Towards a Unified Model of
Untyped Object Stores:
Experience with the Tycoon Store Protocol

Florian Matthes, Rainer Miiller, Joachim W. Schmidt
Universitdt Hamburg
Vogt-Kolln Strafle 30
D-22527 Hamburg, Germany
matthes,mueller,J Schmidt@informatik.uni-hamburg.de

Abstract

The Tycoon Store Protocol (TSP) specifies a clean interface
between the frontend and the backend of fully integrated
persistent environments. In contrast to high-level relational
or object-oriented database languages, TSP is based on a low
level, untyped, but highly flexible tagged store model that
is particularly well-suited for the implementation of higher-
order persistent polymorphic languages. We describe the
TSP operations in some detail and give insight into TSP’s
design rationale. We also report on the existing set of TSP-
compliant backends including TSP adaptors to commercial
object stores. A TSP client can choose dynamically between
these backends and it is possible to exchange complex object
graphs between all TSP-compliant stores via a platform-
independent external data representation.

1 Introduction and Motivation

Virtually all systems that have to work with large-scale per-
sistent data have a system architecture where there is a clean
separation between a frontend performing data manipula-
tion and visualization and a backend responsible for reliable
persistent bulk data storage. Since actions in the frontend
trigger data access operations performed by the backend,
this separation naturally leads to a client-server architec-
ture, where a store protocol defines possible interactions be-
tween a client program and a database server.

For standard database applications like business appli-
cations, SQL is the store protocol of choice: SQL provides
standardized high-level, application-oriented store operations,
it is available on a wide range of platforms, and there are
standardized mechanisms to perform the frontend to back-
end binding (static language bindings via preprocessors, dy-
namic SQL invocation via an application programming in-
terface like ODBC). The ODMG standard [Cat94a, Cat94b]
and the ISO STEP standards [[SO92] define similar high-
level store protocols to access object-oriented databases and
repositories of construction data, respectively.

Unfortunately, these commercially well-supported store
protocols turn out to be of little help in the construction of

fully integrated persistent programming environments since
their hard-wired high-level data models do not match the
flexibility requirements of persistent languages (see [MMS92,
Miil91] for a more detailed discussion):

e Full persistence abstraction [AB87] requires a uniform,
efficient element-oriented access to persistent and non-
persistent data, code and threads [MS95] which leads
to an overly expensive two-level store management if
implemented via standard database call interfaces.

o Polymorphic data structures, higher-order (polymor-
phic) functions and user-defined abstract data types
are very hard to realize in monomorphic high-level
data models.

e Incremental program construction and reflective pro-
gramming techniques require schema modifications at
runtime and dynamic binding techniques which are be-
yond the scope of most standard store protocols.

As a consequence of these difficulties, virtually each per-
sistent programming environment comes with its own tai-
lored object store (and vice versa). If one looks at existing
pairs of object stores and their persistent languages, like Ex-
odus and E, Oz and O2C or ObjectStore and Persistent C,
their internal object store protocols are often well below the
abstraction level of SQL or of the ODMG languages. Fur-
thermore, these store protocols are characterized by heavy
dependencies between language processor and storage sub-
system and by several ad-hoc design decisions regarding ob-
ject layout and object lifetime.

In this paper we describe the Tycoon Store Protocol
(TSP) that has been developed during the last three years
by our group to overcome the above problems and to pro-
vide a well-defined, standardized interface between the fron-
tend and the backend of fully integrated persistent environ-
ments. This interface is based on the widely accepted notion
of an untyped persistent heap ([MS88, BM91, KKD89]). De-
spite the fact that TSP has been implemented and evaluated
in the context of the Tycoon project [MS93], TSP is fully
independent of the Tycoon system and supports multiple
(generic) clients and multiple database servers.

This paper is organized as follows: We first sketch how
TSP contributes to the construction of scalable persistent
systems. In section 3 we describe the untyped TSP store
model followed by a detailed discussion of the TSP oper-
ations in section 4. Section 5 reports on our experience
implementing TSP backends by adaptors to existing object
stores and extending the TSP functionality systematically
by TSP-compliant layers.

| TL | | TooL | | NFS | | Fibonacci | | |
| Access Control |
optional
| Persistent Savepoints | extensions
| Network References | :>
| | A 4 \ 4 \ 4 \ 4 A 4
[Tycoon Store Protocol (TSP) j
Adaptor | | Adaptor | | Adaptor | Adaptor

Tycoon Stores

. | .
TXR
\4 .] .

ObjectStore™

<——->
A \ A

Napier Store OoEngine

Figure 1: The role of the Tycoon Store Protocol in scalable persistent systems

2 On the Construction of Scalable Persistent Sys-
tems

TSP has been designed to support the construction of scal-
able persistent systems, i.e., configurable systems where the
complexity and size of the entire system is proportional to
the operational support required by a particular client. For
example, it should be possible to add features like multi-user
access, distribution and access control to the basic persistent
storage services without perturbating the overall system ar-
chitecture of a persistent system. On the other hand, the
performance of clients that do not need these advanced fea-
tures should not be deteriorated by the extensibility of the
system.

Figure 1 explains the role of TSP in such a persistent sys-
tem scenario. The data access operations defined in TSP are
issued by client programs and executed by database servers.
Currently, TSP is used by the runtime system of two per-
sistent languages (TL [MS92], TooL [GM95]) developed at
Hamburg University and by a network file system (NFS) im-
plementation of our group that makes it possible to read and
manipulate persistent store objects like ordinary Unix files
or directories enhanced by a transactional recovery mech-
anism. Further TSP clients like runtime systems for other
persistent languages such as Fibonacci [ABD194] are under
development. Each of these clients can choose dynamically
between one of the following TSP implementations with dis-
tinct operational qualities and performance characteristics:

e Tymem is a portable main memory store developed
by our group that achieves persistence and recovery
through standard file system services.

e Tysin is a portable disk-based single user store that
was developed by our group specifically for systems
without virtual memory support like Microsoft Win-

dows and Macintosh OS.

e Napier is a store adaptor to the Napier disk-based sin-
gle user store for SunOS systems [Bro89]. This store
makes heavy use of memory-mapped files [RHB'90] to
achieve very fast object addressing.

e Object is a store adaptor to the commercial prod-
uct ObjectStore [LLOWY1], a multi-user store with a
client-server architecture.

Furthermore, TSP is intended to be a stackable protocol.
For example, it is possible to add access control, persistent
savepoints or version management on top of arbitrary stores
that adhere to TSP. These optional system layers utilize
TSP as their lower and upper interfaces and extend the se-
mantics of individual TSP operations (e.g., store object up-
date) and provide additional TSP operations (e.g., rollback
to savepoint).

TSP defines a stable application programming interface
for client programs (expressed by a standard C header file)
that is complemented by a platform-independent external
data representation (TXR) that can be generated and parsed
by all TSP backends. The TXR makes it possible to trans-
fer arbitrary complex, graph-structured persistent store ob-
jects via a linear data representation from one backend to
another without exposing private implementation details of
individual persistent stores. We have found the TXR to be
extremely valuable for backup, communication, migration
and system evolution purposes. Some of these application
areas are described in [MMS95a, MMS95b].

A client can use TSP to access multiple stores (pos-
sibly of multiple architectures) concurrently and a multi-
user database server like ObjectStore supports multiple TSP
clients at a time which may run on different client nodes in
a local area network accessing a shared persistent store.

3 An Untyped Store Model

A primary design goal behind TSP has been to provide effi-
cient data storage as independent as possible from the data
and language model supported by TSP store clients. In par-
ticular, TSP should be capable of supporting polymorphi-
cally typed models where the components of store objects
can contain values of multiple types that cannot be fixed in a
separate schema definition phase. TSP therefore uses an un-
typed low-level store model, i.e., there is no separate dictio-
nary of type or schema information maintained by the back-

end. Instead of this, store values are made self-descriptive
by imposing a regular object layout and a uniform tagging
scheme. As a result, TSP achieves data model indepen-
dence without sacrificing the advantages of self-descriptive
statically-typed databases.

3.1 Atomic Data Values

On the one hand, TSP is to be defined without knowledge of
the particular base types (integer, string, real, ...) and type
constructors (record, object, array, set, list, ...) supported
by its various clients. On the other hand, TSP has to per-
form algorithms on store objects like concurrency control,
garbage collection and portable data exchange that require
a limited knowledge of the semantics of data values. Fur-
thermore, TSP has to provide efficient access mechanisms to
read and update atomic data values like integers, addresses
or object identifiers.

l tsp_Store ‘ l tsp_Word ‘ l tsp_Byte ‘ l tsp_Bool

A

l tsp_Format ‘ l tsp_Tagged ‘

tsp_Value

Figure 2: The type hierarchy underlying TSP

To match best the data modeling requirements of a given
TSP client / server pair the TSP definition is parameterized
by the following “abstract” atomic types (see figure 2):

tsp_Bool is a parameter type for TSP operations with the
constants tsp_.TRUFE and tsp_FALSE.

tsp_-Word is the supertype from which most other TSP
types like object identifiers or tagged values are de-
rived as subtypes. In particular, the size of tsp_Word
values has to be greater or equal to the size of values
of these other types. Typical bit sizes for tsp_Word
values are 16, 32 or 64.

tsp_Byte is the type of values stored in byte array objects.

tsp_Value is the type of values manipulated by client pro-
grams.

Technically, these parametric type definitions are pro-
vided by a platform and storage-system dependent C header
file (e.g. tsp32.h). This file has to precede the TSP C header
file that is shared between all TSP implementations. The
TSP header file defines additional derived or abstract types
as shown in figure 2.

The type tsp_-Tagged is the union of values from type
tsp_OID, the type of persistent object identifiers, and of type
tsp_Immediate, the type of TSP immediate values. The type
tsp-Tagged is used in those contexts where both tsp_OID
and tsp_Immediate values are valid. As the type name
tsp-Tagged indicates, it is possible to distinguish OIDs from
immediate values at runtime based on a tagging scheme.

The conversion between tagged store values (tsp_Immediate)

and client values (tsp_Value) is encapsulated by two TSP
mapping functions:

tsp_Immediate

tsp_valueToImmediate(tsp_Store s, tsp_Value val);
tsp_Value

tsp_immediateToValue(tsp_Store s, tsp_Immediate imm);

It should be noted that the size of client values is concep-
tually not dependent on the word size of the TSP implemen-
tation. Thus, the bitsize of a value of type tsp_Value can be
smaller, equal or larger than the bitsize of a value of type
tsp_-Word. For example, in some stores polymorphic array
objects have to implemented with an additional level of in-
direction such that client values can be larger than the slot
size. The actual size supported by an TSP implementation
can be retrieved by the TSP operation:

tsp-Word tsp_nValueBits(tsp_Store s);

Values of type tsp_Format are used to define the for-
mat of structured persistent objects in the store and are
explained in the next section.

3.2 Structured Data Objects

TSP supports only two kinds of persistent data structures
which are called array objects and byte array objects. In
any context where both array and byte array objects are
valid, we use the term object. Therefore, array objects and
byte array objects are specializations of type object. Since
there are no instances of type object, this type is similar to
an abstract class in C4++.

Every object has an object identifier (OID) that is guar-
anteed to be unique within a given TSP store. Object iden-
tifiers can be stored in arrays to establish bindings between
objects. TSP does not guarantee object identifiers to be im-
mutable over the lifetime of an object. For example, some
TSP implementations re-assign OIDs during garbage collec-
tion. However, any implementation of the TSP guarantees
that bindings between objects within the store are preserved.

Objects are allowed to hold atomic data values (as de-
scribed in the previous section) only. Complex objects are
constructed by establishing bindings between objects and
not through object nesting. Since all TSP operations on ob-
jects have reference semantics, the signatures of TSP object
operations uniformly use the type tsp_OID.

object header object data

Figure 3: Structure of a TSP object

As depicted in figure 3, a TSP object conceptually con-
sists of two parts: an object header (holding information
about the object size, object mutability and object format)
and a number of slots. When an object is created, the num-
ber of slots and the format have to be specified. An object is
allowed to contain no slots at all. The first slot in an array
has index 0. Conceptually, the maximum number of slots
of a TSP object is infinite but there might be TSP imple-
mentations that define an upper limit. However, this limit

is expected to be much larger than the page size of a tradi-
tional database system. In some persistent applications (e.g.
B-Tree index management) TSP clients would like to create
objects that fit exactly onto a single page of the underlying
persistent store. In such applications, the function

tsp-Word tsp_nWordsPerPage(tsp_Store s);

can be used to return an integer value to be used as a size
specification for a subsequent array object creation opera-
tion. Except for this “hint”, page sizes of the TSP backend
are fully transparent to TSP clients.

TSP provides operations to inspect the format and size of
an object. The operation (tsp_getFormat) returns a value of
type tsp_Format which is organized as a bit vector. The size
of the bit vector depends on the TSP implementation. The
lowest two bits of the vector are reserved for TSP purposes
to distinguish between the three built-in array formats de-
scribed below. The number of remaining format bits avail-
able to the client can be retrieved by the following TSP
operation:

tsp_Word tsp_nFormatBits(tsp_Store s);

These bits can be utilized by TSP clients to define special-
ized array or byte array objects, for example arrays of real
numbers, as subtypes of the following two predefined object
types:

Array Objects: TSP supports two builtin formats for ar-
ray objects. The format determines which values can
be stored in the slots of an array object.

Array objects with format tsp_Format_ TAGGED con-
tain values of type tsp_Tagged. In particular, such ar-
ray objects must not contain untagged values of type
tsp-Word because a TSP server uses the tagging infor-
mation to differentiate between object identifiers and
immediate values.

Array objects with format tsp_Format_.WORD con-
tain untagged values of type tsp_Word. It is not al-
lowed to store object identifiers in such arrays. On
the other hand, the full bit size of type tsp_Word is
available in each array slot. The format information
tsp-Format_WORD is used heavily by the garbage col-
lector and the T'SP operations tsp_intern and tsp_extern
to reduce the execution time for these operations.

Byte Array Objects: The size of an individual slot in
a byte array is given by the size of values of type
tsp_Byte. The predefined format code for byte arrays
is tsp_Format_BYTE.

After creation, the slot values of an object can be up-
dated. Therefore, the state of a newly created object is
called mutable. It is possible to set the state of an object to
immutable (tsp_setImmutable). Subsequently, it is not al-
lowed to update the object and it is not possible to change
the state of an object from immutable back to mutable. The
TSP operation tsp_isImmutable can be used to test whether
an object is immutable. The immutability information is ex-
ploited by many TSP implementations to optimize storage
management, concurrency control and recovery.

4 Overview of the Tycoon Store Protocol

Due to the simplicity of TSP’s data model, it is possible to
define concisely all its operations which are clustered into
operations on persistent stores, failure handling, that are
detailed in the following sections.

tsp_deleteStore [

closed
/'Y
\ 4 tsp_openStore tsp_closeStore
| non existent
| tsp_rollback
tsp_newStore + v
open
tsp_prepareCommit tsp_commit tsp_rollback
| committable

Figure 4: Store state diagram

4.1 Operations on Persistent Stores

Figure 4 shows the possible states of a TSP store and the
operations that trigger state transitions of a store.

A TSP store must be created before it can be used. A
TSP store can be created only within a TSP session. A
client starts a session by calling the TSP function tsp_init.
A session is finished by terminating the operating system
process that started the session. It is not allowed to call
tsp_init multiple times within a session.

A TSP store has a unique root value of type tsp_Tagged
that serves as an entry point into the store. On creation of
a store, an initial root value has to be specified. The initial
root value must be an immediate value. If the store can be
created it changes its state from non_existent to open and
a handle for the store is returned to the client. The store
handle is used by virtually all TSP operations to identify
the store for which the operation is to be executed. This
is necessary because TSP allows a client to operate on mul-
tiple stores simultaneously (some implementations, like the
Napier Store, restrict the number of stores to one). Cross
references between different stores are not supported by the
basic TSP.

Consistent states of an object store can be made persis-
tent (“committed”). The initial state of a newly created
store is committed automatically. Subsequently, a client
creates objects and links them together using TSP opera-
tions to form an object graph in the store. To make the
object graph persistent, the client has to perform the fol-
lowing three steps:

1. Update the root of the store with the object identi-
fier of the root of the graph (tsp_setRoot(store, oid)).
This object is also called the root object of the store.
Alternatively, if an object store already contains some
objects, a newly created object graph can be made
reachable through its OIDs from the existing object
graph.

2. Ensure that the store can be committed
(tsp_prepareCommit). This function must be called
before calling tsp_commit and returns tsp_.TRUE to
indicate that a subsequent tsp_commit will succeed
(otherwise tsp_FALSE is returned but no automatic
rollback is triggered). The state of the store changes
from open to committable.

3. Define a new persistent state by committing the changes
made to the store (tsp_commit). When a store is com-
mitted, all modifications to the store are written atom-
ically to the persistent storage device the store resides
on. Because TSP defines persistence by reachability,
the root object and any object transitively reachable
from the root object are made persistent. Moreover,
the store changes its state from committable to open.

The description above assumes that a TSP backend sup-
ports an explicit two-phase commit protocol. This store
property can be inquired at runtime with the TSP function
tsp_hasTwoPhaseCommit. If no two-phase commit is sup-
ported by a store tsp_prepareCommit always returns
tsp_TRUE.

As long as the store is in the open state, the client has
the ability to create new objects, to modify objects and to
commit the new state of the store. It is also possible for a
client to rollback to the last committed state of the store,
by calling tsp_rollback. tsp_rollback deletes all objects the
client has created since the last call to tsp_commit and can-
cels the modifications of all other objects. This function can
also be called if the state of the store is committable.

If an open store is no longer used within a session, it can
be closed by calling tsp_closeStore. tsp_closeStore does not
commit the store automatically. On successful completion of
the operation, the store changes its state to closed and TSP
invalidates the store handle. It is not allowed to call a TSP
function with an invalidated store handle (the result of such
operations is undefined). The only valid TSP operations
that can be applied to a closed store are tsp_openStore and
tsp_deleteStore. The first one must be called before working
on a store and sets the state of the store to open. The second
one, tsp_deleteStore, irrevocably destroys the store and sets
its state to non_existent.

The following table summarizes the restrictions on the
set of TSP operations that are applicable in a given state of
the store.

Store State | Valid Operations |
open all TSP operations except tsp_deleteStore,
tsp_commit

tsp_openStore, tsp_deleteStore
tsp_commit, tsp_rollback

closed
committable

4.2 Failure Handling and Recovery

If any of the TSP operation cannot be executed correctly,
a standard failure handling procedure is called that prints
an error message and then terminates the client process un-
doing all changes to the store since the last commit oper-
ation. TSP provides operations to substitute this default
failure handling procedure and to retrieve the currently de-
fined failure handler. The client-defined handler must be
of type tsp_FailureHandler. A handler has two parameters.
The type of the first one is tsp_Store (a store handle) and
the type of the second one is tsp_Failure (the reason of the
failure). The client process is also terminated if a failure
handler returns control back to the calling TSP operation.
The set of possible failures is represented by the enumera-
tion type tsp_Failure. The meaning of each failure value of
type tsp_Failure is given below.

tsp_Failure ERROR is a generic error code that can be
raised by any TSP operation, e.g. if illegal argument
values have been supplied to an operation.

tsp_Failure DEADLOCK is raised if a deadlock is de-
tected. Before this failure is signaled to the TSP client,
TSP automatically performs a rollback. The resulting
state of the store is open (see section 4.1).

tsp_Failure STORE_FULL is raised if the maximum size
of a store has been reached. It depends on the imple-
mentation of TSP whether the maximum size is limited
by the number of objects or the total byte size of the
store (or both).

tsp_Failure OUT_OF_MEMORY is raised if TSP cannot
allocate sufficient main memory to execute a TSP op-
eration.

tsp_Failure COMMIT is raised if the tsp_commit opera-
tion fails. TSP automatically triggers a rollback. This
failure is only raised by backends that do not support
a two-phase commit protocol.

4.3 Operations on Store Objects

TSP provides two different operations to create array ob-
jects and five operations to update and retrieve data from
array objects. For each of these operations there exists an
equivalent operation on byte array objects. The signatures
of these operations look as follows:

tsp_OID
tsp_newArray(tsp_Store s, tsp_Format f, tsp_Word nSlots);
tsp_OID
tsp_newArraylnit(tsp_Store s, tsp_Format f,
tsp-Word nSlots, tsp_-Word wlnit);
tsp_Word
tsp_get Word(tsp_Store s, tsp_OID array, tsp_Word ilndex);
void
tsp_set Word(tsp_Store s, tsp_OID array, tsp_Word ilndex,
tsp-Word w);
void
tsp_get Words(tsp_Store s, tsp_Word nWords, tsp_OID array,
tsp-Word iStart, tsp_Word *pwBuffer);
void
tsp_set Words(tsp_Store s, tsp_Word nWords, tsp_OID array,
tsp-Word iStart, tsp_Word *pwBuffer);
void
tsp-move Words(tsp_Store s, tsp_Word nWords,
tsp_OID oidFrom, tsp_Word iFromStart,
tsp-OID oidTo, tsp-Word iToStart);

Note that TSP provides built-in block move operations
between persistent objects as well as between persistent ob-
jects and main memory data structures.

TSP also provides a set of operations that are applica-
ble on all objects (arrays and byte arrays). The operation
tsp_nSlots returns the number of slots of an object. The re-
turned value does not reflect the allocation size because the
slot size of array objects and byte array objects are different.

For the efficient implementation of some higher-level dy-
namic data structures, TSP exports the operation

tsp-OID tsp_resize(tsp_Store s, tsp_OID oid, tsp_Word nSlots);

which changes the number of slots of an object. Some
store implementations support object resizing without re-
strictions. In this case, the returned object identifier is equal
to the object identifier oid passed as an input parameter. If
a store does not support growing or shrinking of objects, a
new object with a fresh identifier is returned. In this case,

tsp_resize is an efficient execution of the operation sequence
to create a new object and to copy the slot values and the
header information from the old object into the new object.
The format of an object as well as its mutability state can
be retrieved and and changed by the following operations:

tsp_Format tsp_getFormat(tsp_Store s, tsp_OID oid);

void tsp_setFormat(tsp_Store s, tsp_OID oid, tsp_Format f);
tsp_Bool tsp_isimmutable(tsp_Store s, tsp_OID oid);

void tsp_setImmutable(tsp_Store s, tsp_OID oid);

While it is possible to dynamically change the format of an
object, the mutability state of an object can be changed only
once from mutable to immutable.

4.4 Main Memory Mapping of Store Objects

For some applications, like the implementation of string
operations, the procedure call and addressing overhead in-
curred by repeated calls to object level operations as de-
scribed in the previous section cannot be tolerated.

client address space
address OID oD

address
I

main memory
controlled by TSP

byte array object

persistent store

Figure 5: Storage Hierarchy and Object Identification

Therefore, TSP provides three additional operations
(tsp_openReadLock and tsp_openRead WriteLock and
tsp-openRead) to support fast object access. Each of these
operations returns the address of a main memory representa-
tion of an object (see figure 5). The client can use the return
value as a pointer to an array of tsp_Tagged or tsp_Word val-
ues if the object is an array, or as a pointer to an array of
tsp_Byte values if the object is a byte array. Any open object
must be closed explicitly using the operation tsp_close be-
fore calling tsp_prepareCommit. This deliberate restriction
on the use of open objects greatly simplifies the implemen-
tation of TSP store adaptors while preserving much of the
usefulness of main memory mapping.

If a persistent storage server support direct object access
via main memory addresses, no main memory copy of an ob-
ject has to be created to implement the tsp_open operations.

Otherwise, a main memory copy is created by an interme-
diate layer of the TSP architecture. If tsp_open routines
are called several times for the same object, TSP returns
the same address on each call. It is not allowed to update
an open object via TSP operations using its object iden-
tifier. Again, this design decision was made deliberately,
balancing the complexity of TSP implementations against
the additional burden put on TSP clients.

4.5 Management of Object ldentifiers

A TSP client is allowed to store object identifiers in state
variables outside the persistent store. As mentioned al-
ready in section 3.2, object identifiers are mutable. More
specifically, they can be changed by a TSP implementation
during the execution of tsp_gc (explicit garbage collection),
tsp_prepareCommit, tsp_commit and tsp_rollback. Further-
more, an object creation operation (tsp_new...) can also
trigger an implicit garbage collection.

TSP provides a mechanism to automatically remap mod-
ified object identifiers held outside the persistent store. To
make use of this mechanism, a client has to implement a
function that enumerates all relevant object identifiers. This
client-defined function has to be installed explicitly each
time a store is opened (tsp_setEnumerator). The type of
an enumerator function and its argument function is given
by the following type definitions:

typedef tsp_Tagged (*tsp_VisitFunction)

(tsp_Store s, tsp_Tagged tagged);
typedef void (*tsp_EnumFunction)

(tsp_Store s, tsp_VisitFunction visit);

The argument function visit is provided by a TSP back-
end. It maps old object identifiers to new object identifiers.
A simple example of a client-defined enumerator function
for an OID buffer is given below:

tsp_Tagged oidBuffer[10];
void enumerate(tsp_Store s, tsp_VisitFunction visit)
{ inti=0;
for(; i<10; i++) oidBuffer[i] = visit(s, oidBuffer[i]);}

The client-defined enumerator must not call TSP func-
tions recursively.

A similar communication mechanism from the TSP back-
end to its client exists to notify a client prior to an implicit
or explicit garbage collection:

typedef void (*tsp_GcHandler)(tsp_Store s);
void tsp_setGcHandler(tsp_Store s, tsp_GcHandler handler);
tsp_-GcHandler tsp_getGcHandler(tsp_Store s);

The garbage collection handler of a newly created or

opened store is initialized with the function tsp_garbageCollect.

It can be overridden by the TSP client, for example, to close
all open objects to improve the efficiency of the garbage col-
lector or to display messages in an interactive application.
Clients have to be aware that nested object creation opera-
tions may fail with an tsp_Failure_.STORE_FULL exception.

4.6 Linearization of Object Store Subgraphs

As mentioned already in section 2, the external data rep-
resentation TXR enables data exchange between arbitrary
TSP stores. The operation tsp_extern transforms an ob-
ject graph into a linear byte stream. Such a byte stream
can be parsed with the operation tsp_intern to recreate an

isomorphic object graph (object cycles and shared objects
are preserved). The signatures of these TSP functions are
defined as follows:

tsp-Word tsp_extern(tsp_Store s, tsp_Tagged tagged,
void *handle, tsp_WriteFunction wr);
tsp_Tagged tsp_intern(tsp_Store s, void *handle,
tsp_ReadFunction rd);

The stream functionality is factored out from the TSP
by passing functions of type tsp-WriteFunction and
tsp_ReadFunction, respectively, as function arguments to
the intern and extern algorithms.

typedef tsp_Word (*tsp_WriteFunction)(void *handle,
tsp_Byte *pbBuffer,tsp_Word nBytes);

A tsp_WriteFunction is similar to the C low level write func-
tion defined on files. It takes a pointer to a buffer of bytes
(pbBuffer) and writes nBytes starting at position *pbBuffer
to the stream identified by handle. A write function has
to return the number of bytes that have been successfully
written.

typedef tsp_Word (*tsp_ReadFunction)(void *handle,
tsp_Byte *pbBuffer, tsp_Word nBytes);

The semantics of a tsp_ReadFunction is similar to the Unix
read function defined on files. It takes a pointer to a buffer
of bytes (pbBuffer) and reads nBytes from the stream identi-
fied by handle into the buffer. A read function has to return
the number of bytes successfully read.

In order to introduce client-defined linearization algo-
rithms for client-defined atomic data values (identified by
user-defined tags) or client-defined subtypes of array and
byte array store objects (identified by user-defined format
values), clients can use the following TSP types and TSP
functions:

typedef tsp_Word (*tsp_ExternHandler)
(tsp_Store s, tsp_XDR xdr, tsp_OID oid,
void *handle, tsp_WriteFunction wr);
void tsp_setExternHandler(tsp_Store s,
tsp_ExternHandler externHandler);
tsp_ExternHandler tsp_getExternHandler(tsp_Store s);

typedef tsp_OID (*tsp_InternHandler)
(tsp_Store s, tsp_XDR xdr, tsp_Tagged taggedMeta,
tsp_Format f, tsp_Bool fimmutable, tsp_Word nSlots,
void *handle, tsp_ReadFunction rd);
void tsp_setInternHandler(tsp_Store s,
tsp_InternHandler internHandler);
tsp_InternHandler tsp_getInternHandler(tsp_Store s);

The extern handler is called by a TSP implementation for
each store object to be linearized while the intern handler is
called to create a new object based on its header information
and the contents of a stream.

Finally, some TSP extensions require a client-defined
processing to be performed on each newly created object
during intern operations, for example, to perform authenti-
cation checks in a distributed system. These checks can be
installed as an internVisit operation for an individual store:

typedef void (*tsp_InternVisit)(tsp_Store s, tsp_OID oid);
void tsp_setInternVisit(tsp_Store s, tsp_Intern Visit visit);
tsp_InternVisit tsp_getInternVisit(tsp_Store s);

5 Experience with TSP Implementations

In this section we report on our experience in implementing
TSP backends by adaptors to existing object stores and ex-
tending the TSP functionality systematically by TSP
-compliant layers.

In addition to the store adaptors described in the fol-
lowing subsections, our group at Hamburg University im-
plemented two stand-alone object stores, called Tymem and
Tysin that realize TSP with different performance charac-
teristics. Both implementations are written in C and can be
compiled on Unix, Linux, Windows, OS/2 and Macintosh
OS platforms.

Tymem is a fast single user, main-memory based imple-
mentation of TSP biased towards applications that perform
complex computations on rather small (up to 32MB) stores.
The operation tsp_.commit dumps the linear address space
to a file and tsp_openStore reads the whole persistent store
into main memory. Therefore, the size of a Tymem store is
limited by the available virtual memory.

Tysin is a single user, disk-based store that performs
data exchange between main and secondary memory on a
segment basis. That is, on an object fault only the store
segment(s) the persistent object resides in are brought into
main memory and a commit only writes newly created or
modified segments to secondary memory. Another difference
between the two stores is the fact that Tymem garbage col-
lects the whole object store on each invocation while Tysin
limits most garbage collections to uncommitted store seg-
ments. Generally speaking, Tysin outperforms Tymem in all
persistent applications that only work with a limited subset
of the full persistent store. Furthermore, Tysin is also suit-
able for machines with poor virtual memory management
support (like PC or Macintosh computers).

5.1 TSP Store Adaptors

The purpose of a store adaptor is to implement the function-
ality defined by TSP using the operations and data model-
ing features offered by a specific storage system. Our group
has developed object store adaptors for the object oriented
database system ObjectStore from Object Design [LLOWI1]
and for the proprietary object store of the University of St.
Andrews [Bro89, BM91, BMM™* 92, Mun93] also used by the
Napier88 [DCBM89] system. The University of Pisa is im-
plementing a store adaptor for the O, [BDK92, CDKK85]
object-oriented database engine. The following two subsec-
tions give a brief implementation overview of the existing

TSP adaptors.

5.1.1 The ObjectStore Adaptor

ObjectStore poses very few restrictions on the kind of C++
or C values that can be stored persistently, for example, in-
stances of classes, integers, strings, arrays and union typed
values can be made persistent. ObjectStore supports ob-
ject identification [OS993] through reference classes as well
as through virtual memory addresses. The current Object-
Store adaptor uses the virtual address object identification
scheme, i.e. values of type tsp_OID are virtual memory ad-
dresses valid in a single ObjectStore session. We now show
how these ObjectStore features are used to implement the
two basic TSP storage structures of polymorphic array and
byte array objects.

A TSP (byte) array object is mapped to a C array with
elements of type tsp_Word (tsp_Byte) preceded by a fixed-
sized header.

The TSP type tsp_Tagged is mapped to an ObjectStore
union type Poly defined as follows:

union Poly { tsp_-Immediate immediate; Poly *obj;}

Such a polymorphic value is either an immediate value or
the address of another ObjectStore object. An array object
with format tsp_Format_ TAGGED is mapped to an array of
Poly values. At runtime, the memory mapping mechanism
of ObjectStore must be able to differentiate between virtual
memory addresses and immediate values to change virtual
addresses within objects in case the mapping of persistent
objects into main memory has to be changed. Therefore, a
user-defined discriminant function has to be associated with
the user-defined union type Poly that inspects the actual
value of the union typed value at runtime and tells Object-
Store which type it is, tsp_Immediate or Poly*. The TSP
discriminant function is give below.

tsp-Word Poly::discriminant(){
if (ISIMMEDIATE(imm)) return 1; else return 2; }

The value returned by the function is an integer indicat-
ing the union’s active field (1 for the first field and 2 for the
second field). The implementations of the object operations
of TSP are obvious given the above information. Object-
Store has no builtin garbage collector. Therefore, the TSP
adaptor contains a copying garbage collector that is based
on the possibility to structure ObjectStore databases into
partitions.

5.1.2 The Napier Store Adaptor

The stable heap concept of the Napier Object Store is quite
similar to the untyped TSP store model. A Napier store
object is divided into three parts; an object header, an iden-
tifier and a data part. All object references must be stored
in the identifier part. In addition, the client can store tagged
immediates within the identifier part. The data part can be
used to store data of any type. Thus, a TSP object, its
header and the data part, are mapped to the identifier and
data part of a Napier Object Store object. TSP does not
separate object identifiers and immediate values. Therefore,
all TSP client values must be stored in the tagged format.
The minor difference of the two object concepts eases the
implementation of the TSP object operations. For example,
the read and write operations of TSP directly call the read
and write operations of the Napier Object Store. Only the
offsets of the addressed data items must be adapted.

The Napier Object Store uses a mechanism to handle
cached object identifiers that is different from the TSP mech-
anism described in section 4.4. The client of a Napier Ob-
ject Store has to install a save functions that is called be-
fore garbage collecting or stabilizing the store and a restore
function that is called after these store activities. The pur-
pose of these functions is to write identifiers to the store
before store activities modify these object identifiers and to
read the possibly changed object identifiers back into the
cache after garbage collection and stabilization. The store
adaptor maps the enumeration mechanism of TSP to the
save/restore mechanism. This is done by implementing two
visit functions passed as an argument to the TSP client enu-
merator function. This enumerator function is called prior
to a stabilization/garbage collection with the visit function
visitSave, that writes all cached object identifiers to a pre-
created object in the Napier Object Store. After a stabi-
lization/garbage collection the enumerator function is called

with a visit function visitRestore that reads the possibly
modified object identifiers back into the cache. Furthermore,
the store adaptor implements a mechanism to correctly han-
dle open objects (see section 4.5) before and after garbage
collection.

5.2 Extending the TSP Functionality

TSP has been designed to provide a standardized access to
the core functionality of persistent stores. Systems where
an extended functionality is required can enhance the TSP
by additional operations. Some of these enhancements can
be implemented in a way that does not depend on specific
properties of the backend. In this case, the resulting soft-
ware layers can be reused for multiple TSP stores. At Ham-
burg University, we have experimented with three such TSP
extensions.

The first extension adds persistent savepoints to TSP by
re-implementing the basic TSP operations and adding oper-
ations to rollback to a named savepoint. This feature makes
it possible to structure long-running transactions in a way
that simplifies application-controlled recovery. By rolling
back to a named savepoint, the effects of a transaction on
a persistent store are undone only partially. The store is
responsible for keeping the necessary recovery logs and to
re-establish the object store state of a specific savepoint.

The second extension adds access control on TSP ob-
jects. The security layer checks for each TSP operation
whether a specific user has the right to perform this op-
eration on a given persistent object. The underlying generic
authorization scheme can be configured by clients of the
security layer. The implementation utilizes callbacks and
(optional) persistent access control structures attached to
individual TSP objects.

A third extension provides NF'S access to object stores by
implementing a standard network file system (NFS [Sun90])
server using TSP operations. This server can be “mount-
ed” directly by most commercial operating systems (Unix,
MS-Windows, Macintos OS etc.). The NFS/TSP gateway
maps operating systems files and directories directly and ef-
ficiently onto TSP store objects. This way, any tool that
operates on operating system files, for example a text edi-
tor, an audio recorder or an image browser, can be used to
access “exported ” object store objects. Files managed by
this NFS/TSP gateway can be manipulated through NFS
file operations and TSP operations simultaneously. In par-
ticular for large multi-media objects, file access to recover-
able persistent store objects is of high practical relevance.

6 Concluding Remarks

The main contribution of this paper is the in-depth descrip-
tion of an object store protocol that we regard as an excel-
lent starting point for a standardized interface between the
frontend and the backend of fully integrated persistent en-
vironments. In developing the TSP specification, its single-
user implementations and its adaptors to commercial ob-
ject stores available to other research groups, we hope to
establish TSP as a widely accepted protocol within persis-
tent language implementations. This would not only sim-
plify the development of new persistent languages but also
facilitate system measurements, comparative performance
studies and interoperability experiments between multiple
persistent languages.

References

[ABS7]

[ABD*94]

[BDK92]

[BM91]

[BMM+92]

[Brog9]

[Cat94a)]

[Cat94b]

[CDKKS5]

[CMMt94]

[DCBMS89)

[GM95]

[1S092]

[KKD89]

[LLOWO91]

[MMS92]

M.P. Atkinson and P. Bunemann. Types and Per-
sistence in Database Programming Languages. ACM
Computing Surveys, 19(2), June 1987.

A. Albano, C. Brasini, M. Diotallevi, G. Ghelli,
R. Orsini, and R. Rossi. A Guided Tour of the
Fibonacci System. FIDE Technical Report Series
FIDE/94/103, FIDE Project Coordinator, Depart-
ment of Computing Sciences, University of Glasgow,
Glasgow G128QQ, July 1994.

F. Bancilhon, C. Delobel, and P. Kanellakis. Building
an Object-Oriented Database System: The Story of
Os. Morgan Kaufmann Publishers, 1992.

A.L. Brown and R. Morrison. A Generic Persistent
Object Store. PPRR 2-91, Universities of Glasgow
and St Andrews, 1991.

A.L. Brown, G. Manietto, F. Matthes, R. Miiller,
and D.J. McNally. An Open System Architecture
for a Persistent Object Store. In Proceedings 25th
Annual Hawait International Conference on System
Sciences, volume 2, pages 766—776, January 1992.

A.L. Brown. Persistent Object Stores. PPRR 71-
89, Universities of Glasgow and St Andrews, March
1989.

R.G.G. Catell, editor. The Object Database Stan-
dard: ODMG-938. Morgan Kaufmann Publishers,
1994.

R.G.G. Cattell, editor. Object Data Management.
Addison-Wesley Publishing Company, second edi-
tion, 1994.

H.T. Chou, D.J. DeWitt, R.H. Katz, and A.C. Klug.
Design and Implementation of the Wisconsin Storage
System. Software-Practice and Ewxperience, 15(10),
October 1985.

R.C.H. Connor, R. Morrison, D.S. Munro, D. Stem-
ple, and S. Scheuerl. Concurrent Shadow Paging
in the Flask Architecture. In Proceedings of the
Fourth International Workshop on Persistent Object
Systems, Tarascon, France, pages 16-37. Springer-
Verlag, September 1994.

A. Dearle, R. Connor, F. Brown, and R. Morrison.
Napier88 — A Database Programming Language?
In Proceedings of the Second International Work-
shop on Database Programming Languages, Port-
land, Oregon, June 1989.

A. Gawecki and F. Matthes. Tool.: A Persistent
Language Integrating Subtyping, Matching and Type
Quantification. (Submitted for publication.), May
1995.

ISO. Standard ISO 10308, Partl: Industrial Au-
tomation Systems — Product Data Representation
and Ezchange, Overview and Fundamental Princi-
ples, 1992.

W. Kim, K. Kim, and A. Dale. Storage Manage-
ment for Objects in EXODUS. In W. Kim and
F.H. Lochovsky, editors, Object-Oriented Concepts,
Databases, and Applications, Frontier Series. ACM
Press, 1989.

C. Lamb, G Landis, J. Orenstein, and D. Weinreb.
The ObjectStore Database. Communications of the
ACM, 34(10):50-63, October 1991.

F. Matthes, R. Miller, and J.W. Schmidt. Object
Stores as Servers in Persistent Programming Envi-
ronments — The P-Quest Experience. FIDE Technical
Report Series FIDE/92/48, FIDE Project Coordina-
tor, Department of Computing Sciences, University
of Glasgow, Glasgow G128QQ), July 1992.

[MMS95a]

[MMS95b]

[MS8s]

[MS92]

[MS93]

[MS95]

[Miil91]

[Mun93]

[05993]

[RHB*90]

[Sun90]

B. Mathiske, F. Matthes, and J.W. Schmidt. On
Migrating Threads. In Proceedings of the Second In-
ternational Workshop on Next Generation Informa-
tton Technologies and Systems, Naharia, Israel, June
1995.

B. Mathiske, F. Matthes, and J.W. Schmidt. Scal-
ing Database Languages to Higher-Order Distributed
Programming. In Proceedings of the Fifth Inter-
national Workshop on Database Programming Lan-
guages, Gubbio, Italy. Springer-Verlag, September
1995.

J.E.B. Moss and S. Sinofsky. Managing Persistent
Data with Mneme: Designing a Reliable Shared Ob-
ject Interface. In K.R. Dittrich, editor, Advances in
Object-Oriented Database Systems, number 334 in
Lecture Notes in Computer Science. Springer- Verlag,
September 1988.

F. Matthes and J.W. Schmidt. Definition of the
Tycoon Language TL — A Preliminary Report. In-
formatik Fachbericht FBI-HH-B-160/92, Fachbereich
Informatik, Universitdt Hamburg, Germany, Novem-
ber 1992.

F. Matthes and J.W. Schmidt. System Construc-
tion in the Tycoon Environment: Architectures, In-
terfaces and Gateways. In P.P. Spies, editor, Pro-
ceedings of Euro-Arch’93 Congress, pages 301-317.
Springer-Verlag, October 1993.

F. Matthes and J.W. Schmidt. Persistent Threads. In
M.P. Atkinson, editor, FIDE: Fully Integrated Data
Environments. Springer-Verlag, 1995.

R. Miiller. Language Processors and Object Stores:
Interface Design and Implementation. Master’s
thesis, Fachbereich Informatik, Johann Wolfgang
Goethe-Universitat, Frankfurt, Germany, November
1991. (In German).

D.S. Munro. On the Integration of Concurrency,
Distribution and Persistence. PhD thesis, Depart-
ment of Mathematical and Computational Sciences,
University of St. Andrews, Scotland, 1993.

Object Design Inc., Burlington, MA. ObjectStore Re-
lease 3 for Uniz Systems: Reference Manual, 1993.

John Rosenberg, Frans Henskens, Fred Brown, Ron
Morrison, and David Munro. Stability in a Persis-
tent Store Based on a Large Virtual Memory. In
J. Rosenberg and J.L.. Keedy, editors, Security and
Persistence, pages 229-245. Springer-Verlag, 1990.

Sun Microsystems. Network File System: Version
2 Protocol Specification. Technical report, Sun Mi-
crosystems, 1990.

