

Enabling Personal Communication for Voice-Based Health Assistants in Geriatric Care

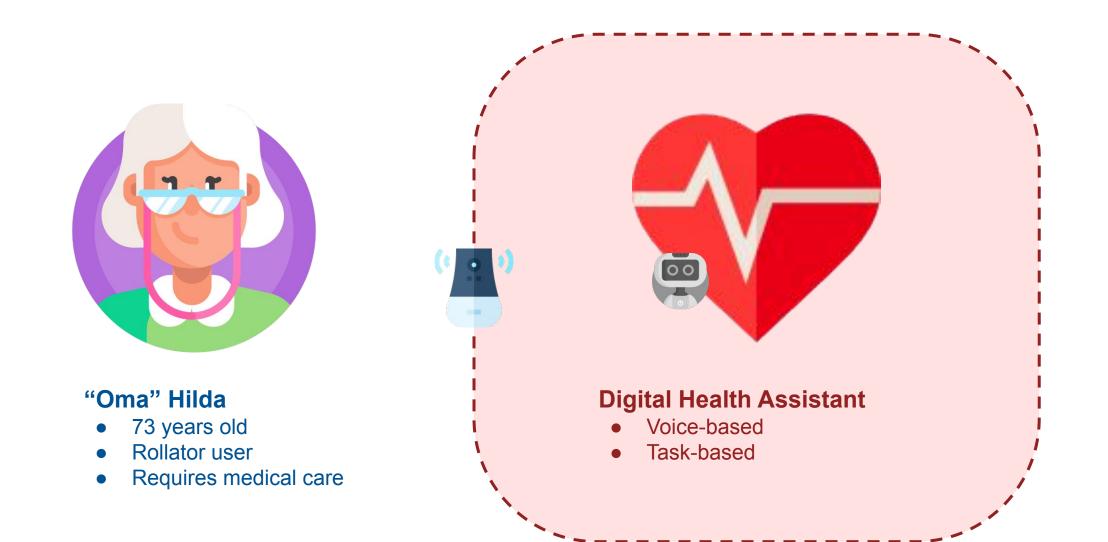
Murilo Bellatini

sebis

08.08.2023, Master Thesis Kick-off

Chair of Software Engineering for Business Information Systems (sebis) Department of Computer Science School of Computation, Information and Technology (CIT) Technical University of Munich (TUM) wwwmatthes.in.tum.de

Al-Supported Care: The Current Solution of a Digital Health Assistant

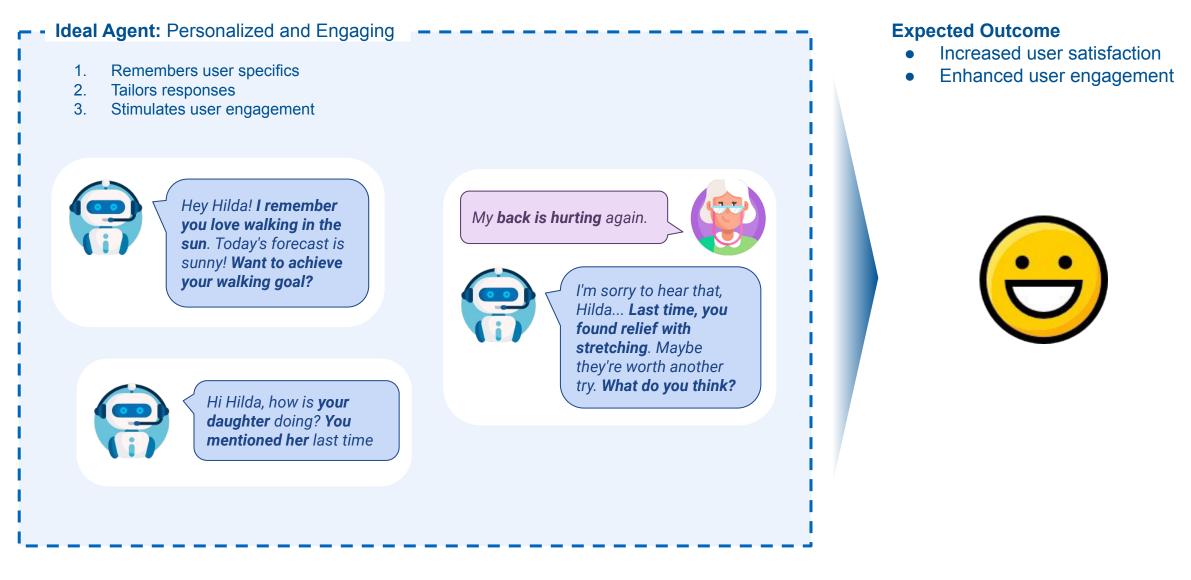


ТΠ

Task-Based Assistants: Lack of Personal Communication in Healthcare



Enhancing User Experience: Personalized and Engaging Health Assistants



Outline

Motivation & Goal

Approach & Research

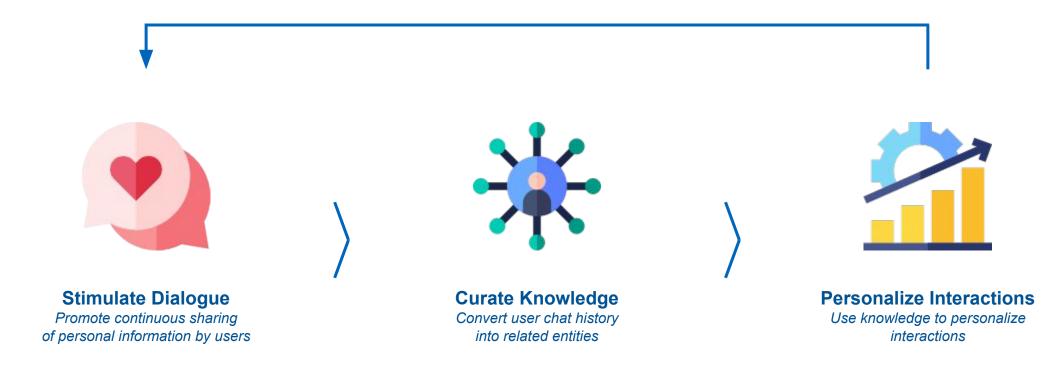
Initial Results

Demo

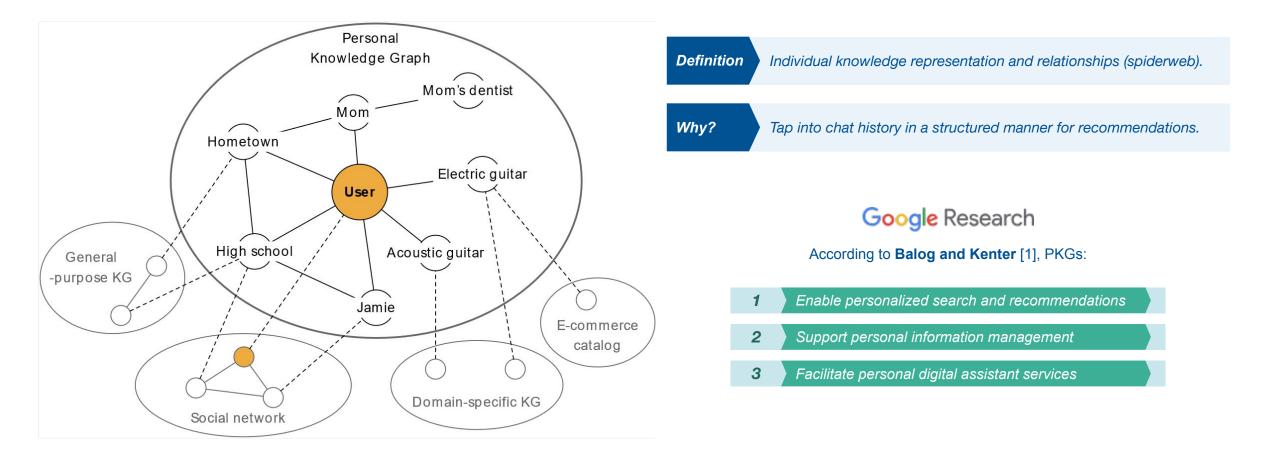
Next Steps & Timeline

Our Approach: Harnessing User-centric Knowledge for Engaging Dialogue

High-level concept:



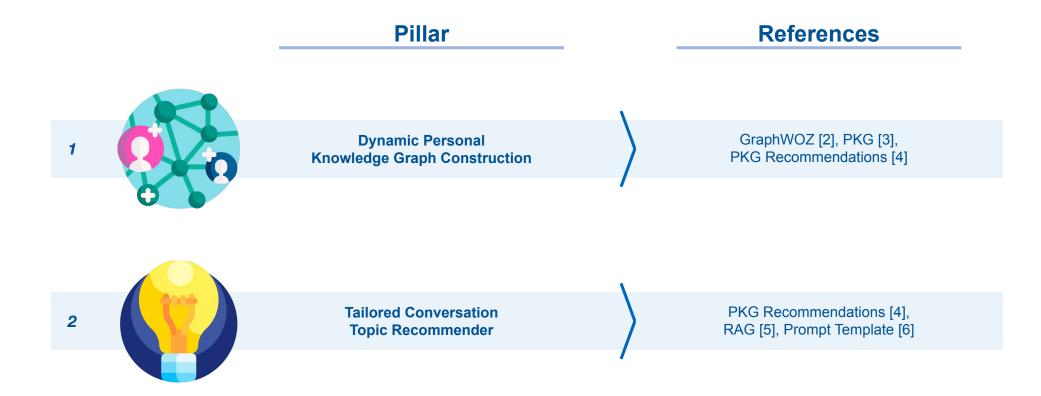
Personal Knowledge Graphs: Enabling Personalized Recommendations



[1] Balog, K., and Kenter, T. 2019. Personal Knowledge Graphs: A Research Agenda. In Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval (pp. 217–220). Association for Computing Machinery.

Main Pillars: Personal Data Mapping & Contextual Recommendations

Research focus is two-fold:



Further References: Click Here

[2] Nicholas Thomas Walker, Stefan Ultes, and Pierre Lison. (2022). GraphWOZ: Dialogue Management with Conversational Knowledge Graphs.

[9] Krisztian Balog and Tom Kenter. Personal knowledge graphs: A research agenda. In Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, ICTIR '19, page 217–220, New York, NY, USA, 2019. Association for Computing Machinery.
 [4] Yang, Y., Lin, J., Zhang, X., and Wang, M. 2022. PKG: A Personal Knowledge Graph for Recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 3334–3338). Association for Computing Machinery.
 [5] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich K üttler, Mike Lewis, Wen tau Yih, Tim Rockt aschel, Se- bastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021
 [6] <u>https://python.langchain.com/en/latest/modules/prompts/prompts templates.html</u>

Research Questions

	5	

What should our **data model** include for better **personalization**?

How can we integrate knowledge for personalized responses?

How can we **evaluate** system performance and effectiveness?

Outline

Motivation & Goal

Approach & Research

Initial Results

Demo

Next Steps & Timeline

Literature-Based Data Model for Geriatric Communication

What should our **data model** include for better **personalization**?

Literature Review

- 1. Independent Research [7,8,9,10]
- 2. Input from Domain Expert Richard Paluch, Uni Siegen [11,12]

Key Insight: Tom Kitwood's Person-Centered Framework

[7] Fukaya et al., 2009. "Education for Caregivers in Geriatric Care Facilities." Japan J. of Nursing Science, 6(2).; [8] Office et al., 2020. "Reducing Seniors' Social Isolation during COVID-19." J. of the American Medical Directors Assoc., 21(7).; [9] D'Onofrio et al., 2019. "Assistive Robots for Elderly Socialization." Aging Clinical and Experimental Research, 31.; [10] Sgorbissa et al., 2018. "Culturally Competent Robot for Elderly Care." IEEE/RSJ International Conference on Intelligent Robots and Systems.; [11] Kitwood, 2013. "Person-centered Approach in Dementia." Huber; [12] Kitwood & Brooker, 2019. "Dementia Reconsidered Revisited." Open University Press. [13] Yu, D., Sun, K., Cardie, C., Yu, D., 2020. "Dialogue-Based Relation Extraction." arXiv preprint arXiv:2004.08056.

D · **i** · **a** · **l** · **o** · **g** · **R** · **E** 36 classes \Rightarrow mapped to 5 needs \Rightarrow 9 selected SIBLING Pet Place_oF_RESIDENCE Place_oF_BIRTH UISITED VISITED

Available Datasets

Successfully reproduced paper results [13] <u>Challenges</u>: a) Class imbalance, b) underperformance in many

ORG

classes, c) absence of "no relation" class.

RENT

Knowledge Graph Construction from Chat Histories

Which techniques can populate the Personal Knowledge Graph effectively?

OpenIE [14], GraphWOZ [15], DialogRE [13]

Challenges

Differing domain specifics; only a part of the pipeline

	Solution
Developed	custom pipeline

for relation extraction

[13] Yu, D., Sun, K., Cardie, C., Yu, D., 2020. "Dialogue-Based Relation Extraction." arXiv preprint arXiv:2004.08056.
 [14] Temperoni, A., Biryukov, M., Theobald, M., 2022. "Enriching Relation Extraction with OpenIE." arXiv preprint arXiv:2212.09376.
 [15] Melnyk, I., Dognin, P., Das, P., 2022. "Knowledge Graph Generation From Text." arXiv preprint arXiv:2211.10511.

Our Custom Pipeline for Relation Extraction: Performance Evaluation

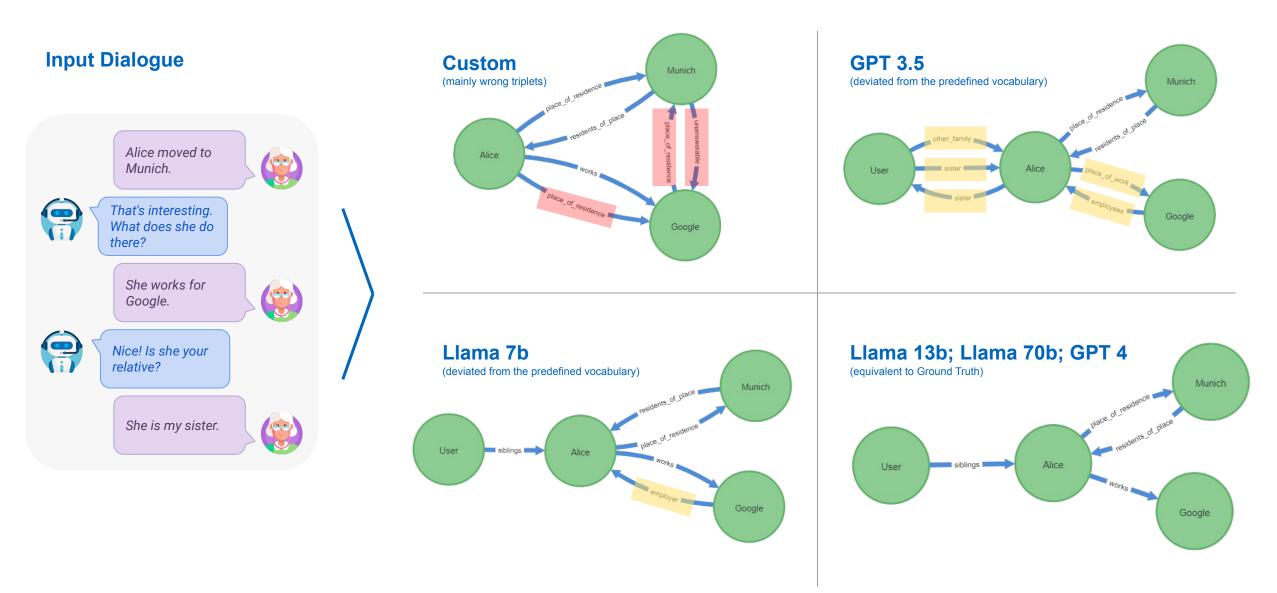
	Relat	ion Id	entification	_	-	Relation Cla	ssification
X	XGBoos	t on Dia	logRE (F1: 49% ^c)		1	BERT on DialogRE	E (F1: 60% ^d) [13]
Alice - M Alice - G		yes yes	User - Munich User - Gooqle	no no		Alice - Munich Alice - Google	lives_at works at
Alice - U	Jser	no	Agent - Munich	no	/	Alice - Google	works_at
Alice - Ag User - Ag	-	no no	Agent - Google Munich - Google	no no			

[13] Yu, D., Sun, K., Cardie, C., Yu, D., 2020. "Dialogue-Based Relation Extraction." arXiv preprint arXiv:2004.08056.
 [16] Otmazgin, S., Cattan, A., Goldberg, Y., 2022. "F-coref: Fast, Accurate and Easy to Use Coreference Resolution." arXiv preprint arXiv:2209.04280.
 M. Bollotini J. Master Thesis Kick off.

M. Bellatini | Master Thesis Kick-off

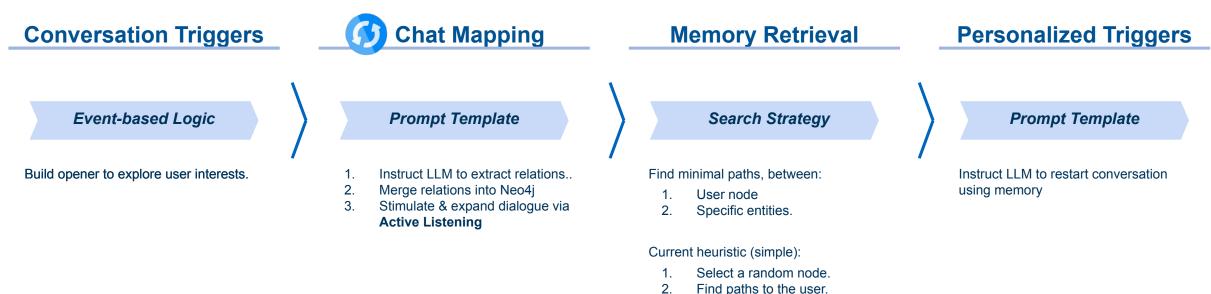
a) According to paper data distribution, not DialogRE! <u>F-COREF Paper</u>.
b) F1 Score for DialogRE entities, but potentially useful according to qualitative analysis.
c) Potential improvement with sentence based input.
d) Potential improvement via HiDialog.

Comparative Analysis of Relation Extraction: Custom Pipeline vs. LLMs



Personalized Chatbot: End-to-End Proof of Concept Using LLMs

How can we **integrate knowledge** for **personalized responses**?



3. Randomly select one path.

Q3

Outline

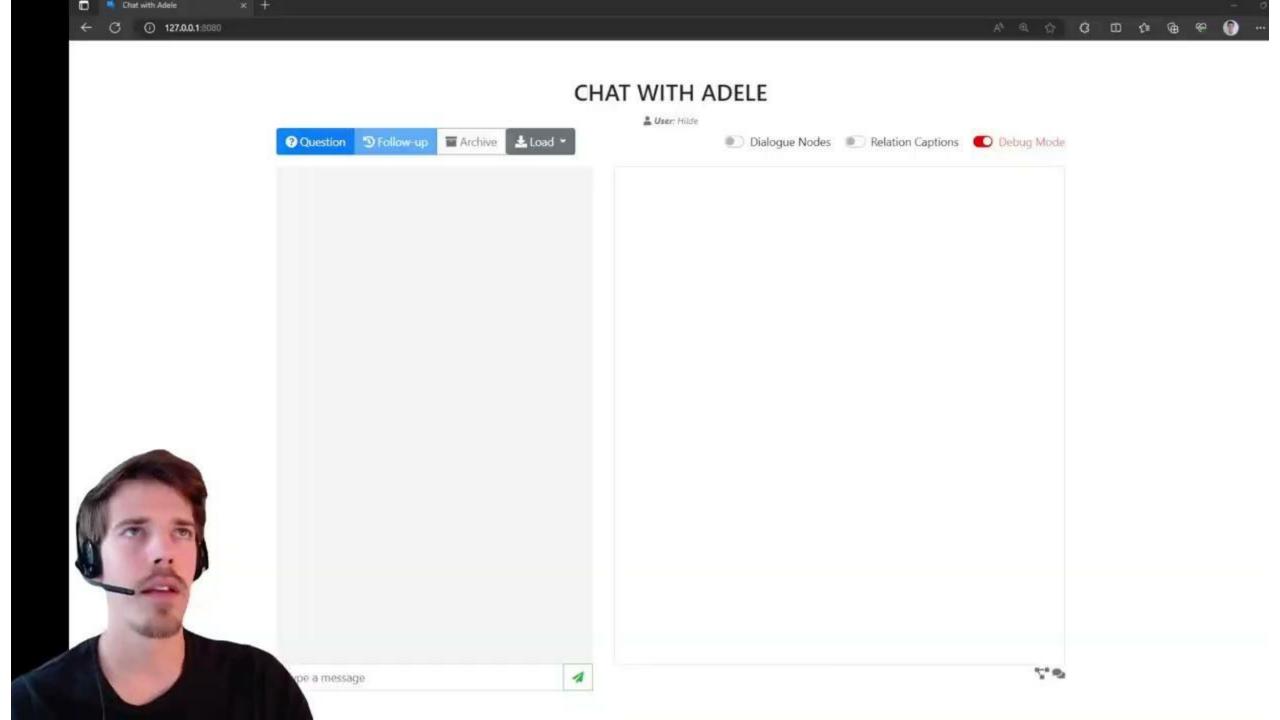
Motivation & Goal

Approach & Research

Initial Results

Demo

Next Steps & Timeline



Outline

Motivation & Goal

Approach & Research

Initial Results

Demo

Next Steps & Timeline

Independent Relation Extraction

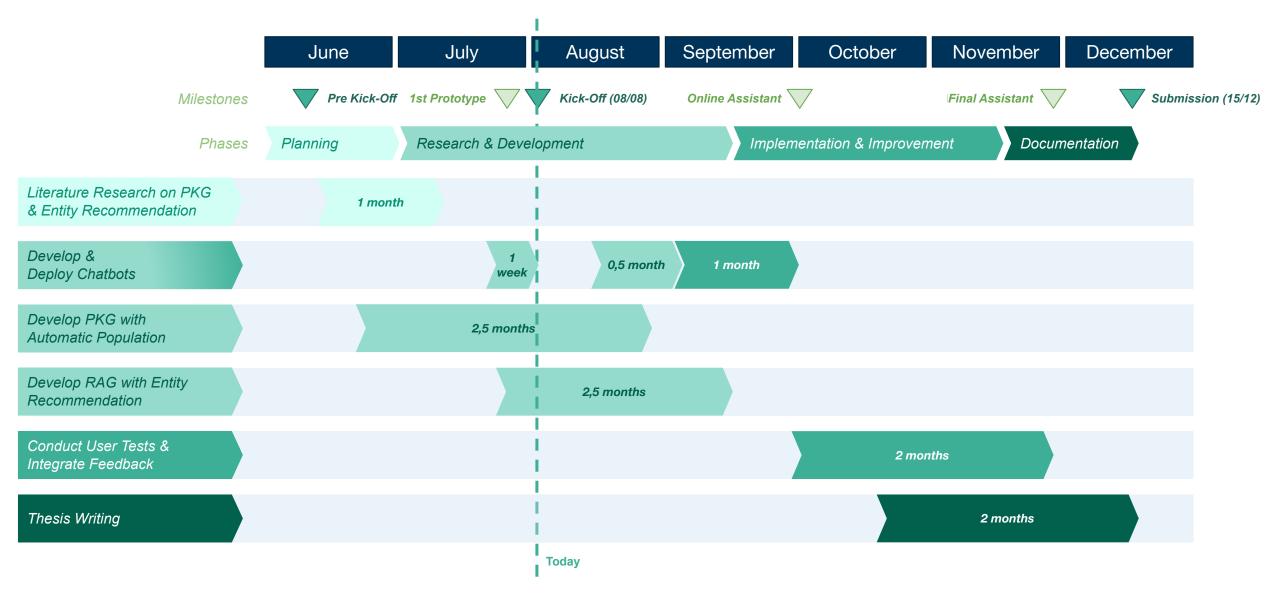
- 1. Fine-tune Llama-2; assess outcomes
- 2. Develop dataset
 - a. Perform German translation
 - b. Address class imbalance, if necessary
- 3. Utilize relation extraction metrics for results

Potential Addition: End-to-end Evaluation

If timely feasible, two possible ways

- 1. Simulate user chats; monitor engagement metrics
 - a. Record Conversation Turn Count
 - b. Assess Sentiment Analysis
- 2. Seek user feedback from ALMA specialists.

Research Journey: Our Current Plan



TLM sebis

ATIK INFORMATI

MSc. Student Murilo Bellatini

Technical University of Munich (TUM) TUM School of CIT Department of Computer Science (CS) Chair of Software Engineering for Business Information Systems (sebis)

Boltzmannstraße 3 85748 Garching bei München

+49.89.289.17132 matthes@in.tum.de wwwmatthes.in.tum.de

Back-up Slide

Knowledge Graphs in Literature: A Review of Sources

[1] Balog, K., and Kenter, T. 2019. Personal Knowledge Graphs: A Research Agenda. In Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval (pp. 217–220). Association for Computing Machinery.

[2] Nicholas Thomas Walker, Stefan Ultes, and Pierre Lison. (2022). GraphWOZ: Dialogue Management with Conversational Knowledge Graphs.

[3] Krisztian Balog and Tom Kenter. Personal knowledge graphs: A research agenda. In Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, ICTIR '19, page 217–220, New York, NY, USA, 2019. Association for Computing Machinery.

[4] Yang, Y., Lin, J., Zhang, X., and Wang, M. 2022. PKG: A Personal Knowledge Graph for Recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 3334–3338). Association for Computing Machinery.

[5] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rockt aschel, Se- bastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021

[6] https://python.langchain.com/en/latest/modules/prompts/prompt_templates.html

[7] Fukaya, Y., Koyama, S., Kimura, Y. and Kitamura, T., 2009. Education to promote verbal communication by caregivers in geriatric care facilities. Japan Journal of Nursing Science, 6(2), pp.91-103.

[8] Office, E.E., Rodenstein, M.S., Merchant, T.S., Pendergrast, T.R. and Lindquist, L.A., 2020. Reducing social isolation of seniors during COVID-19 through medical student telephone contact. Journal of the American Medical Directors Association, 21(7), pp.948-950.;

[9] D'Onofrio, G., Fiorini, L., Hoshino, H., Matsumori, A., Okabe, Y., Tsukamoto, M., Limosani, R., Vitanza, A., Greco, F., Greco, A. and Giuliani, F., 2019. Assistive robots for socialization in elderly people: results pertaining to the needs of the users. Aging clinical and experimental research, 31, pp.1313-1329.;

[10] Sgorbissa, A., Papadopoulos, I., Bruno, B., Koulouglioti, C. and Recchiuto, C., 2018, October. Encoding guidelines for a culturally competent robot for elderly care. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1988-1995). IEEE.;

[11] Kitwood, T.M., 2013. Demenz: Der person-zentrierte Ansatz im Umgang mit verwirrten Menschen. Huber.

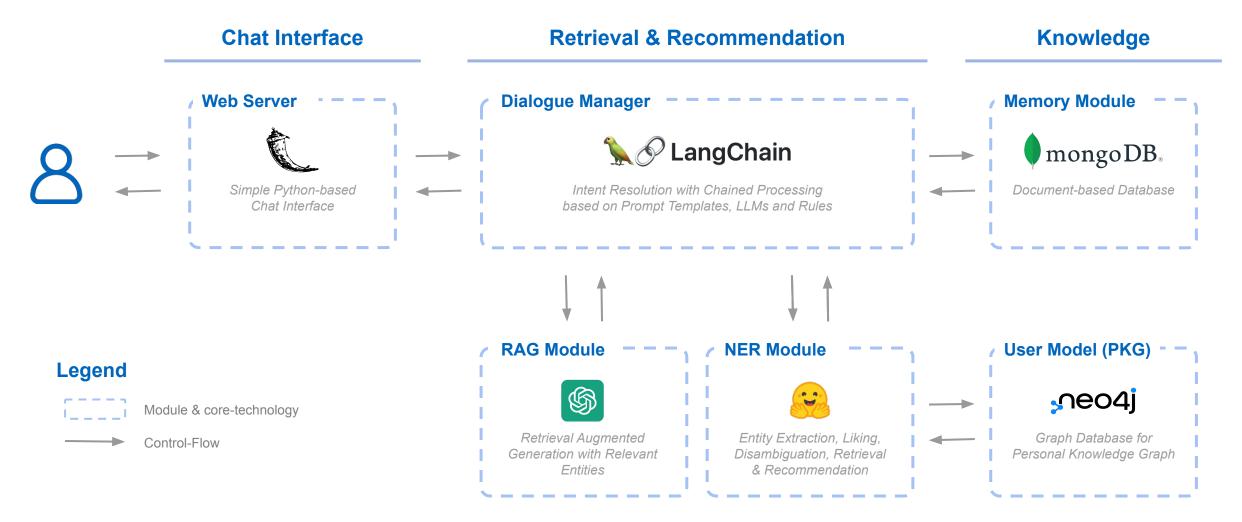
[12] Kitwood, T., Brooker, D., 2019. Dementia reconsidered revisited: The person still comes first. Open University Press, McGraw-Hill Education, London, UK. [13] Yu, D., Sun, K., Cardie, C., Yu, D., 2020. "Dialogue-Based Relation Extraction." arXiv preprint arXiv:2004.08056.

[14] Temperoni, A., Biryukov, M., Theobald, M., 2022. "Enriching Relation Extraction with OpenIE." arXiv preprint arXiv:2212.09376.

[15] Melnyk, I., Dognin, P., Das, P., 2022. "Knowledge Graph Generation From Text." arXiv preprint arXiv:2211.10511.

[16] Otmazgin, S., Cattan, A., Goldberg, Y., 2022. "F-coref: Fast, Accurate and Easy to Use Coreference Resolution." arXiv preprint arXiv:2209.04280.

Preliminary diagram:



Automated Graph Construction - LLM One Shot - Prompt Design

Extract personal relevant entities, and their relations. Return only the jsonl format list .

Ontology:

- relations: {"acquaintance", "children", "other_family", "parents", "siblings", "spouse", "place_of_residence", "visited_place", "pet", "residents_of_place", "visitors_of_place"}

- types: {"ORG", "GPE", "PERSON", "DATE", "EVENT", "ANIMAL"}

Input:

"User: My daughter, Emma, recently moved to London.",
"Agent: That's exciting! Does she like it there?",
"User: Yes, she loves it! She even adopted a cat named Whiskers.",

Output:

{'x': 'User', 'x_type': 'PERSON', 'y': 'Emma', 'y_type': 'PERSON', 'r': 'children'},
{'x': 'Emma', 'x_type': 'PERSON', 'y': 'London', 'y_type': 'GPE', 'r': 'place_of_residence'},
{'x': 'London', 'x_type': 'GPE', 'y': 'Emma', 'y_type': 'PERSON', 'r': 'residents_of_place'},
{'x': 'Emma', 'x_type': 'PERSON', 'y': 'Whiskers', 'y_type': 'ANIMAL', 'r': 'pet'},
{'x': Whiskers', 'x_type': 'ANIMAL', 'y': 'Emma', 'y_type': 'PERSON', 'r': 'pet'},
]

Input:

"User: My son, John, went to visit Tokyo last month.", "Agent: That sounds like a fun trip. Did he go alone?", "User: No, he went with his wife, Mary. They even brought their dog, Rover."

Output:

Expected output:

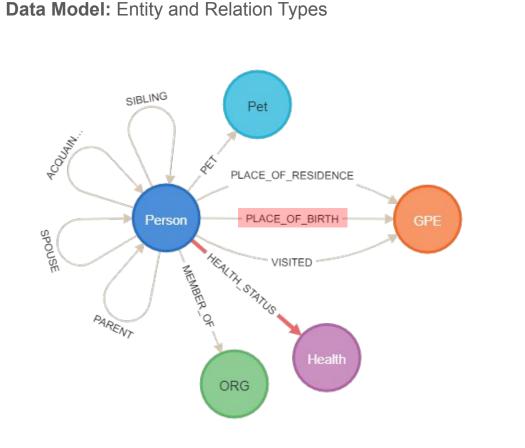
{'x': 'User', 'x_type': 'PERSON', 'y': 'John', 'y_type': 'PERSON', 'r': 'children'},
{'x': 'John', 'x_type': 'PERSON', 'y': 'Tokyo', 'y_type': 'GPE', 'r': 'visited_place'},
{'x': 'Tokyo', 'x_type': 'GPE', 'y': 'John', 'y_type': 'PERSON', 'r':
'visitors_of_place'},

{'x': 'John', 'x_type': 'PERSON', 'y': 'Mary', 'y_type': 'PERSON', 'r': 'spouse'}, {'x': 'Mary', 'x_type': 'PERSON', 'y': 'John', 'y_type': 'PERSON', 'r': 'spouse'}, {'x': 'John', 'x_type': 'PERSON', 'y': 'Rover', 'y_type': 'ANIMAL', 'r': 'pet'}, {'x': 'Mary', 'x_type': 'PERSON', 'y': 'Rover', 'y_type': 'ANIMAL', 'r': 'pet'}, {'x': 'Rover', 'x_type': 'ANIMAL', 'y': 'John', 'y_type': 'PERSON', 'r': 'pet'}, {'x': 'Rover', 'x_type': 'ANIMAL', 'y': 'Mary', 'y_type': 'PERSON', 'r': 'pet'},

Proposed Data Model using DialogRE (Friends Dataset)

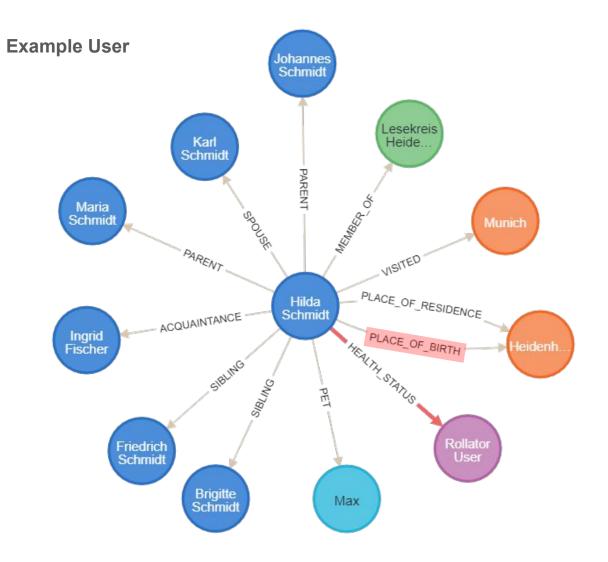
ΤЛ

The diagram below illustrates the potential capabilities achievable with DialogRE. However, it is important to measure the quality of the output. Next step: Compute the F1-score for each relation and entity label.



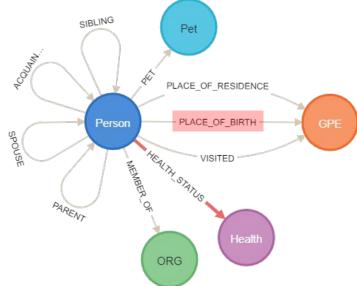
Legend

- ORG: Organization
- <u>GPE</u>: Geopolitical Entity (city, state, region, country)
- <u>Relation in Red</u>: Still not modelled (not present in DialogRE) → <u>Potential fix</u>: <u>Keep Me Updated!</u>



In-Depth Analysis of DialogRE Paper Results - Data Model Impact

Performance Metrics Sample Count Current metrics broken down by class 85.7% 26 per:origin / PLACE OF BIRTH 75.0% 92 gpe:visitors of place / VISITED 92 per:visited place / VISITED Pet 65.0% 84 gpe:residents of place / PLACE OF RESIDENCE PLACE_OF_RESIDENCE 84 per:place of residence / PLACE OF RESIDENCE 58 3 PLACE_OF_BIRTH Person 48 per:pet / PET *HEALTH STATUS VISITED MEMBER 316 per:spouse / SPOUSE index 43.1% ٥, 48.2% 266 per:children / PARENT 47.4 49.1% 45.8% ORG 303 per:siblings / SIBLING 72 per:employee or member of / MEMBER OF 16 4% 270 per:parents / PARENT 66 per:acquaintance / ACQUAINTANCE per:date of birth / PLACE OF BIRTH 6 f1 precision per:place of birth / PLACE OF BIRTH 1 recall 0.0 1.0 0.2 0.4 0.6 0.8



Macro-Averaging

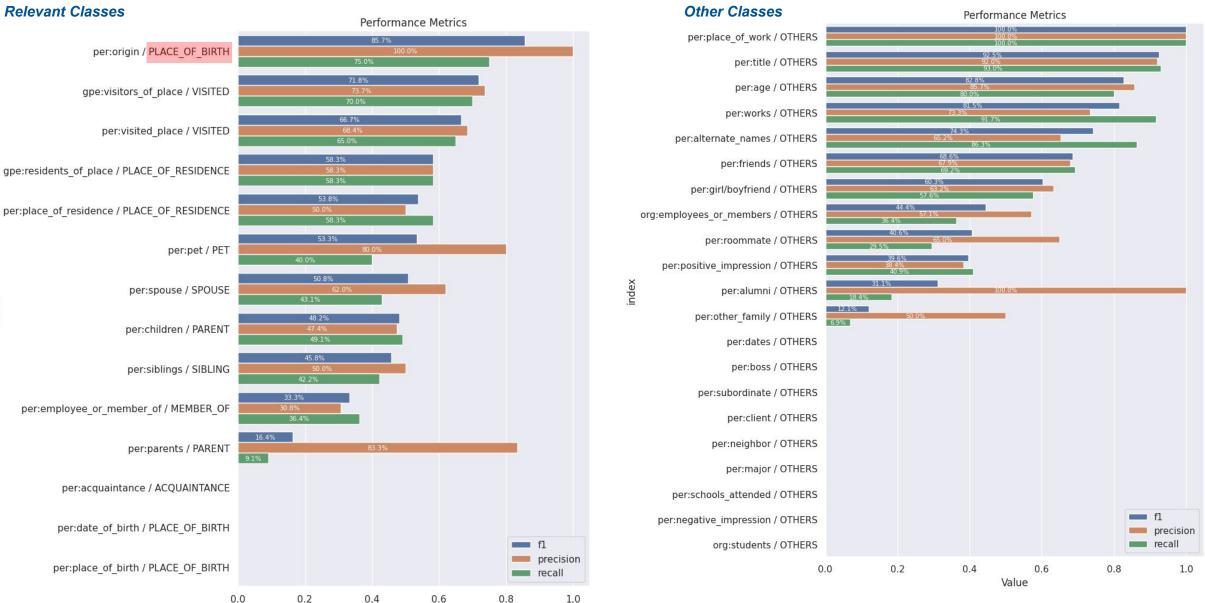
	focus relations (all)
f1	0.385888 (0.3645)
precision	0.459342 (0.4438)
recall	0.369568 (0.3490)

Value

In-Depth Analysis of DialogRE Paper Results - Data Model Impact

Value

index



ТШ

Group: Occ	upation Sample Count: 607	(7.) Cou		%
group	relation_type			
Occupation	per:place_of_work		71	0.9
	org:employees_or_members		72	0.9
	per:subordinate		63	0.8
	per:boss		72	0.9
	per:works		89	1.2
	org:students		8	0.1
	per:schools_attended		8	0.1
	per:alumni		152	2.0
	per:employee_or_member_of		72	0.9
Group: In	nclusion Sample Count: 4	108	(5.3	%)
	Cou	ints	%	
group	relation_type			
Inclusion	per:neighbor	56	0.7	
	per:place_of_residence	84	1,1	
	gpe:residents_of_place	84	1.1	
	gpe:visitors_of_place	92	1.2	
	per:visited_place	92	1.2	
Group: Ot	hers Sample Count: 1	(0.0) %		

		Counts	%
group	relation_type		
Others	gpe:births_in_place	1	0.0

67	unt: 2,6	Identity Sample Cou	Group:
9	Counts		
		relation_type	group
0.	6	per:date_of_birth	Identity
5.	414	per:title	
0.	6	per:major	

(34.8%)

26 0.3

1 0.0

78 1.0

2136 27.9

Group: C	omfort Sample Count:	879 (11	. 5%)
		Counts	%
group	relation_type		
Comfort	per:negative_impression	222	2.9
	per:positive_impression	657	8.6

per:origin

per:age

per:place_of_birth

per:alternate_names

Comfort Group: Potential extension with the MELD dataset for sentiment classification.

Kitwood's Categories in DialogRE Data

While there may be some overlapping classes, the current proposed allocation is as follows:

Group: Atta	chment Sample C	ount: 3,	nt: 3,088	
		Counts	%	
group	relation_type			
Attachment	per:roommate	193	2.5	
	per:pet	48	0.6	
	per:client	87	1.1	
	per:dates	35	0.5	
	per:other_family	120	1.6	
	per:children	266	3.5	
	per:parents	270	3.5	
	per:acquaintance	66	0.9	
	per:spouse	316	4.1	
	per:friends	648	8.5	
	per:girl/boyfriend	736	9.6	
	per:siblings	303	4.0	