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1. Motivation and Problem
Research Questions
Existing Solutions
Limitations

Our solution
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Building an Application in 2017 TUTI

Workload Estimator I

c Q x Q http://workload estimatorio @

To do Task 24 - Messaging

Loy o L] Description: Implement a feature that

Estimation: LoC: 300 Issues: 20 allows users to send
messages among them.

Task 23 - Testing Login

Type: { Feature
Estimation: LoC: 30 Issues: 2
Estimation:
Completed Lines of code
Task 22 - Update Events —_ J 300
— . . Hours
Statistics: LoC: 180 Issues: 4 r ] 30
Task 21 - Creating Events Issues
20
Statistics: LoC: 210 Issues: 7 - —

—————
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Where does the data come from? T|.|T|

Workload Estimator

O Q x Q { http://workload. estimatorio ) @ )
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v To do ) Task 24 - Messaging
asz .Me”"gmg ‘ Description: Implement a feature that
. mater=1oC. 300 Issues: 20 allows users to send
_ . messages among them.
Task 23 - Testing Login Type: Q Feature
Estimation: LoC: 30 Issues: 2
Estimation:
Completed Lines of code
Task 22 - Update Events - } 300
° — P —— Hours
G ItH b LoC: 180 Isg‘ugs. 4 7 r 1 30
u Task 21 - Creating Events Issues
— /1 20
Statistics: LoC: 210 Issues: 7
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Architecture of such an application
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Problem T|.|T|

For each APl manage:

* Leads to overhead in controller
L and makes it hard to change Ul
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Research Questions T|.|T|

1. How to retain a lightweight frontend when scaling up the number of APIs
to consume?

« How to handle data transformation, cache and security for each API?
2. How does a model for service consumption of multiple APIs look like?

« What information is needed from existing models? (View Model, Data Model,
REST API Model...)

3. How does a technology independent approach look like that can be used
with any API?

« Can this model be used to generate the code for the consumption of APIs?
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Model-Based User Interface Development

2 Develop software based on explicit models
» Reference Architecture
» do (semi-) automatic code generation

2 High focus on platform independent Ul models
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Researching Solutions TUTI

Approaches dealing with similar problem:

-------------------

--------------------------------------

. SoA i opigee i WS@, i LY ocraphaL
: = Managing APls :

. Architectural ] ' '

. stvle that v Providing: = Design, , + Query

. Stylelna L Gat X Create, R creuece o
. focusseson i - ZAGWAY il pypgn,  fi T9ES

: : 1 - Security = .+ Graph APlIs

. StrUCturlng Py ) Py Manage o

. and using T Analytics » APIs x

. services v : ;!

14
---------------------------------------------------------------------------
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Limitations

» No model provided
» No clear specification
» WSO02 and apigee

» complex

z we don’t have control over server
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REST API Specification

> Describing RESTful APIs for example with:

@ swAGGER

2 Specify
> accessible resources (in path element)
» Data Model (in definitions element)
> Security (authentication)
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REST API Specification TUTI

» Reusing these concepts can help reducing complexity on server

» How to reuse this concept in an architecture?
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Solution: Query Service TUTI
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Architecture of Query Service
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Advantages of This Approach TUTI

» Keep client simple

> Important for Model-Based User Interfaces

> Shifting responsibility away form client but not completely to server
» Provide actual server

> Deliver together with client part

» Less complex server compared to creating an actual backend
> Ability to deal with complex queries (thanks to GraphQL)

» Simplify data transformation process
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Timeline T|.|T|

thesis thesis
start registration submission

problem definition

familiarisation process
& literature research

researching solutions to problem
target architecture
implementation

security and caching

evaluation

writing process
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