provide any
additional privacy measures within the network to secure the personal data in a malicious
network intruder or an insecure central server. According to the paper, the solution to this
threat is the implementation of privacy-preserving schemes like k-anonymity, encryption,
bit-array encoding, or pseudonym-changing scheme [35]. Our work will focus on the privacy
preservation of data in natural language in written or spoken form. Moreover, we analyze the
role of NLP in providing privacy exclusively.
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3.1.2. Privacy-Related Challenges in mHealth and uHealth Systems

There was another Systematic Mapping Study that caught our attention that aimed for a
subtopic of our research. Therefore, we thought it is noteworthy in the context of this work.
The research of Iwaya, Ahmad, and Babar focuses on the security and privacy in systems
considering the NIST 800-53 control families that handle natural language. More particularly,
on the privacy and security of mobile Health (mHealt) and ubiquitous Health (uHealth)
systems. The mapping studies filter out 365 papers that match their field of research. The
main targets of the analysis phase were the identification of research themes, main challenges,
and their most prominent solutions. Then, those findings were categorized and synthesized.
An overview of the different solutions organized by themes stresses the illustration of the
limitations of the current research status. Also, an evaluation phase is conducted to check the
practicability of the existing solution approaches [36]. Our approach differs mainly on the
broader scope that we decided to have. Also, our interest is on NLP based approaches for
private data represented in natural language.

3.2. Applying Natural Language Processing in the Legal Domain

This section will disclose several research overview papers addressing the application of NLP
in the context of law and privacy. We realized that NLP offers support in handling complex
legal documents explaining the privacy rights or complying with it.

3.2.1. Natural Language Processing and Automated Handling of Privacy Rules
and Regulations

There is considerable research conducted on the combination of the legal domain and NLP.
Papanikolaou, Pearson, and Mont survey natural language understanding and the automated
enforcement of privacy rules and regulations in the cloud [37]. Automatic extraction of
information from legal, regulatory, or policy text in the form of privacy knowledge or
rules and combination with compliance and enforcement. The paper’s main objective is to
guarantee privacy level for customer data stored and processed in a cloud environment of an
enterprise. To achieve this goal, the application of semantic analysis on text with NLP concepts
and enabling automatic rule enforcement is imperative. Four categories were introduced
within the paper: parsing and fundamental analysis of source texts, knowledge extraction
from texts and learning, semantic models and representations, and policy enforcement and
compliance. The analysis and parsing of a source text embody similar and repetitive patterns
in frequencies of different word clusters. Therefore, several tools exploit this trait of legal
text. Knowledge extraction from text and learning applies several machine learning concepts
to analyze the semantic representation of legal text on a higher level and extract rules.
Semantic models and illustrations support the idea of setting up rules with a specific order
on the semantic level. Thus, this section refers to a sophisticated framework of rules for the
generation of legal items that are easier to comprehend. The last section within the paper,
policy enforcement, and compliance highlights that there is no research so far that focuses
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on the entire life cycle of natural language analysis in the context of privacy. In other words,
research that not just focus on the generation of clear and easily comprehendible rules, but
also its enforcement [37]. Our work is more abstract and does not focus on the legal domain
specifically. We will graphically represent the status quo of the research in the legal field with
the focus on privacy preservation with the involvement of NLP, not explicitly searching for a
complete privacy life cycle. Not just the creation of privacy life cycles was investigated. Also,
tools were developed to detect privacy violations in legal documents like online contracts. The
paper by Silva, Gongalves, Godinho, et al. applies commonly known tools like NLTK, spaCy,
and Stanford CoreNLP to develop a new tool that supports companies to detect privacy
violations within legal contracts. The fundamental NLP task executed here is Named Entity
Recognition (NER). It automatically detects potential personal identifiable information (PII)
in legal documents. The tool is then tested in an experiment to evaluate its accuracy [38].
This is a very particular example for the application of NLP paradigm of semantics analysis
to preserve the privacy of data subjects within a legal document like a contract. A systematic
mapping study has been rendered on NLP for requirements engineering [39]. The objective
of the SMS is to inspect the status quo of the research of NLP for requirements engineering,
short NLP4RE, and to detect the open challenges with the domain. The result of the research
is the extraction of five significant findings. First, a lot of publications in the area indicated
that the research area is thriving. The research methods applied within the publications in
the area using either laboratory experiments or demonstrate an example application. Most
of the publications focus on the analysis phase requirement specification and detection as
central linguistic analysis tasks. Furthermore, an overview of the applied NLP tools and
concepts within the NLP4RE domain was presented. The paper concludes that there is a
gap between the state-of-the-art theory and practice. The developed view in papers and
the lack of application of the concepts in the industry [39]. Our work focuses more on the
privacy-related requirements and other application areas of NLP and also gives an overview
of fixed privacy issues within the NLP domain.

3.3. Surveys on Applying Privacy Preservation on Machine
Learning and Deep Learning

This thesis unites multiple research domains. Therefore, we considered a huge variety of
papers from different disciplines applying similar methodologies. Because of that, we also
took papers surveying on topics related to our research topic. For example, machine learning
and statistical methods are frequently applied in the domain of NLP (e.g., in context of
ambiguity of words) [40]. So, we also saw a relation between surveying privacy preservation
techniques in the area of machine learning and deep learning and our work which are
fundamental for the recent successes in the NLP research field.
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3.3.1. Privacy Preservation and Machine Learning

This part of the thesis delineates related surveys on privacy-preserving machine learning in
which way this research is similar to ours but also how our research contributes differently to
the field. There are two surveys on the combination of privacy preservation techniques and
differential privacy.

One paper by Z. Ji, Lipton, and Elkan surveys the impact of differential privacy on the
training process of machine learning algorithms [41]. The application of differential privacy
supports the idea of not disclosing private user data to the algorithm and still providing
valuable information by sharing or publishing differential private data sets. Moreover, the
paper analyzed what could be learned from a differential private data set and also which
limits in terms of the loss function differential private algorithms contain [41]. This paper
focuses on the possibilities of applying differential privacy in combination with data release
and training potentials. In contrast, we are eager to acquire an overview of which privacy
preservation challenges and solutions exist specifically in the NLP domain.

Gong, Xie, K. Pan, et al. survey different differential private approaches in combination with
machine learning [42]. The paper identified two different categories. First, the combination of
the non-private machine learning model with the calibrated noise and the second category
perturbs the objective function with random noise. Within the paper, the challenges regarding
the model privacy level, usability, and its applications are pointed out and evaluated [42].
Again, the privacy preservation techniques and their impact on the relying machine learning
model are inspected, our interest targets the application scenarios of the different techniques.

3.3.2. Privacy Preservation and Deep Learning

Here, we discuss how the research landscape of deep learning in combination with privacy
preservation is shaped in the form of surveys and also how our work differs from it. After
inspecting a survey about collaborative deep learning, we will elaborate on applying deep
learning techniques to preserve privacy.

Several surveys deliver an overview of a privacy preservation technique comparable to
our work. For example, the paper by D. Zhang, X. Chen, D. Wang, and Shi elaborates
potential problems that might come up in a collaborative privacy-preserving deep learning
environment that enables the participants of a model to contribute their data without actually
sharing it [43]. Thus, the data is not leaving the data owner. However, either the model
is updated by every participant, or the user is provided with an API that takes the user’s
input and generates an output sent to the central server. Although this process sounds
secure, it still covers some challenges that are also addressed by potential privacy preservation
techniques. Three major problem scenarios were presented in the paper. The problem
assumption is based on the idea that the participating unit is malicious, namely either the
server or the user or both. To mitigate the aforementioned problems, the paper presents
three common techniques for privacy preservation, namely secure multiparty computation
(SMC), Homomorphic Encryption, and Differential Privacy. The paper elaborated that the
privacy preservation techniques address two phases, namely training, and usage. In the

15



3. Related Work

training phase, it is essential that the user’s data is not visible to any of the participating
parties. A homomorphic encryption technique is applied to execute the training. Still, some
communication between the participating parties is needed, which is solved by SMC. Thus,
curious but honest participants are not able to spy on the sent data. To avoid statistical attacks
when a malicious server and user are collaborating, the idea of differential privacy on the
user level is applied to defend against it. Then there is also indirect collaboration in the
training phase, which changes the challenge for privacy preservation. The data needs to
remain at the user’s storage. Here, it is essential for the parameters that are sent around
the participating parties that there can not be any statistical attacks on them. There is one
solution that averages over multiple outputs from users. Another solution applies additionally
differential privacy that is incorporated in algorithms of the training stage, and there is also
an approach that distributes the processes across the participating parties. Changes were
made on the server and client-side to form a pipeline. In the usage phase, the paper by
D. Zhang, X. Chen, D. Wang, and Shi highlights the CryptoNet system that works with
homomorphic encryption [43]. The user encrypts its data and sends it to the server. The
server performs its algorithms and calculations on encrypted data and sends the results back
to the user that decrypts the received result. This requires a few adaptations in the training
stage of the neural network. The other solution avoids changes to the neural network training
stage and applies additive homomorphic encryption. This solution represents an oblivious
network that works with secrete sharing and garbled circuits in the usage phase. The final
solution approach for the usage phase incorporates Private Aggregation of Teacher Ensembles
(PATE) and introduces random noise into the strategy [43]. We figured that the applied
privacy-preserving technologies are similar to the ones we discovered in the mapping study
for fixing NLP issues within the tasks. Still, we will concentrate on the domain of NLP which
also incorporates deep learning techniques. In our work, we attempt to give an overview of
privacy preservation covered by NLP.

Another survey investigates deep learning techniques and compares their benefits and
drawbacks [44]. In Figure 3.1 the graphical representation of the deducted classifications is
represented. The methods are divided into two categories: classical privacy preservation
and hybrid privacy-preserving deep learning, meaning that privacy preservation does not
solemnly rely on one classical privacy preservation technique but at least two. As classical
privacy preservation techniques, the paper lists homomorphic encryption (HE), differential
privacy, Secrete sharing, oblivious transfer (OT), and secure multiparty computation (MPC).
All of those methods do not apply any deep learning. The Hybrid Privacy-Preserving Deep
Learning (PPDL) takes advantage of a mixture of classical privacy-preserving techniques and
deep learning. According to Tanuwidjaja, Choi, and K. Kim, every category is represented by
one or multiple papers to implemented a privacy preservation technique that will be evaluated
by the metrics listed in Figure 3.2. The largest sub-category listed here are papers based on HE,
namely HE + Convolutional Neural Network (CNN), HE + Deep Neural Network (DNN), HE
+ Discretized Neural Network (DiNN), HE + Neural Network (NN), and HE + Binary Neural
Network (BNN). Then there are a few more categories like three-party Computation (3PC)
+ Garbled Circuit (GC) + Neural Network (NN), Oblivious Transfer (OT) + Secrete Sharing
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+ Secure MPC + DNN and OT + Secure MPC + CNN. This followed by a paper mentioned
by Tanuwidjaja, Choi, and K. Kim applying Differential Privacy and Generative Adversarial
Network (GAN). The aforementioned metrics listed in Figure 3.2 measure the accuracy of the
underlying algorithm after the privacy preservation technique was installed. The run time
refers to the time the privacy preserved method needs to execute its particular task. Data
Transfer inspects the amount of data sent from the client to the server. Privacy of Client (PoC)
stands for the fact that no other party is able to see the data except the data owner. Privacy of
model (PoM) means that neither the client nor any participant is aware of the model classifier
in the server. The papers that are based on HE are evaluated and compared with each other
with those metrics. This also happens for the papers based on differential privacy and SMC.
The results of those comparisons are irrelevant for our work [44]. This work demonstrated
a possibility to categorize and test different privacy-preserving techniques. This thesis will
zoom out and give an overview of NLP and not compare different papers with each other
based on metrics since we want to shape a landscape of privacy-preserving Natural Language
Processing and point out the different challenges and solutions within the domain.
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Figure 3.1.: Overview of privacy preservation methods in deep learning taken from [44]

The following paper discusses Privacy-Preserving Deep Learning (PPDL) in the research
sector Machine Learning as a Service (MLaaS) and provides an overview [45]. At first, the
paper points out the most classical approaches of PPDL and explains it. Then, fundamental
conflicts of deep learning and adversarial models in privacy preservation are delineated.
Finally, the paper offers a classification of the current PPDL techniques and a timeline of
publications in a survey to follow the development better. Additionally, challenges and
weaknesses of the state-of-the-art PPDL are displayed in Figure 3.3. The Figure displays two
approaches of PPDL, namely the model parameter transmission and the data transmission

17



3. Related Work

PPDL Metrics

Data

Figure 3.2.: Overview of privacy preservation metrics in deep learning taken from [44]

approach. Further, the approaches are then divided into the applied PPDL methods applied
in the respective approach. For the model parameter transmission, it is federated learning
and distributed machine learning having the weaknesses communication overhead, backdoor,
and GAN attacks. The data transmission approach is solved by using either anonymiza-
tion or homomorphic encryption or differential private-based PPDL. The main weaknesses
for anonymization are homogeneity and background knowledge attacks. Homomorphic
encryption-based PPDL is complex and comes with a slow training process. The problem of
differential privacy-based PPDL is the central character having a central coordinator. Thus, a
problem of a single point of failure [45]. Just as this thesis, privacy preservation techniques are
inspected to shape an overview of the current approaches in a particular field of research. The
difference to our work is not just the focus on NLP but also the more abstract interpretation
of privacy-preserving NLP and the aggregation of challenges and their solutions within our
definition of PP NLP. In contrast, this paper has a strong focus on the techniques themselves
and their evolution, their challenges, and weaknesses.
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Figure 3.3.: Overview of privacy preservation challenges and weaknesses taken from [45]

18



3. Related Work

Virtual assistants like Siri are commonly used by humans worldwide and in different
languages, disclosing private information. One study focused its effort to analyze the
literature prevalent in the topic of voice assistants and their impact on privacy and security.
Those systems are frequently cloud-based [46].

3.4. Workshops on Privacy in Natural Language Processing

In 2020 the first workshop was hosted, called "PrivateNLP 2020@WSDM 2020”. In this
workshop, several papers were presented addressing privacy-related challenges in NLP. The
previous papers will be briefly mentioned in this section [33]. Furthermore, the second
workshop of this series was held. The title of it was "PrivateNLP@EMNLP 2020”. The papers
accepted to this workshop are also part of the section [31]. Additionally, there will be a third
workshop hosted named "“PrivateNLP 2021” [32].

3.4.1. Papers from the “PrivateNLP 2020@WSDM 2020” Workshop

In this part of the thesis, we will elaborate on all the papers accepted by the ”"PrivateNLP
2020” workshop. Since this workshop series is the first one discussing privacy and NLP, it is
a relevant aspect for this thesis.

One topic mentioned within the workshop refers to an approach that introduces gaps
instead of privacy-sensitive information within email texts inferred by an algorithm using a
vector space trained on the email incoming box of the respective receiver. This method shall
mitigate the disclosure of sensitive information caused by unintentionally send emails outside
of the corporate environment [47]. Another user-centric approach presents a framework that
works in the form of a plugin that warns the user about disclosing potentially sensitive data
in his written text on, e.g., social media by analyzing its sentiment, authorship, and other
linguistic tools [48]. The following paper introduces the combination of Recurrent Neural
Networks (RNN) and homomorphic encryption to enable a user to use Machine Learning
as a Service (MLaaS) without sending the plain text data. Still, an encrypted version [49].
At first sight, this approach seems to be susceptible to extended execution times. However,
Podschwadt and Takabi prove that this is not the case with the same model working on plain
text data. The comparison has been made with the IMDb movie review dataset [49]. The last
paper of this workshop surveys privacy preservation techniques based on machine learning
[50]. The result of the survey showed that there are two major streams represented in the
literature. One is privacy-preserving machine learning, and the other one is mechanisms to
control the data of users. The former category contains approaches that are related to artificial
intelligence (AI). The main ideas of this research sector are the models and the training data.
Both pillars are addressed by the literature, meaning that sensitive data sets are protected
through applying the concept of differential privacy, and a distributed approach reinvents the
concept of training a model without disclosing the sensitive data sets in the form of federated
learning or Private Aggregation of Teacher Ensemble (PATE). Further, the mechanism to
control users’ data incorporates the general idea of notifying or giving the user a choice.
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In literature, this is primarily done by serving the extracted information from documents
explaining the handling of the user’s data. However, it is imperative to understand the
general idea, is the applied language mostly either complex or ambiguous [50].

3.4.2. Papers from the “PrivateNLP@EMNLP 2020” workshop

The second workshop of the "PrivateNLP” series accepted six papers from different subjects
enumerated here. One challenge in distributed or federated learning is that the potential of
eavesdropping is high, but introducing a classic encryption scheme into the protocol might
cause a significant increase in task performance. A proposed solution to this challenge is to
introduce a small encryption step performed by the participants of the respective learning
concepts. The encryption step is based on a “one-time secrete key”. This encryption is then
part of the training of pre-trained BERT. Both aspects are wrapped up in a framework called
TextHide [51]. Another challenge within the privacy research field is privacy policies that
every user should read before entering a website or downloading an app to identify third
parties that collect data from the user. Privacy Policies are known to be long and complex;
therefore, a team of researchers tackled this issue with a model that automatically extracts
mentioned third parties out of them [52].

Further, the workshop accepted two papers that focus on detecting sensitive data or
privacy-related settings with the assistance of semantic analysis [53, 54]. One example is
the application of semantic analysis for content generated by users to avoid informational
or emotional self-disclosure, which is frequently occurring in social media platforms [53].
Another approach is to utilize semantic analysis to locate settings relevant to the user’s
privacy setting. This supports the user to decide on its own privacy settings instead of
sticking with the default settings of the developer [54].

Differential privacy is another major topic at the workshop and was also discussed by two
papers [55, 56]. An advantage of differential privacy, especially in machine learning, is that
users’ privacy is ready to share sensitive information as training data can be protected. Still,
the performance of language models that are trained on differential private data diminishes
the model quality. Now, a few researchers discovered that differential private data is suitable
for fine-tuning public base models [55]. Furthermore, there is also the possibility to apply
differential privacy in privacy-preserving text analysis. Here, the concept of word embeddings
is utilized. Specific words of the customer data are mapped into a continuous word embedding
space which is then perturbed by applying a differential private algorithm. But Z. Xu,
Aggarwal, Feyisetan, and Teissier discovered that some words in a sparse area of the word
embedding space remained unchanged although a large scale of perturbation was selected.
Therefore, a few researchers did design a new variant based on the Mahalanobis metric to
solve the problem as mentioned earlier [56].

All in all, there are a lot of approaches addressing privacy and its preservation techniques.
On the one hand, we have several papers summarizing certain types of privacy preservation
techniques from different angles and discussing their challenges and solutions and also
a few papers addressing specific privacy-related situations solved by or with NLP, but a
summarization of privacy challenges and their solutions in the form of categories in the
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context of NLP still needs to be done. On the other hand, there are also a few papers that
apply NLP to ease the handling of privacy-related text documents like privacy policies, rules,
or privacy requirements. Until now, there are a plethora of privacy topics applying NLP that
needs to be summarized to receive an overview over the research field of Privacy-Preserving
Natural Language Processing.
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We decided to conduct a systematic mapping study instead of a systematic literature review
(SLR) in that we seek to acquire a broader scope of the research field of Privacy-Preserving
Natural Language Processing [57]. Therefore, the following chapter will be structured
according to the guidelines of Petersen to increase the comparability of the conducted
systematic mapping study. This chapter will consist of a research question definition section
in which we discuss the goals we are aiming for. Then, we will delineate the search process,
the strategy behind it, and which results we received. Afterward, we screen through the
papers to include or exclude them according to our criteria. Ultimately, we present our
analysis and mapping results [11].

4.1. Definition of Research Questions

The classical approach of a SMS is to provide an overview of a research area and also illustrate
current results and types of research [11]. We shifted our focus towards the challenges and
their solutions in the domain of Privacy-Preserving Natural Language Processing. More
specifically, we will illustrate how NLP supports us to protect our privacy and how NLP
tasks can be secured from malicious users to exploit sensitive information they were trained
on. These thoughts resulted in the research questions listed in table 1.1 which were explained
in section 1.2. Usually, research questions answered by a SMS are accompanied by a character
of high level and, therefore, they are amended during the process because a lot of findings
cannot be foreseen before executing the study itself [12].

4.2. Search Process

This section elaborates the search strategy we applied to collect all papers that address our
interests. Three significant decisions need to be made regarding the search process: the
impact of completeness, the validation of the search process, and the appropriate mix of
search methods. Since we conduct a mapping study on a relatively new topic, completeness
is rather challenging to achieve and also not always a significant hallmark of a SMS. We
decided to take the papers mentioned in a series of workshops addressing NLP and privacy
to validate the completeness of our search process [12]. First, we explain our thoughts on
why we chose our search queries and the electronic data sources. Then, we present the initial
results of the search queries applied to the respective electronic data source and validate the
search process.
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4.2.1. Search Queries

We planned the queries that we would insert into the search bar of every electronic data
source. All of our selected electronic data sources support the usage of boolean operator like
in our case "AND”, and "OR”. The usage of “AND” postulates that the results include all
terms written on the right and left side of the operator. For the "OR” operator this slightly
differs because just one side needs to appear in the result list [58, 59, 60, 61, 62, 63, 64, 65].
The result of our thoughts are listed in table 4.1. We were aware of the fact that PP NLP
is a very specific research field. Because of that we investigated how many papers address
our topic directly in the very beginning of the mapping study. As shown in Figure 4.1, we
divided our main term “Privacy Preserving Natural Language Processing” into two parts and
searched for synonyms or related terms that might be of our interest and are a foundation
for the generation of our search queries. Q1 represents the equivalent of the research field
we analyze consisting of two terms “Privacy Preserving” the operator AND, and "Natural
Language Processing”. Q2 also includes potential synonyms for “Privacy Preserving”, namely
“Privacy Enhancing” and ”Privacy Guaranteeing”. Q3 aims for a very specific subtopic of our
research field that investigates the interface between privacy and word embeddings. Q4 and
Q5 address a wider scope of the research field. Q4 considers any kind of combinations of
“Privacy” or “Private” and "Natural Language Processing” or "NLP”. The last search query is a
construct of Q2 and the sub-fields of NLP handling either speech or text inspired by the work
of Pandey [66].
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Figure 4.1.: Search Term Segmentation

In the next section, we will elaborate on the selection of electronic data sources, we decided
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ID Query

Q1 “Privacy Preserving” AND ”Natural Language Processing”

Q2 ("Privacy Enhancing” OR “Privacy Guaranteeing”) AND ”Natural Lan-
guage Processing”

Q3 ("Privacy” OR ”Private” OR ”Privacy preserving”) AND “word embed-
dings”

Q4 (Private OR Privacy) AND (NLP OR “Natural Language Processing”)

Q5 ("Privacy Enhancing” OR “Privacy Guaranteeing” OR “Privacy preserv-
ing”) AND (”Speech Recognition” OR ”Speech Segmentation” OR "Text-
to-Speech” OR ”Automatic Summarization” OR “Machine Translation” OR
”Natural Language Generation” OR ”“Natural Language Understanding”
OR ”Question Answering”)

Table 4.1.: Table of all search queries applied in the search process

to consider within this thesis.

4.2.2. Selection of Electronic Data Sources

We agreed to select required sources from a selection of electronic data sources that provide a
broad coverage, listed in Table 4.2 [67].

Electronic Data Source Selected
IEEE Xplore Yes
ACM Digital Library Yes
EI Compendex & Inspec | No
ISI Web of Science Yes
CiteSeer No
Google Scholar Yes
ScienceDirect Yes
SpringerLink Yes
Wiley InterScience Yes
SCOPUS Yes
Kluwer Online No

Table 4.2.: Table of all electronic data sources elected by [67] and their selection status in this
mapping study

Out of the eleven electronic data sources, we selected eight. There were several reasons
why we did not proceed with some of the sources. EI Compendex & Inspec provides the only
access to its database if the sales team is contacted [68]. Since we also have other sources to
our disposition, we decided to exclude EI Compendex & Inspec. CiteSeer and Kluwer Online
delivered empty result lists for a basic query (privacy or private) AND (NLP OR ”Natural
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language processing”). Therefore, we implied that further consultation would be obsolete and
stop proceeding with it.

In Table 4.3, we listed the selected electronic data sources and the corresponding Uniform
Resource Locator (URL). The remaining eight electronic data sources were included in our
mapping study, and all search queries from Table 4.1 were executed. We will present the
results of each source in the next part according to the order of Table 4.3.

Electronic Data Source | URL

IEEE Xplore https://ieeexplore.ieee.org/Xplore/home. jsp

ACM Digital Library | https://dl.acm.org/

Google Scholar https://scholar.google.de/

SpringerLink https://link.springer.com/search

ISI Web of Science https://apps.webofknowledge. com/

Wiley InterScience https://onlinelibrary.wiley.com/action/doSearch?Al1Field=
ScienceDirect https://www.sciencedirect.com/search

SCOPUS https://www.scopus.com/search/form.uri?display=basic#basic

Table 4.3.: Table of all electronic data sources selected for the mapping study

Exporting Query Results

To acquire a good overview of our findings, we utilized Google Sheets for our mapping study.
Since it supports a variety of analytical tools, it is similar to Excel and allows us to cooperate
[69]. Based on the selected tool, we needed to export the search query results in the form
of a comma-separated value (CSV) or any similar format to insert it into our Google Sheets
worksheet. As we experienced it, the only electronic data sources that did not support this
format of exporting were ACM Digital Library, ScienceDirect, and Wiley InterScience. Instead,
the exporting of search result lists in the form of BibTex files was possible. Because of that,
we used JabRef, a free reference manager that allows us to import the exported BibTex files
containing the search query results and export them in the form of a CSV file [70]. In the next
part, we will discuss the overview of results we achieved after executing the search queries
and inserting the acceptable format into our worksheet.

Query Results Overview

Here, we illustrate the results according to the consulted electronic data source. For this
purpose, we generated Figure 4.2. In total, we received 6024 instances from all of the
consulted electronic data sources. Most of the results were delivered by SCOPUS(1083),
followed by Google Scholar(998) and ScienceDirect(956). Also, SpringerLink(881) and ACM
Digital Library(822) contributed a significant amount of instances. The least amount of
instances were contributed by Wiley InterScience(499), IEEE Xplorer(398), and ISI Web
of Science(387). Technical issues occurred during the execution of Q4 for SpringerLink.
Therefore, it was not possible to export the resulting list based. We contacted the support
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team of the corresponding electronic data source. However, the issue was not resolved in
time to include it in our mapping study. Next, we will explain how we filtered the initial
results we acquired so far.
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Electronic Data Sources

Figure 4.2.: Search Query Results

4.2.3. Result Filtering

As we had a look at the initial results, we realized that a lot of duplicates appear within it.
Therefore we decided to apply several functions from Google Sheets, namely query and sort.
COUNTUNIQUE allows us the count all those entries in a column that are unique [71]. Since
all electronic data sources, we included had their own sheet to avoid any form of format
issues or overwrite and keep an overview of which source delivered most of the results.
The query function helped us to merge all sheets together without the risk of overwriting
entries from other electronic data sources automatically. The function consists of two inputs,
the first input specifies which data sheets are meant, and the second one is a query that
works precisely like a database SQL request. In our case, the query was "select * where Coll
is not Null, or Col2 is not Null”. “Coll” and “Col2” represented the paper title and the
authors, respectively. If one of those was empty for one instance, then it wasn’t included
in the validation process because both columns are essential and indicate the completeness
of a source [72]. The sortn function delivers n entries of a list after performing a specific
sort task. This function is particularly vital for us because it helps us to eliminate duplicates
that exist within the result list output by the query function with the Tie Mode 2 [73]. Since
we wanted to have all entries of the resulting list output by the sortn function, we needed
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to insert 799" since we did not know how many entries to expect [74]. After the execution
of sortn, we received the following results that are observable in Figure 4.3. At first sight,
the number of delivered results dropped significantly. In total, we observed the removal of
1600 duplicates. Most of the duplicates were part of the result list of SCOPUS (529), Google
Scholar (390), and ScienceDirect(253), which is observable in the Delta column in Table 4.4
as the result of the difference of the Initial and the Filtered columns. Furthermore, we were
interested in which electronic data source has the best ratio (so far) regarding the delivery of
duplicates and all results of the respective electronic data source. According to our Table 4.4,
Springer(93.98), IEEE(89.95) and ACM(89.29) embody the best ratio. After completing the
search process, we face 4424 allegedly different papers in the paper screening phase of the
mapping study, which we will further discuss in the next section.
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Figure 4.3.: Filtered Search Query Results

4.2.4. Validation of the Search Process

To validate the completeness of the search process, we apply a suggested method that requires
us to select papers addressing PP NLP that were known by us based on our preliminary search
[12]. We chose to utilize the papers mentioned in the workshop "“PrivateNLP 2020@WSDM
2020” [33] because those workshops are the foundation of the research field investigated by us.
In Table 4.5 we highlight that all papers covered by the workshop “PrivateNLP 2020@WSDM
2020” also appeared in the results of our search process without actually including specific
terms within our search queries except for the term “word embeddings”. Since we validated
the results of our search process, we can now execute the paper screening process in which
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Electronic Data Source | Initial | Filtered | A Ratio (%)
ACM 822 734 88 89.29
Google Scholar 998 608 390 | 60.92
IEEE 398 358 40 89.95
ScienceDirect 956 703 253 | 73.54
SCOPUS 1083 | 554 529 | 51.15
Springer 881 828 53 93.98
Web of Science 387 247 140 | 63.82
Wiley 499 392 107 | 78.56
Total 6024 | 4424 1600 | 73.44

Table 4.4.: Table displaying the proportions after the filtering of the results

we decide which paper will be included in the mapping study or excluded from: it.

Paper Title Appearance

Privacy-Aware Personalized Entity Representations for Improved User Under- | Yes
standing [47]

Classification of Encrypted Word Embeddings using Recurrent Neural Net- | Yes
works [49]

A User-Centric and Sentiment Aware Privacy-Disclosure Detection Framework | Yes
based on Multi-input Neural Network [48]

Is It Possible to Preserve Privacy in the Age of AI? [50] Yes

Table 4.5.: Table of all papers selected for the search process validation

4.3. Paper Screening for Inclusion or Exclusion

This section will explain our self-defined criteria that determine whether a paper is included
or excluded from our study. Furthermore, we will delineate the idea behind them. As a lone
researcher with supervision, it is advised to go through the search query results multiple
times in different orders and ask the supervisor to randomly select some papers to assess
the quality and give some feedback. Since we have a tremendous amount of research papers
that we consider to be a part of the research field of our interest, we just examined the paper
title in the first round of validation and rarely the abstract if the title of the paper did not
indicate its content [12]. After that, the screening is executed according to self-defined criteria
that support the supervisor or other curious researchers to reproduce results of the validation
phase [11]. In Table 4.6, the aforementioned inclusion and exclusion criteria are listed. We
included papers that covered terms related to privacy preservation techniques in combination
with NLP for natural language in the form of text or speech in their title or abstract. Then, if
neither the title nor abstract delivered clear information about the content of the paper, we
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inspected the keyword section if terms related to privacy or NLP appear. In general, we were
interested in the synthetic generation of text or speech since this topic also contributes to our
research field of interest. Ultimately, we also considered any type of involvement of NLP and
the processing of privacy regulating documents like privacy policies or privacy policies and
complying with them. We excluded every paper that neither mentioned privacy nor NLP
in its title or abstract. Deliberately, we omitted papers handling steganography because we
question its privacy sustainability. Additionally, we left out all papers that just processed
privacy regulating aided with crowdsourcing. If an instance represented a conference or
workshop summary, a content list, chapter overview, a book, or a patent, we also excluded
it because we want to analyze papers reviewed by other researchers of the conference or
workshop program committee. If there was no possibility to access the paper securely or at
all or it was not written in English, we also excluded the paper from the mapping study. In
the next part, we will present the results of the screening process.

Inclusion Criteria

Exclusion Criteria

The appearance of terms closely related to pri-
vacy preservation and NLP in the title or the
abstract

Lack of privacy in the title or abstract

Privacy and Natural Language Processing or
related terms appear in the keyword section

Lack of Natural Language Processing or its
sub-domains in the title or abstract

Generation of speech or text synthetically

Conference or workshop summary, content list,
chapter overview, books or patents

Processing of any privacy regulating document

Restricted access to the content

Any topics related to steganography

Insecure access to the paper

Processing of Privacy Policies with crowdsourc-
ing

Papers not written in English

Table 4.6.: Table of all criteria applied in the screening process

After the screening of the results of the search process according to our criteria and the
removal of additional duplicates, 666 papers (15.1 percent) remained within our mapping
study, as you can see in Figure 4.4. The next step is to validate the screened papers.

4.4. Validation

To remove the bias within the mapping study and also assess the quality of the search process
results, the advisor of this thesis validated the screened papers randomly because of the vast
amount of papers potentially relevant for our work [12]. In this chapter, we will explain how
we conducted the validation and which outcome we received.

Since we conducted the mapping study with the support of Google Sheets like [75], it was
possible to share a link containing the sheet with the screened paper with the advisor to
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Remaining Papers
15.1%

Filtered Papers
84.9%

Figure 4.4.: Proportion of remaining papers

validate them. The advisor filtered the list to inspect just the screened paper that we consider
valuable for the mapping study. We decided to communicate with three different categories
in the validation process. Generally, we used “1” as an equivalent for the inclusion of the
paper in the mapping study or "0” otherwise. Then, we applied the question mark (”?”) for
uncertainty. Additionally, we commented on our decision for the options “0” and ”?” in
brackets after the corresponding sign. Table 4.7 displays an overview of the comments made
by the advisor during the validation.

As you can observe in Table 4.7, the advisor had discovered ten uncertainties out of its 179
comments. Two uncertainties were caused by the papers with the title ”A DNS Tunneling
Detection Method Based on Deep Learning Models to Prevent Data Exfiltration”[76] and ”A
Full-Text Retrieval Algorithm for Encrypted Data in Cloud Storage Applications”[77]. The
belonging of Zhang'’s paper to our mapping study is indeed debatable. However, data traffic
carries private information, and the developed data exfiltration prevention is based on NLP
[76]. Song’s Team worked on an information retrieval algorithm on encrypted data avoiding
the disclosure of private information in a cloud-based environment applying NLP [77].

The following comment in the table refers to questions the relevance to NLP and text data
in Li’s review paper about applications applying federated learning [78]. After another review
of the paper, we decided to exclude the paper from the mapping study because the focus did
not highlight NLP related applications.

Meenakshi’s team published a paper reviewing security attacks and protection strategies
for machine learning which lacked Privacy and NLP focus. Therefore, we agreed to exclude
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Comment Types Amount
? (addresses security issue)

? (does it mention NLP? / text data)
? (security rather than privacy issues)

? (security)
?

? (not textual data as far as I understand)

? (what data type do they work with?)

? (do they address privacy issues?)

? (what data type?)

0 (duplicate)

0 (no privacy?)

0 (doesn’t address privacy issues?)

0 (doesn’t seem to address privacy issues)

0 (spatial data)

0 (location data?)

0 (location privacy)

0 (not text?)

0 (not about NLP)

0 (doesn’t seem to to talk about NLP/text data)
1 123
Total 179

= | R | | e | N

W
(o)}

P = = | | R | = N

Table 4.7.: Table of all comments made by the advisor during the validation

the paper from our work [79]. The same issue appeared for Liu’s survey paper focusing
on security threats and defensive techniques for machine learning having a data-driven
perspective [80]. The fifth entry of the table states a general uncertainty towards the paper
developing a flexible text corpus for specific linguistic research that did not address privacy
[81]. The following comment of uncertainty questions the data sets worked on in the paper of
Rashid’s team. The data sets MIDUS and ADULTS contain personal information also in text
form that is protected either by de-identification or differential privacy [82]. The comment
asking for the data type used within the work of Tsai’s team is not part of this thesis since it
works with transactional data that does not include text [83]. The work of Ji’s team does not
address a privacy issue directly. The privacy issue causes a scarcity of data that impedes the
development of the medical research area [84]. The last entry refers to the curiosity about the
used data type within the paper, which is answered within the abstract that the approach to
preserve privacy in linked data anonymization using queries is data-independent [85].

We continue with the comments that did not consider the selected papers to be a part of this
work. 36 comments pointed out that the selected papers are duplicates which is true, and they
were removed. This could easily happen caused by the number of papers being part of the
screening process and was not filtered out beforehand. The next comment group mentioned
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the lack of privacy issues relevant for the papers with the title A multi-task learning-based
approach to biomedical entity relation extraction”[86], “Towards Combining Multitask and
Multilingual Learning”[87] and "DUT-NLP at MEDIQA 2019:An Adversarial Multi-Task
Network to Jointly Model Recognizing Question Entailment and Question Answering” [88].
This paper was wrongly selected because of the applied shared-private model architecture,
which refers to the visibility of the parameters within the system and not to our understanding
of privacy in the sense of intentionally or unintentionally disclosing sensitive information to a
third party [86]. The same issue also occurred for the second paper [87] and the third one [88].
Roberts’ team paper is also motivated because there is a lack of data for the cancer research
field caused by privacy issues. Therefore is the aim of the paper to propose annotations and a
framework that works on the semantic level and, thus, introduce flexibility to the annotation
scheme and an approach to preserve the privacy of annotated data sets [89]. Location-oriented
privacy is describable in the form of numbers or words in the three comment types. Here
the three papers with the title “SpatialPDP: A personalized differentially private mechanism
for range counting queries over spatial databases” [90], “Towards privacy-driven design of
a dynamic carpooling system” [91] and “Quantifying location privacy” [92]. The following
comment assumes that there is not text data involved in the work of Gong’s team, which
is not provable because there is no access to the entire content of the paper [93]. The last
two comment types question the focus of NLP in the papers, “Perceived privacy” [94] and
"Distributed Latent Dirichlet allocation for objects-distributed cluster ensemble” [95]. Al-
Fedaghi presents in his paper a model that connects privacy and security based on information
exchange between two parties with measurable metrics for both domains. However, the
application of NLP misses [94]. The second paper works on privacy preservation applying
distributed Latent Dirichlet allocation, a topic modeling method, and was published at the
International Conference on Natural Language Processing and Knowledge Engineering in
2008 [95].

The last comment type remaining is the approving one. The advisor approved 123 papers.
However, 118 papers made it in the end into the mapping study. Here, we will explain all
those papers that we did not include in the mapping study. One out of the five papers was
excluded because it was based on evaluating the numerical input of employees to investigate
their stance on privacy by letting them choose from different levels of privacy in exchange for
a payment. Here, the connection to NLP is not present [96]. Hakkani-Tur’s team developed a
patent for a privacy-preserving database that cooperates with natural language. However,
we are interested in papers from conferences and workshops [97]. Another paper with the
title “Identifying textual personal information using bidirectional LSTM networks” sounded
promising, but just the title and the abstract were written in English. The rest was in Turkish
[98]. The last two papers with the titles "Reasoning about unstructured data de-identification”
[99] and “Towards Efficient Privacy-Preserving Personal Information in User Daily Life,” [100]
did fit this thesis. Still, there was no access to the full content.

All in all, Table 4.8 illustrates the consensus between the paper screening phase and the
validation. Out of the 128 accepted papers, 118 were included in the mapping study resulting
in an inclusion rate of 95.6 percent. Also, just one out of the 46 excluded papers is a part
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of the mapping study, and three papers out of the ten uncertain ones take part in the next
stage of this thesis. During the validation process of the advisor, the author conducted further
analysis tasks on the screened data in which a few alterations occurred that led to a slight
diversion. Still, all the mentioned results in the table highlight that the advisor and the author
of the thesis have the same understanding of the research field of interest. In the next part of
the thesis, we enter the keywording phase.

Comment Category Amount | Coverage | Ratio (%)
in SMS

1 (Inclusion) 123 118 95.9

0 (Exclusion) 46 1 21.7

? (Uncertainty) 10 30.0

Table 4.8.: Overview of all comment categories and their coverage within the mapping study

4.5. Keywording of Abstracts

In the process of keywording, the author inspects the abstracts of the validated and evaluates
suitable categories and schemes based on the findings. If the abstract of a paper does not
deliver sufficient information, the introduction or the conclusion part of the paper can be used
for the keywording process [11]. This part will focus on the results which were extracted out
of the keywording process. One key outcome of a mapping study is to give an overview of a
specific area by classifying the articles. There are two types of classification schemes, the topic
dependent one and the independent topic one. We decided to stick with a topic-dependent
one with a focus on issues and their solutions [13]. The complete analysis tables are located
in section A.1 the appendix of this thesis.

At the very beginning of this process, we realized that we need to distinguish two top
categories for privacy-preserving NLP, namely NLP as a privacy enabler and also a privacy
threat as privacy enabler NLP introduces privacy into a data set or an activity. As a privacy
threat NLP endangers the privacy of data engaging with it. Both top categories need to
deliver an appropriate answer to the research questions from Table 1.1. With RQ1, we desire
to know which challenges exist for NLP that are privacy-related. With RQ2, we attempt to
display the solutions for the corresponding problem within the domain of Privacy-Preserving
Natural Language Processing. After answering RQ1 and RQ2, we will have an overview of
the research field and can detect gaps within the landscape of Privacy-Preserving Natural
Language Processing.

Since we utilized Google Sheets for this thesis, we inserted columns that were mainly
provided by the export function of the corresponding electronic data source, namely title,
author, abstract, and year. In addition to the basic columns within our worksheet, we inserted
the following columns to the corresponding top category to answer the research as mentioned
earlier questions displayed in Table 4.9.
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NLP as Privacy Enabler NLP as Privacy Threat

Domain (RQ1) Domain(RQ1)

Classification of Use Cases (RQ1) Use Case Classification (RQ1)

Generalized Privacy Issue (RQ1) Data Type(RQ1)

Generalized Privacy Issue Solution (RQ2) | Generalized Issue/Vulnerability solved
for NLP(RQ1)

Generalized Category of Applied NLP | PETs(RQ2)

Concept(RQ2)

NLP Method Type(RQ2)

Table 4.9.: Table of all sub-categories with the addressed research question

For both top categories, we will observe the domain they engage with to better classify
the different privacy challenges. We expect that the top category, which utilizes NLP as a
privacy enabler and as a privacy threat, to contain a wide variety of use cases that will help to
delineate also the potential of the inspected research field. Then, we highlight the prevalent
privacy issues that are solved by the application of NLP. Also, for the category in which NLP
is a threat, we will point out which data type is more affected by NLP, and we will also
provide an orientation for the different privacy challenges within this top category in the form
of an overview with aggregated issue schemes. To answer RQ2, we propose an aggregated
scheme to display which privacy issue solutions exist in both top categories. To solve the
privacy issues caused by NLP, privacy-enhancing techniques (PETs) are applied [101]. For
the other top category, we wanted to aggregate the different solutions in which NLP was
involved and also which NLP concept and method type were applied. The following two
subsections will specify which terms were applied within the categories according to the top
category it appears in.

4.5.1. Subcategories Natural Language Processing as Privacy Enabler

In this part, we will delineate all the terms appearing in each subcategory. The worksheet for
the corresponding top category is located in subsection A.1.1. We will start with the terms
from the domain and continue with the use case classification and the general privacy issues.
Afterward, we explain the terms included in generalized privacy issue solution part, the
category addressing the applied NLP concepts, and the NLP method type category.

Domain

The domain column in our work sheet supports our idea to classify the different validated
papers from our mapping study. This will give us the opportunity to structure the overview
better and also provide the option to the recipient of this study to pay attention to a specific
area of expertise. A domain is well defined on Merriam Webster describing it as a sphere of
knowledge [102]. Table 4.10 displays all the major domains appearing within the validated
papers. We observed a high frequency of papers that conducting research either on privacy
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policies [103, 104] or other privacy regulating documents [105, 106], or on data from the
medical area [107, 108, 109, 110]. Also, mobile applications [111, 112] and social networks
[113, 114] were addressed by multiple papers which is reasonable, since those topics are
omnipresent for the most of us in our daily routine. Then, we realized that there are several
papers either addressing a rather specific topic like privacy preserving mining of search
queries [115], big data [116] and finance [117] which we categorized as "Other” or the papers
worked on a generic topic which we then classified as “General” [118, 119]. Next, we will
specify the use case classification.

Domain

Law

Medicine
Mobile Application
Social Network
General
Other

Table 4.10.: Table of all terms occurring in the category Domain, a subcategory of NLP as a
privacy enabler

Classification of Use Cases

Same as the domain category, we attempt to dive deeper into the classification of the papers
and extract the different use cases applied within the papers we extracted from our search.
Other than the domain part, the use case classification will help us to grasp which scenario is
supported with NLP to guarantee privacy. As you can see in Table 4.11, we decided to apply
two layers of generalization to keep the extracted information, because of the tremendous
amount of papers within this top category. The more specific layer of abstraction is depicted
in the column ”"Use Case Classes” and the more generalized version is the second column
“Generalized Category”. We tried to position a key word in front of the term in order to map
them better to aggregated schemes if it was possible.

The first more generalized category in the table is the category ”Annotations and Training
Data” aggregating all use cases aiming for the improvement of the annotation process or to
collect training data. The improvement is realized in form of the automatization or support
[118] or revision [120] of the annotation process. Also annotations or specific data sets like
privacy policies were collected to accelerate the research in a certain field [121] or a gold
standard was developed [122].

The next category in the second column is ”Automation”. Here, we extracted two directions,
namely the automation of flexible rule enforcement [123] and the automation of privacy
regulations [124]. The following two categories were specific enough and did not embody
any further specifications, namely “Browsing in a private manner”[125, 126] and “Definition
of privacy requirements”[127, 128].
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One major generalized category is the simplification of privacy related regulations. We
discovered several approaches in this area range from the simple comprehension of privacy
regulating documents [129, 130] to the comparison [131], compliance [132], writing [133] and
implementation process [134].

Another category is related to investigations mostly aiming for mobile applications or
related topics expose or check their privacy impact [135]. Especially, the rightfulness of access
privileges and their coverage with the app description is inspected [136].

The next two categories work on the measuring of the compliance of apps to a privacy
regulating document with a metric [117] and mining according to rules that guarantee privacy
[137].

Another category focuses on the increase of attention towards privacy policies [103] and
we observed that some papers also combine this use case with the comprehension of privacy
policies [138].

Then, there is a common category aiming for a privacy preserving way to share data with
third parties [139, 140, 141, 107]. We also did not specify this category more, because the
added value would be negligible.

Further, there is another major category within the table that specifies the protection of
sensitive information in unstructured textual data in general [142], in the clinical context
[143] or on social media platform [144]. Here, we distinguished between the protection of the
patient privacy and the privacy of medical unrelated privacy. The next generalized category
is searching in a privacy preserving manner.

An additional section, we introduced voice related services that either protect the voice in
public [145] or preserve the privacy of the user voice during a voice based assistance service
[146] predominated by the health sector [147, 148].

The last general category in the table is dedicated to the services that require cooperation
with the voice.

Since we gathered now enough categories describing the domain in which a specific
scenario takes place, we require the privacy issue appearing within a scenario in a certain
domain.

Generalized Privacy Issue

With this column we attempt to extract the privacy issue tackled within a paper in a gener-
alized manner. For this purpose, we re-applied parts from the privacy issues specified by
Boukharrou for cloud based home assistance and Internet of Things (IoT) devices, a topic
closely related to ours. Boukharrou divides privacy issues in context of speech based systems
processing user request in form of natural language in five categories. Three of them have
proven useful to this thesis, namely identification, profiling and data linkage. Identification
alludes to all information that are unique to an individual and might be sufficient to identify
a person. Profiling outlines the possibility of collecting information about a person to increase
the predictability of its actions and behavior. Data linkage refers to aspect that information
about an individual could be combined with other available data and lead to conclusions of
other facts. Those three terms are part of scheme listed in Table 4.12 [146].
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Moreover, we extracted several more privacy issues within our results. One of these privacy
issues handles the topic of disclosure of sensitive data for analysis [82, 149] or other reasons,
intentionally [150, 146] or unintentionally [151, 152]. Then, we explored a high density of the
issue of complexity of privacy policies [141, 153, 103, 129] and difficulties with the compliance
with requirements [154, 155, 156]. We are aware of the fact that the issues with requirements
compliance is caused by the complexity of privacy policies, but we observed a high frequency
of this topic, therefore, we want to highlight this fact in our work. Then, there is a group of
terms that represents privacy issues that are caused by the possession of sensitive data by a
third party and a potential secondary use [107, 157]. The term “secondary use of unstructured
clinical data” was taken from [158]. Here, not just the handling of those data needs to be
regulated [142, 159], but also the misusage of sensitive data needs to be pointed out [160,
161]. Inflexibility of annonymization tools [162] is another term within Table 4.12 which is
the outcome of the keywording session that caught our attention. We observed also that
annotations and their quality were frequently mentioned by the literature we collected [122,
163, 121]. A more fundamental topic within the papers we found is the fact that sensitive
information are contained by unstructured data sets [164, 165, 166].

So far, we invented categories depicting privacy related challenges solved with NLP, now,
we attempt to devise a similar approach for the solution of the aforementioned privacy issues.
The next category we introduce aims for the generalization of privacy issue solutions.

Generalized Privacy Issue Solution

Same as for the privacy issue, we also require a generalized approach towards solving those
issues. We attempt to map privacy issues, and their solution approaches in an overview
to ease the extraction of patterns. Since we observed a wide variety of use cases within
Privacy-Preserving Natural Language Processing, we deepened our investigation of the
privacy solutions and introduced the category which stands for the applied NLP concepts
and method type, explained in the subsequent sections. Same as for the use case classification,
we discovered a variety of solutions. Thus, we will provide a two-level abstraction approach
again to structure the overview better. The mapping of this aggregated view and which
specific terms we found are located in subsection A.2.1. Table 4.13 displays the top level of
the extracted terms.

We observed that a plethora of papers tried to solve the privacy issues with automation.
Not just the enforcement of privacy policies [123, 37, 167] and access control is desirable to be
automatized, but also the analysis of privacy policies [168] and the compliance check [154,
169, 132]. Also, the anonymization of written text without any user interaction. Another
interesting category was the collection of annotated corpora for different purposes [104, 170].

We detected also another niche within the validated literature and it focuses on the privacy
analysis of mobile application code [155, 171, 172]. One of the largest section we found
focused on de-identification of text data, mainly in the medical area to protect the patient
privacy [107, 108, 109, 110], or the obfuscation of authorship [173, 174] . There is one paper
that demonstrates potential threats within a fitness application [175].

Another big block in the privacy issue solution category is dedicated to the design of search
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engines[176, 177], metrics [117], frameworks [178, 48] or algorithms to protect the privacy of
an acting user for example gender [179] or the data subject within a data set.

The next entry in Table 4.13 is “Detection”. Specifically, the search for irregularities within
privacy regulating documents[180, 181] and the actual behavior or description. On top of that,
there is the aim of detecting sensitive data within unstructured data [182] or activities [183].

A smaller part is the interest of encryption based solutions within our findings [139, 184].

Another upcoming topic within this category is the generation of artifacts[185, 186] or
synthetic data [187, 188] based on data sets or a privacy regulating document. Then, we
observe the interest of the information extraction topic. The most frequent goal is to extract
information out of privacy policies [189, 190].

Another trend is to map the content of privacy policies to different metrics [191, 106] or
other privacy policies like General Data Protection Regulation (GDPR) [192, 193]. Additionally,
ontology based solutions focusing on privacy in general to shape a more universal approach
to cope with the topic [194, 195].

A huge variety is also present in the aggregated scheme of overviews that are present in
the literature we extracted from the search. The most frequent topics of the overviews is
about applied methods of handling medical data in a privacy preserving manner [196, 197]
or research field [198, 199].

The following aggregated term points out the solutions based on semantic level. In order
to extend the application domain of developed solutions and tools [200], the semantics of
language is utilized caused by its universal attitude [136].

Earlier, we mentioned the de-identification of textual data, however, there is also research
conducted in the area of speech de-identification in which the content of a speaker is needed
in order to execute a task , however, the voice is negligible [148, 201].

The last category within the Table 4.13 is the suggestion of security and privacy require-
ments in different ways and for diverse targets [202, 203, 204].

The next section will elaborate the different levels from NLP applied to solve the privacy
issues.

Generalized Category of Applied NLP Concept

In order to compare the extracted information precisely with each other, we are obligated
to map our findings to an equal level. Thus, we were curious about the applied NLP
concepts within our findings. We define an NLP concept same as Liddy in his work described
as "Levels of Natural Language Processing” [26], he distinguishes between several levels
based on the investigated linguistic domain, also discussed in this thesis in subsection 2.1.3,
namely morphological, semantic, phonological (speech processing). We understand that the
morphological analysis focuses on the extraction of those morphems that carry the meaning
of a word or to remove all those parts of the word that blur its shape. The semantic analysis
is dedicated to the meaning of a word more than its shape. Speech processing is a topic for
itself, since voice is based on sound, however, it does communicate words in which we are
interested [26].
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In Table 4.14 we see all the applied concepts, we discovered within the selected literature.
Some papers did not apply any of those concepts because they just pointed out some
possible improvements for privacy requirements or possible threats like the work of Ye that
extracted different privacy and security challenges that occur when dealing with chatbots [205].
Morphological analysis is exemplified in the work of Fujita who developed a framework of
rules in which privacy policies are parsed in order to increase the readability [153]. Semantic
analysis is conducted in Hasan’s work who used neral network and word embeddings in
order to capture the semantic relationship between words to detect sensitive information
and annonymize it [206]. Di Martino’s paper shows a good example of the combination of
morphological analysis and semantic analysis by applying Part of Speech (PoS) tagging and
Named Entity Recognition (NER), respectively, to build an automated annotation tool to
annonymize sensitive information in documents in the Italian law domain [207]. The creation
of a corpus with annotations containing privacy policies like Wilsons” work illustrates the
combination of the application of a morphological in form of Part of Speech (PoS) tagging,
semantic with Named Entity Recognition (NER) and syntactic analysis by the identification of
sentence boundaries [208]. We also distinguish between speech processing as a lone category
if just the voice is de-identified in order to keep the patient’s voice private as it is transmitted
via internet or a phone call, but there is still the possibility to detect symptoms of depression
[148]. A paper that just contributes to speech processing and the morphological analysis is the
work of Boukharrou’s paper that injects random noisy speech requests, also utilizing Part of
Speech (PoS) tagging in a smart home environment in order to avoid the profiling or possible
linkage [146]. Semantic analysis and speech processing are well represented in the work of Ye
who developed a system that covers and identifies sensitive information with Named Entity
Recognition (NER) so that people in public cannot read the text on the smart phone screen
through peeking, however, when the smart phone owner require the covered text the system
provides is able to read the actual information applying a text-to-speech approach [151]. The
combination of three different concepts within our validated paper was observable in the
work of Qian who conducts research on privacy preserving speech data publishing, because
it is not just sufficient to de-identify the voice, it is also important to protect the content of the
voice data [140].

Furthermore, we classified also the different approaches in which NLP was applied, further
discussed in the next section.

NLP Method Type

In Liddy’s work also the different approaches used to analyze text, were delineated. He
divided it in three different parts symbolic (rule-based), statistical and the connectionist
approach which corresponds with the today’s understanding of neural networks [26]. We
introduced this category in order to structure the overview better and track the applied
technologies within the privacy solution domain in context with NLP. In Table 4.15 eight
different combinations of NLP method types. The first one is "None” because there is none
applied. "NN” stands for neural network and refers to the papers that apply deep learning
like Hassan’s paper detecting sensitive data in unstructured text by the application of word
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embeddings [206]. Tesfy and his team investigated and presented the existing challenges in
detecting sensitive information in unstructured data sets without applying any NLP concepts
or methods [7]. Clearly, rule based approaches like Olsson’s paper designing a framework
for a more efficient way of annotating corpora [118]. A rule based and neural network based
approach is shown in Ravichander’s work by collecting a question and answering corpus with
1750 questions about privacy policies of mobile applications annotated by 3500 expert answers
[209]. The mix of a rule-based and a statistical based approach is exemplified Deleger’s work
to set up an annotation gold standard and evaluating it with a statistical model to prove
its value [163]. In general, we consider all papers applying the Natural Language Tool Kit
(NLTK) or similar auxiliaries as part of the “Rule based & Statistical” category, since all of
them offer support based on rules or statistical concepts. There is a the The Stanford CoreNLP
natural language processing toolkit which embodies all three categories [210], therefore we
consider every paper that uses this tool or similar ones to be a part of the respective category
like Pan’s paper that investigates the information flow of android applications to detect
privacy violations [211]. A purely statistical approach is used within Neto’s paper which is
investigating the mining of personal query logs without taking into account work-unrelated
queries [115]. The combination of statistical and neural network based approaches is well
illustrated within the work of Lindner and his team that applies both categories in order to
analyse the coverage of privacy policies and the privacy policies presented on websites [129].
The next section will describe the other subcategories for the category addressing NLP as a
privacy threat.

4.5.2. Subcategories Natural Language Processing as Privacy Threat

Here, we will specify the terms appearing in the other subcategories from the second top
category. The work sheet for the corresponding top category is located in subsection A.1.2.
Again, we start with the terms within the domain subcategory, then, the data type and the
generalized privacy issue solved for NLP subcategory. The last terms delineated in this part
are within the PET subcategory.

Domain

This category is similar to the one mentioned in the other top category in section 4.5.1. We
orient ourselves according to the definition of the domain by the website of Merriam Webster
and see it as a sphere of knowledge [102]. We distinguished between five different domains
listed in Table 4.16. We discovered a plethora of papers that referred to the cloud computing
domain [212, 77, 213, 214]. Then, we noticed the presence of home automation [215, 216].
This top category also embody “"Medicine” as a domain [217, 218]. Same as in section 4.5.1
we introduce the domains "General” and "Other”. ”"General” has a more generic approach
to solve a problem for which we could not find a adequate domain like [219, 220] and the
domain ”"Other” contains domains that are very specific [221, 222]. The next subcategory we
will delineate is data type.
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Data Type

The data type is relevant to us, because we attempt to know, if there is a prevalent focus
on text ("Written”) or rather on “Speech” data present within the research field of Privacy
Preserving Natural Language Processing. On top of that, we want to discover the different
use cases and how the issues were solved for NLP and cluster these solutions.

Use Case Classification

We choose to extract use case categories as well, to support the understanding of potential
scenarios in which NLP preserves privacy and improve the orientation of this mapping study.
Table 4.17 displays an aggregated overview from the more detailed use case list located in
subsection A.2.2.

A frequent use case appearing in the papers we found is the classification of documents
without the data disclosure [223] or it was based on encrypted data [49]. Another block
within our categorization in this section was dedicated to the investigation of the impact
of NLP concepts like word embeddings [9] or collaborative deep learning [224] on privacy.
Additionally, we introduced a term that specifies model training without the necessity to
contribute the actual data because the neural network is separated in two parts where on
part of the network containing sensitive information in its parameters is located on the client
side and the other part is then on the server side [225] or the concept of federated learning
is applied [226, 227]. Another topic which we discovered is the privacy utility trade-off that
applies a privacy preserving concept on neural text representations [228] or word embeddings
[229] in order to protect the privacy of the data subjects, but still enough information is left to
render an analysis on the respective data. Moreover, we noticed also the a group of papers
about secure communication without the necessity to disclose sensitive information [47] or
every feature of your voice [230]. Then, we noticed a niche referring to similarity detection
without exposing the data to the analysing party [231, 232]. One of the largest segments in
this section is dedicated to speech related services like emotion recognition [233], speech
transcription [234] or speech verification [235] avoiding the complete disclosure of all features
of the voice to a third party. Ultimately, we devised a category focusing on storing and
searching Data without its exposure, mostly rendered on encrypted data [236, 237] and the
summarizing without the document disclosure [238]. The next section is dedicated to the
generalization of issues or vulnerabilities for NLP.

Generalized Issue/Vulnerability solved for NLP

The generalized view on privacy issues caused by the involvement of NLP support our idea
to provide a better orientation for the recipients of this mapping study. As you can see
in Table 4.18 this category was inspired by the research about the vulnerabilities of word
embeddings, information leakage in language and the unintended memorization of neural
networks conducted by Pan [9], Koppel [239] and Carlini [8], respectively.

The paper by X. Pan, M. Zhang, S. Ji, and M. Yang describes the exploitability of the learning
parameters applied in word embeddings which allows the attacker to reverse-engineer those
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parameters and extract the data used for the training of those word embeddings [9]. An
example for this category is the work of Podschwadt and Takabi who applies homomorphic
encryption in order to protect the sensitive information of a user attempting to train a
Recurrent Neural Network (RNN) by using encrypted word embeddings [49].

According to Koppel, Argamon, and Shimoni, it is feasible to apply simple lexical operations
in order to determine the gender of a the author who wrote a certain text [239]. The work
of Beigi, Shu, R. Guo, et al. exemplifies a case of this category by pointing out the fact that
simple tweets might lead to the disclosure of identity [221].

The paper by Carlini, C. Liu, Erlingsson, et al. describes the possibility to exploit neurons
within a neural network. Every neuron is trained on data and carries parameters that can be
exploited [8]. One example for this category is presented by Shao, S. Ji, and T. Yang which
elaborates on the mitigation of the leakage for neural rankings [231].

Furthermore, we include two additional terms that differ from the three aforementioned
ones. The first one is the disclosure of sensitive data to NLP model for training purposes
like the work of Feyisetan’s team developing an active learning approach to reduce the
required amount of annotated training data but still achieve acceptable model performance
[240]. The second term we would like to introduce is the general disclosure of sensitive data
to an NLP task to process it. An example for this classification is Reich’s paper about the
privacy-preserving classification of personal text messages meaning that the classification
model does not learn anything about the input of the author’s message that was classified
but also the author of the message doesn’t have any access to the classification model except
the resulting output [223]. Also, with this category, we try to point out current trends within
the research field and visualize their maturity. After the classification of the privacy issues,
we attempt to investigate if there is a particularly preferred solution to a specific privacy issue
within the NLP domain.

PETs(RQ2)

We realized that Dilmegani published a very thorough overview of applied privacy enhancing
technology examples which we will instrumentalize within this thesis for the classification
in category PET. He lists Differential Privacy (DP), Federated Learning, Homomorphic
Encryption (HE), Obfuscation, Secure Multiparty Computation and Synthetic Data Generation
as PETs. Table 4.19 displays all classifications we encountered during the keywording phase
[101]. Significantly, we noticed that there are also mixed PET that appear in our selected
literature. For instance, we realized that the Pathak’s work combines secure multi-party
computation (SMC) and differential privacy in order to publish classifiers trained on sensitive
data [241]. Furthermore, we detected a high frequency of papers that combine federated
learning (FL) and differential privacy (DP) for NLP based on text [226, 242] and speech [243].
The last combination, we extracted from the literature applied homomorphic encryption
(HE) and federated learning by analyzing the concept regarding its security and efficiency
[244]. In addition to that, we realized that there are some papers that rise the attention
towards vulnerabilities without solving the issue [245, 224] or suggesting concepts in order
to preserve the privacy of data [246, 247]. After the extraction and the mapping of the
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relevant information, we will be able to analyze which solutions were applied for which issue
answering RQ2 with it. In the following section, we will discuss the results of the mapping
phase.

All in all, we extracted information from the papers we collected in the previous phases as
described by Petersen [11]. We detected two different top categories and several subcategories.
In some, we needed a two-layer abstraction scheme to structure our resulting schemes better.
The two top categories interpret the role of NLP in two different ways, namely as a privacy
enabler or as a privacy threat. Therefore, the subcategories needed to be different because
we proceed with different purposes by setting up the subcategories. For NLP as a privacy
enabler, we wanted to know which use cases are affected by it, in which domain does it
appear, which solutions and its NLP method types or analysis levels were applied. For NLP
as a privacy threat, we also attempt to investigate which domain or use cases are affected
by this and which solutions were applied. Since we have our categories yet, we continue to
analyze the mapping results in the next chapter.
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Use Case Classes

Generalized Category

Annotation automatization
Annotation collection

Annotation process support
Annotation revision

Annotations for research acceleration
Annotations with gold standard
Collection of privacy policies

Annotations and Training
Data

Automated and flexible rule enforcement
Automatic modeling of privacy regulations

Automation

Browsing in a private manner

Browsing in a private man-
ner

Definition of privacy requirements

Definition of privacy re-
quirements

Ease the automation process of privacy regulating documents

Ease the comparison of privacy policies

Ease the compliance process through automation

Ease the comprehension of privacy policies

Ease the comprehension of privacy related user reviews for developers
Ease the implementation of written privacy policies

Ease the writing process of privacy policies based on code

Simplification of privacy
related regulations

Investigating the access legitimacy of smart phone apps
Investigating the impact of GDPR with privacy policy analysis
Investigating the permission usage coverage of app descriptions
Investigating the potential privacy impact of smart phone apps

Investigations

Measuring the Compliance of apps

Measuring the compliance
of apps

Mining according to privacy policies

Mining according to pri-
vacy policies

Paying more attention to privacy policies
Paying more attention to privacy policies & Ease the comprehension
of privacy policies

Increase attention towards
privacy policies

Privacy preserving information sharing

Privacy preserving infor-
mation sharing

Protecting patient privacy in unstructured clinical text
Protecting sensitive information in unstructured text
Protecting sensitive information on social media platforms

Protecting sensitive
information in
unstructured data

Searching in a private manner

Searching in a private man-
ner

Voice protection in public

Voice-based assistance in a privacy preserving manner
Voice-Based healthcare in a private manner
Voice-based service in a private manner

Voice related services

Table 4.11.: All terms occurring in the Classification of Use Cases
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Generalized Privacy Issue
Data Linkage
Identification

Profiling

Disclosure of sensitive Data

Disclosure of sensitive data for analysis

Unintended data disclosure

Complexity of Privacy Policies

Compliance with Requirements

Handling of sensitive data by applications

Misusage of Sensitive Information by Data Collector or Adversary
Secondary use of unstructured clinical data (Research)
Inflexibility of annonymization tools
Annotations and their Quality
Sensitive Information in unstructured Data

Table 4.12.: All terms occurring in the category of Generalized Privacy Issue, a subcategory of
NLP as a privacy enabler

Generalized Privacy Issue Solution Overview

Automation

Code-based Analysis
Collect annotated corpus
De-identification
Demonstration of Threats
Designing
Detection
Encryption based Solutions
Generation

Information Extraction
Mapping
Ontology based Solutions

Overviews

Semantic Solutions

Speech de-identification
Suggestions

Table 4.13.: All terms occurring in the category of Generalized Privacy Issue Solution, a
subcategory of NLP as a privacy enabler
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Generalized Category of Applied NLP Concept
None
Morphological Analysis
Semantic Analysis

Semantic Analysis & Morphological Analysis

Semantic Analysis & Morphological Analysis & Syntactic Analysis

Speech Processing

Speech Processing & Morphological Analysis

Speech Processing & Semantic Analysis

Speech Processing & Morphological Analysis & Semantic Analysis

Table 4.14.: All terms occurring in the category of Generalized Category of Applied NLP
Concept, a subcategory of NLP as a privacy enabler

NLP Method Types
None
NN

Rule based

Rule based & NN

Rule based & Statistical
Rule based & Statistical & NN

Statistical

Statistical & NN

Table 4.15.: All terms occurring in the category of NLP Method Types, a subcategory of NLP
as a privacy enabler

Domain

Cloud Computing

Home Automation

Medicine

General
Other

Table 4.16.: All terms occurring in the category of domain, a subcategory of NLP as a privacy
threat
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Use Case Category
Classification without Data Disclosure

Investigating the Impact of NLP related Concept on Privacy

Model Training without Sharing Data
Privacy-Utility-Trade-off for NLP related Concept
Private Communication
Similarity detection without Data Exposure
Speech related Service without complete Voice Feature Disclosure
Storing and Searching Data without Data Exposure
Summarization without Document Disclosure

Table 4.17.: All classes occurring in the category of use case classification, a subcategory of
NLP as a privacy threat

Generalized Issue/Vulnerability solved for NLP
Exploitability of Word Embeddings
Information Disclosure by Statistical Language Models

Memorizability of Neural Networks

Direct Disclosure of Sensitive Data for NLP Model Training
Direct Disclosure of Sensitive Data for NLP Tasks

Table 4.18.: All classes occurring in the category of use case classification, a subcategory of
NLP as a privacy threat

Privacy Enhancing Technology (PET)
Differential Privacy (DP)
Federated Learning
Homomorphic Encryption (HE)
Obfuscation

Secure Multiparty Computation

Synthetic Data Generation
Differential Privacy (DP) & Secure Multiparty Computation
Federated Learning & Differential Privacy (DP)
Federated Learning & Homomorphic Encryption (HE)
None

Table 4.19.: All classes occurring in the category of Privacy Enhancing Technology 1 and 2, a
subcategory of NLP as a privacy threat
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Since we have the categories and the schemes, we start to extract the information from the
validated papers and map it accordingly [11]. In the following sections, we will present
the outcome of the mapping phase and explain the results. We will start with the mapping
results showing us the distribution of publications regarding our topic in general and divided
them into the two top categories over the years. For each electronic data source, as it is
suggested by the paper by Kitchenham, Budgen, and Brereton[12]. Then, we present the
mapping results of the two top categories in which we see NLP as a privacy enabler and
iterate through the subcategories to answer the research questions RQ1 and RQ2. Afterward,
we repeat this procedure for the second top category in which NLP is determined as a privacy
threat. All plots are based on the findings listed in the worksheets located in subsection A.1.1
and subsection A.1.2.

5.1. Numbers of Publications per Year

Before answering the research questions, we first want to stress the interest of PP NLP in the
research community by pointing out the number of publications per year as it is suggested by
Kitchenham [12]. Since we discovered two major top categories in the research field of our
interest, we were curious about the publications each year for those two categories. Figure 5.1
stresses the fact that the topic we are interested in continuously gains more attention and also
its substreams. We assume that the increase is caused by multiple factors like the introduction
of GDPR on the European level in 2016 and the adjustment on the national level two years
later, which legally bind the private and public sectors.

Since the search process was completed at the beginning of March, the amount of publica-
tions in 2021 is limited. We could not manage to find a publication year for the publications
with the title “Towards integrating the FLG framework with the NLP combinatory framework”
[248] and ”Privacy-Preserving Character Language Modelling” [249].

5.2. Numbers of Publications per Electronic Data Source

According to Kitchenham, it is an interesting piece of information to point out the electronic
data source that delivered the most publications [12]. The resulting Figure 5.2 depicts an
overview of the electronic data sources and their contribution with publications to this
mapping study. Most of the publications were delivered by Google Scholar. However, it
searches through the web for academic publications in other electronic data sources [250].
Therefore, we thought that we would distinguish this fact as well in the chart above by
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Figure 5.1.: Publications per year

representing the distribution of papers contributed with one category including Google
Scholar and the other one excluding Google Scholar and redistributing the papers to their
sources or assigning it to the category "Other” if the original data source is not represented
within our selection of electronic data sources.

We observed that the 127 publications contributed by Google Scholar contained 53 pub-
lications that were part of an electronic data source from our selection, but 74, a majority,
were from other sources. As you can see, 14 publications were a part within ACM, which
Google Scholar also found, which represents the highest ratio with 240 percent of otherwise
assigned papers. 22, 6, 10, and 1 publications from IEEE, ScienceDirect, Springer, and Wiley,
respectively, were assigned to Google Scholar. Without those publications, Google Scholar
would still be in third place regarding the contribution behind SCOPUS and IEEE.

5.3. What privacy-related challenges exist in the area of Natural
Language Processing (NLP)?

In this section, we will attempt to answer the first research question. In the keywording
phase, we realized that there is the need to distinguish between two categories to answer this,
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Figure 5.2.: Publications per electronic data source

namely NLP as and privacy enabler and as a privacy threat. Hence, we have different views.
First, we will present our results for the privacy enabling part and then for the privacy threat
part.

5.3.1. Challenges for NLP as a Privacy Enabler

In this section, we will answer RQ1 for the top category with the mapping results we collected
in the following sections. First, we want to acquire an overview of the domains interested in
the application of NLP as a privacy enabler. Then, we will inspect the distribution of use case
classes discussed within the publications we selected. After having a better understanding
of the environment NLP is utilized as a privacy enabler, we will present the fundamental
privacy-related challenges this top category faces. Afterward, we map the use case categories
and the domains on the privacy issues. At the end of this section, we will have a look at the
timeline, including the privacy issues mapped on a timeline, to observe the development of
privacy issues solved with NLP.

Domain Mapping Results

The mapping results in Figure 5.3 regarding the domain part for NLP as a privacy enabler dis-
plays 58.2 percent of the papers we found either contribute to the topic “Law” or "Medicine”.
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28.6 percent of the papers in this part addressed either a particular topic or conducted research
on a generic or theoretical topic. 8.9 percent of the paper we extracted focused on social
networks, and the minor party in the chart is represented by mobile applications. In the next
part, we will present the mapping results for the use case categories we collected.

Social Network

- General
8.0% 13.5%
Other
15.1%

Mobile Application
2.3% Law
27.6%

Medicine
30.6%

Figure 5.3.: Mapping Results for the Domain category in the top category NLP as a Privacy
Enabler

Classification of Use Cases Mapping Results

Figure 5.4 represents the distribution of papers among the classes of use cases we delineated
in section 4.5.1. We decided to depict the results with a bar chart to understand better the
popularity of use cases among the literature we extracted in the earlier parts of the thesis. The
top three consist of the topics ”"Protecting sensitive information in unstructured data” with 81
papers, “Privacy Preserving Information Sharing” with 73 papers, and the ”"Simplification
of privacy-related regulations” with 50 papers. Followed by 20 from ”Investigations” and
17 papers from ”Annotations and Training Data”. ”Voice related services”, “Searching in a
private manner” and “Increase Attention towards Privacy Policies” received 15, 14, and 14
papers, respectively. Twelve papers were mapped to the ”Automation” category and 10 to
“Mining according to privacy policies”. Less attention was gained by the topics “Definition
of Privacy Requirements”, "Browsing in a private manner”, “Measuring the Compliance of
apps” collecting with five, three and two papers, respectively. In the following section, we
will present the mapping results from the privacy issue section of the top category NLP as a

privacy enabler.
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Figure 5.4.: Mapping Results for the Use Case Classification category in the top category NLP
as a Privacy Enabler
Generalized Privacy Issue Mapping Results

In this section, we will discuss the mapping results for the privacy issues that are handled with
the support of NLP. In Figure 5.5, we can observe a clear dominance of the secondary usage
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of unstructured clinical data, primarily for research reasons and the complexity of privacy
policies. Considerable popularity was also dedicated towards the topics “Unintended data
disclosure, "Profiling’,” and “Compliance with Requirements”. Essential privacy issues in this
section are also “Identification”, sensitive information in unstructured data, and the handling
of sensitive information by applications. Less frequently mentioned within the literature, we
identified were the topics “Disclosure of sensitive data analysis”, “Data Linkage”, “Misuse of
Sensitive Information by Data Collector or Adversary”, “Disclosure of sensitive Data” and
”Annotations and their Quality”. Next, we will display the results, which will show us the

mapping of use case classes on privacy issues.

Annotations and their Quality
Complexity of Privacy Policies
Compliance with Requirements
Data Linkage

Disclosure of sensitive Data
Disclosure of sensitive data for
analysis

Handling of sensitive data by
applications

Identification

Inflexibility of annonymization
tools

Misusage of Sensitive Information
by Data Collector or Adversary

Profiling

Secondary use of unstructured
clinical data (Research)
Sensitive Information in

unstructured Data

Unintended data disclosure

o 20 40 60

Figure 5.5.: Mapping Results for the Generalized Privacy Issue category in the top category
NLP as a Privacy Enabler

Use Cases requiring NLP as a Privacy Enabler

Figure 5.6 delivers an aggregated overview over the constellation between the privacy issues
and the corresponding use cases appearing in or which they cause. On the left of the graph
are the privacy issues listed. The bar next to it displays the distribution of use cases, with the
corresponding color on the right of the graph, addressing the respective privacy issue. If a
privacy issue contains a use case category, the order is set by the order given on the right of
the graph. This means, if a privacy issue category contains one publication addressing it for
each use case category, the graph will depict a bar with 13 boxes, each filled with a "1”. At
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the bottom of the graph, a percentage is given to illustrate the proportion of use cases within
publications. The numbers in the bar next to a privacy issue correspond to the number of
contributions addressing a specific use case category.

For instance, we investigate which use cases address the privacy issue "Complexity of
Privacy Policies”. Six use cases are part of the category addressing ”Annotations and Training
Data”, two ”Automation”, one “Browsing in a private manner”, 13 “Increase Attention
towards Privacy Policies”, nine ”Investigations”, one ”Privacy-Preserving Information Sharing”
and one "Protecting sensitive information in unstructured data”. 33 contributions or 50
percent of the use cases addressing the complexity of privacy policies are dedicated to the
simplification of privacy regulating documents.

This graph provides an overview of all the privacy issues and the use cases they occur
in or they cause. Because of the annotation quality, issues regarding the scarcity of data or
the training of sensitive data detection models occur in use cases related to the annotation
process. Annotated data are essential to train algorithms to detect sensitive information in a
data set. Now, we can observe that the complexity of privacy policies is a significant concern,
and many contributions were dedicated to this issue. Significantly, the simplification and the
attention increase towards privacy purposes received a fair amount of interest. Compliance
with requirements affects many use cases, especially in the area of automation and the
simplification of privacy regulating documents. Data Linkage affects all the use cases that aim
for a privacy-preserving way of sharing data or challenges protecting sensitive information in
unstructured data structures.

The disclosure of sensitive data might occur in use cases that attempt to protect sensitive
data, share them in a private manner, or during the interaction with a voice-related service.

In mining or protecting sensitive data, the disclosure of sensitive data is an issue because
the analysis bears the chance to infer sensitive information about the data subject.

The privacy issue resulting from the handling of sensitive information by applications
causes many publications to render investigations to evaluate the privacy impact and raise
awareness towards this issue. The issue of “identification” accompanies use cases addressing
the sharing of information, protection of sensitive information, the application of search
engines, and the encounter of voice-related services.

The inflexibility of anonymization tools hinders the process in which privacy-preserving
information exchange is rendered. To prevent the misuse of sensitive data, use cases were
devised that address the issue with a privacy-preserving manner of data exchange, general
protection of sensitive information within unstructured data sets or the simplification of
privacy regulations are conducted. Profiling might originate in use cases that focus on
browsing, mining, or protecting sensitive information in unstructured data sets. Most
frequently, Profiling occurs in context with search engines and voice-based services.

One major privacy issue within this graph is the secondary use of unstructured clinical
data occurring in use cases that aim for sharing information or protecting it. The existence
of sensitive information within not medical data happens to occur in or be caused by the
collection of annotations, the definition of privacy requirements, mining of data, privacy-
preserving information sharing. The issue of unintended data disclosure originates in use
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cases that share sensitive information or protect it. It also is subject to use cases in which
search engines or voice-based use cases.

This graph illustrates the diversity of privacy-related issues, and in which category of use
cases they either occur or which use cases they case. There is not one category of use case that
is affected by just one. However, most of the privacy issues occur in use cases in which either
sensitive information is tried to be protected in unstructured data sets or when the use case
conducts the sharing of information. The following chart will elaborate on the development
of privacy issues during the last years.

Domains involving NLP as a Privacy Enabler

After extracting the information about the privacy issues that were dealt with NLP and the
corresponding use cases, we investigated in which domain the privacy issues are present.
The result of our work is Figure 5.7. On the left side of the graph are the privacy issues. Next
to each privacy issue is a bar that represents a 100 percent of use cases dedicated to it. each
colour in the bar represents one category of use cases. The number in the box stands for the
absolute number of the respective use cases of a given use case category.

On the first sight, the graph highlights the fact that NLP is frequently used within the
medical domain in order to solve privacy issues. Likewise, the presence of the law sector in
different privacy issues is revealed by this graph caused by the intense involvement of privacy
policies or other privacy regulating documents. We observe that the categories "Other” and
“General” are scattered around all privacy issues in high proportions. The privacy issues
”"Complexity of privacy Policies”, “Compliance with Requirements” and “Secondary use of
unstructured clinical data” are naturally predominated by the domain "Law”,”Law” and
"Medicine”, respectively.

All in all, this graph shows us, that the occurrence of privacy issues solvable with NLP can
happen in any domain listed here. But this also implies that other domains could utilize NLP
more in order to preserve privacy.

Development of Privacy Issues solved with NLP as a Privacy Enabler

Figure 5.8 demonstrates the development of the variety of privacy-related issues that are
solved with the support of NLP. On the x-axis of this chart, the years of publications are
displayed. One instance in the graph has no assigned publication year because we were not
able to find it. The numbers in the bar represent the number of publications contributed to
one the privacy related issue with the corresponding color on the right side of the chart. If
the box is too small to fit the number of contributions, it is written in the next bigger box with
enough space, and it is highlighted by using a white font around the filling. For instance,
the column assigned to 2020 has the following numbers, starting from the bottom of the
column, ten and five, which belong to the categories “Complexity of Privacy Policies” and the
“Compliance with Requirements”, respectively. Then, there are two empty fields. However,
after these, there are two ”1” in the same colors as the empty fields indicating their reference.
In this case, the privacy issues “Data Linkage” and ”Disclosure of sensitive data for analysis”.
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The same concept applies to the following numbers highlighted by the white color around
the filling color. The y-axis of this graph represents the 100 percent of publications made in
the corresponding year. At the top of every column, the total amount of publications for each
year is written.

We observe that the variety and the amount of privacy-related issues solved with NLP
increases. Notably, not just the almost every year presence of the privacy issue of “Unintended
data disclosure” and the “Complexity of Privacy Policies”, also the increased amount of
attention contributed to the issue in the form of publications is well illustrated by the chart. A
constant present within almost every year is the secondary use of unstructured clinical data,
also assigned with growing numbers. In 2016, the variety and amount of publications received
a significant intake compared to the year before. This is the same year in which General
Data Protection Regulation was introduced by the European Union, and two years later, the
country members needed to adapt to the law [16]. In the years afterward, the dedication
towards the challenge of compliance also gained more attention. The development of the
research field evolves. The publications start to address privacy concerns more specifically
because privacy issues like identification, profiling, and data linkage are applied in more
publications and delineate the problem of privacy as more than just a violation and address
the problem’s potential consequences.

5.3.2. Challenges for NLP as a Privacy Threat

In this section we attempt to answer the challenges that are privacy related and caused by
NLP. First, we want to inspect the domains in which the privacy issues that are caused by
NLP occur and we will point out which data type was mostly involved. Then, we present the
issues and their distribution within this thesis. The last point will be a mapping of domains,
data types and use cases to the respective privacy issue.

Domain Mapping Results

The mapping results for the sub category Domain are depicted in Figure 5.9. With 55.9
percent a majority of our findings work on generic or theoretical aspects for which we did
not find an adequate domain. The "Cloud Computing”, “"Medicine” and "Home Automation”
domain received 15.7, 14.2 and 4.7 percent, respectively. The “Other” domain achieved 9.4
percent of the papers. Now, we proceed with the results for the data type subcategory.

Data Type Mapping Results

Figure 5.10 illustrates the distribution of papers that conducted research on text or speech
data. Apparently, there is majority dedicated to work with written data. The next section will
discuss the results for the use case classification.
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Use Case Classification Mapping Results

The specific mapping results for the use case classification are depicted in a figure located
in A.3.1. Here, we will present the aggregated mapping results for the category use case
classification contained by Figure 5.11. The dominant use case class is the topic referring to
speech related services without disclosing the all the voice features with 42 papers matching it.
A comparatively mediocre amount of papers were mapped to topics “Model Training without
Sharing Data”, ”Privacy-Ultility-Trade-Off for NLP related Concept” counting 26, 20 and 15
papers, respectively. The topics ”Classification without Data Disclosure” and ”Similarity
detection without Data Disclosure” achieved seven papers each. A fewer amount of papers
were dedicated to the topics “Investigating the Impact of NLP related Concept on Privacy”,
"Private Communication” and “"Summarization without Document Disclosure”. Next, we will
present the mapping results for the privacy issues subcategory.

Mapping Results for Generalized Issue/Vulnerability solved for NLP

In Figure 5.12 the mapping results for this subcategory are depicted. 31.5 and 29.9 percent of
the papers we found were mapped to the terms “Direct Disclosure of sensitive data for NLP
Tasks” and ”Direct Disclosure of sensitive data for NLP model training”, respectively. The
last three topics within the chart are “Exploitability of word embeddings”, “"Memorizability
of NN” and ”Information Disclosure by Statistical Language Models” receiving 17.3, 15.0
and 6.3 percent of the papers included in this mapping study. In the following part, we will
discuss the mapping results of final subcategory of this top category.

Domain Appearance of NLP as a Privacy Threat Domain

Figure 5.15 embodies the mapping of domains to the privacy issues caused by NLP. On the
left side the privacy issues caused by NLP are listed and on the right side of the chart the
domains are presented. Each color in the bar on the right of the listed privacy issue represent
on domain. The number within the box describes the amount of publications dedicated
towards the domain.

It is observable that the “General” domain is predominant in all privacy issues. This
implies that the research field still is in its beginnings. Since the medical domain has already
conducted a lot of research towards privacy preservation in combination with NLP caused
by [251], it is present in most of the detected privacy issues. A small proportion of specific
domains are also present within the privacy issues. The next section will cover our analysis
for the data types involved in privacy issues caused by NLP.

Data Types addressed by NLP as a Privacy Threat

This section will show a distribution of data types addressed by the privacy issues caused
by NLP depicted in Figure 5.14. This table follows the same structure as Figure 5.15, but the
difference is that we inspect the data type if it is written or in spoken form. As you can see,
we have a clear focus on written data among the publication we included into this SMS. An
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interesting fact is that the direct disclosure of sensitive data for NLP task is the only privacy
issue that is predominated by speech data, mainly, because the voice itself is a bio-metric
treat that needs to be treated with caution before disclosing it to any third party. In the next
section, we will elaborate the use cases affected by NLP as a privacy threat.

Use Cases addressed by NLP as a Privacy Threat

Figure 5.13 shows the mapping of use cases on the privacy issues caused by NLP. It follows
the same structure as Figure 5.15, however on the left side is a legend listing the use case
categories and the corresponding color.

The direct disclosure of sensitive data to an NLP task are mainly addressed by use cases
that want to train a model based on sensitive data or speech related services without the
disclosure of the complete voice. A minority of use cases aim for the privacy-utility-trade-off
of training data. The next privacy issue in the chart refers to the issue of direct disclosure
of sensitive data for NLP tasks. The majority of use cases aim to protect the voice traits or
want to store and conduct a search on data in a privacy preserving way. The exploitability
of word embeddings occurs in the use case category of the privacy-utility-trade-off for NLP
concepts. The “Information Disclosure by Statistical Language Models” also occurs in the use
case category of the privacy-utility-trade-off for NLP concepts among use cases of the type
”Speech related Service without complete Voice Feature Disclosure ” and the summarization
without the disclosure of documents. The “"Memorizability of NN” causes mostly the use case
of model training without sharing data and speech related services without fully disclosing
all voice traits.

Again, this graph shows us the different use case categories which are caused because of
the privacy issues we discovered or occur in the use case category. In the following part, we
will discuss the solutions applied in order to preserve the privacy with NLP or for NLP.

5.4. What approaches are used to preserve privacy in and with NLP
tasks and how can they be classified?

In this section, we will elaborate the solutions which were provided with the support of NLP
or the applied PET in order to preserve the privacy within the NLP task. For the section
dedicated to NLP as a privacy enabler, we will start with the mapping of privacy issue to the
corresponding solutions. Then, we will specify the solutions based on the NLP concepts and
method which were applied. For the part dedicated to solutions for NLP as a privacy threat,
we also start with the mapping of privacy issues on the solutions provided by the literature
we extracted.

5.4.1. Privacy Solutions Provided by NLP

In order to provide an answer for the question which privacy solutions are supported by
NLP and how can they be classified, we start with the scheme we elaborated in the previous
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chapter, then, we continue with the results for the applied NLP concept and the method type.

Generalized Privacy Issue Solution Mapping Results

Figure 5.16 shows an aggregated overview of the table located in subsection A.2.1. The most
frequent class in this category was “De-identification” with 73 publications. On the second
place is the category “Detection” with 38 publications. A comparable amount of papers were
dedicated to the topics “Designing”(27), “Information Extraction”(26), “Automation”(23) and
“Generation”(22). On a similar level of received publications are the topics “Semantic Solu-
tions”(19), "Collected annotated corpus”(17), "Speech de-identification” (16) and "Overviews”
(14). Lower attention was addressed towards the topics “Mapping”(8), "Suggestions”(7),
”Code-based Analysis” (7), “Ontology based Solutions”(4), "Encryption based Solutions”(2)
and "Demonstration of Threats”(1). The following part will discuss the mapping results for
the applied NLP concepts.

Generalized Category of Applied NLP Concept Mapping Results

Here, we will illustrate the mapping results for the applied NLP concepts with two different
levels of abstraction. First, we will discuss the results for various combinations we explained
in section 4.5.1, in Figure 5.17, then, we will aggregate those results and map it to the major
categories without any combinations. The result of it is displayed in Figure 5.18. Figure 5.17
depicts the fact that the papers we found have a strong focus on the semantic level and also
on the morphological level or the combination of both of those. Speech Processing seems to
be less popular. We attempted to find more appearances of combinations we delineated, but
this was not the case. Figure 5.18 just stresses the fact that most of the research is done on the
semantic level because of its more universal approach towards the natural language which
also improves the dynamics of potential solution approaches. Another significant part is
played by the morphological level supports to understand the task of words within a sentence
or even am entire text corpus. The next section will elaborate the distribution of applied NLP
method types within the extracted literature.

NLP Method Type Mapping Results

The last mapping results of the top category NLP as a privacy enabler is the method type
that was applied in the papers in this top category. Again, we instrumentalized a two
level abstraction process in Figure 5.19 the more specific one and Figure 5.20 displays the
aggregated overview. We chose a pie chart, since we have a more suitable distribution of
results. The top three are the pure methods “Statistical”, ”"NN" (Neural Networks) and the
“Rule based” approaches with 36.4, 21.4 and 12.9 percent, respectively. The most frequent
combination we found was the combination of all three method types with 9.2 percent. Now,
we will report about the mapping results for the sub categories of the other top category.
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Mapping of Privacy Issues on Solutions provided by NLP

In this part, we will focus on the privacy preservation solutions contributed by NLP. On the
left side of the Figure 5.21 the privacy solutions are listed. The bar next to each category
represents the privacy issue classes with the corresponding color on the right side of the
graph. The number within the box represents the number of contributions addressing the
privacy issue category.

” Automation” was mostly used in order to solve issues regarding the complexity of privacy
policies or the compliance with requirements. Also, “Code-based Analysis” was used in
order to resolve the same privacy related issues and, additionally, issue of handling sensitive
information by applications. The collection of annotated corpora was applied in order
to resolve the issues of the complexity of privacy policies and annotation quality. “De-
identification was applied mostly in order to make clinical unstructured data available fore
research purposes. The solution categories "Designing and "Detection" provided a immense
variety of solution towards multiple privacy issue categories. “Encryption-based” solutions
were used to either mitigate the disclosure of sensitive data or profiling. “Generation” was
mostly applied in order to solve the issues of the complexity of privacy policies or the
compliance with requirements or to avoid the complete disclosure of data for analyzing
purposes. The category of “Information Extraction” was applied mostly for challenging the
complexity of privacy policies same as the "Mapping” solution category. 50 percent of the
issues solved by an ontology-based approach aimed for profiling. The "Overview” and the
“Suggestions” category offered a variety of solutions towards different privacy issues. Most of
the solutions offered by “Semantic Solutions” addressed issues related to privacy regulating
documents or the compliance to them. “Speech De-identification” was applied in order to
mitigate ”Identification” or “Profiling.

Mapping of NLP Concepts on Solutions provided by NLP

Next, the Figure 5.22 will delineate the level on which the analysis of the NLP tasks were
applied. The chart follows the same rules as the charts discussed before, but in this case we
inspect the different NLP domains listed in the legend on the right side of the chart. We
are able to observe that most of the solution approaches apply the semantic analysis or a
combination of it with the morphological analysis. A triple combination appears seldom.

Mapping of NLP Method Types on Solutions provided by NLP

In Figure 5.23 we are able to observe the distribution of applied method types for the provision
of a solution towards a privacy issue. This chart follows the same logic as the previously
mentioned ones in this chapter. We can say that almost every solution approach with NLP
contains a variety of method types that are used in order to achieve there goal. Every
solution approach applies neural networks or a mixed version of it. Highly prominent is
also the application of statistical approaches or mixed version of it. Rather less frequent are
approaches that are mixed versions of rule based approaches. It is noticeable that almost
every solution approach applies the method type neural networks.

60



5. Results

5.4.2. Solutions Provided for NLP Privacy Issues

This section will elaborate on the mappings to the provided solutions in form of PETs. We
will map it on the threats they solve and in which use cases categories they were applied.
Also, we were curious about the development of contributions applying PETs over the last
few years.

In Figure 5.26 we observe the mapping of privacy issues caused by NLP on PETs. Also,
this chart follows the same representation logic as the previous charts. Here, however,
the left side of the chart are PETs listed and the bars next to it are filled with different
colors representing the privacy issue caused by NLP. The numbers delineate the amount of
publications addressing the corresponding privacy issue category.

PETs(RQ2) Mapping Results

In last subcategory in this section, we will inspect the mapping results from Figure 5.24 which
contain the specific mapping results and Figure 5.25 represents the aggregated overview of
the mapping results. Figure 5.24 displays the dominance of "Homomorphic Encryption” and
”Obfuscation” having a mapping result of 36 and 30 papers, respectively. A significant amount
of papers were mapped to the topics ”Differential Privacy (DP)”, “Federated Learning”,
“None” and ”Secure Multiparty Computation”. There were just a few papers that were
mapped to the topics that were combined PETs. Less popular was the topic ”Synthetic Data
Generation” with just four papers.

Figure 5.25 displays a different result to us, since we counted the combinations of PETs to
their respective topic. However, the results do not extremely differ from the specific view, it
shows us the share of the different PETs. Homomorphic Encryption still holds the biggest
share with 27.6 percent within the chart followed by Obfuscation with 22.4 percent and
Differential Privacy with 14.9 percent. 9.7 of the publications did not include any PETs. 8.2
percent were dedicated towards the topic of Secure Multiparty Computation and the smallest
amount of publications addressed the topic of synthetic data generation.

All in all, we started in this chapter with the definition of the research questions that we
attempt to answer with the results of this mapping study. Then, we defined the parameters
of the search process requiring search queries and an adequate selection of electronic data
sources. After executing the search queries in the respective electronic data sources, we
filtered the outcome of the search process, screened through the papers and included all
those which fulfilled our criteria and validated them with the support of the advisor of this
thesis. Ultimately, we executed the keywording of abstracts process in order to extract all
categories that we attempt to map on all the papers. In the end, we started the mapping
process and described the results of it at the end of this chapter. In the end, we executed the
methodology according to Petersen’s paper [11]. The next chapter will contain the results of
our interpretation of the mapping results and further analytical procedures.
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Mapping of NLP Privacy Issues on PETs

"Differential Privacy” was applied in order to solve the exploitability of word embeddings or
the disclosure of sensitive data for the training of a model or for a NLP task. Some use cases
involving the issue of "NN memorizability” was also solved. In order to solve the issue of
sharing sensitive data for model training, the combination of differential privacy with secure
multiparty computation or federated learning and synthetic data generation were applied in
order to solve issues that were related to the exposure of sensitive data towards model training.
The direct disclosure of sensitive data for NLP tasks was mainly solved with the application
of homomorphic encryption, obfuscation and secure multiparty computation. The issue of
information disclosure by statistical language models was mostly solved with differential
privacy, homomorphic encryption and obfuscation. The exploitablity of word embeddings
is tackled by diverse PETs, namely differential privacy, federated learning, a combination
of federated learning and homomorphic encryption [244], homomorphic encryption and
obfuscation. The issue of memorizability of neural networks is also not just solved with
one PET but by multiple. The most publications were contributed in the solution category
of "Obfuscation”, followed by the solution categories federated learning, secure multiparty
computation, homomorphic encryption, differential privacy and a combination of federated
learning and differential privacy [252]. The next chart will disclose the mapping of use case
categories to PET.

Mapping of Use Case Categories on PETs

Figure 5.27 provides on overview over the PETs and the use case category they occur in. This
illustration has a list of PETs and a few combinations on the left side and on the right are the
different use case categories with a given color.

In the case of classification without data disclosure the PETs differential privacy, homo-
morphic encryption and secure multiparty computation were applied. The use cases that
conducted an investigation to see the impact of NLP on privacy did not apply any PETs. The
use cases focusing on the model training without sharing data were mostly encountered by
the application of federated learning or a combination including it. Also, the application of dif-
ferential privacy, homomophic encryption or secure multiparty computation were an option.
The use cases referring to the Privacy-Utility-Trade-off were most frequently addressed by
differential privacy, also homomorphic encryption and obfuscation were part of the solution
domain. In order to make a private communication happen the application of obfuscation
was introduced. Use cases addressing similarity detection without the disclosure of data were
solved with different PETs. The most frequent publications addressing it were made with the
usage of obfuscation. Other less frequent approaches were made with differential privacy and
homomorphic encryption. Speech related services were mostly handled with the application
of homomorphic encryption of obfuscation. Storing and searching data was mostly solved
with homomorphic encryption. The next chart will focus on the development of publications
over time.
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Mapping of PETs on Years

Figure 5.28 shows use the amount of publications made during the last 14 years. On the left
side of the graph is the list of PETs with their color within the bars that are on the right of
the year number. Each bar represents a 100 percent of the number of publications made in
the respective year. On the left of the chart is the toal amount of publications made in the
respective year.

The popularity of PETs gained a lot of interest in the last three years. Especially, differential
privacy which started to appear in 2018 and since then it contributes over 10 percent of
the publications per year. A similar trend is also observable for federated learning and its
combinations after having a two year absence between 2015 and 2018. But since 2018 at least
one publication involving federated learning per year even in 2020 twelve publications were
made. Still, the biggest coverage is provided by homomorphic encryption and by obfuscation.
Secure multiparty computation has it first appearance in 2007 and had since then a few
publications per year. Synthetic data generation has a few publications in 2019 and 2020.

5.5. What are the current research gaps and possible future research
directions in the area of privacy-preserving NLP?

5.5.1. Research Gaps for NLP as a privacy Enabler

The complexity of privacy policies is one of the major pillar we detected as privacy issue
within the domain NLP as a privacy enabler. The focus of future research should be to
develop pipelines that support the idea of formulating privacy policies or privacy regu-
lating documents in cooperation with technical and law experts to create a standard easy
automatable.

Not just for the privacy related issues solved with NLP, but also for all privacy related
research fields the setup of a standard schema is imperative. The standard should require
every contribution addressing a standardized privacy issues to elaborate at least a few
consequences that might come up if a certain privacy mechanism is not applied or is not
sufficient enough. Avoiding the simple but still legit justification of a privacy violation. This
would support the common understanding of the importance regarding privacy and the
understanding of the consequences which a privacy violation might cause.

In the medical domain, we realized a high diversity of terms that needs to be standardized
by the medical research community in order to avoid repetitive research, especially for the
unstructured documents, because we observed a lot of synonymes.

Our results show that the solution approaches are frequently relying on statistical method
types which require a lot amount of data and an alternative is presented by Feyisetan, Drake,
Balle, and Diethe the application of active learning in order to reduce the required amount of
data for model training purposes [240]. Of course, this is not the solution to the problem but
an incentive in which direction the research might head. Another opportunity is the synthetic
generation of data in order to tackle the problem of the requirement of a lot of data.
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5.5.2. Research Gaps for NLP as a privacy Threat

Since this top category, we discovered, is upcoming, we noticed a lot of general approaches
within this category, a potential gap is to use the solutions for the issues and apply the general
approaches to specific scenarios. The combination of federated learning and differential
privacy could enable business models in which costumers could contribute their data in a
privacy preserving manner in exchange for some benefits to build a training data set. The
application of the privacy preserving concepts in a business model would introduce the
research field faster into society and increase its popularity.

We detected one paper applying quantum computing [253] that made us curious if the
concept is also applicable for other NLP related tasks to preserve the privacy in them. For
example, if this concept can also be applicable to text based tasks.

Based on our findings in section 5.3.2, speech data is still a topic that needs further research,
especially, because of its tremendous privacy value it is imperative to protect it.
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Figure 5.6.: Privacy Issues and Use Cases
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Figure 5.9.: Mapping Results for the Domain category in the top category NLP as a Privacy
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Figure 5.11.: Aggregated Mapping Results for the Use Case Classification category in the top
category NLP as a Privacy Threat
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Figure 5.12.: Mapping Results for the Generalized Issue/Vulnerability solved for NLP cate-
gory in the top category NLP as a Privacy Threat
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Figure 5.13.: NLP Privacy Issues and Use Cases
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Figure 5.15.: NLP Privacy Issues and Domains
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Figure 5.16.: Mapping Results for the Generalized Privacy Issue Solution category in the top
category NLP as a Privacy Enabler
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Figure 5.17.: Mapping Results for the Generalized Applied NLP Concept category in the top
category NLP as a Privacy Enabler
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Figure 5.18.: Aggregated mapping results for the Generalized Applied NLP Concept category
in the top category NLP as a Privacy Enabler
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Figure 5.19.: Mapping Results for the Generalized Applied NLP Concept category in the top
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Figure 5.20.: Aggregated mapping results for the Generalized NLP Method category in the
top category NLP as a Privacy Enabler
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Figure 5.21.: Privacy solutions aiming to solve privacy issues
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Figure 5.22.: Privacy solutions and their analysis levels
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Figure 5.23.: Privacy solutions and their applied method category
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Figure 5.24.: Mapping Results for the Privacy Enhancing Technologies (PETs) category in the
top category NLP as a Privacy Threat
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Figure 5.25.: Aggregated Mapping Results for the Privacy Enhancing Technologies (PETs)
category in the top category NLP as a Privacy Threat
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Figure 5.26.: NLP Privacy Threats and their Solutions
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Figure 5.27.: NLP Privacy Threat Solutions and their Use Cases

81



5. Results

%001

6t
8z
El

= © ™ < = @ M~

—
—

— N

%Gd

%52

Ln |

00

%0
Lzoz

6L0Z
BLOZ
LLDZ
aloZ
SLoz
vioz
ELoZ
cloZ
Loe
oLoZ

1002

uonesauag ejeq aneyuis I

uopendwon
Apedyginyy auncses [

uoneasnjqo M
auopn .

(3IH)
uopdisoug oydiowowoH M
(3H)
uopdiiouz ojydiowowoy
g Buiiiea pajeseped [l

(dQ) Aoeaug |equasapig
¥ bujwea) pejesapey M

Buiwes pejesapay |
uonendwon
Auednny aunoeg

2 (da) Aoenud jenuasapg W

(dq) Aoenug enuasagg

Figure 5.28.: NLP Privacy Threat Solutions and their Development over time
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6. Discussion

This chapter will list all essential findings from the previous chapter. The essential findings
are split into four parts. Two parts refer to the findings made towards the privacy-related
solutions in which one part is dedicated to the interpretation that NLP is a privacy enabler
and the other one that NLP as a privacy threat. The remaining two parts refer to the findings
made for the solution approaches. Finally, the last part of this chapter will delineate the
limitations.

6.1. Summary of Findings

This section will cover a summary of the results we discovered in the previous chapter. The
first two parts refer to follow the suggestion of Kitchenham to prove the relevance of the topic
by plotting the publication years and check the distribution of publications made by the single
electronic data source [12]. We observed that our topic and our subtopics are relevant and
gaining interest. Additionally, we realized that Google Scholar adds value as an electronic
data source selection to a SMS. Furthermore, we noticed the need to distinguish between two
top categories, namely NLP as a privacy enabler and as a privacy threat. The next part will
list the essential findings categorized by the research questions and the belonging to its top
category.

6.1.1. Main Privacy related Challenges for NLP as a Privacy Enabler

In this part of the thesis, we will point out the most important findings from based on the
results made within the SMS.

Domains Dealing with Privacy related Challenges and NLP

We discovered that the main domains applying NLP within their solutions are law and
medicine with 27.6 and 30.6 percent, respectively, meaning that over half of the publications
we found were related to the two topics. Still, 8.9 and 4.3 percent were located in the domains
of social networks and mobile applications, respectively.

Most frequent Use Case Categories affected by NLP solvable Privacy related Challenge

The three most frequent use case categories, we discovered, are protecting sensitive infor-
mation in unstructured data sets, the privacy-preserving sharing of information, and the
simplification of privacy-related regulations.
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Most frequent Privacy related Challenges Solved by the application of NLP

According to our mapping results, we observed that the most frequent privacy issues are the
secondary use of unstructured clinical data primarily for research purposes, the complexity
of privacy regulating documents, unintended data disclosure, profiling, and compliance with
requirements.

Domain Diversity of Privacy related Challenges solvable with NLP

Most of the privacy-related challenges we detected affected at least two or more domains. This
highlights the fact that one privacy-related challenge is also applicable to multiple domains.
Use Cases addressed by the highest variety of Privacy related Challenges

The use case categories which are affected the most by privacy-related challenges are the
privacy-preserving information sharing with 12 out of 14 and the protection of sensitive data
in unstructured data being addressed by 10 out of 14 privacy-related challenges.

Increased Attention of Privacy related Challenges solvable with NLP

Since 2018, we realized that the number of publications addressing privacy-related challenges
solvable with NLP and the diversity of categories of privacy-related challenges is increasing.
Increased Attention towards the Complexity of Privacy Policies

Since 2016, we observed that the amount of publications addressing the complexity of privacy
regulating documents solvable with NLP is increasing.

6.1.2. Main Privacy related Challenges for NLP as a Privacy Threat

This section will summarize the findings within the result chapter.

General Domain mostly affected by NLP as a Privacy Threat

The mapping results regarding the domain affected by NLP as a privacy threat highlight the
fact that most of the publications included in the SMS were mapped to the "General” domain,
indicating that NLP as a privacy threat is a relatively new topic.

Popularity of Publications Towards the Written Data Type

Most of the papers in the top category which interprets NLP as a privacy threat deal with the
written data type more than with the speech data.
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Most frequent Use Case Classes

The three most frequent use case classes identified within the thesis are speech-based services
without the complete voice feature disclosure, model training without the disclosure of data,
and the privacy-utility-trade-off for NLP related concepts.

Most frequent NLP Threats

The four most frequent NLP privacy threats are The direct disclosure of sensitive data for NLP
model training or an NLP task, the exploitability of word embeddings, and the memorizability
of NN.

Direct Disclosure of Sensitive Data dominated by Speech Data

Most of the privacy issues were predominated by the written data type. However, the
disclosure of speech to a NLP task was the only one dominated by the speech data type.

Generality of Privacy Issues

As a result of our mapping of domains and the use case classes, we discovered that every
privacy issue was at least affecting three out of five domains. However, the most considerable
proportion was covered by the general domain, meaning that rather theoretical publications
addressed the privacy issues without a specific application.

Most affected Use Case Classes

As a result of this study, we identified that speech related services are affected by every
privacy issue we identified and that all privacy issues get addressed by the use case class
"Privacy-Utility-Trade-off for NLP related concepts” meaning that in every privacy issue
research is conducted to find a balance between utility and privacy.

6.1.3. Solutions supported by NLP as a Privacy Enabler

Here, we summarize the results we collected for the domain in which we discuss privacy
solutions supported by NLP.

Most frequent Solutions supported by NLP

This study received the most mapping results based on the publications that we included for
De-identification, Detection, and Designing.
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Most frequent Analysis Level supported by NLP

The two most often applied NLP concepts were semantic analysis and the combination with
the morphological analysis covering over 50 percent of the publications in the top domain in
which NLP is interpreted as privacy enabler.

Most frequently applied NLP Method

Our results show that almost 50 percent of the publications in which NLP is utilized as a
privacy enabler are based on statistical approaches. The neural networks and rule-based
approaches received 25.1 and 24.1 percent, respectively.

Diversity of Solution approaches towards Privacy Policy Complexity

We discovered that the widest variety of approaches towards solving the privacy-related
challenge are made to ease the complexity of privacy policies. 12 out of the 16 categories
for solving privacy-related challenges addressed the complexity of privacy policies. Most
publications were made within the information extraction category.

High Coverage of Semantic Analysis

Almost all privacy issue solutions supported by NLP are covered by either semantic analysis
or the combination with morphological analysis. No solution approach is purely based on
one level of analysis. Mixed-level approaches are less frequent than pure ones.

High Coverage of Solutions Approaches supported by NLP based on Neural Networks

All solution categories have approaches in which neural networks are applied. The highest
coverage is still dedicated to statistical approaches. Rule-based and mixed approaches are a
minority.

6.1.4. Main Solutions for NLP as a Privacy Threat
In this section, we will summarize the results we received for the category in which we solve
privacy issues caused by NLP.

Homomorphic Encryption as most applied PET

The three most frequent PETs according to our mapping results are homomorphic encryption,
obfuscation, and differential privacy, achieving 36, 30, and 14 publications, respectively.
Including the combinations into the count homomorphic encryption, obfuscation, and differ-
ential privacy achieve an overall coverage of 27.6, 22.4, and 14.9 percent, respectively.
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Most frequent PET combinations

The PETs, which are mainly used for combinations, are federated learning and homomorphic
encryption. The most prominent combination with the mapping results is federated learning
and differential privacy with a count of five.

PETs with Highest Solution Coverage

Three PETs contain all five privacy issues caused by NLP, which proves the fact of their
universal utilization possibilities, are differential privacy, homomorphic encryption, and
obfuscation.

Differential Privacy for Privacy-Utility-Trade-off

Differential privacy is the PET which is applied the most to introduce a trade-off between
privacy and utility into a data set to disclose data that still has value for a NLP task.

Federated Learning as main PET for Model Training

Federated learning is only applied for model training of data without sharing the raw data
and does not solve any further privacy issues caused by NLP.

Highest Diversity regarding application by use cases

Homomorphic encryption and obfuscation are the PET with the highest diversity regarding
being applied by six and seven out of nine use case categories.

Synthetic Data Generation as Solution for Speech related Services

We realized that mainly in the use case category referring to voice-based services, the PET
synthetic data generation is applied.

2018 as the beginning of the Diverse Application of PETs

In 2018, not just the amount of publications regarding the application of PETs to solve NLP
related privacy issues is increasing but also the diversity of approaches.

6.2. Limitations

Our systematic mapping study covers a lot of information that leads to a lot of thoughts.
However, this thesis was limited by time. Therefore not every thought could be followed.
Another major issue we faced during this thesis is the limited access to online papers that
are either not covered within the online service of the university or a third-party library
faces service problems that also lead to the fact that access to specific papers is not possible.
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Furthermore, the quality of abstracts and titles was crucial for us, mainly because of the
tremendous amount of papers and not always the title or abstracts provided a sufficient
amount of information. Privacy-Preserving NLP is not a mature and clearly defined term;
therefore, it might happen that some papers weren’t inspected because the required vital
words weren’t used. Thus, they were not detected by the search engines of the electronic data
sources. Another drawback was that not all electronic data sources did provide the optimal
search functionalities like filtering of keywords in a particular part of the document. This
lead to results that included the keywords but the topic covered in the document varied from
our topic significantly. Subsequently, the methodology left out some important papers that
are relevant to the topic. However, it would’ve been possible to find those papers with an
extended search query that would have led to an even more enormous amount of papers to
go through what would not be realistic in the given amount of time. Some examples for not
found papers from the PrivateNLP Workshop [254] have the following titles:

* On Log-Loss Scores and (No) Privacy [255]

A Differentially Private Text Perturbation Method Using Regularized Mahalanobis
Metric [56]

Identifying and Classifying Third-party Entities in Natural Language Privacy Policies
[52]

Surfacing Privacy Settings Using Semantic Matching [54]

Differentially Private Language Models Benefit from Public Pre-training [55]
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7. Conclusion and Future Work

In this chapter, we will conclude the thesis and delineate possible future work.

7.1. Conclusion

All in all, we asked ourselves which privacy-related challenges exist in Natural Language
Processing. To answer this question, we conducted a systematic mapping study to investigate
the literature addressing privacy preservation and natural language processing. We included
431 publications into our mapping study and realized that 304 and 127 publications have
a different interpretation of privacy and NLP. 304 of them saw NLP as a privacy enabler
that faces different challenges than NLP as a privacy threat. We were curious about the
use cases and privacy issues those two interpretations contain and which methods and
concepts were applied. In the end, we used five major NLP related privacy threats partially
inspired by Pan, Carlini and Koppel [8, 239, 9] and 14 privacy-related challenges partially
inspired by the paper by [146] Boukharrou, Chaouche, and Mahdjar within our selected
literature. Through mappings of the use case categories on the privacy-related challenges,
we gained a better understanding of the challenges and their environment. The second
question we attempted to answer was addressing the solutions which the literature proposes
to solve the privacy-related challenges and the possibility of categorizing them. We applied
the categories suggested by Dilmegani [101] for our solutions for NLP privacy issues and
applied Petersen’s keywording approach [11] to extract the categories that describe privacy
issue solution approaches supported by NLP. To see the potential of the different solution
approaches for NLP related privacy issues or NLP as a privacy enabler, we mapped the
privacy issues on the solutions to also gain a better understanding of their applicability and
in which scenario they are used. In the end, we reported our findings and observations to
provide an overview of the research field of Privacy-Preserving Natural Language Processing
and its challenges and solutions. With this overview, we proposed different research activities
and in which direction the research field might head.

7.2. Future Work

We realized that privacy preservation techniques were developed frequently during the
mapping study or that some were reapplied. It would be interesting to investigate if there is
a trend or if some tools are more used than others and why that is the case. Furthermore,
our systematic mapping study delivers an overview for researchers that are interested in the
topic of privacy preservation and NLP. This provides the opportunity to conduct systematic
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7. Conclusion and Future Work

literature reviews on one of the top categories identified during this thesis. This is a superficial
analysis of a significantly more critical research field that can be extended. One example is to
inspect further the applied NLP concepts in the context of privacy. Our research proves that
the intersection between privacy and NLP gains more and more interest every year.
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A. General Addenda

A.1. Work Sheets containing the analysis of the top categories

A.1.1. NLP as a Privacy Enabler Analysis Sheet
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Document Title Authors Abstract Year Source Generalized Dom{ Generalized Data Category |(RQ1)Classification of Use Case |Generalized Privacy Issue(F Generalized Privacy Issue § Generalized Category of Ap NLP Method

QTIP: multi-agent NLP and privacy arc V. Keselj; D. Jutl{ We present a generic natural| 2005 |IEEE General complex sensitive information | Browsing in a private manner Profiling Designing a multi-agent archi| Morphological Analysis Rule based

The Effects of OCR Error on the Extra| Kazem TaghvaR| OCR error has been shown r{ 2006 | Springer Other complex sensitive information | protecting sensitive Information in u Sensitive Information in unstr{ Overview of the current state | Semantic Analysis & Morphol| Rule based & Statistical
Theoretical considerations of ethics in| Suominen, H; Le This paper discusses theoret| 2006 | Web of Science Medicine patient health information (PHI Mining according to privacy policies| Secondary use of unstructurel Suggestion of security and pr| Semantic Analysis Rule based & Statistical & N
Evaluating the state-of-the-art in autor] Uzuner, O; Luo, | To facilitate and survey studig 2007 | Web of Science Medicine patient health information (PHI protecting patient privacy in unstrud Disclosure of sensitive Data | De-identification Semantic Analysis Rule based & Statistical
Reconciling privacy policies and regul{ Krachina, O; Rag How well the privacy policy f 2007 | Web of Science Law Privacy Policies Ease the automation process of priy Compliance with Requiremen| Ontological semantics perspq Semantic Analysis Statistical

Privacy and Artificial Agents, or, Is God Chopra, S; Whitd We investigate legal and phil 2007 | Web of Science Law User Generated Content (UG( protecting sensitive Information in ul Profiling Suggestion of security and pr| Semantic Analysis & Morpholf Rule based & Statistical & NN
Distributed Latent Dirichlet allocation f{ H. Wang; Z. Li; Y The paper introduces the mo 2008 |IEEE General complex sensitive information | Mining according to privacy policies| Sensitive Information in unstr{ Semantic similarity based on | Semantic Analysis Statistical

Finding Defects in Natural Language (J. H. Weber-Jahi Large-scale software system 2009 |IEEE Law Privacy Policies Definition of Privacy Requirements | Compliance with Requiremen Generation of Artefacts baseqd Semantic Analysis & Morphol| Rule based

Accurate Synthetic Generation of Rea| Peter ChristenAd A large proportion of the mas| 2009 | Springer General Synthetic Data Generation Privacy Preserving Information Sha| Data Linkage Generation of Synthetic Data| Morphological Analysis Rule based

Voice convergin: Speaker de-identificd Q. Jin; A. R. Toth Speaker identification might 2009 |IEEE General Speech Data Privacy Preserving Information Shafldentification Speech De-Identification Speech Processing Statistical

A System for De-identifying Medical M| A. Benton; S. Hil| There are millions of public p| 2010|IEEE Medicine User Generated Content (UG( Protecting Sensitive Information on |Secondary use of unstructurel De-identification Semantic Analysis & Morphol| Statistical

Detecting Revelation of Private Inform| N. Watanabe; H.| Online social networks are bg 2010|IEEE Social Network User Generated Content (UG( Protecting Sensitive Information on |Unintended data disclosure |Detecting privacy-sensitive in| Morphological Analysis Statistical

Data Leak Prevention through Named| J. M. Gémez-Hid The rise of the social web ha 2010|IEEE Social Network User Generated Content (UG( Protecting Sensitive Information on |Unintended data disclosure | Detecting privacy-sensitive in| Semantic Analysis Rule based & Statistical & NI
Privacy Domain-Specific Ontology Buil L. Cai; C. Lu; C. | With the rapid development d 2010|IEEE General complex sensitive information | Privacy Preserving Information Sha| Profiling Ontology build for privacy Semantic Analysis Statistical

A Notation for Policies Using Feature { Fujita, K; Tsukad| New security and privacy enH 2011|Web of Science Law Privacy Policies Automated and Flexible Rule Enfor¢ Complexity of Privacy Policiej Automated Access Control bd Morphological Analysis Rule based

Privacy Measures for Free Text Docur] Ligiang GengYor| Privacy compliance for free t 2011|Springer Medicine patient health information (PHI Measuring the Compliance of apps | Secondary use of unstructurel Automated Compliance Chec Semantic Analysis Rule based

Towards Natural-Language Understan Papanikolaou, N| In this paper we survey existi 2011|Web of Science Law Privacy Policies Automated and Flexible Rule Enfor¢ Compliance with Requiremen Automatic policy enforcemen{ Semantic Analysis & Morphol| Rule based

Unlocking data for clinical research—th Ganslandt, Thon| Objective: Data from clinical 2011|Google Scholar Medicine patient health information (PH| Privacy Preserving Information Sha| Secondary use of unstructurel De-identification Semantic Analysis Rule based

On the Declassification of Confidential Abril, D; Navarro| We introduce the anonymiza 2011|Web of Science General complex sensitive information | protecting sensitive Information in u Sensitive Information in unstr{ De-identification Semantic Analysis Statistical
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A. General Addenda

A.2. Detailed Category Tables with Aggregation Mapping

A.2.1. Privacy Issue Solutions for NLP as a Privacy Enabler

This list is taken from the “Privacy Issue Solution” column, contained by the work sheet
located in subsection A.1.1.
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Generalized Privacy Issue Solution (RQ2)
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Automated Compliance Checker

Automated Essay Scoring

Automated Privacy Assessment of health Related Alexa Application

Automated Privacy Policy Classification

Automated Privacy Policy Coverage Check with Sequence Classification Models
Automated Rewriting

Automatic Analysis of Privacy Policies

Automatic Anonymization of Text Posts
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Designing a scheme for a privacy preserving text analysis
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Designing a tailor-made data annonymity approach

Designing a task-independent privacy-respecting data crowdsourcing framework
Designing a text perturbation mechanism for a privacy preserving text analysis
Designing A User-Centric Privacy-Disclosure Detection Framework

Designing a web search engine side to generate privacy-preserving user profiles
Designing an Inclusive Financial Privacy Index

Designing Secure Views for privacy preserving data analysis

Desinging a system that supports privacy preserving data publication of network secu
Detecting privacy-sensitive information / activities

Detection of Data Privacy Violations

Detection of Inconsistencies within Privacy Policies

Detection of Locations without user involvement

Detection of Personal Health Information in Peer-to-Peer File-Sharing Networks
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Automation

Code-based Analysis

Collect annotated corpus
De-identification

Demonstration of Threats
Designing

Detection

23

17
74

27

38



Detection of potential pitfalls in the privacy policies of companies on the We

Detection of Privacy Breaches in Physican Reviews
Detection of Privacy Sensitive Conditions in C-CDAs

Detection of the Correlation between User Reviews and Privacy Issues

Detection of vagueness

Encryption based on Events

Encryption-based search system mitigating file-Injection Attacks
Generation of Artefacts based on Privacy Policy Analysis
Generation of Synthetic Data

Information Extraction from Emails

Information Extraction from Health Records

Information Extraction from large-scale unstructured textual data
Information Extraction from nursing documents

Information Extraction from privacy policies

Information Extraction if information is harboured by a second party
Information Extraction out of Privacy Policies with Word Embeddings
Mapping of Ambiguity on a score board

Mapping of Description-to-permission Fidelity on a scale

Mapping of Privacy Policies to Privacy Issues

Mapping Privacy Policies to Contextual Integrity (Cl) with Q&A
Mapping Privacy Policies to GDPR

Mapping Privacy Policy Content to selected Dictionary
Ontological semantics perspective for checking Privacy Policies
Ontology build for privacy

Ontology used for transparency in Privacy Policies
Ontology-Enabled Access Control and Privacy Recommendations

Overview of algorithms and tools for sharing data in a privacy-preserving manner
Overview of Challenges and applied methods for protection of personal health inform:
Overview of challenges in detecting privacy revealing information in unstructured text

Overview of Challenges of omission, context and multilingualism

Overview of challenges of working with personal and particularly sensitive data in pra
Overview of existing dialogue system vulnerabilities in security and privacy.

Overview of techniques for privacy preserving data linkage

Overview of the current state of the legal regulations and analyse different data protec

Overview over the research field
Semantic analysis for privacy preserving peer feedback

Semantic Analysis of social media forensic analysis for preventive policing of online ar
Semantic correlations in document sanitization to Minimizing risk disclosure

Semantic features using word embeddings for classification
Semantic Framework for the Analysis of Privacy Policies
Semantic Incompleteness Detection in Privacy Policy Goals
Semantic Inference from Privacy Policies

Semantic Microaggregation for Anonymization of query logs to preserve utility

Semantic Model Creation based on Privacy Policies
Semantic Modeling of language vagueness

Semantic open source stack

Semantic Similarities Tool Comparison

Semantic similarity based on clustering and k-annonymity
Semantic-based text pertubation approach
Semantic-centered Rules

Semantics of Rules Mining

Speech De-ldentification

Suggestion of security and privacy requirements
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Encryption based Solution

Generation

Infromation Extraction

Mapping

Ontology based Solutions

Overviews

Semantic Solutions

Speech de-identification
Suggestions

22

26
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Suggestion of security and privacy requirements by involving users 1
Suggestion of security and privacy requirements for text mining 3

Grand Total 304



A. General Addenda

A.2.2. Privacy Issue Solutions for NLP as a Privacy Threat

This list is taken from the “Use Cases” column, contained by the work sheet located in
subsection A.1.2.
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Model Training without Sharing Data

Classification on encrypted Data

Classification without Data Disclosure

Investigating the Impact of Collaborative Deep Learning on Privi
Investigating the Impact of NLP on Privacy

Investigating the Impact of Pre-trained Word Embeddings on NN
Investigating the Impact of Word Embeddings on Privacy

Model Training without Sharing Data

Privacy-Utility-Trade-off for Neural Text Representations
Privacy-Utility-Trade-off for Training Data
Privacy-Utility-Trade-off for Word Embeddings

Private Communication

Similarity detection without Data Exposure

Speech Characteristics Obfuscation in a dynamic manner
Speech Communication without Disclosure of all Voice Features
Speech Emotion Recognition without Disclosure of all Voice Fee
Speech Processing without Disclosure of all Voice Features
Speech Recognition without Disclosure of all Voice Features
Speech Transcription without Disclosure of Acoustic Features
Speech Verification without Disclosure of all Voice Features
Speech Watermarking

Storing and Searching Data without Data Exposure
Summarization without Document Disclosure
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Grand Total

126

Classification without Data Disclosure

Investigating the Impact of NLP related Concept on Privacy

Model Training without Sharing Data
Privacy-Utility-Trade-off for NLP related Concept

Private Communication
Similarity detection without Data Exposure
Speech related Service without complete Voice Feature Discle

Storing and Searching Data without Data Exposure
Summarization without Document Disclosure

26
20

42



A. General Addenda

A.3. Figures for Mapping Results

A.3.1. Use Case Classification for NLP as a Privacy Treat

These values were taken from the work sheet located in subsection A.1.2.
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Speech Emotion Recognition without Disclosure of all Voice
Speech Processing without Disclosure of all Voice Features
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Speech Transcription without Disclosure of Acoustic Features
Speech Verification without Disclosure of all Voice Features
Speech Watermarking

Storing and Searching Data without Data Exposure

Summarization without Document Disclosure
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