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Building an Application in 2017
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Where does the data come from?
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Architecture of such an application
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Problem
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Leads to overhead in controller  
and makes it hard to change UI

Transformation process Cache Security

For each API manage:



Research Questions
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1. How to retain a lightweight frontend when scaling up the number of APIs 
to consume? 

• How to handle data transformation, cache and security for each API? 

2. How does a model for service consumption of multiple APIs look like? 

• What information is needed from existing models? (View Model, Data Model, 
REST API Model…) 

3. How does a technology independent approach look like that can be used 
with any API? 

• Can this model be used to generate the code for the consumption of APIs?



Model-Based User Interface Development
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Develop software based on explicit models 

Reference Architecture 

do (semi-) automatic code generation 

High focus on platform independent UI models



Researching Solutions
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Approaches dealing with similar problem:
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Limitations
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No model provided 

No clear specification 

WSO2 and apigee 

complex 

we don’t have control over server 



REST API Specification
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Describing RESTful APIs for example with:

Specify  
accessible resources (in path element) 
Data Model (in definitions element) 
Security (authentication)



REST API Specification
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Reusing these concepts can help reducing complexity on server 

How to reuse this concept in an architecture?



Solution: Query Service
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Query Service 
Server

Backend 1

Backend 2

Query Service 
Client Frontend

request
Person

query {
    person(id: 1) {
        name
        age
    }
}

{
  "data": {
    "person": {
      “name”: “John Doe“,
      “age”: “24”
    }
  }
}

getName

getAge

"person": {
    “name”: “John Doe“,
    “age”: “24”
}

{
  "data": {
    "person": {
      “name”: “John Doe“
    }
  }
}

{
  "data": {
    "person": {
      “age”: “24”
    }
  }
}

1.

2.3.

3.
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Architecture of Query Service
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Advantages of This Approach
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Keep client simple 

Important for Model-Based User Interfaces 

Shifting responsibility away form client but not completely to server 

Provide actual server 

Deliver together with client part 

Less complex server compared to creating an actual backend 

Ability to deal with complex queries (thanks to GraphQL) 

Simplify data transformation process



Timeline
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February March April May June July August September
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& literature research
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Summing up
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