
Fakultät für Informatik
DER Technische Universität München

Master’s Thesis in Informatics

Management of Complex Product
Ontologies Using a Web-Based
Natural Language Processing

Interface

A B M Junaed

Fakultät für Informatik
DER Technische Universität München

Master’s Thesis in Informatics

Management komplexer Produktontologien
mittels einer web-basierten

Natürliche-Sprachverarbeitungs-Oberfläche

Management of Complex Product
Ontologies Using a Web-Based Natural

Language Processing Interface

Author: A B M Junaed
Supervisor: Prof. Dr. Florian Matthes

1st Advisor: Jörg Landthaler, M.Sc.

2nd Advisor: Tim Lochow, Dipl.-Ing.

Submission: 15.06.2016

I assure the single handed composition of this master’s thesis only supported by declared
resources.

München, 15.06.2016

(A B M Junaed)

Acknowledgment

First and above all, I praise and thank Almighty ALLAH for everything.

I would like to thank Prof. Dr. Florian Matthes for giving me the opportunity to write

my Master thesis in the Software Engineering for Business Information Systems (SEBIS)

chair at TU Munich.

I earnestly thank my two advisors, Jörg Landthaler and Tim Lochow (Airbus Group

Innovations) for their continuous motivation, extensive advice and great support

throughout this research work. In addition, I would like to thank Airbus Group Innovations

TX4 team members. I enjoyed working in such a friendly place with nice colleagues.

Also, special thanks to each and every person who was somehow involved in the

development of this work. To all my interviewees, to all the people I consulted: all your

valuable feedback and inputs were of great help, I really appreciate the time you took to

help me out.

Last but not least, I thank my parents and my family for always supporting me towards

my dream.

Abstract

Complex products such as commercial aircraft and the associated development activities

require complex engineering processes which are supported by IT tools. The IT landscape

is characterized by a set of very heterogeneous engineering tools providing data in different

formats, e.g., relational databases, XML, CSV, XLS, and alike. However, there is no single

API to access the data. A key approach at Airbus Group Innovations (AGI1) to tackle this

problem is the application of Linked Data and Semantic Web technology. Web Ontology

Language (OWL) is one of the core components of the Semantic Web stack, which is used

for knowledge representation (KR). But, OWL also comes with a learning curve for the

domain experts who have little or no knowledge in ontology engineering. To minimize

the learning curve to access such data, the primary purpose of this thesis is to provide a

solution consisting of a web-based natural language interface (NLI) to manage complex

product ontologies. The purpose of the NLI is to guide the domain experts to create and

update OWL ontologies, as well as to search the ontology to find out the inconsistencies

or missing concepts. An additional contribution of this thesis is to provide a mechanism

to reuse existing ontologies through the NLI.

We apply a design science methodology to tackle the challenges. A state of the art study

was conducted to detect a useful basis for our solution. As part of the solution, a web-based

prototype is presented, which uses an NLI. This NLI is based on a CNL and a Semantic

Wiki. Moreover, our prototype can reuse existing ontologies by importing them into the

system and by creating domain specific lexicons automatically.

The prototype was evaluated in several ways. Qualitative interviews with Airbus

stakeholders yielded valuable feedback. Moreover, several real ontologies of an aircraft

were used to carry out functional tests and these tests showed promising results. The

prototype is also highly portable to different OWL ontologies, since it does not require

any customization.

1Airbus Group Innovations is the corporate research and technology center of Airbus Group.

Contents

I Introduction 12

1 Introduction 13

1.1 Motivation . 13

1.2 Problem Description . 14

1.3 Technical Challenges for NLI . 14

1.4 Research Questions . 15

1.5 Research Methodology . 16

1.6 Outline . 16

2 Scientific Background 18

2.1 Semantic Web . 18

2.1.1 Semantic Web Basics . 18

2.2 Linked Data . 20

II Related Work 21

3 Natural Language Interfaces to Knowledge Bases 22

3.1 Question-Answering Systems . 22

3.2 Controlled Natural Language . 24

3.2.1 Attempto Controlled English (ACE) 24

3.2.2 Rabbit . 25

3.2.3 Rabbit to OWL Ontology Authoring (ROO) 26

3.2.4 CLOnE . 26

4 Semantic wikis 27

4.1 Ontology Management Using Semantic Wikis 27

4.2 Text-Centered Semantic Wikis . 28

4.3 Logic-Centered Semantic Wikis . 28

6

CONTENTS 7

III Thesis Contribution 30

5 Tool Survey 31

5.1 Comparison Between Identified Tools and Technologies 31

5.1.1 Discussion on QA Systems . 32

5.1.2 Discussion on CNLs . 32

5.2 Reasons Behind Selecting ACE and AceWiki 33

6 Conceptual Design 34

6.1 Main Requirements of the Prototype . 34

6.2 UML Use Case Diagram . 35

6.3 Mockups . 36

6.4 Proposed Workflow . 40

7 System Design and Architecture 42

7.1 Evaluation of AceWiki . 42

7.1.1 Support for Requirements . 43

7.1.2 Limitations of AceWiki . 45

7.1.3 Limitations of Owl-Verbalizer . 49

7.2 Extension for Our Use Cases . 50

7.2.1 Features to be Implemented on AceWiki 50

7.3 System Design . 51

8 Prototype Implementation 55

8.1 Key Technologies . 55

8.2 Implemented Features on AceWiki . 56

8.2.1 Enhancement of User Interface . 56

8.2.2 Import Functionality and Dynamic Lexicon Creation 57

8.2.3 Grammar Extension . 59

8.2.4 Improvement of Predictive Editor 60

8.2.5 Preventing Data Loss . 60

IV Evaluation 62

9 Evaluation 63

9.1 Methodology . 63

9.2 Expert interview . 64

9.2.1 Case Study Design . 64

9.2.2 Interview Design . 64

9.2.3 Participants . 65

9.2.4 Interview Result . 65

CONTENTS 8

9.3 Functionality and Portability Test . 66

9.3.1 Dataset . 67

9.3.2 Result of Functionality Test . 67

9.3.3 Result of Portability Test . 67

9.4 Integration With Other Business Solutions 67

9.5 Summary and Discussion . 68

V Future Work and Conclusions 69

10 Future Work 70

11 Conclusions 72

Appendices 74

A List of Abbreviations i

B User Guide ii

C Questionnaire iv

List of Figures

1.1 Research method of this thesis following the guidelines provided by Hevner

et al. in [Al04] . 16

2.1 Semantic Web stack as visualized by the World Wide Web

Consortium (http://w3.org). This image originates from http:

//www.w3.org/2007/03/layerCake.svg . 19

6.1 UML Use case diagram showing the expected functional behavior of the

prototype. 35

6.2 Mockup showing that user can write NL to add data into the knowledge

base. NLP will be used to parse this input 36

6.3 Mockup showing the identification of subject, predicate, and object from

NL input . 37

6.4 Mockup showing the ambiguity resolution by engaging the user. As an

option to resolve the ambiguity, a list of suggestion will be provided from

existing lexicons to choose from . 37

6.5 Define new concept for a predicate. User can set various properties of the

predicate . 38

6.6 Define new concept for an object. User can set various properties of the

object . 38

6.7 All the concepts are defined or matched with existing lexicon. Therefore,

everything has become green and user can add this sentence in the KB . . 39

6.8 Mockup showing that the user can directly input the triple format 39

6.9 An informal top level architecture of the proposed system (This image

originates from Airbus research group) . 40

6.10 Proposed workflow showing how new concept and knowledge can be added

to the knowledge base (This image originates from Airbus research group) 41

7.1 Architecture of AceWiki [Ku10b] . 43

7.2 Screenshots of AceWiki showing related features for our use cases. These

screenshots are originated from [Ku08b] . 44

9

LIST OF FIGURES 10

7.3 Level 1 data flow diagram for import functionality and lexicon creation. It

represents the exchange of information among processes, data storage, and

external entities. Blue parts show the newly added modules. 52

7.4 UML Package diagram of important packages of the application. Dashed

arrow shows the dependency between the packages 53

7.5 Deployment diagram of final system, which is using Windows 7 OS and

Java EE container running Jetty version 9.0.0 54

8.1 Enhanced user interface conforming the look and feel of Airbus softwares. . 57

8.2 Screenshots of different options to import an ontology 58

8.3 A screenshot of the list of lexicons which are created automatically while

importing an ontology . 59

8.4 We have added support for different sentences which are not supported in

AceWiki . 60

8.5 Screenshots showing the improved predictive editor which supports if-then

and floating point numbers . 61

9.1 Evaluation methodology . 64

9.2 The prototype is integrated with another business solution through a restful

web-service. It imports ontology from the web-service. 68

List of Tables

5.1 Comparison between existing NLIs to KBs based on different features

related to our study . 32

7.1 Evaluation of AceWiki regarding our requirements 45

7.2 Example 1, Supported ACE sentence in AceWiki. Owl-verbalizer tokenized

these sentences from OWL . 47

7.3 Example 2, Unsupported ACE sentences in AceWiki. From the red portion,

it is not possible to write the sentence in AceWiki since AceWiki does not

support floating point number. 47

7.4 Example 3, Unsupported ACE sentences in AceWiki. Conditional sentence

is not supported in AceWiki . 48

7.5 Example 4, Another unsupported ACE sentences in AceWiki which

contains floating point number . 49

A.1 Abbreviations list. i

11

Part I

Introduction

12

Chapter 1

Introduction

1.1 Motivation

Airbus Group programs are characterized by complex engineering and development

activities across several disciplines, lifecycle phases, and geographical sites. From an

IT perspective, it is challenging to support collaborative tasks across disciplines and

international teams. The IT landscape is characterized by a set of very heterogeneous

engineering tools providing data in different formats, e.g., relational databases, XML,

CSV, XLS, etc. As a result, there is no unique API to access the data. Getting a global view

of the actual status of individual engineering and manufacturing tasks, creating efficient

automated data flows or simply gathering highly interlinked information in one common

view is difficult. Searching and reasoning across the data to detect inconsistencies in the

design can provide a major benefit to the quality of the data being transmitted between

engineering and manufacturing stakeholders. Furthermore, complex products such as

commercial aircraft and the associated development processes impose a significant amount

of terminology and semantic knowledge, which can hardly be managed by individual

engineers. This is a fact which causes recursive rework of inherited inconsistencies due

to the lack of official product references across (all) disciplines in the development or

manufacturing process.

A Key approach at Airbus Group Innovations (AGI1) to solve this problem is directed

towards Linked Data and Semantic web technology: apply semantic web technologies

to publish data in universal formats and to draw connections between data sources

which gives linked data. This data is accessible via the same kind of API. Web Ontology

Language (OWL) [WMS04] is one of the core components of semantic web stack which is

used for knowledge representation (KR), and it includes descriptions of classes, properties,

1Airbus Group Innovations is the corporate research and technology Centre of Airbus Group.

13

CHAPTER 1. INTRODUCTION 14

and their instances. Moreover, OWL brings reasoning capability since it is based on

description logic. But OWL also adds a learning curve for the domain experts who

are knowledgeable about a particular area but have little or no knowledge in ontology

engineering.

Many user-friendly interfaces have been developed to minimize the learning curve to access

and use OWL ontologies. Some of them solve the problem by providing a graphical user

interface through which users can browse the data (e.g., Protégé [No01]), others developed

a form-based interface to provide search functionality, e.g., KIM Platform [Ki03]. TopBraid

Composer2 is another front-end tool to work with OWL ontologies. However, Dzbor et al.

compared between TopBraid Composer and Protégé (version 3.x) in [Dz06]. They gave a

general conclusion that the quality of current tools is acceptable when used by experts in

logic, but there is a high learning curve with newcomers. Moreover, an interface evaluation

study done by Kaufmann and Bernstein shows that the most acceptable systems by the

end users are the systems which support Natural Language Interfaces (NLI) [KB07].

Therefore, an appropriate NLI is required which will provide domain experts an easy to

use interface to access OWL ontologies. In this thesis, we are going to focus on this topic.

1.2 Problem Description

Here we will conduct our research to provide a solution consisting of a web-based natural

language interface (NLI), which will guide domain experts to create and update OWL

ontologies, as well as to search the ontology to find out the inconsistencies or missing

concepts. Moreover, our research will also focus on importing existing ontologies into the

NLI, which will be beneficial to reuse existing ontologies. As an exemplary test case of

real life data, an Airbus cabin ontology will be used for development; then the proposed

solution will be evaluated with other real life data set also. Since natural language itself

inherently possesses some challenges which are discussed in Section 1.3, those also have

to be tackled carefully.

1.3 Technical Challenges for NLI

Building NLIs to structured data requires handling various challenges. The major

challenges are:

1. Guiding/usability: Guide the user to write natural language query without any

error to search or to add knowledge into the knowledge base, while providing

2http://www.topbraidcomposer.com

CHAPTER 1. INTRODUCTION 15

minimum training for the user and keeping the supported language intuitive.

2. Ambiguity: Understanding Natural Language inherently possesses challenges, e.g.

ambiguity [CP82]. One sentence can give multiple interpretations and selecting the

correct one is challenging.

3. Portability: Portability means to be able to use an NLI system easily with different

domains, that means domain independence. Even if portable NLIs are much more

useful than domain specific systems, constructing transportable systems causes

various technical and theoretical problems [Gr87]. In addition, portability affects

retrieval performance: “the more a system is tailored to a domain, the better its

retrieval performance is”, as stated by Kaufmann and Bernstein[KB07].

4. Hiding complexities of the knowledge structure: Hiding the underlying

complexities of the structured knowledge from the end user while showing results is

a real challenge for NLIs.

1.4 Research Questions

The research questions which will be tackled in this study are grouped into two different

categories:

1. Major research questions: Primary focus of this thesis will be given towards the

following research questions:

1.1. How to create an OWL ontology using a web-based NLI?

1.2. How to search in OWL ontology using a web-based NLI?

1.3. How to incorporate existing ontologies into the proposed NLI?

1.4. How to create domain specific lexicon automatically from existing ontologies?

2. Derived research questions: Following research questions are derived from the

challenges associated with NLIs:

2.1. How to guide the user to formulate queries, to add and edit data into knowledge

base by providing minimum training while keeping the supported language

intuitive?

2.2. How to resolve the ambiguity of natural language?

2.3. How to keep the NLI portable?

2.4. How to hide the underlying complexities of the structured knowledge from the

end user?

CHAPTER 1. INTRODUCTION 16

1.5 Research Methodology

Hevner et al. presented an information systems (IS) research framework accompanied

by a set of seven research guidelines [Al04]. These guidelines are followed in this thesis

and presented in Figure 1.1. At first, the problem relevance is explained in Section 1.2,

Problem Relevance

Research Rigor

Design as a Search Process

Design as an Artifact

Design Evaluation

Research Contributions

Communication of Research

Figure 1.1: Research method of this thesis following the guidelines provided by Hevner et al. in [Al04]

which describes the importance of the NLI for managing complex ontologies. According

to the design as a search process guideline, design alternatives were generated and tested

against our requirements to discover an effective solution for the defined problem space. A

prototype is developed as an artifact, which will be presented in Section 7.1. The artifact is

evaluated by domain experts and by functionality test, which will be discussed in Chapter

9. The contribution of this research is the artifact itself, and the communication of the

research refers to the finalization of the written report, i.e. this thesis.

1.6 Outline

This thesis consists of five parts. Part I contains this Chapter and Chapter 2. Chapter 2

entitled “Scientific Background” describes the background of the fields of Semantic Web

and Linked Data.

CHAPTER 1. INTRODUCTION 17

Part II discusses relevant prior and related work. NLIs to KBs are discussed in Chapter

3. Chapter 4 describes Semantic Wikis.

Part III contains our scientific contribution which consists of four Chapters, from Chapter

5 to Chapter 8. Existing NLIs to KBs are compared in Chapter 5. Conceptual design of the

prototype is presented in Chapter 6. Chapter 7 demonstrates the design and architecture

of the final system. After that, the prototypical implementation is presented in Chapter

8.

Evaluation of the prototypical implementation is presented in Part IV.

Part V presents future work and conclusion. Chapter 10 presents ideas for future work

and Chapter 11 concludes this thesis.

Finally, the appendices of this thesis are presented. Appendix A contains the list of

abbreviations used in this thesis. Appendix B demonstrates the user guide and finally,

Appendix C contains the questionnaire which is used for the expert interviews

Chapter 2

Scientific Background

2.1 Semantic Web

Tim Berners-Lee, the inventor of the World Wide Web (WWW), proposed a new

generation of the Web [BL99], called the Semantic Web: where all information on the

Web will be inter-operable and understandable by computers. As discussed by Guha et

al., the idea is to define and link data on the Web in such a way that applications can use

this data for more efficient discovery, integration and automation [GMM03]. Furthermore,

the Semantic Web will define structured relations among different types of resources.

Moreover, each resource can have metadata attached to it.

2.1.1 Semantic Web Basics

Figure 2.1 shows the Semantic Web stack where each language is represented by a block.

The blocks are presented hierarchically, and each block uses capabilities of the layers

below. Here we will discuss the most important basics of Semantic Web, which are related

to our study.

RDF: The Resource Description Framework (RDF) is a formal language that defines the

basic unit of the Semantic Web as a triple. Each triple has three parts:

Subject Predicate Object

RDF schema is presented by the shorthand form RDFs.

18

CHAPTER 2. SCIENTIFIC BACKGROUND 19

Figure 2.1: Semantic Web stack as visualized by the World Wide Web Consortium (http://w3.org).
This image originates from http: //www.w3.org/2007/03/layerCake.svg

OWL: “An ontology is a formal explicit description of concepts in a domain of discourse

(classes (sometimes called concepts)), properties of each concept describing various

features and attributes of the concept (slots (sometimes called roles or properties)), and

restrictions on slots (facets (sometimes called role restrictions)). An ontology together

with a set of individual instances of classes constitutes a knowledge base (KB).”1 ABox

refers to the actual data such as instances or individuals that are generated based on the

definitions in the ontology. OWL (Web Ontology Language) is recommended by W3C

organisation for publishing and sharing ontologies on the World Wide Web 2.

SPARQL: SPARQL (pronounced “sparkle”), is an SQL-like query format which is

designed to query the underlying triples of the Semantic Web.

OWL Editors

In order to work with OWL ontologies, there are several front-end tools, such as —

TopBraid Composer3 , Protégé4 , SWOOP5 , OntoStudio6 . Dzbor et al. compared

1http://protege.stanford.edu/publications/ontology development/ontology101-noy-mcguinness.html
2http://www.w3.org/TR/owl-ref/
3http://www.topbraidcomposer.com
4http://protege.stanford.edu
5http://www.mindswap.org/2004/SWOOP/
6http://www.ontoprise.de

CHAPTER 2. SCIENTIFIC BACKGROUND 20

TopBraid Composer and Protégé (version 3.x) in [Dz06], where users were selected

from both novices and experts. Several problems were reported in the study: the users

encountered difficulties to get an overview of the usage of classes/properties, ontology

visualization was not helpful for the users, etc. The authors gave a general conclusion

that the quality of the current tools is acceptable when used by experts in logic, but there

is a high learning curve with newcomers.

2.2 Linked Data

The term Linked Data gained in popularity after the initiative of the Linked Open Data7

project. According to the Web site of Linked Open Data project, the term Linked Data

refers to “a recommended best practice for exposing, sharing, and connecting pieces of

data, information, and knowledge on the Semantic Web using URIs and RDF.” Described

by Tim Berners-Lee, Linked Data is “the Semantic Web done right”.

Tim Berners-Lee stated four rules for Linked Data8, which are stated below:

1. “Use URIs as names for things”

2. “Use HTTP URIs so that people can look up those names”

3. “When someone looks up a URI, provide useful information, using the standards

(RDF*, SPARQL)”

4. “Include links to other URIs. so that they can discover more things”

These rules are not mandatory, but important to make data interconnected.

7http://linkeddata.org/
8https://www.w3.org/DesignIssues/LinkedData.html

Part II

Related Work

21

Chapter 3

Natural Language Interfaces to
Knowledge Bases

This Chapter will focus on different NLI systems available to work with ontologies, which

can be grouped into two broad categories. The first category is Question Answering (QA)

systems which translate a Natural Language query into the formal query language e.g.

SPARQL to retrieve data. The second category uses CNL to work with OWL ontologies.

After discussing these two types in Section 3.1 and 3.2 respectively, we will discuss about

semantic wikis in Section 4, which can be useful to represent data to the end user and to

hide the underlying complexity at the same time.

3.1 Question-Answering Systems

As argued by Unger et al. in [Un12], Question Answering approaches allow users to express

queries in natural language without being aware of the underlying schema or query

language, which is a good compromise between intuitiveness and expressivity. Several

question answering systems have been proposed in the past to work with OWL ontologies

or RDF data, for example, Aqualog [LM04], NLP-Reduce [KBF07], FREyA [LB11] and

AutoSparql [LB11].

AquaLog [LM04] is a portable question-answering system which mainly supports factual

queries beginning with what, which, who and the like. Customization of AquaLog can

increase the performance of the system though it is not mandatory. Customization includes

associating certain words with relevant concepts from the ontology, e.g., where needs to

be associated with ontology classes which represent a location, similarly, who needs to

be associated with classes which represent a person or organization. To properly handle,

AquaLog needs the ontology to have a simpler hierarchy structure; and the terms in a

22

CHAPTER 3. NATURAL LANGUAGE INTERFACES TO KNOWLEDGE BASES 23

query can only refer to ontology concepts between which the path length is not more

than two. To evaluate portability, AquaLog was tested against the wine ontology1 . As

customization process, words like where, when, and who were associated with relevant

ontology classes; then synonyms of several ontology resources were added manually. As

reported by Lopez et al. [Lo07], this step was not mandatory, but it increases the recall

because of the limitations of WordNet2 coverage. Only 17.64% of questions were correctly

handled by this system.

NLP-Reduce [KBF07] uses a reduced set of NLP operators(such as synonym expansion

and stemming), hence its name is NLP-Reduce. This system is robust to deficient input,

ungrammatical input and allows users to enter keywords, sentence fragments, or full

English sentences. It tries to link the words of a query and their synonyms to the

expressions in a KB. SPARQL query generator is the core component of NLP-Reduce

which attempts to match the query words to the synonym-enhanced triples stored in the

lexicon to generate SPARQL queries. Since it abandons any complex NLP techniques,

it cannot answer queries which require a dependency structure of the sentence elements.

(e.g., “Which restaurants are closer to Munich?”) As pointed out by Damljanovic in [Da],

the relaxation of supported queries seems to have a negative impact on the performance.

Its performance was lower than that of similar systems when evaluated with geography

and restaurants datasets provided by Mooney3.

AutoSPARQL [LB11] carried out another possibility to translate NL to SPARQL by using

SPARQL templates. At first, the input is processed by the part of speech (POS) tagger.

Based on the POS tags, lexical entries are created using a set of heuristics. These lexical

entries and predefined domain independent lexical entries are used for parsing. Then the

SPARQL templates are generated with slots. To fill these slots, entities (i.e., classes,

instances or properties) are retrieved from knowledge base using string similarities and

NLP. For each slot and a possible entity, different query candidates are found and ranked.

Finally, the best answer is returned to the user. Since the generated SPARQL templates

capture the semantic structure of the natural language input, questions containing

quantifiers (e.g., the most, more than), comparatives (e.g., higher than) and superlatives

(e.g., the highest) do not pose a problem in contrast to other question answering systems

that map NL input to purely triple-based representations. This approach was tested

against the benchmark dataset of the 1st Workshop on Question Answering over Linked

Data (QALD)4, which defines 50 questions to DBpedia and their answers. This system

generated the correct answer for 19 questions after manually correcting erroneous POS

tags in seven questions, as mentioned in [Un12].

1http://www.w3.org/TR/2003/CR-owl-guide-20030818/
2https://wordnet.princeton.edu/
3The Mooney geography dataset is available from http://www.ifi.uzh.ch/ddis/

research/talking-to-the-semantic-web/owl-test-data/
4http://www.sc.cit-ec.uni-bielefeld.de/qald-1

CHAPTER 3. NATURAL LANGUAGE INTERFACES TO KNOWLEDGE BASES 24

FREyA [DAC10], which combines syntactical parsing with the knowledge encoded in

ontologies to interpret a natural language question. If the system fails to derive an answer

automatically, it involves the user through clarification dialogs. Selections made by the

user are saved and used to train the system to improve its performance over time. Involving

the user for clarification has one significant advantage, it minimizes customization of the

NLI system. On the other hand, the naive end-user is often not knowledgeable about the

modeling and vocabulary of the underlying data and thus is not able to help. Evaluation

of FREyA against Mooney geography dataset showed very high precision and recall, as

reported by [DAC10].

3.2 Controlled Natural Language

Controlled natural languages (CNLs) are subsets of natural languages, where grammar

and vocabulary are restricted to eliminate or reduce complexity and ambiguity. There

are mainly two major types of CNLs: the first category comprises those that improve

readability for human readers (e.g. non-native speakers), and the second category contains

those that enable reliable automatic semantic analysis of the language.

We are interested in the CNLs which can work with Semantic Web technologies, these

languages are formal and focuses on unambiguity instead of focusing solely on improving

human readability. Recently, several CNLs has been proposed which can work with

Semantic Web and some can be translated to OWL also. In this Section we will discuss

about different CNLs which can work with Semantic Web.

3.2.1 Attempto Controlled English (ACE)

Attempto Controlled English (ACE) is a logic language with an English syntax, which is

one of the most mature controlled natural languages and under active development for

more than 20 years since 1995. Fuchs and Schwitter first introduced ACE [FS96], more

than 60 scientific papers have been published by the Attempto group5 since then. Google

Scholar lists more than 1000 articles containing the term ”Attempto Controlled English”6,

which makes it probably the most widespread CNL in academia(retrieved in April 2016).

ACE is not domain specific, and it is a general-purpose CNL. It has an exchangeable

vocabulary and thus can be adapted to particular problem areas. A large part of natural

English is covered by ACE: singular and plural noun phrases, active and passive voice,

relative phrases, anaphoric references, existential and universal quantifiers, negation, and

5http://attempto.ifi.uzh.ch/site/pubs/
6http://scholar.google.com/scholar?q=%22Attempto+Controlled+English%22

CHAPTER 3. NATURAL LANGUAGE INTERFACES TO KNOWLEDGE BASES 25

much more. There is a reference implementation of ACE, named Attempto Parsing Engine

(APE). APE translates ACE texts into logic. The source code of APE is open source.

ACE Parser (APE)

APE implements the concrete grammar of ACE. It is also used to translate ACE to

OWL/SWRL. At first, the translator tries to transform an ACE text into its corresponding

discourse representation structure (DRS), such DRS can be mapped to first-order logic

in a direct and simple way. In next step, the translator attempts to convert the DRS into

OWL by using the algorithm mentioned in [KA07]. In the case of failure, an attempt is

made to convert the implication into Semantic Web Rule Language (SWRL). An error

message is generated if this case fails as well. So, the final output is either a pure OWL

ontology, or an ontology that mixes OWL and SWRL.

OWL-Verbalizer

OWL verbalizer translates OWL to ACE. It takes an OWL ontology in OWL 1.1 XML

syntax as input and converts it into OWL 1.1 Functional-Style Syntax in Prolog notation.

Then the resulting ontology is verbalized in ACE as described in Section 5.6.6. SWI-Prolog

is used to implement the OWL verbalizer.

Predictive Editor

A predictive editor is provided as part of the AceWiki to help the users to write valid

ACE sentences. The predictive editor shows step-by-step the words that are syntactically

possible at a given position in the sentence. Without it, one has to learn the grammar of

ACE, which is time-consuming, and there is chance to make some mistakes also.

3.2.2 Rabbit

Rabbit [Do07] (for a shorter overview see [HDG07]) is another CNL and used as an

OWL-compatible knowledge representation language. The primary goal of Rabbit is to

help writing OWL ontologies, i.e. the focus is on the Rabbit→OWL direction. The domain

expert has to be familiar with Rabbit and treated as the main author of Rabbit texts,

on the other hand, the knowledge expert has to be familiar with both Rabbit and OWL,

and plays the main role to convert Rabbit texts into OWL. In the evaluation of Rabbit

with domain experts, it was found that each generated ontology was different, and the

knowledge engineers had to correct those ontologies [De09].

CHAPTER 3. NATURAL LANGUAGE INTERFACES TO KNOWLEDGE BASES 26

3.2.3 Rabbit to OWL Ontology Authoring (ROO)

Rabbit to OWL Ontology Authoring (ROO) [De08] is an ontology editing tool developed

by the University of Leeds. It is an open source plug-in for Protégé and supports the

domain expert to create and edit ontologies using Rabbit.

3.2.4 CLOnE

CLOnE(Controlled Language for Ontology Editing) [Fu07] is another CNL, which aims

to ontology authoring. Its conversion to OWL is built on top of the GATE7 framework.

Only a tiny fragment of OWL is targeted in CLOnE, where domain, range, subclass,

and individual assertion axioms can be expressed. Eleven sentence patterns are used

to compose the grammar of CLOnE, which roughly correspond to eleven OWL axiom

patterns.

Summary

In this Chapter, we have studied different NLIs to work with ontologies. QA systems

translate an NL input into the formal query languages such as SPARQL. On the other

hand, CNLs restrict the user by using predefined grammar rules and hence resolve the

ambiguity. In the next Chapter, we will discuss about Semantic Wikis, which can simplify

ontology engineering.

7http://gate.ac.uk

Chapter 4

Semantic wikis

The online encyclopedia Wikipedia1 has shown that the philosophy of wikis has been a

huge success. Using wikis, users can contribute to Web representations with basic Web

editing skills. Since the start of Wikipedia in 2001, more than 40 million articles have been

created in different languages2. Properties of the Wikis, e.g., ease of use, collaboration,

linking, etc. has made it so popular. A flexible and dynamic way to share knowledge is

provided by the Wiki systems.

Techniques of the Semantic Web (i.e. enriching the data on the web with well-defined

meaning) and the philosophy of wikis (i.e. quick and easy editing of textual content in a

collaborative way over the web, collaboration, linking) are combined in Semantic Wikis.

The Semantic Wikis can significantly simplify the ontology engineering as discussed by

Schaffert et al. in [Sc08]. Section 4.1 discusses about ontology management using Semantic

Wikis, and different types of Semantic Wikis are discussed in Section 4.2 and 4.3.

4.1 Ontology Management Using Semantic Wikis

As discussed by Tobias Kuhn in [Ku10a], Semantic Wikis show signs of being a

promising approach to get the domain experts more involved in creating and maintaining

ontologies. Moreover, this could increase the quality and number of available ontologies.

Ontology engineering can be significantly simplified by using Semantic Wikis, as discussed

by Schaffert et al. in [Sc08]. Semantic wikis can also hide the underlying complexities

of Semantic Web from domain experts. Domain experts can create Wiki pages with

textual descriptions, and then the knowledge can successively be formalized and refined

by close interaction between domain experts and computer scientists and by using other

1https://www.wikipedia.org/
2http://meta.wikimedia.org/wiki/List of Wikipedias retrieved in June, 2016

27

CHAPTER 4. SEMANTIC WIKIS 28

tools like Protégé. In contrast to the ontology editors like Protégé, Semantic Wikis allow

the domain experts to update and maintain an ontology without having knowledge of the

underlying formalism.

According to Tobias Kuhn [Ku10a], Semantic Wikis can be broadly categorized into two

types: text-centered and logic-centered. Section 4.2 and 4.3 will discuss Text-centered

Semantic Wikis and Logic-centered Semantic Wikis respectively.

4.2 Text-Centered Semantic Wikis

Text-centered approaches use semantic annotations to enrich classical wiki environments.

Semantic MediaWiki [Vö06] is a well-known example of text-centered semantic wikis. It

emphasizes scalability and backward compatibility. It is one of the most mature existing

semantic wiki engines. The MediaWiki engine (which is used e.g. for Wikipedia) is used

to build it. Similar to tagging systems, users can add new annotations as needed. No

predefined schema or ontology is needed for annotations. However, Semantic MediaWiki

does not support inferencing and similar advanced functionalities.

IkeWiki presented by Schaffert in [Sc06], is another matured and popular text-centered

semantic wiki engine. It is a Java based web application and supports collaborative

knowledge management. In contrast to Semantic MediaWiki, it provides advanced

semantic functionalities like reasoning. Pages from Wikipedia can be imported here and

can be annotated afterward. The developers of IkeWiki has extended IkeWiki into KiWI

[Sc09].

The SweetWiki presented by Buffa et al. in [Bu08] is another example of a text-centered

semantic wiki and is implemented in Java. It focuses on the combination of social tagging

with formal ontologies. Numerous editing tools are proposed by this project, such as

a lite ontology editor, a “what you see is what you get” (WYSIWYG) editor, and an

auto-completion system.

4.3 Logic-Centered Semantic Wikis

In the logic-centered approaches, semantic wikis are used as a form of online ontology

editors. In this Section, we will discuss about logic-centered wikis.

OntoWiki [ADR06] is a logic-centered semantic wiki, and the classical textual content is

not in the foreground of this system. It proposes efficient forms and integrates RDF triples

directly into the text to collaboratively create and maintain ontologies. Furthermore, it

CHAPTER 4. SEMANTIC WIKIS 29

uses interesting functionalities such as faceted navigation and the integration of Web

services (iCal, GoogleMap). It supports semantic search and navigation, as well as the

possibility to version metadata.

myOntology [SH07] is another logic-centric semantic wiki which aims at exploiting

the collective intelligence of a community for ontology engineering and uses horizontal

ontology management approach. This system combines simplicity of wikis with intuitive

visualization techniques.

Tobias Kuhn presented AceWiki in [Ku08a] which is a semantic wiki and uses ACE as

CNL. Since ACE is a subset of English, contents of AceWiki looks completely natural.

Instead of using technical terms (e.g., “ontological element”, “subclass”, or “property”),

AceWiki interface uses terms like “word”, “hierarchy”, or “transitive verb”, which should

be more familiar to the end users with no background in ontology engineering. Five

types of words are supported in AceWiki: proper names are interpreted as individuals;

nouns are interpreted as classes; transitive verbs, of-constructs, and transitive adjectives

are interpreted as binary relations. A predictive editor is integrated with the AceWiki

to assist the users to create ACE sentences. The predictive editor shows all the possible

words at a given position in the sentence. OWL reasoner Pellet3 is used in AceWiki and

every new sentence is checked for consistency. If the new sentence is not consistent with

the ontology, then it is displayed in red font and excluded from reasoning.

3http://pellet.owldl.com/

Part III

Thesis Contribution

30

Chapter 5

Tool Survey

In Chapter 3, we discussed in detail how NLIs can be used to query and add data to

knowledge bases. We also discussed about semantic wikis in Chapter 4 which can be used

to hide the underlying complexity of formal representation of ontologies and can also

make ontology engineering significantly simplified. This Chapter will focus on selecting

the appropriate tools and technologies for our study. QA tools accept NL query as input

and generate SPARQL query to fetch the result from the underlying KB. So, our first

approach is to study these QA tools and try to find out a way to generate SPARQL

query for updating and adding data to the KB, more specifically, analyze how these tools

create the Select query and adapt that approach to generate Update query. Another

possible approach is to work with CNL. CNL has a grammar which makes it suitable to

work in combination with Semantic Web ontologies. To chose the best fitting tool for our

purpose, a comparison between existing systems will be presented in Section 5.1. Finally,

Section 5.2 will discuss about the reasons behind our chosen tools and technologies.

5.1 Comparison Between Identified Tools and

Technologies

We focused on the tools that are open source. The summary of the comparison is shown in

Table 5.1. Based on the requirements presented in Section 1.4, we have compared the tools.

31

CHAPTER 5. TOOL SURVEY 32

Table 5.1: Comparison between existing NLIs to KBs based on different features related to our study

A
p
p
ro

ac
h

U
se

r
gu

id
an

ce

D
om

a
in

in
d
ep

en
d
en

ce

O
W

L
→

N
L

co
n
ve

rs
io

n

N
L
→

O
W

L
co

n
ve

rs
io

n

A
d
d
in

g
d
at

a

U
p

d
at

in
g

d
at

a

S
ea

rc
h

O
p

en
so

u
rc

e

A
u
to

m
at

ic
a
m

b
ig

u
it

y
re

so
lu

ti
on

W
eb

-b
as

ed

S
/w

A
rc

h
it

ec
tu

re

T
o
ol

ty
p

e

E
x
te

n
si

on

AquaLog QA - +/- - - - - + + +/- + Client/Server Website API
NLP-Reduce QA - - - - - - + + +/- - Standalone Desktop

Application
-

AutoSPARQL QA - - - - - - + + +/- + Client/Server Website -
FREyA QA +/- + - - - - + + +/- + Client/Server Website -
ROO CNL + - - + + - + + - Standalone Protégé

plugin
Protégé
plugin

ACE CNL + + + + + + + + + + Client/Server Website,
Web-service

Web-service

Caption: + supported, +/- partly supported, - not supported.

Results of the comparison will be discussed in the following Sections; Section 5.1.1 will

discuss about the QA systems, and Section 5.1.2 will discuss about the CNL tools.

5.1.1 Discussion on QA Systems

Adding and updating data of the KB are important requirements for our study, but QA

systems do not possess the ability to do so as seen from Table 5.1. One possible solution

could be to analyze how QA systems generate the Select query and use that approach to

convert NL to SPARQL Update query. However, the results presented in the corresponding

publications of the QA tools are not promising. We collected the results in Section 3.1,

which show that the SPARQL Select queries generated in QA systems are far below than

100% accuracy. One of the main reasons is that the user can write free text in NL, and it is

not possible to accurately process the input in all cases. So, we will argue that converting

NL to “SPARQL Update query” will not be accurate in all cases and will add unwanted

data in the KB.

Table 5.1 also shows that, only FREyA is entirely domain independent, and it has partial

user guidance. However, FREyA does not guide the user to formulate a correct sentence

at the first place. Above mentioned reasons suggest that QA systems are not the strong

candidate for our study.

5.1.2 Discussion on CNLs

As shown in Table 5.1, CNLs can automatically resolve the ambiguity. CNLs have formal

syntax and semantics, and they can be mapped unambiguously to OWL. Moreover, CNL

tools facilitate adding and updating data, which was not possible using QA systems.

CHAPTER 5. TOOL SURVEY 33

However, there is a learning curve added by the grammar of the CNL. The predictive

editor provided by ACE can solve this problem to a degree. Above mentioned features

suggest that CNL tools are better candidates than QA systems for our study.

5.2 Reasons Behind Selecting ACE and AceWiki

After analyzing QA systems and CNL tools, we figured out that ACE is the best choice

for our study. We have also decided to use AceWiki as a Semantic Wiki.

• ACE: Reasons behind choosing ACE are listed below:

– Round-trip: We can create OWL ontology using ACE, and we can also verbalize

OWL ontology into ACE sentences.

– User guidance: The user can be guided to create a new ACE sentence by using

the predictive editor. It decreases the learning curve of ACE grammar.

– Web-services: ACE provides web-services for ACE parser (APE) and

OWL-verbalizer. These web-services can be used in other external systems.

• AceWiki: Reasons behind choosing AceWiki are listed below:

– AceWiki uses ACE as the CNL, and we have already decided to use ACE in

our prototype. There are other Wikis which use CNL. WikiOnt-CNL [Sm09]

supports Rabbit and ACE for verbalizing OWL axioms. However, it does not

allow to create or edit the CNL sentences directly. Moreover, it does not support

reasoning. Moreno and Bringert [MB08] uses a multi-lingual CNL framework in

a wiki environment. Again, reasoning is not enabled here. On the other hand,

AceWiki uses ACE as CNL and integrates reasoning over the content of the

Wiki. It also uses a predictive editor to help the user in writing ACE sentences.

– Search: One can search data in AceWiki by writing questions in ACE sentences

and can also search concepts by keywords.

Chapter 6

Conceptual Design

This Chapter contains detail discussion about the conceptual design of the prototype.

A mockup driven development approach [ZC03] is followed to understand how the tool

should act. Developing a web application can be complicated if there is a lack of an

appropriate application model, architecture, and framework. A good implementation

model facilitates the application developers to speed up the development and to

communicate with clients effectively [ZC03]. This chapter is organized as follows: Section

6.1 will focus on the main requirements, Section 6.2 will present the UML use case diagram,

the mockups will be presented in Section 6.3, and finally, a proposed workflow will be

shown in Section 6.4.

6.1 Main Requirements of the Prototype

To begin with, let us summarize the main requirements of this prototype. These

requirements are derived from the research questions formulated in Section 1.4, but

described in more detail:

1. Providing web-based NLI: As discussed in Section 5.2, CNL has been selected

instead of entirely natural language since former one is more robust and less error

prone than the later one.

Reasons behind choosing a web-based interface have some advantages: users do not

need to install any software and need not to bother with security issues of the tool

since security engineers will test the tool in the server and everyone will be able to

access the tool through their browsers.

2. Converting existing OWL ontologies into NL representation: The prototype

should be able to convert existing OWL ontologies into NL for reuse.

34

CHAPTER 6. CONCEPTUAL DESIGN 35

3. Adding data to OWL ontology through web-based NLI: The NLI should

allow the user to create a new ontology or add data to existing one.

4. Updating OWL ontology using web-based NLI: The NLI should provide

support to update existing OWL ontology.

5. Search support in OWL ontology through NLI: User should be able to search

in the OWL ontology through NLI.

6. Providing guided user interface: Prototype should guide the user to add new

knowledge, update knowledge and query into the knowledge base.

7. Creating domain specific lexicons automatically: There should be a way to

create the domain specific lexicons automatically from existing ontologies.

8. Exporting the content to OWL format: System should be able to export data

in OWL format, so that changes made by domain experts inside the prototype can

be easily reused in some ontology editing software, e.g., Protégé.

6.2 UML Use Case Diagram

The UML use case diagram of the prototype is shown in Figure 6.1. It shows the expected

functional behavior of the system.

Figure 6.1: UML Use case diagram showing the expected functional behavior of the prototype.

CHAPTER 6. CONCEPTUAL DESIGN 36

6.3 Mockups

Several mockups were created to realize the system regarding workflows and

functionalities. However, the AceWiki’s user interfaces are not reflected in the mockups

and we kept the mockups as simple as possible. The mockups also helped to analyze the

system in more detail. These mockups were developed at the beginning of the design

phase, which continuously evolved during the implementation of the prototype.

Initially, the idea was to provide a textbox in which the user could write a natural language

sentence to add data into the knowledge base, as shown in Figure 6.2.

Figure 6.2: Mockup showing that user can write NL to add data into the knowledge base. NLP will be
used to parse this input

Then the sentence will be analyzed to identify each part of the triple, i.e. the subject,

predicate and object. Next, each part will be analyzed to match against the underlying

lexicon. After the matching, each part will have any of the following three states: the

word is completely matched with an existing concept (marked as green), or the system

found some ambiguity while matching (marked as yellow), or the word is not yet defined

in the system (marked as red). This scenario is depicted in Figure 6.3. Subject (Lavatory,

in this example) is marked as green, which means that the system has perfectly matched

this word with the existing lexicon.

CHAPTER 6. CONCEPTUAL DESIGN 37

Figure 6.3: Mockup showing the identification of subject, predicate, and object from NL input

Yellow marking on the predicate (has, in this example) means that the system found

ambiguity while matching this word. Hence, suggestions will be provided from the existing

lexicons to resolve the ambiguity. Additionally, the option to create a new concept will be

given as well. Figure 6.4 and 6.5 show a suggestion list and the option to add new concept

respectively.

Figure 6.4: Mockup showing the ambiguity resolution by engaging the user. As an option to resolve the
ambiguity, a list of suggestion will be provided from existing lexicons to choose from

Figure 6.5 and 6.6 depict the situation when the user creates a new definition. Depending

CHAPTER 6. CONCEPTUAL DESIGN 38

on the type of the word, different options will be provided to set the properties of this new

definition, e.g., domain and range properties will be available for the predicate, on the

other hand, subclassOf and sameAs properties will be available for an object. However,

the above-mentioned property list is only a sample list; more properties can be added

depending on the type of the word in the implementation.

Figure 6.5: Define new concept for a predicate. User can set various properties of the predicate

Figure 6.6: Define new concept for an object. User can set various properties of the object

Finally, when each word from the triple is defined in the system, the sentence will be

CHAPTER 6. CONCEPTUAL DESIGN 39

available to be added to the knowledge base as showed in Figure 6.7.

Figure 6.7: All the concepts are defined or matched with existing lexicon. Therefore, everything has
become green and user can add this sentence in the KB

Because of the error-proneness nature of NLP, users having knowledge of triple format

may want to input the triple by themselves. This situation is realized by the mockup

shown in Figure 6.8. Drop-down list and auto-completion are provided to choose from

existing concepts.

Figure 6.8: Mockup showing that the user can directly input the triple format

CHAPTER 6. CONCEPTUAL DESIGN 40

6.4 Proposed Workflow

In this Section, an informal top level architecture of the conceptual system will be

presented, then a workflow will be introduced to add new knowledge to the knowledge

base.

Aircraft program
engineer

Frontend GUI

Natural language input
describing domain specific

rules and concepts with
intelligent code

completion

Submit

Backend Triple Store

REST
Interface

REST
Interface

Ontology TBox
(Classes and

Rules)

Ontology
Vocabulary

Natural
Language
to SPARQL
Converter

Convert
Vocabulary

into
Dictionary

REST
compliant
PUT/POST

Request

REST
compliant

GET
Request

Figure 6.9: An informal top level architecture of the proposed system (This image originates from Airbus
research group)

The informal architecture presented in Figure 6.9 shows several important components,

e.g., NL to SPARQL converter, REST interfaces and GUI for user input.

Proposed workflow is shown in Figure 6.10. At first, the user will write new knowledge

in the natural language. Then the system will check whether the entered concepts are

already defined in the system or not. If any of the concepts is found undefined in the

system, then the user will be involved to define it properly. The new knowledge will be

added into the knowledge base as soon as all the concepts are properly defined.

CHAPTER 6. CONCEPTUAL DESIGN 41

Rule Ontology Back-End

Web Process Engine

Update rule

ontology with new

rule

Natural Language Processor

Request

specification of

concept

Concept

exists

Natural Language ProcessorUser Front-End

YesNo

Natural Language Processor

Update dictionary

with new concept

Web Process Engine

Update the rule

ontology with the

new concepts

Concept

exists Yes

No

Natural Language Processor

Check if all

concepts in the rule

are present

User Rule Input (font end)

User types in rules

Web Process Engine

Ask rule ontology

for existing

concepts

Natural Language Processor

Access the concept

dictionary

User Rule Input (font end)

User specifies new

concept

Natural Language Processor

Software checks if

all concepts in the

rule are present

Web Process Engine

Ask rule ontology

for existing

concepts

Natural Language Processor

Access the concept

dictionary

Figure 6.10: Proposed workflow showing how new concept and knowledge can be added to the knowledge
base (This image originates from Airbus research group)

Chapter 7

System Design and Architecture

This Chapter presents the design and architecture of the final system. In Section 7.1, at

first, the current architecture of the AceWiki is described to have a better understanding

of our working environment. After that, evaluation of the AceWiki regarding the

requirements of this study will be discussed. The evaluation shows that there are numerous

obstacles with AceWiki, which need to be taken care of. In addition, the limitations of

AceWiki lead us to add new features on top of AceWiki which will be presented in Section

7.2. Finally, we will go through the design and the architecture of our prototypical system

step by step in Section 7.3.

7.1 Evaluation of AceWiki

Reasons behind choosing AceWiki for this thesis as well as the features and purpose

of Acewiki have already been discussed in detail in Section 5.2. In this Chapter, the

architecture of AceWiki will be discussed briefly. Then, the AceWiki will be evaluated

against our dataset to find out to what extent it supports our requirements. Finally, the

limitations of the AceWiki and its associated components will be listed.

Figure 7.1 shows the top-level architecture of AceWiki. Different third-party libraries and

systems are being used by it. Echo framework is used as a web framework to implement

this semantic wiki. AceWiki uses APE to validate whether the input sentence is a valid

ACE sentence or not. APE is also used to find out which ACE sentences can be converted

to OWL. The sentences which are not convertible to OWL, are not available to participate

in reasoning. Those sentences are marked by red triangles in AceWiki.

42

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 43

Figure 7.1: Architecture of AceWiki [Ku10b]

7.1.1 Support for Requirements

This Section will start with the discussion about the features of AceWiki which are aligned

with our requirements. Section 7.1.2 will discuss the shortcomings of AceWiki, which

needs to be tackled to fulfill our needs.

The Acewiki possesses some valuable features regarding our requirements. It provides the

feature of creating ontology using an NLI. It also possesses the functionality of updating

the existing knowledge through the NLI. Moreover, to guide the user to create a new ACE

sentence, it provides a predictive editor which is shown in Figure 7.2a. The editor shows

all the possible words to continue a sentence from a current position.

The layout of each article is shown in Figure 7.2b. Each article can contain several ACE

sentences.

AceWiki provides two types of search possibilities. One can write questions in ACE

sentences, and AceWiki can answer to that query as shown in Figure 7.2c. However,

AceWiki can answer only about instances of classes. Moreover, there is another search

possibility. One can search the classes by keywords from the search box.

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 44

(a) A screenshot of the predictive editor of AceWiki. This editor
shows all possibilities to continue the sentence from current
position. This screenshot is originated from [Ku08b]

(b) A screenshot of the web interface of AceWiki showing the wiki
article for the class ”Continent”. This screenshot is originated from
[Ku08b]

(c) A screenshot of AceWiki showing the functionality of answering
questions based on the KB. This question-answering system
facilitates searching. This screenshot is originated from [Ku08b]

Figure 7.2: Screenshots of AceWiki showing related features for our use cases. These screenshots are
originated from [Ku08b]

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 45

Table 7.1 discusses the requirements of our study and to what extend AceWiki fulfills

them.

Table 7.1: Evaluation of AceWiki regarding our requirements

Requirement Supports Comment

Providing web-based NLI Yes
Adding data to OWL ontology
through a web-based NLI

Partial Owl-verbalizer can not convert
all OWL segments to ACE
sentences. Furthermore, AceWiki
cannot handle all valid ACE
sentences, because it uses a subset
of ACE.

Updating OWL ontology using a
web-based NLI

Partial Since all ACE sentences can not
be entered into AceWiki and
owl-verbalizer can not work with
all OWL constructs.

Importing existing OWL ontology No
Search support in OWL ontology
through the NLI

Yes

Guided user interface Yes Using predictive editor.
Creating domain specific lexicon
automatically

No

Exporting in OWL format Yes
Exporting in Turtle format No

7.1.2 Limitations of AceWiki

The Acewiki is tested against real world dataset containing cabin ontology provided by

Airbus. The result shows that several features need to be implemented on top of AceWiki

to be compatible with our dataset.

Limitations of the AceWiki are discussed here:

1. No import functionality: AceWiki has no option to import existing ontologies, which

is a barrier to utilizing existing ontologies.

2. Can not work with floating point numbers: Floating point numbers occurred several

times in our real world dataset to define the position of various components. But,

AceWiki can not handle floating point numbers.

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 46

3. Can not handle more than two classes in a DisjointClasses block: If there are more

than two classes in a DisjointClasses block of OWL ontology, then OWL-verbalizer

could not handle it.

4. Labels and comments from OWL ontology are lost: AceWiki has no way to save

labels and comments from OWL.

5. Wrong URI: If there is an import statement in OWL ontology, then URI for the

imported classes are not the same as the base URI of initial ontology, but AceWiki

has no way to define different URI for those imported classes.

6. All ACE sentences are not supported: OWL-verbalizer has been used to translate

owl ontology into ACE sentences. Since AceWiki implemented a subset of ACE

[Ku10a], so all the ACE sentences which were translated by Owl-verbalizer were not

compatible with AceWiki. Moreover, OWL-verbalizer itself can not handle some

OWL properties. Limitation of OWL-verbalizer will be discussed in Section 7.1.3

Now we are going to list some of the ACE sentences which are not supported by

AceWiki. Owl-verbalizer tags every word while verbalizing to ACE. Before listing

the unsupported sentences, we list the meaning of the tags first:

• f = function word

• qs = quoted string

• comment = comment

• cn sg = singular common noun

• tv sg = singular transitive verb

• tv pl = plural transitive verb

• tv vbg = past participle verb

• pn sg = singular proper noun

Now we will list and discuss some ACE sentences which AceWiki can not handle.

At first, a sentence is shown in Table 7.2, which is supported by AceWiki.

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 47

Table 7.2: Example 1, Supported ACE sentence in AceWiki. Owl-verbalizer tokenized these sentences
from OWL

Token type Token
f Every
cn sg Lavatory-A
f is
f a
f LaterralLavatory.

Corresponding OWL:

1 <Declaration>

2 <Class IRI="/LateralLavatory"/>

3 </Declaration>

4 <Declaration>

5 <Class IRI="/Lavatory-A"/>

6 </Declaration>

7 <SubClassOf>

8 <Class IRI="/Lavatory-A"/>

9 <Class IRI="/LateralLavatory"/>

10 </SubClassOf>

AceWiki can not handle floating point number as shown in Table 7.3.

Table 7.3: Example 2, Unsupported ACE sentences in AceWiki. From the red portion, it is not possible
to write the sentence in AceWiki since AceWiki does not support floating point number.

Token type Token

f Every
cn sg Lavatory-A
f is
f a
f thing
f that
tv pl has depth
f 53.0
f and
f that
tv pl has width
f 41.0
f .

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 48

Corresponding OWL:

1 <SubClassOf>

2 <Class IRI="/Lavatory-A"/>

3 <ObjectIntersectionOf>

4 <DataHasValue>

5 <DataProperty abbreviatedIRI="equipments2monuments:has depth"/>

6 <Literal datatypeIRI="&xsd;float">53.0</Literal>

7 </DataHasValue>

8 <DataHasValue>

9 <DataProperty abbreviatedIRI="equipments2monuments:has width"/>

10 <Literal datatypeIRI="&xsd;float">41.0</Literal>

11 </DataHasValue>

12 </ObjectIntersectionOf>

13 </SubClassOf>

Conditional sentences are not supported by AceWiki even though those are

supported by ACE. Table 7.4 shows one example of conditional ACE sentence.

Table 7.4: Example 3, Unsupported ACE sentences in AceWiki. Conditional sentence is not supported
in AceWiki

Token type Token
f If
f X
tv sg has attached
f Y
f then
f Y
tv sg is attached to
f X
f .

Corresponding OWL:

1 <InverseObjectProperties>

2 <ObjectProperty abbreviatedIRI="equipments2monuments:has attached"/>

3 <ObjectProperty IRI="/is attached to"/>

4 </InverseObjectProperties>

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 49

Table 7.5: Example 4, Another unsupported ACE sentences in AceWiki which contains floating point
number

Token type Token

f Every
cn sg ChilledGalley
tv pl has depth
f 39.0
f .

Corresponding OWL:

1 <SubClassOf>

2 <Class IRI="/ChilledGalley"/>

3 <DataHasValue>

4 <DataProperty abbreviatedIRI="equipments2monuments:has depth"/>

5 <Literal datatypeIRI="&xsd;float">39.0</Literal>

6 </DataHasValue>

7 </SubClassOf>

7.1.3 Limitations of Owl-Verbalizer

Owl-verbalizer, which is a part of the ACE project, is not compatible with all OWL

axioms. For this reason, some of the OWL axioms could not be converted to ACE sentence.

Here we list the owl properties which OWL-verbalizer can not handle:

• SubDataPropertyOf

• FunctionalDataProperty

• DataPropertyRange

• DLSafeRule

• DatatypeDefinition

• ObjectIntersectionOf

• DataAllValuesFrom

• DataOneOf

• DataExactCardinality

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 50

• EquivalentClasses

• Annotation

7.2 Extension for Our Use Cases

After doing the analysis in Section 7.1, we pointed out which functionalities we need to

add on top of AceWiki to fulfill our requirements. This Section will discuss the extensions

we planned to implement, and the system design will be discussed in Section 7.3.

7.2.1 Features to be Implemented on AceWiki

After finding out the limitations of AceWiki, we will discuss what features we have to

implement on top of AceWiki.

1. Import functionality: To reuse existing ontologies, we have decided to add import

functionality in AceWiki.

2. Auto lexicon creation from OWL ontology: So that domain experts do not

need to input the lexicons manually.

3. Change grammar to accept floating point number: We have to update the

grammar of AceWiki to provide support for floating point numbers.

4. Rewrite DisjointClasses blocks: If there are more than two classes in a

DisjointClasses block of OWL, then OWL-verbalizer can not handle it. So, if there

are more than two classes in a DisjointClasses block, then we have to create n(n-1)/2

blocks, where n is the number of classes in each block.

5. Store rdfs:Labels and export them: AceWiki has no feature to store the data

of rdfs:Labels. So we have to make sure that rdfs:Labels are not missing inside

AceWiki and rdfs:Labels are also correctly exported when we export AceWiki in

OWL format.

6. Store rdfs:comments and export them: Just like rdfs:Labels, AceWiki can not

handle rdfs:comments also. So, we have to handle this case also.

7. Store URI: In AceWiki, we can only save a lexicon but not the whole URI. We

have to add functionality to store the URI also.

8. Turtle to OWL conversion: Inside Airbus, turtle format is used to represent

ontologies. However, the OWL-verbalizer can only work with the OWL/XML

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 51

format. So, files have to be converted from turtle to OWL/XML format before

sending them to the OWL-verbalizer.

9. Export in Turtle format: AceWiki can export ontology in OWL/XML format,

but the Restful services deployed in Airbus work with turtle format. So, we need to

add support to export data in turtle format also.

7.3 System Design

This Section explains the overall system design and architecture of the final prototype

with various UML diagrams. Different components of the system are also described.

Many considerations were taken into account while building the architecture. At first, we

tried to convert the OWL ontology into ACE sentences using the provided owl-verbalizer,

but it has its limitations which caused data loss. A second attempt was made to develop

the whole system with our XML parser, but it would be very complicated and also very

time consuming. Consequently, a more appropriate solution resulted in a combination of

the owl-verbalizer and our XML-parser. Our XML parser re-factors the OWL ontology

to be more compatible with the OWL-verbalizer and on the other hand, it provides the

opportunity to tackle the OWL axioms which are not supported by the OWL-verbalizer.

This architecture ensures more data integrity since we are handling some OWL axioms

by ourselves which were not possible by the OWL-verbalizer. Moreover, the re-factored

ontology becomes more compatible with OWL-verbalizer.

Data Flow Diagram

The purpose of Data Flow Diagram is to represent the exchange of information. However,

it is not used to answer in what way and in what order the information is being used

in a system. The Data Flow Diagram shown in Figure 7.3 contains four processes, one

external entity, and one data store. We have put the processes in the middle and data

store on the right side and external entities on the left side. Based on Diagram 7.3, we see

that the Import OWL process receives the uploaded owl from the Upload OWL process.

This process also communicates with the Refactor OWL process to refactor the uploaded

owl file, because the OWL verbalizer can not handle all OWL axioms, which has already

been discussed in Section 7.2.1. Import OWL process sends the Refactored OWL to OWL

verbalizer and receives corresponding ACE sentences in response. This process also stores

the lexicon and valid ACE sentences in the data store.

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 52

Figure 7.3: Level 1 data flow diagram for import functionality and lexicon creation. It represents the
exchange of information among processes, data storage, and external entities. Blue parts show the newly
added modules.

Package Diagram

A package diagram is presented in Figure 7.4, to show the dependency and structure of

the subsystems in the implemented prototype. This package diagram is generated using

object aid1. Since the AceWiki project contains many modules and some modules are

not relevant to our use case, we decided to show the most important subsystems in our

package diagram. This top level view will be helpful in future to quickly understand the

project.

1http://www.objectaid.com/

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 53

Figure 7.4: UML Package diagram of important packages of the application. Dashed arrow shows the
dependency between the packages

Deployment Diagram

Execution architecture of our system, i.e. the assignment (deployment) of software

artifacts to deployment targets is shown in the deployment diagram presented in Figure

7.5. Hardware devices or software execution environments are sometimes very important

because changing the environment may make the system unusable or unstable. Our system

is deployed on Windows 7 operating system and the execution environment is Java EE

CHAPTER 7. SYSTEM DESIGN AND ARCHITECTURE 54

container which is running Jetty version 9.0.0.

Figure 7.5: Deployment diagram of final system, which is using Windows 7 OS and Java EE container
running Jetty version 9.0.0

Chapter 8

Prototype Implementation

The implemented prototype is a web-based application that utilizes the Java Servlet

technology. The NLI is based on the AceWiki, which is a semantic wiki and uses ACE as

a CNL. At first, the key technologies which are used to develop this prototype are listed

in Section 8.1. Then, Section 8.2 will present a detailed and technical description of the

prototype and its main functionalities.

8.1 Key Technologies

Here we present the list of the key technologies used to develop the whole system as well

as a brief description for each of them:

1. OWL API: OWL API is a Java API for creating, manipulating and serializing

OWL Ontologies and includes parser and writer for RDF/XML, OWL/XML, OWL

Functional Syntax, Turtle and some other formats. 1.

2. Echo Framework: “Echo is an open-source framework for developing rich web

applications. Echo applications can be created entirely in server-side Java code using

a component-oriented and event-driven API.”2

3. AceWiki: AceWiki [Ku08a] is a semantic wiki which is powerful and at the same

time easy to use. Since it uses ACE as a CNL, the articles in the wiki look like

natural English.

4. Owl-verbalizer web service: OWL verbalizer 3 is a tool that converts an OWL

1https://github.com/owlcs/owlapi
2http://echo.nextapp.com/site/
3https://code.google.com/archive/p/owlverbalizer/

55

CHAPTER 8. PROTOTYPE IMPLEMENTATION 56

ontology into ACE text. It was developed as part of ACE project4. We used the

webservice of owl verbalizer.

5. APE: AceWiki requires to communicate with APE, so we used an HTTP interface

to APE5.

6. Jetty runner: AceWiki is a web application that has to be run on Java servlet.

Jetty6 is used as a servlet container.

7. Jersey: “Jersey is a framework for developing RESTful Web Services in Java that

provides support for JAX-RS APIs.”7

8. XML: XML is needed to design UI in Echo framework.

9. JDOM XML parser: JDOM8 is used as a XML parser in our implementation.

10. Git: Git is used as a version controlling system.

8.2 Implemented Features on AceWiki

As explained in Chapter 7, we have taken AceWiki as our base and added features on top

of it to meet our requirements. In this Section, we will discuss the features we developed

as par our requirement. MVC architectural pattern is used for our implementation.

8.2.1 Enhancement of User Interface

In Figure 7.2, we have shown the interface of AceWiki. To give the UI a modern look and

feel we have enhanced the interface. We focused on giving the look and feel which is used

in other Airbus softwares, e.g., color scheme, layout design, etc. Different possible ways

were investigated to upgrade the UI.

Vaadin9 provides user interface components for web applications developed using Java.

So, at first an attempt was taken to incorporate Vaadin into our prototype. During the

first tests, it became apparent that it is not possible to integrate Vaadin into the Echo

framework within the time frame of this thesis, since the Echo framework has no direct

interface that can be used for the integration. The use of HTML and Cascading Style

Sheets (CSS) was considered as an alternative but again, it was not possible to integrate

4http://attempto.ifi.uzh.ch/site/description/
5https://github.com/Attempto/APE
6http://www.eclipse.org/jetty/
7https://jersey.java.net/
8http://www.jdom.org/
9https://vaadin.com/home

CHAPTER 8. PROTOTYPE IMPLEMENTATION 57

CSS with Echo framework. Moreover, because of time constraint we could not replace the

Echo framework since the whole AceWiki was developed using this framework. Then the

last option is chosen, which is XML stylesheet. However, designing with XML is not as

flexible as CSS, but we succeeded to give the UI a better look and feel which is compatible

with Airbus softwares.

We present the new UI of the application in Figure 8.1

Figure 8.1: Enhanced user interface conforming the look and feel of Airbus softwares.

8.2.2 Import Functionality and Dynamic Lexicon Creation

We have provided two different options to import an ontology. The user can either upload

an ontology from his disk as shown in Figure 8.2a, or can select from existing ontologies

which are available via a web service, as shown in Figure 8.2b. There is a RESTful web

service which provides the existing ontologies from the server of Airbus. A Rest client is

developed using Jersy as part of our prototype to invoke that web service.

CHAPTER 8. PROTOTYPE IMPLEMENTATION 58

(a) User can upload an ontology to import
it in the prototype

(b) User can choose an ontology from
existing ontologies through a web service

Figure 8.2: Screenshots of different options to import an ontology

Refactoring OWL

If there are more than two classes in a DisjointClasses block of the OWL, then

owl-verbalizer can not handle it. So, if there are more than two classes in a DisjointClasses

block, then we have created n(n-1)/2 blocks, where n is the number of classes in each block.

This is done by XML parsing.

Dynamic Lexicon Creation

At first, the lexicons need to be created to import an ontology. Automatic lexicon creation

is done before importing the ontology. At first, the OWL-verbalizer web service is called

which creates ACE sentences from OWL ontology and also tags each part of the sentence.

Then using those tagged words, we create lexicons with surface forms and insert them

into AceWiki. Finally, the wiki is filled with ACE sentences, and the import process is

finished. Figure 8.3 shows the automatically created lexicons.

Conversion Between Ontology Formats

Web service from Airbus provides turtle files to represent their ontologies. On the other

hand, OWL-verbalizer works with only OWL/XML. Moreover, the Acewiki also exports

ontology as OWL/XML but web service from Airbus expects data in turtle format. For

these reasons, we implemented a converter to convert OWL/XML to turtle and from

turtle to OWL/XML.

CHAPTER 8. PROTOTYPE IMPLEMENTATION 59

Figure 8.3: A screenshot of the list of lexicons which are created automatically while importing an
ontology

8.2.3 Grammar Extension

AceWiki introduced ACE Codeco grammar that defines a subset of ACE in a formal and

declarative way. Since this grammar defines only a subset of ACE, it was not possible to

integrate some valid ACE sentences with AceWiki. For this reason, improvement of the

CHAPTER 8. PROTOTYPE IMPLEMENTATION 60

grammar of AceWiki was required.

For example, it was not possible to enter below sentences in AceWiki. The first example

(8.1) shows a conditional sentence and the second one (8.2), shows floating point number.

If X is part of Y then Y has part X. (8.1)

Every Lavatory-A is something that has depth 53.0 and that has width 41.0. (8.2)

After changing the grammar and updating the corresponding code base, we were able to

import above sentences automatically as shown in Figure 8.4a and 8.4b, respectively.

(a) Our prototype supports conditional
sentences

(b) Our prototype supports floating point numbers

Figure 8.4: We have added support for different sentences which are not supported in AceWiki

8.2.4 Improvement of Predictive Editor

The predictive editor assists the domain expert to write ACE sentences, so we have also

updated the predictive editor to support the sentences for which we have added grammar

in AceWiki. Figure 8.5 shows that one can write the conditional sentence and floating

point numbers in the predictive editor.

8.2.5 Preventing Data Loss

AceWiki was not able to handle ”rdfs:comment” and ”rdfs:label” and some

data annotations, e.g., <AnnotationProperty abbreviatedIRI=”dct:description”/>,

<AnnotationProperty abbreviatedIRI=”dct:title”/>. To prevent data loss, we added

functionality to store those data in our ontology and also preserved those data while

exporting. However, it was not implemented for all annotations because of time constraint,

but it will be the same for all missing properties. We parsed the XML file and stored the

data of our targeted properties inside AceWiki.

CHAPTER 8. PROTOTYPE IMPLEMENTATION 61

(a) Screenshot showing support for if-then sentence in predictive
editor to write ACE sentence

(b) Screenshot showing floating point number support in predictive
editor to write ACE sentence

Figure 8.5: Screenshots showing the improved predictive editor which supports if-then and floating point
numbers

Part IV

Evaluation

62

Chapter 9

Evaluation

Following the design and prototypical implementation of a platform for managing

complex ontologies using NLI (Chapters 6, 7 and 8), the goal of this Chapter is to

evaluate the prototypical implementation. Section 9.1 describes the methodology of

the evaluation. Sections 9.2 evaluates the prototype from the perspectives of Airbus

stakeholders representing different potential application domains. Section 9.3 presents the

evaluation of the functionality test and the portability test based on real-world ontologies

of an aircraft study. Finally, Section 9.4 evaluates the prototype regarding integration

with other business solutions.

9.1 Methodology

Hevner et al. in their information systems research framework, describe design as a ”search

process to discover an effective solution to a problem” - an iterative cycle to generate/test

that alternates between Develop/Build and Justify/Evaluate phases [He04]. Taking this

into consideration, informal interviews were performed within the research group for the

first assessments of the design artifacts, as well as surveilled usage of the prototypical

implementation. Valuable feedback has been yielded from these preliminary evaluations,

especially concerning the prototype’s user interface and usability.

To get feedback from different domain experts, we decided to perform an exploratory

case study evaluation with a use case design. After that, several real ontologies of an

aircraft were used to assess the prototype by doing functionality test, which Hevner et

al. suggested as one of the evaluation methods. Evaluating the prototype with various

ontologies also helped to check the generality of the prototype, in other words, how

effectively the prototype can work with different types of ontologies. The above-described

evaluation methodology is illustrated in Figure 9.1.

63

CHAPTER 9. EVALUATION 64

Develop/Build

Justify/
Evaluate

R
ef
in
e

A
sses

(a) Develop/Build and
Justify/Evaluate cycles within
the research group to build the final
artifact

Prototype

Expert
Interview

Functional
Test

Defined
use case

Portability
Test

Integration with other
business solutions

(b) Final evaluation was done by
conducting five expert interviews,
functional test, portability test and
integrating with other business
solutions

Figure 9.1: Evaluation methodology

9.2 Expert interview

This Section will discuss the performed expert interview, its design along with the case

study design. Finally, the results of the interviews will be analyzed.

9.2.1 Case Study Design

The evaluation realized for the prototype is based on one exemplary use case. The use

case describes the selection of a cabin ontology of an aircraft, which has to be imported

inside the prototype and to be manipulated using natural language interface. At first, the

wiki is populated by importing the ontology. Then required concepts are searched using

the search box and by asking questions which were answered by the integrated reasoner.

ACE sentences were manipulated using the predictive editor as well as new knowledge

were added in the wiki. Finally, the ontology is exported in various formats for example

in turtle, OWL/XML and RDF/XML and checked accordingly to find out whether the

changes made in the wiki are reflected or not.

9.2.2 Interview Design

A demonstration of the prototype was held following the case study which is designed

in Section 9.2.1. After that, a questionnaire was sent to the participants and we received

valuable feedback and suggestions from the interviewees in response.

CHAPTER 9. EVALUATION 65

During the interviews, the background of the research project was discussed first and then

the corresponding design artifacts were introduced:

1. Introduction to the concepts of NLI to manage complex ontology as discussed in

Chapter 6, accompanied by questions addressing NLI demand on different use cases.

2. Introduction, discussion and questions regarding usability and usefulness of the

prototype and also towards further improvement.

9.2.3 Participants

The choice of the interviewees is another important design decision. It is a good idea to

choose participants from different domains, who deal with different kind of ontologies as

well as different kind of tasks. So, they would be able to give feedback in a more generic

way regarding the solution approach as well as the future extension of the prototype.

Requirement specialist, ontology expert, operational intelligence expert, stakeholders in

the area of Model/ Variant Management and IT platform specialists took part in this

evaluation phase and gave their valuable feedback based on our questionnaire.

9.2.4 Interview Result

The qualitative expert interviews yielded comprehensive feedback for the prototype. In

general, they liked different features of the prototype as well as they found those features

intuitive to use. Moreover, they discussed potential use cases and gave future direction

for the prototype’s development.

Feedback for the Prototype

• Import functionality: All the participants found that the import functionality is very

intuitive.

• Search: The interviewees found the search options helpful.

• User guidance via the predictive editor: In general, the interviewees found the

predictive editor was helpful, but the also gave some suggestion to improve the

human machine interface (HMI) for creating new sentences, e.g., by providing

auto-completion while typing. Currently, the prototype provides suggestion words

after pressing the tab key, which could be improved by providing auto-completion.

CHAPTER 9. EVALUATION 66

Potential Use Cases:

Interviewees were asked about potential use cases where they think that this prototype

could be used. Several possible use cases were proposed:

• Managing requirements: Some users need to work with verbalized ontology which

is provided by the import functionality of the prototype. As suggested by one stack

holder, it is useful for requirements management.

• Model management: A user could use the sentence editor to enter new knowledge

and in this case it might be useful to connect the database with existing model or

document.

• To quickly create a generic ontology: The prototype could be very efficient to add

different domain concepts quickly to a generic ontology and easily create the links

between them. It can be done by importing the concepts that belong to this domain

ontology (through a glossary or a list of domain’s terms) and creating new sentences

to make connections between them.

Future Direction

Interviewees were also asked about adding new functionalities, future direction or any

problem they want to report. They provided valuable feedback in this regard:

• Morphological improvement of ACE: Some ACE sentences are not grammatically

correct in English language, work has to be done to improve it so that end users

feel more comfortable while working with the prototype.

• User management: Two out of five interviewees mentioned that they want user

management so that multiple users can use the tool simultaneously.

• Auto-completion while typing: Now suggestions are shown after pressing the tab

key, but one interviewee mentioned about auto-completion while typing.

9.3 Functionality and Portability Test

The prototype was tested extensively with various data from different ontologies. Key

features were selected to test for this moment; those are: import functionality to populate

the wiki with existing data, exporting in different formats to check data integrity,

manipulating data for which we have added support on AceWiki.

CHAPTER 9. EVALUATION 67

Portability of an NLI system from one domain to another is a big issue since sometimes

adaptation is needed by annotating the ontology or by configuring the NLI itself. It

creates an overhead on the NLI and makes it difficult for the end user to work with

different ontologies.

9.3.1 Dataset

We have taken five different ontologies from various data sources. Among those, four

ontologies are Airbus internal and one is publicly available. The popular pizza ontology is

chosen as the publicly available ontology which can be found in the website of Protégé1.

9.3.2 Result of Functionality Test

The prototype successfully handled all the ACE sentences for which we added support.

However, owl-verbalizer is not able to verbalize all owl-axioms, for this reason, some

knowledge could not be added to our prototype. Moreover, AceWiki implemented a subset

of ACE in their grammar, which also prevented to import some valid ACE sentences into

the prototype. But, we have already improved the grammar of AceWiki to accept more

ACE sentences which give a hint that it is possible to extend the grammar of AceWiki to

accept other ACE sentences also.

9.3.3 Result of Portability Test

Experimenting with different ontologies shows that our prototype can handle any OWL

ontology without modification, and the supported file types are dependent on those

allowed by OWL API2. Our prototype does not require any customization to work with

different OWL ontologies. Therefore, the prototype is portable.

9.4 Integration With Other Business Solutions

To evaluate the prototype regarding integration with other business solutions, we selected

one software running in Airbus, which publishes ontologies in turtle format through a

restful web-service. We invoked that web-service to import ontologies in our prototype.

Hence, we were able to integrate our system with another software.

1http://protege.stanford.edu/ontologies/pizza/pizza.owl
2https://github.com/owlcs/owlapi

CHAPTER 9. EVALUATION 68

Since our prototype can also export ontologies, it would also be possible to make a round

trip by exporting the ontologies to another web-service. But, because of the unavailability

of such a web-service at Airbus, we could not test this scenario.

Integration with another business solution through a web-service is shown in Figure 9.2.

RESTful web
servicePublish data

Fetch ontology

Show ontology in
NL

OWL->Turtle
Select existing

ontology

Implemented
prototype

Edit ontology
through NLI

Turtle->OWL

Turtle file

Owl file

R
eq

u
e

st

o
n

to
lo

gy

Se
n

d

tu
rt

le
 f

ile

Publish edited
ontology

External software
system

RESTful web
service

Fetch ontology

Show ontology in
NL

OWL->Turtle
Select existing

ontology

Implemented
prototype

Edit ontology
through NLI

Turtle->OWL

Turtle file

Owl file

R
eq

u
e

st

o
n

to
lo

gy

Se
n

d

tu
rt

le
 f

ile

Export edited
ontology

External software
system

Figure 9.2: The prototype is integrated with another business solution through a restful web-service. It
imports ontology from the web-service.

9.5 Summary and Discussion

While evaluating the prototype, we discovered more options to improve the tool. The

qualitative interviews with Airbus stakeholders of different potential application domains

yielded comprehensive feedback. In general, they liked different features of the prototype.

They also gave different suggestions to improve the prototype, e.g., to improve the

human machine interface (HMI) for creating new sentences, regarding the morphological

improvement of ACE, to add user management functionality. Small bugs were identified

and fixed during the functional test. Our prototype is portable to all OWL ontologies

since it does not require any customization. Integration with another business solution

through a web-service was also successful. The evaluation also helped us to organize the

future work for the next phase of development.

Part V

Future Work and Conclusions

69

Chapter 10

Future Work

The work described in this thesis can be improved in many aspects. Some ideas are

outlined here.

1. User management and activity logging: User management can be added to allow

multiple users to access the tool simultaneously. Databases like CouchDB can

be integrated to allow multiple users to modify the same ontology concurrently.

Keeping the activity logs will help collaborative ontology development and will also

contribute to find out inconsistencies.

2. Improving search mechanism: AceWiki supports simple wh-questions with exactly

one wh-word, and the individuals belonging to the given class description are

returned as a result. One improvement can be made by supporting more expressive

query languages like SPARQL.

3. Potential use cases: Interviews with domain experts yielded some potential use cases,

e.g., managing requirements, model management, etc. The prototype can be tailored

to work with those use cases in future.

4. Auto-completion: The predictive editor gives suggestion after pressing the tab

key. But the human machine interface (HMI) can be improved by providing

auto-completion while typing a word.

5. Morphological improvement: Sometimes, the ontology engineers give names to

classes or properties in such a way, that the verbalized ACE sentences seem to

be wrong English sentences. For example, an object property is given the name

hasDepth. This camel case format is well known to the programmers, but confusing

to the domain experts. Future research can focus on this issue.

6. Improving OWL-verbalizer: Because of the limitations of the OWL-verbalizer, we

were unable to import several OWL axioms into our prototype. However, we have

70

CHAPTER 10. FUTURE WORK 71

demonstrated a mechanism to prevent data loss. Future work can be done to improve

the OWL-verbalizer.

Chapter 11

Conclusions

The primary objective of this thesis was to provide a web-based NLI to guide domain

experts for managing complex product ontologies. We extended a prototype which

combines a CNL (ACE) and a semantic wiki (AceWiki). This prototype is web-based,

domain independent and guides the domain experts to create, update and search OWL

ontologies without learning ontology engineering. Moreover, our prototype can reuse

existing ontologies by importing them into the prototype and by creating domain specific

lexicons automatically.

At first, a state of the art analysis was conducted to find out the right solution approach.

Well known QA systems and CNL tools were analyzed in detail. It was identified that

none of the existing QA systems can adapt the essential requirements of our study. On

the other hand, CNLs provide a useful solution to accommodate major requirements,

e.g., adding and updating data, automatic ambiguity resolution, etc. After comparing the

tools, we selected ACE as the CNL as a basis for our prototype. Semantic Wikis are useful

to hide the underlying complexity of the ontologies from the domain experts. Moreover,

as discussed by Schaffert et al. in [Sc08], Semantic Wikis can significantly simplify the

ontology engineering. After studying different Semantic Wikis, AceWiki is chosen for the

prototypical implementation.

We adjusted the AceWiki and implemented a number of features to fulfill our

requirements. Domain experts are guided by the predictive editor to create ACE sentences

without learning the grammar of ACE. However, the expert interviews showed that the

predictive editor needs to be improved for better usability.

The evaluation of the prototype with Airbus stakeholders yielded valuable feedback. In

general, they liked different features of the prototype, found those features intuitive to

use and also gave suggestions for future work, e.g., to add user management. Functional

tests with five real-world ontologies showed that the prototype can successfully handle

72

CHAPTER 11. CONCLUSIONS 73

all the ACE sentences for which we added support. Portability test with dataset from

different domains demonstrated that our prototype is highly portable to the different OWL

ontologies since it does not need any customization. Moreover, successful integration of

the prototype with another business solution shows that the prototype can be integrated

with other systems through web services.

Appendices

74

Appendix A

List of Abbreviations

The following Table describes the full form of various abbreviations used throughout the

thesis.

Abbreviation Meaning

1. NL Natural Language

2. CNL Controlled Natural Language

3. NLI Natural Language Interface

4. KB Knowledge Base

5. KR Knowledge Representation

6. QA Question Answering

7. NLP Natural Language Processing

8. WYSIWYG What You See Is What You Get

Table A.1: Abbreviations list.

i

Appendix B

User Guide

Here we will show step by step how to run the prototype on Windows operating system

and how to use it.

1. Install SWI Prolog1. Add SWI-Prolog’s bin-directory to the PATH system variable.

Something like:

1 SWI_HOME_DIR = <SWI-Prolog home directory>

2 PATH=%SWI_HOME_DIR%\bin\;%PATH%

2. Run APE web-service: Open a command prompt and go to the path of ape.exe.

Run below command:

1 ape.exe -- -httpserver -port 8001

Here port refers to the port which is used in the web.xml file of the prototype. Port

8001 is used for APE in our prototype which is deployed in Airbus. More information

can be found in the website of APE2.

3. Run OWL-Verbalizer web-service: Open a command prompt and go to the path of

owl-to-ace.exe. Run below command:

1 owl-to-ace.exe -httpserver -port 5123 -workers 2

Port 5123 is used for OWL-Verbalizer in the web.xml file of the prototype. “Above

command will start a webserver (SWI HTTP server) on port 5123 with 2 worker

threads. The optimal number of workers depends on the number of CPUs”3.

1http://www.swi-prolog.org/
2https://github.com/Attempto/APE
3https://github.com/Kaljurand/owl-verbalizer

ii

APPENDIX B. USER GUIDE iii

4. Download and install Jetty server. Our prototype works best with version 7.6.19 of

Jetty.

5. Put the war file of our prototype inside <jetty root folder>/webapps directory.

6. Run Jetty server.

7. Now access the prototype: http://localhost:8080/acewiki/acewiki/

8. Click the Import button of the prototype and import an OWL ontology. Now the

prototype is ready to use.

Appendix C

Questionnaire

The questionnaire which is used for the expert interviews is shown below.

Expert’s Name:

Field of expertise:

1. The import process is intuitive

Strongly disagree Disagree Neither agree nor disagree Agree Strongly Agree

� � � � �

(Optional) Include any comments you may have regarding the import functionality

in the field below:

2. The search options are helpful

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

� � � � �

(Optional) Include any comments you may have regarding the search functionality

in the field below:

3. The sentence editor to guide the user to create new sentence in Controlled Natural

Language (CNL) is useful

iv

APPENDIX C. QUESTIONNAIRE v

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

� � � � �

(Optional) Include any comments you may have regarding the predictive editor in

the field below:

4. Creating new concepts is intuitive.

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

� � � � �

(Optional) Include any comments you may have regarding the creating new

concepts functionality in the field below:

5. Do you have any use case in mind where you can use this prototype? If yes, then

what is the use case and what modifications the prototype may need to support

the use case?

6. Do you have any comment on how the prototype could be improved?

7. Do you have any specific problem to report?

8. The system is easy to use

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

� � � � �

9. What did you like best about the system?

APPENDIX C. QUESTIONNAIRE vi

10. We provide import option from OWL/XML, Turtle and RDF/XML files. And the

prototype also exports ontology in OWL/XML or Turtle format. Do you need any

other input/ export format?

Bibliography

[ADR06] Auer, S.; Dietzold, S.; Riechert, T.: OntoWiki–a tool for social, semantic

collaboration. In The Semantic Web-ISWC 2006. pages 736–749. Springer.

2006.

[Al04] von Alan, R. H.; March, S. T.; Park, J.; Ram, S.: Design science in information

systems research. MIS quarterly. 28(1):75–105. 2004.

[BL99] Berners-Lee, T.: Weaving the Web: The Past, Present and Future of the World

Wide Web by Its Inventor (with M. Fischetti). London: Orion Business Books.

1999.

[Bu08] Buffa, M.; Gandon, F.; Ereteo, G.; Sander, P.; Faron, C.: SweetWiki: A

semantic wiki. Web Semantics: Science, Services and Agents on the World

Wide Web. 6(1):84–97. 2008.

[CP82] Church, K.; Patil, R.: Coping with syntactic ambiguity or how to put the block

in the box on the table. Computational Linguistics. 8(3-4):139–149. 1982.

[Da] Damljanovic, D.: Natural Language Interfaces to Conceptual Models. PhD

thesis.

[DAC10] Damljanovic, D.; Agatonovic, M.; Cunningham, H.: Natural language interfaces

to ontologies: Combining syntactic analysis and ontology-based lookup through

the user interaction. In The semantic web: Research and applications. pages

106–120. Springer. 2010.

[De08] Denaux, R.; Holt, I.; Corda, I.; Dimitrova, V.; Dolbear, C.; Cohn, A. G.: Roo:

A tool to assist domain experts with ontology construction. In Proceedings of

the 5th European Semantic Web Conference. 2008.

[De09] Denaux, R.; Dimitrova, V.; Cohn, A. G.; Dolbear, C.; Hart, G.: Rabbit to OWL:

ontology authoring with a CNL-based tool. In Controlled Natural Language.

pages 246–264. Springer. 2009.

[Do07] Dolbear, C.; Hart, G.; Kovacs, K.; Goodwin, J.; Zhou, S.: The Rabbit language:

vii

BIBLIOGRAPHY viii

description, syntax and conversion to OWL. Ordnance Survey Research Labs

Technical Report. 2007.

[Dz06] Dzbor, M.; Motta, E.; Buil, C.; Gomez, J.; Görlitz, O.; Lewen, H.: Developing

ontologies in OWL: An observational study. 2006.

[FS96] Fuchs, N. E.; Schwitter, R.: Attempto controlled english (ace). arXiv preprint

cmp-lg/9603003. 1996.

[Fu07] Funk, A.; Davis, B.; Tablan, V.; Bontcheva, K.; Cunningham, H.: Controlled

language IE components version 2. SEKT project deliverable D. 2.2. 2. 2007.

[GMM03] Guha, R.; McCool, R.; Miller, E.: Semantic search. In Proceedings of the 12th

international conference on World Wide Web. pages 700–709. ACM. 2003.

[Gr87] Grosz, B. J.; Appelt, D. E.; Martin, P. A.; Pereira, F. C.: TEAM: an

experiment in the design of transportable natural-language interfaces. Artificial

Intelligence. 32(2):173–243. 1987.

[HDG07] Hart, G.; Dolbear, C.; Goodwin, J.: Lege Feliciter: Using Structured English to

represent a Topographic Hydrology Ontology. In OWLED. 2007.

[He04] Hevner, A. R.; March, S. T.; Park, J.; Ram, S.: Design Science in Information

Systems Research. MIS Q. 28(1):75–105. 2004.

[KA07] KALJURAND, K.: ATTEMPTO CONTROLLED ENGLISH AS A

SEMANTIC WEB LANGUAGE. PhD thesis. Faculty of Mathematics

and Computer Science, University of Tartu, Estonia. 2007.

[KB07] Kaufmann, E.; Bernstein, A.: How useful are natural language interfaces to the

semantic web for casual end-users? Springer. 2007.

[KBF07] Kaufmann, E.; Bernstein, A.; Fischer, L.: NLP-Reduce: A ”naıve” but

Domain-independent Natural Language Interface for Querying Ontologies.

ESWC Zurich. 2007.

[Ki03] Kiryakov, A.; Popov, B.; Ognyanoff, D.; Manov, D.; Kirilov, A.; Goranov,

M.: Semantic annotation, indexing, and retrieval. In The Semantic Web-ISWC

2003. pages 484–499. Springer. 2003.

[Ku08a] Kuhn, T.: Acewiki: A natural and expressive semantic wiki. arXiv preprint

arXiv:0807.4618. 2008.

[Ku08b] Kuhn, T.: Combining Semantic Wikis and Controlled Natural Language. arXiv

preprint arXiv:0810.3076. 2008.

[Ku10a] Kuhn, T.: Controlled English for Knowledge Representation. PhD thesis.

BIBLIOGRAPHY ix

Faculty of Economics, Business Administration and Information Technology

of the University of Zurich. 2010.

[Ku10b] Kuhn, T.: An Introduction to AceWiki. Tutorial at the Second Workshop on

Controlled Natural Language, Marettimo Island (Italy. September 14 2010.

[LB11] Lehmann, J.; Bühmann, L.: Autosparql: Let users query your knowledge base.

In The Semantic Web: Research and Applications. pages 63–79. Springer. 2011.

[LM04] Lopez, V.; Motta, E.: Ontology-driven question answering in aqualog. In

Natural Language Processing and Information Systems. pages 89–102. Springer.

2004.

[Lo07] Lopez, V.; Uren, V.; Motta, E.; Pasin, M.: AquaLog: An ontology-driven

question answering system for organizational semantic intranets. Web

Semantics: Science, Services and Agents on the World Wide Web. 5(2):72–105.

2007.

[MB08] Moreno, M. S. M.; Bringert, B.: Interactive Multilingual Web Applications with

Grammatical Framework. In Advances in Natural Language Processing. pages

336–347. Springer. 2008.

[No01] Noy, N. F.; Sintek, M.; Decker, S.; Crubézy, M.; Fergerson, R. W.; Musen,

M. A.: Creating semantic web contents with protege-2000. IEEE intelligent

systems. (2):60–71. 2001.

[Sc06] Schaffert, S.: IkeWiki: A semantic wiki for collaborative knowledge

management. In Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2006. WETICE’06. 15th IEEE International Workshops on. pages

388–396. IEEE. 2006.

[Sc08] Schaffert, S.; Bry, F.; Baumeister, J.; Kiesel, M.: Semantic wikis. software,

IEEE. 25(4):8–11. 2008.

[Sc09] Schaffert, S.; Eder, J.; Grünwald, S.; Kurz, T.; Radulescu, M.: KiWi–a platform

for semantic social software. In The Semantic Web: Research and Applications.

pages 888–892. Springer. 2009.

[SH07] Siorpaes, K.; Hepp, M.: myOntology: The marriage of ontology engineering

and collective intelligence. Bridging the Gep between Semantic Web and Web.

2:127–138. 2007.

[Sm09] Smart, P. R.; Bao, J.; Braines, D.; Shadbolt, N. R.: Development of a controlled

natural language interface for semantic mediawiki. In Controlled Natural

Language. pages 206–225. Springer. 2009.

BIBLIOGRAPHY x

[Un12] Unger, C.; Bühmann, L.; Lehmann, J.; Ngonga Ngomo, A.-C.; Gerber, D.;

Cimiano, P.: Template-based question answering over RDF data. In Proceedings

of the 21st international conference on World Wide Web. pages 639–648. ACM.

2012.

[Vö06] Völkel, M.; Krötzsch, M.; Vrandecic, D.; Haller, H.; Studer, R.: Semantic

wikipedia. In Proceedings of the 15th international conference on World Wide

Web. pages 585–594. ACM. 2006.

[WMS04] Welty, C.; McGuinness, D. L.; Smith, M. K.: Owl web ontology language

guide. W3C recommendation, W3C (February 2004) http://www. w3.

org/TR/2004/REC-owl-guide-20040210. 2004.

[ZC03] Zhang, J.; Chung, J.-Y.: Mockup-driven fast-prototyping methodology for web

application development. Software Practice & Experience Journal, 33 (13),

2003, pp. page 1251. 2003.

	I Introduction
	Introduction
	Motivation
	Problem Description
	Technical Challenges for NLI
	Research Questions
	Research Methodology
	Outline

	Scientific Background
	Semantic Web
	Semantic Web Basics

	Linked Data

	II Related Work
	Natural Language Interfaces to Knowledge Bases
	Question-Answering Systems
	Controlled Natural Language
	Attempto Controlled English (ACE)
	Rabbit
	Rabbit to OWL Ontology Authoring (ROO)
	CLOnE

	Semantic wikis
	Ontology Management Using Semantic Wikis
	Text-Centered Semantic Wikis
	Logic-Centered Semantic Wikis

	III Thesis Contribution
	Tool Survey
	Comparison Between Identified Tools and Technologies
	Discussion on QA Systems
	Discussion on CNLs

	Reasons Behind Selecting ACE and AceWiki

	Conceptual Design
	Main Requirements of the Prototype
	UML Use Case Diagram
	Mockups
	Proposed Workflow

	System Design and Architecture
	Evaluation of AceWiki
	Support for Requirements
	Limitations of AceWiki
	Limitations of Owl-Verbalizer

	Extension for Our Use Cases
	Features to be Implemented on AceWiki

	System Design

	Prototype Implementation
	Key Technologies
	Implemented Features on AceWiki
	Enhancement of User Interface
	Import Functionality and Dynamic Lexicon Creation
	Grammar Extension
	Improvement of Predictive Editor
	Preventing Data Loss

	IV Evaluation
	Evaluation
	Methodology
	Expert interview
	Case Study Design
	Interview Design
	Participants
	Interview Result

	Functionality and Portability Test
	Dataset
	Result of Functionality Test
	Result of Portability Test

	Integration With Other Business Solutions
	Summary and Discussion

	V Future Work and Conclusions
	Future Work
	Conclusions
	Appendices
	List of Abbreviations
	User Guide
	Questionnaire

