
1

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master‟s Thesis in Angewandter Informatik

Documentation of the Application Development Process

using the Toro Web Framework by means of a Developer

Tutorial

Dokumentation des Anwendungsentwicklungsprozesses mit

dem Toro Webframework anhand eines Entwicklertutorials

Author:

Supervisor:

Advisor:

Submission Date:

Sebastian Graf Henckel von Donnersmarck

Prof. Dr. Florian Matthes

Dr. Thomas Büchner

15. September 2008

2

Ich versichere, dass ich diese Master’s Thesis selbständig verfasst und
nur die angegebenen Quellen und Hilfsmittel verwendet habe.

I assure the single handed composition of this master’s thesis only sup-
ported by declared resources.

Place, Date Signature

3

Abstract

The use of the Toro – web application framework is explained through a tutorial in the

context of developing a web-application. The tutorial-application is a simplified subsys-

tem of a larger system, also developed in Toro. The development and architecture of

the larger system is discussed, the detailed features of Toro and their application are

shown through the smaller system.

Keywords: Toro, introspection, tutorial, web-application

4

Content

Abstract ... 3

Content .. 4

Preface ... 7

1 Overview ... 8

1.1 Architecture .. 9

2 SmsParty ... 11

2.1 Business Aspects ... 11

2.1.1 The SMS standard ... 11

2.1.2 Gateway Providers ... 12

2.1.3 SMS-Application Examples .. 13

2.1.4 Customers .. 15

2.2 Technical Aspects .. 17

2.2.1 Original Approach ... 17

2.2.2 Data Model ... 18

2.2.3 Messaging System ... 20

3 Tutorial .. 28

3.1 Goal ... 28

3.2 Installation .. 29

3.2.1 Installation – Basic ... 29

3.2.2 Installation - Expert ... 30

3.3 Instantiating a new project .. 35

3.4 Implementing Persistence – Assets and Properties .. 38

3.5 Implementing Persistence – DomainValueProperties 48

3.6 Implementing Persistence – The „Person‟ Class ... 51

3.7 Implementing Persistence – Relationships between Assets 57

3.8 Implementing Persistence – Registering your Assets 60

3.9 Implementing Persistence – Persisting Data .. 61

3.10 Implementing Logic – Pageful Handlers ... 63

3.11 Implementing Logic – Pageless Handlers ... 67

3.12 Implementing Presentation – Print Substitutions... 72

3.13 Implementing Logic – Setting Parameters .. 77

3.14 Implementing Presentation – Substitution-Functions and Template
Substitutions ... 79

5

3.15 Implementing Presentation – Conditional Substitutions 80

3.16 Implementing Presentation – Editing-Forms for Assets 83

3.17 Implementing Logic – Queries on the Database ... 89

3.18 Implementing Presentation – ListSubstitutions ... 91

3.19 Implementing Logic – Configuration ... 95

3.20 Implementing Logic – extending Assets ... 103

3.21 Implementing Persistence – Deleting Assets .. 107

3.22 Implementing Logic – Checking User Authorization .. 109

3.23 Implementing Logic – Logging Out ... 111

Appendix A: Listings .. 112

References ... 148

6

7

Preface

The aim of the following master‟s thesis was twofold: I (as the writer) had a certain

web-application I wanted to build, and Thomas Büchner, had just finished a new Per-

sistence and webvisualization framework, Toro, that he was getting ready to release to

the public, and wanted me to write a tutorial for new users. So the decision was made

to have me build my web-application in Toro, and that I document the process in form

of a tutorial. We soon realized that the scope of my web-application was too broad for a

tutorial: Describing the construction of the whole application did not seem a good intro-

duction: It would be too long, repetitive and include a lot of code not specific to Toro.

It was therefore decided to use a „toy-application‟, a subset of the full web-application,

as the Tutorial example. I would, however, never have been able to write a tutorial for

Toro without going through the development of a whole application: Toro is an „Intros-

pective framework‟, and discussions with Thomas made me slowly understand the

meaning of the introspective programming paradigm. As with object-orientation, the

idea behind introspection is subtle, and its usefulness is not immediately apparent.

When you begin, you are rather annoyed with a seemingly verbose and obtuse pro-

gramming style, whose significance escapes you. It is only later on in the project that

you see why things are done the way they are, and investments pay off.

What is introspection? Introspection is writing code not only to produce a program, but

also to provide the framework (=Toro) and the Integrated Development Environment

(=Eclipse) with information about this program. By empowering the framework and the

IDE through this additional code (which seems useless at first), the programmer then

has at his disposal tools and methods that could not work otherwise. Persistence is a

good example: Mapping Java primitives and classes to a Database application is im-

possible without further information about the data. This additional information can be

supplied through annotations (as is done in the Hibernate framework), or by overwriting

methods in Anonymous Inner Classes. Toro chooses the latter approach.

At this point, it is not yet clear whether introspection really is the future. Java may not

be an ideal language to implement introspection. Also, I am still unsure which of the

two Java-mechanisms most adapted to pass on introspective information, AICs and

Annotations, is better at the job. It took me quite some time to get used to the Anonym-

ous Inner Class mechanism that Toro uses to supply the meta-information about per-

sistent types, and had long discussions with Thomas trying to convince him annota-

tions would be a better choice here. When Thomas had finally won me over, I could

now no longer understand why the software configuration feature of Toro is imple-

mented using Annotations. He is still arguing this point with me….

8

1 Overview

The thesis is larger in scope than the mere tutorial. The real-life application discussed

in chapter (2) is cut down to size in the Tutorial, developed in chapter (3), so as not to

overwhelm a newcomer and confuse him with irrelevant details. The tutorial aims at

getting a programmer who knows nothing of the Toro framework to a point where he

can use the framework as fast as possible. Excursions, spread throughout the tutorial,

will discuss certain concepts that go beyond a mere „how to‟.

My aim was to develop an SMS (Short Messaging Service) dating game. The rules of

the game are simple: Guests of a party (in a dance-club, for example) all wear large

stickers with different numbers. If one guest, call her Alice, spots another guest whom

she fancies (let‟s call him Bob), Alice sends an SMS with Bob‟s sticker number (e.g.

32) to a central phone number containing the following text: „Love 32‟.

At this point, nothing yet happens. If however, Bob were to fancy Alice as well, and

send her number (e.g. 23) to the central phone number using the text „Love 23‟, a

„Match‟ occurs. Both Alice and Bob are therefore informed of their mutual interest in

one another through a SMS-Message to their respective mobile phones. Alice receives

the message “You have a match! Guest 32 (Bob) also has an interest in you!”. Bob, on

the other hand, receives the message: “You have a match! Guest 23 (Alice) also has

an interest in you!”

Figure 1: Simple Game Model

The point of the game obviously is to enable guests to anonymously chat each other up

without fear of rejection. No direct communication happens between the two suitors, as

indicated by the crossed out arrow in Figure 1). A detailed description of the different

9

Messages which can be sent to the Server, and the various responses these Messag-

es trigger are left to Chapter (2.2.3)

1.1 Architecture

The application described above isn‟t really a web-application. Current SMS-Gateways

(interfaces that allow SMS Messages to be sent and received by a computer) however

work with URL (unique resource Locator) techniques that are well adapted to be ac-

cessed through a webvisualization framework such as Toro. But still, standing alone,

this could not be considered to be a true „web-application‟. However, besides this SMS-

application, an application has to be developed that permits a party administrator to

generate, cancel, and keep track of the billing and general status of individual parties:

{booking system}

Web Browser

Toro WebServer

Mobile Phone

{game system}

SMS-Gateway

http/Internet http/Internet

GSM/SMS

Figure 2: Deployment Diagram of SmsParty

As can be seen in Figure 2), the SmsParty application communicates with the party-

organizer‟s browser to book and administrate parties. The actual game is played via

mobile phones, which can also be accessed via http, but through the services of a

SMS-Gateway, which translates URLs into SMS messages, and transmits incoming

SMS by „touching‟ call-back URLs.

So two applications were developed: One application, which we will call the “SMS-

Engine” will receive, process and respond to the messages of party guests sent per

mobile phone – this corresponds to the right hand side of Figure (2). The other applica-

10

tion, which I refer to by the name of “Booking-system” will permit an administrator to

create new parties, open accounts for individual party-organizers, and keep track of

billing. Both applications work on the same database (not shown).

11

2 SmsParty

As mentioned before, the thesis will be split into a part describing the real-life web-

application, and a tutorial part, which will explain a reduced part of the real-life web-

application in detail. This section deals with the real-life application.

2.1 Business Aspects

The web-application designed during the work on this thesis is a „Premium SMS Ser-

vice‟, which charges the customer for sending a message to the server. Although we

will be dealing primarily with technical questions, the following chapters will discuss

Business aspects of the designed application.

2.1.1 The SMS standard

Mobile phones capable of sending and receiving short messages have an unparalleled

market penetration. The simplicity of the standard has helped it to become universally

available. SMS is a part of the GSM standard for mobile communication, whose suc-

cess can be estimated by looking at the number of SIM-Cards in the hands of the Ger-

man public:

Figure 3: Number of SIM-Cards by Mobile Phone Company in Germany (Estimate)

[DV07]

As can be seen, already by 2006, the number of SIM-Cards in Germany had overtaken
the population in Germany (Population: 82 Million). More than half of the Non-Voice
Mobile Communications Revenue comes from SMS Communications. The share of

12

MMS (Multimedia Messaging service) and Data is growing, but still not dominant. If at
all possible, applications requiring only a simple text-interface should therefore still be
implemented using the SMS standard: Market penetration is virtually 100%, no soft-
ware has to be installed, and compatibility will not be an issue.

Figure 4: Non Voice Market Share of the Mobile Communications Market (Estimate)
[DV07]

2.1.2 Gateway Providers

Mobile phone companies1 have outsourced gateway-marketing to several small com-

panies: Purchasing virtual mobile-numbers to receive SMS, mass postings of SMS etc.

are not marketed directly: No trace of such services can be found on the websites of

the mobile-phone companies, and several direct requests about such services failed to

provide a response. However, there are very many sub-providers who do offer this ser-

vice.

Incoming SMS schemes can be classified according to the following Categories:

 Premium:

Sending a SMS to the Gateway-Number entails a fee charged to the account of the

sender in addition to the normal price of a SMS. This fee is split between the Gateway

Provider and the Gateway Taker. The split can be as high as 75% for the Gateway

Provider (mes.mo GmbH) or lower than 50% (Synapsy Mobile Networks GmbH).

 Non-Premium:

Sending an SMS to the Gateway-Number only costs the sender the normal amount for

sending an SMS.

1
 in Germany

13

Every Scheme is either Premium or Non-Premium. In addition to this classification, the

type of number to which the SMS are sent can belong to one of three different classes:

 Dedicated Keynumber:

The most expensive solution: a five digit short phone number is reserved exclusively

for reception of SMS messages for the specified application. The advantage is a short,

memorable number.

 Shared Keynumber with Keywords

Here, the application is also accessed via a five digit short phone number, but the

number is potentially used by several applications. To distinguish the applications a

keyword has to be prefixed to the SMS, in front of the actual message. The advantage,

from the perspective of the application provider, is price: As the number can be shared,

it is not as expensive to rent.

 Virtual GSM – Number

The cheapest solution: A 4+7 digit (virtual) GSM number is reserved for the reception

of SMS-Messages. Keywords to share the number between different applications are

not needed, but the number is long.

The following table gives an overview of typical fixed and variable costs for a non-

premium SMS Service as charged by the German Provider OpenIT GmbH :

Scheme Setup Charge Monthly Charge Reception Cost/SMS

Dedicated Key-Number 2000,00 € 850,00 € 0,005 €

Shared Key-Number 200,00 € 200,00 € 0,005 €

Virtual GSM-Number 200,00 € 80,00 € 0,005 €

Table 1: Nett-Costs of different Gateway Numbers [Op08]

2.1.3 SMS-Application Examples

Because it is technically minimalistic, applications using an SMS-Gateway interface

tend to be simple. The following list of sample applications is by no means exhaustive,

but representative.

2.1.3.1 Google Calendar

As part of the Calendar web-application, Google offers SMS notification of events

stored in the online-calendar. This takes the form of „reminder-SMS‟, sent to the user

before the event takes place. Additionally, several commands can be sent to a dedicat-

ed Keynumber of Google prompting calendar information via SMS:

„next‟: Query the next scheduled event from the Calendar Server

14

„day‟: Query all scheduled events for the present day from the Calendar Server

„nday‟: Query all scheduled events for the next day from the Calendar Server

According to Google, the service is free and available only in the U.S.A. [Go08a]

2.1.3.2 Google Query

In June 2006, Google launched an SMS-Interface for its web-Search application which

has since been discontinued. Keywords were sent to a short-code phone number of

Google via SMS, and the content of the first Hit was sent back to the querying mobile

phone via SMS (in a compacted form). The main idea was to search for retailers and

service providers. The cost was .29 €/SMS. Google has however now chosen to grant

mobile access to its Search-Engine exclusively through a Java-application. Considering

the complexity of the Domain (web-Search), a SMS interface presumably showed itself

to be too primitive, and the service was apparently not well received. However, the ser-

vice still seems to be offered in the U.S.A. [Go08b]

2.1.3.3 ‚Tamagochi„

This was a short-lived game from D2-Mannesmann, the predecessor of Vodaphone in

Germany, appearing around 2001. Called „Zoing‟, a virtual pet was fed, pampered and

educated via SMS commands. Feedback on the state of the pet was also sent back via

SMS. In addition to the SMS-interface which was quite expensive (.39 DM/SMS), a

Flash-Based web application could also be used to interact with the animal, in this case

for free, and with graphical feedback about the pet‟s situation. At least 10 interac-

tions/day were required to keep the pet alive. The service was discontinued around

2003.

2.1.3.4 Berlin Bus-Schedule

The BVG, the Berlin public transportation authority, supplies current bus- and train

schedules to its customers via SMS. Every bus- and train stop has a 6-figure code for

every bus/train line that passes through the station. These codes are prominently dis-

played on the schedule sheets posted at the stops. Sending an SMS with this code to a

short-code number triggers a response-SMS from the server with the current next five

arrival times at the station. The service is free. [Bv08]

2.1.3.5 Dictionary

 „Leo‟, a popular web-Dictionary, offers an SMS-Gateway interface for translation be-

tween English and German. The price for translation is .49€/Word. If further transla-

tions for the same word are requested, the price is .19€ for additional meanings, that

15

can be pulled from the server via the „more‟ command. Single letter Option-Codes can

be appended (or prefixed) to the word that the user wishes to have translated.

„e‟: Source word is English

„g‟: Source word is German

„w‟: Only common words as response

„t‟: Only technical terms as response

These option codes can be combined. „Leo‟ uses a shared Keynumber with the key-

word „leo‟, indicating that revenues from this service are probably quite low. [Le08]

2.1.4 Customers

Four customer groups can be identified: Party Organizers, who book parties for their

events, end-users, who actually play the game, advertisers, that pay to send SMS-

messages to the end-users in the database, and advertisers who purchase Ads which

are projected onto the „Statistics-Page‟ of the Party.

2.1.4.1 Party Organizers

Organizers book parties. They pay a fee, and receive cloth-stickers, tickets, flyers and

promotional material via snail-mail. The SMSParty system readies itself to receive SMS

messages in the time the party has been booked. In the current version of the system,

the organizer does not book the party himself using a web-browser, but does so

through a customer representative. Cloth stickers could be „branded‟ to support the

theme of a party. Tickets are generated by the System as PDF files, and are printed

onto perforated A4 sheets. Party Organizers receive individual rates, depending on the

previous business relationship with the customer. A very important service to the Orga-

nizer are SMS-Mailings, that are sent to previous End-Users of SMSParty who have

already attended such a party at least once in a location whose Zip-Code (Postleitzahl)

was close to that of the party now booked by the Party Organizer.

2.1.4.2 End Users

End Users are the actual players of the game: They log into the system via the pass-

word on their ticket and the „Login‟ Command sent to the Server via SMS. Originally the

plan was to provide the game free-of-charge to the End User, and only charge the Par-

ty Organizer for booking a party. However, market research revealed that Party Orga-

nizers would not pay sufficient fees for booking a party, whereas End-Users would not

hesitate to pay relatively high fees for sending individual SMS. SMS Gateway service

providers enable their customers to exact a fee from End-users sending a message to

the gateway, which is billed to the EU through his mobile-phone bill („Premium Service‟,

see chapter (2.1.1)). It is believed that individual SMS messages to the system could

be charged with fees as high as 50c – 1€. Billing End-Users also offers the advantage

16

of not having to worry about Incoming and Outgoing Message costs. SMS gateways

charge for every individual Message received and sent. If the Party Organizer would

only pay a lump sum, excessive use of the system by End Users might raise these va-

riable costs up to the point where the party became unprofitable. Charging the End-

user eliminates this possibility.

2.1.4.3 Advertisers via SMS

Another possible customer is an advertiser who wishes to promote a product among

the End Users that are currently attending or have previously attended a party. Specific

groups can be targeted, according to location and theme of attended parties. The invi-

tations sent to End-Users promoting upcoming parties are a special case of this, but

other products could also be promoted. However, this product must be sold sparingly, if

at all: Every End User has the possibility to opt-out of receiving further promotional

messages via the „Stop‟ command (see chapter (2.2.3.1)), and selling campaigns to

Advertisers might trigger many End Users to do exactly that. It is presumed that adver-

tisements sent out during a specific party for products sold at a specific party would

have much higher acceptance rates, but that campaigns promoting a product outside of

an ongoing party setting would be ill received. As the database of End User mobile

Phone numbers is the most valuable asset of the System, selling to Advertisers via

SMS must be carefully evaluated in each case.

2.1.4.4 Advertisers via web-Billboard

Although not foreseen for the upcoming version of SMS-Party, future versions will sup-

port a web-Site for each party which shows statistics and events of the ongoing party.

Party Organizers are encouraged to project this Page onto a screen at the party loca-

tion with a beamer. Animations could announce the triggering of a Match, and statistics

showing the total number of guests, messages sent etc. could be displayed. At such

parties, a further revenue–model is possible: Selling advertising space on this web-

Billboard, through films, flash animations, images or „lower thirds‟ (i.e. texts scrolling

along the lower part of the screen). Advertising via web-Billboard could be booked for

a specific location, or for all parties with a specific theme etc. However, acquiring such

advertising customers will be slow initially, and managing their accounts and content is

technically complex, so this source of revenue remains reserved for future versions of

the system.

2.1.4.5 Possible Future Markets

A web-community for End Users is an obvious next step should the product be a suc-

cess. End Users could log into a community website and track other End Users, send

messages to them, browse their party-record, and learn of upcoming events. Building a

web-community such as Facebook or MySpace is technically challenging, much more

so than the SMS-Party application presented here, and would face established compe-

17

tition. Outlining the approach is beyond the scope of this thesis, and implementing such

a community would only make sense if the unique selling proposition that distinguishes

SMS-Party –anonymous matching per SMS- is a success which binds End Users to

the brand name.

2.2 Technical Aspects

After the preceding brief overview of the business model of the planned web-

application, thie following sections explains the technical aspects.

2.2.1 Original Approach

As described in the previous chapter, the application consists of two parts: A booking

system, and a game system. Whereas the games system did not change very much

from initial planning to implementation, the original concept of the booking system was

very different from what was eventually built. In the beginning, the idea was to develop

a booking system that would be used by the party organizers themselves: They would

open individual accounts, manage their parties, and pay for them via Credit card on a

website without the mediation of a customer service. However, in the course of fleshing

out the system, I realized that implementing security requirements and billing mechan-

isms would absorb most of my time, and that I was also not sure how to optimally mod-

el the business transactions. Would I have to implement functions for changing the

start-time of a party, or would that be a rarely requested feature? What billing methods

would prove to be popular, and which might hardly be used? What strategies should I

implement to penalize Party Organizers who were late on payments?

At the same time, I also realized that I would need a back-office: Sending out the cloth-

stickers that identify the guests of a party, printing out the tickets, and answering Party

Organizer questions on the phone would be inevitable. I therefore decided to imple-

ment an insecure web-application operated by customer-support representatives in the

Back-Office accepting party orders from Party Organizers via phone, fax or mail. This

decision enabled me to concentrate on basic functionality associated with the unique

selling proposition of my application, and not build a secure, detailed and streamlined

web-application. If my business model worked out, I could still transform the web-

application designed for customer representatives into a Party Organizer oriented ap-

plication, with the added benefit of now knowing what business transactions would be

the most important and likely to occur, and optimize the web-application for these.

18

2.2.2 Data Model

In a first Iteration of the Data Model, all In- and Outgoing Messages were persisted in

the Database. Eventually, it was seen that Incoming Messages need not be persisted:

In case the system crashes, the SMS-Gateway will no longer be able to successfully

deliver the incoming messages. When this happens, the Gateway repeatedly tries to

redeliver the SMS messages. The responsibility of persisting incoming Messages in

case of a system crash is therefore already being shouldered by the SMS-Gateway.

The exact protocol of the SMS-Gateway is discussed in chapter (2.2.3.5).

Outgoing Messages do need persistence, however: In case the SMS-Gateway is un-

available, the gaming system repeatedly tries to dispatch the message in certain inter-

vals. Persisting outgoing messages is the job of SmsMessageQueue.

The center of the Data Model is the Party entity. A Party has a unique Order, which

records the time it was placed by the ordering Person, applying a certain Rate, i.e. a

pricing scheme that may differ from customer to customer, from order to order.

Party

LovePair MatchPair
*

11

*

MobilePhone Ticket
*0..1

*

1

Location

PartyNumber

1*

1

*

1

*

Person

1

*

Order
*

1

1

1

*

*

FlyerMailing

1

*

1*

SmsMessageQueue

Rate

1

*

Figure 5: DatabaseModel of the SMS application

A Person maintains a set of Locations, one of which will be assigned to every Party

he wishes to organize. Two Locations may very well be geographically identical, e.g. if

two Party Organizers use the same premises to host their events, but in this case,

nonetheless, two distinct Locations will be filed in the Database: Contact-Numbers,

Location-Style, all these things may differ, even if the geography is the same.

At the creation-time of a new Party, a set of Tickets is generated. Each set of Tickets

is also „physically‟ incarnated as a PDF Document, destined to be printed out on pre-

19

perforated sheets of paper and dispatched to the Party Organizer. Each Ticket has a

number representing the „sticker-number‟ a party guest will be wearing. A correspond-

ing password, also printed onto the ticket, has to be combined with the Ticket-number

in order to successfully log into the game via the “Login” command (see chapter

(2.2.3.1)).

If a party guest logs into the system via a successful “Login” command, he is identified

by his GSM-number. Now there are two possibilities: Either the guest has never visited

a previous Party, in which case a new MobilePhone entry is created for him, or the

guest has already been a participant in at least one previous Party in which case his

MobilePhone entry is retrieved from the Database. In either case, the Ticket is devali-

dated (this is done by setting a Boolean Flag in the Table-Entry), and associated with

the MobilePhone. Also, in both cases, a direct relationship between MobilePhone and

Party is established: Tickets of a Party will be discarded after an event is over. How-

ever, for promotional purposes, the information about which MobilePhone has been a

player in which Party should be retained, information that would be lost if only the

MobilePhone-Ticket-Party connection existed, when the Tickets associated with the

Party are removed from the system when the event is over.

This brings us to FlyerMailing: When a new Party is created in a certain Location, the

Database retrieves all MobilePhones which have previously been guests at a Party at

a Location near2 the one of the new Party. These MobilePhones are then earmarked

for promotional SMS-Messages advertising the new Party via FlyerMailings. A Flyer-

Mailing entry is therefore a commitment from the system to send out a SMS to a Mobi-

lePhone promoting a specific Party. The SMS are dispatched 48 hours before the be-

ginning of the Party.

The Messaging System is described in more detail in chapter (2.2.3). As already men-

tioned, Incoming messages are not persisted, but lead to the creation of volatile Mes-

sage-Objects which are immediately processed and change the state of the Database.

„Love‟ Messages generate an entry in the LovePair table, persisting which tag-number

is interested in which other tag number. In case of mutual interest, a MatchPair entity

is generated, and triggers the dispatch of a SMS. All outgoing SMS are persisted in

SMSMessageQueue. There is no connection between MobilePhone and SMSMes-

sageQueue, because not all outgoing SMS-Messages will be addressed to registered

MobilePhones: In case of a faulty Login, or an ingame-message belonging to an unre-

gistered mobile-phone, outgoing messages are dispatched to mobile-phones that are

not in MobilePhone. There is no connection between Party and SMSMessageQueue

because, in this case, SMSMessageQueue would not be able to find the GSM-number

2
 A „nearness‟ function can be as simple as finding those ZipCodes that start with the same digit

(for Germany), or as complex as determining geographical coordinates for each address,
evaluating the distance, and returning all addresses no farther than a certain number of ki-
lometers away. For this application, the ZipCode approach was used.

20

of the addressee in MobilePhone anyways, and it is therefore necessary to store the

destination-GSM-number in SMSMessageQueue, and a connection to MobilePhone

becomes superfluous.

The last table to be discussed is PartyNumber. It is here that the Outgoing SMS Ga-

teway URL is specified, and also the GSM-Number which should be displayed as dis-

patcher. Every Party has one PartyNumber, as does every SMSMessageQueue.

2.2.3 Messaging System

The following chapters deal with the input and output of text messages to and from the

SMS-application.

2.2.3.1 Commands

In addition to the „LOVE‟ command mentioned in chapter (1), several other commands

can be sent to the central number by users. An overview of all incoming messages is

given in Table 2.

Syntax Example Semantic
Login <Password> [<Nickname>] Login 01122!32xzes Bob Validate Guest and assign name

Love {<tag>} Love 12 34 56 Register interest of sender in tagged

guests

Hate {<tag>} Hate 12 24 56 Ignore interest of sender in tagged

guests

Freeze Freeze Refrain from matching

Unfreeze Unfreeze Restart matching

Status Status Inform sender of party statistics

Stop Stop Remove sender from mailing list

SyntaxError Luv $12 Inform sender of malformed message

Table 2: Incoming Messages („Commands‟) of the SMS Party Application

The „Login‟ message, compulsory for the user to start playing, validates the user by

verifying the password supplied to the guest through a ticket. A nickname can optional-

ly be entered.

„Hate‟ removes a formerly „loved‟ guest from the user‟s list of love-interests.

21

„Freeze‟ suspends all matching for this user. This might be called for immediately after

a match: Another match might not be wished for when a successful one has taken

place. However:

„Unfreeze‟ once again activates the list of candidates submitted through the „Love‟

command, if it has been deactivated by „Freeze‟.

„Status‟ is a command that triggers a Status message from the server: Statistics about

the ongoing Game are transmitted to the user: How many (but not which!) guests have

put him on their love-lists, and also on how many love-lists the average user is.

„Stop‟ removes the user from a mailing list promoting future parties/events. The list of

mobile-phone numbers collected during games is a valuable asset, but the user can

opt-out of receiving commercials of this kind.

„SyntaxError‟ is not a command in itself, but rather a catch-all for malformed com-

mands. It triggers an outgoing message informing the sender of his or her mistake.

2.2.3.2 Responses

The Commands listed in (Table 2) trigger one or more outgoing Messages, called

“Responses”, generated by the web-application. A complete list can be seen in (Table

3). Most of the Responses are self-explanatory.

„Status Out‟ is a response triggered by the „Status‟ Command. It informs the guest how

many men, on average, are interested in each woman, and how many women, on av-

erage, are interested in each man. It also tells the guest how many other guests are

interested in him/her, i.e. have put him or her on their Love-List. Of course, only the

absolute number, not the identity of these courters is given. The „Status Out‟ Message

thereby allows the guest to evaluate his or her attractiveness: If he or she has more

courters than the average male, respectively female, then their attractiveness can be

presumed to be greater.

„Invitation‟ and „Cancellation‟ are Outgoing Messages that are not really „Responses‟,

as they are triggered by the System, not by Incoming Messages: Each Party will invite

guests to its event via „Invitation‟-Outgoing Messages sent to guests who have already

attended a party in an area near the one of the upcoming event. This happens 48

hours before the beginning of the party. The text of this invitation is tailored to the

wishes of a Party Organizer (“Flyer-Text”). However, the last part of the Message is

reserved for an “unsubscribe-blurb”, telling the prospective guests how to stop receiv-

ing messages of this kind through the „Stop‟ command.

The „Cancellation‟ Outgoing Message is needed in case the party is cancelled after

„Invitations‟ have already been sent out. The content of this message (“Dier-Text”,

rhymes with “Flyer-Text”) is also up to the Party Organizer, the last part again being

reserved for the “unsubscribe-blurb”.

22

Table 3: Outgoing Messages („Responses‟) of the SMS Party Application

Name Syntax Example Semantic

Login Confirm [<Nickname>,] (<tag>), you

have successfully logged

into the Party “<Party

Name>”.

„Bob (32), you have success-

fully logged into the Party

„Siesta Mexicana“.

Confirm valid Login.

Login Fail Login failed. Please try

again.

Login failed. Please try again.

Inform about failed Login.

Love Confirm Guests {<tag>} have been

added to your Love-List.

Guests 34 55 89 have been

added to your Love-List.

Confirm additions to Love-List.

Love Fail One or more guests could

not be added to your Love-

List. Please try again.

One or more guests could not

be added to your Love-List.

Please try again.

Inform about failed Love-

Command.

Hate Confirm Guests {<tag>} have been

removed from your Love-

List.

Guest 32 has been removed

from your Love-List.

Confirm deletions from Love-

List.

Hate Fail One or more guests could

not be removed from your

Love-List. Please try again.

One or more guests could not

be removed from your Love-

List. Please try again.

Inform about failed Hate-

Command.

Match You have a Match! Guest

<tag>[(<Nickname>)]) has

also expressed interest in

you!

You have a Match! Guest 23

(Alice) has also expressed

interest in you!

Inform about Match.

Freeze Confirm Your Love-List has been

frozen, and you will no

longer be matched. Send

„unfreeze‟ to continue game.

Your Love-List has been fro-

zen, and you will no longer be

matched. Send „unfreeze‟ to

continue game.

Confirm successful Freeze

Command.

Unfreeze Confirm Your Love-List has been

reactivated, and you will

again be matched.

Your Love-List has been reac-

tivated, and you will again be

matched.

Confirm successful Unfreeze

Command.

Status Out Men->Women Lovers:

~<value>, Women->Men

Lovers: ~<value>, You:

<value> Lovers

Men->Women Lovers: ~8.4,

Women->Men Lovers: ~5.2,

You: 12 Lovers

Inform sender of currents statis-

tics

Invitation <Flyer-Text> Send „Stop“ to

Cancel SMS-Matchmaker

Party im „Vista-Club“, Begin

20:00 Send „Stop“ to Cancel

SMS-Matchmaker.

Inform a potential guest of an

event, and how to unsubscribe.

Cancellation <Dier-Text> Send „Stop“ to

Cancel SMS-Matchmaker

Party at the Vista-has been

cancelled due tob ad weather.

Sorry!! Send „Stop“ to Cancel

SMS-Matchmaker.

Inform a potential guest of a

cancelled event, and how to

unsubscribe.

Syntax Error We could not process your

message. Please try again.

We could not process your

message. Please try again.

Inform sender of malformed

command.

23

.

2.2.3.3 Message Processing

Messages change the state of the system, but are not persisted as such. The actual

SMS Texts of Outgoing Messages are queued into the Database in mere text form, but

these SMSMessageQueues are artifacts of volatile (outgoing) Message objects, not

Messages in the actual sense, but commands to text certain Strings via the SMS Ga-

teway to certain GSM-numbers. Messages in the sense of this chapter are volatile Ob-

jects created when parsing an incoming SMS-Message (SmsInMessage), or triggered

through the business logic of Incoming Message Objects (SmsOutMessage).

Figure 6: Hierarchy of the SMSMessage Class

24

The Messaging mechanism from the User-sent SMS Message to the User-received

SMS Message is explained in the Activity Diagram Figure 7).

Incoming SMS

Gateway

SMSInGateway:Handler :SMSInLoveMessage :SMSMessageQueue
Outgoing SMS

Gateway

SMS „Love 32"

SMS delivery via URL

<<create>>

<<create>>

SMS dispatch via URL

SMS „Guest 32 has been added to your Love List“

:SMSOutLoveConfirmMessage

<<create>>

Figure 7: Processing a Message

In a first step, the guest (shown as a Stick-Figure) sends a SMS via his mobile phone.

This message is received by the Incoming SMS-Gateway, which is supplied by an ex-

ternal vendor. The Incoming SMS Gateway will then „touch‟ a URL, which we have to

communicate to the external vendor operating the gateway, which will be handled by

the SMSInGateway Handler. This is a Toro Handler which interprets the parameters

transmitted in the URL. The mechanism of the Incoming SMS Gateway differs slightly

from vendor to vendor, but is described for the Click-A-Tell vendor in chapter (2.2.3.5).

The SMSInGateway Handler parses the SMS message and creates an instance of the

appropriate Message Class. In our example, an SMSInLoveMessage. This object is

then responsible for changing the state of the System, and thereby triggers the creation

of SMSOutMessages. In our case, the logic of SMSInLoveMessage would create a

SMSOutLoveConfirmMessage (as shown), add the listed tag-numbers to the love-list,

then check for matches, and – in case a match has occurred - create the two appropri-

ate SMSOutMatchMessages (not shown). The generated Message SMSOutLove-

ConfirmMessage then generates the text that should be dispatched via SMS and in-

stantiates it in the form of SMSMessageQueue objects. In regular intervals, the objects

of SMSMessageQueue are dispatched via the Outgoing SMS Gateway supplied by a

vendor. This is also a URL which expects certain parameters and then dispatches the

SMS via GSM to the mobile phone. The mechanism of the Outgoing SMS Gateway is

similar to the Incoming SMS Gateway, and described in chapter (2.2.3.4), for the spe-

cific vendor Click-A-Tell.

25

The Logic controlling the Commands and the Responses is straightforward. For the

Login and Love commands, the Business Logic is shown in the following activity dia-

gram:

Receive Login

Command

Send

LoginConfirm

Response

Send LoginFail

Response
[Login incorrect][Login correct]

Receive Love

Command

Send Match

Responses

[Unmatched]

[Matched]

Send

LoveConfirm

Response

Figure 8: Activity Diagram of „Login‟ and „Love‟ Commands

2.2.3.4 Outgoing Messaging Gateway

The interface between the gaming-application running on a server and the GSM net-

work connected to the mobile phones and capable of wirelessly dispatching the mes-

sages is a URL address, supplied by the Gateway vendor. This URL expects several

parameters that define the content of the text message, addressee (=mobile-phone)

and assure sender-authenticity.

The sequence and nature of these parameters differ from vendor to vendor. As an ex-

ample, the syntax of a typical vendor, the South-African company Clickatell will be de-

scribed here [Cl08a].

Before being able to send out SMS, an account must be acquired from the vendor. A

username, password, contact details and a payment method must be provided. Once

this has been done, SMS can be triggered by touching a URL formed in the following

way:

26

http://api.clickatell.com/http/sendmsg?api_id=xxxx&user=xxxx&password=xxxx&to=xxx

x&text=xxxx

where:

api_id: An account number supplied by the vendor.

user: The login of the account holder.

password: The password of the account holder.

to: The destination GSM number. No „00‟ or „+‟ prefix should appear in the

front of the (mandatory) country code

text: The payload of the SMS. The actual text. The text must be no longer

than 160 characters.

Internet access from within a Java program via the HTTP protocol can implemented

using the java.net.HttpURLConnection and the java.net.URL classes.

First, a URL object must be instantiated with the appropriate parameters, e.g.:

URL url =new URL(“http://api.clickatell.com/http/sendmsg?api_id=12345&user=shenckel

&password=top-secret&to=491773061203&text=This is a test.”);

Then, this URL can be touched (and, in our case, the message sent), via:

HttpURLConnection conn = (HttpURLConnection) url.openConnection();

2.2.3.5 Incoming Messaging Gateway

Sending SMS is one part of the application, receiving Mobile Originated SMS the other.

The mechanism of receiving incoming SMS with the SMS-application is realized by

registering a callback-URL with the SMS-Gateway provider. Each time a SMS is sent to

the number registered with the SMS-Gateway provider (“Party-Number”), this URL is

touched.

The details differ from vendor to vendor. The example described below once again

follows the conventions of Clickatel [Cl08b]:

27

The parameters passed via the GET method in the URL are similar to those for Out-

going Messages:

Suppose we have registered the domain name www.sms-dating-game.de, and have an

instance of our Toro SMS-Dating Game application running on a server under this

name. If we register the callback-URL www.sms-dating-game.de/SMSInGateway.htm

with the Gateway Provider, and a SMS is sent to our Party-Number, the Gateway Pro-

vider will touch the following URL:

http:// www.sms-dating-game.de/SMSInGateway.htm?api_id=xxx&from=handset_number
&to=party_number×tamp=2005-01-06+12:32:10&text=xxx&charset=ISO-8859-1&udh=

The parameters passed via HTTP in the URL are similar to those for Outgoing Mes-

sages:

api_id: An account number supplied by the vendor.

from: The mobile Phone Number of the sender. No „00‟ or „+‟ prefix will appear

before the country code.

to: The Telephone-number the SMS was sent to.

timestamp: The date and time the message was received, in MySQL format.

text: The payload of the SMS. The actual text.

charset: The character set of the text. Can be ignored.

udh: Header data. Can be ignored.

By a Toro naming law (see chapter (3.10), accessing this URL will call a Toro Handler

named SMSInGatewayHandler.java. It is the job of this handler to interpret these pa-

rameters.

http://www.sms-dating-game.de/
http://www.sms-dating-game.de/SMSInGateway.htm
http://www.sms-dating-game.de/SMSInGateway.htm?api_id=xxx&from=handset_number_here

28

3 Tutorial

We now come to the main part of the thesis – a tutorial explaining how to build a web-

application with the Toro-framework.

3.1 Goal

The aim of this tutorial is to learn how to build a small web-application using the Toro

webvisualization and Persistence framework. Recently, for my thesis project, I built a

web-application in Toro allowing Party Organizers to purchase a Mobile-Phone game

for their event: The game rules are simple: Guests log into a computer via their mobile

phone and a password they are given, and can then send Short messages to this serv-

er, stating which of the other party guests they find attractive. In case of a match – two

guests finding each other mutually attractive – both guests are informed. We will im-

plement a part of this web-application. You (the organizer) have an account that you

log into. If you do not have an account, you can set one up. Once you are logged in,

you can purchase new parties, or cancel existing ones. The data model is simple:

Party Person
* 1

Figure 9: Data-Model of Toro-Tutorial

When developing a web-application, I start out with the data model. Having done that, I

make a list of things I want to do with that data through my web-application.

In this case, I want to:

 Log into an existing account

 Create a new account

 Edit account data

 View parties

 Create new parties

 Delete parties

When I know what to do, I draw a state diagram with each state representing an html

page, and the arrows between states representing the links between the pages. My

web-application then looked like this:

29

Login

Create New Account

ListParty ViewParty

EditParty

Edit Data

Choose Party

Return

Create New Party

Error

Success

Logout

Edit Person

Error

Error

Success

Password Correct

Delete

Figure 10: State Diagram - User Interface of Tutorial

Let us now install Toro onto the PC you will be using.

3.2 Installation

Toro depends on a Database application and the Eclipse Integrated Development envi-

ronment (IDE). If you have not already done so, install a Database of your choice (the

tutorial will presume MySQL). For this tutorial, we will require a Database called „min-

isms‟, with a user called „root‟ and a password „mYsql‟. You can create the Database

by logging into your console and executing:

CREATE DATABASE minisms COLLATE utf8_bin

3.2.1 Installation – Basic

Toro is distributed in one Zip-File containing Eclipse, Toro and all required plugins, set-

tings and projects.

Download the Toro Zip development.zip from the Toro-website.

All you have to do is to extract the content of this zip-file to a folder called

/development/ located in the root directory or a folder of your choice. Skip to chap-

ter (3.3).

30

3.2.2 Installation - Expert

Installing Eclipse and Toro:

Toro requires at least Eclipse Version 3.3.* or above. The following installation as-

sumes Eclipse Version 3.4 (Ganymede).

Download the Eclipse Zip File from http://download.eclipse.org/eclipse/downloads/

Unzip the eclipse Directory inside the Zip-File to a location of your choice on your hard

drive:

[your path]/eclipse

Download the Toro Zip toro.zip file from the Toro-website. Unzip the Toro Directory

inside the Zip File to the same location on your hard drive you chose for the eclipse

Directory:

[your path]/toro

Create a new Workspace Directory. A good practice is to put it in the same location on

your hard drive you chose for the eclipse and Toro Directories:

[your path]/eclipse-workspace

You have now created all the directories needed for your installation. The Toro frame-

work needs to know three things:

 Where you have installed Eclipse

 Where you have placed your Eclipse Workspace

 Where you have installed the Java Virtual Machine

This information must be written into the file:

[your path]/toro/localProperties.txt

This file, as the name suggests, stores all local settings of your machine for Toro.

Opening localProperties.txt displays the following four variables:

eclipse.dir=D:/demo/toro/essay/eclipse

eclipse.workspace.dir=D:/demo/Toro/essay/eclipse-workspace

JAVA_HOME=D:/Programme/Java/jdk1.6.0_02/bin

PERFORCE_CLIENTSPEC=th.buechner_SRVMATTHESV11_main

Replace this text appropriately:

eclipse.dir=[your path]/eclipse

http://download.eclipse.org/eclipse/downloads/

31

eclipse.workspace.dir=[your path]/eclipse-workspace

JAVA_HOME=[full path name of your Java Virtual Machine]

PERFORCE_CLIENTSPEC=th.buechner_SRVMATTHESV11_main

The last line is only needed if you have Perforce, a proprietary revision control system,

installed on your computer, and a corresponding account with which to keep your Toro-

installation current. This case will not be assumed for the tutorial, and you can there-

fore simply delete the last line.

You must now start Eclipse to continue the installation. You should not start eclipse

directly by launching [your path]/eclipse/eclipse.exe. For Toro to work cor-

rectly, eclipse.exe must be called with a list of specific command line arguments.

Instead, launch:

[your path]/toro/start-eclipse.bat

This .bat file assures that eclipse.exe is called with the appropriate command line

arguments.

You might want to create a more readily accessible link to this start-eclipse.bat file

for future use.

Toro depends on certain frameworks from third parties, specifically, the GEF (Graphical

Editing framework). Installing this framework can be done from inside of Eclipse:

Go to Help->Software Updates…, and choose the „Available Software‟ tab. Then type

„gef‟ into the search-bar. Select the Checkbox for the Graphical Editing framework, click

install, accept the license agreement, then let Eclipse restart.

32

Figure 11: Installing the GEF

Once Eclipse has restarted, we can install the Toro plugins. This is done by telling Ec-

lipse where to look for Toro plugins through a so called „extension file‟ in the Toro direc-

tory. In Eclipse Ganymede, registering extension files is no longer a standard feature,

and you must manually activate this capability:

TIP: In chapter (3.4), there is a tip on how to import Toro-friendly preferences into Eclipse (see Figure

21). You might want to do this here, and can then skip activating the „extension files‟ capability, which is

part of the Toro-preferences you import there. However, importing the preferences will also change your

syntax-highlighting, something you might not wish to do. If that is the case, continue with the next step,

otherwise install the preferences as described, and go immediately to the step shown in Figure 13).

Select Window->Preferences, and then choose General->Capabilities. Click on the

Checkbox next to „Classic Update‟, and click „OK‟.

33

Figure 12: Reactivating Extension Locations in Ganymede

We can now register the extension location:

Choose Help->Software Updates->Manage Configuration..., and then click on the „Add

an extension location‟ Link.

34

Figure 13: Registering the Toro Extension Location

In the directory selector that appears, select the following directory:

[your path]/toro/eclipse extension/

Confirm with „OK‟, and allow Eclipse to restart.

Finally, we must import two projects into our Workspace. One, called mimimal123, is a

Toro prototype application which will be our starting point for this tutorial. The other

project, platform-toro, is required for all Toro projects: Toro is a ‘framework’, which

means that the actual main() method of your application will not be supplied by your

program, but by the platform-toro project, which is the ‘frame’ in which your program

‘works’ .

To import these two projects, select:

File->Import and then General->Existing Projects into Workspace

In the „Select root directory‟ box, browse to the Directory:

[your path]/toro/projects/

In the selection box, a whole list of projects will appear. Uncheck all, except minim-

al123 and platform-toro, and import them by clicking on „Finish‟.

35

Figure 14: Importing minimal123 and platform-toro

We are now ready to create our own tutorial project.

3.3 Instantiating a new project

A good starting point for a new Toro project is the „minimal123‟-project that comes with

your Toro installation. This application is a very basic application, and looking through

its structure will teach you much about Toro, so feel free to do so. To build a new appli-

cation, you make a copy of „minimal123 „under another name. There is an Ant-Script in

„platform-Toro‟ which copies „minimal123‟, renaming it to a name of your choice. Let us

do this: In the „Ant-View‟ tab (in case it doesn‟t appear, you have to open it with „Win-

dow->Show View->Ant‟), click the „add Build Files‟ icon, and select „build.xml‟ form the

„platform-toro‟ folder:

36

Figure 15: Adding the Ant Build File

There are several commands („targets‟) in the Build File. Double click on „new project‟:

Figure 16: Executing the ‚new-project„ script.

The prompt of the ant-script asks for the name of the new project. We will call it:

„minisms‟

We still have to import our copied project into the workspace. Choose „File->Import-

>Existing Project into Workspace‟, and then browse to the \toro\projects folder.

Deselect all projects except „minisms‟, and import. You should now see the new project

in the package explorer.

How do we run our new project? In the „minisms‟ project folder in the project-explorer,

you will find a file called minisms-run.launch. Right-Click on this file and choose

37

„Run-As->minisms-run‟. This minisms-run.launch file contains all the settings needed

to start the application.

Figure 17: Launching minisms

Before the application launches, Toro prompts you whether it is okay to flush the data

in the Database. You must enter „Y‟ in the console (make sure it is a big „Y‟). Next,

open the browser of your choice, and point it to http://localhost:8083/. The following

website should appear:

http://localhost:8083/

38

Figure 18: The opening screen of minisms

By default, the port of the webserver is set to 8083. If you do not enter a web-page, the

default page displayed is „home.htm‟. For our new project, this is a page inherited from

„minimal123‟, and is a small showcase for Toro. We will now begin to change our new

application to suit our needs.

3.4 Implementing Persistence – Assets and Properties

In our project, we have two persistent classes, Person, and Party (see Figure (9)).

A Party, in our case, is a social event, which should be described by the following

attributes:

+name: String (maximum size = 30)

+location: String (maximum size = 30)

+size: Integer

+price: Integer

+begin: Date

+purchaseDate: Date

+rateCategory: DomainValue

Party

Figure 19: Structure of the Party Asset

Toro supplies us with a class called BaseAsset, („Asset‟, for short) from which we de-

rive the persistent Classes we wish to implement. All of the Assets we create must be

39

placed in the „assets‟ package of the project (de.infoasset.minisms.assets). Let

us create a class file called Party, derived from BaseAsset in the „assets‟ package:

public class Party extends BaseAsset {

 /* Define Properties and Roles (Associations to other Assets) here */

}

A word of caution: „import‟ statements at the beginning of a listing are omitted for clari-

ty in this tutorial. Appendix (A) lists all files of the tutorials with their import statements.

In order to compile the example, the correct import statements must of course be sup-

plied.

TIP: Eclipse helps you import the correct classes if you haven‟t already done so: If a class you wish to use

(such as BaseAsset) has not been imported yet, the IDE will underline it in red. You can then „quickfix‟

this problem by clicking the Error-Decorator on the left margin of your Edit-Window and choosing „Im-

port [Missing Class Name]‟ Sometimes Toro will use class names that also exist in other Java Packages.

Be sure to import the right ones.

Figure 20: Quickfixing a missing import statement.

Toro-Objects of this type can be persisted in the database without JDBC-like overhead,

searched for through a simple query-language, and are easily displayed on webpages.

At this time, we have not yet defined any attributes of our Persistent Asset Class Party.

Attributes are called „Properties‟ in Toro.

Let‟s start with the „name‟ Property. In order to establish a field of type „String‟ with

attribute name „name‟, we write the following code into the Party Class:

public class Party extends BaseAsset {

 public final StringProperty name = new StringProperty() {

/* Define Characteristics of StringProperty here */

40

 };

}

The reason a property is declared „final‟ lies in Toro itself: Once a property reference is

assigned, the framework depends on it no longer changing. So be polite, and make

your Properties final.

As you can see, the StringProperty „name‟ is declared via an Anonymous Inner Class

(AIC). This is very typical for Toro. (See the Excursion on AICs below)

TIP: As part of the Toro installation package, there is a set of templates that can make your life easier

when typing in the definitions of typical Toro objects such as Properties and Messages. Before you can

use these templates, you must import them into your Eclipse-IDE. This is done by choosing File->Import-

>Preferences, and then choosing the ./toro/preferences.epf Preference file:

Figure 21: Importing Preferences into Eclipse

This preference file, however, will also change the color scheme of your source code. If you prefer to

keep your own settings in this respect, then you can also restrict yourself to importing the templates,

without the color scheme. This is done by choosing. Window->Preferences… and then Java->Editor-

>Templates:

41

Figure 22: Importing Templates into Eclipse

Here, you choose the „Import…‟ button and then select the ./toro/templates.xml file. Either way, you

are now ready to use Eclipse‟s Auto-Completion feature to enter Toro objects. For example, to define the

StringProperty, as we have done in the above example, you now type: property, in the Java source file,

and then press [ctrl]+[space]:

Figure 23: Choosing a template

The IDE-Template Engine will now propose a list of Substitutions – the first one on the list should be the

Toro-Property Template. Choose this one:

42

Figure 24: Filling in a template

With [tab], you can now enter the type of Property („StringProperty‟) and the identifier. As you can see,

Type and Constructor name, being the same, must now only be entered once.

The next thing we wish to tell the Asset about the „name‟-Property is its length restric-

tion: 30 characters max. We do this by overwriting the getMaxLength() function of the

StringProperty Class in the Anonymous Inner Class derived from it:

public class Party extends BaseAsset {

 public final StringProperty name = new StringProperty() {

 @Override

public int getMaxLength() {

 return 30;

 }

 };

}

TIP: Overriding methods is, once again, best done using [ctrl] + [space], and typing in the first few letters

of the method you wish to override:

43

Figure 25: Choosing a Method with auto-completion.

Once the correct method has been chosen, type [return] to insert a stub in your source code. Then replace

the stub with your code.

What else do we want to tell the „name‟-StringProperty? Two more things: What is the

Property called, i.e. what label will we attach to this data when we display it on a web-

page, and secondly, we want to force the user to enter this data. It is compulsory not

optional, and null-values will not be accepted:

public class Party extends BaseAsset {

 public final StringProperty name = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Name";

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

}

Labeling:

The mechanism for telling the „name‟ StringProperty what label to attach is pretty

straightforward: You overwrite a function called getLabel(), and in it return an object of

type Message. The Message class has to be instantiated via the AIC mechanism once

Labeling

Constraining

44

again. This time, tuning the AIC is not done by overwriting an abstract method, but by

defining a String called „en‟, and assigning the value you wish to give to the Label (in

our case: „Name‟). „en‟ is the String attribute used to define English labels. You could

also define a German label with the „de‟ String. In this way, we abstract the concrete

labels, given in different languages, from the label itself. Should you wish to deploy

your web-application in a different country, you will then only need to change a setting

in your configuration, and all labels will henceforth appear in a different language. We

will restrict ourselves to English examples.

Excursion :

“Anonymous Inner Classes”

The curled braces {} after StringProperty() will enclose all kinds of hints and customizations we

will shortly wish to add to this ‘name’ Property. Toro uses the mechanism of ‘Anonymous In-

ner Class’ (AIC) to accomplish customization (is it indexed?, how long can it be?, are numbers

allowed?) of its Data Columns(=attributes) (In this case, a data column of type StringProperty).

What we are actually doing is deriving a new class, a class derived from StringProperty, and

instantiating it once. All of the customization of the derived class happens in the curly braces

behind the Constructor of the (abstract class) StringProperty(), which we would normally not

be allowed to call if it weren’t for the curly braces, which indicate that not abstract StringPro-

perty, but a concrete child should be instantiated – the concreteness of this child being de-

fined inside of the braces.

Alternatively (as done in Hibernate), customization of the data-attributes of a persistent class

could be accomplished through annotations – (lines beginning with a ‘@’ as in: @this is an

annotation), but the advantage of doing this through AICs is that the hints and customizations

implemented through AICs are readily available to you as a programmer, not only to the per-

sistence-engine, while annotations remain locked up and inaccessible to the programmer be-

hind those ‘@’ symbols. For more about AICs and Annotations, see [Ec06].

Constraining:

Telling the class not to take „null‟ for an answer is a little more involved, because you

hook into the putValidators() function. You can have several Validators for each prop-

erty („don‟t be null‟, „consist only of letters‟, „have at least five digits‟ etc.) One of Toro‟s

features is a very flexible mechanism to fashion Validators of your choice, and stack

them all on top of each other, forcing the Property you assign them to to comply with all

of them. This „stacking‟ is done inside of putValidators(), which stuffs all of these Vali-

dators into a list of type PropertyValidators. Which Validators we wish to apply is then

done inside of putValidators() by .add()-ing new Validators to the list. As you can see,

putValidators() is protected. This is difficult to remember, so in order to override func-

tions in Toro, use Eclipse‟s auto-complete feature once you have the templates in-

stalled.

45

TIP: Finding out what kind of Classes Toro offers you as a programmer can be a challenge. Eclipse can

help you. For example, you might be wondering what kind of Validators Toro offers. The thing to do is to

look at the type hierarchy of a Validator you know exists, and then, by looking at its family tree, seeing

what other appetizing Validators Toro has to offer. To do this, right click on the class reference whose

relatives you wish to explore, and choose „Open Type Hierarchy‟.

Figure 26: Displaying a classes„ subtypes

In the ‚Hierarchy„ tab, you will now see all the classes derived from NotNullValidator(). This is of li-

mited interest: Three AIC‟s have been derived, but what about the class‟ forefathers? To display these,

click on the „Supertype Hierarchy‟ button in the „Hierarchy‟ tab. (This button has a small arrow pointing

up):

Figure 27: Displaying a classes„ pedigree

As you can now see, NotNullValidator implements an interface called PropertyValidator. This will be

the common link between all Validators. DoubleClick on PropertyValidator in the type hierarchy to

display the class file in the Edit-Window. Right-Clicking on PropertyValidator in the Edit-Window,

once again choosing „Open Type Hierarchy‟, and then displaying PropertyValidator‟s subtypes in the

46

„Hierarchy-Tab‟ gives you an overview over all Validators, and scanning their .java files will give you a

pretty good idea of their capabilities.

Figure 28: The hierarchy of PropertyValidators

Let us now add the „location‟, „size‟, „price‟, „begin‟ and „purchaseDate‟ Properties of

Party:

public class Party extends BaseAsset {

 public final StringProperty name = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Name";

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty location = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Location";

 };

 }

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

47

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final IntProperty size = new IntProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Size";

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 };

 public final IntProperty price = new IntProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Price";

 };

 }

public final TimestampProperty begin = new TimestampProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Begin";

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 };

 public final TimestampProperty purchaseDate = new TimestampProper-

ty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Purchase Date";

 };

 }

 };

 public static final AssetSchema<Party> SCHEMA = new AssetSche-

ma<Party>();

}

Integer Properties

Timestamp Properties

SCHEMA

48

This is basically more of the same:

Integer Properties:

Timestamp Properties:

As you can see, „begin‟ and „purchaseDate‟ are of class TimestampProperty, and

„size‟ and „price‟ are of class IntProperty. We didn‟t put a NotNullValidator onto „price‟

and „purchaseDate‟, because these values will not be queried from the user through a

web-form, but supplied by the system.

As an exercise, you can display the hierarchy of Property-Classes in the eclipse Hie-

rarchy Tab, and see what different Properties are at your disposal.

SCHEMA:

The last line:

 public static final AssetSchema<Party> SCHEMA = new AssetSche-

ma<Party>();

}

is very important. Every Asset Class has an associated AssetSchema class, of which

it has one single instance, which supplies services such as instantiation and gives in-

formation about the Class even if no instance is available. This last line of code gene-

rates this class and its instance, called „SCHEMA‟. Toro supplies you with a Generic

AssetSchema<> class, which you then specialize to your Asset in the way shown

above. If you are unfamiliar with the Classname followed by angle-brackets, you can

read about Generics, a feature of Java SE5, in [Ec06]

3.5 Implementing Persistence – DomainValueProperties

We have not yet implemented the „rateCategory‟ Property, which is of type „Domain‟. In

our application, this attribute stores how expensive the party will be. We only want

three price categories to exist. This means that we want „rateCategory‟ to take only one

value from a certain set of values. In this case, the Strings: „cheap‟, „medium‟ and „ex-

pensive‟ .

Toro supplies the DomainValueProperty for this purpose:

public class Party extends BaseAsset {

 public final StringProperty name = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Name";

 };

 }

49

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

.

.
<snip>
.
.

 public final DomainValueProperty rateCategory = new DomainValue-

Property() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Rate";

 };

 }

 @Override

 public Domain getDomain() {

 return Domains.RateDomain;

 }

 @Override

 public DomainValue getDefaultDomainValue() {

 return RateDomain.expensive;

 }

 };

 public static final AssetSchema<Party> SCHEMA = new AssetSche-

ma<Party>();

}

Assigning a label to this new Property is the same as for all Properties, nothing new

here.

Specifying the Domain:

 DomainValueProperty has an abstract function you must overwrite when instantiating

the AIC: getDomain(). In the return parameter of this function, you tell Toro what Do-

main you want this Property to hold. Of course, we must declare an appropriate Do-

main class before we can pass it on to Toro through getDomain().

Specifying a Default:

Specifying the Domain

Specifying a Default

50

You can also designate a default DomainValue by overwriting the getDefaultDo-

mainValue() function in DomainValueProperty.

 Domain classes must be declared in the package:

de.infoasset.minisms.services.domains

public class RateDomain extends Domain {

/* Define Domainvalues of RateDomain here */

}

The individual DomainValues are once again instantiated through the AIC mechanism.

The DomainValue values have to be declared public static final. Each DomainValue

requires a nameMessage() function which returns a Message instance, which we „AIC‟

on the spot. You have seen how this works with the getLabel() function from Property,

which also requires an instance of type Message.

public class RateDomain extends Domain {

 public static final DomainValue expensive = new DomainValue() {

 @Override

 protected Message nameMessage() {

 return new Message() {

 String en = "expensive";

 };

 }

 };

}

It is important to understand that the String which will be written into the database when

a DomainValueProperty is written will not be the String declared inside of nameMes-

sage. The value written into the database is gleaned from the reference name as-

signed to the DomainValue. The country coded strings are only shown when

representing this value on a web page.

The other two rates are added to RateDomain in the same way:

public class RateDomain extends Domain {

 public static final DomainValue expensive = new DomainValue() {

 @Override

 protected Message nameMessage() {

 return new Message() {

 String en = "expensive";

51

 };

 }

 };

public static final DomainValue medium = new DomainValue() {

 @Override

 protected Message nameMessage() {

 return new Message() {

 String en = "medium";

 };

 }

 };

 public static final DomainValue cheap = new DomainValue() {

 @Override

 protected Message nameMessage() {

 return new Message() {

 String en = "cheap";

 };

 }

 };

}

We are almost done. We still have to register the newly created Domain with Toro. In

the de.infoasset.minisms.services package you will find a Class called Domains.

You have to add a public final static Domain reference to this class, and set it to an

instance of your new Domain:

public class Domains extends GenericDomains {

 public static final Domain Title = new Title();

 public static final Domain RateDomain = new RateDomain();

}

(„Title‟ is a Domain left over from „minimal123‟. Right after that, we have now registered

our new Domain „RateDomain‟.)

As you can see in the listing of the Party class, the getDomain() function of a Do-

mainValueProperty returns the instance of RateDomain referenced in Domains.

3.6 Implementing Persistence – The „Person‟ Class

Every web-application is bound to have something like a User-Account. In fact, Toro is

so convinced of this that it actually supplies you with a prefabricated Asset Class called

Person. You can overwrite this class to suit your needs – but you cannot change its

52

name or eliminate it. Let us look at the data structure we wish to implement for our

Person class:

+eMail: String (maximum size = 100)

+firstName: String (maximum size = 30)

+lastName: String (maximum size = 30)

+street: String (maximum size = 30)

+zipCode: String (maximum size = 10)

+city: String (maximum size = 30)

+country:String (maximum size = 30)

+password: Password (maximum size = 30)

+membershipDate:Date

Person

Figure 29: Structure of the Person Asset.

Because we wish to replace the Person class preinstalled by Toro we, must place this

new Asset in a very specific package in our project. So please create a new Class

called Person derived from BaseAsset in the package

de.infoasset.platform.assets. In which order you place Properties is, by the way,

completely up to you. User Editable Properties should be listed in the sequence you

want the User to edit them:

public class Person extends BaseAsset {

 public final BooleanProperty isAdministrator = new BooleanProper-

ty() {

 @Override

 public boolean getDefaultValue() {

 return false;

 }

 @Override

 public boolean hasDefaultValue() {

 return true;

 }

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Is this Person an Administrator?";

 };

 }

 };

 public final StringProperty eMail = new StringProperty() {

 @Override

 public Message getLabel() {

Boolean Property

53

 return new Message() {

 String en = "E-Mail Address";

 };

 }

 @Override

 public int getMaxLength() {

 return 100;

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator() {});

 aggregator.add(new RegExpValidator() {

 @Override

 protected Message getErrorMessage() {

 return Messages.validator_invalid_e_mail;

 }

 @Override

 public String getRegExp() {

 return "^[_a-z0-9-]+(\\.[_a-z0-9-]+)*@[a-z0-9-

]+(\\.[a-z0-9-]+)*$";

 }

 });

 }

 };

public final StringProperty firstName = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "First Name";

 };

 }

 @Override

 public boolean isFulltextIndexed() {

 return true;

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty lastName = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Last Name";

Regular Expression Validator

Switch-Funtion

54

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 aggregator.add(new MinimalLengthValidator(3));

 }

 @Override

 public boolean isFulltextIndexed() {

 return true;

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty street = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Street";

 };

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty zipCode = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "ZipCode";

 };

 }

 @Override

 public int getMaxLength() {

 return 10;

 }

 };

 public final StringProperty city = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

Minimal Length Validator

55

 String en = "City";

 };

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty country = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Country";

 };

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty password = new PasswordProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Password";

 };

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final TimestampProperty membershipDate = new TimestampPro-

perty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Date of Membership";

 };

 }

 };

Password Property

56

 public static final AssetSchema<Person> SCHEMA = new AssetSche-

ma<Person>() {

 };

 public boolean isAdministrator() {

 return isAdministrator.get();

 }

}

Most of this is nothing new. So let us restrict our attention to the highlighted areas,

which have something original:

Boolean Property and isAdministrator():

The BooleanProperty isAdministrator and the Function isAdministrator() are a leg-

acy from the original Person class. In order not to confuse Toro, they should be re-

tained, even if you do not wish to distinguish between Administrators and normal Us-

ers. If you have not yet explored the different kinds of available Properties, Boolean-

Property will be new to you. The name is pretty self-explanatory. As you can see

here, access to the value of a Property is done by using the .get() function on the

Property attribute, as in:

isAdministrator.get();

Another interesting feature seen inside the BooleanProperty class is the use of the

functions hasDefaultValue() and getDefaultValue(). All Properties can be preconfi-

gured using these functions. hasDefaultValue() should always return „true‟3, and get-

DefaultValue() returns the default value itself, in this case a Boolean, but a String in

case of StringProperty, a Date in case of DateProperty etc.

Regular Expression Validator:

RegExpValidator is the most powerful and versatile Validator available in Toro. In the

AIC definition, you overwrite the Function getRegExp(), in which you have to return the

Regular Expression the Property value should comply with. Regular Expressions are a

programming language in their own right, and describe what symbols in which se-

quence a term can have. A good reference is [Go08]. In our case the Regular expres-

sion makes sure there is a „@‟ Symbol in the email address, and no characters are

used which are illegal for email addresses.

RegExpValidator has an abstract function getErrorMessage() you must overwrite.

Here, you supply a Message which will be displayed in case your user fails to comply

with the Regular Expression when entering data. You can of course AIC your own

Message on the spot, but, actually, we have a whole collection of standard Error Mes-

sages at our disposal: In the package de.infoasset.miniparty.services you will

3
 You could return ‚false„. However, in this case I would recommend simply not defining hasDe-

faultValue().

isAdministrator()

57

find a class called Messages, containing diverse Messages for all purposes, and „Mes-

sages.validator_invalid_e_mail‟ is very appropriate in our case.

Minimal Length Validator:

Passwords and Last Names should not be too short. We can enforce this with a Mini-

malLengthValidator. In this case, the minimal character count is passed to the Con-

structor of the MinimalLengthValidator as a parameter.

Password Property:

This Property is very similar to StringProperty. However, input fields associated with

this type will display characters entered as „stars‟ (*) to hide them from view, and query

them twice, to check for typos. These are two features we want here, because „pass-

word‟ is just that: A password, and it should not be displayed or misspelled.

3.7 Implementing Persistence – Relationships between

Assets

Right now, we have two isolated Tables in the Database, without any Relationship. Our

next step will be to connect them. In Figure 9) you can see that one person can organ-

ize several parties, but that each party has one, and only one, person associated with

it. Modeling this relationship requires the introduction of a new kind of Property in our

two Assets, called Role. Roles come in two flavors: ManyRole<> and OneRole<>. In

Person, we will have a ManyRole<Party> called „parties‟ (the name, of course, is our

choice, but „parties‟ is a good one), and in Party we will have a OneRole<Person>

called „organizer‟. Both Role Properties are Generics [Ec06], and must be specialized

to the Asset Class they refer to.

Each Role class requires you to overwrite a Function called otherRole(). In it, you re-

turn an instance of the Role on the other side of the association: In the „parties‟ Many-

Role of the Person class, you will return the „organizer‟ OneRole of the Party class,

and vice versa.

Let us first add the ManyRole<Party> to Person:

public class Person extends BaseAsset {

 public boolean isAdministrator() {

 return isAdministrator.get();

 }

 public final BooleanProperty isAdministrator = new BooleanProper-

ty() {

58

 public boolean hasDefaultValue() {

 return true;

 }

 public boolean getDefaultValue() {

 return false;

 }

 public Message getLabel() {

 return new Message() {

 String en = "Is this Person an Administrator?";

 };

 }

 };

.

.
<snip>
.
.

 public final TimestampProperty membershipDate = new TimestampPro-

perty() {

 public Message getLabel() {

 return new Message() {

 String en = "Date of Membership";

 };

 }

 };

 /* Person 1 <-> * Party */

 final public ManyRole<Party> parties = new ManyRole<Party>() {

 public Role otherRole() {

 return Party.SCHEMA.prototype().organizer;

 }

 };

 public static final AssetSchema<Person> SCHEMA = new AssetSche-

ma<Person>() {

 };

}

ManyRole:

The ManyRole<> is AIC‟ed, and specialized to Party, the other end of the relationship.

ManyRole

59

As you can see in otherRole(), returning the „organizer‟ Role is not completely trivial.

After all, we don‟t have an instance of Party at our disposal, from which we could

access the „organizer‟ Role. It is here that the public static „SCHEMA‟ object comes in

handy. (Right beneath the „parties‟ Role you can see the SCHEMA of Person being

instantiated. The same thing has been done with Party.) The Par-

ty.SCHEMA.prototype() function then supplies a (generic) ‚missing instance„ of Par-

ty, through which we can then access the „person‟ Role. Don‟t worry about Eclipse

momentarily complaining about there not being such a reference. We will now add it to

the Party class, in the same way we have just done with Person:

public class Party extends BaseAsset {

 public final StringProperty name = new StringProperty() {

 public Message getLabel() {

 return new Message() {

 String en = "Name";

 };

 }

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 public int getMaxLength() {

 return 30;

 }

 };

.

.
<snip>
.
.

 public final DomainValueProperty rateCategory = new DomainValue-

Property() {

 public Message getLabel() {

 return new Message() {

 String en = "Rate";

 };

 }

 public Domain getDomain() {

 return Domains.RateDomain;

 }

 public DomainValue getDefaultDomainValue() {

 return RateDomain._expensive;

 }

60

 /* Party * <-> 1 Person */

 final public OneRole<Person> organizer = new OneRole<Person>() {

 public Role otherRole() {

 return Person.SCHEMA.prototype().parties;

 }

 };

 public static final AssetSchema<Party> SCHEMA = new AssetSche-

ma<Party>();

}

Adding the highlighted code to your Party class should fix the Eclipse-Complaint.

Connecting Assets can be a bit confusing at first. Remember: Start with the class you

want to have connected. Then ask: What do I want to connect to? The answer to this

question is the Type of Role you need to embed as a Role. Which one: A OneRole or a

ManyRole? If there is more than one Asset on the far side of the connection, it is a

ManyRole, otherwise, it will be a OneRole. With what Role do I have to overwrite the

otherRole() function? With myself, the Asset I am connecting from, and in which I am

embedding the Role. So I return the Role pointing to me from the other side of the con-

nection.

3.8 Implementing Persistence – Registering your Assets

We are almost done with the persistence level of our application. There remains one

last act of bookkeeping: All of the assets must be registered in the „Services‟ class

located in the package de.infoasset.minsms.services. As you can see there, the

„Person‟ class has already been registered, we must now do the same thing for the

„Party‟ class:

public class Services extends GenericServices {

 private static Services instance;

 public static Services INSTANCE() {

 return instance;

 }

 protected void initData() {

 Person admin = Person.SCHEMA.findSingleAsset(new QueryE-

quals(Person.SCHEMA.prototype().isAdministrator, true));

 if (admin == null) {

 admin = Person.SCHEMA.createAsset();

 admin.eMail.set(adminMail);

 admin.firstName.set("Max");

 admin.lastName.set("Mustermann");

 admin.isAdministrator.set(true);

 admin.acceptsConditions.set(true);

 admin.password.set("ottto");

 admin.title.set(Title._mr);

Delete this!

61

 GenericAssetListener.commit();

 }

 }

 protected void initSchemas() {

 initSchema(Person.class);

 initSchema(Party.class);

 }

}

Don‟t worry about the overhead for the moment: initData() is a function called in case

you have configured your application to start with a new slate of data each time. It is a

good place to fill our Database with test-data. However, the test-data in the present

form is a relic of the „minimal123‟ project we started out with, so we delete it. We will be

filling the database with our own test-data in the next chapter. In the last line, we have

added initSchema(Party.class); This is all it takes to register the new Asset. The

Peristence Level of our web-application is now complete, and ready for use.

3.9 Implementing Persistence – Persisting Data

We will now proceed by replacing the recently deleted test-data left over from the „mi-

nimal123‟ project with some of our own test data. Let us feed the database with an in-

stance of Person, then an instance of Party, and then connect the two. So open the

Services class located in the package de.infoasset.minisms.services once

again, and add the highlighted code:

public class Services extends GenericServices {

 private static Services instance;

 public static Services INSTANCE() {

 return instance;

 }

 protected void initData() {

 Person tester = Person.SCHEMA.createAsset();

 tester.eMail.set("mymail@myserver.com");

 tester.firstName.set("Sebastian");

 tester.lastName.set("Henckel");

 tester.street.set("Kaiserdamm 28");

 tester.zipCode.set("14057");

 tester.city.set("Berlin");

 tester.country.set("Germany");

 tester.password.set("prettyplease");

 tester.membershipDate.set(new Date(108, 0, 1));

 tester.isAdministrator.set(false);

 Party fiesta = Party.SCHEMA.createAsset();

 fiesta.name.set("Test Party");

Add this!

Setting Values

Creating

62

 fiesta.location.set("Irish pub");

 fiesta.size.set(100);

 fiesta.begin.set(new Date(108, 0, 1));

 fiesta.rateCategory.set(RateDomain.cheap);

 fiesta.purchaseDate.set(new Date());

 tester.parties.create(fiesta);

 GenericAssetListener.commit()

 }

 protected void initSchemas() {

 initSchema(Person.class);

 initSchema(Party.class);

 }

}

Creating:

SCHEMA.createAsset() is used to „construct‟ a new instance of an Asset Class. The

reason why this is not done through a constructor are technical, and internal to Toro:

Through introspection, Toro has to build code inside of the Engine that will assure Da-

tabase-Persistence for all of the Property Instances of the new Asset. All you have to

remember is to instantiate new instances of Assets through createAsset() and not

through a Constructor. Using a Constructor will create unpersistent Assets, and could

cause serious trouble.

Setting Values:

Writing values to Properties of Assets is done through the [As-

set].[Property].set([value]) function. set() will take a type appropriate to the Property

you are trying to set. For „password‟ this will be a String, for „membershipDate‟ a Date,

for „isAdministrator‟ a Boolean Value.

Connecting:

Having instantiated a Person (called „tester‟) and a Party (called „fiesta‟), a connection

between these two must now be created. This is done through the line of code:

tester.parties.create(fiesta);

Alternatively, we could also have written:

fiesta.organizer.create(tester);

You only need to do one of these. Toro will worry about connecting the other end of the

relationship for you.

Persisting:

Data written into Properties with .set() is not immediately saved in the Database. In-

stead, you are allowed to have inconsistent states of your Assets. This is a good thing,

Connecting

Persisting

63

because otherwise, Toro would complain immediately after instantiating a new Asset

through createAsset(), as no values have yet been written to the Properties, and many

Properties will not comply with their Validators. Toro persists Assets automatically

when leaving a web-Page, so make sure your Assets are consistent before this hap-

pens (An exception to this rule is „TransientAsset‟, a type of Asset you will encounter

later on in the tutorial). Right now, we are not yet in the realm of web-Pages, so we

need to externally trigger a write, without leaving a web-Page: GenericAssetListen-

er.commit() does just that.

3.10 Implementing Logic – Pageful Handlers

We now proceed to implement the Logic and Presentation Strata of our application.

In Toro, these two are closely connected: Every HTML-web Page has a Java-Class

associated with it, and when you access the HTML-Page through your browser, the

first thing Toro does is to execute the methods of this Java-Class, which is called a

Handler. It is here that the Logic of your application will take place. Afterwards, the

webpage is displayed, and only then do we reach the Presentation Layer. There is a

simple naming law connecting web-Pages with Handlers: If the webpage is called:

examplePage.htm

The handler must be called:

ExamplePageHandler.java

Handlers and web-Pages must be placed in a specific package, respectively in a spe-

cific folder, of your project. The naming and location rules are summarized in the fol-

lowing table:

 Name Location

HTML File (“Page”) examplePage.htm \minisms\templates\standard\

Java File (“Handler‟) ExamplePageHandler.java de.infoasset.minisms.handler

Table 4: Naming Law for Pages and Handlers

If you want to, you can place corresponding Handlers and web-Pages in equally named

sub-packages and sub-directories of the locations shown in this table. This is a good

convention, because in large projects, Handlers and Pages dealing with completely

different aspects of your web-application will otherwise clutter up your project. General-

ly, you will find that dedicating one package for Handlers and one corresponding folder

for Pages per Asset is a good practice. In this tutorial, we will have two folder/package

sets:

64

\minisms\templates\standard\party\

de.infoasset.minisms.handler.party

for the Asset „Party‟, and

\minisms\templates\standard\person\

de.infoasset.minisms.handler.person

for the Asset „Person‟.

 Always make sure that Handler-package and Page-folder correspond.

TIP: The naming rule connecting Pages and Handlers is a law, but the practice of placing Handlers and

pages belonging to an Asset in dedicated packages and folders is a convention, which you can ignore. I

will try to make it clear in this tutorial when we are talking about laws, and when we are merely dealing

with conventions.

Before actually doing anything useful, let us build a small web-page called test-

ing.htm, with an associated Handler-Class called TestingHandler.java, and see

how this works:

Create the following testing.htm file in the \minisms\templates\standard\ directory of

the project:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type" content="text/html; char-

set=UTF-8"/>

 <script type="text/javascript" src="/__/jquery.js"></script>

 <script type="text/javascript" src="/__/platform.js"></script>

 <link rel="stylesheet" type="text/css" href="/__/Toro-

platform.css"/>

 <title>Toro Tutorial</title>

 </head>

 <body>

 <div>

 <h1>TESTING</h1>

 </div>

 </body>

</html>

This is a basic HTML Page [Se08].

The highlighted HTML code binds two Java-Script libraries and a CSS stylesheet into

your code which Toro depends upon (not in this simple „Test-Page‟, but later on).

TIP: The Toro project „platform-toro which was imported into Eclipse during the installation is a „fall-

back project‟ which the framework application looks to if you have not supplied an As-

set/Script/StyleSheet etc. of your own. In case of the „Person‟ BaseAsset, we chose to define our own

version, and overrode the Asset supplied by „toro-platform‟. In case of jquery.js, platform.js and Toro-

65

platform.css, we wish to fall back on the resources supplied by „platform-toro‟, so no further action is

needed. Toro will look for the files in: \minisms\templates\standard__\ first. Not finding them there, it

will then look in \platform\templates\standard__\.

Next, create the corresponding Handler file TestingHandler.java class in the

de.infoasset.miniparty.handler package of the project:

public class TestingHandler extends Handler {

 final SimplePage TESTING_PAGE = new SimplePage() {

 };

 public Station doBusinessLogic() throws Exception {

 System.out.println("TestingHandler dBL()");

 return TESTING_PAGE ;

 }

}

Let us dissect this code line by line:

First, all Handlers will inherit from the class Handler. We already talked about the nam-

ing law: Capitalize the HTML File-Name and append „–Handler‟.

Next comes an AIC of type SimplePage. Every pageful Handler will have one of these.

In order to make Toro happy, please make the reference „final‟. What is this Simple-

Page object (which we could have called anything, but we chose to call „TEST-

ING_PAGE‟)?

It represents the HTML page the browser is supposed to show. By overwriting func-

tions in it, we can tell Toro about run-time substitutions we want to have performed

inside the HTML page. In this particular page, we don‟t want anything to be done: The

testing.htm is supposed to be shown just the way it is. And because of the naming

law, we don‟t even have to tell Toro how it is called. Toro can figure this out from the

Class Name.

Next, we will discuss the doBusinessLogic() function which every Handler has. It is

here that you can do whatever you feel like – this is where your application is individua-

lized. In our case, we just print out some text on the Console. In the end, we return the

SimplePage we want to have displayed.

Now let us run this application. Run „minisms‟ in Eclipse. The Eclipse Console will

prompt you whether you really want to reset the Database, which we affirm by typing in

„Y‟:

66

Figure 30: Launching the Toro application

Toro is now running, and ready to display the „testing.htm‟ page. Enter:

http://localhost:8083/testing

Into your browser URL-field.

This is what you should see:

Figure 31: A simple web-page with Toro

http://localhost:8083/testing

67

Checking the „Console‟ Tab in Eclipse, you will also see that doBusinessLogic() has

faithfully output: “TestingHandler dBL()”.

3.11 Implementing Logic – Pageless Handlers

A web-application does not only consist of HTML pages and their corresponding Han-

dlers. Sometimes, you will wish to perform application-logic without displaying a web-

page. Of course, in the end, a web-page will be displayed, but which one might depend

on user-input, or the state of your application. For this purpose, Toro has „Pageless

Handlers‟: These are also Handlers, but they do not have a SimplePage associated

with them. Instead, they have one or several instances of the AIC Line. A Line, as the

name suggests, is a connection to another Handler, which will take over from the page-

less Handler. This Handler can be another pageless Handler, or a pageful Handler.

Lines and SimplePages are both subclasses of the more general class Station, the

type doBusinessLogic() is expected to return. In case of a pageless Handler, doBu-

sinessLogic() returns an instance of Line, in the pageful Handlers an instance of

SimplePage. An example for this is the login process for our web-application. Once the

login-form has been read, we check to see whether the login was successful – in which

case we proceed to the ListParty page, or whether not: In this case, we return to the

Login page:

Login
Submit Login

Pageless Handler

Submit Login

Login Incorrect

ListPartyLogin Correct

Figure 32 Processing a Login Form with a pageless Handler

As you can see in Figure 32) the “weigh-station” between the pageful „Login‟ and „List-

Party‟ pages is the pageless „SubmitLogin‟ page. Let us now create these three Han-

dlers and their corresponding pages.

First, let us create login.htm:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type" content="text/html; char-

set=UTF-8"/>

 <script type="text/javascript" src="/__/jquery.js"></script>

 <script type="text/javascript" src="/__/platform.js"></script>

 <link rel="stylesheet" type="text/css" href="/__/Toro-

platform.css"/>

 <title>Toro Tutorial</title>

68

 </head>

<body>

You must login....

<p>

 <form action="/submitLogin">

 Login: <input type="text" name="login"/>Password: <input

type="password" name="password"/>

 <input type="submit" value="Submit"/>

 </form>

</p>

</body>

This is a simple HTML page with a form containing two fields: A Login, and a Pass-

word. Save this file outside of an Asset Folder. It does not belong to any specific Asset:

\minisms\templates\standard\login.htm

Next, let us create a placeholder for the Party List. Later on, we will show how to re-

trieve the parties associated with a specific person from the Database, and list them.

Right now, however, we want to learn how to use pageless Handlers, and just need a

dummy.

\minisms\templates\standard\party\list.htm:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type" content="text/html; char-

set=UTF-8"/>

 <script type="text/javascript" src="/__/jquery.js"></script>

 <script type="text/javascript" src="/__/platform.js"></script>

 <link rel="stylesheet" type="text/css" href="/__/Toro-

platform.css"/>

 <title>Toro Tutorial</title>

 </head>

<body>

May parties will be listed here....

</body>

This file is clearly associated with the „Party‟ Asset, and should be stored appropriately

in the party folder.

To finish this up, let us also create the corresponding dummy Handler. It must be lo-

cated in the package de.infoasset.minisms.handler.party, and called ListHand-

ler:

public class ListHandler extends Handler {

69

 final SimplePage LISTPAGE = new SimplePage() {

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 return LISTPAGE;

 }

}

We now write the Handler associated with the Login Page. This is a pageful Handler,

containing an instance of SimplePage. It does absolutely nothing. However, do not

believe that you can therefore omit the Handler. Toro still expects every page to have a

Handler, and will not work without one.

public class LoginHandler extends Handler {

 final SimplePage LOGINPAGE = new SimplePage() {

 };

 public Station doBusinessLogic() throws Exception {

 return LOGINPAGE;

 }

}

Save this Handler in the Handler location corresponding to:

 \minisms\templates\standard\login.htm

which is the package: de.infoasset.minisms.handler

Unsurprisingly, the Handler associated with the List Page is very similar, and just as

boring:

public class ListHandler extends Handler {

 final SimplePage LIST_PAGE = new SimplePage() {

 };

 public Station doBusinessLogic() throws Exception {

 return LIST_PAGE;

 }

}

However, you have to place it in a different package, corresponding to the „Party‟ As-

set:

de.infoasset.minisms.handler.party

Let us now come to the topic of this chapter, the pageless Handler, which is called

when we push the Submit Button of the login.htm form. As you can see in the HTML

code, pushing the submit button forwards to a (non-existent) HTML page called sub-

mitLogin Following the naming law, Toro will look for a Handler called SubmitLogin-

Handler. This is the pageless Handler. Just as the LoginHandler, this Handler is also

70

not associated with a specific Asset, and should therefore be placed in the

de.infoasset.minisms.handler package.

public class SubmitLoginHandler extends Handler {

 private String login;

 private String password;

 @Override

 public void getParameters(ParameterReader parameters) {

 login = parameters.getString("login");

 password = parameters.getString("password");

 }

 final Line SUCCESS = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 final Line FAILURE = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(LoginHandler.class);

 }

 };

 private Person candidate;

 private boolean noLogin;

 private boolean notRegistered;

 private boolean pwdError;

 @Override

 public Station doBusinessLogic() throws Exception {

 if (login == null || login.length() == 0) {

 noLogin = true;

 return FAILURE;

 }

 candidate = Person.SCHEMA.findSingleAsset(new QueryE-

quals(Person.SCHEMA.prototype().eMail, login));

 if (candidate == null) {

 notRegistered = true;

 return FAILURE;

 }

 if (!candidate.password.get().equals(password)) {

 pwdError = true;

Get Parameters

Success Line

Failure Line

Retrieve Customer from DB

Failure

Failure

71

 return FAILURE;

 }

 GenericSessionLocal.getSession().setUser(candidate);

 return SUCCESS;

 }

}

In respect to the declaration line, a pageless Handler does not look any different from a

pageful Handler: Both are derived from Handler.

Get Parameters:

Every Handler can – but is not obliged to – have a function called getParameters(). If

this function is defined by you, the programmer, the framework will call it for you before

anything else happens. The Framwork feeds it an argument of Type ParameterRead-

er, which will contain all the parameters passed to the Handler via HTTP from the pre-

vious page. We always come to this Handler via the „Login‟ Page, and the form submit-

ted in this page passed two parameters, called „login‟ and „password‟. We assign them

to the two private Strings „login‟ and „password‟, fetching them from the Parameter-

Reader with the method .getString(), which, as an argument, takes the name of the

parameter passed via the GET method.

Retrieve Customer from DB:

We will have much more to say about Database Access in later chapters of this tutorial,

but the Logic of this Handler – deciding whether to grant access to the system or not –

cannot be implemented without checking with the Database whether the user has en-

tered the correct login and password. To do this, we query the Database by creating a

Query Object. Several different Flavors of Queries exist – you can check on them in

Eclipse‟s Hierarchy window. Right now, we want to see if there is a customer whose

email address – which is also uses as login – equals the login given in the login page:

Person.SCHEMA.findSingleAsset(new QueryEquals (Person.SCHEMA.prototype().eMail, login))

The QueryEquals object is created with a Constructor taking two parameters: The first

one is a Property of a certain BaseAsset we want to compare to a value. The second

one is the value we want to compare it with. In order to supply the first argument, we

need an instance of Person, something we don‟t have at this time. We can get a

„dummy‟ aka „prototype‟ instance by calling the .SCHEMA.prototype() method of Per-

son. The second argument is the login name the user entered at the login page. We

poll the Database with our new Query by calling the .SCHEMA.findSingleAsset() me-

thod, with our newly constructed QueryEquals as an argument. As the email of each

user is unique, we will not find more than one Asset, and can therefore use the find-

Success

72

SingleAsset() method, which returns null if nothing is found, or a Person instance if

something is found.

We now have now retrieved our Person from the Database. If no one was found, or the

password is wrong, we set a flag, and Return the „FAILURE‟ Line.

Failure and Failure Line:

It is here that we use the second type of Station a Handler can return as an argument:

Pageful Handlers return SimplePages, pageless Handlers return Lines. It is a Line

called „Failure‟ that we return here. A Line does not show a HTML page, like a Sim-

plePage, instead, it forwards to another Handler:

 final Line FAILURE = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(LoginHandler.class);

 }

As you can see, doing this is a bit more elaborate than in SimplePage, where the nam-

ing law tells Toro which HTML page to show. In Line, you must override a method

called next(), which the framework will call when appropriate. next() expects a For-

warder, an object which Toro will supply, and which takes care of passing control on to

the next Handler. The most obvious way to do this is by calling its .go() method, which

you call with the class type of the Handler you wish to forward to.

Success and Success Line:

Of course, we hope that the user trying to log into our service is honest: In this case,

we set the user via:

GenericSessionLocal.getSession().setUser(candidate);

In the future, we will always be able to find out whom the current session belongs to.

As with any web-Service, many instances of our application can be running simulta-

neously, instantiated by different users, and knowing which user owns which session is

important.

The „SUCCESS‟ Line is just like the „FAILURE‟ Line, with the obvious difference that it

forwards to a different Handler.

3.12 Implementing Presentation – Print Substitutions

As you can see, failing to log in successfully means that control is once again passed

to the LoginHandler. However, at this point, we would like to tell the user his mistake:

Be it that he is not registered, or that he has entered the wrong password. We do this

by displaying a certain String in the login.htm page. However, we want this String to

73

be flexible – depending on the error that occurred, we wish to replace this string with an

appropriate message at runtime. In Toro, you mark a piece of HTML-code you will want

to replace with a string at runtime with an opening and closing „$‟ sign, as in:

$this_is_a_PrintSubstitution$

Our Handler will then replace everything between the $ and the $ with a text at runtime.

First, let us insert our Print Substitution into the login.htm file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type" content="text/html; char-

set=UTF-8"/>

 <script type="text/javascript" src="/__/jquery.js"></script>

 <script type="text/javascript" src="/__/platform.js"></script>

 <link rel="stylesheet" type="text/css" href="/__/Toro-

platform.css"/>

 <title>Toro Tutorial</title>

 </head>

<body>

You must login....

$errorMessage$

<p>

 <form action="/submitLogin">

 Login: <input type="text" name="login"/>Password: <input

type="password" name="password"/>

 <input type="submit" value="Submit"/>

 </form>

</p>

</body>

This is the first thing we have to do. Now, we still have to supply the LoginHandler

with a corresponding piece of code that takes care of replacing $errorMessage$ with

an appropriate String. Here is the new Listing of LoginHandler:

public class LoginHandler extends Handler {

 private String errorMessage;

 @Override

 public void getParameters(ParameterReader parameters) {

 errorMessage = parameters.getString("errorMessage");

 }

 final SimplePage LOGINPAGE = new SimplePage() {

 @Override

 public void putSubstitutions(Template template) {

 template.put("errorMessage", new PrintSubstitution() {

PrintSubstitution

74

 @Override

 public String print() {

 return Handler.notNull(errorMessage);

 }

 });

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 return LOGINPAGE;

 }

}

 In getParameters(), we retrieve the Error-Message passed to the LoginHandler from

SubmitLoginHandler. (We haven‟t implemented this functionality in the SubmitLo-

ginHandler just yet – we will do so right away).

PrintSubstitution:

A SimplePage which wants to substitute placeholders with text needs to override the

putSubstitutions() method. When rendering the page, Toro will call this method and

pass an argument of type Template. This object, in essence, is the webpage asso-

ciated with the Handler through the naming law. By calling the .put() method of the

Template object, we replace a specific placeholder – named in the first .put() argu-

ment through a String, here “errorMessage” – with a Substitution, specified through an

instance of PrintSubstitution in the second .put() argument. This seems verbose, put

the template-engine should take care of most of the typing: Just indicate what you want

by typing a couple of letters and then press [ctrl]+[space].

Excursion:

“Verbosity, Conciseness, Clarity and Obscurity”

A common complaint about the Toro framework is that it is verbose. That is, it uses many

words and symbols to accomplish its task. The Anonymous Inner Class mechanism, and me-

thod overriding, tend to be lengthy. For example, telling a StringProperty that its Maximun

length is 100 involves the following code:

public final StringProperty country = new StringProperty() {

 @Override

 public int getMaxLength() {

 return 100;

 }

 };

75

In classic Java, the same functionality might look something like this:

country = new StringProperty(maxLength=100);

Verbosity has two potential disadvantages: It can be hard to write, and it can be hard to read.

Let us consider the first criticism:

Verbose code is hard to write.

Why? Because you need to type a lot of text. However, modern IDEs have code-completion

systems that ‘rubberstamp’ text-blocks into your source-code when you only hint at what you

want to do. Something that took hundreds of keystrokes to accomplish in earlier times can

now be done in a few dozen keystrokes by using auto-completion. Toro-specific substitution

templates are available. So verbose code no longer has to be hard to write.

Verbose code is hard to read.

This does not have to be true. In general, writing more code – like writing more documentation

– should make code easier to read. In reading code, clarity is of essence. More code can mean

more clarity, just as more words in a text can make an idea clearer. The opposite of Verbosity,

Conciseness, can, in many cases, make code obscure: Humans have a tough time figuring out

what the code does, even if a computer does not. But even computers can have problems in-

terpreting concise code. They may be able to compile it, but refactoring and tooling are clumsy

and error-prone. A verbose structure can help an IDE or framework to make sense out of the

code, and enable meaningful highlighting of errors, reliable refactoring and the use of tools

that help to view the whole project form a more abstract perspective.

As is typical of Toro, an instance of PrintSubstitution is AIC‟ed on the spot. The subs-

titution String will be generated at run time inside of the .print() method, which you

need to override inside of the PrintSubstitution AIC. As a return value, .print() ex-

pects the String which will replace the placeholder in the HTML page. Here, we simply

return the error message that was passed to us from LoginHandler. In case none was

passed, the value of „errorMessage‟ will be null. The static .notNull() method of Hand-

ler will take care of this by replacing a possible null value with the empty-String.

TIP: Toro provides you with a useful tool to verify if you have implemented Substitutions for all HTML

Placeholders in your Handler, the „Consistency Checker‟. To show this tool, select: Window->Show

View->Other->IMF->Consistency, and drag the appearing tab to a location comfortable to you.

 To now find out if a Substitution is missing, open the Handler in the „Edit‟ Window and make sure it is

selected. Then, choose the „Conistency‟ Tab from the Views. At this point, checking Consistency will not

give any negative results, so let us sabotage the LoginHandler by replacing:

 template.put("errorMessage", new PrintSubstitution() {

76

 @Override

 public String print() {

 return Handler.notNull(errorMessage);

 }

 });

with:

 template.put("XXXerrorMessage", new PrintSubstitution() {

 @Override

 public String print() {

 return Handler.notNull(errorMessage);

 }

 });

At this point, LoginHandler is providing a PrintSubstitution for a PlaceHolder called $XXXerrorMes-

sage$” – which doesn‟t exist. This will do no harm, but not providing a PrintSubstitution for $errorMes-

sage$ will, and it is for this error we have introduced that we want to check. Run the Consistency Checker

by clicking on the check-mark symbol in the right-hand top corner of the Consistency Checker:

Figure 33: Checking for Consistency

 Clicking your way through the Error Decorator popping up in the Consistency Checker (or clicking on

the Error-Decorator Symbol in the right-hand top corner of the Consistency Checker) will tell you what is

missing: A PrintSubstitution for $errorMessage$.

77

3.13 Implementing Logic – Setting Parameters

What remains to be done is to ensure that appropriate Error-Messages are actually

passed on. We do this my modifying SubmitLoginHandler:

public class SubmitLoginHandler extends Handler {

 private String login;

 private String password;

 @Override

 public void getParameters(ParameterReader parameters) {

 login = parameters.getString("login");

 password = parameters.getString("password");

 }

 final Line SUCCESS = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 final Line FAILURE = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(LoginHandler.class);

 }

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setMessage("errorMessage", noLogin, new Mes-

sage() {

 String en = "Login missing.";

 });

 parameters.setMessage("errorMessage", notRegistered, new

Message() {

 String en = "You entered an unknown e-mail address.

Please try another e-mail address.";

 });

 parameters.setMessage("errorMessage", pwdError, new Mes-

sage() {

 String en = "You entered a wrong password. Please try

again.";

 });

 }

 };

 private Person candidate;

Set Parameters

78

 private boolean noLogin;

 private boolean notRegistered;

 private boolean pwdError;

 @Override

 public Station doBusinessLogic() throws Exception {

 if (login == null || login.length() == 0) {

 noLogin = true;

 return FAILURE;

 }

 candidate = Person.SCHEMA.findSingleAsset(new QueryE-

quals(Person.SCHEMA.prototype().eMail, login));

 if (candidate == null) {

 notRegistered = true;

 return FAILURE;

 }

 if (!candidate.password.get().equals(password)) {

 pwdError = true;

 return FAILURE;

 }

 GenericSessionLocal.getSession().setUser(candidate);

 return SUCCESS;

 }

}

Set Parameters:

Every Line can have a .setParameters() method. It is here that the Parameters are set

in the URL which forwards to the next Handler, which can then read them out with

.getParameters(). Toro will pass an instance of ParameterWriter to .setParameters().

It is this object in which we write the parameters that should be passed via

.setMessage(). In SubmitLoginHandler, we have used the three-argument version of

.setMessage() of ParameterWriter: The first argument, a String, indicates the name of

the parameter to be passed (in our case, always “errorMessage”), the second argu-

ment is a Boolean which decides whether the parameter should be set at all. In case

the Boolean is „true‟, the parameter is set according to the Message object given in the

third argument. We have encountered the Message class before: You AIC it on the

spot, and overwrite Strings, one for every language. (In the Tutorial, we only write the

English „en‟ String).

The sequence in which the functions are overridden has no influence on the order in

which they are executed: .getParameters() is executed first, then

.doBusinessLogic(), and finally .setParameters().

At this point, you have everything in place to login successfully. Try it: Start up „min-

isms‟, open the Browser of your choice, and go to: http://localhost:8083/login

The login and password can be seen from the Test Data we entered in chapter (3.9)

(Login: mymail@myserver.com, password: prettyplease).

http://localhost:8083/login
mailto:mymail@myserver.com

79

3.14 Implementing Presentation – Substitution-Functions and

Template Substitutions

In many web-Pages, certain elements return over and over again. The HTML overhead

is a good example, or a menu bar at the top of each page: The Pages may change, but

these elements stay the same. Instead of copying and pasting these chunks of HTML

code each time, it is a good practice to rubberstamp them into your HTML code

through TemplateSubstitutions. These work like PrintSubstitutions, only that they

copy HTML files into their placeholders, not Strings. In this way, changes in these rub-

berstamped elements propagate through all pages, changes which would otherwise

have to be manually corrected in each location. In order to place identical Substitutions

in all Pages, we need a Substitution that does not belong to a specific Handler, but

works for all Pages. This is where Substitution-Functions come into play. They are

available to all Pages, and can also digest arguments passed to them (we will not ex-

plain the argument-passing mechanism in this tutorial).

What we want to do is to replace the header on top of every HTML page:

header.htm:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type" content="text/html; char-

set=UTF-8"/>

 <script type="text/javascript" src="/__/jquery.js"></script>

 <script type="text/javascript" src="/__/platform.js"></script>

 <link rel="stylesheet" type="text/css" href="/__/Toro-

platform.css"/>

 <title>Toro Tutorial</title>

 </head>

<body>

with a simple:

$header()$

The above Substitution-Function should then rubberstamp the content of header.htm

into the web page.

So, first of all, we should create a HTML file called header.htm with the header code

given above. This is a template, and must be placed in the

\minisms\templates\standard\ folder. As this template will be used in a Subs-

titution Function, we should place it in an appropriately named folder, e.g.

\minisms\templates\standard\functions\.

When Toro encounters a Print-Function Placeholder, i.e. something like $header()$, it

looks for an identically named function in the Functions class, which is located in the

de.infoasset.minisms.handler package. It is here that we have to supply the

80

header() function – a Java function which returns a Substitution for the placeholder

$header()$.

So let us put the following class Functions.java into the

de.infoasset.minisms.handler package:

public class Functions {

 public static TemplateSubstitution header(FunctionParameters pa-

rams) {

 return new TemplateSubstitution() {

 @Override

 public void specifyTemplate(TemplateFinder templateName) {

 templateName.useStaticName("functions/header");

 }

 };

 }

}

As you can see, .header() returns a TemplateSubstitution (it could also have re-

turned a different kind of Substitution, e.g. a PrintSubstitution, but we want to insert a

piece of HTML code from a file here, so TemplateSubstitution is the way to go). The

TemplateSubstitution is AIC‟ed on the spot, and you override its specifyTemplate

method. Toro will call this method when the time comes to replace the placeholder, and

pass it an object of type TemplateFinder. TemplateFinder has several methods of

finding its template – we useStaticName(), and specify the relative path of head-

er.htm.

We can now proceed to replace the HTML overhead in all of our previously created

pages with $header()$. You should do so now, because we will be modifying the head-

er.htm file, and do not want to do so for each page we create, but only in one place.

As an exercise, you should now try and replace the </body> tag at the end of each

HTML page with a $footer()$ function.

3.15 Implementing Presentation – Conditional Substitutions

We often want to show information on a web-page only if a certain condition is met. For

example, in our application, we would like to have a link at the top of the page referring

to all of the User-Settings if a User is logged in. If no User is logged in, we do not want

to display such a link. This functionality is supported in Toro through a type of Substitu-

tion called ConditionalSubstitution.

In the HTML code, we protect a region which we only want to display conditionally with

the following Syntax:

$[conditionGuard$

Protected region – only displayed if condition is „true‟

$conditionGuard]$

81

Everything between the $[conditionGuard$ and the $conditionGuard]$ symbols is not

rendered if the condition should prove to be false.

Which condition?

Just as with a PrintSubstitution placeholder such as $errorMessage$, where the

Handler associated with the web-Page in which the placeholder appears must provide

a .put() with a PrintSubstitution (see chapter (3.12)), a condition-guard appearing in a

web-Page must have a corresponding .put() providing a ConditionalSubstitution.

So let us assume we wanted the condition guard to always be true, then we would pro-

vide the following ConditionalSubstitution in the corresponding Handler of that web-

page:

 final SimplePage PAGE = new SimplePage() {

 @Override

 public void putSubstitutions(Template template) {

 template.put("conditionGuard", new ConditionalSubstitution(){

 @Override

 public boolean test() {

 return true;

 }

 });

 }

 };

As you can see, the center-piece of a ConditionalSubstitution is the Boolean test()

function, which you must override, and which implements your test-logic.

In our case, we will not be hooking into the .putSubstitutions() of a specific Handler‟s

SimplePage to implement our ConditionalSubstitution: We want the conditional Us-

er-Link to appear in all of our web-pages, and will therefore use a Conditional Substitu-

tion-Function, available to all pages, defined in Functions.java in the

de.infoasset.minisms.handler package:

public class Functions {

 public static TemplateSubstitution header(FunctionParameters pa-

rams) {

 return new TemplateSubstitution() {

 @Override

 public void specifyTemplate(TemplateFinder templateName) {

 templateName.useStaticName("functions/header");

 }

 };

 }

 public static ConditionalSubstitution anonymous(FunctionParameters

params) {

 return new ConditionalSubstitution() {

 public boolean test() {

Conditional Substitution

82

 return GenericSessionLocal.getUser() == null;

 }

 };

 }

 public static PrintSubstitution currentUserName(FunctionParameters

params) {

 return new PrintSubstitution() {

 @Override

 protected String print() {

 Person p = GenericSessionLocal.getUser();

 return p == null ? "" : p.eMail.get();

 }

 };

 }

}

Conditional Substitution:

As, discussed, you can see, .test() will return „true‟ if no user is logged in.

currentUserName Substitution:

We have also added a new PrintSubstitution called „currentUserName‟ to Func-

tions.java, which supplies us with the email of the user, should he be logged in.

Now let us put the conditional substitution placeholder into our header.htm template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type" content="text/html; char-

set=UTF-8"/>

 <script type="text/javascript" src="/__/jquery.js"></script>

 <script type="text/javascript" src="/__/platform.js"></script>

 <link rel="stylesheet" type="text/css" href="/__/Toro-

platform.css"/>

 <title>Toro Tutorial</title>

 </head>

<body>

 $[anonymous()$

 <h1>Toro Tutorial</h1>

 $]anonymous[$

 <p>

 You are logged in as $currentUserName()$ [Logout]

 </p>

 <h1>Toro Tutorial</h1>

 $anonymous]$

currentUserName Substitution

83

This looks slightly more complicated than the Conditional-Substitution placeholder you

saw earlier. Actually, the syntax of Conditional-Substitution placeholders is richer than

a simple on-off alternative:

$[conditionGuard$

Protected region – only displayed if condition is „true‟

$]conditionGuard[$

Protected region – only displayed if condition is „false‟

$conditionGuard]$

Applied to our example, this means that if the User is anonymous, i.e. not logged in, we

will display a heading of „Toro Tutorial‟.

In case he is logged in, i.e. the „anonymous‟ condition is false, we do not display the

„Toro Tutorial‟ heading, but instead two links, one linking to a page where he can edit

his User Data, and one logging him out of the system. (We haven‟t provided Handlers

or Pages for these two links yet – we will do so shortly.)

Inside of the link you can see two other Substitution-Functions being used:

$currentUserId()$ and $currentUserName()$

We just inserted $currentUserName()$ into Functions.java, so you know what it

does, but where does $currentUserId()$ come from, which we use to pass an argument

to the (still not implemented) EditHandler? In chapter (3.10), we mentioned the „fall-

back‟ project „platform-toro, which also includes several Print-Functions, among them

$currentUserId()$. If you haven‟t supplied a Print-Function appearing in a web-page,

Toro will look to „platform-toro, and only if it does not find it there will it complain. $cur-

rentUsiderId()$ will be replaced with the id-Property value of the current User. Actually,

an $anonymous()$ Print-Funciton is also supplied by „Toro-platform‟, so we did not

really have to implement it ourselves – but we did so anyway, to learn about Conditio-

nalSubstitutions.

3.16 Implementing Presentation – Editing-Forms for Assets

At this point, we can log into our application using the test-account. The data for this

test-account was persisted in the Database in the initData() method of the Services

class (see chapter (3.9)). However, how do we let the user edit this data?

In the previous chapter, we inserted a link which we want to point to a page in which

this data can be edited. Building this page and its Handler will be the goal of this chap-

ter.

84

The following State-Diagram shows where this functionality fits in:

Logged-In-State Submit Person

Pageless Handler

Edit Person

Data Correct

Edit Account Submit

Data Incorrect

Figure 34: Editing an existing account

‚Logged-In-State„ is a super-state representing all pages that have the link which we

placed into the header.htm with the Conditional Substitution.

Everything we do here is has to do with the Person Asset, so we will place the Edi-

tHandler into the de.infoasset.minisms.handler.person package:

public class EditHandler extends Handler {

 private String accountId;

 private Person account;

 @Override

 public void getParameters(ParameterReader parameters) {

 accountId = parameters.getString("id");

 }

 final SimplePage EDITPAGE = new SimplePage() {

 @Override

 public Asset getAsset() {

 return account;

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 account = Person.SCHEMA.getAsset(accountId);

 return EDITPAGE;

 }

}

The main job of EditHandler is to retrieve the correct Person object from the Database

and supply this object to the web-page, which will then display it in a web form (using a

new Substitution-Function we will explain next).

Obtain the Id:

If you look into the link to the EditHandler (remember: It might look like a link to a web-

Page, but it actually links to a Handler), you see that a Parameter called „id‟ is passed.

This parameter is retrieved here. Every Asset has a special Property of type IdProper-

Obtain the Id

Obtain the Asset

Return the Asset

85

ty called „id‟, which is a Toro-generated String uniquely identifying every instance of an

Asset. You cannot (and should not!) .set() this „id’ yourself, Toro does it for you, but it is

a very convenient value to pass between Handlers via .getParameters() and

.setParameters().

TIP: How you name the parameter which identifies the Asset which is passed to the following Handler is,

of course, completely up to you, there is now law, but a good convention is to simply call it „id‟ – and to

not be any more verbose than this. From the context of the receiving Handler, it should be completely

clear what kind of „id‟ is being passed – if it is a Handler dealing with Party, it will be a party-id. If it is a

Handler dealing with Person, then it is a person-id. Not sticking to this convention can be a bother, be-

cause you will always have to refer to the link in the html file from which the parameter was passed in

order to parse the correct parameter in getParameters().

Obtain the Asset:

Here we retrieve the Asset with the SCHEMA.getAsset() of Person. getAsset() ex-

pects an „id‟-value, and we use the one passed to this Handler. Passing a whole Asset

directly between Handlers is not supported in Toro: You must always pass a unique

identifier in the URL, and then retrieve the Asset from the DB using it. This unique iden-

tifier is usually the „id‟, but does not necessarily have to be. You can choose any key-

value of your Asset.

Return the Asset:

Here we encounter a new function of SimplePage which we may override if we wish

to: getAsset(). In it, we simply return a single Asset which we want to put at the dis-

posal of the web-page. We return our freshly retrieved „account‟, the Asset passed to

us by the previous Handler.

The associated HTML page associated with this Handler is very concise, and almost

self explanatory. You must call it edit.htm and place it in the

\minisms\templates\standard\person\ folder:

$header()$

<form method="post" action="/person/submit?id=$id.value()$"

class="Toro-edit-form">

 $edit(exclude=isAdministrator,membershipDate)$

</form>

$footer()$

Before further commenting on this HTML code, let us run „minisms‟, log in, and then

click on the link (mymail@myserver.com) at the top guiding us to the web-page in

question:

86

Figure 35: The Edit-Page of the Person Asset

As you can see, the $edit(exclude=isAdministrator,membershipDate)$ Substitu-

tion-Function does a lot of work: For every Property in the Asset we passed to its

SimplePage, $edit()$ will display an edit-field preceded by the Label we gave that

Property (look back to chapter (3.4) to see how we labeled Properties). Also, it dis-

plays the current values of the Asset in the edit-fields. Properties we flagged as manda-

tory with a NotNullValidator are decorated with a *. The PasswordProperty is dealt

with appropriately in a fully automatic way: It is not displayed, and two edit-fields make

sure that it is typed in correctly.

As arguments to $edit()$, we exclude the Propertys „isAdministrator‟ and „member-

shipDate‟, which are not displayed. This makes sense: We do not use the „isAdmini-

strator‟ functionality in this tutorial-application, and „membershipDate’ is a value that is

set by the system, not the user.

Two short notes on the HTML form used here: Toro depends on certain .css classes to

display its forms correctly, and you must assign class="Toro-edit-form” in the form

tag. The action this form takes is to link to a submitHandler which we have not written

yet – we will do so shortly. As an argument, we pass a parameter „id‟, which we assign

the „id‟ of the Asset associated with this page via $id.value()$: All Property values of

an Asset associated with a Page can be displayed with the $.value()$ Substitution

function – you just have to place the name of the Property you wish to display before

the „dot‟, e.g. $id.value()$ or $email.value()$.

Let us now write the submitHandler for the Person Asset. We have placed this Hand-

ler in the de.infoasset.minisms.handler.person package, following our conven-

tion of placing all Handlers dealing with on Asset into a dedicated package:

87

public class SubmitHandler extends Handler {

 private String accountId;

 private Person newAccount;

 @Override

 public void getParameters(ParameterReader parameters) {

 accountId = parameters.getString("id");

 }

 final Line VALID = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 Line INVALID = new Line() {

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setString("id", newAccount.id.get());

 }

 @Override

 public void next(Forwarder f) {

 f.go(EditHandler.class);

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 newAccount = Person.SCHEMA.getAsset(accountId);

 newAccount.makeTransient();

 newAccount.applyParameters();

 if (newAccount.isValid()) {

 newAccount.makePersistent();

 GenericSessionLocal.getSession().setUser(newAccount);

 return VALID;

 } else {

 return INVALID;

 }

 }

}

There is little new here: It is a pageless Handler with two Lines, the „VALID‟ Line being

returned by doBusinessLogic() in case the Asset turns out to comply to all Valida-

tors, the „INVALID‟ Line is returned in case not. The „INVALID‟ Line bounces the user

back to the Edit web-Page, passing the „id’ of the invalid Asset back to the EditHand-

ler. The $edit()$ Function-Substitution of the Edit-Person web-page will then take care

of highlighting the faulty Properties, and displaying the error Messages that are asso-

ciated with the offended Validators.

Checking Validity

88

It is in the doBusiness() method that something new appears:

Checking Validity:

With the .makeTransient() method of an Asset, we (temporarily) allow an Asset to take

on inconsistent values in its Properties, i.e. values offending the attached Validators.

Once we have verified the Asset‟s consistency, we can then persist it with

.makePersistent(). Checking for consistency is done with the .isValid() method of an

Asset, which checks for compliance with all Validators.

After persisting the changes in Person, we set the Session-User once again with:

 GenericSessionLocal.getSession().setUser(newAccount);

This is superfluous if we only changed the Person data, but we must also account for

the case in which we arrive at this SubmitHandler from a newly created account! We

have been logging into the application through the dummy-account we set up for test-

ing purposes. Now we should also provide a functionality which allows the user to set

up his own, new account. In order to do this, let us provide a link to this functionality in

our login.htm:

$header()$

You must login....

$errorMessage$

<p>

 <form action="/submitLogin">

 Login: <input type="text" name="login"/>Password: <input

type="password" name="password"/>

 <input type="submit" value="Submit"/>

 </form>

 [New Account]

</p>

$footer()$

As you can see, I assume you have replaced the leading and trailing HTML code with

Substitution-Functions.

The link we have added to the login.htm page leads us to a pageless Handler called

NewHandler. Place it in the de.infoasset.minisms.handler.person package:

public class NewHandler extends Handler {

 final Line EDIT = new Line() {

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setString("id", newAccount.id.get());

 }

89

 @Override

 public void next(Forwarder f) {

 f.go(EditHandler.class);

 f.noRedirect();

 }

 };

 private Person newAccount;

 @Override

 public Station doBusinessLogic() throws Exception {

 newAccount = Person.SCHEMA.createTransientAsset();

 return EDIT;

 }

}

The only point of NewHandler is to create a new Person which we can then pass to

the EditHandler.

Creating a transient Asset:

The .createTransientAsset() method of an Asset‟s „SCHEMA’ is used to supply a

transient Asset. In chapter (3.9) we encountered .createAsset(). The difference be-

tween a transient and a normal Asset lies in the fact that a transient Asset is not per-

sisted until explicitly told to do so with the Asset‟s .makePersistent() method. A normal

Asset is persisted automatically once the creating Handler is left, and the ensuing

Handler is called. In case of the NewHandler, the newly created Asset „newAccount‟ is

empty (and therefore inconsistent), and we do not want to persist it when crossing

Handler borders. Making it persistent will be left to the SubmitHandler.

No Redirection:

The .noRedirect() method of the Forwarder is invoked in case you do not want the

browser‟s URL field to display the URL of the resource the Forwarder is heading to. In

our case, we will end up on the http://localhost:8083/person/edit page, but the browser

will still display the URL of the preceding Handler, i.e.

http://localhost:8083/person/new. This makes more sense – the difference is rather

cosmetic.

3.17 Implementing Logic – Queries on the Database

In chapter (3.11) we introduced a dummy page and Handler

\minisms\templates\standard\party\list.htm, and the corresponding Lis-

tHandler. Now, we want to fill these dummies with life. After a successful login, this

page should display a complete list of all the parties belonging to the user. In a first

step, we must retrieve all parties associated with the user who logged in, and who now

No Redirection

Creating a transient Asset

http://localhost:8083/person/edit
http://localhost:8083/person/new

90

owns the session. In the next chapter, we will show how to render this list with Toro

using a special kind of substitution – the List-substitution.

In chapter (3.11) we already learned how to find a single Asset whose Property has a

certain value- in order to check for a valid login. Now, we find the Person Asset of the

current user, and then JOIN it with the Party Assets. Finally, we project the Result of

this JOIN to the Party values.

Excursion :

“SQL vs. Toro”

The Query described above corresponds to the SQL command:

select Party.*

from Party,Person

where Party.organizer = Person.id AND Person.id = 66

Java does not support SQL natively. You can access a Database in Java through SQL using JDBC. JDBC

sends SQL Strings to a JDBC driver, which connects to the Database. This approach is not type-safe and

does not support any kind of error-checking at edit- or compile time: Mistyped SQL statements, supply-

ing Integer compare values for String columns – all this will not be caught before you run the program.

You are just sending command Strings to a JDBC driver. If they actually compute can only be seen when

the application tries to execute them. Funneling the Query-Results into Java is done through an Iterator-

like ResultSet, a JDBC specific class.

A better alternative is SQLJ, which at least offers compile-time error-checking: SQLJ relies on escaped

SQL statements and Java-like Iterators. However, you need an additional compiler for these before you

use the Java compiler on your code [AE01]. Also, both SQLJ and JDBC do not abstract from the different

SQL dialects, and error-decoration at edit-time, one of Eclipse‟s highlights, is not supported by either of

them.

The Toro Query language, on the other hand, is easy to learn, type-safe, and checks for errors during edit-

time. It is Java, not SQL, and delivers its results to a simple Iterator<> on an Asset.

In order to find all Parties which are owned by the user owning the current session, we

write:

QueryEquals q = new QueryE-

quals(Party.SCHEMA.prototype().organizer.getAttributeSignature(),Gener

icSessionLocal.getSession().getUser().id.get());

What we are doing here is referencing the OneRole „organizer’, which holds the For-

eign-Key to the Person objects. Obtaining this key is done with the

.getAttributeSignature() method. We then compare this value to the key-value of the

current user (which we obtain via id.get()). QueryEquals assures these two values

match – that is, in executing this Query, we will obtain all Assets where the Party ob-

jects belong to the current User.

91

QueryEquals is just one of several Query Classes that Toro offers, such as Query-

Begins, QueryContains, QueryGreater etc. Check the Class hierarchy of Query to

see all derived Classes.

Of course, we can also combine two Queries into a new Query which fulfills both con-

ditions: This would be done with QueryAnd Class, using the QueryAnd(q1,q2) Con-

structor, which takes two Queries as arguments that should be linked with AND. OR is

also possible, with the QueryOr Class, which works the same way.

After having applied our Queries to our Assets, and stacked them together with ANDs

and ORs, we specify in which way the results should be ordered:

q.addSortingCriterion(new SortingCrite-

rion(Party.SCHEMA.prototype().begin,SortingCriterion.ASCENDING));

.addSortingCriterion() takes a SortingCriterion-object. You should create it on the

spot, passing as first argument to its Constructor the Property you wish to order by,

and as the second argument the static Boolean constants of SortingCriterion, „AS-

CENDING‟ or „DESCENDING‟.

Lastly, we execute the Query:

Iterator<Party> myParties = Party.SCHEMA.queryAssets(q);

Choosing which set of Propertys from which Asset the Query-Result is projected upon

is done by calling .queryAssets() from the .SCHEMA of the Asset we wish to obtain.

(This corresponds to the „SELECT * FROM„ Statement in SQL). The Query-Result is

returned in from of an Iterator<> Generic, which we specialize to the Asset the Query

returns, in this case Party.

We could pack the above Query in doBusinessLogic(), but this would mean abusing

the actual calling of doBusinessLogic(), which should only manipulate Data and de-

cide which Station to return, not retrieve objects from the Database for presentation-

purposes. (Not placing anything but Data-manipulation and Decision-making code in

doBusinessLogic() is a convention, not a law). We will see where to appropriately

place this code in the next chapter.

3.18 Implementing Presentation – ListSubstitutions

We have no way of knowing beforehand how long our list will be, and even if we did, it

would be very repetitive to define a PrintSubstitution for every element in our list. This

is where ListSubstitutions come in handy. A List Substitution, like all Substitutions,

consists of two parts: One is a template-placeholder that goes in the HTML page, and

the other is code that substitutes that placeholder at run-time. Let us put the placehold-

er code into \minisms\templates\standard\party\list.htm:

$header()$

92

<h1>"Parties" Page of $user$</h1>

<table>

 <tr>

 <th>

 Title

 </th>

 <th>

 Location

 </th>

 <th>

 Begin

 </th>

 <th>

 Price

 </th>

 <th>

 Purchase Date

 </th>

 </tr>

 $[parties p$

 <tr>

 <td>

 $p.name.value()$

 </td>

 <td>

 $p.location.value()$

 </td>

 <td>

 $p.begin.value()$

 </td>

 <td>

 $p.price.value()$

 </td>

 <td>

 $p.purchaseDate.value()$

 </td>

 </tr>

 $parties]$

</table>

[Create a new Party]

$footer()$

Print Substitution:

Nothing new here. We want to display the user‟s login (=email) at the top of the page.

We will put the corresponding PrintSubstitution into ListHandler in a moment.

PrintSubstitution

List Substitution

Table Heading

New Party Link

93

New Party Link:

We put a link to a (not yet existent) Handler at the bottom of the page which will take

care of creating new Parties.

Table Heading:

This has nothing to do with Toro: We are simply opening a new table and establish four

columns which we call „Title‟, „Location‟, „Begin‟ and „Purchase Date‟. Below this row

we want to start displaying our PartyAssets we have retrieved from the Database.

List Substitution:

It is here that we have something new. We open and close our list with the following

placeholder:

$[listname l$

Iterator-Domain. Use Iterator „l‟ to access current Asset in the suc-

cesive rows of the table.

$listname]$

A list-placeholder consists of a listname and an Iterator symbol (‚listname„ and ‚l„, re-

spectively, in the above example, and ‚parties„ and ‚p„, respectively in list.htm.)

Everything between and including these placeholders will be replaced at run time by a

repeating block of HTML code, which has the same structure as the HTML code in

place: What Toro does is to repeat the code block inside of the placeholder-guards as

many times as there are Assets supplied by ListHandler, and replacing terms like

$p.name.value()$ with the value of the indicated Property of the Asset returned in

the current Iteration. value(), is an inbuilt Print Substitution Function, which displays

the value of a Property.

What we still need is to implement the mechanism inside of ListHandler which takes

care of supplying and progressing through the list of Assets. Let us do so now. Insert

the highlighted code into ListHandler in the de.infoasset.minisms.handler.party

package:

public class ListHandler extends Handler {

 private Person user = GenericSessionLocal.getSession().getUser();

 private Iterator<Party> myParties;

 final SimplePage LIST_PAGE = new SimplePage() {

 @Override

 public void putSubstitutions(Template template) {

 template.put("parties", new ListSubstitution() {

 Party currentParty;

 Iterator<Party> myParties;

 @Override

 public void start() {
ListSubstitution

Put Substitutions

94

 QueryEquals q = new QueryE-

quals(Party.SCHEMA.prototype().organizer.getAttributeSignature(), us-

er.id.get());

 q.addSortingCriterion(new SortingCrite-

rion(Party.SCHEMA.prototype().begin, SortingCriterion.ASCENDING));

 myParties = Party.SCHEMA.queryAssets(q);

 }

 @Override

 public void next() {

 currentParty = myParties.next();

 }

 @Override

 public Asset getCurrentAsset() {

 return currentParty;

 }

 @Override

 public boolean hasNext() {

 return myParties.hasNext();

 }

 });

 template.put("user", new PrintSubstitution() {

 @Override

 protected String print() {

 return user.eMail.get();}

 });

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 return LIST_PAGE;

 }

Put Substitutions:

At the start of SimplePage, we have now inserted the .putSubstitutions() method.

ListSubstitution:

It is here that we supply everything we need to substitute the placeholder in our HTML

file:

start() : In this method, you retrieve the data you want to render in your list. It is here

that we query the Database in the way we learnt in the previous chapter.

next() : Here we update our Asset-reference to the new Asset.

getCurrentAsset : We return the (updated) Asset-reference.

hasNext() : A Boolean Function telling us whether the list still has elements. We have

to override it appropriately.

PrintSubstitution:

PrintSubstitution

95

In it we provide the „user‟ placeholder with its PrintSubstitution. This should be famili-

ar from chapter (3.12).

If you now log into the application, you will see a single Party listed – the one we en-

tered as test-data in Services. If we want to see more Partys we will have to add them

ourselves. So let us now implement the functionality of adding a new Party. This is

nothing new, as we will proceed in the same way we did when creating a new user-

account. But in order to make things interesting we will determine the price of the new

Party using a “configurable” price.

3.19 Implementing Logic – Configuration

Besides users and programmers, applications usually encounter a third group of

people, administrators. Changing the functionality of an application may require the

programmer to adapt the source-code, but often, the change needed is superficial and

should not require source-code modification. Implementing these changes is the job of

the administrator.

In our example, fixing rates and prices of new parties should be done by an administra-

tor, not the programmer, who should not be bothered after his job is done, (and the

user should certainly not be able to do it!).

However, the programmer should devise an interface that allows the administrator to

change these settings for the application.

One possibility would be to build certain web-pages that are only accessible to the ad-

ministrator, where he can configure the application. Toro, however, has a separate

configuration mechanism that is independent of HTML and the underlying Database.

The configuration of the tutorial application are saved in a .xml file called configura-

tion.xml located in \minisms\config\.

It is this file which you pass as a command-line argument to the main() method of the

framework. Everything that happens thereafter is determined by configuration.xml:

What Database and JDBC Driver should be used? What language should the applica-

tion be displayed in? Yes, even which application the framework should launch is set

here.

In \minisms\config\ you will find another .xml file called repository.xml. This

file describes all configurable traits of the application – not the configuration itself - that

is done by configuration.xml.

Let us configure our new application a bit – for example, at this moment, we are

prompted at the start of our application to confirm that we want to delete all data in our

Database. This is useful for testing purposes, but once debugging is over, we want to

96

retain our data between launches. This is something we can configure, and let us do so

now:

First, we have to launch the „Configurator‟. This a tool provided by Toro to let you con-

figure your application. Launching the Toro-Configurator is done through an Ant-Target.

In case you have not done so already, turn on the Ant-View Tab, and add the

build.xml Ant-file –located in the „minisms‟ project- to your build files in the Ant-View

(Select Window->Show View->Ant, click on the Ant-Tab, and click on the „Add Ant build

File‟ icon).

Launch the „Configure[default]‟ of the „minisms‟ build-file target in the Ant-View by

double-clicking on it. The Configurator appears:

Figure 36: Configuring a setting in the application

As you can see, there are very many settings you can change in your software. Most of

them are rarely needed, and should stay the way they are. The switches are ordered

hierarchically. We will comment on this hierarchy shortly, but at the moment, we are

interested in only one switch, called „deleteAllContainer‟. If you know the name of a

switch, finding it is best done with the search-field at the top of the Configurator. Type

in „deleteAllContainer‟, and only the specified switch will remain in the Configurator. To

change the value, uncheck the „Set‟ box, and then choose „File->Save‟. (Do not click

97

the „Unset this value‟ button – doing so does not turn the setting off, but rather leaves it

undefined. The decorator will turn red, indicating that you have an incomplete configu-

ration). When you restart the application, you will no longer get the warning about the

repository being deleted, and the Database will no longer be flushed. (For the rest of

this tutorial, we will assume that „deleteAllContainer‟ is set, however, so you should set

this switch again and save the configuration).

Now that we have seen how to configure a Toro-application, let us learn how to create

our own configurable settings in our application.

Configurable elements in Toro are installed into the application using Annotations, a

feature added to Java in the [Ec06].

We would like to have three configurable instances of a class called Rate („cheap‟,

„medium‟ and „expensive‟):

Configurable
cheap : Rate

+getPrice(): int

+getMinimalVolume: int

-price: int

-minimalVolume: int

«configurable»

Rate

expensive : Rate

Services medium : Rate

Figure 37: Class Diagramm of Rate and its instances

The two int-attributes of Rate, „price‟ and „minimalVolume‟, represent the amount of

cents per guest a customer has to pay at that rate, and, respectively, at what number of

purchased parties this price sets in (the more you buy, the cheaper it gets). We can

make these attributes „private‟, because we don‟t want any Class (actually, not even

the owning Class, but this is impossible) to change these values: They should only be

modifiable through the Configurator, where an Administrator can decide how prices

should go down with increasing purchase-volumes.

Once we have the new Rate class, we will put three instances in a general-purpose

class, e.g. Services. All of this is shown in Figure 37).

98

First, let us create our new configurable Rate class. We place it in the

de.infoasset.minisms.services package, the same package Services is in, the

class that will contain the future three instances of it:

public class Rate implements Configurable {

 @Property

 private int price;

 @Property

 private int minimalVolume;

 public int getMinimalVolume() {

 return minimalVolume;

 }

 public int getPrice() {

 return price;

 }

}

Configurable Class:

Any Class which contains configurable Attributes (marked with the @Property Annota-

tion, see below) must implement the Configurable interface.

Configurable Attribute:

Any Attribute that you wish to make configurable must be marked with the @Property

Annotation. In its current version, Toro only supports configurability for primitive types.

Let us now add three instances of Rate – one for each pricing-scheme- to the Services

class (located in the de.infoasset.minisms.services package):

public class Services extends GenericServices {

 private static Services instance;

 public static Services INSTANCE() {

 return instance;

 }

 @Association

 private Rate cheap;

 @Association

 private Rate medium;

 @Association

 private Rate expensive;

 public Rate getCheap() {

 return cheap;

 }

 public Rate getMedium() {

Configurable Class

Configurable Attribute

Setting them

The Getters

99

 return medium;

 }

 public Rate getExpensive() {

 return expensive;

 }

 protected void initData() {

.

.
<snip>
.
.
 }

 protected void initSchemas() {

 initSchema(Person.class);

 initSchema(Party.class);

 }

}

Setting them:

We have annotated the three instances of our Configurable class Rate with the

@Association annotation. This tells the Toro-framework that the Configurator is re-

sponsible for setting these values. Simply making a class a Configurable is a neces-

sary, but not a sufficient condition for it to be configured via the Configurator: You might

want to use instances of Rate for other purposes, and these instances should not be

set by the the Configurator tool. You would then omit the @Association annotation in

front of these instances (we won‟t be using any other instances of Rates here, but hav-

ing certain instances of a class that should be set through an administrator, and other

instances that you the programmer want to set is a possibility).

The Getters:

These are boiler-plate getters we will use to access the attributes.

It is now possible to configure our new rate-objects – almost: The Configurator hasn‟t

yet noticed the three new Configurable Rates, as it still has an old version of reposi-

tory.xml. We must add the new Configurables to repository.xml. Scanning the

source-code for new Configurables is done through a plug-in tool inside of Eclipse, the

Configurator-tab. (This is also called a Configurator, but is distinct from the Stand-

Alone Configurator). If the Configurator-tab does not show in your Eclipse IDE, you

must turn it on by choosing Window->Show View->Other... and then selecting „Configu-

rator‟ in the IMF folder. Now click on the Configurator tab, and click on the „Build the

100

repository for this project‟ icon (a folder with a J on top of it). You are prompted to

choose the project for which you want to update the repository.xml. Choose „min-

isms‟ (Figure 38)).

Figure 38: Telling Toro to search for new switches

Tip: The process of building a new configuration needs a lot of memory, and in case you keep getting

error messages, try clicking on the „release all Resources‟ icon in the Configurator-tab, which frees un-

used memory.

Now close and reopen the Stand-alone Configurator, and you should find the three new

configurable instances of Rate (under „services‟). However, you still can‟t set the

attributes of the new Rates! The problem is that configuration in Toro can also be done

on the level of a class: Not only attributes of a class can be set, you can also set the

class itself. For example, we could have introduced two subclasses of Rates, Coropra-

teRate and PrivateRate, with extra fields for each variety of class, such as an extra

Corporate Rebate Percentage for CoroporateRate and a Boolean „special offer‟-switch

for PrivateRate. You could then change the instance of a class with the Configurator

from CorporateRate to PrivateRate without touching the code (in the code, you would

have to be instantiating the mother-class, Rate, so that the reference can hold both

types). Class level configuration is an advanced feature, and we will not go into it. In

this tutorial, we only have one class-type, but the Configurator still wants us to choose

101

it. So click successively on the three Rates, select the Rate class, and click the „OK‟

button (Figure 39)).

Figure 39: Configuring a Class

As you can see, the three Rate instances are decorated with a red square, which tells

you that the configuration is incomplete in this respect: We still have to set the actual

values into the configurable attributes. Go ahead and set them to something sensible. I

set the (price, minimalVolume) pairs for „cheap‟, „medium‟ and „expensive‟ to (50,10),

(100,5) and (1000,0), respectively. After setting the values, save the configuration in

the stand-alone Configurator by clicking on File->Save.

Excursion :

The configuration tree

When you start your Toro application, the framework will look for configurable class-instances

in the application and put the values stored for them inside of configuration.xml into

them. The way it goes about this is that it starts in the Main class of the ‘platform-Toro’ project

(this is not part of your application, but of the framework), and looks for @Association annota-

tions. Let us look at some of these @Associations as we find them in the Main class of ‘plat-

form-toro’ in the de.infoasset.platform.server package.

102

public class Main extends AbstractInitializable implements PostInitia-

lizable { …

 @Association

 private void setLoggerConfiguration(GenericLoggers object) {

 }

 @Association

 private void setRequestDispatcher(RequestDispatcher r) {

 }

 @Association

 private void setServices(GenericServices services) {

 }

…

}

These @Associations are different from those we have encountered so far in that they anno-

tate methods, not configurable instances – what is up with that? Well, the methods decorated

with the @Association all conform to the following pattern:

 @Association

 private void set[BranchName](ConfigurableClass dummy)

The framework will deal with @Association annotations connected to this kind of pattern in

the following way: It will use the [BranchName] to set up a new branch with that name in the

stand-alone Configurator tree, and it will look for other @Association or @Property annota-

tions inside of the source files of the class-type gleaned from the parameter type passed in the

function (ConfigurableClass in the above example) – all of this requires heavy use of reflection

on the part of the framework, of course. The framework will actually do one more thing: In

case ConfigurableClass is a Singleton, i.e. a class which is supposed to be instantiated only

once, and instantiated by the framework, not the framework-user, the framework will now

instantiate it. Finding out if a class is meant to be a Singleton is also done reflectively by a Toro

convention, which says that Singletons should have an instance of the tell-tale attribute name

‘instance’ of the type of the Singleton. This attribute shall of course reference the Singleton

itself. If this is the case, the framework will instantiate the class and set ‘instance’ to it.

If you would like to have your own Root-Branch in the Configurator, you would have to modify

the Main class of the framework in ‘platform-toro, with an annotated set-function, which is

deprecated, because you should leave the framework untouched. Instead, hang your Configu-

rables into the Services class of your own project.

103

3.20 Implementing Logic – extending Assets

We now have all the tools in hand to complete our application. From Figure 10) we can

see that we have not yet implemented the creation of new Partys, viewing them, and

deleting them. You can try writing a NewHandler for Party as an exercise, using the

one for Person as a model. You should get something like this:

public class NewHandler extends Handler {

 final Line EDIT = new Line() {

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setString("id", newParty.id.get());

 }

 @Override

 public void next(Forwarder f) {

 f.go(EditHandler.class);

 }

 };

 private Party newParty;

 @Override

 public Station doBusinessLogic() throws Exception {

 newParty = Party.SCHEMA.createTransientAsset();

 return EDIT;

 }

}

There is absolutely nothing new here. Of course, it is important to place it in the correct

package: de.infoasset.minisms.assets.Party.

As you can see, after creating our Party Asset, setting its id as a parameter, we go to

the EditHandler (which we place in de.infoasset.minisms.assets.Party):

public class EditHandler extends Handler {

 private String id;

 private Party newParty;

 @Override

 public void getParameters(ParameterReader parameters) {

 id = parameters.getString("id");

 }

 final SimplePage EDITPAGE = new SimplePage() {

 @Override

 public Asset getAsset() {

 return newParty;

 }

104

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 newParty = Party.SCHEMA.getAsset(id);

 return EDITPAGE;

 }

}

This is just more boiler-plate code.

The corresponding HTML file edit.htm which must be placed in

\minisms\templates\standard\party\edit.htm will however be slightly dif-

ferent from what we have seen before:

$header()$

<form method="post" action="/party/submit?id=$id.value()$"

class="Toro-edit-form">

 $editHeader()$

 $name.edit()$

 $location.edit()$

 $size.edit()$

 $begin.edit()$

 $editFooter()$

</form>

$footer()$

.edit():

In contrast to the Person Edit-Form in which we only excluded a few properties which

we didn‟t want to edit, we now have a form in which we explicitly include only a few

properties which we wish the user to edit. So here, we use the $[propertyname].edit()$

Substitution-Function, instead of the $edit()$ Substitution-Function, which renders all

properties. However, this comes at the price of having to explicitly include the Toro-

Form Overhead:

Toro-Form Overhead:

In our previous Edit-Page, we used the $edit()$ Substitution-Function, which takes care

of including save&cancel buttons. We have to do that explicitly now, because the

$[propertyname].edit()$ substitution functions show up several times, and can therefore

not be expected to display the buttons, as they would then also be displayed several

times. Inserting the buttons is therefore done by the $editHeader()$ and $editFooter()$

Substitution-Functions (predefined in „platform-toro‟).

Toro-Form Overhead

.edit()

105

Let us now write the SubmitHandler of Party, to which control is passed when submit-

ting the above form. Per naming law, it must be placed in the

de.infoasset.minisms.handler.party package:

public class SubmitHandler extends Handler {

 private String id;

 private Party newParty;

 Line VALID = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 Line INVALID = new Line() {

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setString("id", newParty.id.get());

 }

 @Override

 public void next(Forwarder f) {

 f.go(EditHandler.class);

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 newParty = Party.SCHEMA.getAsset(id);

 newParty.makeTransient();

 newParty.applyParameters();

 if (newParty.isValid()) {

 newParty.purchaseDate.set(new Date());

 newParty.organizer.set(GenericSessionLocal.getUser());

 newPar-

ty.rateCategory.set((newParty.organizer.getAsset().determineRate()));

newParty.price.set(newParty.getRate().getPrice() * newPar-

ty.size.get());

 newParty.makePersistent();

 return VALID;

 } else {

 return INVALID;

 }

 }

 @Override

 public void getParameters(ParameterReader parameters) {

 id = parameters.getString("id");

 }

}

Calculating the Price

Setting the Rate

106

There are only two things worth pointing out:

Setting the Rate:

A newly created party is associated with a certain rate, which we save in the „rateCate-

gory’ DomainValueProperty of the new Party. However, we must determine which

rate applies – this depends on the total number of parties purchased so far by the cus-

tomer. A function returning the correct DomainValue, .determineRate(), must be im-

plemented in the Person Asset – we will do so right away. Let us assume it is in place

already. We can then set the rate as shown, and continue with:

Calculating the Price:

The price is proportional to the size of the party and the price of the current rate. We

retrieve „size‟ of the Party with newParty.size.get(), but retrieving the rate is

slightly more involved: Our configurable Rates correspond to DomainValues, which

by themselves do not contain any information about the applicable prices: We will

therefore need to define a function .getRate() which returns the correct Rate object in

function of the DomainValue in the Party Asset. We then can call the .getPrice() me-

thod on that Rate.

So let us add the .determineRate() function to Person, and the .getRate() function to

Party. Adding these methods should also remind you that you are in no way restricted

in adding your own functionality to BaseAssets, and you will often do so:

So open the Person class from „minisms‟ in the de.infoasset.platform.assets

package and add the highlighted code:

public class Person extends BaseAsset {

.

.
<snip>
.
.
 public DomainValue determineRate() {

 int totalParties = parties.count();

 if (totalParties > Servic-

es.INSTANCE().getCheap().getMinimalVolume()) {

 return RateDomain.cheap;

 } else if (totalParties > Servic-

es.INSTANCE().getMedium().getMinimalVolume()) {

 return RateDomain.medium;

 }

107

 return RateDomain.expensive;

 }

 public static final AssetSchema<Person> SCHEMA = new AssetSche-

ma<Person>() {

 };

 public boolean isAdministrator() {

 return false;

 }

}

The only new Toro-thing here is the .count() method you can use on Roles: par-

ties.count() will return the number of objects on the other side of the association.

Here, we wish to find out how many parties the customer has purchased so far, and

then check whether the number is high enough for one of the cheap rates. If it is, we

return the corresponding DomainValue.

We now proceed to add the .getRate() function, which maps the rate DomainValue

saved in „rate‟ of Party to the corresponding (configurable) Rate object, which is what

we actually need to determine the price. This is a functionality of Party, so open the

Party Asset, and add the highlighted code:

public class Party extends BaseAsset {

.

.
<snip>
.
.

 public Rate getRate() {

 if (this.rateCategory.get().equals(RateDomain.expensive))

 return Services.INSTANCE().getExpensive();

 else if (this.rateCategory.get().equals(RateDomain.medium))

 return Services.INSTANCE().getMedium();

 return Services.INSTANCE().getCheap();

 }

 public static final AssetSchema<Party> SCHEMA = new AssetSche-

ma<Party>();

}

3.21 Implementing Persistence – Deleting Assets

In chapter (3.18) you can see that in the list of the parties, the name is linked to a „view‟

page, which we haven‟t implemented yet. It is here that we wish to see the details of

the party, and be able to delete it.

108

Let us design the „view‟ page of the Party asset first. It is called view.htm and must be

placed in minisms\templates\standard\party\view.htm

$header()$

<h1>Party "$name.value()$"</h1>

$name.show()$

$location.show()$

$size.show()$

$begin.show()$

Total Price: $price$

[Delete Party]

[View List]

$footer()$

ViewHandler, placed in the de.infoasset.minisms.handler.party package, looks

like this:

public class ViewHandler extends Handler {

 private String id;

 private Party party;

 @Override

 public void getParameters(ParameterReader parameters) {

 id = parameters.getString("id");

 }

 final SimplePage HOME = new SimplePage() {

 @Override

 public void putSubstitutions(Template template) {

 template.put("price", new PrintSubstitution() {

 @Override

 protected String print() {

 return Integer.toString((party.size.get()) * (par-

ty.getRate().getPrice()));

 }

 });

 }

 @Override

 public Asset getAsset() {

 return party;

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

109

 party = Party.SCHEMA.getAsset(id);

 return HOME;

 }

}

The only thing we don‟t know how to do yet – and it is very easy – is to delete an Asset.

For this, we will implement the DeleteHandler which view.htm links to. It is a pageless

Handler, which goes back to the party list after it is executed. Put it in the

de.infoasset.minisms.handler.party package:

public class DeleteHandler extends Handler {

 String id;

 Party party;

 public void getParameters(ParameterReader parameters) {

 id = parameters.getString("id");

 }

 Line LIST = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 public Station doBusinessLogic() throws Exception {

 party.remove();

 return LIST;

 }

}

3.22 Implementing Logic – Checking User Authorization

So far, we have not worried about security. However, security is supported by Toro. For

example, a https connection is used if you call useHttps() on your Forwarder.

Another functionality of Toro consists in offering a checkAccess() method you can

override in your Handler. In this method, you can make sure that the user trying to

access the page has the proper authorization. For example, when deleting a Party, it

should be impossible for a user who does not own the party to do so. If a malevolent

user wanted to delete parties not created and owned by him, he could however do so

by sending id‟s of parties not owned by him to the DeleteHandler. Relying on the ma-

levolent user not knowing the id‟s of parties he doesn‟t own is not a very secure strate-

gy. Let us implement a checkAccess() routine in DeleteHandler that throws an excep-

tion in case of such mischief:

public class DeleteHandler extends Handler {

Deleting an Asset

110

 String id;

 Party party;

 @Override

 public void checkAccess() {

 party = Party.SCHEMA.getAssetNotNull(id);

if(!GenericSessionLocal.getUser().equals(party.organizer.getAsset()))

{

 throw new ProtectedActionException();

 }

 }

 public void getParameters(ParameterReader parameters) {

 id = parameters.getString("id");

 }

 Line LIST = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 public Station doBusinessLogic() throws Exception {

 party.remove();

 return LIST;

 }

}

First, we retrieve the Asset from the Database through the .getAssetNotNull() method.

This method throws an Exception of type AssetNotFoundException in case no Asset

can be retrieved. This would only be the case if a malevolent user had changed the id

parameter in the HTTP request. Toro will catch and deal with this kind of Exception,

you do not have to provide any additional code.

In the next step, we check whether the current owner of the session is also the owner

of the party. In case not, we throw a ProtectedActionException. Toro will also deal

with this appropriately.

Try it: Create a party under one account, copy its id from the view page, then log in

under another account, and point your browser to:

http://localhost:8083/party/delete?id=<foreign party id>

or

http://localhost:8083/party/delete?id=<inexistent id>

You will be redirected to a warning page stating the problem.

http://localhost:8083/party/delete?id=%3cforeign%20party%20id
http://localhost:8083/party/delete?id=%3cinexistent

111

3.23 Implementing Logic – Logging Out

We have come full circle. The only thing that remains to be done is to log out. In chap-

ter (3.15) we already placed an appropriate link in the header.htm web-page, and we

now must implement the pageless Handler which will perform the logout. As is the case

with the LoginHandler, the LogoutHandler does not belong to a specific Asset, and

should therefore be placed in the top-level de.infoasset.minisms.handler package:

public class LogoutHandler extends Handler {

 Line LOGOUT = new Line() {

 public void next(Forwarder f) {

 f.go(LoginHandler.class);

 }

 };

 public Station doBusinessLogic() throws Exception {

 GenericSessionLocal.getSession().setUser(null);

 return LOGOUT;

 }

 }

}

We return to the Login-Page - and to the end of this tutorial.

112

Appendix A: Listings

package de.infoasset.minisms.assets;

import de.infoasset.minisms.services.Domains;

import de.infoasset.minisms.services.Rate;

import de.infoasset.minisms.services.Services;

import de.infoasset.minisms.services.domains.RateDomain;

import de.infoasset.platform.assets.Person;

import de.infoasset.platform.services.asset.AssetSchema;

import de.infoasset.platform.services.asset.BaseAsset;

import de.infoasset.platform.services.asset.DomainValueProperty;

import de.infoasset.platform.services.asset.IntProperty;

import de.infoasset.platform.services.asset.OneRole;

import de.infoasset.platform.services.asset.Role;

import de.infoasset.platform.services.asset.StringProperty;

import de.infoasset.platform.services.asset.TimestampProperty;

import

de.infoasset.platform.services.asset.propertyValidators.NotNullValidat

or;

import

de.infoasset.platform.services.asset.propertyValidators.PropertyValida

tors;

import de.infoasset.platform.services.domains.Domain;

import de.infoasset.platform.services.domains.DomainValue;

import de.infoasset.platform.services.internationalization.Message;

public class Party extends BaseAsset {

 public final StringProperty name = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Name";

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

+Party.java

+:New Class/File

~:Modified Class/File

113

 public final StringProperty location = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Location";

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final IntProperty size = new IntProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Size";

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 };

 public final IntProperty price = new IntProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Price";

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 };

 public final TimestampProperty begin = new TimestampProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Begin";

 };

 }

114

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 }

 };

 public final TimestampProperty purchaseDate = new TimestampProper-

ty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Purchase Date";

 };

 }

 };

 public final DomainValueProperty rateCategory = new DomainValue-

Property() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Rate";

 };

 }

 @Override

 public DomainValue getDefaultDomainValue() {

 return RateDomain.expensive;

 }

 @Override

 public Domain getDomain() {

 return Domains.RateDomain;

 }

 };

 /* Party * <-> 1 Person */

 final public OneRole<Person> organizer = new OneRole<Person>() {

 @Override

 public Role otherRole() {

 return Person.SCHEMA.prototype().parties;

 }

 };

 public Rate getRate() {

 if (this.rateCategory.get().equals(RateDomain.expensive))

 return Services.INSTANCE().getExpensive();

 else if (this.rateCategory.get().equals(RateDomain.medium))

 return Services.INSTANCE().getMedium();

 return Services.INSTANCE().getCheap();

 }

 public static final AssetSchema<Party> SCHEMA = new AssetSche-

ma<Party>();

}

115

package de.infoasset.minisms.services.domains;

import de.infoasset.platform.services.domains.Domain;

import de.infoasset.platform.services.domains.DomainValue;

import de.infoasset.platform.services.internationalization.Message;

public class RateDomain extends Domain {

 public static final DomainValue expensive = new DomainValue() {

 @Override

 protected Message nameMessage() {

 return new Message() {

 String en = "expensive";

 };

 }

 };

 public static final DomainValue medium = new DomainValue() {

 @Override

 protected Message nameMessage() {

 return new Message() {

 String en = "medium";

 };

 }

 };

 public static final DomainValue cheap = new DomainValue() {

 @Override

 protected Message nameMessage() {

 return new Message() {

 String en = "cheap";

 };

 }

 };

}

+RateDomain.java

116

package de.infoasset.minisms.services;

import de.infoasset.minisms.services.domains.RateDomain;

import de.infoasset.minisms.services.domains.Title;

import de.infoasset.platform.services.domains.Domain;

import de.infoasset.platform.services.domains.GenericDomains;

public class Domains extends GenericDomains {

 public static final Domain Title = new Title();

 public static final Domain RateDomain = new RateDomain();

}

~Domains.java

117

package de.infoasset.platform.assets;

import de.infoasset.minisms.assets.Party;

import de.infoasset.minisms.services.Messages;

import de.infoasset.minisms.services.Services;

import de.infoasset.minisms.services.domains.RateDomain;

import de.infoasset.platform.assets.Person;

import de.infoasset.platform.services.asset.BaseAsset;

import de.infoasset.platform.services.asset.AssetSchema;

import de.infoasset.platform.services.asset.BooleanProperty;

import de.infoasset.platform.services.asset.ManyRole;

import de.infoasset.platform.services.asset.PasswordProperty;

import de.infoasset.platform.services.asset.Role;

import de.infoasset.platform.services.asset.StringProperty;

import de.infoasset.platform.services.asset.TimestampProperty;

import

de.infoasset.platform.services.asset.propertyValidators.MinimalLengthV

alidator;

import

de.infoasset.platform.services.asset.propertyValidators.NotNullValidat

or;

import

de.infoasset.platform.services.asset.propertyValidators.PropertyValida

tors;

import

de.infoasset.platform.services.asset.propertyValidators.RegExpValidato

r;

import de.infoasset.platform.services.domains.DomainValue;

import de.infoasset.platform.services.internationalization.Message;

public class Person extends BaseAsset {

 public final BooleanProperty isAdministrator = new BooleanProper-

ty() {

 @Override

 public boolean getDefaultValue() {

 return false;

 }

 @Override

 public boolean hasDefaultValue() {

 return true;

 }

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Is this Person an Administrator?";

 };

 }

 };

 public final StringProperty eMail = new StringProperty() {

 @Override

+Person.java

118

 public Message getLabel() {

 return new Message() {

 String en = "E-Mail Address";

 };

 }

 @Override

 public int getMaxLength() {

 return 100;

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator() {

 });

 aggregator.add(new RegExpValidator() {

 @Override

 protected Message getErrorMessage() {

 return Messages.validator_invalid_e_mail;

 }

 @Override

 public String getRegExp() {

 return "^[_a-z0-9-]+(\\.[_a-z0-9-]+)*@[a-z0-9-

]+(\\.[a-z0-9-]+)*$";

 }

 });

 }

 };

 public final StringProperty firstName = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "First Name";

 };

 }

 @Override

 public boolean isFulltextIndexed() {

 return true;

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty lastName = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

119

 String en = "Last Name";

 };

 }

 @Override

 protected void putValidators(PropertyValidators aggregator) {

 aggregator.add(new NotNullValidator());

 aggregator.add(new MinimalLengthValidator(3));

 }

 @Override

 public boolean isFulltextIndexed() {

 return true;

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty street = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Street";

 };

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty zipCode = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "ZipCode";

 };

 }

 @Override

 public int getMaxLength() {

 return 10;

 }

 };

 public final StringProperty city = new StringProperty() {

 @Override

 public Message getLabel() {

120

 return new Message() {

 String en = "City";

 };

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty country = new StringProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Country";

 };

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final StringProperty password = new PasswordProperty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Password";

 };

 }

 @Override

 public int getMaxLength() {

 return 30;

 }

 };

 public final TimestampProperty membershipDate = new TimestampPro-

perty() {

 @Override

 public Message getLabel() {

 return new Message() {

 String en = "Date of Membership";

 };

 }

 };

121

 /* Party * <-> 1 Person */

 final public ManyRole<Party> parties = new ManyRole<Party>() {

 @Override

 public Role otherRole() {

 return Party.SCHEMA.prototype().organizer;

 }

 };

 public DomainValue determineRate() {

 int totalParties = parties.count();

 if (totalParties > Servic-

es.INSTANCE().getCheap().getMinimalVolume()) {

 return RateDomain.cheap;

 } else if (totalParties > Servic-

es.INSTANCE().getMedium().getMinimalVolume()) {

 return RateDomain.medium;

 }

 return RateDomain.expensive;

 }

 public static final AssetSchema<Person> SCHEMA = new AssetSche-

ma<Person>() {

 };

 public boolean isAdministrator() {

 return false;

 }

}

122

package de.infoasset.minisms.services;

import java.util.Date;

import de.infoasset.imf.blackbox.Association;

import de.infoasset.minisms.assets.Party;

import de.infoasset.minisms.services.domains.RateDomain;

import de.infoasset.platform.assets.Person;

import de.infoasset.platform.services.GenericServices;

import de.infoasset.platform.services.asset.GenericAssetListener;

public class Services extends GenericServices {

 private static Services instance;

 public static Services INSTANCE() {

 return instance;

 }

 @Association

 private Rate cheap;

 @Association

 private Rate medium;

 @Association

 private Rate expensive;

 public Rate getCheap() {

 return cheap;

 }

 public Rate getMedium() {

 return medium;

 }

 public Rate getExpensive() {

 return expensive;

 }

 @Override

 public void initData() {

 Person tester = Person.SCHEMA.createAsset();

 tester.eMail.set("mymail@myserver.com");

 tester.firstName.set("Sebastian");

 tester.lastName.set("Henckel");

 tester.street.set("Kaiserdamm 28");

 tester.zipCode.set("14057");

 tester.city.set("Berlin");

 tester.country.set("Germany");

 tester.password.set("prettyplease");

 tester.membershipDate.set(new Date(108, 0, 1));

 tester.isAdministrator.set(false);

 Party fiesta = Party.SCHEMA.createAsset();

 fiesta.name.set("Test Party");

~Services.java

123

 fiesta.location.set("Irish pub");

 fiesta.size.set(100);

 fiesta.begin.set(new Date(108, 0, 1));

 fiesta.rateCategory.set(RateDomain.cheap);

 fiesta.purchaseDate.set(new Date());

 tester.parties.create(fiesta);

 GenericAssetListener.commit();

 }

 @Override

 protected void initSchemas() {

 initSchema(Person.class);

 initSchema(Party.class);

 }

 @Override

 protected void initMixinBaseSchemas() {

 }

 @Override

 public String getWelcome() {

 return "/login";

 }

}

124

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type" content="text/html; char-

set=UTF-8"/>

 <script type="text/javascript" src="/__/jquery.js"></script>

 <script type="text/javascript" src="/__/platform.js"></script>

 <link rel="stylesheet" type="text/css" href="/__/toro-

platform.css"/>

 <title>Toro Tutorial</title>

 </head>

<body>

 $[anonymous()$

 <h1>Toro Tutorial</h1>

 $]anonymous[$

 <p>

 You are logged in as $currentUserName()$ [Logout]

 </p>

 <h1>Toro Tutorial</h1>

 $anonymous]$

+\minisms\templates\standard\functions\header.htm

125

</body>

+\minisms\templates\standard\functions\footer.htm

126

package de.infoasset.minisms.handler;

import de.infoasset.platform.assets.Person;

import de.infoasset.platform.client.GenericSessionLocal;

import de.infoasset.platform.template.FunctionParameters;

import de.infoasset.platform.template.PrintSubstitution;

import de.infoasset.platform.template.TemplateFinder;

import de.infoasset.platform.template.TemplateSubstitution;

public class Functions {

 public static TemplateSubstitution header(FunctionParameters pa-

rams) {

 return new TemplateSubstitution() {

 @Override

 public void specifyTemplate(TemplateFinder templateName) {

 templateName.useStaticName("functions/header");

 }

 };

 }

 public static TemplateSubstitution footer(FunctionParameters pa-

rams) {

 return new TemplateSubstitution() {

 @Override

 public void specifyTemplate(TemplateFinder templateName) {

 templateName.useStaticName("functions/footer");

 }

 };

 }

 public static PrintSubstitution currentUserName(FunctionParameters

params) {

 return new PrintSubstitution() {

 @Override

 protected String print() {

 Person p = GenericSessionLocal.getUser();

 return p == null ? "" : p.eMail.get();

 }

 };

 }

}

+Functions.java

127

$header()$

You must login....

$errorMessage$

<p>

 <form action="/submitLogin">

 Login: <input type="text" name="login"/>Password: <input

type="password" name="password"/>

 <input type="submit" value="Submit"/>

 </form>

 [New Account]

</p>

$footer()$

+\minisms\templates\standard\login.htm

128

package de.infoasset.minisms.handler;

import de.infoasset.platform.client.ParameterReader;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.SimplePage;

import de.infoasset.platform.handler.Station;

import de.infoasset.platform.template.PrintSubstitution;

import de.infoasset.platform.template.Template;

public class LoginHandler extends Handler {

 private String errorMessage;

 @Override

 public void getParameters(ParameterReader parameters) {

 errorMessage = parameters.getString("errorMessage");

 }

 final SimplePage LOGINPAGE = new SimplePage() {

 @Override

 public void putSubstitutions(Template template) {

 template.put("errorMessage", new PrintSubstitution() {

 @Override

 public String print() {

 return Handler.notNull(errorMessage);

 }

 });

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 System.out.println("LoginHandler dBL()");

 return LOGINPAGE;

 }

}

+LoginHandler.java

129

package de.infoasset.minisms.handler;

import de.infoasset.minisms.handler.party.ListHandler;

import de.infoasset.platform.assets.Person;

import de.infoasset.platform.client.GenericSessionLocal;

import de.infoasset.platform.client.ParameterReader;

import de.infoasset.platform.client.ParameterWriter;

import de.infoasset.platform.handler.Forwarder;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.Line;

import de.infoasset.platform.handler.Station;

import de.infoasset.platform.services.internationalization.Message;

import de.infoasset.platform.store.QueryEquals;

public class SubmitLoginHandler extends Handler {

 private String login;

 private String password;

 @Override

 public void getParameters(ParameterReader parameters) {

 login = parameters.getString("login");

 password = parameters.getString("password");

 }

 final Line SUCCESS = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 final Line FAILURE = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(LoginHandler.class);

 }

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setMessage("errorMessage", noLogin, new Mes-

sage() {

 String en = "Login missing.";

 });

 parameters.setMessage("errorMessage", notRegistered, new

Message() {

 String en = "You entered an unknown e-mail address.

Please try another e-mail address.";

 });

 parameters.setMessage("errorMessage", pwdError, new Mes-

sage() {

+SubmitLoginHandler.java

130

 String en = "You entered a wrong password. Please try

again.";

 });

 }

 };

 private Person candidate;

 private boolean noLogin;

 private boolean notRegistered;

 private boolean pwdError;

 @Override

 public Station doBusinessLogic() throws Exception {

 System.out.println("SubmitLoginHandler dBL()");

 if (login == null || login.length() == 0) {

 noLogin = true;

 return FAILURE;

 }

 candidate = Person.SCHEMA.findSingleAsset(new QueryE-

quals(Person.SCHEMA.prototype().eMail, login));

 if (candidate == null) {

 notRegistered = true;

 return FAILURE;

 }

 if (!candidate.password.get().equals(password)) {

 pwdError = true;

 return FAILURE;

 }

 GenericSessionLocal.getSession().setUser(candidate);

 return SUCCESS;

 }

}

131

$header()$

<form method="post" action="/person/submit?id=$id.value()$"

class="toro-edit-form">

 $edit(exclude=isAdministrator,membershipDate)$

</form>

$footer()$

+/minisms/templates/standard/person/edit.htm

132

package de.infoasset.minisms.handler.person;

import de.infoasset.platform.assets.Person;

import de.infoasset.platform.client.ParameterReader;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.SimplePage;

import de.infoasset.platform.handler.Station;

import de.infoasset.platform.services.asset.Asset;

public class EditHandler extends Handler {

 private String accountId;

 private Person account;

 @Override

 public void getParameters(ParameterReader parameters) {

 accountId = parameters.getString("id");

 }

 final SimplePage EDITPAGE = new SimplePage() {

 @Override

 public Asset getAsset() {

 return account;

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 System.out.println("EditNewAccountHandler dBL()");

 account = Person.SCHEMA.getAsset(accountId);

 return EDITPAGE;

 }

}

+EditHandler (Person)

133

package de.infoasset.minisms.handler.person;

import de.infoasset.minisms.handler.party.ListHandler;

import de.infoasset.platform.assets.Person;

import de.infoasset.platform.client.GenericSessionLocal;

import de.infoasset.platform.client.ParameterReader;

import de.infoasset.platform.client.ParameterWriter;

import de.infoasset.platform.handler.Forwarder;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.Line;

import de.infoasset.platform.handler.Station;

public class SubmitHandler extends Handler {

 private String accountId;

 private Person newAccount;

 @Override

 public void getParameters(ParameterReader parameters) {

 accountId = parameters.getString("id");

 }

 final Line VALID = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 Line INVALID = new Line() {

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setString("id", newAccount.id.get());

 }

 @Override

 public void next(Forwarder f) {

 f.go(EditHandler.class);

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 System.out.println("SubmitPersonHandler dBL()");

 newAccount = Person.SCHEMA.getAsset(accountId);

 newAccount.makeTransient();

 newAccount.applyParameters();

 if (newAccount.isValid()) {

 newAccount.makePersistent();

 GenericSessionLocal.getSession().setUser(newAccount);

 return VALID;

 } else {

 return INVALID;

 }

 }

}

+SubmitHandler (Person)

134

package de.infoasset.minisms.handler.person;

import de.infoasset.platform.assets.Person;

import de.infoasset.platform.client.ParameterWriter;

import de.infoasset.platform.handler.Forwarder;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.Line;

import de.infoasset.platform.handler.Station;

public class NewHandler extends Handler {

 final Line EDIT = new Line() {

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setString("id", newAccount.id.get());

 }

 @Override

 public void next(Forwarder f) {

 f.go(EditHandler.class);

 f.noRedirect();

 }

 };

 private Person newAccount;

 @Override

 public Station doBusinessLogic() throws Exception {

 System.out.println("CreateNewAccount dBL()");

 newAccount = Person.SCHEMA.createTransientAsset();

 return EDIT;

 }

}

+NewHandler (Person)

135

$header()$

<h1>"Parties" Page of $user$</h1>

<table>

 <tr>

 <th>

 Title

 </th>

 <th>

 Location

 </th>

 <th>

 Begin

 </th>

 <th>

 Price

 </th>

 <th>

 Purchase Date

 </th>

 </tr>

 $[parties p$

 <tr>

 <td>

 $p.name.value()$

 </td>

 <td>

 $p.location.value()$

 </td>

 <td>

 $p.begin.value()$

 </td>

 <td>

 $p.price.value()$

 </td>

 <td>

 $p.purchaseDate.value()$

 </td>

 </tr>

 $parties]$

</table>

[Create a new Party]

$footer()$

+\minisms\templates\standard\party\list.htm

136

package de.infoasset.minisms.handler.party;

import java.util.Iterator;

import de.infoasset.minisms.assets.Party;

import de.infoasset.platform.assets.Person;

import de.infoasset.platform.client.GenericSessionLocal;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.SimplePage;

import de.infoasset.platform.handler.Station;

import de.infoasset.platform.services.asset.Asset;

import de.infoasset.platform.store.QueryEquals;

import de.infoasset.platform.store.SortingCriterion;

import de.infoasset.platform.template.ListSubstitution;

import de.infoasset.platform.template.PrintSubstitution;

import de.infoasset.platform.template.Template;

public class ListHandler extends Handler {

 private Person user = GenericSessionLocal.getSession().getUser();

 final SimplePage LISTPAGE = new SimplePage() {

 @Override

 public void putSubstitutions(Template template) {

 template.put("parties", new ListSubstitution() {

 Party currentParty;

 Iterator<Party> myParties;

 @Override

 public void start() {

 QueryEquals q = new QueryE-

quals(Party.SCHEMA.prototype().organizer.getAttributeSignature(), us-

er.id.get());

 q.addSortingCriterion(new SortingCrite-

rion(Party.SCHEMA.prototype().begin, SortingCriterion.ASCENDING));

 myParties = Party.SCHEMA.queryAssets(q);

 }

 @Override

 public void next() {

 currentParty = myParties.next();

 }

 @Override

 public Asset getCurrentAsset() {

 return currentParty;

 }

 @Override

 public boolean hasNext() {

 return myParties.hasNext();

 }

 });

 template.put("user", new PrintSubstitution() {

 @Override

+ListHandler.java (Party)

137

 protected String print() {

 return user.eMail.get();

 }

 });

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 return LISTPAGE;

 }

}

138

package de.infoasset.minisms.services;

import de.infoasset.imf.blackbox.Configurable;

import de.infoasset.imf.blackbox.Property;

public class Rate implements Configurable {

 @Property

 private int price;

 @Property

 private int minimalVolume;

 public int getMinimalVolume() {

 return minimalVolume;

 }

 public int getPrice() {

 return price;

 }

}

+Rate.java

139

package de.infoasset.minisms.handler.party;

import de.infoasset.minisms.assets.Party;

import de.infoasset.platform.client.ParameterWriter;

import de.infoasset.platform.handler.Forwarder;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.Line;

import de.infoasset.platform.handler.Station;

public class NewHandler extends Handler {

 final Line EDIT = new Line() {

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setString("id", newParty.id.get());

 }

 @Override

 public void next(Forwarder f) {

 f.go(EditHandler.class);

 }

 };

 private Party newParty;

 @Override

 public Station doBusinessLogic() throws Exception {

 newParty = Party.SCHEMA.createTransientAsset();

 return EDIT;

 }

}

+NewHandler.java (Party)

140

$header()$

<form method="post" action="/party/submit?id=$id.value()$"

class="toro-edit-form">

 $editHeader()$

 $name.edit()$

 $location.edit()$

 $size.edit()$

 $begin.edit()$

 $editFooter()$

</form>

$footer()$

+/minisms/templates/standard/party/edit.htm

141

package de.infoasset.minisms.handler.party;

import de.infoasset.minisms.assets.Party;

import de.infoasset.platform.client.ParameterReader;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.SimplePage;

import de.infoasset.platform.handler.Station;

import de.infoasset.platform.services.asset.Asset;

public class EditHandler extends Handler {

 private String id;

 private Party newParty;

 @Override

 public void getParameters(ParameterReader parameters) {

 id = parameters.getString("id");

 }

 final SimplePage EDITPAGE = new SimplePage() {

 @Override

 public Asset getAsset() {

 return newParty;

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 newParty = Party.SCHEMA.getAsset(id);

 return EDITPAGE;

 }

}

+EditHandler.java (Party)

142

import java.util.Date;

import de.infoasset.minisms.assets.Party;

import de.infoasset.platform.client.GenericSessionLocal;

import de.infoasset.platform.client.ParameterReader;

import de.infoasset.platform.client.ParameterWriter;

import de.infoasset.platform.handler.Forwarder;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.Line;

import de.infoasset.platform.handler.Station;

public class SubmitHandler extends Handler {

 private String id;

 private Party newParty;

 Line VALID = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 Line INVALID = new Line() {

 @Override

 public void setParameters(ParameterWriter parameters) {

 parameters.setString("id", newParty.id.get());

 }

 @Override

 public void next(Forwarder f) {

 f.go(EditHandler.class);

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 newParty = Party.SCHEMA.getAsset(id);

 newParty.makeTransient();

 newParty.applyParameters();

 if (newParty.isValid()) {

 newParty.purchaseDate.set(new Date());

 newParty.organizer.set(GenericSessionLocal.getUser());

 newPar-

ty.rateCategory.set((newParty.organizer.getAsset().determineRate()));

 newParty.price.set(newParty.getRate().getPrice() * newPar-

ty.size.get());

 newParty.makePersistent();

 return VALID;

 } else {

 return INVALID;

 }

 }

+SubmitHandler.java (Party)

143

 @Override

 public void getParameters(ParameterReader parameters) {

 id = parameters.getString("id");

 }

}

144

$header()$

<h1>Party "$name.value()$"</h1>

$name.show()$

$location.show()$

$size.show()$

$begin.show()$

Total Price: $price$

[Delete Party]

[View List]

$footer()$

+/minisms/templates/standard/party/view.htm

145

package de.infoasset.minisms.handler.party;

import de.infoasset.minisms.assets.Party;

import de.infoasset.platform.client.ParameterReader;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.SimplePage;

import de.infoasset.platform.handler.Station;

import de.infoasset.platform.services.asset.Asset;

import de.infoasset.platform.template.PrintSubstitution;

import de.infoasset.platform.template.Template;

public class ViewHandler extends Handler {

 private String id;

 private Party party;

 @Override

 public void getParameters(ParameterReader parameters) {

 id = parameters.getString("id");

 }

 final SimplePage PARTYPAGE = new SimplePage() {

 @Override

 public void putSubstitutions(Template template) {

 template.put("price", new PrintSubstitution() {

 @Override

 protected String print() {

 return Integer.toString((party.size.get()) * (par-

ty.getRate().getPrice()));

 }

 });

 }

 @Override

 public Asset getAsset() {

 return party;

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 party = Party.SCHEMA.getAsset(id);

 return PARTYPAGE;

 }

}

+ViewHandler.java (Party)

146

package de.infoasset.minisms.handler.party;

import de.infoasset.minisms.assets.Party;

import de.infoasset.platform.client.GenericSessionLocal;

import de.infoasset.platform.client.ParameterReader;

import de.infoasset.platform.handler.Forwarder;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.Line;

import de.infoasset.platform.handler.Station;

import de.infoasset.platform.services.asset.ProtectedActionException;

public class DeleteHandler extends Handler {

 String id;

 Party party;

 @Override

 public void checkAccess() {

 party = Party.SCHEMA.getAssetNotNull(id);

 if (!GenericSessionLoc-

al.getUser().equals(party.organizer.getAsset())) {

 throw new ProtectedActionException();

 }

 }

 @Override

 public void getParameters(ParameterReader parameters) {

 id = parameters.getString("id");

 }

 Line LIST = new Line() {

 @Override

 public void next(Forwarder f) {

 f.go(ListHandler.class);

 }

 };

 @Override

 public Station doBusinessLogic() throws Exception {

 party.remove();

 return LIST;

 }

}

+DeleteHandler.java (Party)

147

package de.infoasset.minisms.handler;

import de.infoasset.platform.client.GenericSessionLocal;

import de.infoasset.platform.handler.Forwarder;

import de.infoasset.platform.handler.Handler;

import de.infoasset.platform.handler.Line;

import de.infoasset.platform.handler.Station;

public class LogoutHandler extends Handler {

 Line LOGOUT = new Line() {

 public void next(Forwarder f) {

 f.go(LoginHandler.class);

 }

 };

 public Station doBusinessLogic() throws Exception {

 GenericSessionLocal.getSession().setUser(null);

 return LOGOUT;

 }

}

+LogoutHandler.java

148

References

[AE01] Alfons Kemper and André Eickler, Datenbanksysteme, Oldenbourg, 2001

[Bü07] Thomas Büchner, Introspektive Modellgetriebene Softwareentwicklung, Disser-

tation Technische Universität München, 2007

[Bv08] Berliner Verkehrs Gesellschaft,

http://www.bvg.de/index.php/de/Bvg/Detail/folder/195/id/2163/nb/1/name/BVG+fahrinfo

+SMS, Accessed: 12. May 2008

[Cl08a] Clickatell Ltd, http://www.clickatell.com/downloads/http/Clickatell_HTTP.pdf,

Accessed: 30. May 2008

[Cl08b] Clickatell Ltd,

http://www.clickatell.com/downloads/Clickatell_SA_shortcode_MO_technical_guide.pdf

, Accessed: 2. June 2008

 [DV07] Dialog Consult / VATM, Der deutsche Telekommunikationsmarkt –Zehn Jahre

Liberalisierung im Festnetzmarkt, http://www.vatm.de/content/studien/inhalt/16-10-

2007.pdf, Accessed: 12. May 2008

[Ec06] Bruce Eckel, Thinking in Java, 4th Edition, Prentice Hall, 2006

[Op08] OpenIT GmbH, http://www.openit.de/preisliste-sms.html, Accessed: 12. May

2008

[Go08] Jan Goyvaerts, http://www.regular-expressions.info/quickstart.html, Accessed

21. July 2008

[Go08a] Google Inc.,

http://www.google.com/support/calendar/bin/topic.py?topic=13747&intention=13730,

Accessed: 12. May 2008

[Go08b] Google Inc., http://www.google.com/intl/en_us/mobile/default/sms/index.html,

Accessed: 27. August 2008

 [Le08] Leo GmbH, http://dict.leo.org/pages.ende/sms_de.html?lp=ende&lang=de, Ac-

cessed: 13. May 2008

 [Se08] SelfHTML e.V., http://www.selfhtml.org, Accessed 30. August 2008

http://www.bvg.de/index.php/de/Bvg/Detail/folder/195/id/2163/nb/1/name/BVG+fahrinfo+SMS
http://www.bvg.de/index.php/de/Bvg/Detail/folder/195/id/2163/nb/1/name/BVG+fahrinfo+SMS
http://www.clickatell.com/downloads/http/Clickatell_HTTP.pdf
http://www.clickatell.com/downloads/Clickatell_SA_shortcode_MO_technical_guide.pdf
http://www.clickatell.com/downloads/Clickatell_SA_shortcode_MO_technical_guide.pdf
http://www.vatm.de/content/studien/inhalt/16-10-2007.pdf
http://www.vatm.de/content/studien/inhalt/16-10-2007.pdf
http://www.openit.de/preisliste-sms.html
http://www.regular-expressions.info/quickstart.html
http://www.google.com/support/calendar/bin/topic.py?topic=13747&intention=13730
http://www.google.com/intl/en_us/mobile/default/sms/index.html
http://dict.leo.org/pages.ende/sms_de.html?lp=ende&lang=de
http://www.selfhtml.org/

