
Chair of Software Engineering for Business Information Systems (sebis)
Faculty of Informatics
Technische Universität München
wwwmatthes.in.tum.de

Analysis of the Solidity Compiler for Smart Contract
Redundancy Detection
Jonas Gebele, January 11, 2020, Final Presentation Bachelor Thesis

Outline

1. Motivation and Background Information

2. Problem Statement

3. Research Questions

3.1. What are the internal workings of the bytecode-optimizers in the Solidity compiler?

3.2. How does enabling the optimization in the compiler-instruction modify the bytecode

in general?

3.3. How many bytecodes and therefore smart-contracts are redundant regarding their

functionality due to different or missing optimization?

4. Conclusion and Future Work

Motivation and Background Information

Solidity Code
(sourceFile.sol)

EVM (Deployment)
Bytecode

solc - Solidity Compiler

$ solc --optimize --bin sourceFile.sol

Motivation and Background Information

Contract creation transaction

Deployment workflow of a smart contract

> src = web3.eth.accounts[0];
> ourContractDeploymentBytecode = “0x608060405260016000553480156014…”

> web3.eth.sendTransaction ({
from: src,
data: ourContractDeploymentBytecode,
gas: 113558,
gasPrice: 200000000000

})

EVM executes
Deployment

Bytecode and
creates Runtime

Bytecode

Runtime
Bytecode

Solidity Compiler
compiles Solidity
source-code to

Deployment Bytecode

Deployment
Bytecode

Motivation and Background Information

$ solc --optimize-runs=200 --bin sourceFile.solv

Gas-
Optimization for

Deployment
(low number)

Gas-
Optimization
for Runtime

(high number)

Bytecode
Bytecode as

short as
possible

Bytecode with
cheapest

instruction-costs

optimize-runs=1 optimize-runs=999999 default: optimize-runs=200

Outline

1. Motivation and Background Information

2. Problem Statement

3. Research Questions

3.1. What are the internal workings of the bytecode-optimizers in the Solidity compiler?

3.2. How does enabling the optimization in the compiler-instruction modify the bytecode

in general?

3.3. How many bytecodes and therefore smart-contracts are redundant regarding their

functionality due to different or missing optimization?

4. Conclusion and Future Work

Many studies in bytecode-analysis work with sets of unique smart contracts
Missing inclusion of the optimization process of the compiler

How many EVM bytecodes are redundant due to different or missing
optimization?

Problem Statement

Outline

1. Motivation and Background Information

2. Problem Statement

3. Research Questions

3.1. What are the internal workings of the bytecode-optimizers in the Solidity compiler?

3.2. How does enabling the optimization in the compiler-instruction modify the bytecode

in general?

3.3. How many bytecodes and therefore smart-contracts are redundant regarding their

functionality due to different or missing optimization?

4. Conclusion and Future Work

Research Questions

R1: What are the internal workings of the bytecode-optimizers in the Solidity
compiler?

R2: How does enabling the optimization in the compiler-instruction modify the
bytecode in general?

R3: How many bytecodes and therefore smart-contracts are redundant regarding
their functionality due to different or missing optimization?

What are the internal workings of the bytecode-optimizers in
the Solidity compiler?

RQ1.1 Of which sub-optimizers does the bytecode-optimizer of the
Solidity compiler consist and what are their functionalities?

RQ1.2 How do the compilation-parameters affect the
optimization-process of the compiler and the resulting bytecode?

Research question 1

JumpDest
Remover

Peep-
hole
Optm.

Dupl.
Optm.

Control
-Flow
Optim.

Const.
Optm.

$ solc --optimize-runs=200 --bin sourceFile.solv

How does enabling the optimization in the compiler-instruction
modify the bytecode in general?

RQ2.1 Which bytecode-sections get optimized in what way of the
compilation-process?

Research question 2

How does enabling the optimization in the compiler-instruction
modify the bytecode in general?

RQ2.2 Which opcode-patterns and bytecode-methods can be simplified through setting optimization
in the compiler-instruction?

Research question 2

Dynamic Calculations on the stack instead of
hardcoding constants

How many bytecodes and therefore smart-contracts are
redundant regarding their functionality due to different or
missing optimization?

RQ3.1 What design could a re-optimizer have and what restrictions on the re-optimization are there?

Research question 3

Solidity Code EVM Bytecode

solc - Solidity
compiler Re-optimizer

Re-optimized EVM
Bytecode

How many bytecodes and therefore smart-contracts are
redundant regarding their functionality due to different or
missing optimization?

RQ3.1 What is a possible design of such a re-optimizer?

Research question 3

EVM Bytecode Re-optimized EVM
Bytecode

Re-optimizer

How many bytecodes and therefore smart-contracts are
redundant regarding their functionality due to different or
missing optimization?

RQ3.2 Which restrictions does such an re-optimization have?

Research question 3

Technical restrictions Conceptual restrictions

EVM Bytecode

Yul Optimizer

Bugfixes and
modifications in the
Solidity compiler

Runtime bytecodes

Standard optimization

Outline

1. Motivation and Background Information

2. Problem Statement

3. Research Questions

3.1. What are the internal workings of the bytecode-optimizers in the Solidity compiler?

3.2. How does enabling the optimization in the compiler-instruction modify the bytecode

in general?

3.3. How many bytecodes and therefore smart-contracts are redundant regarding their

functionality due to different or missing optimization?

4. Conclusion and Future Work

Conclusion and Future Work

First comprehensive description of the inner workings of the Solidity optimizer

Insights are already outdated with the introduction of the Yul-optimizer
➢ Analysis of deployed smart-contracts in the past

Compilation-parameters affect the optimization and the resulting bytecode

Possible design of an bytecode re-optimizer

Conclusion

Conclusion and Future Work

Actual implementation of such an re-optimizer
➢ use the re-optimization in combination with statistical methods to determine the

redundancy of smart-contracts deployed on Ethereum

Integration of the Yul-optimizer

Future Work

Technische Universität München
Faculty of Informatics
Chair of Software Engineering for
Business Information Systems

Boltzmannstraße 3
85748 Garching bei München

Jonas Gebele

jonas.gebele@in.tum.de

