

Assessing the Cost and Benefit of a Microservice Landscape Discovery Method -A Case Study at a Large German Enterprise

Ludwig Achhammer (B.Sc), Master's Thesis Final Presentation, 07.10.2019

Chair of Software Engineering for Business Information Systems (sebis) Faculty of Informatics Technische Universität München wwwmatthes.in.tum.de

Agenda

ТШТ

- 1. Motivation & problem statement
- 2. Research questions
- 3. Solution concept

4. Case study

5. Evaluation Results

Motivation

Enterprise Architecture Documentation is a challenge ever since for EAM

- Relevant EA information is scattered across diverse information systems and stakeholders [5]
- Ongoing tracking of changes to keep the model up to date [1, 2]
- EAD is mostly performed manually; often there is no defined process and responsibilities [1]

→ EA Documentation is a time-consuming, cost intensive and error-prone task [1, 2, 3]

Recent trends challenge EAD processes all the more:

- Growing adoption of agile development practices (DevOps, Scrum, CI/CD) [7]
- Growing usage of cloud- and microservice based applications [3]

Implications → Automation has become a must to cope fast-paced EA environments!

Challenges [3]:

- accelerated architectural change
- increasing diversity of technologies
- increasing architectural complexity

Opportunities [8]:

- new valuable EA data sources
- easy access via exposed APIs

Agenda

ТШ

1. Motivation & problem statement

2. Research questions

3. Solution concept

4. Case study

5. Evaluation results

Solution Approach

Key characteristics

- Runtime data retrieved from cloud platforms and distributed tracing
- Static information provided with a configuration file
- Pipeline-driven EA documentation

*taken from "IT Landscape Discovery via Runtime Instrumentation for Automating Enterprise Architecture Model Maintenance", Kleehaus M. et al., 2019

RQ1 How can the suggested solution be integrated into agile development and what challenges do occur? What EA model elements should be documented and to what degree can this be automated using the RQ2 solution approach? RQ3 What are the solutions integration costs and value propositions for Enterprise Architecture Management?

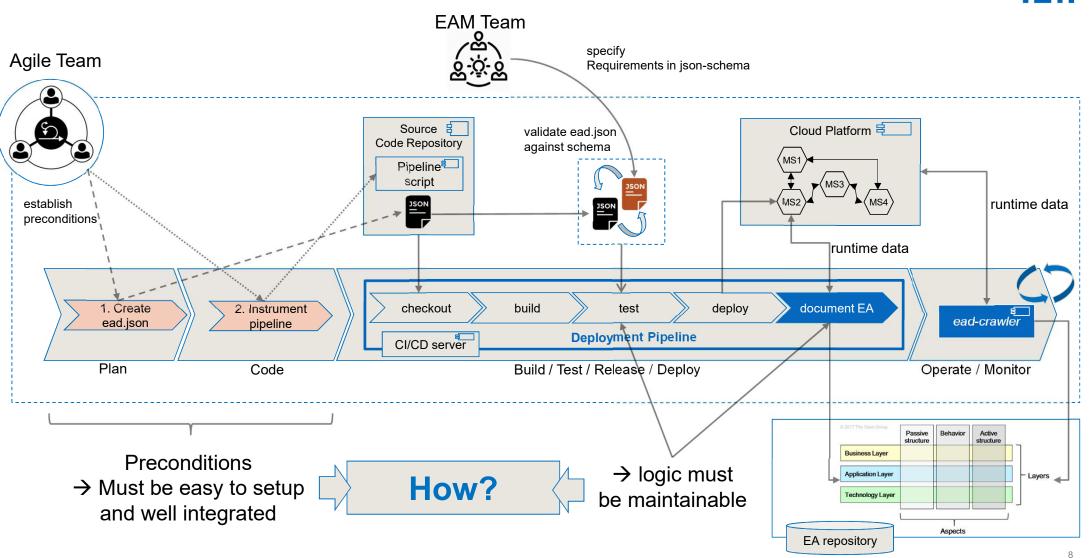
Research Questions

Agenda

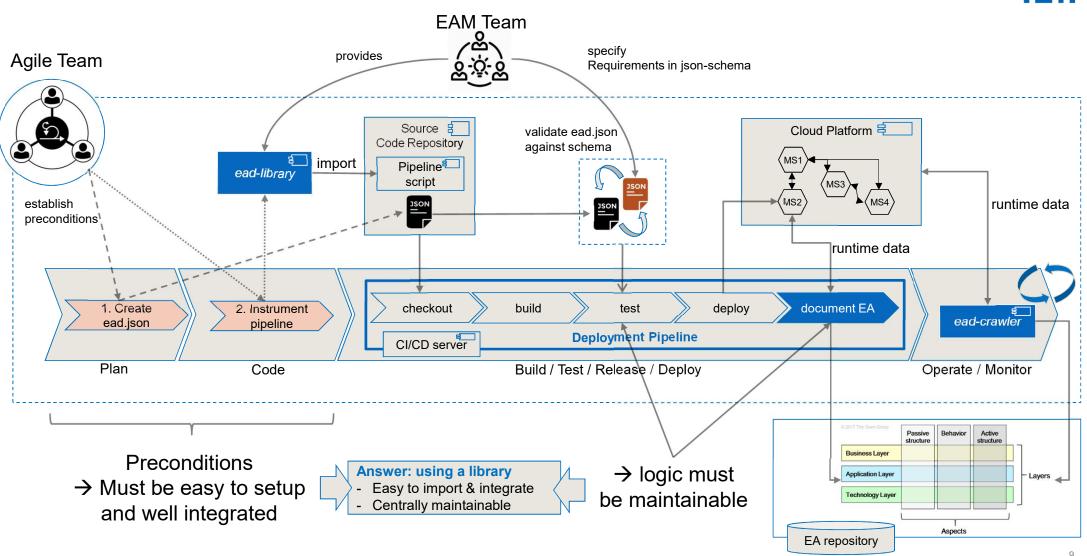
1. Motivation & problem statement

2. Research questions

3. Solution concept


4. Case study

5. Evaluation results



How can the solution be integrated easily?

пп

How can the solution be integrated easily?

пп

Example: ead.json configuration file

Necessary steps:

1. Copy&paste the template

2. Fill-in the template (see example below)

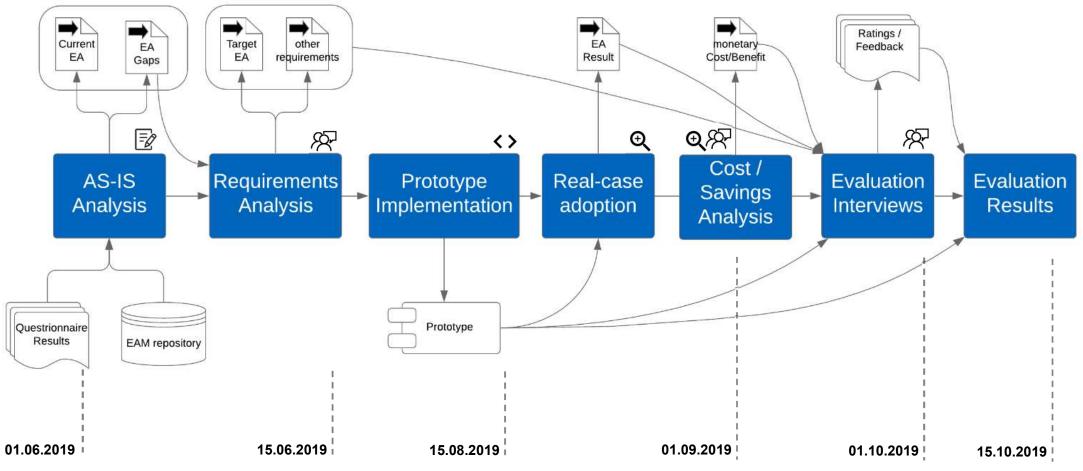
Example:

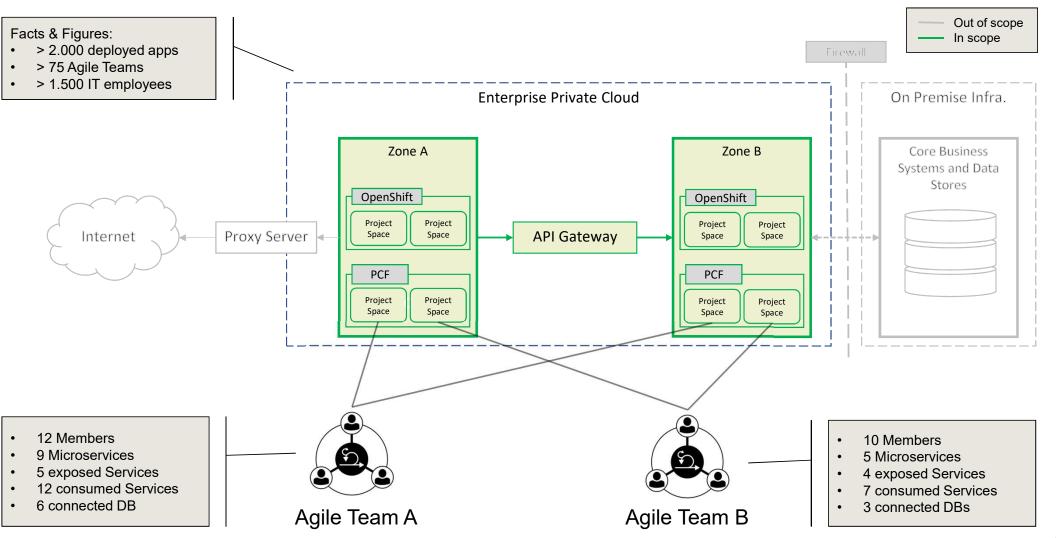
```
"application component name": "ProposalService",
"description": "reads and stores proposals [...]",
                                                                Descriptive information
"superordinate application": "Offering-Services",
"business domains": [
     "Domäne A",
      "Domäne B"],
"business process": ["Process A"],
"business units": [
                                                                Business Layer Relationships
     "Unit A",
      "Unit B"],
"business objects": [
     "Offering",
      "Proposal",
"<federated_information_source_1>": "<URL>",
"<federated_information_source_2>": "<URL>",
                                                                Federated information sources
```

ПΠ

Agenda

- 1. Motivation & problem statement
- 2. Research questions
- 3. Solution concept
- 4. Case study

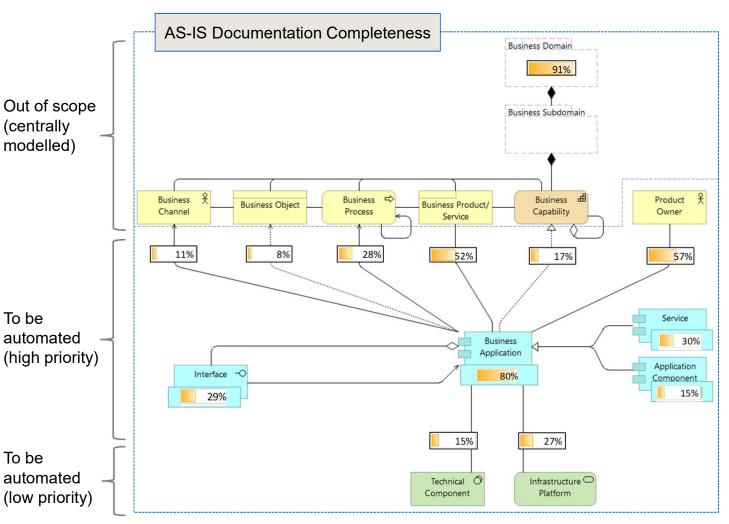

5. Evaluation results



Evaluation Environment – a large German enterprise

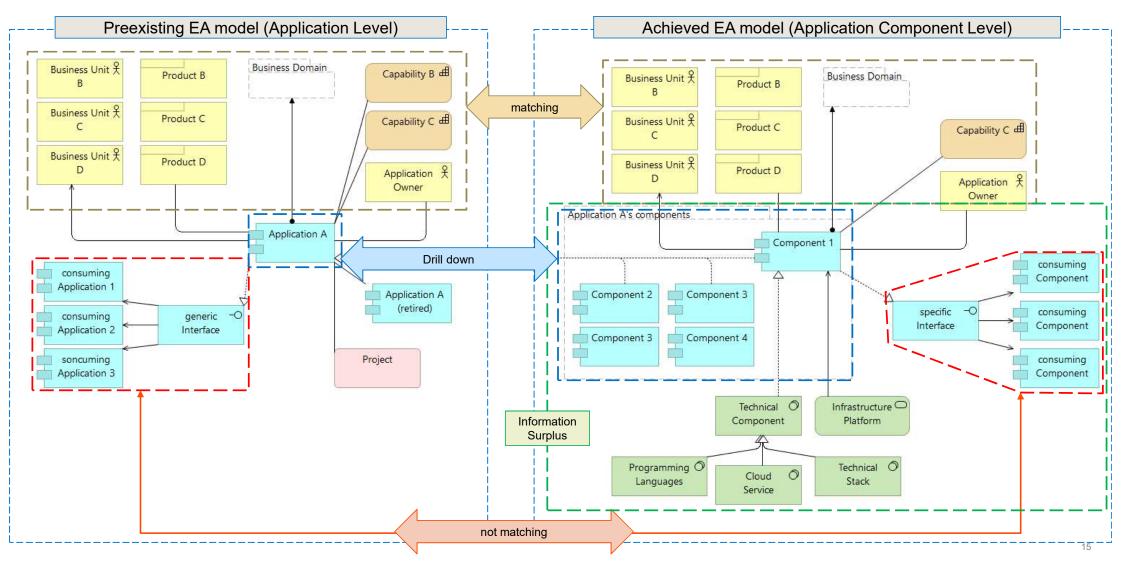
Status Quo and automation requirements

1. Requirements Analysis

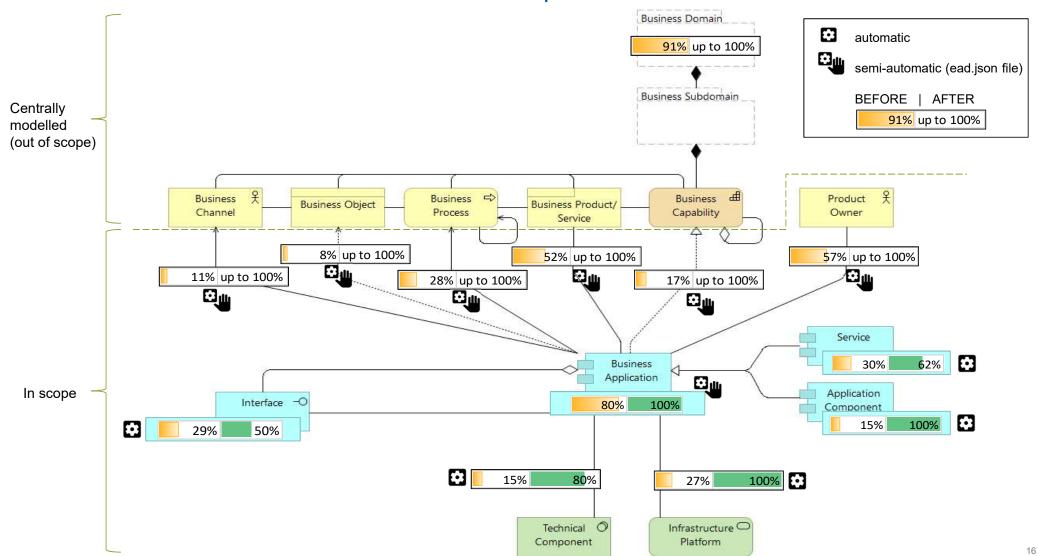

- What should be documented?
- What should be automated?
- \rightarrow Automation priority rank

2. Selection of information sources

- What EA elements are covered?
- Does this correspond to automation priority?
- \rightarrow EA contribution matrix


3. Information sources selected

- CloudFoundry (cloud platform)
- ApiGee (API gateway)
- GitHub (VCS) incl.
 - Config-files
 - ead.json file



Achievements - Example

Achievements – Overall Documentation Completeness

πп

Economic feasibility based on expert estimation

210k EUR invest amortised in 4 to 5 years plus non-monetary benefits

Agenda

1. Motivation & problem statement

2. Research questions and approach

3. Solution concept advancement

4. Case Study

5. Evaluation Results

ТШ

Interview Register

Experts of different roles:

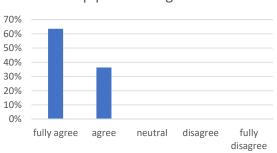
- Enterprise Architects
- Domain Architects
- Product Owner
- Developer

- \rightarrow responsible for EAM repository (meta model, modelling guidelines, automation)
- \rightarrow responsible for EA model of a certain domain
- \rightarrow responsible for EA model of a certain application
- ightarrow no responsibility within EA but directly affected by the solution

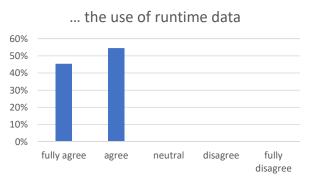
	EA1	EA2	EA3	EA4	EA5	EA6	EA7	EA8	EA9	DA1	DA2	DA3	DA4	PO1	PO2	DEV1	DEV2	#
Years Of Experience	8	1,5	11	9	2	5	2,5	5	7	8	10	1	2	3	2,5	6	7	
AS-IS EA Documentation Survey	Х	Х	Х	X	X	Х	Х											7
Requirements Analysis Interview	Х	Х																2
Cost & Savings Estimation		Х	Х				Х			Х								4
Evaluation Interview		Х	Х			Х	Х	Х	X	Х	Х	Х	Х	Х	Х	X	Х	14

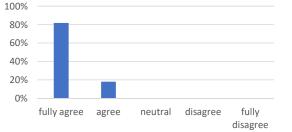
Enterprise Architect	6
Domain Architect	4
Product Owner	2
Software Developer	2
	Domain Architect Product Owner

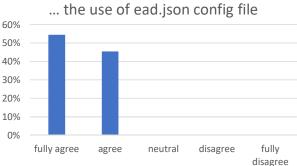
27


TOTAL:

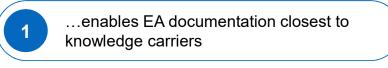
Effectiveness


The solution is perceived practicable and well suited for EA model maintenance automation


The approach is reasonable and practicable with regards to...



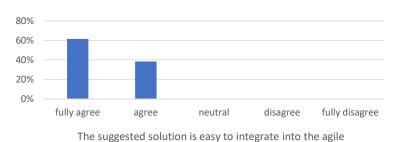
... pipeline integration



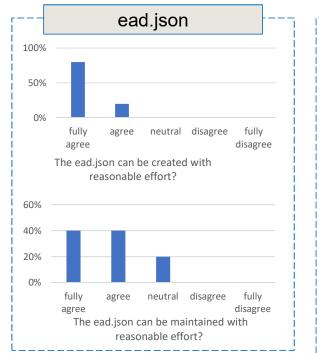
... responsibility of agile teams

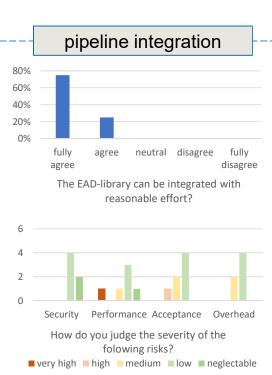
Key Feedback & Findings

- 2 ...engagement of agile teams is a necessity to scale EA documentation
- 3 ...ead.json is crucial to make runtime data valuable & useable for EA


Concerns & Suggestions

2


- ...too much focus on AS-IS state of EA
 - ...need to start automation from the EA planning phase


Ease of Use

The solution is easy to adopt and well integrated with agile development

development process?

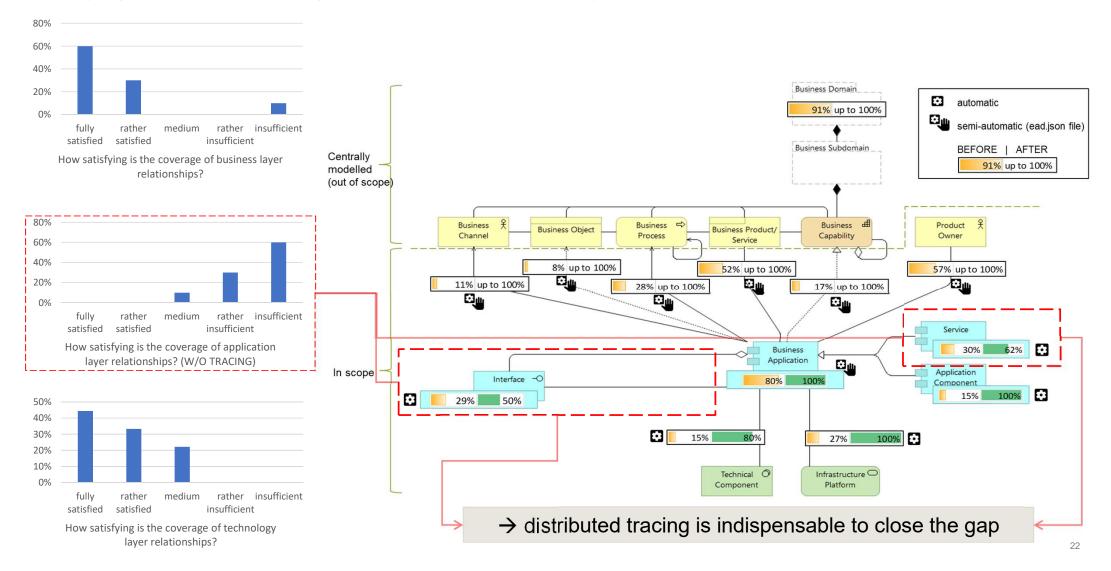
Key Feedback & Findings

- ...fits well into agile development process
- ...lightweight and easy to adopt

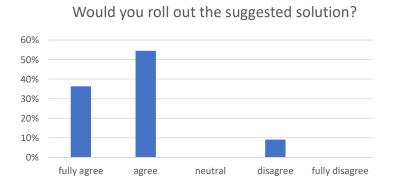
Concerns & Suggestions

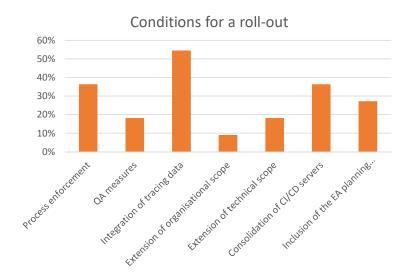
2

3

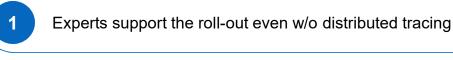

2

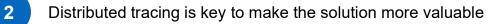
...technical enforcement required


...bind ead.json to the runtime artefacts


EA model coverage & perceived satisfaction

Satisfying EA model coverage except for application layer relationships




Conclusion

Key Feedback & Findings

Potential future use cases

2

3

Definition and calculation of KPIs based on real-time data

Automatic assessment of architectural guideline compliance

Backup

TLM sebiš

Ludwig Achhammer

Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

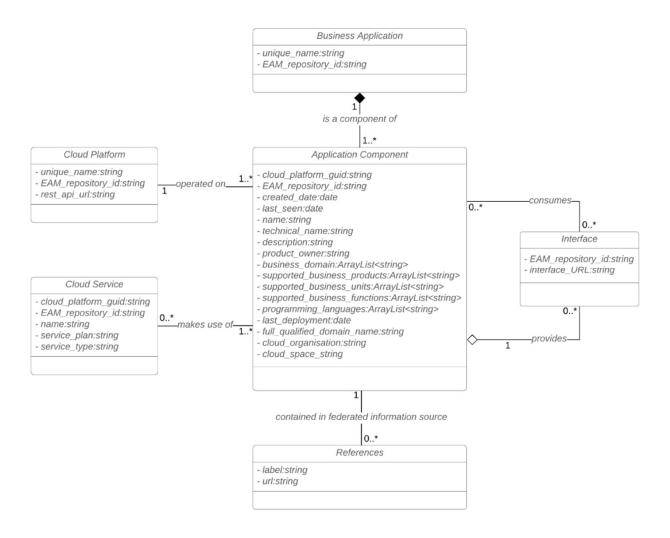
Boltzmannstraße 3 85748 Garching bei München

Tel +49.89.289. Fax +49.89.289.17136

ludwig.achhammer@tum.de wwwmatthes.in.tum.de

Backup

Estimated cost & savings


		current data stock	documentation gap	total data stock
		PERT SUM	PERT SUM	PERT SUM
		PERTSUIVI	PERTSUIVI	PERTSUIVI
	monthly efforts in hours	39,96	16,69	56,65
ST	monthly Cost in EUR	3.995,56€	1.669,30€	5.664,86€
COST				
	yearly Cost in EUR	47.946,70€	20.031,63 €	67.978,33€
	monthly savings in hours	24,40	8,57	32,96
	monthly savings in EUR	2.439,69€	856,72€	3.296,40 €
GS				
SAVINGS	yearly savings in EUR	29.276,22€	10.280,62€	39.556,84 €
SA				
		PERT SUM	PERT SUM	PERT SUM
	Savings Potenial	61%	51%	58%

		Effot in hours	Cost in €	Percentage
	GRAND TOTAL - IMPLEMENTATION	557,00	55.700,00€	26%
	TOTAL - Preparation	50,67	5.066,67 €	9%
	RampUp / Documentation	25,33	2.533,33€	50%
	Concept / Planning	25,33	2.533,33€	50%
	TOTAL Cost - EAM Integration	52,00	5.200,00 €	9%
ē	Backend Extension	0,00	- €	0%
IMPLEMENTATION	Iteraplan Integration	52,00	5.200,00€	100%
VEN	TOTAL Cost - EA Source Integration	454,33	45.433,33 €	82%
LEN	CloudFoundry	37,79	3.779,17€	8%
₽	Kubernetes	37,79	3.779,17€	8%
=	ApiGee	31,29	3.129,17 €	7%
	Github	19,42	1.941,67€	4%
	Jenkins	11,79	1.179,17€	3%
	ead.json	38,92	3.891,67€	9%
	Testing	277,33	27.733,33€	61%
E	TOTAL Cost - Roll-out	1460,00	146.000,00€	68%
ROLL-OUT	ead.json creation	1080,00	108.000,00€	74%
E E	pipeline integration	328,00	32.800,00€	22%
RC	troubeshooting	52,00	5.200,00€	4%
ыs	TOTAL Cost - Cross Cutting Activities	139,25	13.925,00 €	6%
SSC NU	Project Management	27,85	2.785,00€	20%
CROSS CUTTUNG ACTIVITIES	Quality Assurance	55,70	5.570,00€	40%
A C	Communication / Information	55,70	5.570,00€	40%
	TOTAL ONE TIME COST	2156,25	215.625,00€	100%

· · ·		hours / year	Cost in € / year	PERCENTAGE
	TOTAL Cost - Operation & Maintenance	96,00	11.400,00 €	100%
RUN COST	Maitenance	96,00	9.600,00€	84%
E 0	Infrastructure Operation	n.a.	1.800,00€	16%
	TOTAL YEARLY RUNNING COST	96,00	11.400,00€	100%

Locigal data model

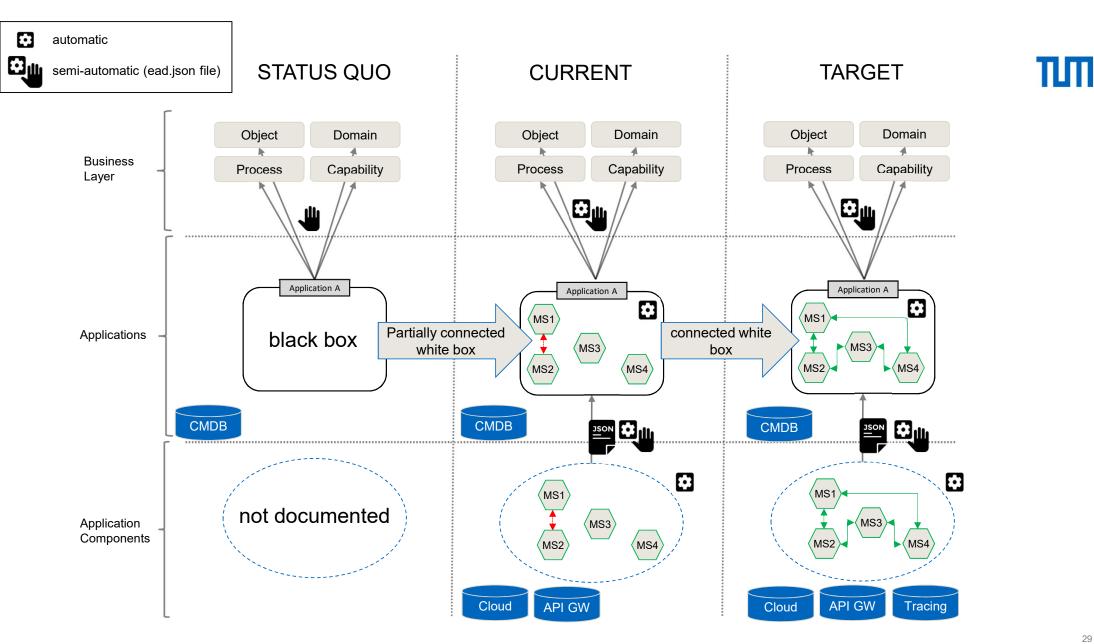
Achievements – Limitations due to a lack of distributed tracing

٠

.

.

•


٠

٠

.

Agile Team A **Enterprise Private Cloud** Enterprise Datacenter 9 / 9 Microservices discovered 5 / 5 exposed Services discovered 4 / 12 consumed Services discovered Militarized Zone De-militarized Zone Core Business 1 / 6 connected DBs discovered Systems and Data 5 / 6 Service Consumers discovered Stores OpenShift OpenShift Agile Team B Project Project Project Project 5 / 5 Microservices discovered **API** Gateway Space Space Space Space 4 / 4 exposed Services discovered 3 / 7 consumed Services discovered PCF PCF 0 / 3 connected DBs discovered Project Project Project 6 / 9 Service Consumers discovered Project Space Space Space Space Ð Ð Application A Application B Application C MS1 MS1 MS1 (MS5) not detectable detectable MS3 MS3 MS3 MS2 MS4 MS2 MS4 MS2 MS₄ !! Cannot detect relationships/dependencies among **!!** Cannot detect relationships/dependencies among applications within the zone applications within the zone

Firewall

Easy two-step integration procedure

1. fill in config file template

Necessary steps:

- 1. Create a new file in the code repo
- 2. Copy&paste the template
- 3. Fill-in the template (see example below)

Example:

```
"application_component_name": "ProposalService",
"description": "reads and stores proposals [...]",
"superordinate_application": "Offering-Services",
"business_domains": [
         "Domäne A",
```

```
"Proposal",
```

```
"<federated_information_source_1>": "<URL>",
"<federated_information_source_2>": "<URL>",
```

2. integrate EAD library into the pipeline

Necessary steps:

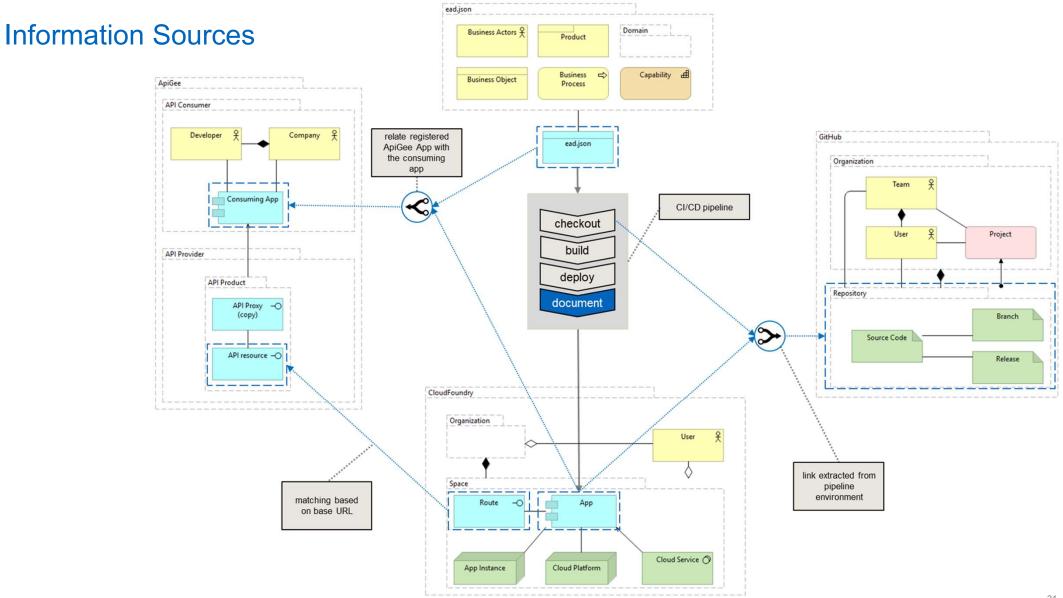
- 1. Add ead-library to the jenkins (using system settings)
- 2. Import the library into the pipeline script (see example below)
- 3. Copy&Paste the ead-stage and set variables (see example below)

Example:

 $@Library(['ead-jenkins-library@master', 'jenkins-pipeline-library@v2']) \ _$

```
[...]
stage('EAD documentation process') {
```

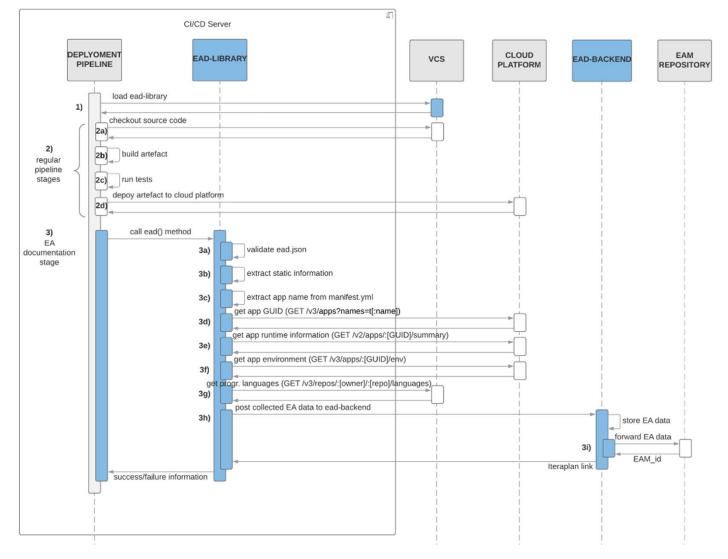
```
steps {
```

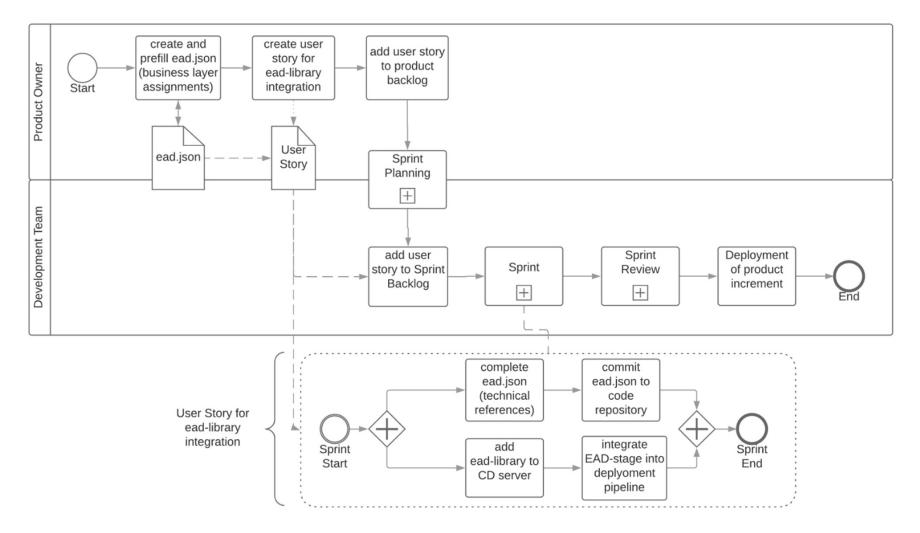

script {
 // read manifest.yml
 def manifest = readFile "\${WORKSPACE}/manifest.ym/"

// read ead.json to a JSONObject def eadjson = readJSON file: '*ead.json*'

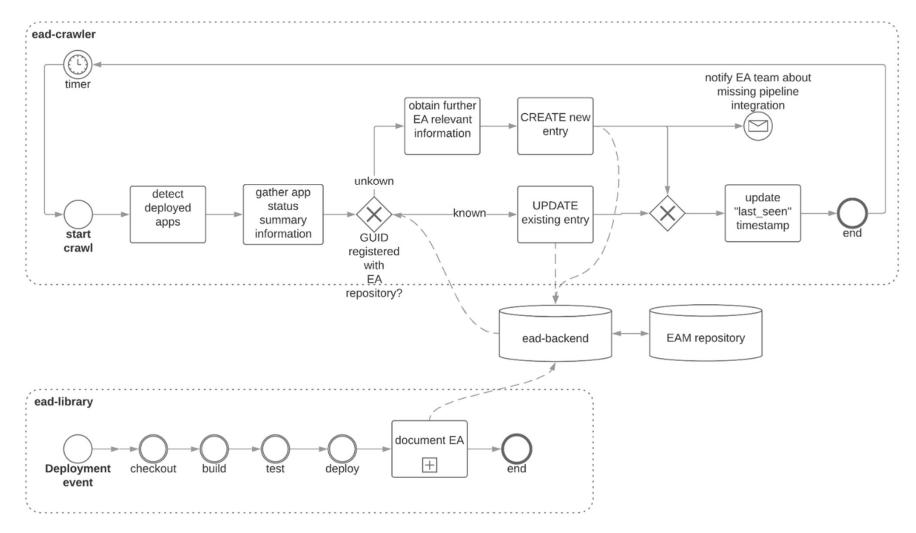
//call the documentation method

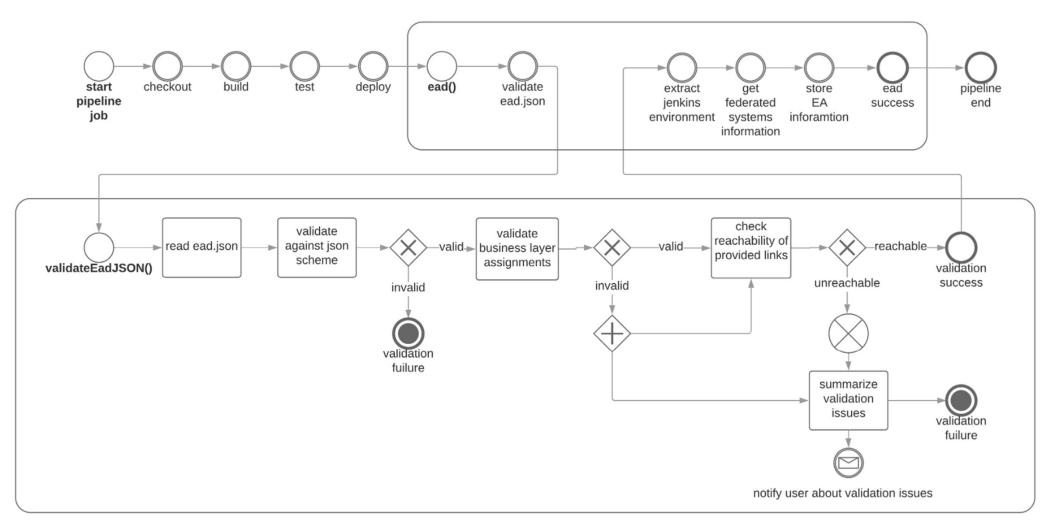
```
eadprocess.ead(eadjson: eadjson, file: manifest, pcfApiUrl: ,${apiUrl}', pcfCredentialsID: "${CF_CREDEDNTIALS_ID}",org: "${ORG}", space: "${SPACE}")
```


}


EAD pipeline stage sequence diagram

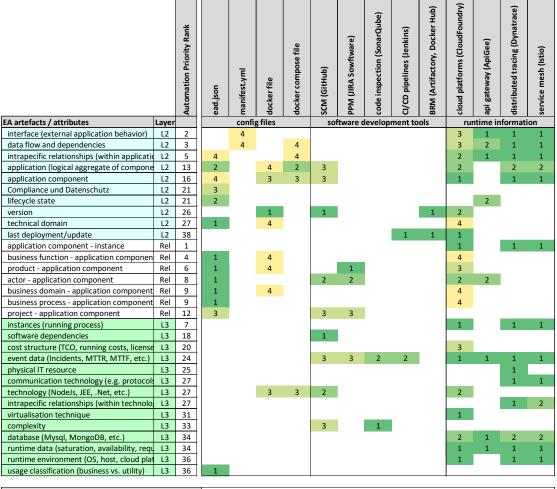
32




Integration into agile development

ТЛ

EAMM process



Ead.json validation

ТШ

EA Element / Attribute	EA Layer	Avg. Score	Score EA - IT focus	Score EA - Business focus	Difference	Rank
Application component - instance	Relationship	17,92	17,5	18,3	0,83	1
Interface (external application behavior)	Application	17,71	17,2	18,1	0,96	2
Data flow and dependencies	Application	17,64	17,8	17,5	0,33	3
Business function - application component	Relationship	17,33	16,5	18,2	1,67	4
Intrapecific relationships (within application layer)	Application	17,20	18,0	17,0	1,00	5
Product - application component	Relationship	17,17	16,5	17,8	1,33	6
instance (running process)	Technology	17,08	17,3	16,8	0,50	7
Application (logical aggregate of components)	Application	17,00	17,5	16,8	0,67	8
Actor - application component	Relationship	16,83	15,5	18,2	2,67	9
Business domain - application component	Relationship	16,71	16,5	16,9	0,38	10
Business process - application component	Relationship	16,71	16,0	17,3	1,25	10
Project - application component	Relationship	16,57	16,0	17,0	1,00	12
Software dependencies	Technology	15,75	16,0	15,5	0,50	13
Cost structure (TCO, running costs, licenses)	Technology	15,25	12,3	18,2	5,83	14
Lifecycle state	Application	15,17	14,3	16,0	1,67	15
Compliance and data protection	Application	15,17	14,3	16,0	1,67	15
Event data (Incidents, MTTR, MTTF, etc.)	Technology	14,60	15,7	13,0	2,67	17
Physical IT resource (server, router, network device	Technology	14,50	14,0	15,0	1,00	18
Version	Application	14,33	13,3	15,3	2,00	19
Technical domain	Application	14,25	16 ,5	13,5	3,00	20
Communication technology (e.g. protocols)	Technology	14,25	13,5	15,0	1,50	20
Intrapecific relationships (within technology layer)	Technology	14,25	13,0	14,7	1,67	20
Technology (NodeJs, JEE, .Net, etc.)	Technology	14,25	14,2	14,3	0,17	20
Application component	Application	14,13	13,5	14,3	0,83	24

Automation Priorities / EA contribution

average adequacy:	2,00	4,00	3,38	3,20	2,36	2,00	1,50	1,50	1,00	2,31	1,44	1,14	1,23
unweighted Rank:	7	12	11	10	9	7	5	5	0	8	3	1	2
Rank weighted by automation priority:	4	12	8	9	6	7	10	13	11	1	5	2	3

References

#	Title	Authors	Year
[1]	Enterprise Architecture Documentation: Current Practices and Future Directions	Sascha Roth; Hauder, Matheus; Farwick, Matthias; Breu, Ruth; Matthes, Florian	2013
[2]	Automation Processes for Enterprise Architecture Management	Farwick, Matthias; Agreiter, Berthold; Breu, Ruth; Ryll, Steffen; Voges, Karsten; Hanschke, Inge	2011
[3]	Towards Integrating Microservices with Adaptable Enterprise Architecture	Bogner, Justus; Zimmermann, Alfred	2016
[4]	Enterprise Architecture Documentation: Empirical Analysis of Information Sources for Automation	Farwick, Matthias; Breu, Ruth; Hauder, Matheus; Roth, Sascha; Matthes, Florian	2013
[5]	A Requirements Based Approach for Automating Enterprise IT Architecture Modeling Using Multiple Data Sources	Valja, Margus; Lagerstrom, Robert; Ekstedt, Mathias; Korman, Matus	2015
[6]	Towards Living Landscape Models: Automated Integration of Infrastructure Cloud in Enterprise Architecture Management	Farwick, Matthias; Agreiter, Berthold; Breu, Ruth; Häring, Matthias; Voges, Karsten; Hanschke, Inge	2010
[7]	13th State of Agile Report	https://www.stateofagile.com/#ufh-i-521251909-13th- annual-state-of-agile-report/473508	2018
[8]	IT Landscape Discovery via Runtime Instrumentation for Automating Enterprise Architecture Model Maintenance	Martin, Kleehaus; Matheus, Hauder; Ömer, Uludag; Matthes, Florian; Nicolas Corpancho Villasana	2019