sebis TUT

Services in Single Page Applications

Niklas Scholz - Master Thesis Kickoff - 19.06.2017
Advisor: Adrian Hernandez-Mendez
g B i —E—: Yo

/ Chair of Software Engineering for Business Information Systems (sebis)
Faculty of Informatics
Technische Universitat Munchen
wwwmatthes.in.tum.de

Agenda TUTI

1. Motivation and Problem
Research Questions
Existing Solutions
Limitations

Our solution

o a0 A W N

Expected artefacts & Timeline

Niklas Scholz - Master Thesis Kick-Off

© sebis 2

Building an Application in 2017 TUTI

Workload Estimator I

c Q x Q http://workload estimatorio @

To do Task 24 - Messaging

Loy o L] Description: Implement a feature that

Estimation: LoC: 300 Issues: 20 allows users to send
messages among them.

Task 23 - Testing Login

Type: { Feature
Estimation: LoC: 30 Issues: 2
Estimation:
Completed Lines of code
Task 22 - Update Events —_ J 300
— . . Hours
Statistics: LoC: 180 Issues: 4 r] 30
Task 21 - Creating Events Issues
20
Statistics: LoC: 210 Issues: 7 - —

—————

Niklas Scholz - Master Thesis Kick-Off
© sebis 3

Where does the data come from? T|.|T|

Workload Estimator

O Q x Q { http://workload. estimatorio) @)

0% .
v To do) Task 24 - Messaging
asz .Me”"gmg ‘ Description: Implement a feature that
. mater=1oC. 300 Issues: 20 allows users to send
_ . messages among them.
Task 23 - Testing Login Type: Q Feature
Estimation: LoC: 30 Issues: 2
Estimation:
Completed Lines of code
Task 22 - Update Events - } 300
° — P —— Hours
G ItH b LoC: 180 Isg‘ugs. 4 7 r 1 30
u Task 21 - Creating Events Issues
— /1 20
Statistics: LoC: 210 Issues: 7

Niklas Scholz - Master Thesis Kick-Off
© sebis 4

Architecture of such an application

GET

L Data kj) —

XJIRA
Task
Server Service
C) GitHub
Server epository

Service

Frontend

JIRA
Service

GET

Data |'() —

GitHub
Service

request
data

request

data

i
i

JIRA

Controller

transformation
process

Security

Cache

GitHub

transformation
process

Security

Cache

request
data

Niklas Scholz - Master Thesis Kick-Off

© sebis

5

Problem T|.|T|

For each APl manage:

* Leads to overhead in controller
L and makes it hard to change Ul

Niklas Scholz - Master Thesis Kick-Off
© sebis 6

Research Questions T|.|T|

1. How to retain a lightweight frontend when scaling up the number of APIs
to consume?

« How to handle data transformation, cache and security for each API?
2. How does a model for service consumption of multiple APIs look like?

« What information is needed from existing models? (View Model, Data Model,
REST API Model...)

3. How does a technology independent approach look like that can be used
with any API?

« Can this model be used to generate the code for the consumption of APIs?

Niklas Scholz - Master Thesis Kick-Off

© sebis 7

Model-Based User Interface Development

2 Develop software based on explicit models
» Reference Architecture
» do (semi-) automatic code generation

2 High focus on platform independent Ul models

Niklas Scholz - Master Thesis Kick-Off

Researching Solutions TUTI

Approaches dealing with similar problem:

. SoA i opigee i WS@, i LY ocraphaL
: = Managing APls :

. Architectural] ' '

. stvle that v Providing: = Design, , + Query

. Stylelna L Gat X Create, R creuece o
. focusseson i - ZAGWAY il pypgn, fi T9ES

: : 1 - Security = .+ Graph APlIs

. StrUCturlng Py) Py Manage o

. and using T Analytics » APIs x

. services v : ;!

14

Niklas Scholz - Master Thesis Kick-Off

© sebis

Limitations

» No model provided
» No clear specification
» WSO02 and apigee

» complex

z we don’t have control over server

Niklas Scholz - Master Thesis Kick-Off

© sebis

10

REST API Specification

> Describing RESTful APIs for example with:

@ swAGGER

2 Specify
> accessible resources (in path element)
» Data Model (in definitions element)
> Security (authentication)

Niklas Scholz - Master Thesis Kick-Off

s 11

REST API Specification TUTI

» Reusing these concepts can help reducing complexity on server

» How to reuse this concept in an architecture?

Niklas Scholz - Master Thesis Kick-Off

© sebis 12

Solution: Query Service TUTI

Backend 1
3 2.

1.

request
Person

Frontend

Backend 2

Niklas Scholz - Master Thesis Kick-Off
© sebis 13

Architecture of Query Service

GET

Person1 '—(D

Query Service Server

@ GraphQL

map query

to REST API

Backend
Person ||
Servert Service 1
Serveri
Swagger Spec
Backend
Server2
Swagger Spec
Person
Server2

Service 2

GET

H Person2'—(:D —

Niklas Scholz - Master Thesis Kick-Off

data
transformation

Security

TUTI

query {
person(id: 1) {
name
age
}
}

Frontend

transformed

erson

Query Service Client

Formulate query

|

request

paULIOJSURI}

Controller

request

< pawiojsuel}

c

© sebis

14

Advantages of This Approach TUTI

» Keep client simple

> Important for Model-Based User Interfaces

> Shifting responsibility away form client but not completely to server
» Provide actual server

> Deliver together with client part

» Less complex server compared to creating an actual backend
> Ability to deal with complex queries (thanks to GraphQL)

» Simplify data transformation process

Niklas Scholz - Master Thesis Kick-Off

© sebis 15

Timeline T|.|T|

thesis thesis
start registration submission

problem definition

familiarisation process
& literature research

researching solutions to problem
target architecture
implementation

security and caching

evaluation

writing process

Niklas Scholz - Master Thesis Kick-Off
© sebis 16

Summing up

Where does the data come from? TUT Architecture of such an application TUTI Researching Solutions m
Approaches dealing with similar problem:
Workload Estimator
QD X} ormmesisimaos & D) KIiRA Frriand) ‘
- GET 4 H
o:o To do Task 24 - Messaging E— s [P JO— - i ! @ GraphQL ;
Senvice ; H H :
YJ I m . :-_-_»u-mum:o]‘m = Description: llyv;plemenlalea(w:lhcl & Servee H Architectural Managing APIs v Desi '
y] idi o :
. messoges amang them ! style that Providing: - Cesugt;n, Query :
e e | foussos on - Gateway ¥ o Language for !
— —— R cu : : _ Securit s ublish, GraphAPls !
_— Senice ! structuring ISy] Manage :
Completed Lines of code ' and using - Analytics | :
Task 22 - Update Events 300 E i - 1
GitHub — == e ; services '
itHu e i
Statistics: LoC: 210 Issues 7 : E S | e I N SR VOIS
— — 7
Niklas Scholz - Master Thesis Kick-Off Niklas Scholz - Master Thesis Kick-Off Niklas Scholz - Master Thesis Kick-Off .
6h 4 En .
Solution: Query Service TUT Advantages of This Approach TUT
» Keep client simple
Backend 1 & Important for Ul Driven Development
) 2
einae
. : Ry) » Shifting responsibility away form client but not completely to server o
ot = o orovide actual
) vy oo) vy somie . » Provide actual server
: Sorver Gt
& Deliver it together with client part
e o,
i) > Less complex server if you would create an actual backend
.:9,‘;!‘“ ())
secens K B » Ability to deal with complex queries (thanks to GraphQL)
)
> Simplify data transformation process

Niklas Scholz - Master Thesis Kick-Off Niklas Scholz - Master Thesis Kick-Off

Niklas Scholz - Master Thesis Kick-Off

© sebis 17

