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Abstract

Software development is moving rapidly from the coding of programs to system’s
modelling utilizing the services provided by open and modular environments. This
shift enables service suppliers to gain customers by generalizing the functionality
of their products, and it allows service consumers to conveniently buy functional-
ity by simply specializing their needs. It also motivates consumers to construct
applications with more than just the most specialized functionality in mind thus
contributing to system extensibility and reusability. Finally, the novel view of soft-
ware construction blurs the formerly quite sharp distinction between the application
part and the system part of software development.

In this paper we apply the consequences of the process sketched above to
database systems and data-intensive applications. We argue in favor of a more
open but yet controlled interaction between database systems and their applica-
tions and we discuss the implications on the major abstraction principles to be
supported by future database programming languages. Finally, we follow the open
invitation issued by novel computer languages to exploit their potent conceptual
basis for the benefit of next generation database application systems.

1 Introduction and Motivation

During the past decade, substantial theoretical and technological progress was made to-
wards expressive, efficient, wide and safe interfaces between application programs and
database systems. Central to this development is the idea of database programming
languages [?, 7,7, 7,7, 7, 7], offering an integrated language framework for the imple-
mentation of a wide range of data-intensive applications.

Recent advances in type systems for programming languages (like ML, Modula-3,
Quest, Napier or TRPL [?, ?, 7, ?]) and extensible database systems (like Exodus,
Genesis, Postgres, Starburst or Iris [?]) lead us to the understanding that the technol-
ogy is there to address another fundamental interface problem in integrated database
enviroments.

Currently, database application programs run against an environment which has its
functionality strictly divided into two distinct partitions:



e The database management system constitutes that part of the environment wich
provides the specific functionality required for bulk data management, access path
utilization, persistence, concurrency, recovery etc. This Database Environment is
sealed and secured up to rather narrow interfaces for data, query and transaction
definition and hides its internal functionality completely.

e The rest of the environment consists of application-specific modules and libraries
that solve relevant subtasks of the problem at hand (e.g. statistics packages or
some routines for display handling). In contrast to the closed DBMS world much
progress has been made in recent years in opening such Application Environments
and making them easily extensible without compromising on the side of reliability.

Of course, any piece of functionality required by a user program either has to pre-exist
in the environment or has to be provided by a newly developed software component. Note
that the two partitions differ substantially in their ability (or willingness) to contribute
to functionality extension:

e Application Environments are designed with the primary goal of extensibility. They
support the extraction of repeating patterns of implementations and protocols from
individual user programs, the integration of such services into environments, and
the re-import into the programs of an entire user community, thus encouraging shar-
ing and re-use of “standardized” functionality. In recent years substantial progress
was made in understanding the linguistic and architectural support required to “fac-
tor out” and “multiply in” a wide variety of functionality. Modern programming
languages provide mechanisms based on typing, parameterization and instantiation
to extract abstract functionality from sufficiently different contexts and to utilize
it for reliable, robust, extensible and economic system construction.

e In contrast, traditional DBMS Environments disallow any substantial modifications
of their functionality and disencourage any utilization of their internal functional-
ity. However, it is commonly agreed that next-generation DBMSs have to cope
with novel application areas [?] and unpredictable demands. Therefore, future
DBMSs have to be prepared for functionality extension on all levels: new data
structures, new operations over them, novel transaction mechanisms etc. and this
can be achieved only by controlled modifications of DBMS functionality.

In this paper we argue that the degree of extensibility required for next-generation
Database Environments can not be achieved by implementations based on traditional
system programming languages such as C or Modula-2. Such implementations can not
be opened sufficiently because of

e safely deficiencies: they do not exploit state-of-the-art techniques for system gener-
icity and control by mechanisms like polymorphism, higher-order functions and
subtyping;

o complexily problems: there is no suitable support for system abstraction and orga-
nization, e.g. by taxonomies of collection types or transaction protocols;

o conceplual mismalches: traditional system programming languages do not support
crucial DBMS demands, such as the need for data independence, query optimiza-
tion, persistence, or any kind of data distribution control.



We argue that the same abstraction mechanisms be used for the construction of the
entire environment of a database application program consisting of both, the Database
Management System and the Application Environment. As an initial step towards this
goal we even want to go one step further and exploit the same linguistic platform for
the application program and its environment. For the resulting integrated Database
Application System we expect improvements in the following essentials:

e improved DB system implementations in terms of correctness, robustness, effi-
ciency;

e adequate language support for database system extensions;

e higher productivity for application programmers by factoring out more re-usable
code from user programs into the Application Environment;

e evolution of standards based on functionality and protocols rather than on ad-hoc
query languages.

e support for DB interoperability (multi-databases), e.g. by access to the protocols
of the transaction manager.

In the next section, we identify key requirements of Database Application Systems.
Section 7?7 outlines which of these requirements are already met in an existing language
(Quest [?]). To illustrate the improvements to be expected from a single programming
language for Database Application Systems, section 77 investigates the definition of
iterators and generic collection types in such a generic and extensible language framework.
Section 77 sketches the overall architecture we expect from open database application
environments. The paper concludes with a list of language issues that still have to be
solved in order to make database system programming languages competitive with well-
developed database languages, topics that are also subject of our current research.

2 Requirements of Database Application Systems

As argued above, database system implementation and database application program-
ming activities both share a large set of commonalities. We propose to distinguish three
main tasks in the construction of integrated Database Application Systems:

Data abstraction to classify, aggregate and generalize data, programs and meta-data;

Localization abstraction to “factor out” repeating or shared patterns of data, pro-
gram and meta-data;

Implementation abstraction to selectively hide information about structures defined
by the previous two abstraction mechanisms.

The following subsections present these three abstractions in turn, relating them to
specific activities in database modelling and application programming. A more detailed
discussion of the above abstraction principles and their support by existing (database)
programming languages can be found in [?, ?].



2.1 Data Abstraction

Research and development in the area of conceptual modelling [?, 7] has isolated three
basic data abstraction principles to cope with the size and complexity inherent in data-
intensive applications. These abstraction principles can be understood as means to cap-
ture structural invariants, considered an important subclass of static constraints among
data objects: [?, ?]:

Classification / Instantiation is a form of data abstraction in which a collection of
objects is considered as a higher-level object. The higher-level object is a character-
ization of all properties shared by each object within the collection. Classification
establishes an wnstance-of relationship and allows to identify, classify and describe
(possibly infinite) sets of objects by means of a single object.

Aggregation / Decomposition is a form of data abstraction in which a relationship
between n component objects is considered as a single higher-level aggregate object.
The part-of relationship between the n components and the aggregate object also
allows to identify component objects relative to the higher-level object.

Generalization / Specialization is a form of abstraction in which a relationship be-
tween “similar”objects is considered as a higher-level generic object. This is the
15-a relationship.

For the purpose of this paper, the above characterization of the three data abstractions
should be sufficient, even if there are substantially different technical definitions, e.g., of
the term “similarity” in various data models. We only note that much of the power
of these three abstraction principles comes from their generality and orthogonalily, i.e.
the possibility to apply classification, aggregation and generalization to objects that
already have been abstracted over, e.g. to define metaclasses (classes of classes [?]), nested
aggregates (complex objects [?]) or generalized generic objects (multi-level inheritance
hierarchies [?]).

In the context of Database Application Systems, it is not only necessary to classify,
aggregate and generalize dala structures of a given application, but also to reduce the
complexity of the huge number of other entities (functions, modules, types, iterators)
found in the application environment by organizing these entities using well-crafted ab-
stractions.

2.2 Localization Abstraction

We already emphasized in the introduction the need to factor out possessions of data
and functionality from individual applications into a database application environment
and to make them available for shared use by a larger community. The primary goal
of this localization process is to increase the consistency between applications and to
avoid duplication of effort. Localization becomes indispensable in any environment that
is subject to change or evolution.

The basic mechanism to achive localization is naming: The binding of a name to an
object allows the repeated use of the object denoted by the name in different contexts
without duplicating its definition. Section 7?7 discusses how to substantially enhance the



possibiliy for localization by means of parameterization, allowing to abstract over partial
object descriptions.

As an advanced example for localization, a traditional DBMS allows to factor out
data (shared database variables) but also to factor out complex functionality (persistence
management, access-path maintenance, crash recovery) from data-intensive applications.

2.3 Implementation Abstraction

The previous two subsections were mainly concerned with modeling and software engi-
neering aspects of database applications. Because of the size, value and longevity of the
data to be dealt with, database applications also have a strong demand for non-functional
support to be provided in a Database Application Environment.

The implementation of a lookup table may illustrate this aspect. In a programming
language setting, it is sufficient to implement a lookup table by means of a hash table
or a search tree. The implementation of a lookup table is therefore adequately described
by its operations (insert, remove, lookup) and its time and space requirements. In a
database environment, implementors of a persistent and shared lookup table have to
take care of the storage management on disk, avoid interference between concurrent
update operations and guarantee the integrity of the data structure in cases of program
failures or system crashes.

The main non-functional (or operational) requirements of database applications can
be summarized as support for persistence, atomicity, concurrency and data independence.
Whereas the first three aspects are also captured by (special-purpose) programming
languages [?, 7, 7, 7, ?] the notion of data independence deserves more attention. A
first step towards data independence is to provide multiple implementations for a given
abstract data structure (e.g. a relation). The choice of a particular implementation (e.g.
a B-tree for primary key access plus two secondary indices on non-key attributes) is
made dynamically, based on additional global information about relation cardinalities
and access patterns.

Another important consequence resulting from the desire to achieve efficiency in the
presence of data independence is the need to optimize expressions involving multiple
abstract data structures The basic idea pursued by query optimizers in database man-
agement systems is to transform such an expression into a semantically equivalent, but
more efficiently executable form. Again, this transformation is guided by global informa-
tion about the operational properties (e.g. time, space) of the actual implementations
available at run-time.

3 Towards a Language for Database Application Sys-
tems

In this section we give arguments to support our claim that essential parts of the language
technology necessary to fulfill the requirements outlined in the previous section already
exist in the programming language research community.

Since our goal is to expoit the same linguistic platform for application programming
and for database environment extension, the choice of a uniform underlying program-
ming paradigm becomes crucial. Following the distinction in [?] between computational



and semantic models, our language will certainly be based on a computational model.
Furthermore, since virtually all practical algorithms for DBMS implementation heavily
rely on the concept of state and state transition, a pure functional or relational language,
like Haskell [?], Machiavelli [?] or Life [?] does not seem to be a suitable starting point.

On the other hand, languages like Modula-3 [?] or Eiffel [?] are too biased towards an
“object-oriented” execution model to allow the definition of suitable layers of abstraction,
e.g. to emulate the built-in functionality of set- and predicate-oriented languages like
DBPL [?].

We expect the general flavor of a language for Database Application System pro-
gramming to be interactive, compiled, strongly-typed, applicative-order, incorporating
higher-order functions and imperative features and a primitive set of built-in mechanisms
to achieve persistence, atomicity and concurrency in shared environments.

In order to access pre-existing functionality (e.g. operating system services, window-
management services, application libraries) from within the language and to make best
use of the hardware resources available, the language implementation should be based
on well-developed, optimizing compilation technology.

As an example of a particularly well-developed and consistent language we present
Quest [?], a functional language with imperative features, explicit type quantification
and subtyping rules inductively defined over all type constructions. Although Quest
lacks important operational features required in database programming, e.g. persistence
management with incremental loading strategies, primitives for concurrency control and
recovery, languages like Quest seem to be the right platform to start with since they
support the abstraction mechanisms discussed in the previous section without restricting
their application to specific contexts.

3.1 Generalized Data Abstraction

It should be clear that Database Application Systems will be composed of a large number
and variety of denotable language objects like values, variables, functions, types, function
types, modules, module interfaces, database schemas, databases, views and transactions.
Our primary concern is therefore not the set of built-in language primitives, but set of
abstraction mechanisms available to cope with the variety and complexity of the language
objects te be expected in Database Application Systems.

3.1.1 Classification by Types and Kinds

A specific form of classification underlies schema definitions in database systems and type
declarations in programming languages: They both classify run-time values according to
their statically-known structure expressed by means of type constructors.

For several tasks in database modelling and system programming, traditional, mono-
morphic classification schemes which only allow to assign a single type to a given variable
proved to be too limited. Polymorphic languages, like ML or object-oriented languages,
usually have rich structures at the type level, e.g. to describe functions that operate
uniformly over values of a set of types or to denote orderings among types expressed
by means of inheritance hierachies. The richness of the type level now calls again for a
classification of type expressions. As discussed in detail in [?], this can be accomplished
by introducing a three-level structure of language entities:



Values and functions inhabit level 0, they are classified by means of
Types and type operators at level 1 which in turn are classified by means of

Kinds at level 2. Kinds can be utilized, for example, to distinguish between “plain”
type variables and parameterized type operators.

As will be demonstrated later in section 77, types and type operators as first-class deno-
table language objects allow to achieve a high degree of uniformity between built-in and
user-defined functionality. For example, the typing rules underlying relational algebra or
relational calculus can be adequately defined using parameterized type operators.

The idea to resolve the mismatch between the expressiveness of untyped languages
(like Smalltalk or Lisp) and the security and descriptive power of strongly typed lan-
guages (like Modula-2, Modula-3 or Standard-ML) by including types as denotable and
manipulable language objects is not new. However, early languages pursueing this idea
[7, 7] had to give up static type checking. Quest also has exceptionally rich structures at
the type level, including type variables, subtyping and recursive type operators. In con-
trast to the above mentioned languages, static type checking is preserved by introducing
a stratified three level structure and by controlling the interaction between entities of the
three levels. In general, higher-level entities act as specifications for lower-level entities
and must therefore not depend on the outcome of operations on lower-level entities.

In this text we adopt the conventions of [?] and use lower-case identifiers for level 0
entities, capitalized identifiers for level 1 entities and all caps for level 2 entities.

The following three examples declare and bind four value variables, three type vari-
ables, and one kind variable:

let macSerialNum = 4711

let keyboard = tuple let sn = 3132 let name = "Keyboard” end
let monitor = tuple let sn = 1344 let name = ”Monitor” end
let nameOf = fun (p:Part):String = p.name

Let SerialNum = Int
Let Part = Tuple sn:SerialNum name:String end
Let PartFunction = Fun (p:Part):String

DEF COLLECTION = OPER (E::TYPE): TYPE

The function nameOf of type PartFunction exemplifies an important property of the
uniform classification schemes we are interested in: Functions introduced by means of
the function value constructor fun are first-class citizens of level 0. In particular, they
are classified according to their signature and result type by means of function types
(level 1 entities), denoted by the function type constructor Fun.

Examples in subsequent sections will demonstrate that the embedding of functions as
true level 0 entities leads to a substantial reduction of language complexity. Important
language concepts like higher-order functions, polymorphic functions, procedural attach-
ment and abstract data types can all be reduced to more primitive concepts, simply by
classifying functions as values.



3.1.2 Aggregation by Signatures and Bindings

In programming languages and database models the concept of aggregation is captured
traditionally by means of labeled records or tuples composed of value components [?, ?].
Relational and deductive databases typically constrain these components to be values of
basic (unstructured) types. By loosening this constraint one arrives at more expressive
(non-standard) data models based on nesting [?]. Object-oriented models go one step
further by allowing functions as attributes of “objects”. This procedural attachment is
intended to capture the “behavior” of objects.

Quest exemplifies how to liberate the concept of aggregation from the narrow in-
terpretation as simple record definition, namely by introducing the notion of generalized
signalures and bindings. Extending ideas of Landin and Burstall and Lampson [?], Quest
introduces a correspondence betweeen declarations, formal parameters and interfaces, all
based on common syntax, and also between definitions, actual parameters, and modules.

A signature is a (possibly empty) ordered association of types to value variables and
of kinds to type variables, where all the variables have distinct names.

sn:SerialNum name:String madeFrom:Set(Part)

The above signature declares value variables sn, name and madeFrom of type SerialNuin,
String, and Set(Part), respectively. The following signature introduces a type variable
T, a type operator variable C and a value variable ¢ of type C(T). Note that signatures
introduce variables from left to right and that such variables can be used after their
introduction.

T:TYPE C:COLLECTION c:C(T)

Bindings are (possibly empty) ordered associations of values to value variables and
types to type variables, where all the variables have distinct names, for example:

let sn = macSerialNum
let name = "Mac II”

let madeFrom = set.create of keyboard monitor end
The binding
Let T' = Part Let C = Set let ¢ = set.create of keyboard end

binds the the type variable T to the type Part declared in the previous section, the type
operator variable C to the type constructor Set and, finally, the value variable ¢ to a
singleton set of type Set(Part).

By decoupling aggregation from the tuple construction, we can aggregate also in
formal parameter positions and in module interfaces and apply aggregation uniformly to
values, functions, types and type operators:

Let Display = Fun (T::"TYPE C:COLLECTION c:C(T)) Ok
Let Collection = Tuple T::TYPE C::COLLECTION ¢:C(T) end
Interface CollectionInterface import ... export

T:TYPE C:COLLECTION ¢:C(T)

end



There are subtle issues in defining the instance-of relationhip between bindings and
signatures, for example, whether the variable names or the order of signature components
should matter. The interested reader is referred to [?] for a discussion of these topics
and the alternatives supported in Quest.

To give an idea of the power and flexibility gained by the generalized notion of sig-
natures, we show examples of how to develop a refined description of composite parts:

let myMac = tuple
let sn = macSerialNum
let name = ”Mac II”
let madeFrom = set.create of keyboard monitor end
end
Let CompPart = Tuple sn:SerialNum name:String madeFrom:Set(Part) end

The value myMac is a simple aggregation of independent value variables. Accordingly,
the signature of the tuple type CompPart is also a simple aggregation of independent
type variables. A first example for the need to be able to express dependencies between
the components of a binding is the aggregation of function values referring to “local”
value variables:

let myMacl = tuple

let sn = macSerialNum

let name = "Mac IT”

let madeFrom = set.create of keyboard monitor end

let printMyself = fun():String ”composite part ” & name & ” ” & conv.int(sn)
end
Let CompPart = Tuple

sn:SerialNum name:String madeFrom:Set(Part) printMyself:Fun():String
end

A somewhat more elaborated example may illustrate the need for dependencies between
components of a signature:

Let SerialNum = Tuple
T:TYPE first():T next(sn:T):T equal(snl;sn2:T):Bool asString(sn:T):String
end

Values of type SerialNum are tuples of five components, namely a type T and four
operations on values of type T. The tuple type SerialNum can therefore be understood as
the signature of an algebra for values of type T capturing the essential properties of serial
numbers: Serial numbers can be created (first, next), there is an equality defined over
them, and they are printable entities. A crucial constraint expressed via dependencies in
this signature is the requirement that, for example, the result of the application of first
has to be a legal argument for the application of next or asString. Note that SerialNum
is a level 1 entity that classifies a set of level 0 entities, in particular the following

implementation of serial numbers by means of integer numbers:

let intSerialNumn = tuple
Let T = Int
let first():T =0



let next(sn:T):T = sn + 1

let equal(snl,sn2:T):Bool = snl is sn2

let asString(sn:T):String = conv.int(sn)
end

3.1.3 Generalization by Subsignatures and Subtyping

Object-oriented models emphasize the need to capture generalization relationships be-
tween object classes and to view objects not only as members of their most specialized
class, but also as members of more general classes. Typically, this is accomplished by
defining static ¢s-a relationships between classes and by indicating the most specialized
type of an object at object-creation time.

Again, Quest takes a somewhat less biased approach to capture the concept of gener-
alization. Instead of bundling classification, generalization and dynamic extent manage-
ment in the concept of a class, specialization relationships are defined in Quest inductively
by means of subtyping rules between all types in level 1. The subtyping relation, written
<:, is defined such that if x has type A and A<:B then x has also type B. The syntax
for kind terms of level 2 allows to denote the collection of all subtypes of a given type
B by a kind of the form POWER(B). Then A::POWER(B) and A<:B have the same
meaning. There is also a subkind relationship, written <::; in level 2, derived from the
subtype relationship by POWER(A)<::POWER(B) if A<:B and POWER(A)<:TYPE
for all A::TYPE.

In this paper we only discuss those subtype (subkind) relationships which are induced
by the notion of subsignatures. A signature S is a subsignature of a signature S’ if it has
the same number of components as S’, with the same names and in the same order, and
if the component types (or kinds) of S are subtypes (or subkinds) of the corresponding
components in S’. For example, the declarations of the previous sections

Let Part = Tuple sn:SerialNum name:String end
Let CompPart = Tuple sn:SerialNum name:String madeFrom:Set(Part) end

imply CompPart<:Part. It should be noted that in particular the existence of recursive
and parameterized type definitions requires non-trivial typing rules for the verification
of subtyping relationships [?].

The main conceptual advantage of deriving subtyping relationships based on the
generalized notion of signatures is to uniformly capture the concept “partiality” as it
occurs in the specification of data, functions and modules. Other important aspects of
this approach (e.g. the interaction with type abstraction in order to constrain inferred
subtype relationships) are beyound the scope of this paper. As an example for the use
of subtyping information, take the function returning the name of a part:

let nameOf = fun(p:Part):String p.name
Since CompPart<:Part, the following function applications are both correct:

nameOf{ keyboard )
nameOf( myMac )

This particular form of genericity achieved by means of implicit subtyping rules is crucial
for the quality of Database Application Systems. It allows to build systems that are



capable of operating uniformly over a wide range of specialized data structures, even
if the specialization was the result of an unezpected extension long after the subsystem
exporting the generic function was implemented and delivered.

A formal treatment of Quest-like subtype relationships and a semantics for values,
types and kinds in Quest can be found in [?, 7]

3.2 Localization by Parameterization

Until recently, programming languages and database systems focussed on different lo-
calization tasks: Programming languages employed lambda abstraction and parameter-
ization mainly to define algorithms and to instantiate them with suitable parameters
in different contexts. Database systems on the other hand recognized the need to share
(database) variables between multiple applications and to localize the operational support
(transaction management, set evaluation) for these database variables within a central
DBMS. A logical and physical database schema can then be understood as a very de-
tailed parameterization to be used during the instantiation of the generic data structures
offered by a given database (model).

Quest incorporates an important building block to regularize these up to now sep-
arated approaches by generalizing the concept of parameterization and binding. One
can define parameterized function values, parameterized type operators and (indirectly)
parameterized kind expressions.

The previous subsection already demonstrated the definition of a parameterized func-
tion, nameQf, exhibiting subtype polymorphism. A more explicit treatment of polymor-
phic functions can be achieved by the definition of (kinded) type parameters:

let pair(A::TYPE x:A): Tuple first:A second:A end =
tuple let first = x let second = x end

The polymorphic function pair takes a parameter x of type A and returns a tuple that
contains x twice. The fact that x can be of any type A is expressed by defining A as
an additional type parameter of pair. Again, note that the type variable A is also used
in the definition of the result type of pair. The last of the following three applications
of pair illustrates that actual type parameters can also be nferred in Quest — relieving
application programmers from supplying (essentially redundant) type parameters:

pair(:Int 3)
pair(:String “ABC”)
pair(”ABC”)

Since both types (Int and String) are of kind TYPE, the above actual parameter substi-
tutions are successfully kind-checked at compile-time.

Set types (tacitly assumed to be pre-defined in the previous sections) can be fully
defined within Quest by means of a type expression aggregating a parameterized type
operator Set(E) and the signatures of the admissible set operations operating on values
of this type:

Let SetInterface = Tuple

Set(E::TYPE)::TYPE
create(E::TYPE from:Array(E)):Set(E)



empty(E::TYPE x:Set(E)):Bool
size(E::TYPE x:Set(E)):Int
member(E::TYPE e:E x:Set(E)):Bool
get(E::TYPE x:Set(E)):E
rest(E:TYPE x:Set(E)):Set(E)
add(E:"TYPE e:E x:Set(E)):Set(E)
union,difference,intersect(E:"T'YPE x,y:Set(E)):Set(E)
equal(E::TYPE x,y:Set(E)):Bool
end

Section 7?7 will provide further details on defining set abstractions that can be instan-
tiated with arbitrary element types E of kind TYPE. The above definition of Set in
particular expresses the constraint that the arguments of set functions like intersection
have to be sets of the same element type and that they return homogeneous sets. In-
stantiations of the type operator look as follows:

Set(Part)
Set(Set(CompPart))

These are two examples of set operations:

let allParts = union(parts baseParts)
if equal(parts allParts) then ... end

Other interesting type aspects inherent in traditional database systems can also be
expressed by means of higher-order type operators. For example, the traditional quan-
tifiers EXIST and ALL present in SQL as well as a non-standard MAJORITY quantifier
proposed for Starburst [?], all share the same signature pattern denoted by the following
parameterized type constructor:

Let Quantifier(E::TYPE Col: POWER(Set(E)) =
Fun(collection:Coll predicate(:E):Bool):Bool

A quantifier can be instantiated with arbitrary element types E, but only with collection
types Coll of kind POWER(Set(E)), i.e. subtypes of sets of E. A very specific instance
of such a quantifier can be defined and applied as follows:

let rec somePart:Quantifier(Part Set(Part)) =
fun(collection:Set(Part) predicate(:Part):Bool)
if empty(collection) then false
elsif predicate(get(collection)) then true
else somePart(rest(collection) predicate)
end
let b:Bool = somePart(parts fun(p:Part):Bool p.sn > 4711)

To summarize, this examples illustrates how parameterized types allow to “factor out”
common protocols from individual application programs into the database environment,
and how they can be utilized to enforce global “standards”, e.g. for the definition of
iteration facilities. As will be discussed in section 77, this standardization of protocols
i1s important to provide enhanced operational support by a database environment that



may choose optimized implementations for a given protocol based on case analysis of the
actual protocol parameters (e.g. indexed access based on p.sn).
Parameterization is the main tool to achieve localization of functionality in complex

systems, more specialized mechanisms, like ezceptions, are beyond the scope of this paper
[z, 71.

3.3 Implementation Abstraction by Scoping

The term tmplementation abstraction as introduced in the previous section subsumes the
more specific (but also overloaded) term encapsulation as used in object-oriented systems.
In general, we are interested in defining interfaces to data structures, functions, types
etc. that hide particular implementation details (e.g. local declarations, import-export
relationships, subtyping relationships) that are only accidental and should be left open for
future change without affecting the correctness of clients utilizing the interface. Statically
nested procedure scopes, modules, encapsulated class declarations and abstract data
types in programming languages, as well as views and the concept of data independence
in database environments can all be mapped, more or less directly, to an elementary
scoping mechanism.

In Quest, the scope of a value, type and kind identifier is limited to the binding or
signature introducing the name. It can be entered via dot notation (field selection).
Already in section 77, the notion of a subsignature has been introduced. It is also the
key to a generalized understanding of implementation abstraction:

let View = Tuple a:Int b:String end
let x:View = tuple let a = 3 let b = "ABC” let ¢ = true end

By declaring x as being of type View, with signature a:Int b:String, only tuple selections
x.a and x.b are valid on x, although the actual binding contains a third value variable
binding let c=true. This example shows a general matching rule between bindings and
signatures: A signature S is also satisfied by a binding that has an extended subsignature
of S.

Due to the generalized interpretation of signatures and bindings in Quest (see sec-
tion ?7), this matching rule again does not only apply to record types but also to module
interfaces and function declarations.

4 An Exercise in Generic Collections and Iterators

An essential element of DBMS functionality is to provide generic bulk data structures
[?] and high-level query languages to efficiently access and manipulate substructures of
bulk structures.

In this section we first sketch how to adequately capture this specific externally visi-
ble functionality of a DBMS by means of generalized collection types and a standardized
protocol expressed via higher-order functions. In contrast to hard-wired services pro-
vided by conventional DBMSs and database programming languages, this approach is
ntrinsically extensible. The second subsection demonstrates how well-known special-
ized implementations of set and relation structures can be introduced systematically as
subtypes of the externally visible generalized collection type. In the last subsection we



briefly illustrate how important issues like data independence and query optimization
can be achieved in such a generalized scenario.

Other authors already investigate the problem of defining generic, reusable data struc-
tures [?7, 7, 7,7, 7] or aim at isolating a taxonomy of bulk data types [?, ?]. However,
their work does not cover dynamic reconfiguration and global optimization issues, topics
we consider vital for reconciling declarative data modelling with efficient data access.
Most of the ideas expressed in this and the following section are based on our practical
experience in the construction and utilization of set- and predicate- oriented database
programming languages (e.g. see [7, 7]).

4.1 Generalized Protocols

An important task in the construction of Database Application Systems (as in any non-
trivial system environment) is the specification of protocols that regulate the division
of labour between clients and servers of a particular functionality. Analysing exist-
ing approaches to interface definition in operating systems, programming languages and
database systems, one can distinguish the following three main styles:

Operating system services or other application environment services (e.g. window
management routines) are accessible through special-purpose interfaces realized by
parameterized function calls. Much progress was made (see Unix, Mach) in achiev-
ing simplified call interfaces by collapsing traditionally separated functionality (e.g.
terminal input and output, local disk access, remote disk access, interprocess com-
munication mechanisms) to a small set of uniform primitives (e.g., open, close,
read, write).

Programming languages (or more specialized languages like Postscript) can also be
viewed as mechanisms to specify a recognized computational functionality. In con-
trast to the above simple parameterized interfaces, programming language inter-
faces are extremely generic and allow to express dependencies between individual
operations, to exploit contextual information during program interpretation, and
even to extend the functionality of a programming language interface by introduc-
ing additional declarations.

Database systems traditionally combine the previous two approaches by providing
several special-purpose interfaces. Examples are the DBMS facilities for schema
definition, physical data description, ad-hoc queries, embedded queries etc.

Much of the power of a relational interface comes from its over-abstraction: Re-
lational DBMSs are prepared to accept from their clients predicates in some first-
order language together with a specialization that indicates whether it is to serve
as a query predicate, a view definition, an invariant or a trigger condition. Other
DBMS interfaces, e.g. those for schema declaration or access support, provide their
tailor-made functionality at a similar level of abstraction.

According to our understanding of Database Application Systems as expressed in the
introduction of this paper, we would like to be able to combine these three approaches in
a single, unbiased language framework. As a test case we will examine in this section the
definition of a unified, calculus-based “query” interface to values of generalized collection

types.



Section ?? already presents a signature SetInterface, defining a set type constructor
Set and algebra operations like union, intersection over set values. Similar generic inter-
faces can be defined for other types appropriate for data collection, e.g. lists, (keyed)
relations, mappings, views on relations etc. To provide a single, uniform query protocol
for such a variety of types, we abstract from individual properties of these collection
types and base the protocol definition on an abstract type operator of the following kind:

Reader:OPER(E::TYPE) TYPE

For the purpose of interface definition, we do not require any additional information
about this type operator. As long as we assert that for a given collection type (say List)
and any element type E of kind TYPE the property List(E)<:Reader(E) holds, we can
apply any Reader operation also to Lists.

Without going into details, Readers may be considered as data “sources” since they
(lazily) “yield” [?, 7, ?] data elements. Collection types also have the capability of
Writers, namely acting as “sinks” for data elements. For example, a value partSequence
of type Reader(Part) denotes a homogeneous sequence of values of type Part. We do not
want to constrain the implementation of this sequence in any way, e.g. a non-materialized
view should be a legal Reader, too. Therefore, the Reader abstraction subsumes other
well-known abstractions like lists and list comprehensions in functional programming,
sets, relations, multisets and views in database systems, as well as files, streams and
pipes in operating systems or channels in the CSP model.

What are the operations we expect to be defined over such abstract Readers? Reader-
Operations should allow to

e map readers to readers of the same or another element type (e.g. rest, map, select,

head);

e to reduce readers to values of more primitive types (e.g. empty, size, hom, some,
all, majority);

e to combine readers into a single new reader (e.g. append, zip, overlay, insert);

e to perform operations with side-effects over all elements of a reader (e.g. forEach,
for, until, while);

e to “associatively” select individual elements of a reader based on its properties
expressed by a predicate analogous to the “de-setting” operation, as found, for
example, in Adaplex [?] (the, theOnly, theFirst, theLast);

Figure 77 provides a fairly complete definition of such a service protocol given in
Quest. The signature ReaderOperations defines a list of higher-order function signatures
that are intended to provide iteration abstraction over homogeneous sequences of data
elements. All of these functions are polymorphic in the element type of the sequence
(indicated by the type parameters E of kind TYPE).

The particular choice of operations and signatures depicted in Figure ?7 allows to
entirely abstract from the properties of the sequence element type, (e.g. a computable
equality predicate is not required) and to “lazily” evaluate expressions formed via reader
operations (e.g. quantifier evaluation may not require the computation of all sequence
elements). Furthermore, all operations constructing a reader from other readers can



be defined in a way such that the constructed reader “naturally” respects the given
ordering on the input readers. Last, but not least, reader operations are defined in a
purely functional style without relying on the concept of mutability, e.g. by providing
destructive insert, update and delete operations on streams.

Let ReaderOperations = Tuple
empty(E::TYPE x:Reader(E)):Bool
get(E::TYPE x:Reader(E)):E
rest(E::TYPE x:Reader(E)):Reader(E)

map(E,F::TYPE x:Reader(E) [(:E):F):Reader(F)

append,zip(E::TYPE x,with:Reader(E)):Reader(E)

overlay(E;F;G::TYPE x:Reader(E) with:Reader(F) {(:E :F):G)
unitE:E, unitF:F):Reader(G)

forEach(E::TYPE x:Reader(E) body(:E):Ok):Ok
hom(E,F::TYPE x:Reader(E) {(:E):F g(:F :F):F):F
homO(E,F:: TYPE x:Reader(E) f(:E):F g(:F :F):F unit:F):F

select(E::TYPE x:Reader(E) p(:E):Bool):Reader(E)
for,until,while(E::TYPE x:Reader(E) p(:E):Bool body(:E):0Ok):Ok
the,theOnly,theFirst,theLast(E::T'YPE x:Reader(E) p(:E):Bool):E

some,all,majority (E:: TYPE x:Reader(E) p(:E):Bool):Bool
partition(E::TYPE x:Reader(E) p:Array(Fun(:E):Bool):Array(Reader(E))

head,tail(E::TYPE x:Reader(E) len:Int):Reader(E)
selectSub(E::TYPE x:Reader(E) i,len:Int):Reader(E)
removeSub(E:'TYPE x:Reader(E) i,len:Int):Reader(E)
insert(E::TYPE x,into:Reader(E) after:Int):Reader(E)
reverse(E::TYPE x:Reader(E)):Reader(E)

end

Figure 1: Iteration abstraction over generalized collections

Similar iteration abstractions are discussed, for example, in [?, 7, 7, ?]. The following
query applies iteration abstrraction and selects all expensive parts from the set parts (of
type Set(Part)<:Reader(Part)).

let expensiveParts = select(parts fun(p:Part):Bool p.price > 100.0)

In this setting, a (read-only) view is nothing else than a non-parameterized function
referring to a global set variable (parts):

let partView():Reader(Part) = select(parts fun(p:Part):Bool p.price > 100.0)

Finally, the scoping and binding rules for function parameters also enable the definition
of nested predicates (e.g. for referential integrity constraints):



all(compParts fun(cp:CompositePart ):Bool
all(cp.madeFrom fun(p:Part):Bool member(p allParts)))

Additional generic operations can be defined by assuming finite collections (eventually
of bounded maximum size) with a computable equality predicate over their elements (see
figure 77). The main complication compared with the ReaderOperations of figure 77
arises from the fact that for any operation on a Collection(E), an equality predicate for
values of type E has to be available. Since this equality predicate also captures primary
key constraints on relations, the CollectionOperations avoid the well-known problems
arising from the subtle interaction between COUNT, AVERAGE ... operations and (implicit)
duplicate elimination.

Let CollectionOperations = Tuple

put(E:TYPE x:Collection(E) e:E):Collection(E)

size(E::TYPE x:Collection(E)):Int

full(E::TYPE x:Collection(E)):Bool

remove(E::TYPE x:Collection(E) e:E):Collection(E)

member(E::TYPE x:Collection(E) e:E):Bool

equal(E::TYPE x,y:Collection(E)):Bool

collect(E::TYPE x:Reader(E) into:Collection(E)): Collection(E)

union,intersect,difference(E::TYPE x,y:Collection(E)):Collection(E)

select2(E1,E2,F::TYPE target(:E1 :E2):F into:Collection(F)
from1:Collection(E1) from2:Collection(E2)
where(:E1 :E2):Bool)):Collection(F)

select3(E1,E2,E3,F::TYPE target(:E1 :E2 :E3):F into:Collection(F)
from1:Collection(E1) from2:Collection(E2) from3:Collection(E3)
where(:E1 :E2 :E3):Bool)):Collection(F)

end

Figure 2: Bulk operations for finite collections with a computable equality predicate

The pragmatic goal behind the definition of such generalized protocol templates is
twofold: First, application programmers should be encouraged to use high-level access
specifications instead of explicit iterations, thus making programs more readable, putting
the burden of correctness proofs (e.g. termination) on the implementors of this general
protocol, and giving room to optimized implementations of such protocols (see section
??). Second, designers of new, specialized system services (e.g. graph-traversal algo-
rithms) should tailor their interfaces to comply with the more general ones. Such ad-
herence to global protocols improves the understandability of large systems and the
interoperability between separately developed system services.

4.2 Specialized Implementations

In a Database Application System it is not sufficient to concisely define the above pro-
tocols and to check the consistent use by protocol clients, but it is equally important to
have language support for efficient protocol implementations without relying on “magic”
predefined external services. Again, we first consider traditional approaches to this task:



Operating system and application libraries make heavy use of standard procedure call
mechanisms. The execution model is based on a substitute and call semantics: The
choice of a particular implementation is typically performed by a simple dynamic
case analysis of actual parameter values (e.g. the state of a file descriptor allows to
distinguish between local and remote file access).

Programming language processors strive for a static selection of protocol implemen-
tations. For example, the implementation of a FOR loop statement typically in-
volves a static analysis of the loop variable types, the actual loop bounds and the
structure of the loop body. Even advanced optimization techniques employed in
state-of-the-art compilers are confined to local program text or data flow analy-
sis. Separate compilation techniques required in large-scale and shared systems
emphasize the lack of a single global system “picture” to successfully guide global
optimization techniques.

Database systems traditionally have to live with both, strong demands on the effi-
ciency of protocol implementations on the one hand side, and very limited infor-
mation to be derived statically from protocol clients (application programs written
in a host language). Therefore, the choice of a particular implementation of a
query expression is usually delayed in a DBMS until run-time. Another distinctive
property of DBMSs is the availability of several functionally equivalent protocol
implementations that only differ in their operational characteristics (e.g. access
time, storage requirements or locking granularity).

Languages for Database Application Systems have to support all three approaches and
therefore require a wide range of binding times and binding alternatives. For example, a
“good” implementation of the query expression

let expensiveParts = select(parts fun(p:Part):Bool p.price > priceLimit)

should be able to exploit local compile-time information (the structure of the selection
predicate p.price > 100.0 or the type of p) as well as information about the actual repre-
sentation of the set parts (e.g. as a sequence ordered on p.price), the cardinality of parts,
the value of the global variable priceLimit at run-time or even statistical information and
application-domain knowledge about allowable part prices.

Efficient utilization of binding alternatives — the choice of binding time as well as the
selection of the specific implementation to be bound to — requires a careful organization
and high availability of such alternatives.

As an example for such a taxonomy of protocol service implementations, we investi-
gate implementation alternatives for Readers. In Quest, these alternatives can be classi-
fied by means of type operators that define subtypes of Readers. This enables compile-
time checks to assure that only (signature-)correct Reader implementations are supplied
to the ReaderOperations depicted in Figure ??7. Values of the most simple kind or Reader
implementations, SequentialReaders only provide the following protocol:

Let SequentialReader(E:: TYPE):: TYPE = Rec(Reader) Tuple
empty():Bool get():E rest():Reader
end



It should be obvious that (potentially infinite) sequences, like characters typed at a
terminal, data records received via a network connection, tokens recognized by a scanner,
or arbitrary inductively defined sequences (linear intervals, prime numbers, fibonacci
numbers) can be cast into this protocol, for example:

let rec countUp(from:Int):SequentialReader(Int) = tuple
let empty() = false (* infinite *)
let get() = from
let rest() = countUp(from + 1)

end

Iterations over finite collections (like lists, stacks, queues, bags, sequential files) in-
dependent of their actual implementation (e.g. via linked records or arrays) can provide
an additional useful piece of information, namely the total size of the sequence.

Let FiniteReader(E::TYPE):: TYPE = Rec(Reader) Tuple
empty():Bool get():E rest():Reader size():Int
end

Bulk data structures suitable for database modelling and DBMS implementation are
special by providing means to uniquely identify collection elements by their properties.
Their generic protocol

Let IndexedReader(E::TYPE)::'TYPE = Rec(Reader) Tuple
empty():Bool get():E rest():Reader size():Int
member(e:E):Bool getLike(e:E):E equality():(:E :E):Bool

end

subsumes a function to check for membership of a given element in the sequence (possibly
avoiding a full traversal) and for “value-indexed” retrieval using the function getLike
that returns an element with a given index value. Indexed Readers require an equality
predicate to be defined over their elements. This equality function is usually passed as
a parameter of creation operations. It is also made externally accessible as the result of
the higher-order function equality. Sets and keyed relations are classical examples of this
kind of data structures. For example, the following creation of a Part relation defines
the attribute name to be the primary key attribute of myPartRelation:

let myPartRelation:IndexedReader(Part) =
relation.create(fun(pl,p2:Part) pl.name is p2.name)

Set, relation and dictionary implementations based on hashing or bit vectors also
adhere to the IndexedReader protocol. Similarly, ordered data structures like ordered
lists, ordered arrays, and various kinds of search trees (B-trees, AVL-trees, R-trees, ...)
exploit a total ordering on their data elements that allows the fast determination of all
elements greater, greaterEqual, less, or lessEqual than a given value of the reader element
type E.

Let OrderedReader(E::TYPE)::TYPE = Rec(Reader) Tuple
empty():Bool get():E rest():Reader size():Int
greater,greaterEqual, less lessEqual(e:E):Reader ordering():(:E :E):Int

end



4.3 Efficienciy by Dynamic Case Discrimination

Query optimization and data independence are essential for any database application.
A substantial step towards data independence is already achieved by defining a uniform
ReaderOperations interface to a wide range of data structures. Clients of this uniform in-
terface are not “tempted” to utilize sort orders, indexed access, clusterings etc. available
only for specific data structures. This apprroach shields clients from implementation
changes which are inevitable in persistent and shared Database Application Environ-
ments.

As indicated in the previous seciton, creation operations for Readers are more sensi-
tive to implementation changes, since more specialized Readers (e.g. hash tables) require
additional type-specific information (e.g. a particular comparison or hash-function for
part names). This dependency on type representation details may be circumvented by
“structure directed operator addition” as proposed in [?]. Another approach found in
some object-oriented systems is to equip every type with (possibly undefined) “meth-
ods” for comparison, hashing, ... and to dynamically inquire the availability of method
implementations for a given Reader element type.

Query optimization can now be understood as the process of selecting a particular
value of the ReaderOperations type (e.g. sequentialReaderOperations based on Sequen-
tialReaders) to achieve minimal execution costs for a given instantiation of the reader
operation parameters (parts:IndexedReader(Part)) like in the function application

select(parts fun(p:Part):Bool p.price > priceLimit)

This implies a departure from simple substitute and call semantics, as this selection
process involves a (dynamic) analysis not only of value parameters (priceLimit), but also

of
e actual type parameters (is there a total order defined over E = Part?),

e actual function parameters (does the predicate p = fun(p:Part) . .. produce or rely
on side-effects; is it monotone in p?),

e bindings in the client’s environment (is there an index defined on p.name?),

e bindings in the server’s environment (which Reader implementations are avail-

able?).

We are confident that a small set of comprehensible and simple language mechanisms
can be isolated to serve as safe and controlled building blocks for general-purpose (run-
time) optimizers. Issues of query interpretation, reflection, transformation and expansion
can be treated successfully without sacrificing the merits of static type checking and
simple compilation schemes as found in well-developed database programming languages.

5 Open Architectures for Database Application Sys-
tems



Figure 3: Open Language Processing in Database Application System

The discussion in the previous section (??) emphasizes the need for a substantially
improved flow of information between the various components of a Database Applica-
tion System, for example, between the application program, the parts and pieces of the
compiler, the query optimizer and the shared database schema.

Figure 7?7 gives an idea of the kind of information processed, for example, during
the compilation of a modular database programming language. In contrast to traditional
implementation techniques for language processors, we envisage an open architecture,
where the individual components of the compiler are made available to other clients
in the DBAS, revealing their well-designed overabstracted interfaces. Compared with
the architecture of traditional database programming languages [?] and persistent pro-
gramming languages [?], the built-in system components are designed to provide enough
“genericity” to be instantiated with specific parameters in a wide range of application and
system programs. For example, semantic program analysis, basic query optimization and
binding optimization in object-oriented languages [?] can all be uniformly supported by
formalisms like attribute grammars and generic tools for their (incremental) computation
[7].
It should be noted that in Figure 77, the traditionally “process-oriented” view of a
compiler (mapping from a high-level source language to a low-level target machine) is
replaced by a “data-oriented” translation model. A program entity (e.g. a function)
may be represented by several co-existing representations (source code, signature, at-
tributed syntax tree, binding) that are tailored to particular information requirements in
the DBAS. This shift in perception allows the mutual support and deeper integration of
programming language technology: The attribute evaluater and the linker, which both
access large, shared and persistent data structures, require database system support for
integrity control, storage management or access control. Conversely, we already noted
that database browsers, query interfaces and query optimizers heavily rely on function-
ality that is already present in the database language processor.

To summarize, there are strong arguments that database system implementation and
database application programming can both be supported by the same DBAS language
based on a set of “generic” language features such as typing, kinding, binding, subtyping,
subkinding, parameterization and scoping.

6 Research Issues

In addition to the generic, general-purpose language features described in section 3 there
seem to emerge arguments for rather specific and novel language concepts that provide
direct support for essential interactions in DBAS architectures like those of Figure 77.
Examples are languages with reflection [?] that enable programs to analyse their own type



and function declarations and to augment their process environment by newly created
types and functions derived from this analysis. For example, the linker in Figure 77
supports the (constrained) extension of the process and persistent environment by value
and type bindings.

We are currently investigating primitive language mechanisms supporting the follow-
ing three specific tasks in DBAS programming;:

Atomic Updates: Experience with the implementation of database systems and database
programming languages indicates that a wide range of transaction models, com-
munication mechanisms and recovery mechanisms can be reduced to a small set of
primitive operations on shared, mutable values [?, ?].

Locality Control: The evolution and size of shared persistent data structures requires
careful control over the generation of dynamic dependencies between complex data
structures and the functions defined over them. In particular, the existence of
higher-order functions and references (object with identity) calls for binding control
mechanisms beyond static scoping. As described in [?], traditional polymorphic
typing schemes can be extended not only to reason about the structure, but also
about the locality of data objects in structured object stores [?].

Environment Management: As argued in [?] and [?], purely static binding and type
checking mechanisms are insufficient for some of the applications described in the
previous section. Enwvironments as first-class language objects with specific oper-
ations for environment extension and modification may provide the the flexibility
required in evolving DBAS.
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