An expert recommendation system for design decision making
Who should be involved in making a design decision?

Manoj Bhat*, Klym Shumaiev*, Kevin Koch*, Uwe Hohensteint, Andreas Biesdorf! and Florian Matthes*
* Technische Universitit Miinchen, Boltzmannstr. 3, 85748 Garching, Germany
{manoj.mahabaleshwar,klym.shumaiev,kevin.koch,matthes} @ tum.de
tSiemens AG - Corporate Technology, Otto-Hahn-Ring 6, Miinchen 81739, Germany
{uwe.hohenstein,andreas.biesdorf} @siemens.com

Abstract—In large software engineering projects, designing
software systems is a collaborative decision-making process
where a group of architects and developers make design
decisions on how to address design concerns by discussing
alternative design solutions. For the decision-making pro-
cess, involving appropriate individuals requires objectivity and
awareness about their expertise. In this paper, we propose a
novel expert recommendation system that identifies individuals
who could be involved in tackling new design concerns in soft-
ware engineering projects. The approach behind the proposed
system addresses challenges such as identifying architectural
skills, quantifying architectural expertise of architects and
developers, and finally matching and recommending individ-
uals with suitable expertise to discuss new design concerns.
To validate our approach, a quantitative evaluation of the
recommendation system was performed using design decisions
from four software engineering projects. The evaluation not
only indicates that individuals with architectural expertise can
be identified for design decision making but also provides
quantitative evidence for the existence of personal experience
bias during the decision-making process.

Keywords-Software architecture; Design decision making;
Expert recommendation; Machine learning;

[. INTRODUCTION

Software systems are designed by the people, for the
people; which correlates to the fact that “major problems
of [software design] work are not so much technological as
sociological in nature” [1]. Over the past decades, exploring
human aspects in software engineering has been a prominent
area of research [2]. Especially, identifying and onboard-
ing people with relevant expertise to address stakeholders’
concerns during the software development phases including
design, development, and maintenance is critical to the
success of any software project [3]. To aid stakeholders
during the software development lifecycle, a special class
of applications called recommendation systems in software
engineering was developed. These applications often rely
on data mining of large-scale software engineering data, the
creation of the expert profiles, generation of usage models,
and predicting a list of items to address specific concerns [4].
These concerns, for instance, include which requirements to

This work has been (partially) funded by the German Ministry of
Education and Research under grant number 011S16043Q.

implement in the next software release? [5], which software
components to reuse? [6], and which stakeholders should
participate in the upcoming software project? [7].

In the context of architectural knowledge management
(AKM), recommendations to support the design decision-
making (DDM) process are beneficial for architects and
developers. Software architecture is considered as a set
of architectural design decisions [8], [9] and architects
regularly make design decisions to address stakeholders’
concerns which affect the architectural elements of software
systems [10]. These design decisions are made at different
abstraction levels — high, medium, and realization-level
decisions [11]. For instance, high-level decisions include
the selection of architectural styles, medium-level decisions
correspond to the selection of third-party software modules,
and realization-level decisions include changes made to the
source code of software systems. High-level and medium-
level decisions have a higher impact on the design as com-
pared to the realization-level decisions [12]. Furthermore,
high-impact decisions are typically made in groups [13],
wherein a team of architects and developers discuss the po-
tential solutions to address design concerns and then proceed
to implement and evaluate the corresponding decisions. In
this context, it is beneficial to identify appropriate experts
who should be involved in the DDM process.

Additionally, during the DDM process, architects and de-
velopers — more often than not — favor naturalistic-approach
to decision making [14]-[16]. In this regard, experience and
knowledge of architects and developers play a crucial role in
the DDM process [16], [17]. Furthermore, empirical studies
have shown that compared to novices, experienced architects
and developers more effectively explore the problem and use
efficient decision-making strategies [18]. However, in the
software architecture domain, the quantification of architec-
tural expertise is still an open challenge. This observation is
supported by one of the discussion points at the International
Conference on Software Architecture 2017 [19]:

Identification of “architecture skills” within orga-
nizations and projects: Who or what are sources
of architectural expertise and competencies in or-
ganizations and how can we identify them?...

existing design design | Create expertise |expertise| Expertise |
issues decisions Annotate decisions matrix matrix H
Extract Detect : matrix 0!
issues decisions architectural - Lo
S| Xpe!
new design elements design Create concept | Match & < g
issues decision decision *| concept vector |Vector Prioritize |\ gopen, Lttt
Figure 1. High-level overview of the expertise recommendation system

To address this challenge of identifying and quantifying
architectural expertise of software architects and developers,
we investigate design decisions extracted from issue man-
agement systems (IMS). It should be noted that even though
design decisions are not explicitly documented, architects
and developers implicitly capture decisions in tools such as
IMS and version control systems [20]. We use IMS (for
example, JIRA and GitHub issue tracker) as the data source
within our approach for the following reasons:

e The use of IMS for managing system-related issues
in agile software projects is becoming popular both in
industry and open source communities [21]—[23].

e Medium- and realization-level design decisions can
be automatically identified from issues with a high
precision of 91.29% and a recall of 82.79% [24].

In this paper, we propose an expert recommendation sys-
tem tailored to identify appropriate architects and developers
to support the DDM process. The approach presented in
this paper builds upon (a) a machine-learning based method
to identify design decisions [24] and (b) an ontology-based
approach to identify architectural elements [25]. Using these
two approaches as a foundation, we realize a system for
suggesting appropriate architects and developers for address-
ing design concerns. One of the benefits of this system is
that practitioners do not have to manually document design
decisions in an AKM tool. The system automatically extracts
decisions from IMS, quantifies architectural expertise, and
determines experts for new design concerns thereon.

Figure 1 illustrates the high-level overview of the pro-
posed approach. During the training phase, first, all the
existing issues of a project are imported into an AKM
tool named AMELIE [26]. In Step 2, the decision detector
component filters those issues that reflect decisions. In Step
3, architectural elements within the textual description of
design decisions are automatically annotated (tagged) by
the annotator component. For each design decision, the
annotated elements and the individual who resolved the
design decision are used to create an expertise matrix in
Step 4a, which is then persisted for subsequent use.

During the application phase, a newly created issue goes
through the same Steps 1, 2, and 3 as described above. A
concept vector corresponding to the open design decision is
computed in Step 4b. This vector is then compared against
the expertise matrix in Step 5 to generate a list of experts
who could be invited to discuss the design concern.

With this approach, we make an effort to quantify archi-

tectural expertise by analyzing decisions made by architects
and developers in their past and ongoing projects with the
help of an expertise matrix. This allows one to further search
within the matrix to find people with relevant expertise so
as to deal with specific concerns in a quantitative manner.

This paper is organized as follows. Section II presents
the related work. In Section III, we elaborate the approach
for recommending software architects and developers who
could be involved in the design decision-making process.
The evaluation of the recommendation system is presented
in Section IV. In Section V, we discuss the lessons learned
during the analysis of the concrete project datasets. Finally,
we conclude with a short summary in Section VI.

II. RELATED WORK

In this section, we present the results of a semi-systematic
literature review study. This study was conducted to investi-
gate if any comparable research exists to support the DDM
process with the aid of expert recommendation systems.
We formulated a review protocol based on the systematic
literature review guidelines [27]. This protocol specifies the
background for the publication selection, search strategy, and
data extraction and synthesis of the extracted data.

A. Inclusion and exclusion criteria

As an inclusion criterion for the selection process, we con-
sidered publications that recommended experts in the context
of DDM process. We restricted ourselves to publications in
the English language since we formulated the search queries
using English terms and hence the results retrieved from the
electronic databases were confined to the English language.
To ensure that we retrieved all relevant studies over the
years, we did not set a lower boundary on the publication
date. The publications were retrieved on 12.12.2017 which
is the upper boundary of the publication date. We excluded
publications that did not explicitly relate to the involvement
of experts during the DDM process. Furthermore, we also
excluded all publications that did not provide any kind of
tooling support or recommendation strategy for DDM.

B. Search strategy

As part of the search strategy, we queried the following
electronic databases within the scope of this study:

o« ACM Digital Library (http://portal.acm.org)

« IEEE Xplore (http://www.ieee.org/web/publications/xplore/)

« Science Direct (http://www.elsevier.com)

To ensure that all key publications were covered, we
manually browsed through the following proceedings:

o International Conference on Software Architecture
o European Conference on Software Architecture
o Working IEEE Conference on Software Architecture

We formulated the search query in accordance with the
inclusion criteria. That is, first we wanted to include publi-
cations in the area of “software architecture” or “software
design”. Second, we wanted to explore if there were any ex-
pert recommendation systems supporting the DDM process.
To keep a broader search scope, we used “decision making”
or “expert*” regular expressions as query Q2.

1) Q1: “software architecture” OR “software design”

2) Q2: “decision making” OR “expert*”

3) FSQ: Q1 AND Q2

The final search query (FSQ) means that at least one
item from QI and Q2 should appear at least once in the
publications. The search query was matched against the fitle,
keywords, and abstract of publications in the database.

C. Data extraction and synthesis

The aforementioned search strategy leads to a total of
1,840 publications. The contents of these publications were
assessed in four stages. In Stage 1, we retrieved the pub-
lications from the electronic databases. In Stage 2, first,
we removed all duplicate papers. Second, (according to the
exclusion criteria) after reading the title of the publications,
all those publications that did not correlate to the topic of
software architecture as well as to the DDM process were
removed by the first author of this paper. This resulted in
407 publications. In Stage 3, the first author inspected the
publications’ abstract. All those publications that did not
propose any tool support or recommendation strategy for
the DDM process were removed. This finally resulted in 11
publications. These 11 publications were downloaded, read,
and summarized by the second and third authors in Stage 4.

D. Summary report

A variety of approaches supporting different aspects of the
DDM process were identified in the studied publications.

In [28], Stevanetic et al. proposed a tool structured around
a central repository to support different stages of architecture
documentation. During the exploratory, specification, and re-
view stages, architects can search and choose facets (domain,
tactic, patterns, and quality attributes) for their projects and
the tool recommends design decisions corresponding to the
selected facets. In [29], authors presented a tool that suggests
alternative architectural decisions to architects for improving
specific quality attributes of a software. On a similar note,
the tool proposed by Silva et al. [30] recommends suitable
architectural styles corresponding to the quality attributes
of a system. Furthermore, given that one has to always
make tradeoffs among quality attributes, Saadatmand and

Tahvili [31] proposed a fuzzy decision support approach
that identifies design alternatives which lead to the overall
satisfaction of the quality attributes. Moaven et al. [32]
formulated the architectural style selection as a multi-criteria
decision-making problem and proposed a decision support
system (DSS) based on fuzzy logic to identify suitable archi-
tectural styles for the system under consideration. Esfahaniet
et al. [33] also presented the utility of fuzzy logic to help
architects explore the solution space under uncertainty.

In [34], authors proposed a DSS which uses historical
decisions captured in an ontology to analyze and reuse de-
cisions in new scenarios. Another ontology-based approach
was presented in [35] which allows architects to participate
in the group decision-making process through a web inter-
face. To support architects during the individual and group
decision-making process, Tofan and Galster [36] presented
a tool to capture and analyze architectural decisions.

Soliman et al. [37] conducted an exploratory study to
understand how practitioners perceive technology solutions
during the decision-making process and extended the exist-
ing architectural knowledge concepts to support architects in
making a choice among different technology solutions. The
technology-related architectural knowledge can be identified
in StackOverflow posts which can be reused by architects
during the technology decision-making process [38].

To summarize, various approaches for capturing, repre-
senting, and reasoning about architectural decisions have
been proposed in the past. These approaches help architects
to make more informed decisions while solving specific
design problems. Unfortunately, none of the studied publi-
cations provide insights about recommendation systems for
identifying architects who should be involved in addressing
design problems. The approach presented in this paper
complements the existing knowledge-based approaches by
identifying relevant experts for the DDM process.

It should be noted that there exist some approaches es-
pecially targeting software defect management systems [3],
[39]-[42]. These approaches identify developers who have
expertise related to specific defects in software systems
and automatically assign them to defect resolution. In our
approach, we tailor the idea of representing expertise of
individuals using an expertise matrix as presented in [3] to
identify experts who should be involved in the DDM pro-
cess. The main differences being that, the proposed system
detects design decisions from issues, automatically extracts
architectural topics, and then quantifies architectural exper-
tise to recommend experts for engaging in the DDM process.
Also, compared to document-clustering based approaches,
we believe that the expertise matrix-based approach provides
the flexibility to adapt the features of the documents to
specific architectural topics. Moreover, as discussed in the
subsequent sections, our approach provides more explicit
and transparent results for the end-users.

I1I. APPROACH

In this section, we discuss the pipeline shown in Figure 1
that forms the core of the recommendation system. First, we
introduce a machine-learning (ML) based approach to iden-
tify design decisions from issues in the issue management
systems (IMS). Second, we briefly present an ontology-
based approach to annotate text with architectural elements.
Next, we discuss the expertise matrix used to capture the
expertise profiles of software architects and developers.
Finally, we present how we generate a concept vector for a
new design concern and match it with the expertise matrix
to recommend a list of experts.

A. Step 1: Extracting issues from issue management systems

To extract issues from IMS into our AKM system, we use
an open source component named SyncPipes'. This extract-
transform-load component not only helps us import existing
issues but also synchronizes newly created issues with the
data model of the AKM system.

B. Step 2: Automatically detecting design decisions

We use a supervised ML-based approach to automatically
detect design decisions from issues captured in the IMS [24].
By using a linear support vector machine algorithm, design
decisions can be detected with an accuracy (F1-score) of
91%. For training the ML model, two software architects
created a dataset by manually labeling 1,571 issues from two
large open source system (OSS) repositories. This publicly
available dataset? contains 465 design decisions from the
Apache Spark and 263 design decisions from the Apache
Hadoop Common OSS projects. The trained ML model
is also publicly available as part of the decision detector
component®. This component labels an issue either as a
“design decision” or “not a design decision” (Step 2 in
Figure 1). If an issue is labeled as a design decision, then it
is processed in the subsequent steps.

C. Step 3: Annotating architectural elements

To automatically identify and annotate (tag) natural lan-
guage text with architectural elements, we use the broad
cross-domain DBpedia ontology [43]. The DBpedia on-
tology comprises of concepts and relationships between
concepts which are extracted from the Wikipedia articles.
These concepts include architectural styles, patterns, soft-
ware components, and technologies which correspond to
the architectural elements in software systems. Using the
DBpedia ontology, we can extract architectural elements
from text with an accuracy (F1-score) of 84% [25]. For each
issue labeled as design decision by the decision detector
component, the annotator component extracts the architec-
tural elements from its textual description and persists it in

Uhttps://wwwmatthes.in.tum.de/pages/2ghOu9d 1 afap
Zhttps://wwwmatthes.in.tum.de/pages/9gvnwulxb4in
3https://github.com/sebischair/DocClassification

wa @nt (21) voe
o @ @ PR

g @ oGl S o o o

Test (24)csvc{:A Ple (26 B o

o 0@ o Graay o O
SOTIM (107, ¢° Po TR L

VD, se, ‘@

y™ W'M;BC TP 26"
Scala (40) . POt Apache (23

fo

s

we BWVHERE (
=

Python (40)*"

@00 14
el @ rerdDF (150

Figure 2. Annotated architectural elements for decisions in Spark dataset

the AKM tool (Step 3 in Figure 1). The textual description
of a design decision is derived from the Summary and
Description attributes of the respective issue.

Figure 2 shows the architectural elements and their occur-
rence counts for 465 design decisions in the Apache Spark
project. For instance, API occurs 78 times, Scala 40 times,
and HTTP 26 times. Each design decision is tagged with
zero or more architectural elements. The occurrence count
of an architectural element indicates the number of times this
element has been discussed in individual design decisions.
The annotated elements in design decisions are used to build
the expertise matrix as discussed in the next section.

D. Step 4a: Building the expertise matrix

To quantitatively represent and measure the architectural
expertise of architects and developers, we reuse the concepts
from a previously proposed expert recommendation system.
In particular, the terms expertise atoms and expertise matrix
were introduced in [3]. With the expertise matrix, we repre-
sent individuals’ expertise profiles as rows and architectural
elements as columns. Let D = {d;,d»,ds,,dn} be the
set of architects and developers, E = {ej, ez, €3,, €5} be
the set of architectural elements, and V,, be the expertise
matrix. Here, m is the total number of architects and de-
velopers and n is the total number of architectural elements
identified by the annotator component.

Expertise atoms (EAs) are the elementary atoms of
expertise. They reflect an individual’s expertise in a specific
architectural topic. Each element V'[i][j] in Vy, represents
an EA. By resolving a design concern, an individual gains
expertise related to the corresponding architectural elements
within the concern. The total count of the occurrences of
an architectural element in all the design decisions resolved
by an individual indicates his or her expertise level for
the corresponding architectural element. That is, the higher
the expertise level of an individual for an architectural
element (V'[i][]) is, the more is the expertise in handling
concerns related to the corresponding architectural element.

do4
"ty
le

<
TS (]
$k§m S 3’0.’5
S8 5 & & § o 5 OF
Q %] o
o6& & & ¢ @ & § ®F¢
1 1 | | | | | |

L 5
Ry,

cody koeninger —
davies liu
holdenk —
wenchen fan —

se] W W W

kazuaki ishizaki —

timothy hunter —

Figure 3. An excerpt of expertise matrix for Spark dataset

The expertise level of an individual for an architectural
element can also be zero, which indicates that (s)he has not
yet resolved a design concern pertaining to that architectural
element and quantifies that (s)he has no expertise on that
topic. Moreover, an individual can also have expertise in
zero or more architectural elements.

Expertise profile: Each row (V[¢]) within the expertise
matrix (V,,) represents an expertise profile for individual
architects and developers. An individual’s name is extracted
from the “assignee” attribute of an issue, which represents
the person who resolved this issue and gained expertise
henceforth. Using this expertise profile, one can quanti-
tatively assess the expertise of architects and developers
corresponding to each architectural element.

Expertise matrix: Within this matrix, rows capture exper-
tise profiles, columns represent architectural elements, and
cells correspond to EAs. An excerpt of the expertise matrix
for the Spark dataset is shown in Figure 3. The darker the
color of a cell within the matrix, the higher the value for
the corresponding EA. Once the matrix is generated for a
project, it is persisted in the AKM tool and is further used
to generate a list of experts for new design concerns.

E. Step 4b: Generating concept vectors

Once a new issue is added to the IMS and imported into
the AKM tool, the decision detector component checks if
it represents a design concern. If so, the annotator compo-
nent identifies the architectural elements within this design
concern. The frequency of occurrence of an architectural
element represents its weighting factor within the concern.
In essence, first, we identify those contributors who have
expertise in one or more architectural elements within the
design concern and then rank the individuals according to
their expertise level corresponding to the weighting factor
of architectural elements within the concern. Hence, to be
able to compare the textual description of a design concern
against the expertise matrix, we create an n-dimensional
sparse vector, where n is the total number of identified
architectural elements. We refer to this vector as the concept

vector (CV) of a design concern. The CV is represented as
a one-dimensional integer array of size n and each element
in the array is initialized with zero values. The position of
an architectural element in the CV is consistent with its
column in the expertise matrix. The value in the position
corresponding to each architectural element present in the
new design concern is then replaced by its frequency count.

CV ={ecy,¢2,¢3, ...y Cn }; where ¢ > 0;

F. Step 5: Generating the expert list

The CV computed in the previous step is matched against
the expertise matrix stored in the AKM tool to generate the
list of experts. The pseudocode for generating the expert
list is described in Algorithm 1. The function “MATCH”
takes as input the CV, expertise matrix, and the set of
architects and developers. For each expertise profile (row)
in the matrix, an expert vector (EV) of size n is created.
Each element in EV is the product of the frequency of
an architectural element (CV[j]) in a new design concern
and the expertise level (V[i][]) of the respective individual
corresponding to that architectural element. For instance, if
a new design concern emphasizes an architectural element
with a higher frequency count and a specific individual
has more expertise with that architectural element, then the
score for that individual should proportionally increase with
respect to both these variables. Once the EV is generated
for an individual, we calculate the score as the magnitude
(vector length) of that expert vector. The magnitude of the
EV is calculated as the square root of the dot product of the
vector by itself. Hence, the score generated for an individual
is equally distributed across all architectural elements in the
new design concern. If this score is greater than zero, the
corresponding individual along with the score is added to the
expert list. As the last step, after iterating over all expertise
profiles, the expert list is ordered by the score.

Algorithm 1 Match and prioritize

1: function MATCH(CV, Vip,, D)

2: expertList + {}
3: for i in 0..mdo
4: expertVector < newArray(n);
5: for 5 in 0..n do
6: BV[j] < V] x VI)
7T: end for
> Compute score as vector magnitude
8 sum < 0
9 for § in 0..n do
10 sum + sum + EV[j] x EV[j]
11 end for
12: score <~ SQRT (sum)
13: if score >0 then
14 expertList.add(“person’’, D[i])
15 expertList.add(“score’’, score)
16 end if
17 end for
18 expertList + ORDERBY (expertList, “score’’)

19: end function

D Name Domain Type # design decisions | # unique contributors
1 Apache Spark Data processing Open source 447 95
2 Apache Hadoop Common Distributed computing Open source 238 111
3 Industry Project I Connected Mobility Closed source 368 13
4 Industry Project IT Knowledge management | Closed source 143 14

Table 1
EVALUATION DATASET

IV. EVALUATION

In this section, we present the results of evaluating our
approach using datasets from four different software projects
which maintain issues in JIRA. Two of these projects are
OSS projects and the other two projects are from our
industry partner. As shown in Table I, the OSS projects have
a higher number of unique contributors: the Apache Spark
project has 95 unique contributors who resolved 447 design
decisions and the Apache Hadoop Common project has 111
unique contributors who resolved 238 design decisions. The
industrial projects are comparatively smaller, wherein, only
13 and 14 unique contributors resolved design decisions in
Project I and II respectively.

For analyzing the results for individual datasets, we adhere
to the following strategy:

Step 1: Order design decisions based on the resolution date.
Step 2: Split design decisions dataset into training [90% to
30%] and testing dataset [10% to 70%].

Step 3: Use the training dataset to create the matrix.

Step 4: For each design decision in the testing dataset,
identify experts by matching the CVs against the matrix.
Step 5 - OSS projects: Measure the precision at 5, 10, 15,
20, 25, 30, and max. The precision at 5 (P@5) indicates if an
individual who actually resolved the design decision belongs
to the top 5 results in the list of recommended experts. Here,
the max value refers to the total number of experts who can
be recommended, that is, those individuals who resolved
design decisions related to architectural elements at least
once. Note that the recommended list is the list of top n
experts in the context of P@n where n is the size of the list.
Step 6 - industry projects: Measure the precision at 2, 4,
and 6. Since there are only 13 and 14 contributors in the
industry projects, using a larger list will result in higher
accuracy but will not lead to any interesting observations.

The overall accuracy of the algorithm can be calculated
as the average of P@max across the investigated projects.
As discussed in the subsequent subsections, even though
the overall accuracy with P@max is higher than 60%, we
believe that it does not provide useful insights; because the
average P@max varies depending on the project. However,
understanding the behavior with smaller recommendations
(P@5 and P@10) and observing the trend across different
list sizes (P@5 to P@max) and split strategies is interesting
for researchers to reflect on the influence of project charac-
teristics on the recommendation system and vice versa.

Furthermore, it should be noted that since design concerns

were originally assigned to contributors without the aid of
any system, the precision values should be interpreted as
lower-bound estimates of the accuracy. By checking if an
individual who actually resolved a design concern lies in
the recommended expert list, we can only argue about the
assumption that new design concerns are assigned to indi-
viduals who have dealt with similar cases in the past. In the
subsequent subsections, we show that this assumption gets
stronger as the size of the recommendation list increases.

A. Apache Spark

Among the datasets, the Apache Spark dataset has the
largest number of labeled design decisions (447) with 95
unique contributors who resolved those design decisions. As
shown in Figure 4, when we increase the size of the training
dataset for creating the expertise matrix (from 60% to 90%)
and the size of the recommendation list (see from P@15 to
P@max), the precision values also increases. This is rather
intuitive as one could imagine that when we increase the
size of the training dataset as well as the solution space
(expert list), the accuracy must also increase. However, if we
observe the results for P@5 and P@10, using larger training
datasets decreases the accuracy. The reason for this is that
when we use a larger training dataset, the values of expertise
atoms gets distributed across the corresponding expertise
matrix and the individual who resolved a design decision in
the testing dataset might not be present in the recommended
list of more qualified personnel. On the contrary, when we
use a smaller training dataset (40% and 50%), the expertise
matrix is rather concise and results in higher accuracy
(P@5 and P10) as compared to a larger training dataset.
This is an important observation, since, for a 100 members
team of architects and developers, we would not want to
recommend more than 5 to 10 key experts who should be
involved during the DDM process. Hence, it is necessary to
consider an optimal size of the training dataset to prevent
an overfitting of the matrix and to subsequently use it for
recommendations. In case of the Spark project, using 40%
or 50% of the dataset (approx. 200 design decisions) is
sufficient to recommend experts for DDM.

Furthermore, reduced P@5 and P@10 values with a
larger training dataset indicate that these design decisions
are not made by a selected few individuals but is well
distributed among the architects and developers. As it should
be in an ideal case, this indicates a “healthy” project where
knowledge does not reside only with a few experts.

=

N

é 50

= 2

=40

e

g

£ 30

o

20 NO. OF RECOMMENDED EXPERTS
5 10 15 20 25 30 max

——90% 26.67 33.33 51.11 60 62.22 64.44 73.33

80% 28.89 36.67 47.78 52.22 55.56 56.67 68.89
70% 28.15 41.48 48.89 53.33 55.56 57.78 62.96
60% 28.49 41.9 48.04 54.75 58.1 60.89 63.69
=¥=50%| 30.36 42.86 48.21 52.23 56.25 57.14 58.48
~8—-40%| 33.83 45.35 49.81 52.04 55.02 56.51 56.51
——30% 30.35 39.94 44.09 46.33 47.92 48.24 48.24

Figure 4. Evaluation for Spark Dataset

B. Apache Hadoop Common

The Apache Hadoop Common dataset comprises of 238
design decisions which have been resolved by 111 unique
contributors. As shown in Figure 5, we observe results
similar to the results of the Apache Spark dataset.

« When we increase both the size of the training dataset
(from 60% to 90%) and the recommendation list (from
P@15 to P@max), the accuracy also increases.

o For P@5 and P@10, the smaller training dataset (50%)
outperforms the larger dataset.

e Lower P@5 and P@10 values for larger training
datasets indicate a “healthy” project where design deci-
sions are not made by a few architects and developers.

Similar observations from both these OSS projects indi-
cate that even a smaller design decisions dataset is sufficient
to build a comprehensive expertise matrix to recommend
experts who could be involved in the DDM process.

C. Industry Project I

Unlike the OSS projects wherein stakeholders have main-
tained issues in JIRA since 2012, the industrial projects
are under development and maintenance since 2016 and
the team size of architects and developers is considerably
smaller. The first project under consideration aims to provide
mobility-related services for commuters in metropolitan ar-
eas by benefiting from the sensor data collected from differ-
ent means of transportation. Stakeholders of this project have
captured 1,233 issues in JIRA. Using the decision detection
model, we have identified 368 design decisions which have
been resolved by 13 unique contributors. After creating the
expertise matrix using the training dataset and matching the
concept vectors of design decisions in the testing dataset,
we measured the precision at 2, 4, and 6 (due to fewer
contributors). Since this project has a large number of design
decisions (368), as shown in Figure 6, the precision values
do not vary significantly for different split strategies. Similar
to the OSS projects, increasing the size of the training dataset
and the size of the recommendation list also increases the
accuracy of the recommendation system.

65
55
45
35
25
15

5

CORRECT MATCH %

NO. OF RECOMMENDED EXPERTS

5 10 15 20 25 30 max

——90% 8,33 2083 375 41,67 5833 5833 66,67
80% 10,42 1875 31,25 3958 43,75 47,92 54,17
70% 11,11 19,44 26,39 30,56 31,94 3333 44,44
60% 125 16,67 21,88 2813 30,21 3333 3854

——50%[1525 2542 | 2881 339 3559 3814 4153

——-40% 12,68 16,9 23,24 2746 2887 3099 31,69
—+—30% 11,97 16,2 21,83 21,83 23,24 23,24 23,24

Figure 5. Evaluation for Hadoop Common dataset

Contrary to the results of the OSS projects, we observed
higher accuracy for P@2 and P@4 in case of industrial
projects (cf. Figure 6 and 7). The average accuracy (P@2
and P@4) across different splits is 44.38% and 71.32%
respectively. That is, in 44% of the cases, either of the two
individuals who had the most expertise actually resolved the
design decision. Similarly, 71% of decisions were resolved
by the top four individuals with most expertise. Furthermore,
surprisingly, either one of the top two recommended experts
remained consistently in all the recommendations.

Even though the higher accuracy indicates that the system
can successfully identify experts who can deal with specific
design decisions, the fact that only those individuals actually
resolved most of the decisions is not ‘“healthy” for the
project. It shows that there are only a few individuals with
relevant expertise and the chances of knowledge vaporization
in case they leave the project is higher.

D. Industry Project Il

The second industry project that we analyzed is a knowl-
edge management system which guides stakeholders during
different phases of the application lifecycle of software
projects. Stakeholders of this project have maintained 1,153
issues in JIRA since early 2016 and the decision detection
model identified 143 design decisions which were resolved
by 14 unique contributors. As shown in Figure 7, the results
are similar to that of the first industry project:

o The average accuracy of finding experts in the top 2
and top 4 recommendation list is as high as 58.60%
and 73.77% respectively.

« Higher accuracy (P@2 and P@4) and consistently rec-
ommending either one of the top two experts indicate
that decisions were made only by a few individuals and
there is a need for knowledge transfer within the team.

V. LESSONS LEARNED AND FUTURE WORK

In this section, we share our experiences and lessons
learned during the analysis of the project datasets as well
as discuss the feedback from our industry partner.

90

80

B3
T 70
Q
=
<<
= 60
G
2 50
[~4
o
O 40
w0 NO. OF RECOMMENDED EXPERTS
2 4 6
——90% 43.24 75.68 91.89
80% 51.35 72.97 91.89
70% 48.65 74.77 92.79
60% 45.27 71.62 89.86
—%—50% 44.57 73.37 89.67
—0—40% 41.18 74.66 89.14
——30% 36.43 56.2 65.12

Figure 6. Evaluation for Industry Project I dataset

A. Project and team characteristics

As presented in Section IV, we observed higher accuracy
with smaller recommendation lists for the industry projects
as compared to the OSS projects. This is due to a couple of
factors, namely, the number of contributors and the culture of
assignment of issues. Typically, teams of small and medium-
sized projects (with 10 to 50 architects and developers)
contain only a few architects and senior developers. The key
design decisions including setting up the IT infrastructure,
selecting the communication protocol, and making changes
to the data models are made by those experienced architects
and developers. Hence, for new design decisions, the pro-
posed algorithm correctly identifies those experts in such
smaller teams as compared to larger teams where design
decisions are resolved by many contributors. Furthermore,
in the OSS projects, contributors independently resolve
issues (bottom-up) by submitting a pull request in the code
repository which is then merged into the main branch and the
respective issue is closed. Whereas, in the industry projects
we analyzed, issues are assigned to developers by architects
or senior developers (top-down). Hence, contrary to the
industry projects, in the OSS projects where developers had
more freedom to choose the design problems, we observed
that the values of the expertise atoms were scattered across
the expertise matrix. To avoid the risk of knowledge va-
porization, we prescribe the use of the expertise matrix to
identify hotspots within the matrix (rows containing darker
cells) early in the project so as to ensure the involvement of
junior developers while addressing design concerns.

Within the scope of this study, we have not addressed the
cold start problem in the recommendation system. That is,
when new contributors join the team, it is not possible to
create their expertise profiles. However, we consider this to
be a technical challenge as one could integrate external data
sources such as professional resumes to extract their skills.

Another shortcoming of our approach is that we have to

90

80

X
I
E 70
=
G 60
w
o
[~4
8 50
NO. OF RECOMMENDED EXPERTS
40
2 4 6
——90% 66.67 80 86.67
80% 62.07 75.86 82.76
70% 58.14 72.09 81.4
60% 55.17 70.69 82.76
——=50% 56.94 76.39 83.33
—8—40% 55.81 72.09 84.88
——30% 55.45 69.31 79.21
Figure 7. Evaluation for Industry Project II dataset

consider an optimal size of the training dataset for creating
the expertise matrix. As discussed in Section IV, using a
larger training dataset might not result in better accuracy.
The size of the training dataset has to be dealt on a project-
to-project basis. Within the scope of this study, we could
not generalize the optimal size of the training dataset.

One of the frequent concerns raised by our industry
partner is “how to deal with issues captured in different
languages”. In some projects, either all the issues are in
the German language or there is a mixture of both the
English and the German text. Dealing with such scenarios is
challenging as we not only have to use a translation service
but also retrain the decision detection models which is time
and effort intensive.

Finally, during the demonstration of the results to the
stakeholders of the Industry Project II, one of the architects
expressed that it would be beneficial to apply the approach
across the organization’s projects so as to know with whom
one has discuss for resolving similar design problems. Ad-
dressing this point is not a technical problem but it is difficult
since every project within an organization has different
confidentiality criteria. Moreover, as also pointed out by one
of the stakeholders, not every individual is comfortable with
the idea that their architectural expertise is being quantified.

B. Expert recommendation

The architects from the Industry Project I highlighted
that the system should also consider attributes including
availability and workload of experts as well as criticality and
priority of design decisions. Since projects maintain such
structured information in issue management systems such
as JIRA, we can consider these complimentary parameters
while generating the list of experts.

Furthermore, it is necessary to emphasize that the aim is
not to automatically assign contributors to address a design
concern but to recommend a list of experts who should be
involved in the DDM process. In this context, first, we need

to have a balanced mix of both senior and junior architects
and developers in the list so as to ensure knowledge transfer.
Second, it is not sufficient to present only the list of experts
but we also need to identify and assign roles for the experts
such as owners, decision-makers, and moderators.

We are currently investigating the aforementioned aspects
of improving the quality of the recommendation list as part
of a follow-up research project?.

C. Personal experience and cognitive biases

In our approach, we make the assumption that architects
and developers — intentionally or unintentionally — rely on
their past experiences while making design decisions or even
when selecting a design problem to be addressed. The use
of experience as an “anchor” while making decisions may
lead to anchor and confirmation cognitive biases [44]. The
qualitative interview-based studies [13], [18] have indicated
personal experience to be a key factor influencing the
DDM process. The recommendation results for the OSS
projects show that there is a high chance (cf. P@max; avg.
61.72% for Spark and 42.89% for Hadoop) that contributors
select similar concerns that they have addressed in the past.
Similarly, in the industry projects, issues reflecting design
decisions are assigned to those developers who have dealt
with similar concerns in the past (cf. P@6; avg. 91.22% for
Industry Project I and 82.45% for Project II).

The aforementioned observation provides quantitative evi-
dence to indicate that experience of architects and developers
play an important role when they select and resolve design
decisions which in turn influences the DDM process.

VI. CONCLUSIONS

Architectural design decisions have a long-lasting impact
on the architecture of software systems. These decisions
have to be made carefully by experienced architects and
developers, or at least they must be consulted before im-
plementing those design decisions. In this paper, we pro-
posed an automatic approach to address the challenge of
identifying experts who should be involved in the DDM
process. Within this approach, we tackled the challenges
of identifying architectural elements within projects, quan-
tifying architectural expertise of architects and developers
corresponding to specific skills, and finally matching and
recommending individuals with suitable expertise to discuss
new design concerns. Furthermore, this approach is not
only applicable for recommending experts who should be
involved in addressing design concerns, but is also applicable
for identifying experts who can fix a given issue in IMS.

The proposed recommendation system was evaluated
using datasets from four software projects with different
project characteristics. Apart from the observation that the
system successfully identifies experts, we also observed

“https://wwwmatthes.in.tum.de/pages/1v8023c2kodm1

that even a smaller training dataset of design decisions
is sufficient for creating an appropriate expertise matrix.
However, to create an expertise matrix we have to optimize
the size of the training dataset which can only be decided
from project-by-project or team-by-team basis depending on
how people are assigned to projects in specific organizations.
As a byproduct of our analysis, we identified two important
aspects. First, we can use the expertise matrix to identify
hotspots to observe the health (with respect to architectural
knowledge distribution) of a project. If there are many rows
(expertise profiles) with sparse cells (no values in expertise
atoms) and few rows with dense cells, strategies should be
defined for knowledge transfer to avoid knowledge evap-
oration. Second, the evaluation results provide quantitative
evidence for the existence of personal experience bias when
architects and developers address design concerns.

Finally, our work should be considered as the first steps
towards the realization of an expert recommendation system
to support the DDM process. We plan to address the short-
comings of our approach as discussed in Section V in the
next iteration. As initial steps, we are working on gathering
feedback from our industry partner to ensure (a) comprising
a well-mixed list of both experts and novices, (b) defining
and assigning roles to experts within the expert list, and (c)
considering time constraints, availability, and workload of
experts while creating the expert list.

REFERENCES

[1] T. DeMarco and T. Lister, Peopleware: productive projects
and teams. Addison-Wesley, 2013.

[2] P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral
software engineering: a definition and systematic literature
review,” J. Syst. and Soft., vol. 107, pp. 15-37, 2015.

[3] A. Mockus and J. D. Herbsleb, “Expertise browser: a quan-
titative approach to identifying expertise,” in Proc. 24th Int.
Conf. on Soft. Eng. ACM, 2002, pp. 503-512.

[4] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann,
Recommendation systems in software engineering. Springer
Science & Business, 2014.

[5] A.Felfernig, C. Zehentner, G. Ninaus, H. Grabner, W. Maalej,
D. Pagano, L. Weninger, and F. Reinfrank, “Group decision
support for requirements negotiation.” in UMAP Workshops.
Springer, 2011, pp. 105-116.

[6] F. McCarey, M. 0. Cinnéide, and N. Kushmerick, ‘“Rascal:
a recommender agent for agile reuse,” Artificial Intelligence
Review, vol. 24, pp. 253-276, 2005.

[71 S. L. Lim, D. Quercia, and A. Finkelstein, “Stakenet: using
social networks to analyse the stakeholders of large-scale
software projects,” in Proc. 32nd ACM/IEEE Int. Conf. on
Soft. Eng.-Volume 1. ACM, 2010, pp. 295-304.

[8] P. Kruchten, “An ontology of architectural design decisions
in software intensive systems,” in 2nd Groningen Workshop
on Soft. Variability. Groningen, The Netherlands, 2004, pp.
54-61.

[9] A. Jansen and J. Bosch, “Software architecture as a set of
architectural design decisions,” in 5th Working IEEE/IFIP
Conf. on Soft. Architecture. 1EEE, 2005, pp. 109-120.

[10] M. ISO, “Systems and software engineering—architecture de-
scription,” ISO/IEC/IEEE 42010, Tech. Rep., 2011.

(11]

(12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

J. S. van der Ven and J. Bosch, “Making the right decision:
supporting architects with design decision data,” in European
Conf. on Soft. Architecture. Springer, 2013, pp. 176-183.
A. G. J. Jansen, “Architectural design decisions,” 2008.

I. Groher and R. Weinreich, “A study on architectural
decision-making in context,” in [2th Working IEEE/IFIP
Conf. on Soft. Architecture. 1EEE, 2015, pp. 11-20.

C. Zannier, M. Chiasson, and F. Maurer, “A model of design
decision making based on empirical results of interviews with
software designers,” Inform. and Soft. Technol., vol. 49, no. 6,
pp. 637-653, 2007.

S. T. Hassard, A. Blandford, and A. L. Cox, “Analogies in
design decision-making,” in Proc. 23rd British HCI Group
Annual Conf. on People and Computers: Celebrating People
and Technol. British Computer Society, 2009, pp. 140-148.
C. Zannier and F. Maurer, “Social factors relevant to capturing
design decisions,” in Proc. 2nd Workshop on SHAring and
Reusing Architectural Knowledge Architecture, Rationale,
and Design Intent. 1EEE Computer Society, 2007, p. 1.

H. van Vliet and A. Tang, “Decision making in software
architecture,” J. Syst. and Soft., vol. 117, pp. 638-644, 2016.
A. Tang, M. Razavian, B. Paech, and T.-M. Hesse, “Human
aspects in software architecture decision making: a literature
review,” in IEEE Int. Conf. on Soft. Architecture. 1EEE,
2017, pp. 107-116.

M. Galster, D. A. Tamburri, and R. Kazman, ‘“Towards under-
standing the social and organizational dimensions of software
architecting,” ACM SIGSOFT Soft. Eng. Notes, vol. 42, no. 3,
pp. 24-25, 2017.

C. Miesbauer and R. Weinreich, “Classification of design
decisions—an expert survey in practice,” in European Conf.
on Soft. Architecture. Springer, 2013, pp. 130-145.

G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?: a text-based
approach to classify change requests,” in Proc. 2008 Conf.
Center for Advanced Studies on Collaborative Research:
Meeting of Minds. ACM, 2008, p. 23.

G. Goth, “Agile tool market growing with the philosophy,”
IEEE Software, vol. 26, no. 2, pp. 88-91, 2009.

U. Van Heesch, T. Theunissen, O. Zimmermann, and U. Zdun,
“Software specification and documentation in continuous
software development: a focus group report,” in Proc. 22nd
European Conf. on Pattern Languages of Programs, ser.
EuroPLoP ’17. ACM, 2017, pp. 1-13.

M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and
F. Matthes, “Automatic extraction of design decisions from
issue management systems: a machine learning based ap-
proach,” in European Conf. on Soft. Architecture. Springer,
2017, pp. 138-154.

M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, M. Has-
sel, and F. Matthes, “An ontology-based approach for software
architecture recommendations,” in 23rd Americas Conf. on
Inform. Syst., AMCIS 2017, Boston, MA, USA, August 10-12,
2017, 2017.

M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and
F. Matthes, “Meta-model based framework for architectural
knowledge management,” in Proc. of the 10th European Conf.
on Soft. Architecture Workshops. ACM, 2016, p. 12.

D. Budgen and P. Brereton, “Performing systematic literature
reviews in software engineering,” in Proc. 28th Int. Conf. on
Soft. Eng. ACM, 2006, pp. 1051-1052.

S. Stevanetic, K. Plakidas, T. B. Ionescu, F. Li, D. Schall, and
U. Zdun, “Tool support for the architectural design decisions

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

in software ecosystems,” in Proc. 9th European Conf. on Soft.
Architecture Workshops. ACM, 2015, p. 45.

D. Ameller, O. Collell, and X. Franch, “Architech: tool sup-
port for nfr-guided architectural decision-making,” in Proc.
20th Int. Requirements Eng. Conf. 1EEE, 2012, pp. 315-
316.

I. C. Lopes Silva, P. H. Brito, B. F. dos S Neto, E. Costa, and
A. A. Silva, “A decision-making tool to support architectural
designs based on quality attributes,” in Proc. 30th Annual
ACM Symposium on Applied Computing. ACM, 2015, pp.
1457-1463.

M. Saadatmand and S. Tahvili, “A fuzzy decision support
approach for model-based tradeoff analysis of non-functional
requirements,” in Proc. 12th Int. Conf. on Inform. Technol.-
New Generations. 1EEE, 2015, pp. 112-121.

S. Moaven, J. Habibi, H. Ahmadi, and A. Kamandi, “A deci-
sion support system for software architecture-style selection,”
in Proc. 6th Int. Conf. on Soft. Eng. Res., Manage. and Appl.
IEEE, 2008, pp. 213-220.

N. Esfahani, S. Malek, and K. Razavi, “Guidearch: guiding
the exploration of architectural solution space under uncer-
tainty,” in Proc. 35th Int. Conf. on Soft. Eng. 1EEE, 2013,
pp. 43-52.

A. Cicchetti, M. Borg, S. Sentilles, K. Wnuk, J. Carlson, and
E. Papatheocharous, “Towards software assets origin selection
supported by a knowledge repository,” in Ist Int. Workshop
on Decision Making in Soft. ARCHitecture. 1EEE, 2016, pp.
22-29.

J. Chai and J. N. Liu, “An ontology-driven framework for
supporting complex decision process,” in World Automation
Congress. 1EEE, 2010, pp. 1-6.

D. Tofan and M. Galster, “Capturing and making architectural
decisions: an open source online tool,” in Proc. 8th European
Conf. on Soft. Architecture Workshops. ACM, 2014, p. 33.
M. Soliman, M. Riebisch, and U. Zdun, “Enriching archi-
tecture knowledge with technology design decisions,” in 12th
Working IEEE/IFIP Conf. on Soft. Architecture. 1EEE, 2015,
pp. 135-144.

M. Soliman, M. Galster, A. R. Salama, and M. Riebisch, “Ar-
chitectural knowledge for technology decisions in developer
communities: An exploratory study with stackoverflow,” in
13th Working IEEE/IFIP Conf. on Soft. Architecture. 1EEE,
2016, pp. 128-133.

D. W. McDonald and M. S. Ackerman, “Expertise recom-
mender: a flexible recommendation system and architecture,”
in Proceedings of the 2000 ACM conference on Computer
supported cooperative work. ACM, 2000, pp. 231-240.

J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proc. 28th Int. Conf. on Soft. Eng. ACM, 2006,
pp- 361-370.

S. Minto and G. C. Murphy, “Recommending emergent
teams,” in Proc. 4th Int. Workshop on Mining Soft. Repos-
itories. ICSE Workshops MSR’07. 1EEE, 2007, pp. 5-5.

J. Anvik and G. C. Murphy, “Reducing the effort of bug report
triage: Recommenders for development-oriented decisions,”
ACM Trans. on Soft. Eng. and Methodology, vol. 20, no. 3,
p. 10, 2011.

P. N. Mendes, M. Jakob, and C. Bizer, “Dbpedia: A multi-
lingual cross-domain knowledge base,” in LREC, 2012, pp.
1813-1817.

M. Razavian, A. Tang, R. Capilla, and P. Lago, “In two minds:
how reflections influence software design thinking,” J. Soft.:
Evolution and Process, vol. 28, no. 6, pp. 394426, 2016.

