
Extracting Semantic Relationships from Unstructured Textual Data in
eLearning Video Scripts

Alejandro Bravo de la Serna
TU Munich

alejandro.bravo@tum.de

George Elfayoumi
TU Munich

george.elfayoumi@mytum.de

Parag Bamel
TU Munich

parag.bamel@tum.de

Jinyu Lee
TU Munich

jinyu.lee@tum.de

Mohamed Hesham Ibrahim Abdalla
TU Munich

mohamed.abdalla@tum.de

Abstract

FAST AI Movies offers an AI solution for au-
tomatically generating eLearning videos based
on provided eLearning scripts. Effective repre-
sentation of visual information in these videos
relies on the extraction of meaningful seman-
tic relations from complex textual data. In
this project, we explore both extractive and
generative approaches to address three main
tasks. Firstly, we tackle chapter segmentation,
dividing lengthy scripts into coherent chapters,
by deploying clustering, sentence-level archi-
tectures, encoder and decoder based architec-
tures. Second, we extract keyphrases within
each chapter by fine-tuning Llama2 and BERT
to identify keyphrase positions. Finally, we
retrieve semantic relations between extracted
keyphrases through classification of relations
among keyphrase embeddings and prompting
or fine-tuning with Large Language Models
(LLMs). The experimental results demon-
strate that BERT excels in chapter segmenta-
tion, while Llama2 performs relatively on par,
the use of Llama2 and BERT proves benefi-
cial in keyphrase extraction, and our fine-tuned
Mixtral outperforms the few-shot prompting
with GPT-4 in semantic relation classification.

1 Introduction

This project delves into the challenging task of
extracting semantic relationships from eLearn-
ing video scripts. As technology permeates into
the field of education, eLearning platforms have
emerged as powerful tools for learning and instruc-
tion. A critical component of these platforms are
their video scripts, which contain valuable infor-
mation articulated through detailed lessons. How-
ever, these scripts are often presented as unstruc-
tured data, making it challenging to extract mean-
ingful information. Our research primarily fo-
cuses on three aspects: Chapter Segmentation (CS),
Keyphrase Extraction (KE), and Semantic Relation
Classification (SRC).

CS involves the process of splitting unstructured
input text that consists of short sentences and bul-
let points from customers into smaller chapters
such that each chapter typically focuses on a single
topic. CS is essential for facilitating subsequent
tasks such as keyphrase extraction and semantic
relation classification. CS is particularly needed to
overcome context length limitations in LLMs as it
is easier to deal with small coherent chapters when
extracting semantic relations.

KE, in the context of our project, refers to the
process of extracting or creating summary bullet-
points from sections of the text. These keyphrases
serve as an input to the next stage of the project,
SRC.

SRC involves identifying semantic relationships
between different fragments of the text represented
as keyphrases. It provides the basis for understand-
ing and representing the underlying message or
knowledge encoded in the script.

Overall, the main goal of this project is to
break down lengthy video script descriptions into
smaller components called keyphrases. Subse-
quently, we aim to establish relationships between
these keyphrases through SRC, allowing for their
representation as icons and diagrams 1. These vi-
sual elements are then integrated into slides to cre-
ate an eLearning video. Ultimately, our aim is
to automate the process of generating eLearning
videos from text.

2 Related Work

2.1 Chapter Segmentation

CS consist of segmenting lengthy eLearning scripts
into coherent and manageable chapters, facilitating
subsequent tasks, such as KE and SRC, to be ex-
plored with LLMs with limited context length. This
task can be regarded as text segmentation, in which

1Icons and diagram creation is out of the scope of the
project.

a document is divided into coherent paragraphs.
There are generally two approaches to this task:
unsupervised learning and supervised learning. In
the realm of unsupervised learning, the GRAPH-
SEG model (Glavaš et al., 2016) proposes the use
of semantic relatedness graphs and the model in
Solbiati et al. (2021) focuses on extracting seman-
tic similarity from sentence embeddings, such as
Sentence-BERT (Reimers and Gurevych, 2019).
These approaches can reduce the need for label-
ing large datasets since unsupervised learning does
not require labeled input. On the other hand, su-
pervised learning-based methods primarily utilize
sentence embeddings and their corresponding la-
bels as input, indicating whether to split paragraphs
or not. For supervised learning approaches, it is
crucial to deploy models capable of understanding
contextual meaning from input embeddings, such
as bi-directional LSTM (Koshorek et al., 2018)
or Transformer (Somasundaran et al., 2020). Ad-
ditionally, text segmentation can be implemented
through fine-tuning LLMs like BERT (Pethe et al.,
2020). We fine-tune LLMs such as Llama2 (Tou-
vron et al., 2023) and BERT (Devlin et al., 2019)
on token embeddings, leveraging the benefits of
pre-trained models with richer contextual informa-
tion.

An important aspect to consider is how to eval-
uate the output of the methods used for CS. CS is
about classifying each sentence in the input text
to determine whether it is a boundary sentence or
not. This can be treated as a binary classification
problem where each sentence is classified whether
it is a boundary sentence or not. Since this is a bi-
nary classification problem, it might make sense to
utilize precision and recall as an evaluation metric.
However, the problem with precision and recall is
that they are not sensitive to near misses.

A more sophisticated evaluation approach used
to evaluate text segmentation is PK (Beeferman
et al., 1999) which is a sliding window-based
method. While sliding the window, the algorithm
determines whether the two ends of the window
are in the same or different segments in the ground
truth segmentation, and increases a counter if there
is a mismatch. The final score is calculated by
scaling the penalty between 0 and 1 and dividing
the number of measurements. There are multiple
challenges with the PK method which are: a) false
negatives are penalized more than false positives.
b) it does not take the number of boundaries into

consideration. If there are multiple boundaries in-
side the window, PK does not consider that. c)
PK is sensitive to the variation in segment size. d)
Near-miss errors are penalized too much.

An improvement over PK is the windowDiff
(Fournier, 2013a) method which is also sliding
window-based method. For each position of the
window of size k, it compares how many bound-
aries are in the ground truth, and how many bound-
aries are predicted by the Topic Segmentation
model. It solves some of the PK problems such
that penalizing FPs and FNs more equally and pe-
nalizing near misses less harshly. However, it still
has some problems as it is biased towards favouring
automatic segmentations with either small number
of clusters.

More advanced approaches attempt to overcome
the sliding-window limitations by adopting a new
metric called boundary edit distance, which differ-
entiates between full and near misses. The usage
of an edit distance that supports transpositions to
compare segmentations is an advancement over
window-based methods. The boundary edit dis-
tance (Fournier, 2013a) models full misses as the
addition/deletion of a boundary, and near misses as
n-wise transpositions.

2.2 Keyphrase Extraction

KE refers to the task of automatically extracting
specific keyphrases or special terms from a piece of
text. This task can be divided into two categories:
extractive and generative. The extractive approach
involves locating potential keyphrases in the text
through span classification, where each span of the
text is classified based on whether it is a keyphrase
or not (Sun et al., 2021; Alzaidy et al., 2019). On
the other hand, the generative approach focuses on
generating keyphrases given a piece of text using a
sequence-to-sequence (seq2seq) model (Yuan et al.,
2020; Chen et al., 2020). Both of these methods
produce the list of keyphrases all at once.

In the generative line, a recent approach is to
fine-tune transformer-based language models that
were pretrained for abstractive text summarization
(Glazkova and Morozov, 2023). Another interest-
ing approach that combines both generation and
extraction of keyphrases is given in Chen et al.
(2019). They use a pure extractive model, and pass
the retrieved keyphrases to the decoder part of a
generative model to help the generative model cor-
rectly generate keyphrases.

Using a pure extractive approach have limita-
tions regarding keyphrases that are not explicitly
mentioned in the text. This could pose challenges
for our task, particularly since keyphrases in our
data may not always be explicitly stated within the
text. Therefore, our approach will look into a pure
generative model to generate keyphrases and lo-
cate them, and an extractive approach that given
generated keyphrases, it can locate the text refer-
enced by those keyphrase. We further discuss our
methodology in Section 3.2.

2.3 Semantic Relation Classification

The SRC task involves automatically recognizing
semantic relation between two or more entities in
the text. In contrast with the classical approach
where the entities are mentioned explicitly in the
text, we are interested in the semantic relations
between entities that might be absent in the text. In
our setting, entities are generated keyphrases.

In the task of identifying different semantic rela-
tions between parts of texts, relevant literature is the
one related to SemEval-2010 Task 8 (Hendrickx
et al., 2010). The task consist on identifying mutu-
ally exclusive semantic relations between pairs of
nominals, as for example the relations Cause-Effect
or Entity-Destination. Besides our entities being
generated, with some not found in the text, our re-
lations are not limited to be between nominals, as
keyphrases can, for example, include verbs. An-
other limitation is that the ten used relations in the
paper are relations between exactly two elements,
while we are interested in more expressive relations
that can connect more than two keyphrases.

Similar to the Dataset Creation Chapter outlined
in SemEval-2010 Task 8 (Hendrickx et al., 2010),
we establish specific annotation guidelines (refer to
Appendix Section ??). The annotation samples are
divided among the team members and subsequently
reviewed by another annotator.

Another interesting dataset related to our task is
SciERC (Luan et al., 2018). SciERC is a collection
of 500 scientific abstract annotated with scientific
entities, their relations, and coreference clusters
which shows a comprehensive approach to iden-
tify scientific entities and cross-sentence relations
within academic articles. Given that our task in-
volves identifying semantic relationships that con-
nect more than two keyphrases, which can include
but are not limited to nominals, methodologies used
in SciERC dataset do not perfectly fit our purpouse.

3 Methods

3.1 Chapter Segmentation

Currently, the employed CS technique is a graph-
based strategy that groups sentences into chapters
based on similarity between them. The graph struc-
ture is formed by treating each sentence as a node
in the graph and the edges between different nodes
represents the cosine similarity measure between
these two sentences (nodes). Finally, the louvain
method for community detection is used to cluster
the graph into chapters such that pairs of sentences
in the same chapter would have high similarity mea-
sure, while pairs of sentences in different chapters
would have a low measure.

3.1.1 Clustering
The objective of this experiment is to apply unsu-
pervised clustering techniques to segment a given
text into chapters where each sentence belongs to
only one chapter. Two relatively small datasets
are employed for this clustering task: the first one
is generated by the Fast AI Movies team and it
has around 100 samples, while the second one is a
subset of 350 samples taken from the Wiki-727k
dataset (700k samples). The process of CS using
clustering begins with taking text as input, extract-
ing all sentences from the input text, converting
them into a compatible format for the algorithm,
and finally apply the clustering method.

Clustering algorithms only work with numer-
ical values, hence, it is essential to convert sen-
tences into a vector format. We use the fol-
lowing sentence embedder models in our experi-
ments: all-mpnet-base-v22, distilbert-base-nli-stsb-
mean-tokens3, roberta-base-nli-stsb-mean-tokens4,
and sentence-transformers/paraphrase-albert-small-
v25.

For the clustering experiments, various tech-
niques are employed to cluster similar sentences
together. The key idea for choosing these clustering
techniques is that they don’t require specifying the
number of clusters before training. The clustering
algorithms used in this experiment are DBSCAN,
MeanShift, AgglomerativeClustering, HDBSCAN

2https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

3https://huggingface.co/sentence-transformers/
distilbert-base-nli-stsb-mean-tokens

4https://huggingface.co/sentence-transformers/
roberta-base-nli-stsb-mean-tokens

5https://huggingface.co/sentence-transformers/
paraphrase-albert-small-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/distilbert-base-nli-stsb-mean-tokens
https://huggingface.co/sentence-transformers/distilbert-base-nli-stsb-mean-tokens
https://huggingface.co/sentence-transformers/roberta-base-nli-stsb-mean-tokens
https://huggingface.co/sentence-transformers/roberta-base-nli-stsb-mean-tokens
https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2
https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2

and OPTICS. Different strategies were explored to
improve efficacy of clustering algorithms. The first
approach is to leverage the sentence context prior
to embedding. Sentence context is represented by
the two sentences surrounding the target sentence.
Two variations of this sentence context were em-
ployed which are concatenating the surrounding
sentences or averaging them.

The second technique explored is positional en-
coding which is used to provide a relative position
for each token or word in a sequence because clus-
tering algorithms do not take into account the po-
sition of sentence in the input text. Consequently,
the resulted clusters would contain sentences that
are not consecutive in the original text. To indicate
where one chapter ends and another begins, it is
established that when two consecutive sentences
belong to different clusters, it marks the conclusion
of a chapter and the start of a new one. If a subse-
quent sentence is assigned to a previous cluster, it
is treated as a different chapter. Cosine similarity is
another approach utilized to measure the distance
between sentences rather than euclidean distance.

3.1.2 Sentence-level Architectures
We frame the CS task as a binary classification
problem, aiming to predict chapter-ending sen-
tences within a given text. Our methodology en-
compasses the development of models based on
the Feed-Forward network (FF-net) and Trans-
former Encoder, with a focus on constructing
lightweight models and assessing their feasibility
compared to the established bi-directional LSTM
model (Koshorek et al., 2018).

The dataset includes 10,000 texts extracted from
the Wiki-727K (Koshorek et al., 2018). The dataset
is split into training, validation, and test sets with
a ratio of 9:0.5:0.5, respectively. The input for
each model consists of sentence embeddings gen-
erated from the text using all-mpnet-base-v2 6.
The target variable, t, can be defined as a list
{ti|ti ∈ [0, 1], 0 ≤ i < n− 1}, indicating whether
the ith sentence marks the end of a chapter, with
n denoting the total number of sentences. The fi-
nal sentence of each text’s last chapter is excluded
from the target list, as it invariably occupies the last
position. To accommodate for the lack of sentence-
level context in embeddings, enhancements such as
positional encoding and contextual embeddings are
considered. Positional encoding utilizes a combi-

6https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

nation of sine and cosine functions as proposed by
Vaswani et al. (2017), while the approach for con-
textual embedding mirrors that used in Clustering
methodologies.

FF-net: The model is deliberately designed with
simplicity, consisting of a single hidden layer with
a ReLU activation function and an output layer fol-
lowed by a Sigmoid function. The model trains
with a batch size of 32 for training and 16 for vali-
dation, over 50 epochs, employing early stopping
to curb overfitting.

Transformer Encoder: The model comprises a
stack of 6 transformer encoder layers, each featur-
ing eight heads for multi-head attention. Training
is carried out using a batch size of 8 for both the
training and validation sets, over 25 epochs, with
early stopping applied.

LSTM: The bi-directional LSTM model, serv-
ing as the benchmark (Koshorek et al., 2018), val-
idates the efficacy of the FF-net and Transformer
Encoder models. Training is conducted with a
batch size of 8 for training and 5 for validation,
continuing over 25 epochs with early stopping im-
plemented.

3.1.3 BERT

In contrast to previous methodologies relying on
sentence embeddings, we leverage the BERT (De-
vlin et al., 2019) model to implement CS at the
token level. Given our expectation of superior
performance from LLMs, we have extended the
CS task to predict both main chapters and sub-
chapters. This task can be approached in two ways:
1) training separate models to predict main chap-
ters and sub-chapters individually, and then com-
bining predictions during inference; 2) training a
single model to classify three classes (main chapter,
sub-chapter, none). While the second approach is
straightforward, the first offers flexibility and can
be implemented in various ways. For the first ap-
proach, we compare two methods: the top-down
approach, which predicts the main chapter first
then the sub-chapter; and the bottom-up approach,
which proceeds in the opposite direction.

Our objective is to roughly assess the poten-
tial of utilizing the pre-trained BERT model for
this task. To this end, we fine-tune the model
on an extremely limited dataset from FAST AI
Movies. We pre-process 165 texts, each containing
15 to 50 sentences, into pairs of sequences. This
pre-processing involves tokenizing the texts with

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

bert-base-uncased 7 and labeling each sequence to
indicate whether the first [SEP] token splits any
main or sub-chapters. The resulting pre-processed
dataset consists of 2,791 sequences. An example
of a pair of sequence is as below:

[CLS] token−tlen · · · token−1 [SEP]
token1 · · · tokentlen [SEP]

Here, tlen represents half the maximum token
length of the tokenizer except 3 (tokens for [CLS]
and [SEP]).

For fine-tuning, we split the pre-processed train-
ing dataset in a ratio of 9:1 for training and test-
ing, then feed the data into the pre-trained model,
BertForSequenceClassification. We fine-tune for
5 epochs with a batch size of 16, optimizing with
BertAdam with a learning rate of 2e-5 and a linear
warmup of 0.1.

3.1.4 Llama2
Continuing with the most recent advancement in
the natural language processing domain, the aim
of this experiment is to employ the Llama2 model
to achieve CS. Llama2 (Touvron et al., 2023), re-
leased by Meta in 2023 , is a collection of fine-
tuned large language models (LLMs) that are used
to handle natural language processing tasks. The
Llama2 model utilized in this experiment is the
13B chat model meta-llama/Llama-2-13b-chat-
hf from hugging face and it is fine-tuned on high
quality dataset of 3333 samples to segment input
english text into chapters/sub-chapters.

To make the training more efficient, Parameter-
Efficient Fine-Tuning (PEFT) (Liu et al., 2022), is
a machine learning method used to enhance the
performance of a pre-trained model on a particular
task. Instead of training the model from scratch,
which can be time-consuming and computationally
expensive, PEFT works by fine-tuning a small num-
ber of model parameters instead of all the model’s
parameters. In this experiment, Low-Rank Adap-
tation (Lora) (Yu et al., 2023), which is a PEFT
method, is employed to save memory and speed up
finetuning of large models by reducing the number
of training parameters. To further speed up fine-
tuning, we utilize QLoRA (Dettmers et al., 2023)
which uses 4-bit quantization to compress a pre-
trained language model and further reduce memory
usage during fine-tuning. The optimizer used in
fine-tuning is paged_adamw_32bit.

7https://huggingface.co/google-bert/
bert-base-uncased

3.2 Keyphrase Extraction

Our KE tasks deviates from the classical extraction
approach as we are interested not only in extracting,
but generating these keyphrases. For example, in
the phrase "While we strive to uphold our diversity
and inclusion values", a potential keyphrase could
be "Upholding Diversity & Inclusion Values". We
can clearly see that the generated keyphrase is not
part of the input text. Moreover, since the SRC
task relies on the positions of the text segment ref-
erenced by each keyphrase, locating this text is
necessary. Thus, our approach involves two mod-
els: a generative model for keyphrase generation,
which is also capable of locating the keyphrases,
as discussed in Section 3.2.1, and an extractive
model for locating the text referenced by generated
keyphrases, as detailed in Section 3.2.2.

3.2.1 Generative Approach
For the generative approach, we use the Llama2
13B parameter model (Touvron et al., 2023) from
HuggingFace (meta-llama/Llama-2-13b-hf). As
in Section 3.1.4, to make the training more efficient
we use PEFT and 4 bit quantization with QLoRA.
The modules finetuned by PEFT were the Query,
Key, Value and O matrix, the latter being used
in multi-head attention before adding the output
of the different heads. As an optimizer we used
adamw_bnb_8bit.

The dataset used for fine-tuning consists of 4.8k
samples. Each sample has the text we want to ex-
tract the keyphrase from and a list of keyphrases
with the section of the text the keyphrase was ex-
tracted from. The gold labels used for fine-tuning
are of the form: [keyphrase1:matching_text1;
keyphrase2...]. After running an analysis on a tok-
enization of the prompt and corresponding output,
we decide to use a maximum token length of 2000.

In line with Glazkova and Morozov (2023), we
also fine-tune two models, an extractive model
and a generative one. The pure extractive model
used is keyphrase-extraction-kbir-kpcrowd8, based
on KBIR (Kulkarni et al., 2022). For the genera-
tive model, we fine-tune and try different models
which were pre-trained on summarization, as done
in Chen et al. (2019), such as facebook/bart-large-
xsum 9 model. Training on our dataset, we use the
extractive model to find the matching texts and we

8https://huggingface.co/ml6team/
keyphrase-extraction-kbir-kpcrowd

9https://huggingface.co/facebook/
bart-large-xsum

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/ml6team/keyphrase-extraction-kbir-kpcrowd
https://huggingface.co/ml6team/keyphrase-extraction-kbir-kpcrowd
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/facebook/bart-large-xsum

pass the matching texts to the summarizer to extract
the desired generative keyphrases.

3.2.2 Keyphrase Position Matching
(Extractive Approach)

Unlike the generative approach, this method re-
quires a list of keyphrases and a piece of text as
input, aiming to locate these keyphrases within
the given text. The task involves training a BERT
large (Devlin et al., 2019) model to identify the
specified keyphrases within the text through binary
token-level classification. This is done by concate-
nating the input text with all the keyphrases of the
text and surrounding the current keyphrase with
special tokens, namely [KEYPHRASE_START] and
[KEYPHRASE_END]. Essentially, this creates an in-
put sample for each keyphrase, with the current
keyphrase marked by the special tokens. A token
assigned a prediction value of 1 indicates that it
corresponds to the input keyphrase. Including all
keyphrases as input ensures that the model grasps
sufficient contextual information, allowing it to
enforce an order and handle instances where dupli-
cate keyphrases refer to distinct parts of the text.
Since the prediction is given to each token of the
input including the list of keyphrases and the spe-
cial tokens, we ignore this part of the prediction
and only consider the text tokens (see Figure ?? in
the appendix for an example).

A keyphrase can refer to only one span of the text
and they are arranged in a sequential order, where
the text referenced by keyphrasei precedes that
of keyphrasei+1. Therefore, we developed two
postprocesing methods, one to fix predictions with
more than one span of ones and a second method to
fix overlaps between two predictions. Here, a pre-
diction consists of a list of zeros and ones assigned
to each token. The first method merges any two
spans of ones that are separated by two tokens la-
beled as 0. If multiple spans persist, we choose the
span associated with the token showing the highest
confidence score for class 1 (see Figure ?? in the
appendix for an example). The second approach
cuts between two predictions by zeroing out inter-
sected indices with values of 1. Additionally, to
maintain order, predictions are adjusted if a later
keyphrase is predicted before an earlier one. For in-
stance, if keyphrasei+1 is predicted to be between
indices 2 and 3, while keyphrasei is predicted to
be between indices 4 and 5, manual enforcement
of order is necessary in the post-processing step.
In such cases where predicted indices do not in-

tersect, the end index of the second keyphrase is
assigned to the first one, and the start index of the
first keyphrase is assigned to the second. For ex-
ample, given the input [(4, 5), (2, 3)], it will be
adjusted to [(3, 3), (4, 4)].

To map predictions on tokens back to words, we
predicted a word as class 1 if any of its tokens are
predicted as class 1.

Our dataset originally comprised 4.8k text
samples, which, when concatenated with their
corresponding keyphrases, totaled 26k samples.
Through augmentation techniques such as ran-
domly removing keyphrases, discarding the longest
ones randomly, incorporating three different text
styles, and shuffling the order of keyphrases. These
augmentations, combined with the original sam-
ples, resulted in a dataset of 65k samples. Upon
concatenating these with their keyphrases, the
dataset grew to 330k samples, which were used
for training. A dataset with the same amount of
samples was created for training the model for Ger-
man language. In this case we use German BERT
Large model (Chan et al., 2020). Table ?? in the
appendix shows the training parameters for both
the English and the German models.

3.3 Semantic Relation Classification
3.3.1 Data Generation
Inspired by the Stanford Alpaca project (Taori et al.,
2023), we aim to generate synthetic data for SRC
task. Initially, we manually prepare input and out-
put samples, which are used as few-shot for few-
shot prompting. Using these manually created sam-
ples, we generate 5,812 input and output samples
using GPT-4 (Achiam et al., 2023). These sam-
ples are then used as the training dataset for the
following extractive and generative tasks.

3.3.2 Extractive Approach
In this approach, we first embed each keyphrase
by extracting the corresponding hidden states from
the text. This is achieved by feeding the complete
input text into the model and selecting the hid-
den states of the tokens of the text referenced by
each keyphrase. Leveraging the keyphrase position
matching model detailed in Section 3.2.2, we de-
termine which segments of the text correspond to
each keyphrase. Subsequently, we represent the re-
lations between these keyphrases by computing the
difference between their hidden state vectors, and
then train a basic feedforward network to classify
these relations.

It is noteworthy that as each token possesses its
own hidden state, therefore we experiment with
four aggregation methods to consolidate these rep-
resentations: taking the mean between the first and
last token, considering only the first token, consid-
ering only the last token, and computing the mean
across all tokens.

3.3.3 Generative Approach
Contrary to the extractive approach, we utilize
LLMs as a generative approach for the SRC task.
Our methodology begins with few-shot prompting,
aimed at identifying the most effective few-shot
prompts for LLMs. The few-shot comprises 4 sam-
ples of input and manually labeled output. With the
refined few-shot prompt, we proceed to two-step
fine-tuning with Mixtral-8x7B (Jiang et al., 2024)
and Llama2-70B (Touvron et al., 2023). In the
first step, the model is fine-tuned on the synthetic
dataset generated by GPT-4 (Achiam et al., 2023)
(see Section 3.3.1), which includes 5,812 input and
output samples. Then, the model is further fine-
tuned on a high-quality manually labeled dataset,
which has 275 samples. There are three main goals
for SRC: extracting key elements from the input
text, identifying semantic relations among these
elements, and understanding logical concepts that
encompass these relations.

Few-Shot Prompting We assume that the opti-
mal few-shot prompt for GPT-4 (Achiam et al.,
2023) is also effective for other LLMs such as
Mixtral-8x7B and Llama2-70B. We explore two
types of prompts: an all-in-one prompt and a step-
by-step prompt. The system role in the all-in-one
prompt includes a task description, definitions of el-
ements, relations, and concepts, followed by input
and output examples as few-shot. In contrast, the
step-by-step prompt, inspired by Chain-of-Thought
Prompting (Wei et al., 2022), introduces three se-
quential prompts for elements, relations, and con-
cepts, respectively, while preserving the preceding
conversation. We evaluate few-shot prompts us-
ing the OpenAI API’s gpt-4-1106-preview model,
which is capable of handling a context window of
128,000 tokens.

Unlike GPT-based models, Mistral-based mod-
els provide only user and assistant roles within
the prompt structure. Therefore, we integrate the
prompts from the system and user roles, evaluated
with GPT-4, and then test this unified prompt with
the Mixtral-8x7B Instruct model 10 available on

10https://huggingface.co/mistralai/

Hugging Face. While detailed contexts can be de-
livered to the prompts for Mixtral-8x7B, which has
a maximum sequence length of 4,096x32 tokens,
the Llama2-70B model, which supports a maxi-
mum sequence length of 4,096 tokens, requires
an alternative approach to prompting. Due to this
limited setting, Llama2-70B all-in-one prompting
had to be done using one-shot and with a smaller
description of the problem. Because of the huge
Llama2-70B size, we had to run the prompts on
Azure AI Machine Learning Studio.

We also explored the difference of performance
between providing the key elements and letting the
LLM find them. For the first case, we constructed
a simple quantitative metric to check the perfor-
mance. First, the metric finds for each relation (in
the gold label and predicted label) all its key ele-
ments inside (nested elements included). Second,
for each relation in the predicted label we compute
an intersection-based similarity with all gold labels
of the same relation category. Note we can use
intersection-based similarities as key elements are
(almost always) unique and follow the same order
as the input (otherwise metric is zero). Third, we
take the higher similarity score and remove its asso-
ciated gold label in order that we do not consume it
again for a similarity calculation. Lastly, the final
metric is the average of the similarities found and
one zero for each relation missing.

Fine-tuning Mixtral-8x7B To ensure efficient
fine-tuning of the Mixtral-8x7B Instruct model 10

on 4 NVIDIA V100 GPUs, we lighten the model
by setting its maximum sequence length to 1,024,
resulting in dataset filtering. Initially, the model
is fine-tuned on 5,811 samples from the synthetic
dataset, with each sample starting with a shortened
instruction prompt, followed by input text and its
corresponding output. Then, we fine-tune the fine-
tuned model from its 1st and 5th epochs, using
high-quality 267 samples. For both fine-tuning
steps, we use a batch size of 4 and a total epoch of
5 and employ 4-bit quantization along with LoRA
(Hu et al., 2021) as a PEFT (Mangrulkar et al.,
2022) method.

Fine-tuning Llama2-70B As for Fine-tuning
Mixtral-8x7B, we use 4-bit quantization, LoRA
as PEFT, and a maximum token length of 1024.
Due to model’s size, we use the best available
Azure compute instance we had acceess to: 4xA100,

Mixtral-8x7B-Instruct-v0.1

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

880GB RAM, and 256GB storage. We run experi-
ments using both Data Parallel Distribution (DDP)
and Data Parallel (DP) 11. Unfortunately, DP run-
time was estimated to be 140 hours, costing around
$2800, which was out of the budget. On the other
hand, when using DDP we got decent runtimes of
around 40 hours. Due to the high hardware require-
ments for running our model, even when using
batch size 1, we got time-outs that systematically
kill the training process.

4 Results

4.1 Chapter Segmentation
For evaluation, five different scoring functions are
used to evaluate all conducted experiments. These
five scoring functions are: scoring function pro-
vided by FAST AI Movies, Boundary Similar-
ity, Segmentation Similarity, WindowDiff, and PK.
The last four functions are provided by the SegEval
python library. An average of the five functions is
calculated and used to compare results of different
strategies. Results are in Table 1.

For the clustering approaches, extensive experi-
mentation is conducted utilizing all possible combi-
nations of the strategies and algorithms used. This
resulted in 520 different experiements applied to
each input text from our 100-sample dataset and a
subset of 350 samples taken from the Wiki-727k
dataset. Clustering functions did not result in bet-
ter performance than the previously implemented
louvain graph-based method. Generally, positional
encoding did not improve the efficacy of clustering
algorithms. Although, the use concatenated sen-
tences in sentence context would increase the input
size for the clustering algorithms, it proved to be
effective and achieved the highest scores. The high-
est score (54.6%) is achieved by the louvain method
without positional encoding and with sentence con-
text as concatenation. A very similar score (54%)
is achieved by agglomerative clustering without po-
sitional encoding and with the use of concatenation
sentence context.

In the sentence-level architecture approach, the
models demonstrate average scores either as good
as or better than those achieved by the clustering
approach. Interestingly, positional encoding at the
sentence level does not enhance performance as
observed in the clustering approach. The applica-
tion of contextual embedding to the simply layered

11https://huggingface.co/docs/transformers/
perf_train_gpu_many

FF-net yields a decent average score of 52.22%,
surpassing most clustering algorithms except for
the Louvain method and Agglomerative cluster-
ing. The Transformer Encoder, known for pro-
viding more contextual information, outperforms
all clustering algorithms with an average score of
63.10%, although the benchmarked bi-directional
LSTM slightly surpasses it with an average score
of 66.36%. We anticipate that hyperparameter tun-
ing with the Transformer Encoder, combined with
densely contextualized sentence embeddings, will
lead to even better performance.

Fine-tuning the pre-trained BERT model sur-
passes all previous methods as expected, achieving
an average score of 75.90%. This underscores the
power of understanding both left and right con-
texts at the token level and fine-tuning a pre-trained
model.

Finally, fine-tuning Llama2-13B chat model has
second highest average score with (74.81%) and
it is quite close to the bert model. The results are
reasonable in most cases but the resulted CS need
not match the ground truth because there might
be multiple sensible chapter splits. This shows
that the process of fine tuning the huge 13 billion
Llama2 model with only few high quality dataset
of 3333 samples can achieve high results and avoid
re-training the whole model or investigating a lot
of time to generate a huge dataset.

4.2 Keyphrase Extraction
4.2.1 Generative Approach
For evaluation, as we are generating the keyphrases
instead of extracting them, a quantitative metric
such as edit distance does not precisely measure
how good the predictions are. For example, the
gold keyphrase "Phising Attempt Awareness" and
the predicted one "Data Phising Suspicion" should
have a high value and quantitative metrics would
fail at this task. For this reason, we opted to do a
qualitative evaluation of 50 samples based on four
metrics:

• Matching Text Score (MTS): For each
keyphrase and its corresponding matching text
generated we give score 1 if the gold match-
ing text is the same (up to extra connectors),
0.5 if it was splitted or consists of two differ-
ent keyphrases matching text, and zero if it is
not found in the gold labels. We additionally
add zeroes for each matching text we did not
predict and calculate the average.

https://huggingface.co/docs/transformers/perf_train_gpu_many
https://huggingface.co/docs/transformers/perf_train_gpu_many

Table 1: CS results. FAM is a scoring function from FAST AI Movies. BS is Boundary Similarity, SS is
Segmentation Similarity, and WD is WindowDiff from SegEval (Fournier, 2013b).

Score (%) FAM BS SS WD PK Average

Method

Clustering

Louvain 79.50 14.02 82.57 48.00 49.00 54.62
DBSCAN 45.70 0.00 89.10 61.36 61.40 51.52
MeanShift 54.80 8.40 84.70 52.40 55.95 51.25

Agglomerative 61.30 12.10 86.20 54.20 56.50 54.06
HDBSCAN 65.40 5.30 81.20 48.75 54.86 51.10

OPTICS 51.30 2.30 87.54 58.20 59.50 51.77

Sentence-level
Architecture

FF-net 12.67 25.55 90.83 64.65 67.42 52.22
Transformer Encoder 60.33 34.27 89.81 62.68 68.39 63.10

LSTM 60.02 41.32 91.00 68.03 71.42 66.36
Token-level
Architecture

BERT 84.51 65.00 83.75 67.38 78.85 75.90
Llama2-13B 76.49 63.84 82.92 71.86 78.94 74.81

• Keyphrase Score (KS): For each keyphrase
generated, we give score 1 if its corresponding
gold label has the same semantic meaning,
0.5 if it close but not quite the same, and zero
when carries a different meaning. We compute
the average after it.

• Matching and Keyphrase Related Score
(MKRS): We give score 1 if the predicted
keyphrase is related to its predicted matching
text and 0 otherwise. Compute the average
after it.

• Matchint Text Found in original Text Score
(MTFS): We give score 1 if the matching text
predicted is a substring of the original text and
0 otherwise.

For each metric, we computed afterwards the total
average over the 50 samples. The results can be
seen in Table 2. The fine-tuned model outputed text
that is found in the original text for each keyphrase
of the 50 samples and its corresponding keyphrase
was related in the 98% of the cases. However,
only an average of 0.5 in the Keyphrase Score is
achieved, deviating from the expected keyphrases.
This is not so surprising since even professional
annotators do not always agree on the same anno-
tations.

Regarding the model that combined the usage
of KBIR and a summarizer, the results had a low
quality, which led to stopping the research in this
direction.

4.2.2 Keyphrase Position Matching
For evaluation, we constructed a validation dataset
with 487 text samples, resulting in 2.9k samples

Scores MTS KS MKRS MTFS
Values (%) 66 49 98 100

Table 2: Keyphrase generation model scores over 50 test
samples: Matching text score (MTS), Keyphrase score
(KS), Matching and Keyphrase related score (MKRS),
and Matchint text found on original text score (MTFS).

when combined with their keyphrases, constituting
10% of the full dataset before augmentation. In
addition to standard metrics like F1 score, accuracy,
precision, and recall, we introduced a new metric
called “word offset by x.” This metric evaluates
predictions within a window of x words, instead of
strictly one-to-one mapping, aiming to capture the
model’s ability to identify keyphrases with slight
offsets.

Table 3 shows that the model achieves a 91%
F1 score for exact predictions (Offset=0), and this
increases to 96% when allowing for a word’s pre-
diction to be off by 2. These metrics are reported
on the English dataset. Table ?? in the appendix
displays the performance metrics for the German
dataset.

Metric Offset=0 Offset=1 Offset=2
Precision (%) 96.80 97.88 98.38

Recall (%) 86.65 90.66 93.77
F1 Score (%) 91.44 94.13 96.02
Accuracy (%) 98.19 98.74 99.13

Table 3: Keyphrase position prediction model: perfor-
mance metrics with different word offsets for the En-
glish dataset.

4.3 Semantic Relation Classification
4.3.1 Extractive Approach
Despite enhancements introduced in the extractive
approach, the produced results are not compara-
ble to the generative approach and therefore not
reported.

4.3.2 Generative Approach
For evaluating the results of SRC, we compare
seven different approaches:

• Few-Shots Prompting with GPT-4, Mixtral-
8x7B, and Llama2-70B.

• MixtralFT1_Epoch_i: Two models resulted
from fine-tuning Mixtral-8x7B on the dataset
with 5,811 samples.

• MixtralFT2_Epoch_i: Two models resulted
from further fine-tuning Mixtral-8x7B with a
high quality dataset with 267 samples.

Inspired by A/B test, we anonymized the output
of the seven models for eleven different prompts,
randomized the order the outputs appear for each
sample, and asked the five members of the team
and the company supervisor to give a ranking of
the three best outputs. We give as scores Top 1,
the percentage of times a model is ranked as first
model, and Top 3, the percentage of times a model
is selected as being one of the three best models.
Results can be seen in Table 4. Interestingly, the
best model that performs the best in the qualitative
evaluation is the first fine-tuned Mixtral model after
just one epoch.

Score (%) Top 1 Top 3
Few-Shots GPT-4 22.22 53.33
Few-Shots Mixtral 0.00 22.22

Few-Shots Llama2-70B 0.00 4.44
MixtralFT1_Epoch_1 44.44 84.44
MixtralFT1_Epoch_5 13.33 60.00
MixtralFT2_Epoch_1 11.11 40.00
MixtralFT2_Epoch_5 8.88 35.55

Table 4: SRE results: qualitative metrics Top 1 and Top
3 for seven different LLMs.

5 Conclusion

We notice that the traditional method like BERT
still remain important when tackling well-defined
supervised tasks such as CS and KE. On the other

hand, the latest techniques proves good perfor-
mance in generating unknown or new output as
shown in generative approach of KE and SRC. It
is also noteworthy that matching the position of
keyphrases with BERT and generating the mean-
ingful keyphrases with LLama2 can be effective
in the KE task. Specifically, the BERT model re-
liably locates the generated keyphrase, achieving
an F1 score of 96% when allowing the predictions
to be within a window of two words. Lastly, our
fine-tuned Mixtral model for SRC surpasses the
few-shot prompting with GPT-4.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Rabah Alzaidy, Cornelia Caragea, and C. Lee Giles.
2019. Bi-lstm-crf sequence labeling for keyphrase
extraction from scholarly documents. In The World
Wide Web Conference, WWW ’19, page 2551–2557,
New York, NY, USA. Association for Computing
Machinery.

Doug Beeferman, Adam Berger, and John Lafferty.
1999. Statistical models for text segmentation. Ma-
chine Learning, 34(1-3):177–210.

Branden Chan, Stefan Schweter, and Timo Möller. 2020.
German’s next language model. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 6788–6796, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Wang Chen, Hou Pong Chan, Piji Li, Lidong Bing,
and Irwin King. 2019. An integrated approach for
keyphrase generation via exploring the power of re-
trieval and extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2846–2856, Minneapolis, Minnesota.
Association for Computational Linguistics.

Wang Chen, Hou Pong Chan, Piji Li, and Irwin King.
2020. Exclusive hierarchical decoding for deep
keyphrase generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 1095–1105, Online. Association
for Computational Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

https://doi.org/10.1145/3308558.3313642
https://doi.org/10.1145/3308558.3313642
https://doi.org/10.1023/A:1007506220214
https://doi.org/10.18653/v1/2020.coling-main.598
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2020.acl-main.103
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
https://doi.org/10.18653/v1/N19-1423

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Chris Fournier. 2013a. Evaluating text segmentation
using boundary edit distance. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1702–1712, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Chris Fournier. 2013b. Evaluating Text Segmentation
using Boundary Edit Distance. In Proceedings of
51st Annual Meeting of the Association for Computa-
tional Linguistics, page to appear, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Goran Glavaš, Federico Nanni, and Simone Paolo
Ponzetto. 2016. Unsupervised text segmentation us-
ing semantic relatedness graphs. In Proceedings of
the Fifth Joint Conference on Lexical and Computa-
tional Semantics, pages 125–130, Berlin, Germany.
Association for Computational Linguistics.

A. V. Glazkova and D. A. Morozov. 2023. Applying
transformer-based text summarization for keyphrase
generation. Lobachevskii Journal of Mathematics,
44(1):123–136.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 task 8: Multi-
way classification of semantic relations between pairs
of nominals. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 33–38, Up-
psala, Sweden. Association for Computational Lin-
guistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Omri Koshorek, Adir Cohen, Noam Mor, Michael Rot-
man, and Jonathan Berant. 2018. Text segmenta-
tion as a supervised learning task. arXiv preprint
arXiv:1803.09337.

Mayank Kulkarni, Debanjan Mahata, Ravneet Arora,
and Rajarshi Bhowmik. 2022. Learning rich repre-
sentation of keyphrases from text. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 891–906, Seattle, United States. Associ-
ation for Computational Linguistics.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Charuta Pethe, Allen Kim, and Steven Skiena. 2020.
Chapter captor: Text segmentation in novels. arXiv
preprint arXiv:2011.04163.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Alessandro Solbiati, Kevin Heffernan, Georgios
Damaskinos, Shivani Poddar, Shubham Modi, and
Jacques Cali. 2021. Unsupervised topic segmentation
of meetings with bert embeddings. arXiv preprint
arXiv:2106.12978.

Swapna Somasundaran et al. 2020. Two-level trans-
former and auxiliary coherence modeling for im-
proved text segmentation. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7797–7804.

Si Sun, Zhenghao Liu, Chenyan Xiong, Zhiyuan Liu,
and Jie Bao. 2021. Capturing global informativeness
in open domain keyphrase extraction.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/P13-1167
https://aclanthology.org/P13-1167
https://doi.org/10.18653/v1/S16-2016
https://doi.org/10.18653/v1/S16-2016
https://doi.org/10.1134/S1995080223010134
https://doi.org/10.1134/S1995080223010134
https://doi.org/10.1134/S1995080223010134
https://aclanthology.org/S10-1006
https://aclanthology.org/S10-1006
https://aclanthology.org/S10-1006
https://doi.org/10.18653/v1/2022.findings-naacl.67
https://doi.org/10.18653/v1/2022.findings-naacl.67
http://arxiv.org/abs/2205.05638
http://arxiv.org/abs/2205.05638
http://arxiv.org/abs/1808.09602
http://arxiv.org/abs/1808.09602
http://arxiv.org/abs/1808.09602
https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://arxiv.org/abs/2004.13639
http://arxiv.org/abs/2004.13639
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Yu Yu, Chao-Han Huck Yang, Jari Kolehmainen,
Prashanth G. Shivakumar, Yile Gu, Sungho
Ryu Roger Ren, Qi Luo, Aditya Gourav, I-Fan Chen,
Yi-Chieh Liu, Tuan Dinh, Ankur Gandhe Denis Fil-
imonov, Shalini Ghosh, Andreas Stolcke, Ariya Ras-
tow, and Ivan Bulyko. 2023. Low-rank adaptation
of large language model rescoring for parameter-
efficient speech recognition. In 2023 IEEE Automatic
Speech Recognition and Understanding Workshop
(ASRU). IEEE.

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo Thaker,
Peter Brusilovsky, Daqing He, and Adam Trischler.
2020. One size does not fit all: Generating and evalu-
ating variable number of keyphrases. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7961–7975, On-
line. Association for Computational Linguistics.

Contributions

Table 5 shows how each member of the team con-
tributed to the project and the report.

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.1109/asru57964.2023.10389632
https://doi.org/10.1109/asru57964.2023.10389632
https://doi.org/10.1109/asru57964.2023.10389632
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2020.acl-main.710

Name Report Contribution Project Contribution

Alejandro
Bravo de
la Serna

• Section 2.2: Generative approach.

• Section 2.3

• Section 3.2.1

• Section 3.3.3: Llama2 related sections and
last paragraph from Few-Shot Prompting.

• Section 4.2.1 & Table 2

• Section 4.3.2

• Keyphrase Extraction: contributed to the Keyphrase
Extraction Generative Approach, fine-tuning different
models for the task, such as a Llama2 model or a combi-
nation of KBIR and a summarizer. Additionaly, designed
and carried the qualitative approach for assessing perfor-
mance, and integrated the model with the code base.

• Semantic Relation Classification: contributed to Few-
Shot Prompting with GPT-4 and different Llama2 models.
Worked on the fine-tuning of Llama2-70B model for the
task. Designed a score function to quantitative evaluate
Semantic Relation Classification when keyphrases are an
input of the LLM.

George
Elfayoumi

• Rest of Section 2.1: Scoring Functions

• Section Intro 3.1, Section 3.1.1

• Section 3.1.4

• 1st and 2nd paragraphs in Section 4.1

• Conclusion

• Chapter Segmentation: contributed to exploring differ-
ent unsupervised clustering algorithms and contributed
to fine tuning Llama2 model on a curated high quality
dataset for splitting text into chapter and subchapters.

• Scoring Functions: contributed to researching and
adding scoring functions: boundary similarity, segmenta-
tion similarity, windowDiff and Pk to evaluate different
methods for chapter segmentation.

Parag
Bamel

• Introduction

• Section 3.3.1

• Section 3.3.2

• Section 4.3.1

• Chapter Segmentation: Tested and implemented dif-
ferent sentencec embedder for the clustering + sentence-
based Chapter Segmentation.

• Keyphrase Extraction: Tested different representation
modes of embeddings for token spans of arbitrary length.

Jinyu Lee

• Abstract

• 1st paragraph in Section 2.1

• Section 3.1.2 & 3.1.3 &

• All but the metric and Llama2-70B related
content in Section 3.3.3

• 3rd and 4th paragraph in Section 4.1 & Ta-
ble 1

• Appendix Section ??, ??

• Chapter Segmentation: contributed to Sentence-level
Architectures by pre-processing the dataset, building our
own models like FF-net and Transformer Encoder, and
benchmarking the LSTM-based model. Additionally, pre-
processed the dataset, fine-tuned the BERT model, and
evaluated its performance.

• Semantic Relation Classification: contributed to Few-
Shot Prompting with the GPT-4 and Mixtral-8x7B In-
struct model. Furthermore, fine-tuned the Mixtral-8x7B
Instruct model in two steps and evaluated its perfor-
mance.

Mohamed
Hesham
Ibrahim
Abdalla

• Section 2.2: extractive approach and intro.

• Section 3.2.2

• Section 3.3.2 in the paragraph explaining
how the keyphrases are embedded.

• Section 4.2.2

• Appendix Section ?? and ??

• Keyphrase Extraction: contributed to the keyphrase po-
sition matching model by training the model on a German
and an English dataset, implementing post processing al-
gorithms and integrating the model with the code base.

• Semantic Relation Classification: created a dataset of
keyphrases along with their corresponding text positions.
In addition, enhanced the extractive approach to accom-
modate these keyphrases by enabling the processing of
positional information.

Table 5: Contributions

A Appendix

removed due to NDA

