Enterprise Architecture Management Patterns —
Exemplifying the Approach

Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes, Christian M. Schweda
Chair for Informatics 19
Technische Universitidt Miinchen
E-mail: {buckls, ernst, lankes, matthes, schweda} @in.tum.de

Abstract—Enterprise Architecture (EA) management has been
gaining importance in organizations, and while EA management
frameworks provide a holistic and generic view on the subject,
organizations introducing EA management are often left alone
regarding the details of the approach. The EAM Pattern Catalog,
presented in this article, is a collection of best practices for
addressing specific concerns in EA management related to e.g.
architectural standardization, application landscape planning, or
interface, business object, and service management. It provides
methodologies for addressing these concerns, together with in-
formation models defining the relevant concepts, and viewpoints
for visualizing them.

This article describes the structure and extent of the EAM
Pattern Catalog, and exemplifies its approach by outlining EAM
patterns for addressing architectural standardization. Architec-
tural standardization tries to tackle the complexity of the EA
created by historically grown structures. These structures lead
to disadvantages as low maintainability, low bargaining power
at IT suppliers, or the need of largely diverse skills in the IT
workforce.

I. INTRODUCTION & MOTIVATION

Enterprise Architecture (EA) management is one of the
major challenges of modern enterprises. It aims at aligning
business and IT in order to optimize their interaction. Addi-
tionally, regulations like e. g. Sarbanes Oxley Act (SOX [29])
require companies to document and plan their EA.

Whatever preliminary work exists in a company, there
commonly is a demand for a more structured way to manage
the evolution of the EA. A variety of approaches to introduce
EA management has been proposed by academia and practice
(see e.g. [4], [13], [24]), but they all have to cope with at least
one of the following problems:

« EA management is introduced from scratch, not consid-
ering related initiatives already present inside or outside
the organization.

« EA management frameworks, like Zachman [36], TO-
GAF [34], etc., are usually either too abstract and there-
fore not implementable, or too extensive to be used in
practice, as they have to be utilized as a whole.

o Lacking an actual starting point for an EA management
initiative, companies tend to collect requirements from
potential EA stakeholders in the organization. Consolidat-
ing their demands and integrating their information needs,
an all-embracing EA management approach is likely to
emerge, which would demand a vast amount of data to

be gathered, although only a part of it would be needed
to address the real pain points of the company.

o If an approach has been implemented, it is often not
documented, why certain decisions have been taken,
e.g. why a certain concept has been introduced in the
information model. This leads to information models,
which cannot be adapted or extended, due to the fact
that no one knows what analyses rely on which parts of
the information model.

o Approaches proposed e. g. by organizations or standard-
ization groups are usually all or nothing approaches,
meaning that they are supposed to be introduced as one
single piece instead of incrementally. This results in an
EA management approach that is not tailored to the
company’s EA maturity.

In order to address the problems stated above, we propose
to apply patterns, well known from other disciplines like
architecture or software engineering.

Alexander et al. [1] define a pattern in the context of
architecture as follows: “Each pattern describes a problem
which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over,
without ever doing it the same way twice.” Additionally, [1]
details that “each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a solution”.

In software engineering, design patterns are e. g. defined by
Gamma et al. [14] as ”descriptions of communicating objects
and classes that are customized to solve a general design
problem in a particular context.”

The common ground of both definitions is that patterns

e are a general, reusable solution to a common problem
and
« are dependent on their context.

The above described properties are the basis for the EAM
pattern approach, which initially has been introduced in [8].
EAM patterns describe solutions, based on best practices for
recurring problems in EA management that can and may have
to be adapted to a specific enterprise context.

In addition to addressing the problems stated above, patterns
offer further advantages. According to [16], an advantage of
the pattern concept is that it enables architects to understand
the impact of the architectural decisions at design time,

because patterns contain information about consequences and
context of the pattern usage. Harrison et al. [15] state that
patterns have shown to be a useful and important vehicle for
capturing some of the most significant architectural decisions.
As information on possible consequences of pattern usage is
included in pattern descriptions, they qualify for documenting
the rationale and expected consequences of a decision. Another
advantage is that patterns can also be included in current
EA management frameworks to enrich them with concrete
instructions on how to address a specific concern.

The following three kinds of EAM patterns have been
introduced in [8].

A Methodology Pattern (M-Pattern) defines steps to be taken
in order to address given concerns. Furthermore, as a guidance
for applying the method, statements about the intended usage
context are provided, which include the concerns to which the
M-Pattern can be applied. The procedures defined by the M-
Pattern can be very different, ranging from e. g. visualizations
and group discussions to more formal techniques as e.g.
metrics calculations [23]. M-Patterns have been introduced,
because missing methodologies constitute a common issue
in EA management information models. Additionally, frame-
works as e. g. TOGAF [34] provide a process model (TOGAF
ADM), but leave the details of the methodologies supporting
the specific activities in the EA management process relatively
open. M-Patterns explicate the methodologies in order to
complement activities carried out in an ad-hoc manner or
relying on implicit knowledge with activities carried out more
systematically.

A Viewpoint Pattern (V-Pattern) provides a language used
by one or more M-Patterns and thus proposes a way to present
data stored according to one or more I-Patterns. In our research
project Software Cartography (see e.g. [7], [8], [22], [35]),
we found that industrial users often specify viewpoints by
example. This means that an exemplary view is provided for
the viewpoint, possibly together with some textual explana-
tions. While we do not contend that this may be sufficient
in certain use cases, €. g. sketching concepts in presentations,
we see problems arising, when the goal is providing official
information to a wider audience for an extended period. In
order to ensure the understandability of a diagram, we regard
e.g. a legend to be mandatory.

An Information Model Pattern (I-Pattern) supplies an under-
lying model for the data visualized in one or more V-Patterns.
An I-Pattern contains an information model fragment includ-
ing the definitions and descriptions of the used information
objects. As described in [8], different languages are possible
for describing an I-Pattern, varying in their degree of formality,
including among others textual descriptions in natural lan-
guage, the Meta Object Facility (MOF [26]), Unified Modeling
Language (UML [25]) class diagrams, ontology languages,
and mathematical formalizations, or combinations of these
approaches. Choosing a specific approach basically has to
consider the needs of the use cases to be supported. While
an object-oriented description might be sufficient for creating
a visualization or a tabular report, e.g. process simulation may

only be reasonably possible on a more formal basis. Therefore,
we propose using a language adequate to the problem to be
addressed, thereby strongly considering UML as the default
language, as it is widely understood and has been found by
us to be problem-adequate in many practical settings in the
context of EA management information models [7]. In case
a language different from UML is chosen, complementing its
specification with an UML-based description can yield advan-
tages, especially as integrating information model patterns is
simplified by them being available in a common language.

visualizes
information of

utilizes for
adressed by communication
1. 1.* 1* 1* 1. 1.*

Concern M-Pattern V-Pattern I-Pattern
is layer for * uses

concepts of

uses results of

Fig. 1. UML class diagram describing the relationship between Concerns,
M-Patterns, V-Patterns, and I-Patterns

The conceptual UML class diagram in Figure 1 shows
the dependencies between the EAM pattern types. The class
Concern in the conceptual diagram reflects the fact, that the
EAM pattern approach is concern driven. Concerns are usually
the entry point for management activities.

In order to improve readability and comparability, the struc-
ture of the EAM patterns is similar to the structure proposed
by [14]: pattern name, problem, solution, and consequences.
Additionally, all EAM patterns include versioning information
in order to be able to differentiate between different develop-
ment stages.

The remainder of the article is structured as follows. Sec-
tion II describes the EAM Pattern Catalog, how it has been
compiled, and its relationship to EAM patterns. Section III
introduces exemplary EAM patterns for addressing architec-
tural standardization, followed by a resume and outlook in
Section IV.

II. THE EA MANAGEMENT PATTERN CATALOG

The EAM Pattern Catalog is a collection of EAM patterns
and has been created in two phases. Thereby, the focus lies
on concerns, M-Patterns, V-Patterns, and I-Patterns, which are
considered relevant and useful by experienced practitioners or
are supported by literature. The catalog utilizes a consistent
terminology and information organization to simplify the
selection, adaptation, and integration of patterns.

The EAM Pattern Catalog is a structured approach, based
on the experience of practitioners and on the concept of EAM
patterns as building blocks of an EA management approach,
which can be tailored to specific demands. Thereby, the whole
approach focuses on addressing specific concerns and does
not build an all embracing model that is ment be used for all
thinkable concerns.

These building blocks avoid a giant, monolithic, and un-
documented information model and replace it by a well
documented and concern specific model, only including the

information needed by enterprise architects. This reduces the
effort that has to be invested in collecting and maintaining the
information to fill the repository.

Documenting typical EA management problems and their
solution as EAM patterns is another advantage of the EAM
Pattern Catalog, leading to an increasing amount of best
practices available to public. This input can be used to incre-
mentally improve the EAM Pattern Catalog. This improvement
process is preferably implemented by a community caring
about review cycles and periodical releases of the EAM Pattern
Catalog.

In a first phase (October 2006 until July 2007), the EAM
Pattern Catalog was initialized by our group based on input
from the following sources:

« Research project Software Cartography, Technische Uni-
versitit Miinchen, Chair for Informatics 19 (e. g. [7], [8],
(22], [35])

« Partners of the research project Software Cartography

e EAM Tool Survey 2005 [28] and EAM Tool Survey
2008 [24]

« Enterprise Architecture at Work (ArchiMate) [18]

« Management von IT-Architekturen (Edition CIO) [10]

¢ IT-Unternehmensarchitektur, 2007 [19]

In a second phase (July 2007 until February 2008), the
initial EAM Pattern Catalog was evaluated by 30 companies
using an extensive online questionnaire to identify methodolo-
gies and viewpoints that are considered relevant and useful by

practitioners'.

A. Structure of the EAM Pattern Catalog

Based on the evaluation of the questionnaire results, the
EAM Pattern Catalog in its present form covers?:

e 43 concerns (48 have been excluded),

e 20 M-Pattern (10 have been excluded),

e 53 V-Pattern (21 have been excluded), and
o 47 I-Pattern (19 have been excluded).

To support navigation and search, the EAM Pattern Catalog
clusters concerns and methodologies according to the follow-
ing EA management topics.

Technology Homogeneity describes methodologies analyz-
ing and managing whether the application landscape relies on
a homogeneous set of technologies and architectures.

Business Processes is concerned with analyzing the interac-
tion of business applications, business processes, and related
entities relevant to business at a high level of abstraction.

Application Landscape Planning is concerned with planning
and analyzing the structure and evolution of the application
landscape, focusing on current, planned, and target landscapes.

Support of Business Processes introduces methodologies for
analyzing, how a specific business process is supported by IT.

ISee [6] for details of the selection process as well as relevance and usage
statistics for each element.

2Numbers in brackets show the number of excluded EAM patterns and
concerns. The complete list of EAM patterns included in the online survey
has been consolidated to patterns identified to be relevant in practice.

Project Portfolio Management is concerned with managing
the portfolio of projects changing the application landscape.

Infrastructure Management analyzes the technical infras-
tructure, on which the application landscape relies, and what
impacts this infrastructure can have on the support that the
business applications provide to the business processes.

Interface, Business Object, and Service Management sum-
marizes methodologies concerned with analyzing and identi-
fying services in the context of service oriented architectures
(SOA). Thereby, the data flows created by communication
via services, and the business objects exchanged via service
interfaces are important aspects of the analyses.

B. Integrating EAM Patterns

Integrating the selected EAM patterns is an important aspect
of using the EAM Pattern Catalog, or other sources of EAM
patterns. Special attention has to be paid to potential conflicts,
inconsistencies, or discrepancies, due to contradictory assump-
tions made by different EAM patterns, especially of different
origins.

Such diverging assumptions may be completely valid for
each of the EAM patterns itself, e. g. due to being based on
different theories, being designed for different environments,
or addressing different concerns. However, when simultane-
ously contained in one specific approach to EA management,
diverging assumptions may easily turn out to be damaging or
depriving results coming from the approach of their validity.
This motivates the need to carefully manage such discrepan-
cies in integrating EAM patterns, preferably avoiding them
altogether. Thus, the below elaborations on integrating EAM
patterns pay special attention to this issue.

1) Integrating M-Patterns: Selecting and integrating M-
Pattern defines, how a specific set of methodologies interacts
in order to address a given set of concerns.

This can be achieved by a process model, which provides
the steps to be taken in EA management. Therein, it exhibits,
according to [21], a basic characteristic of a method itself.
Integrating M-Patterns can rely both on general research in
the field of process models, from systems [21] or software
engineering [30], and also specific process models for EA
management, which are part of some EA management frame-
works, e.g. the TOGAF ADM [34].

Basically, different reasons can lead to a methodology
relying on specific assumptions:

o An M-Pattern may have been tested under specific con-
ditions, other conditions can be known to be detrimental
to the M-Pattern. An example may be factors known to
benefit or impede effective knowledge management [9].

e An M-Pattern may be directly built on a specific (sci-
entific) theory, which is valid under certain assump-
tions [27]. These assumptions then also have to hold for
the M-Pattern to be applicable.

In order to be able to effectively integrate M-Patterns,
these assumptions have to be documented with the respective
pattern. This is necessary to enable a pattern integrator to
manage inconsistencies when integrating M-Patterns. If e. g.

one M-Pattern relies on information passing a formal review
and publication process, while another M-Pattern wants to
subject this information to wiki-style evolution, it has to be
thoroughly checked whether and how these M-Pattern can be
used together.

2) Integrating V-Patterns: Integrating V-Patterns may ap-
pear as the easiest integration task, as viewpoints are, accord-
ing to the IEEE 1471 [17], supposed to be relatively self-
contained. They are demanded to be able to address one or
more concerns on their own, without demanding information
from other viewpoints.

Adopting the idea of patterns to viewpoints offers the
advantage to easily add layers to viewpoints. It is then possible
to e.g. visualize applications on one layer and different key
performance indicators on additional layers. This is the basis
of the so called layering principle [12], which is borrowed
from cartography (see Figure 2 for an example).

Measures

Interconnections

Applications

Base Map

Fig. 2.

Layering principle

3) Integrating I-Patterns: As described in [8], integrating I-
Patterns strongly relies on the integrator’s skills in conceptual
modeling. It may e. g. be possible to identify identical classes
within two I-Patterns to be integrated. However, this may not
be as easy as it might seem at first sight, e. g. by identifying
similar class names. Although EAM pattern designers should
simplify pattern integration by naming different concepts
clearly differently, also across different EAM patterns, this
cannot basically be expected, especially, if patterns from
various catalogs with distinct authors are to be integrated.

Issues in this respect may originate from the simplifications
inherent in the creation of models [31], which may of course
vary in different abstractions underlying different I-Patterns.
A prominent example in this respect can be found in com-
mon abstractions of a business application. In some cases, a
business application signifies an actual system installed in a
specific environment, offering specific functionalities. In other
cases, the term might specify the software itself, making no
statements about specific installations. Usage of the term might
also vary in respect to the versioning information included.

While, as stated above, sensible naming schemes, e.g.
BusinessApplication, DeployedBusinessApplication, Business-
ApplicationVersion, can help preventing such problems, one
must not rely on this alone. Exact definitions of the used
concepts have to be provided by the pattern designers, in order
to enable the pattern integrator to find possibly contradictory
definitions of concepts.

Additional integration problems are possible, of which one
is subsequently exemplified. Consider a case where different

I-Patterns (I-x and [I-y) are integrated, of which one (e.g. I-x)
employs a mandatory, e. g. /.. *, relationship to class contained
in both patterns. In this case, it might be necessary to relax
this relationship to an optional (0..*) one, because otherwise
collecting data for /-y might cause constraint violations in
the model. Nevertheless, it should be possible to use I-y
independently of /-x.

C. Usage scenarios of the EAM Pattern Catalog

Three different usage scenarios are supported by the EAM
Pattern Catalog. The first one is to Establish an organization-
specific EA management approach via EAM Pattern Integra-
tion. In this use case, it is assumed that EA management is
introduced in a green field approach. In this case, first of all
the pain points of the company, the so called concerns, have to
be identified. This is supported by the list of concerns included
in the EAM Pattern Catalog.

The selected concerns include references to M-Patterns that
can be used to address these concerns. According to the
approach sketched in Section I, the methodology described in
the M-Pattern uses certain V-Patterns for visualizing aspects
of the EA, which are referenced by the M-Pattern. Based on
the selected V-Patterns, the associated I-Patterns have to be
selected. The final step is to integrate the EAM patterns to an
organization-specific approach for EA management.

The second usage scenario for the EAM Pattern Catalog
is to use it to Inspire and Asses an already implemented EA
management approach. This offers the possibility to compare
the own EA management approach with best practices in use
elsewhere. The EAM Pattern Catalog can e. g. be used to look
for typical concerns, which occur in other companies. Addi-
tionally, the EAM Pattern Catalog can suggest visualizations
that can be found in academia and practice, which may be
helpful in an already selected EA management approach.

In addition to the application of the EAM Pattern Catalog
in practice, there is a third approach to use the EAM Pattern
Catalog as a basis for academic research. Currently, there is
no common ground for research on EA management, meaning
that there is no approach for EA management, which may
be iteratively enhanced and extended. There are punctiform
approaches for specific EA management topics, see e.g. [3]
and [37], but these lack the integration into a holistic EA
management approach, and the acceptance in wider commu-
nities.

The pattern based approach addresses this deficiency as it
offers the possibility to improve single EAM patterns without
having to create a completely new approach. Furthermore, the
existing EAM Pattern Catalog can easily be extended due to
the openness of the pattern approach.

III. EAM PATTERNS FOR ADDRESSING ARCHITECTURAL
STANDARDIZATION

Due to the relative novelty of the field of EA management,
a company is likely to find itself in a situation, where its
current application landscape is the result of an unguided
evolution over a long period of time. Therefore, it often forms

a grown structure that does naturally not need to constitute
the optimum, e.g. in terms of maintenance costs, flexibility,
or the currently needed business support.

Put in other words, a number of different undesirable
consequences is likely to arise from a lack of guidance in
application landscape evolution. From these consequences,
we chose the problem of low technological homogeneity
and architectural standardization, for which we subsequently
exemplify an approach based on EAM patterns * as introduced
above. The concerns (see C-2 and C-19 in [6]) addressed by
this approach can be stated as questions:

« Which business applications in the application landscape
are individually developed applications?

o To which extent could a reorganization of the application
landscape in respect to the used technologies affect e. g.
licensing or maintenance costs?

o Which technologies used in the application landscape
should be replaced, which should be kept?

o Where in the application landscape are architectural so-
lutions used, and are there areas in the landscape, where
those guidelines are breached?

o What is the build-up of an architectural solution?

In the above questions, a set of terms is introduced, which
is subsequently clarified. The term Technology stands syn-
onymously for a broad variety of concepts, ranging from
programming languages as well as middleware platforms, over
operating systems, to database management systems. All these
concepts, while being very different concerning their usage,
are considered similar here, as they all require a certain set of
skills from the people which have to handle them. Resulting
from this, the necessity to maintain a plethora of different skills
can be considered as one of the undesired consequences of low
technological homogeneity. These skills are e. g. necessary in
development or maintenance.

The second important term relates to the dichotomy of
Standard vs. Individual Software. While the first BusinessAp-
plicationType refers to software products, which have been
introduced into the company’s application landscape after a
customization process, the business applications of the second
type are the results of development projects individually
executed on behalf of the using company. Extensive usage
of individual software may exert a multitude of undesirable
effects, e. g. concerning maintenance. While maintenance for
standard software is provided by the vendor and may be
available in a maintenance agreement at little or perhaps
no cost at all, maintaining individually developed software
commonly requires a new development project. Therefore,
maintenance might fall for all the risks, which are connected
to executing a software development project.

Obviously, not all technologies as introduced above are
likely to be used together, e. g. due to reasons of compatibility
or integration. Further, information on how to integrate certain

3Due to reasons of brevity the patterns are subsequently presented in a more
colloquial form, not explicitly giving the problem, solution, and consequence
section.

technologies has to be taken into consideration, when develop-
ing, evolving, or maintaining business applications. Therefore,
many companies (see e.g. [5]) organize their knowledge on
technologies suiting well on a higher level of abstraction,
namely via Architectural Solutions. These solutions, some-
times also called Technology Stacks or Platforms, define a
set of matching technologies, which are used in application
architecture, e.g, on different tiers together with additional
information on how to integrate these technologies into a
solution to realize e. g. a four tiered architecture. To provide an
example, one could think of an architectural solution “’Internet
Explorer 7.0, Tomcat 5.2, and Oracle 9.2i”.

After having introduced the concept of the architectural
solution, it is possible to explicate the fundamental issue of
technological homogeneity not on the level of single tech-
nologies, but on the level of standardized technology bundles.
It therefore could read as follows: Growing complexity is in-
duced in the application landscape by the uncontrolled increase
of used technologies. This can also be interpreted as an issue
related to the usage of many different architectural solutions,
even ones, which have not been defined to be intended accord-
ing to corporate IT standards. Therefore, an analysis of the
solution conformity of the application landscape can answer
questions as the ones introduced in the concern. Subsequently,
we provide methodologies appropriate for addressing these
concerns.

A. Methodology

In addressing above concerns, an overview of the (deployed)
business applications has to be given, especially taking into
account the application’s architecture and its corresponding
technologies.

M-Pattern M-2 (see [6]) uses information on the software
architecture used by business applications, which can be
collected by the employees operating the actual applications,
although it might be necessary to involve the developers of
the applications in the collection process, as they are likely
to have architectural information an ordinary user might not
have.

Moreover, the information gathered has to be verified. For
doing this, different possibilities can apply, ranging from auto-
mated plausibility and consistency checks to manual reviews.
In this context both, actual users and developers, might have
to be involved, as errors may occur in the data on different
levels. The final step in the methodology, the creation of
visualizations of the information according to the viewpoints
presented below may also be helpful in verifying the data
gathered.

Based on the information, a basic visualization of the busi-
ness applications in the enterprise, e. g. according to their host-
ing at different organizational units is to be created. Having
chosen this basic visualization* from [6], V-67 provides means
to augment the visualization with additional information on

4We have chosen V-23, displaying this hosting relationship via clustering
— a so called cluster map visualization.

standard conformance. In analyzing such annotated visualiza-
tion, the focus is likely to be on the business applications
not conforming to the respective architectural standard. On
the one hand, such business applications might be looked at
specifically, considering e. g.:

o Does it require not to conform with the standard?
e How much are costs thus induced? Who bears these
costs?
« Has the wrong standard been prescribed for the business
application?
On the other hand, analyses can also focus on the totality
of the non-conforming business applications, e. g. looking at:

« What do they have in common?

o Are the standards inadequate for important parts of the
application landscape?

o Are there organizational units for which there are no
means of enforcing the standards?

Considerations, as the ones elaborated above, are inevitable
connected to architectural standards being understood as a
boundary object® between the community of the enterprise
architects on the one and the community of the software
architects on the other hand. A common understanding of
these concepts is thereby necessary, to rise technological
homogeneity while not overly restricting flexibility in software
development.

M-Pattern M—-4, based on M-2, is to be applied, in
order to manage the evolution of the application landscape,
especially in cases where high technological inhomogeneity is
experienced. The methodology helps to control the evolution
by setting architectural standards, i.e. defining architectural
solutions and assigning them to business applications. In
performing this, three major steps should be executed: Setting
Standards, Applying Standards, and Enforcing Standards.

For setting standards, questions as the following should
be considered, to determine the build-up of the respective
architectural solutions:

e Which components may a business application consist of
and how may these communicate?
o Which infrastructure software does a component rely on?

The next step, applying standards, is concerned with defin-
ing, which application should conform to which standard.
In this context, it might be possible to breach the standard
conformity, if beneficial for business success. However, if
such an exception to the standard is allowed, it should further
be considered, who (i.e. which business entity) receives the
benefit of this exception, in contrast to who bears the cost
induced thereby.

The final step, enforcing standards, involves methods for de-
termining business applications not conforming to the standard
(e. g. via the analyses as introduced in M-2), and evaluating

SA boundary object is an object which allows members of different
communities to build a shared understanding in respect to certain things.
Boundary objects are interpreted differently by the different communities,
and realizing as well as discussing these differences can lead to a shared
understanding [32], [33].

the reasons for the business applications not to conform.
If such an evaluation was performed, subsequently different
proposals on future states of the application landscape and its
conformance to architectural standards should be created and
analyzed via the techniques as introduced with M-Pattern M-2.
In discussing business applications currently not conforming to
the standards, questions as the following should be considered:

o Has the wrong standard been set for a business applica-
tion?

o Are there excessive costs for getting conformant to the
standard?

o Is there a benefit from conforming to the standard, which
cannot be realized in the context of the specific business
application?

o Should a special charge for allowing a non standard
solution be applied?

The methodologies, as alluded to above, are seamingly
tightly interconnected, i.e. integrating them should be easy.
This is true, as especially in executing the concrete analyses,
the methodologies can be seen as complementary. In these
discussions, visualizations showing the central aspects consid-
ered by the respective methodologies are likely to be used
synoptically. Thereby, additional insight on interdependencies
between non-conformity of business applications and technol-
ogy related causes therefore might be gained. Here, especially
the usage of M—2 techniques in evaluating application land-
scape proposals created in M—4 processes has to be noted.

B. Viewpoints

In order to address the concerns and answer the questions
as stated above, the viewpoint presented in Figure 3 can be
utilized.

V-Pattern V-67 is a layer for a cluster map (V-Pattern
V-24) (see [6]). The cluster map is a software map utilizing
nesting of symbols to show the grouping of business applica-
tions to logical units. Figure 3, for instance, visualizes which
business application is hosted by which organizational unit by
nesting the graphical representations of a business application
into the symbol representing the corresponding organizational
unit. The nesting of the rectangle Online Shop (100) inside
the rectangle Munich thus means, that this organizational unit
hosts the business application. It has to be noted, that the
cluster map does neither specify how the rectangles repre-
senting logical units should be arranged on the map nor how
the different elements nested into a logical unit should be
positioned in relation to each other. Therefore, the positioning
of the rectangles can be chosen to suite aspects as e.g. area
minimization.

The viewpoint, of which an example is shown in Figure 3,
further employs an additional layer, which illustrates via color-
coding, which business application conforms to an archi-
tectural standard. Furthermore, approved exceptions to the
defined standards are shown utilizing a symbolic annotation
(check mark). Reasons for an exception to the defined standard
might e. g. be the usage of a standard software or an interim
solution, which is going to be changed in the near future.

Munich

Hamburg

POS System
(Germany/Munich)
(1600)

Campaign
Management
System (1500)

II

hosting Business
Application (C)

|

|

|

|

|

.
Organizational Unit (A) |
|

|

|

|

Business Application (B) is |
does not need to conform to |
the respective architectural |
standard |

Fig. 3. V=67 on V-24: Example of the viewpoint indicating business
application standard conformity

In order to integrate viewpoints V-24 and V-67, the layering
principle as introduced in Section II-B is utilized. Thereby,
a colored rectangle of the same size is positioned above the
rectangle representing the respective business application, if
such information is available. Further, a check mark is placed
in the upper right corner, if the business application is based
on an approved exception.

Whereas V-Pattern V-67 can be utilized to answer some of
the questions in Section III-A, additional information about the
technological build-up of an architectural solution is needed to
answer questions on the structure of an architectural solution.

V-Pattern V-23 can be used to illustrate the used tech-
nologies for a given architectural solution. Figure 4 shows
an exemplary view according to viewpoint V=23, which lists
the technologies used by different architectural solutions.
Thereby, the x-axis consists of the used technologies and the
architectural solutions under consideration make up the y-axis.
A cell is consequently marked, if the respective architectural
solution uses the corresponding technology.

Used
Proprietary
Apache 2.0.53 | Bea Weblogic DB2 6.0 1E6.0 Oracle 9i Fat-Client Tomcat 5.1

§|_Archsol1a X X X X
5
5 |_Archsol1b X X X X
£ | Archsol2a X X
5

X X
%’ ArchSol2b
< ArchSol3 X X X

Fig. 4. V=23 (v1.1): Technologies used by Architectural Solutions

In order to address the concerns as mentioned in Sec-
tion III-A and answer the questions outlined in Section III,
the viewpoints as introduced above can be utilized. Thereby,
different information has to be gathered to create the view-

points as illustrated above. The following section supplies the
concepts on which the viewpoints are built and introduces an
approach to integrate them.

C. Information Model Patterns (I-Pattern)

For every viewpoint as presented in the preceding section,
specific information on the business applications, their under-
lying architectural solutions, and the supporting technologies
has to be gathered. In order to complement this, we present
the information model patterns needed in this context in a
first step. In a second step, we elaborate on issues arising in
integrating these I-Patterns and finally provide an integrated
information model.

I-Pattern I-23 This information model pattern (see Fig-
ure 7) is taken from [6] and can be utilized to model data on
the technologies used by architectural solutions.

ArchitecturalSolution Technology

name : String name : String

* uses L

Fig. 5. UML class diagram of pattern 1-23

The concepts presented form the basis of a language usable
for describing application architectures, i. e. they might be seen
as elements of an Architecture Description Language (ADL).
In the context of this I-Pattern, the necessity to expand the
model to a full-scale ADL is not given. The pattern is only
the cutout of a more sophisticated model presented as I-66
in [6], which can be used for further detailing the architectural
build-up of business applications.

The core concepts for describing the architecture, which are
used in the context of I-23, can be defined as follows:

e An ArchitecturalSolution is a concrete stack of corre-
sponding technologies, which are intended to be used
together in realizing business applications, together with
additional information on how to integrate these technolo-
gies into an complex architecture. Combining technolo-
gies together to a solution among others indicates, that
components created from the technologies are technically
suited for interaction and integration.

e A Technology represents a technical constituent of a
business application, ranging from an implementation
framework or platform to a database management system
or user interface toolkit. Exemplarily spoken, technolo-
gies may be ”Apache 2.0.53” or “Oracle 9.2i”.

o The association uses indicates, which architectural solu-
tion uses which technologies.

I-Pattern I-67 Below, we present version 1.1 of the infor-
mation model pattern I-67 (see Figure 6).

The classes, as used in this pattern can be defined as follows:

o A BusinessApplication is a software system, which is part

of an information system within an organization. An in-

formation system is therein according to [20] understood

BusinessApplication ArchitecturalSolution

id ¢ String . name : String

name : String conformsTo 0.1
/standardConform : Boolean realizedSolution
fexceptionfllowed : Boolean

type : BusinessApplicationType allowed .

allowedSolutions

«EnuUMerations
BusinessApplicationType

STANDARD
INDIVIDUAL

«singletons
NoArchitecturalSolution

+ name : String = "Mon"

Fig. 6. UML class diagram of pattern I-67

as a socio-technological system composed of a software
system (i.e. the business application), an infrastructure,
and a social component, namely the employees working
with the system. An information system is further de-
scribed as contributing to the business process support
demanded by the organization.

o The NoArchitecturalSolution represents the Non-Solution,
i.e. it means, that an associated business application does
not follow or does not need to follow any architectural
solution.

o The BusinessApplicationType is used to model, whether
a business application has been developed as a piece of
individual software or is a bought standard solution.

o The association allowed explicates, which architectural
solutions are per standard available for realizing the
corresponding business application. Therein, the non-
solution, as reflected by the singleton instance of the
class NoArchitecturalSolution, is used to represent, that
a business application does not need to conform to any
architectural solution. This is especially necessary, to
distinguish between the prescription of no solution vs.
the absence of a prescription of that kind, i.e. missing
data.

o The association conformsTo indicates, in accordance to
which architectural solution a business application is
actually realized. Such a solution might be the singleton
instance of the NoArchitecturalSolution, thereby indicat-
ing, that no standard solution has been used. Further,
no such information might be present, described by the
absence of an associated solution.

For determining information about the standard confor-
mance of the business applications, such as displayed in
Figure 3, the derived attributes standardConform and excep-
tionAllowed are used. The values of these attributes are derived
by expressions similar to the following®:

standardCon form =
null for (realizedSolution = null) Vv

(allowedSolutions = null)
realizedSolution € allowedSolutions
realizedSolution & allowedSolutions

true for
false for

6These expressions might be realized in the Object Constraint Language
(OCL). For reasons of readability, we chose a mathematical notation instead.

respectively

exceptionAllowed =
null for allowedSolutions = null
true for NoArchitecturalSolution €
allowedSolutions
false for NoArchitectural Solution &
allowedSolutions

In deriving these values, the result null is used to indicate,
that based on the current information no valid statements on
the respective property can be made.

I-Pattern I-24 This pattern (see Figure 7), commonly
alluded to as cluster map information model pattern, provides
the basic concepts necessary for displaying business applica-
tions clustered according to the organizational unit, they are
hosted at.

BusinessApplication
id ¢ String
name : String

OrganizationalUnit

name : String 1 hosts *

Fig. 7. UML class diagram of pattern 1-24

This pattern introduces two additional concepts:

e An OrganizationalUnit represents a subdivision of the
organization according to its internal structure. Possible
examples are the entities showing up in an organigram.

o The association hosts indicates, which organizational unit
is responsible for hosting a business application.

Integrating the Information Model Pattern As outlined in
Section II-B, a naive approach to integration could be, speak-
ing graphically, described as glueing these pattern together at
common classes. In the exemplary patterns presented here, the
classes BusinessApplication and ArchitecturalSolution would
provide a good starting point. Nevertheless, such an integration
approach might negatively influence the usability of the parts
of the integrated information model — as e. g. multiplicity con-
straints imposed in one pattern might prevent a class common
to two patterns from being instantiated without the need to
provide further, but not instantly necessary information. The
integrated information model as presented in Figure 8§ takes
this fact into account and performs suitable adaptations. These
adaptations, that discriminate the information model from a
purely glued solution, are subsequently detailed.

We relaxed the multiplicity constraint on the Technology
end of the uses association connecting architectural solu-
tions and their used technologies. This was performed, to
accommodate to the existence of the singleton instance of
the NoArchitecturalSolution, which does not need to specify
technology usage. The second constraint to be relaxed applies
at the OrganizationalUnit end of the hosts association between
organizational units and business applications. Here, the end
has been marked optional, such that a business application and
its related architectural solutions can be modeled without first

OrganizationalUnit Technology

name : String name ! String

0.1 *

hosts
uses

*

BusinessApplication ArchitecturalSolution

id : String name : String

name : String conformsTo
JstandardConform : Boolean . 0.1
Jexceptionfllowed : Boolean "
type : BusinessfpplicationType allowed

senumerations

asingleton=
BusinessApplicationType

NoArchitecturalSolution

STANDARD + name : String = "Non"
INDIVIDUAL
Fig. 8. UML class diagram of the integrated model

having to specify the organizational unit, the application is
hosted at.

IV. RESUME AND OUTLOOK

The article outlined an approach for consolidating, pub-
lishing, and advancing detailed practices for addressing EA
management concerns. Thereby, the idea of design pattern,
as originally introduced by [1], and made prominent in soft-
ware engineering by [14], constitutes the foundation of the
approach.

A research direction we pursue in this respect concerns the
integration of EAM patterns. We are currently applying the
EAM Pattern Catalog and parts thereof in EA management
projects in practice, in order to validate our integration ideas
presented in Section II-B, and find other challenges connected
to integrating and implementing the patterns in a practical
setting [2], [11].

The article also presented the EAM Pattern Catalog, a
collection of best practices for EAM building on the pattern
based approach. As another research direction for pattern
integration, we are presenting the patterns in the catalog as
extensions to EA management frameworks. As mentioned
in Section I, frameworks like TOGAF or Zachman leave
details about procedures to be taken, visualizations to be
used, and data to be collected relatively open. Therefore, we
view integrating the patterns from the catalog into an EA
management framework as an effort complementing the high-
level guidance provided by the frameworks with the detailed
practices of the catalog.

As the catalog’s utility depends on fostering, advancing,
and establishing the specific patterns as accepted solutions
to EA management problems, we are planning to evolve
them via a community process. Thereby, we would like to
apply approaches used in pattern communities in software
engineering.

We are planning to put a web platform at the center of
our activities to create an EA management pattern community,
allowing users to exchange related information:

o Accessing the patterns, navigating along the pattern
graph, and downloading related content, as e.g. the
information models in XMI format, or related tools, e. g.
for creating the visualizations

o Creating new versions of pattern, including the respective
versioning workflows and statuses (in work, in review,
etc.)

o Commenting on patterns, discussing about them, voting
on patterns, or conducting surveys about them

« Reports of usage in practice

In creating an EA management pattern community, we are
not planning to rely on a web platform alone. By initiating ac-
tivities, from driving publications about worthy enhancements
to patterns, to organizing workshops targeted at improving
patterns in a cooperation of practitioners with researches, we
plan to bring and keep alive a pattern community enhancing
and establishing the pattern catalog.

To exemplify a possible enhancement, a potential approach
for advancing patterns addressing architectural standardization
could be introducing quantitative techniques, as e. g.:

e Metrics measuring degrees of architectural standardiza-
tion, in order to be able to distinguish finer degrees of
conformance, or

o Quantitative models for estimating the effect of archi-
tectural standardization or its absence on key quality
attributes of an application landscape, as e. g. flexibility to
change or incorporate new functionality, or scalability in
cases of increased load. Such quantitative models might
e.g. rely on simulations of processes running in and
affecting an application landscape.

Techniques as mentioned above can be used in M-Patterns
to make more founded decisions regarding which architectural
standards to prescribe, and when to allow which deviations
from them. By being able to measure the deviations, and
predict their negative effects, checking whether they are worth
a benefit expected from a nonstandard architecture becomes
basically a business case decision.

As far as those approaches might seem from current prac-
tices, as e.g. put forward by EA management tools, or EA
management frameworks, they point in a direction where
EA management is less an art practiced by IT staff, but
a science providing documented, predictable approaches to
experts supporting business with the IT it needs. Building the
EA management pattern catalog constitutes a key advancement
in this direction to us.

REFERENCES

[1] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, USA, 1977.

[2] M. Bohme. Softwarekartographie — Analyse und graphische Visu-
alisierung von Teilen der Anwendungslandschaft des Klinikums der
Universitit Miinchen. Bachelor thesis, Technische Universitidt Miinchen,
Fakultét fiir Informatik, 2008.

[3]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

B. Braatz, C. Brandt, T. Engel, F. Hermann, and H. Ehrig. An Approach
using formally well-founded Domain Languages for secure coarse-
grained IT System Modelling in a real-world Banking Scenario. In 18th
Australasian Conference on Information Systems (ACIS’07), 2007.

C. Braun, R. Winter A Comprehensive Enterprise Architecture Meta-
model and Its Implementation Using a Metamodeling Platform. EMISA
2005, pp. 64 - 79.

K. Brendebach. Integrierte Modelle und Sichten fiir das IT-Management.
Diploma thesis, Technische Universitit Miinchen, Fakultit fiir Infor-
matik, 2005.

S. Buckl, A. Ernst, J. Lankes, and F. Matthes. Enterprise Architecture
Management Pattern Catalog (version 1.0, february 2008). Technical
report, Chair for Informatics 19, Technische Universitdt Miinchen, 2008,
http://www.systemcartography.info/eampc.

S. Buckl, A. Ernst, J. Lankes, F. Matthes, C.M. Schweda, and A. Wit-
tenburg. Generating Visualizations of Enterprise Architectures using
Model Transformation (extended version). Enterprise Modelling and
Information Systems Architectures - An International Journal, Vol. 2(2),
2007.

S. Buckl, A. Ernst, J. Lankes, K. Schneider, and C.M. Schweda.
A Pattern based Approach for Constructing Enterprise Architecture
Management Information Models. In A. Oberweis, C. Weinhardt,
H. Gimpel, A. Koschmider, V. Pankratius, and Schnizler, editors,
Wirtschaftsinformatik 2007, pages 145-162, Karlsruhe, Germany, 2007.
Universititsverlag Karlsruhe.

T. Davenport, D. De Long, and M. Beers. Successful Knowledge
Management Projects. Sloan Management Review, Vol. 39(2), 1998.
G. Dern. Management von IT-Architekturen (Edition CIO). Vieweg,
‘Wiesbaden, 2006.

T. Dierl. Modelle, Methoden und Sichten fiir das Compliance Manage-
ment. Bachelor thesis, Technische Universitit Miinchen, Fakultit fiir
Informatik, 2008.

A. Ernst, J. Lankes, C.M. Schweda, and A. Wittenburg. Using model
Transformation for Generating Visualizations from Repository Contents
- an Application to Software Cartography. Technical report, Technische
Universitdt Miinchen, Chair for Informatics 19 (sebis), Munich, 2006.
U. Frank. Multi-Perspective Enterprise Modeling (MEMO) - Conceptual
Framework and Modeling Languages. In: Proceedings of the 35th
Annual Hawaii International Conference on System Sciences 35 (2002)
E. Gamma, R. Helm, J.R., and J.M. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software (Addison-Wesley Professional
Computing Series). Addison-Wesley Professional, 1994.

N. Harrison, P. Avgeriou, and U. Zdun. Architecture Patterns as
Mechanisms for Capturing Architectural Decisions. TEEE Software
(September/October 2007), 2007.

N. B. Harrison and P. Avgeriou. Leveraging Architecture Patterns to
satisfy Quality Attributes. In: Proceedings of the ECSA 2007, LNCS
4758. Springer-Verlag Berlin Heidelberg, 2007.

IEEE. IEEE Std 1471-2000 Recommended Practice for Architectural
Description of Software-intensive Systems. 1EEE Computer Society,
2000.

H. Jonkers, L. Groenewegen, M. Bonsangue, and R. van Buuren. A
language for enterprise modelling. In L. Marc., editor, Enterprise
Architecture at Work. Springer, Berlin, Heidelberg, New York, 2005.
W. Keller. [IT-Unternehmensarchitektur. dpunkt.verlag, Heidelberg,
2007.

H. Krcmar. Informationsmanagement. Springer, Berlin, 4 edition, 2005.
K. Kronlof, editor. Method integration: Concepts and Case Studies.
John Wiley & Sons Ltd., Chichester, 1993.

J. Lankes, F. Matthes, and A. Wittenburg. Softwarekartographie: Sys-
tematische Darstellung von Anwendungslandschaften. In: Wirtschaftsin-
formatik, 2005.

J. Lankes and C.M. Schweda. Using Metrics to Evaluate Failure
Propagation and Failure Impacts in Application Landscapes. In Multi-
konferenz Wirtschaftsinformatik. GITO-Verlag, Berlin, 2008.

F. Matthes, S. Buckl, J. Leitel, and C.M. Schweda. Enterprise Architec-
ture Management Tool Survey 2008. Technische Universitit Miinchen,
Chair for Informatics 19 (sebis), 2008.

OMG: UML 2.0 Superstructure Specification (ptc/04-10-02), 2004.
OMG: Meta Object Facility (MOF) 2.0 Core Specification (formal/06-
01-01), 2006.

M. Schermann, T. Bohmann, and H. Krcmar. Fostering the Evaluation
of Reference Models: Application and Extension of the Concept of IS

(28]

[29]

(30]
[31]
(32]

(33]

(34]

[35]

[36]

[37]

Design Theories. In 8. Internationale Tagung Wirtschaftsinformatik (to
be published), Karlsruhe, 2007. Karlsruher Universititsverlag.

sebis. Enterprise Architecture Management Tool Survey 2005. Technis-
che Universitdt Miinchen, Chair for Informatics 19 (sebis), 2005.
Senate of the United States of America. Public Company
Accounting Reform And Investor Protection Act Of 2002. In
The Library of Congress - Congressional Record, Washington, 2002,
http://thomas.loc.gov/beta/bill View.jsp?&k2dockey=/prd/k2/congressional
_record/xml/107/S15JY2/S15JY2-0013.xml @cong_record.

I. Sommerville. Software Engineering. Pearson Education Ltd., Edin-
burgh, 7 edition, 2004.

H. Stachowiak. Aligemeine Modelltheorie. Springer-Verlag, Wien, 1973.
S.L. Star and J.R. Griesemer. [Institutional Ecology: ’translations”
and coherence: Amateurs and professionals in berkeley’s museum of
vertebrate zoology. Social Studies of Science, Vol. 19(3):387-420, 1989.
J. Striibing. Soziale Welten - Arenen - Grenzobjekte. In 29. Kongress
der Deutschen Gesellschaft fiir Soziologie (Sektion Wissenschafts- und
Technikforschung), Freiburg, 1999.

The Open Group. TOGAF (The Open Group Architecture Framework).
Version 8.1 "Enterprise Edition”. The Open Group, 2003.

A. Wittenburg. Softwarekartographie: Modelle und Methoden zur
systematischen Visualisierung von Anwendungslandschaften. PhD thesis,
Fakultit fiir Informatik, Technische Universitdt Miinchen, 2007.

J. Zachman. Extending and Formalising the Framework for Information
Systems Architecture. IBM Systems Journal, Vol. 31(3), 1992.

O. Zimmermann, T. Gschwind, J. Kiister, F. Leymann, and N. Schuster.
Reusable architectural decision models for enterprise application devel-
opment. In S. Overhage, C. Szyperski, editor, QOSA 2007, Springer,
Heidelberg, 2007.

