
Chair of Software Engineering for Business Information Systems (sebis)

Faculty of Informatics

Technische Universität München
wwwmatthes.in.tum.de

Model-Based Approach to Consume REST
Services in Single Page Applications
Niklas Scholz - Master Thesis Kickoff - 19.06.2017
Advisor: Adrian Hernandez-Mendez

Agenda

1. Motivation and Problem

2. Research Questions

3. Existing Solutions

4. Limitations

5. Our solution

6. Expected artefacts & Timeline

© sebis 2
Niklas Scholz - Master Thesis Kick-Off

Building an Application in 2017

© sebis 3
Niklas Scholz - Master Thesis Kick-Off

Where does the data come from?

© sebis 4
Niklas Scholz - Master Thesis Kick-Off

Architecture of such an application

© sebis 5
Niklas Scholz - Master Thesis Kick-Off

Server
Task

Service

GET

Data

Server
Repository

Service

GET

Frontend

request
data

request
data

Data

JIRA
Service transformation

process

Controller

UI

request
data

Data
GitHub
Service

Data

Security

Cache

JIRA

transformation
process

Security

Cache

GitHub

Transformed
Data

Problem

© sebis 6
Niklas Scholz - Master Thesis Kick-Off

Leads to overhead in controller
and makes it hard to change UI

Transformation process Cache Security

For each API manage:

Research Questions

© sebis 7
Niklas Scholz - Master Thesis Kick-Off

1. How to retain a lightweight frontend when scaling up the number of APIs
to consume?

• How to handle data transformation, cache and security for each API?

2. How does a model for service consumption of multiple APIs look like?

• What information is needed from existing models? (View Model, Data Model,
REST API Model…)

3. How does a technology independent approach look like that can be used
with any API?

• Can this model be used to generate the code for the consumption of APIs?

Model-Based User Interface Development

© sebis 8
Niklas Scholz - Master Thesis Kick-Off

Develop software based on explicit models

Reference Architecture

do (semi-) automatic code generation

High focus on platform independent UI models

Researching Solutions

© sebis 9
Niklas Scholz - Master Thesis Kick-Off

Approaches dealing with similar problem:

SOA

Managing APIs
Providing:

- Gateway
- Security
- Analytics
- …

Design,
Create,
Publish,
Manage
APIs

Architectural
style that
focusses on
structuring
and using
services

Query
Language for
Graph APIs

Limitations

© sebis 10
Niklas Scholz - Master Thesis Kick-Off

No model provided

No clear specification

WSO2 and apigee

complex

we don’t have control over server

REST API Specification

© sebis 11
Niklas Scholz - Master Thesis Kick-Off

Describing RESTful APIs for example with:

Specify
accessible resources (in path element)
Data Model (in definitions element)
Security (authentication)

REST API Specification

© sebis 12
Niklas Scholz - Master Thesis Kick-Off

Reusing these concepts can help reducing complexity on server

How to reuse this concept in an architecture?

Solution: Query Service

© sebis 13
Niklas Scholz - Master Thesis Kick-Off

Query Service
Server

Backend 1

Backend 2

Query Service
Client Frontend

request
Person

query {
 person(id: 1) {
 name
 age
 }
}

{
 "data": {
 "person": {
 “name”: “John Doe“,
 “age”: “24”
 }
 }
}

getName

getAge

"person": {
 “name”: “John Doe“,
 “age”: “24”
}

{
 "data": {
 "person": {
 “name”: “John Doe“
 }
 }
}

{
 "data": {
 "person": {
 “age”: “24”
 }
 }
}

1.

2.3.

3.

4.

5.

Architecture of Query Service

© sebis 14
Niklas Scholz - Master Thesis Kick-Off

Frontend
Server1

Backend

Person
Service 1

GET

Person1

Server2

Backend

Person
Service 2

GET Controller

UI

Formulate query

Query Service Client

map query
to REST API

Query Service Server

data
transformation

cache

transformed
person

query {
 person(id: 1) {
 name
 age
 }
}

Server1
Swagger Spec

Server2
Swagger Spec

request

request

Person2

Security

transform
ed

person

transform
ed

person

Advantages of This Approach

© sebis 15
Niklas Scholz - Master Thesis Kick-Off

Keep client simple

Important for Model-Based User Interfaces

Shifting responsibility away form client but not completely to server

Provide actual server

Deliver together with client part

Less complex server compared to creating an actual backend

Ability to deal with complex queries (thanks to GraphQL)

Simplify data transformation process

Timeline

© sebis 16
Niklas Scholz - Master Thesis Kick-Off

February March April May June July August September

problem definition

familiarisation process
& literature research

evaluation

writing process

start
thesis

submission
thesis

registration

researching solutions to problem

target architecture

implementation

security and caching

Summing up

© sebis 17
Niklas Scholz - Master Thesis Kick-Off

