Report on the Tycoon-2 Programming Language
Version 1.0
Draft, Do not Copy or Distribute

Andreas Gawecki, Axel Wienberg
© Higher-Order GmbH, Hamburg.

All rights reserved.

February 6, 1998

Contents

Tycoon Language Rationale

Lexical Entities

2.1 Literal Constants
2.1.1 Numbers e
2.1.2 Char . ..o
213 String ..o
2.1.4 Symbol

2.2 ldentifiers

2.3 ReservedWords e

2.4 Documentation Strings e

2.5 SingleLineComments

2.6 OtherTokens

Classes

3.1 Method Definitions Lo

3.2 SlotDefinitions

3.3 Private Slotsand Methods oo oo

Types

Values

5.1 Messages e
5.1.1 Standard Dot Notation
5.1.2 AssignmentMessages
5.1.3 Binary Messages
5.1.4 Lazy Binary Messages
5.1.5 Unary Prefix Messages
5.1.6 Mapping Messages

5.2 Llocal Variables

53 Sequences

5.4 FunctionObjects

5.5 Array Constructors

6 Proposed Extensions

6.1 Pre- and Postconditions
6.2 Packages
6.3 Inner Classes e

7 System Library Library Examples

7.1 What about nil, true and false?
7.2 Control Structures e
7.2.1 ObjectProtocol
7.2.2 BooleanProtocol
7.2.3 Loopsand Conditionals L.
7.2.4 Safe Downcast
7.2.5 ExceptionHandling. L.
7.3 Arithmetic e
7.4 Stringsand Symbolso Lo
75 Output. ..o L e

8 EBNF Syntax

9 Changes from Tycoon Version 0.9 to Version 1.0
9.1 SyntacticChanges.
9.2 Semantic Changes
9.3 Standard Library Changes Lo o

18
18
19
19

1 Tycoon Language Rationale

Tycoon is a programming environment for the development of persistent distributed systems
which provide customer-oriented information services in open environments.

Tycoon is a pure object-oriented language with classes and inductively defined subtyping
rules. Tycoon supports the classical object model where objects are viewed as abstract
data types encapsulating both state and behaviour. Method dispatch is based solely on the
receiver's class. Tycoon

> is equipped with powerful type abstraction mechanisms like bounded and F-bounded
type parameterization and run-time type-discrimination,

> has rich subtyping rules (covariant Self typing, higher-order subtyping)

> supports multiple inheritance as a way to easily modify the behaviour of objects using
small packages of behaviour (called mixins in some other object-oriented languages),

> is higher-order with statically-scoped functions as first-class objects,
> provides orthogonal persistence for data, code and threads,
> provides orthogonal mobility across platforms for data, code and threads

> minimizes built-in language functionality in favor of flexible system add-ons.

To take full advantage of object-oriented software construction, Tycoon is a pure object-
oriented language in the sense that every data entity is an object and all kinds of computa-
tions are expressed as (strongly typed) patterns of passing messages:

> Primitive control structures like conditionals (if), loops (while, for) and exception han-
dling (try, catch) are not built into the language, but are implemented by classes and
methods in the standard system library.

> Even low-level operations like integer arithmetic, instance variable access, and array
indexing involve message sends. There is a subtype or 'is a' relationship between built-
in value objects (e.g. Int, Long, Char, Real, Bool) and their abstract superclasses (e.g.
Integer, Number, Object).

> (Higher-order) functions are objects which understand 'evaluate-yourself' messages.

> Classes are also first class objects that understand messages, e.g.to create and initialize
their instances. This naturally leads to the concept of metaclasses.

The pure object-oriented language model leads to lean language semantics and inspires a
highly object-oriented programming style which makes frequent use of fine-grained abstrac-
tions. It should be noted that modern compiler technology eliminates most of the overhead
traditionally associated with this approach. Thus, Tycoon encourages programmers to factor
code into small, reusable components.

The Tycoon language is strongly and statically typed in the sense that no operation will ever
be invoked on an object that does not support it, i.e. errors like 'message not understood'
cannot occur at run time, provided the Tycoon type checker is consulted before program

execution (a notable exception is a message sent with the builtin perform method which al-
lows messages to be sent with a dynamically computed message selector). Tycoon programs
may be executed without prior type checking if rapid prototyping is desired.

Several conventional object models couple the implementation of an object with its type
by identifying classes with types. In these models, an object of a certain class cannot be
used in a context where another class is required if there is no inheritance relationship
between these classes, even though both classes may implement the same interface. Tycoon
has adopted a more expressive type system based on conformance. Intuitively, an object
conforms to a type when it supports at least the operations required by the type. That is,
Tycoon views types as (unordered) sets of method signatures. The additional flexibility of
conformance-based typing becomes especially useful when integrating external services in
distributed systems.

Similar to CLOS, Tycoon supports multiple inheritance by an ordered specification of multi-
ple superclasses within a class declaration. Possible conflicts are resolved by a linearization
of the inheritance tree performed by a topological sort on the superclass lattice. Inheriting
from the same class more than once has no effect: Tycoon has no repeated inheritance as
in Eiffel or C++.

Tycoon is a reflective and bootstrapped system, i.e. its language processors and develop-
ment tools are accessible (in a controlled and type-safe manner) to Tycoon applications and
these core components are implemented in Tycoon itself.

2 Lexical Entities

Tycoon source code consists of characters in the I1SO Latin-1 character set. The source is
parsed as a sequence of tokens. At each point, the longest matching token is accepted (so
the inputhello is interpreted as one token, even though every prefix of hello is also a valid
token). Except for separating tokens, intervening whitespace and single line comments are
ignored.

2.1 Literal Constants

Several kinds of immutable objects can be specified as literal constants in the source text.
These are numbers, characters, strings and symbols. The syntax used to denote these con-
stants is described in the following sections.

2.1.1 Numbers

Numbers can be distinguished into integers, either 32 or 64 bit wide, called Int and Long
respectively, and floating point numbers called Real. All numbers are optionally preceded
by a negative sign. To avoid confusion with the binary subtraction operator (minus), it may
be necessary to enclose negative number literals in parenthesis.

Int

Instances of the class Int represent 32 bit two's complement integer numbers. Constants can
be written in decimal or hexadecimal notation. Decimal numbers consist of a sequence of

4

decimal digits. Hexadecimal numbers are introduced by the sequence 0x and may consist
of decimal digits and the letters a to f in upper or lower case. Constants that cannot be
represented as an Int result in a compiler error.

123
Ooxff
0x5C5C5C5C

Long

An instance of the class Long represents a 64 bit two's complement integer number. Long
literals have an upper case L appended, otherwise their syntax is identical to Int literals.

123L
Oxffeel
0x5C5C5C5C5C5C5C5CL

Real

An instance of the class Real represents an IEEE double precision floating point number. One
or more digits are optionally followed by a dot and one or more further digits, optionally
followed by the exponent. The exponent consists of the letter E in upper or lower case,
followed by an optional sign and one or more digits. Either the dot part or the exponent
must be present, lest the number be interpreted as an integer. Note that at least one digit is
required before and after the dot.

In EBNF, the syntax is as follows:
Digit ::= 707...79’
Digits ::= Digit {Digit};

Real ::= Digits *.” Digits
| Digits [*.? Digits 1 (’E’|’e?) [’+?]?-?]1 Digits

Examples:

0.0
1E20
123.456e+77

Counter-examples:

0. ; parsed as integer 0 followed by dot
.0 ; parsed as dot followed by integer zero
1.e10 ; parsed as integer 1, dot, identifier ’el0’: a message send

2.1.2 Char

Tycoon interprets 8 bit character values according to the ISO Latin-1 character set and en-
coding. Therefore, the Latin-1 mapping of character symbols to 8 bit unsigned integer values

Escape | ASCII Code Character

\t 7 Horizontal Tab

\n 10 Linefeed (Newline)
\f 11 Form Feed

\r 13 Carriage Return

\’ 39 Single Quote

\" 34 Double Quote

\\ 92 Backslash

\ddd | ddd decimal

\xhh | hh hexadecimal

Table 1: Figure 2.1.2: Character Escape Codes

determines the semantics of character comparisons using the '<', '>', '<=', '>=' binary mes-
sages (see section 5.1.3, Binary Messages). Future Tycoon versions are expected to support
the Unicode character set and encoding which is a superset of ISO Latin-1.

Figure 2.1.2 shows all recognized escape sequences. Any other characters following a back-
slash result in a syntax error.

Note: In difference to C, no fewer than three decimal digits or two hexadecimal digits are
allowed.

Examples:
’a’ glyph
’\069° decimal
’\Oxfe’ hex
’\n’ escape character: newline
P\ escape character: single quote

2.1.3 String

A String is an immutable sequence of characters. A string literal is enclosed in double
quotes. String literals use the same escape sequences as character literals. The order de-
fined on Strings is induced by the order on characters by lexicographic extension.

String literals may not exceed a single source line. An embedded escape sequence (‘'\n')
may be used for multi-line string literals:

"Murkel"
"Dear Mr. Foobar,\n\n\tWelcome to the world of \"Tycoon\""
"\x00\x41\x78\x65\x6c"

Note: There are no special terminator characters or size limits.

Since the class String does not export any mutator methods, string literals are immutable and
cannot be modified accidentally. Implementations are allowed to share string literal objects
from different classes and methods.

2.1.4 Symbol

A Symbol is similar to a String in that it is an immutable sequence of characters, but in each
store there is at most one object of class Symbol for each distinct sequence of characters.
Thus, if two symbols represent the same character sequence, they are actually the same
object. This makes comparing symbols very efficient.

Symbols are denoted as an identifier or a String literal preceded by a hash mark ('#").

#murkel
#"murkel II"

2.2 Identifiers

The set of allowed characters within an identifier includes the upper case letters 'A'-'Z',

the lower case letters 'a'-'z', the digits '0'-'9', and the underscore character '_'. The first
character of an identifier must not be a digit. Identifiers are case sensitive.

2.3 Reserved Words
The following words serve a special syntactic purpose and are not interpreted as identifiers:

builtin class deferred ensure extern fun Fun import interface meta
old package private require self Self super

The words import, interface, and package are reserved for future extensions (see section
6, Proposed Extensions).

2.4 Documentation Strings

Documentation strings are used to attribute explanatory text to class and method definitions.
Documentation strings start with ' (*' and end with '*)'. Their content is not transformed in
any way. Documentation strings can not be nested.

2.5 Single Line Comments

Within method bodies, the Tycoon code may be annotated with single line comments.
Single line comments are treated as whitespace by the grammar. A single line comment
starts with a semicolon and ends at the next end of line:

m(a :A, b :B) :C

{
blib ; we do this because...
blurb ; we do that because...
;; we are done.

}

2.6 Other Tokens

The following character sequences are recognized by the Tycoon lexical analyzer as a single
token, respectively:

{301 ()<<=>>==l=====: 1=+ - % /% <<>&& ~ | || '~ <: ., #(

3 Classes

Class declaration start with the reserved word class, followed by the class name, optionally
a list of formal type parameters of the class with their corresponding type bounds, a number
of optional declarations, a set of public slot and method definitions, and optionally a set of
private slot and method definitions:

class C(T1 <:B1, T2 <:B2)

super S1(T2), S2, S3(T1, T2)

(* This is a documentation string
describing faithfully the whole
purpose of this class.

*)

meta CClass(C(T1, T2))

Self <: T1

{

sl :T1
mli(t :T1) :T2
(* This is a documentation string
describing what this method is
supposed to do.
*)
require t.isGood
ensure !'t.isGood

{
sl :=t
s2
}
s2 :T2
m2 :Int deferred
private
_m3(i :Int) :Void { nil }
_s3 :B1

}

For a class C with formal type parameters T1 and T2, the following optional declarations
are permitted:

> The superclass(es), preceded by the reserved word super. In this example: S1(T2),
S2, 83(T1, T2). Default is no superclasses.

> The metaclass, preceded by the word meta. Abstract classes (i.e. classes that cannot be
instantiated) are usually denoted by the metaclass AbstractClass. In this example:
CClass(C(T1, T2)). Default is SimpleConcreteClass(C(T1, T2)).

> The constraint on the Self type. In this example: Self <: T1. Default is Self <:
C(T1, T2).

The reserved word Self denotes the type of instances of the class, including instances of any
subclasses. That is, the Self type denotes the type of any potential receiver of the methods
specified in this class definition. In general, the Self type will be a subtype of the specified
class. This is reflected by the default Self type constraint. However, a different Self type
constraint may be specified explicitly. If actual subclassing occurs, the Tycoon type checker
verifies that the constraint is satisfied. Examples of explicit Self constraints can be found in
the standard system library within classes Ordered and Number.

Method and Slot definitions are surrounded by braces.

3.1 Method Definitions

A method definition begins with the method's signature, optionally followed by a docu-
mentation string, a precondition and a postcondition. A precondition describes the circum-
stances under which the method may be called, i.e. the obligations of the caller. The post-
condition describes the obligations of the callee, i.e. the implemented method. See also
section 6.1, Pre- and Postconditions, for more.

The body of a method consists of a possibly empty sequence of expressions surrounded
by braces (see section 5.3, Sequences). The return value is given by the last element in the
sequence. If the sequence is empty, the body is of type Void, and the value nil is returned.
This is legal only for methods having Void as the declared return type.

Within the body, the reserved word self denotes the receiver of the message. The type of
the receiver self is given by Self (also a reserved word).

3.2 Slot Definitions

For each slot s of type T, the Tycoon compiler generates a pair of getter and setter methods
with the following signatures:

s() :T
"g:="(value :T) :Void

These getter and setter methods are the only means to access or update the slot. Conse-
quently, any slot getter or setter method may be overridden in subclasses. However, the
usual slot access and update notation described in section 5.1.1, Standard Dot Notation,
and section 5.1.2, Assignment Messages, is supported:

; same as self."s"()
s := v ; same as self."s:="(v)

3.3 Private Slots and Methods

The reserved word private indicates that the following slots and methods are private to
the class C and any subclasses of C. This means that only instances of class C or instances

of subclasses of C are allowed to use these slots and methods, or more accurately: The
receiver of messages invoking private methods (including the getter and setter methods of
private slots) must be the reserved word self or super (private message rule). Otherwise, a
runtime exception will be raised. The Tycoon type checker is able to detect such errors at
compile time.

There is one exception to this private message rule: a metaclasses is allowed to send a
message with the selector of a private method to an instance of its instance. In the above
example, a method in class CClass, the metaclass of class C, may access the private slot _s3
of an instance of class C. This is useful for initialization purposes, for example: A new method
in class CClass will want to write its arguments into slots of the newly created instance of
C, so that C's _init method can work with these values.

Any other attempts to send messages with selectors of private methods results in an
DoesNotUnderstand exception being raised at runtime (if we would distinguish between
ordinary DoesNotUnderstand exceptions and PrivateMethodAccess exceptions, say, the
existence of private methods would become observable to other objects, violating encapsu-
lation). The Tycoon type checker detects such errors at compile time.

4 Types

A type is written in one of the following forms:

> An identifier denoting a class or formal type parameter.
T
> A type operator application, consisting of a type identifier (the operator) followed by
a (possibly empty) comma-separated list of type arguments in parenthesis. Any legal
type can be used as a type argument.

Op(T1, T2, T3)

No whitespace is allowed between the operator and the opening parenthesis.

> A function type, consisting of the reserved word Fun followed by a formal parameter
list in parentheses, followed by a colon and a return type. See section 5.4, Function
Objects, for more information.

Fun(nl: T1, n2: T2):T

5 Values

5.1 Messages
5.1.1 Standard Dot Notation

In general, messages are written in dot notation, i.e. receiver expression and message name
(the selector) are separated by a single dot:

10

0. Ilmll

This denotes a message to the object o (the receiver) with selector m. If the selector is a legal
Tycoon identifier (see section 2.2, Identifiers), the surrounding quotes may be omitted, i.e.
the above message may also be written as

o.m

Furthermore, if the selector is a legal Tycoon identifier, the receiver is also optional. The
implied receiver is self, i.e. the receiver of the method in which the message expression
occurs:

m
is equivalent to
self.m

provided m is not locally bound (see section 4.2, Local Variables). The shortcut is not im-
plied if the selector is enclosed in double quotes:

Ilmll

is NOT interpreted as self.m, but as an ordinary string literal.

A message may take an arbitrary number of arguments. These must be surrounded by paren-
theses, and the opening parenthesis must follow the message selector without any interven-
ing whitespace:

o.m(al, ..., an)

Tycoon distinguishes between type and value arguments. Type arguments are preceded by
a colon and may be omitted. If omitted, the Tycoon type checker tries to guess the type
argument. This process is called type inference. Type arguments are never passed around
at runtime. The following message passes two type parameters (Int, Char) and three value
parameters (1, 2, ’c’):

x.foo(:Int, 1, 2, :Char, ’c’)
Arguments are divided into positional and keyword arguments:

> Positional arguments must be separated by comma, and the corresponding formal pa-
rameter of the invoked method is found by counting the number of preceding value
arguments, and for type arguments, the number of type arguments given since the last
value argument (or from the beginning if there are no preceding value arguments). Po-
sitional arguments can be either value or type arguments. Positional value arguments
are always required, i.e. the number of arguments must match the number of formal
parameters.

11

> Following the possibly empty list of positional arguments, any number of keyword
arguments may be given. Keyword arguments are introduced by a keyword, consisting
of an identifier followed by a colon, and give a value to be passed for that keyword.
The corresponding formal parameter is found by searching for a matching keyword
identifier in the formal type parameter list. Keyword arguments are always optional.
No keyword may appear more than once in the argument list.

The same division applies to the formal parameter list. Positional parameter declarations
are separated by commas, and are optionally followed by keyword parameters. The key-
word parameters are separated by their respective keywords, so no commas are used. Each
keyword is followed by the corresponding parameter name. The parameter's type is intro-
duced by another colon. If the parameter name is omitted, the parameter is anonymous and
therefore inaccessible in the method body. An expression computing some default value
may be provided for each keyword parameter, otherwise the parameter will default to nil.
If the method is not implemented in Tycoon (it is deferred or external), the default value
expression only serves documentation purposes.

A method with the signature

foo(pl :P1, p2 :P2
k1: kal :Ki
k2: ka2 :K2) :T

may be implemented as

foo(pl :P1, p2 :P2 ki1: kal :K1 := expril
k2: ka2 :K2) :T
{
; may use pl, p2, kal, and ka2.
; kal defaults to exprl and ka2 to nil.
}

Such a method may be called with the expression

x.foo(vl, v2 k2: v4 ki1: v3)

The number of positional value arguments supplied by the sender must match the number
of positional value parameters specified in the method signature. All keywords given in
the message must be expected by the receiver. If either rule is violated, a WrongSignature
exception is raised at runtime. The Tycoon type checker detects such errors at compile time.

The default value expression of a keyword parameter is evaluated if no matching keyword
argument was supplied by the sender. The scope of the default value expression includes
the receiver denoted by self, and any preceding type and value parameters. Therefore, the
following method declaration is permitted:

m(pl :Int
kl: kal :Int := pl
k2: ka2 :Int := pl+kal) :Int {
ka2

}

12

5.1.2 Assignment Messages

Messages performing some kind of 'assignment' (although this term implies nothing about
the actual implementation of the message) may be written in the form

o.m := arg
Such a message is interpreted as
o."m:="(arg)
As in standard dot notation, the receiver is implied as self, i.e.
m := arg
is equivalent to
self.m := arg

provided m is not locally bound (see section 5.2, Local Variables). By convention, assign-
ment methods have the following signature and postcondition:

"m:="(arg :T) :Void
ensure self.m = arg

where T is the type of the value being assigned.

5.1.3 Binary Messages

Some frequently used messages performing some kind of 'binary operation' (although this
term implies nothing about the actual implementation of the message) may be abbreviated
in the following form:

o m arg
where m is a binary operator, one of:

¥ / %+ - <LK>> <K <K=D>>= === I= l== § ~ |
That is, the expression

X +y
is interpreted as the message

x. """ (y)

13

Operator Standard Library Interpretation
* /% multiplication, division, modulus
+ - addition / concatenation, subtraction
<< >> left shift / output, right shift
< <= > >= comparison
= == |= == | equal, identical, nonequal, nonidentical
& logical/binary and
B logical/binary xor (exclusive or)
| logical/binary or
&& lazy and
I lazy or
= assignment

Table 2: Figure 5.1.3: Operator Precedences

This can be interpreted as a request to the object denoted by x to answer the sum of itself

and the argument object denoted by y.

Figure 5.1.3 summarizes the precedence rules for binary messages, lazy binary messages
(see section 5.1.4, Lazy Binary Messages), and assignment (see section 5.1.2, Assignment

Messages). Operators are listed in decreasing precedence.

Messages on the same line have equal precedence. All operators are left-associative. Note
that precedences are the same as in C++/Java. With the exception of the equality/identity
operators, the same is true for the standard library interpretation (see section 6, Standard

Library Examples). Because of the precedence and associativity rules,

1+2%x3-4
is parsed as

(1 +((2=*3)) -4
which in turn is normalized to

1 . Il+ll(2. LIPSl (3)) . n_n (4)

5.1.4 Lazy Binary Messages

Lazy binary messages are binary messages that do not always evaluate their second operand.

They are normalized in the following way:

p maq
becomes
p-umn({ q })

Where m is one of: && ||

{ q } denotes a function object (see section 5.4, Function Objects). The syntax for lazy

binary messages facilitates short circuit boolean evaluation.

14

Operator | Standard Library Interpretation
! not (logical negation)
~ bitwise negation

Table 3: Figure 5.1.5: Unary Operators

5.1.5 Unary Prefix Messages

There are two unary prefix message, the exclamation mark and the tilde. Unary messages
have higher precedence than binary messages. Normalization resolves

!p'

~ |
to

p.II!II

".IIN n

Again, the standard library interpretation resembles that of C++/Java (see section 6, Standard
Library Examples).

5.1.6 Mapping Messages

Messages performing some kind of 'mapping' (although this term implies nothing about the
actual implementation of the message) may be written in the form

olargl, ..., argn]
which is equivalent to

o."[l"Cargl, ..., argn)
Examples of such messages include function application and array indexing. Note that an
Array object with element type T may be passed as an argument where a function object
(see section 5.4), Function Objects) with a single parameter of type Int and a result type T
is expected. This corresponds to the common interpretation of arrays as a finite mapping of

integer values to some range type T. Since array objects support many more operations than
function objects (e.g. iteration), the reverse is not true.

If the receiving object supports an update of the underlying 'mapping', the form
olargl, ..., argnl := value

is equivalent to
o."[1:="(argl, ..., argn, value)

Examples of such messages include MutableArray and MutableString updates.

15

5.2 Local Variables

Local variables may be declared within the body of a method or function. A variable x with
type T and initial value v may be declared as

x :T :=v
If the type T is omitted as in
X 1:= Vv

the type of x is inferred as the type of the initial value v. If the initial value is omitted, e.g.
with

x :T

the variable x is initialized to nil.

The value of a local variable x may subsequently be changed to a new value w using an
assignment expression of the form

X =W

5.3 Sequences

In Tycoon, it is possible to group a sequence of expressions and local bindings into a single
value expression by enclosing it in parenthesis. The scope of a local binding extends from
the element following the binding to the last element of the sequence. The sequence evalu-
ates to the result of the last expression or binding, and also takes its type. Empty sequences
evaluate to nil and have type Void.

Note that sequences with only one element serve the traditional purpose of resolving prece-
dences between binary operators.

Explicit sequence expressions are most useful with lazy binary messages (see section 5.1.4,
Lazy Binary Messages). Most of the time their use is implicit in function expressions (see
section 5.4, Function Objects) and method definitions (see section 3.1, Method Definitions).

Examples:
ax*x (b + c) ;; precedence resolution
a + (x ::= compute() ;; limit scope of x
X * X)
!seq.isEmpty && (el ::= seq[0] ;; defer evaluation of seq[O0]

predicate[el])

5.4 Function Objects

Function objects are denoted by the reserved word fun, followed by a list of positional
parameters enclosed in parantheses, an optional return type declaration, and a body. Like a
method body, a function body must be enclosed in braces:

16

fun(base :Int, c :Char) :Int { base + c.asInt }
fun(T <: Object, x :T) { x }

If the function return type is omitted, it is inferred from the type of the body. The body
implicitly forms a sequence (see section 5.3, Sequences), so the return value and type is

given by the last element of the body. A function without declared return type and an empty
body has an inferred return type Void, and returns the value nil when called.

The keyword fun and the parameter list may be omitted if the function takes no arguments:
{ blub }
is equivalent to
fun(){ blub }
Function objects support an 'evaluate-yourself' method with the selector " [1". This method
must be supplied with the actual parameters, and it will return the function result. For ex-

ample, the above function objects have methods with the following signatures and bodies:

"[1"(base :Int, ¢ :Char) :Int { base + c.asInt }
"[1"(T <: Object, x :T) :T { x }

Assuming the above functions are denoted by the variables £1 and £2, these functions may
be invoked by the following code sequence:

£f1[13, ’a’]
f2[i]

Recall that this code sequence is equivalent to the following:

f1." [] 11(13’ JaJ)
£2."[1" (1)

The type of a function object may be denoted with the reserved word Fun, followed by a list
of formal parameters enclosed in parenthesis, and a colon followed by the return type. The

example functions above have the following types, respectively:

Fun(base :Int, c :Char):Int
Fun(T <: Object, x :T):T

These notations represent types equivalent to the type defined by a direct subclass of Object
with the single public method

"[1"(base :Int, c :Char):Int deferred
or

"[1"(T <: Object, x :T):T deferred
respectively.

17

5.5 Array Constructors

There is a built-in Array constructor. The expression
#Cell, ..., eln)

creates an Array object with elements obtained by evaluating el7 to eln in order. Since
the class Array does not support any update methods, the resulting array object cannot be
modified.

The array constructor facilitates aggregation without having to count the number of items to
aggregate in the source text, which is often a cumbersome and error-prone task.

6 Proposed Extensions

6.1 Pre- and Postconditions

In Tycoon, each method has an optional precondition and an optional postcondition.

The precondition is an ordinary value expression. It is in scope of the method's arguments,
and is evaluated when the method is called, after default values for keyword parameters
have been computed. If it evaluates to false, a PreconditionFailed exception is raised.

The postcondition is a value expression that may contain old expressions. These serve to
compare the state before and after execution of the method. Syntactically, o1d behaves
like a unary prefix operator. The operands of all o1d expressions occurring in a method's
postcondition are evaluated at method entry, after the precondition has been checked. They
are in the same scope as the precondition. When checking the postcondition, the obtained
results are inserted in place of the 01d expressions. The postcondition is in the same scope as
the precondition, with the addition of an immutable identifier result of the method's result
type, denoting the method's return value. The postcondition is checked after the method
body has been executed. If the postcondition evaluates to false, a PostconditionFailed
exception is raised.

Runtime checking of pre- and postconditions can be disabled using a compiler switch. The
conditions will still be typechecked.

Note that since pre- and postconditions are ordinary Tycoon expressions, they can have side
effects, and do not necessarily terminate. So switching debug mode on or off may alter the
behaviour of your program.

Note also that an o1d expression may not refer to identifiers bound locally inside the post-
condition, because it is evaluated long before the postcondition proper is reached. Phrased
differently, o1d expressions are scoped statically, but fall outside block scoping.

Just like a method's signature and documentation string, pre- and postconditions have to
be written anew at each redefinition of the method. As with documentation strings, the
system neither enforces nor supports a relation to any inherited definitions. However, the
programmer should strive to make the implementation substitutable for all superclasses'
definitions, in that the method's precondition must be equal to or weaker than those of the
superclasses, and the postcondition must be equal or stronger.

18

6.2 Packages

Packages are a mechanism to structure the global name space (containing interfaces and
classes) hierarchically. They allow developers to name their classes without worrying about
possible name conflicts with classes in other packages.

In each store, there is a global tree of packages, with classes as leaves. A class is assigned
to a package by preceding the class definition with a package fullyQualifiedPackageName
statement. A fully qualified package name is a dot-separated list of package names, which
defines a path from the root of the package tree.

The package statement may be followed by an import statement import importList, where
the import list is a comma-separated list of fully qualified package names to be searched
when resolving identifiers. The current package is implicitly added at the beginning of the
list.

A type identifier is defined to be a dot-separated list of identifiers. The first component of
this list is searched for in the import list. If there is more than one match, the compiler gives
an error. The following components of the type identifier denote subpackages, and the last
component denotes the class whose interface is denoted by the type identifier. The compiler
gives an error if any intermediate component does not exist or is not a package, or if the
final component is not a class.

Note that packages can not be used as types (what type should that be?) Note also that
following components are not used to disambiguate the identifier, in symmetry with the
value case below, and in order not to introduce too many dependencies

Value identifiers (or syntactically equivalent, implicit self sends without arguments) are ex-
tended in a similar way. If the value identifier is not bound locally, it is searched for in the
import list as described above. If it is found to denote a package, the identifier has to be the
receiver in a zero-argument message send, the selector of which is interpreted as the name
of a subpackage or of a class contained in the package. In the case of a subpackage, the
process is repeated, otherwise the identifier is resolved as referring to the class object.

If the identifier is neither bound locally nor found in the import list, it is interpreted as a
zero-argument message to self.

In effect, value identifiers referring to classes are defined as dot-separated lists of compo-
nents, starting at some point in the import list and ending at a class, just like type identifiers.

Note: The process of identifer resolution will have to be redone if any path component of
the resolved name is removed, or if a class or package with the name of the first component
is inserted somewhere else in the package hierarchy, or whenever the import list is changed

6.3 Inner Classes

An inner class is a class declared inside the scope of another class. Inner classes have the
following advantages:

> they are allowed to access the private methods (and therefore, also the private slots)
of their lexically enclosing class(es). In most cases, this makes a language mechanism
similar to the C++ friend mechanism obsolete.

19

> they bridge the gap between function objects and instances of ordinary (top-level)
classes. A fun expression is simply a syntactic abbreviation for an anonymous inner
class declaration and a subsequent new message, just as a Fun type is equivalent to
an anonymous interface type.

Example: A Hypothetical Implementation of Sequence::select

select(pred :Fun(e:E):Bool) :Reader(E)

{

}

outer ::= self ; we need a way to access the outer self in inner classes!
class Local
super Reader (E)
meta SimpleConcreteClass(_)
{
isEmpty :Bool
{ pos = outer.size }

read :E
{ let e = outer[pos]
findNext
e}
private
pos :Int
findNext {
pos := pos + 1
if(pos < outer.size then: {
if (!pred[outer[pos]] then: { ; block scoping for pred
findNext
b
b
}
_init {
super._init
pos := -1
findNext
}
}

Local.new

7 System Library Library Examples

The following examples should give a general impression of the look and feel of Tycoon
code. Section 7.2, Control Structures, shows the interaction of keyword parameters and
function objects to produce “add-on” syntax for control structures. Section 7.3, Arithmetic,
shows the use of F-bounded parametric polymorphism and the Self type for typing binary
methods. Section 7.4, Strings and Symbols, gives applications of the various techniques:
optional arguments, typecase, control structures and tail recursive loops. Section 7.5, Out-
put, shows the use of dynamic dispatch to implement a C++-like << operator without static
overloading.

20

7.1 What about nil, true and false?

The 'constants' nil, true and false are not built into the language, but are available in the
standard system library as private, builtin methods in class Object:

class Object
meta AbstractClass

{
private

true :Bool builtin
false :Bool builtin
nil :Nil builtin

}

This way, in every method, you may simply use the identifiers nil, true and false. These
identifiers are interpreted as a message to self according to section 5.1.1, Standard Dot
Notation. Thus, the corresponding methods in class Object are called. Under the hood,
they query the Tycoon system about the nil, true and false objects and simply return
them to the caller. Concrete implementations may restrict the redefinition of these methods
in order to prevent too much confusion.

7.2 Control Structures
7.2.1 Object Protocol
Every object understands the following messages:

class Object
meta AbstractClass

{
"=="(other :0bject) :Bool
(* object identity test *)
builtin
"t1=="(other :0bject) :Bool
(*x object identity test *)
{
! (self == other)
}
"="(other :0bject) :Bool
(* Object equality. Default implementation uses object identity *)
{
self == other
}

"1="(other :0bject) :Bool
(* object identity test *)
{ !'(self = other) }

clazz :Class

(*x answer the receiver’s class object *)
builtin

21

isNil :Bool
{

false

}

isNotNil :Bool
{

true

X

perform(selector :Symbol, arguments :Array(Object)) :0bject
builtin

}

The isNil and isNotNil methods are overridden in class Nil (the class of nil) to answer
true and false, respectively.

7.2.2 Boolean Protocol

Interface and implementation:

class Bool
super Object
meta AbstractClass
{
case(T <: Void
true: :Fun():T
false: :Fun():T) :T
(* used to implement if *)
deferred
"t :Bool deferred
"&" (aBool :Bool) :Bool deferred
"~"(aBool :Bool) :Bool deferred
"|"(aBool :Bool) :Bool deferred
"%&&" (ifTrue :Fun() :Bool) :Bool deferred
"||"(ifFalse :Fun() :Bool) :Bool deferred

class True
super Bool
meta 0ddballClass
{
case(T <: Void
true: ifTrue :Fun():T := { nil }
false: :Fun():T) :T {
ifTrue[]
}
"1 :Bool {
false
}
"&" (aBool :Bool) :Bool {
aBool
}
"~ (aBool :Bool) :Bool {

22

'aBool

}

"|"(aBool :Bool) :Bool {
true

}

"&&" (ifTrue :Fun() :Bool) :Bool {
ifTrue[]

}

"||"(ifFalse :Fun():Bool) :Bool {
true

}

}

class False
super Bool
meta 0ddballClass
{
case(T <: Void
true: :Fun():T
false: ifFalse :Fun():T := { nil }) :T {
ifFalse[]
}
"t :Bool {
true
}
"&" (aBool :Bool) :Bool {
false
}
"~"(aBool :Bool) :Bool {
aBool
}
"|"(aBool :Bool) :Bool {
aBool
}
"&&" (ifTrue :Fun() :Bool) :Bool {
false
}
"||"(ifFalse :Fun():Bool) :Bool {
ifFalse[]
}
}

Due to the special message syntax, logical tests can be written in a style familiar to C++/Java

programmers, even though they can be explained using message passing semantics. An
example:

'x.isNil && (x > bound || aSet.includes(x))

Note that the case message defined here is a variant of the Visitor pattern. The pattern can
be used in similar situations to define a 'poor man's typecase':

class AbstractXYZ
meta AbstractClass
{
case(T <:0bject
ifX: :Fun(x :X):T

23

ifY: :Fun(y :Y):T
ifZ: :Fun(z :Z):T
) :T deferred
}

class X
super AbstractXYZ
{

case(T <:0bject

ifX: :Fun(x :X):T := fun(:X){nil}

ifY: :Fun(y :Y):T := nil
ifZ: :Fun(z :Z):T := nil
) :T
{
ifX[self]
}
}
;5 etc.

7.2.3 Loops and Conditionals
Usage:

if(i.is0dd then: {
out << "odd stuff!"

b

if(i < 10 then: {
out << "less"
} else: {
out << '"greater or equal"

b

i::=0
while({ i<10 } do: {
i = i+l
1))
repeat ({
i=i-1
} until: {1 =013)
for(0 to: 9 do: fun(i:Int) {

b
for(0.0 to: 0.9 step: 0.1 do: fun(r:Real) {

)
Interface and Implementation:

class Object
meta AbstractClass

{

private

24

if (T <: Void, condition :Bool
then: then :Fun():T := { nil }
else: else :Fun():T := { nil }) :T
{
condition.case(true: then false: else)

}

while(condition :Fun() :Bool
do: body :Fun():Void := { }) :Void

{
if (condition[] then: {
body []
while(condition do: body)
1))
}

repeat (statement :Fun():Void := { }
until: terminate :Fun():Bool := { false }) :Void
{
statement []
if(!'terminate[] then: {
repeat (statement until: terminate)

b
¥
for (N <:Number(N), lower :N
to: upper :N := lower
step: step :N := lower.omne
do: body :Fun(i:Int):Void := fun(:Int){}) :Void
{
if(lower <= upper then: {
body[lower]
for(lower+step to: upper step: step do: body)
b
}

}

Note that the if message is just syntactic sugar for the case message defined in class
Boolean.

7.2.4 Safe Downcast
Usage:

typecase(x
case: fun(x :T1) { x.t1 }
else: {
typecase(x
case: fun(x :T2) { x.t2 }
else: {

b
b

25

Interface:

class Object
meta AbstractClass

{
private

typecase(T <:0bject, x :0bject

case: caseHandler :Fun(x :Nil):T := nil
else: defaultHandler :Fun():T := { nil}
) :T
{
}

Note that any function with a single parameter may be passed to the typecase method
(provided it has the right return type) because of contravariant subtyping of method (and,
therefore, function) parameters.

The implementation in the body of the typecase method (code not shown) utilizes the re-
flective capabilities of Tycoon by requesting the argument type from its first actual function
argument (the case: keyword parameter) and performing a dynamic subtype test with the
value parameter x. If the subtype test succeeds, the case: function is invoked. Otherwise,
the else: function is invoked. The precise semantics of dynamic subtype tests will be de-
scribed in a separate document.

7.2.5 Exception Handling
Usage:

try(expr
catch: fun(e :I0Error) {
e.msg.print
}
else: fun(e :Exception) {
e.clazz.name.print

B
Interface and implementation:

class Exception

super Object

meta AbstractClass

{

raise :Nil
(* Nil is the bottom type of Tycoon *)
builtin

}

class Object
meta AbstractClass

26

{

private

try(T <:0bject, E <:Exception, expr :Fun():T
catch: catchHandler :Fun(e :E):T := nil
else: defaultHandler :Fun(e :Exception):T
:= fun(e :Exception) { e.raise }

Concrete exception classes must be subclasses of Exception (otherwise they do not inherit
the raise primitive and, consequently, cannot be thrown at runtime!).

The implementation of the try method (code not shown) uses another private primitive
(builtin) method _try to catch any exceptions which might occur while evaluating expr.
A typecase message is then sent to check whether the type of the exception is a subtype of
the argument of the catchHandler function object. If it is, the catch: function is invoked
with the exception object (by sending it the " [1" message). Otherwise, the defaultHandler
function is invoked with the exception object. If the defaultHandler function is not pro-
vided by the sender, the default implementation re-raises the exception by sending it another
raise message.

7.3 Arithmetic

The numeric class hierarchy uses F-Bounded Self typing to support binary methods in a
type-safe manner:

class Number (F <:Number (F))
super Ordered(F)

Self <: F
meta AbstractClass
{
"t"(x :F) :F deferred
"-"(x :F) :F deferred
"x"(x :F) :F deferred
:F deferred

n/u (X :F)

zero :Self deferred
one :Self deferred
negated :F {

zero - self

}
X

class Integer(F <:Integer(F))
super Number (F)

Self <:F

meta AbstractClass

{

27

"g"(x :F) :F
(* bitwise and *)
deferred

"|"(x :F) :F
(* bitwise or *)
deferred

"~N(x :F) :F
(* bitwise exclusive or *)
deferred

n=~n :F
(* bitwise inversion *)
;; assumes two’s complement representation
negated - one

}

even :Bool {
(self & one) = zero

}
odd :Bool {
leven
}
}

class Int
super Integer(Int)
Self = Int
{
_brand_Int :Void
(* prevent unintentional subtyping with Long *)

{1}

"t"(x :Int) :Int builtin
"-"(x :Int) :Int builtin
"x"(x :Int) :Int builtin

class Long
super Integer(Long)
Self = Long
{
_brand_Long :Void
(* prevent unintentional subtyping with Int *)

{3

"+"(x :Long) :Long builtin
"-"(x :Long) :Long builtin
"x"(x :Long) :Long builtin

28

7.4 Strings and Symbols

class String
super Array(Char), OrderedSequence(Char, String)
meta StringClass

{

"+" (aString :String) :String
(* String concatenation *)
{...2%
"="(x :0bject) :Bool {
self == x
|| typecase(x, fun(s :String) {
;; subclass of string, i.e. String, MutableString or Symbol
stringEqual(s)
} else: {
false
b
}
stringEqual(s :String) :Bool { ... }

locateChar(ch :Char startingAt: i:Int := O before: limit :Int
(x for the indices at which the receiver contains a character
equal to ’ch’, answer the lowest index which
is greater than or equal to ’startingAt’.
answer nil if no such index exists.

*)
{
if(i >= limit then:{ nil } else: {
if(_elementEqual(self[i], ch) then: {
i
} else: {
locateChar(ch startingAt: i+1 before: limit)
b
b
}
locatelLastChar (ch :Char
startingAt: i :Int := 0
before: limit :Int := size) :Int

(* for the indices at which the receiver contains a character
equal to ’ch’, answer the highest index which
is less than ’before’.
answer nil if no such index exists.
*)
{

}

startsWith(other :String) :Bool
(* answer true if ’other’ is a prefix of the receiver,
else answer false
*)
{
size >= other.size
&& subStringEqual(n: other.size at: 0 equals: other)

29

size)

:Int

}
endsWith(other :String) :Bool { ... }

subStringEqual(n: n :Int
at: at :Int
equals: other :String
startingAt: otherAt :Int := 0) :Bool
(* answer true if the n character sequence at..at+n-1 of
the receiver is equal to the n character sequence
otherAt. .otherAt+n-1 of ’other’,
else answer false
arguments for n:, at: and equals: have to be supplied.
*)
require n.isNotNil & at.isNotNil & equals.isNotNil
{
n <=0
|| (self[at] == other[otherAt]
&& subStringEqual(n: n-1 at: at+1
equals: other startingAt: otherAt+1))

class Symbol
super String
meta SymbolClass

{
_brand_Symbol :Void { }

"="(x :0bject) :Bool {
self == x
|| typecase(x case: fun(sym :Symbol) {
;; no need to check since equality is identity
false
} else: {
typecase(x case: fun(s :String) {
;; subtype of string, i.e. String or MutableString
stringEqual(s)
} else: {
false
b
b

7.5 Output
Usage:

tycoon.stdout << "Dear Mr. "<<name<<",\n"
<< " We are very "<<howAreWe<<" to hear about your

<< eventType<< ".\n"

Interface and implementation:

30

class Output
super Writer (Char)
meta AbstractClass

{
"<<"(x :0bject) :0utput
{
x.writeOn(self)
self
}

writeBuffer(s :String start: start :Int := 0
n: n :Int := s.size—start)
deferred

class Writer(E <: Object)
super Object
meta AbstractClass
{
write(e :E)
(* write the given object into the receiver x)
deferred

writeAll(aCollection :Collection(E))

(* write all objects in aCollection into the receiver.
Concrete subclasses may give a more efficient implementation
using double dispatch or typecase. *)

{

aCollection.do(fun(e :E){

write(e)

b

}

flush { }
close { }

class Object
meta AbstractClass
{
writeOn(out :Output)
(* append the pure ’value’ or ’contents’ of the receiver to the given
output stream. this method is called by Output:"<<".
the default implementation uses printOn(), subclasses should override
it appropriately. This is done, for example, by String and Char in order
to strip the quotes.
*)
{
print0On(out)
}

printOn(out :Output)
(* append to the given output stream a textual representation that
describes the receiver. default implementation, subclasses should
override it appropriately.

*)

31

{

className :String := self.clazz.name
out << if(className[0].isVowel then: {"an "} else: {"a "}) << className

}

printString :String
(* To obtain a string from the printed representation of the receiver,
print it on a string and answer the printed subsequence. *)

{

buffer ::= StringBuilderOutput.new(capacity: 10)
printOn(buffer)
buffer.contents

}

print
{
printOn(tycoon. stdout)
}
}

class String ...

{

writeOn(out :Output) {
out.writeBuffer(self)
}

printOn(out :Output) {
out.write(’\"?)
do(fun(ch :Char) {
ch.printEscapeSequence (out)

1))
out.write(’\"?)
}
}

8 EBNF Syntax

For this grammar, we extend the Extended Backus Naur Form further:

{X,}
is a shortcut for
X {°,” X}1
(* Values *)
Value ::=
‘self’
| string | char | Number | symbol

| 2(* Sequence ’)’
| Value BinOp Value

32

| Value LazyBinOp Value

| UnaryOp Value

| ’01d’ Value (x ### only allowed in postconditions *)

| (Valuel’super’) ’.’ Selector [Arguments]

| identifier [Arguments]

| (Valuel|’super’) ’.’ Selector ’:=’ Value

| identifier ’:=’ Value

| Value ’[’ PositionalArguments °1°

| Value *[’ PositionalArguments *1° °:=’ Value

| [*fun’ *(’ Signatures *)’ [*:> Type 1 1 *{’ Sequence ’}’
(* implementation of fun parameters currently restricted to
ValueSignatures *)

| *#C {Value,})’

Sequence ::=
{Value| Binding}

Number ::=

[’-°] (int | long | real)

Selector ::=

identifier | string

Arguments ::=

> (? PositionalArguments KeywordArguments)’
PositionalArguments : :=

{PositionalArgument, }

b

PositionalArgument : :
Value | ?:? Type
KeywordArguments : :
{ Keyword Value }

Keyword ::=

identifier ’:?

Binding ::=
identifier ’:’ [Typel ’:=’ Value (x -> ValueSignature *)
| identifier ’:’ Type

LazyBinOp ::=
)&&) |) | |)

b

BinOp ::=

)=> | == | r1=) | V==
| 150 | 10 | 155

| Iy=> | 1= | 1¢L?

|)y~ | 1 & | :|;

33

| 140 | P I | 7/; |)%;

UnaryOp ::=

110 | dau ?
>

(* Types *)

Type ::=

’Self’

| identifier [>(° { Type,} *)’]
| *Fun’ ’(° Signatures ’)’ ’:’ Type
(* implementation currently restricted to ValueSignatures *)
(* Signatures *)

Signature ::=

ValueSignature

| TypeSignature

ValueSignature ::=

[identifier] ’:’ Type

TypeSignature ::=
identifier ’<:’ Type
| identifier ’=’ Type
Signatures ::=
{Signature, }

MethodSignature : :
Selector [*(° Signatures KeywordSignatures)’ 1 ’:° Type
KeywordSignatures : :=

{ Keyword ValueSignature }

’

(* Classes and Methods *)

Class ::=

’class’ ClassNameDomain

[’super’ {Type,}]

[documentationString]

[SelfSignature 1]

[’meta’ Type]

»{» { MethodDefinition | SlotDefinition }
[’private’

{ MethodDefinition | SlotDefinition } 1 *}’
ClassNameDomain : :=

identifier

| identifier ’(’ {Type,} ’)’

b

34

SelfSignature : :=
’Self’ ’<:’ Type
| ’Self’ ’=’ Type

SlotDefinition : :=
Selector *:’ Type
[documentationString]

MethodDefinition : :
Selector [*(’ Signatures KeywordParameters *)’ 1 *:° Type
[documentationString]

[’require’ Value]

[’ensure’ Value]

MethodBody

KeywordParameters : :=

{ Keyword ValueSignature [’:="> Valuel}

MethodBody : :=

*{? Sequence ’}’

| ’builtin’ [’{’ Sequence ’}’ 1]
| ’deferred’

| ’extern’ ForeignName
ForeignName : :
string

b

When ambiguities between the sign '=' or '+' and the binary operator '-' or '+' arise, the
parser decides in favor of the binary operator. Thus, to return a value of -1 as the last element
of a sequence, you have to put the minus one in parentheses:

{
foo(mumble bar: humble friend: goo)
-1

}

Otherwise, the expression will be interpreted as a subtraction and will presumably result in
a type error.

No whitespace is allowed between a method selector and the opening parenthesis of the
argument list. This is to distinguish a message with arguments from a sequence of a message
without arguments and an expression in parenthesis:

{
foo(-1) ; message foo with argument -1
foo (-1) ; message foo without argument, followed by return value -1

No whitespace is allowed between a type operator and the opening parenthesis of the
argument type list. This is to disambiguate cases like the following:

{

35

x :T

(Array)

9 Changes from Tycoon Version 0.9 to Version 1.0

9.1

Syntactic Changes

The surface syntax of Tycoon has been completely revised. Changes:

>

>

>

introduction of Fun types

removal of whitespace between operators and argument lists

reserved word metaclass changed to meta

removed class invariants

missing method bodies disallowed

comments organized into documentation strings and single-line comments
changed syntax for grouping slots and methods

removed commata between expressions in a sequence

changed syntax for conditional (if or ?:)

removed special syntax for assertions (assert)

changed syntax for local bindings (removed keyword let)

removed special syntax for implications (=>, =>=>)
eager conjunction and disjunction (&, |) have higher precendece than lazy conjunc-
tion and disjunction (&&, | |), as in C++/Java

Syntactic features newly introduced in version 1.0:

>

>

>

keyword arguments
lazy binary operators

added C++/Java operators ~ and ~

A translation tool which automatically converts Tycoon programs from the 0.9 syntax to
1.0 syntax is available at Higher-Order. This tool also converts standard control structures
(see section 9.3, Standard Library Changes). All remaining changes will be reported by the
Tycoon type checker.

36

9.2 Semantic Changes

Assignments no longer return the value they assigned, but return the value nil with static
type Void (actually meaning 'no return value'). This change allows the clean separation of
covariant accessor interfaces from contravariant mutator interfaces.

The introduction of keyword arguments extends the syntax as well as the semantics of Ty-
coon.

9.3 Standard Library Changes

The looping constructs and conditionals have been rewritten using keyword syntax.

The _init Method in Object is no longer declared with return type Self, but with a Void return
type.

37

