
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Establishing and Reporting Goals in
Large-Scale Agile Software Development

Moritz Schüll

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Establishing and Reporting Goals in Large-Scale Agile
Software Development

Festlegen und Berichten von Zielen in der skalierten
agilen Softwareentwicklung

Author: Moritz Schüll
Supervisor: Prof. Dr. Florian Matthes
Advisor: Pascal Philipp, M. Sc.
Submission Date: September 15, 2021

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, September 15, 2021 Moritz Schüll

Abstract

Agile software development methodologies are becoming increasingly interesting for ap-
plication in large-scale projects. While agile methodologies have been originally designed
for usage by small, colocated teams to develop software products, their benefits make
them attractive for larger use cases as well. Their frequent inspect and adapt cycles and
focus on close customer collaboration allow for better adjustment to changing environ-
ments and requirements. They promise results that satisfy customer needs better than
those of traditional methodologies. However, applying agile methodologies in large-scale
settings comes with additional challenges. Working with multiple teams or on multiple
products at the same time yields higher coordination and communication efforts. Depen-
dencies may constrain the autonomy of individual agile teams, a central aspect common
to agile methodologies. Thus, it is important to establish shared goals for collaborating
agile teams, while still allowing for autonomy of individual teams. With the introduction
of agile methodologies at scale also comes the need to be able to measure performance
not only of individual teams but also on higher aggregation of products and portfolios.
Due to faster iterations and production of intermediate work results, agile methodologies
are challenging the existing reporting methodologies in large organizations. Yet, reporting
and goal-setting in large-scale agile software development are not extensively covered in
extant literature.

Given these considerations and research gap, this master’s thesis investigates how goal-
setting and reporting in large-scale agile software development is currently done in prac-
tice. By collaborating with a large German car manufacturer and conducting 23 interviews
with 17 practitioners of agile methodologies in large-scale environments, the state-of-the-
art is investigated and potential areas for improvement and recommendations are derived.
Challenges with existing approaches are documented. Finally, a process model that com-
prises the key activities for goal-setting and reporting is developed. Based on the identified
challenges potential solutions are proposed. The created statements and models are eval-
uated positively in the case organization, with few adjustments made after the evaluation.

In summary, this thesis contributes to the scientific conversation on goal-setting and re-
porting in large-scale agile software development by documenting approaches applied in
practice, the reasons behind their usage, and current challenges. The overall findings are
consolidated in a process model of goal-setting and reporting in large-scale agile develop-
ment. It also provides suggestions and guidance for practitioners.

vii

viii

Contents

Abstract vii

Outline of the Thesis xi

1. Introduction 1
1.1. Motivation . 1
1.2. Research Objectives . 2
1.3. Approach . 3

2. Foundations 7
2.1. Large-Scale Agile Software Development . 7

2.1.1. Agile Software Development Methodologies 7
2.1.2. Large-Scale Agile Software Development 8
2.1.3. Scaled Agile Framework (SAFe) . 8
2.1.4. Large-Scale Scrum (LeSS) . 12
2.1.5. Other Scaling Frameworks . 14

2.2. Establishing Goals . 15
2.2.1. Goal-Setting Theory . 15
2.2.2. Goals in Software Development . 17
2.2.3. Types of Goals . 19

2.3. Reporting Progress . 19
2.3.1. Quantitative Reporting . 20
2.3.2. Reporting Practices . 21

3. Related Work 25

4. Case Study 35
4.1. Methodology . 35
4.2. Case Description . 37
4.3. Establishing of Goals . 41

4.3.1. Goal-Setting Process . 42
4.3.2. Types of Goals . 44
4.3.3. Goal Definition and Documentation Techniques 47

4.4. Reporting towards Goals . 49
4.4.1. Types of Reporting . 49

ix

Contents

4.4.2. Reporting on Team Level . 50
4.4.3. Reporting on Product and Domain Level 52

4.5. Challenges and Reasons . 56

5. Theoretical Model 63
5.1. Methodology . 63
5.2. Model Constructs and Propositions . 64

5.2.1. Actors . 64
5.2.2. Activities and Technologies . 67

5.3. Process Model . 75
5.3.1. Goal-Setting Process . 75
5.3.2. Reporting Process . 79

6. Artifact Evaluation and Improvement 87
6.1. Methodology . 87
6.2. Evaluation of Propositions . 88
6.3. Adjustments based on Evaluation . 97

7. Discussion 101
7.1. Key Findings . 101
7.2. Limitations . 104

8. Conclusion 107
8.1. Summary . 107
8.2. Outlook . 109

A. Appendix 111
A.1. Case Study Interviews . 111
A.2. Evaluation Interviews . 112

B. Appendix 117
B.1. Identified Goal-Setting Practices . 117
B.2. Identified Reporting Practices . 120

C. Appendix 125
C.1. Detailed Results of the Evaluation . 125

Bibliography 127

x

Contents

Outline of the Thesis
CHAPTER 1: INTRODUCTION

The introduction describes the research objectives of this thesis. It outlines the chosen re-
search approach to answer the research questions and achieve these objectives. The chap-
ter explains the motivation and describes why research in this area is relevant to the current
scientific discussion.

CHAPTER 2: FOUNDATIONS

The second chapter defines relevant concepts and reviews existing literature. It lays out
foundations on large-scale agile software development, goal-setting, and reporting.

CHAPTER 3: RELATED WORK

The third chapter summarizes and evaluates existing research from the area of large-scale
agile software development, with focus on goal-setting and reporting. Results of extant
research are reviewed and the research of this thesis is demarcated.

CHAPTER 4: CASE STUDY

The fourth chapter presents the case study of this thesis. The methodology is described,
the case organization is presented, and the results are analyzed. The results are practices,
metrics, challenges, and reasons. They answer the first two research questions.

CHAPTER 5: THEORETICAL MODEL

The fifth chapter develops two artifacts to answer the third research question. Propositions
are derived to address the identified challenges. Using these propositions, the chapter de-
scribes a generalized process model. The model comprises key activities for goal-setting
and reporting in large-scale agile software development.

CHAPTER 6: ARTIFACT EVALUATION AND IMPROVEMENT

The sixth chapter describes how the artifacts developed in chapter five are evaluated. The
chapter presents the used methodology, followed by the results of the evaluation. Oppor-
tunities for improvement of the artifacts are described, based on the evaluation.

CHAPTER 7: DISCUSSION

The discussion collects the key findings identified in this project. Potential limitations of
the presented research are discussed.

CHAPTER 8: CONCLUSION

The final chapter summarizes the work conducted in this research project and outlines
possibilities for future work.

xi

1. Introduction

The first chapter presents the motivation, research objectives, and approach of this mas-
ter’s thesis. Section 1.1 describes the motivation behind the research project, and why it is
interesting and relevant to pursue. Section 1.2 explains the objectives and research ques-
tions that we set out to answer in this thesis. Finally, Section 1.3 outlines the scientific
approach employed to achieve the stated objectives.

1.1. Motivation

In today’s organizations, diverse project management methodologies are used for software
development [65]. While all of these methodologies aim at developing software, they dif-
fer significantly in how they view the development process. While traditional methodolo-
gies consider the software development process to be of defined nature, it is a common-
ality of all agile methodologies to consider software development as an empirical process
[66]. Empirical processes require frequent feedback and adjustment to changing environ-
ments to allow for adequate reaction to unpredictable demands and requirements [66].
This common key characteristic of agile methodologies makes them suitable for projects
with unforeseeable or changing demands, which is the case for many software develop-
ment projects [66].

As of today, agile methodologies have become the dominant type of software develop-
ment methodologies [26]. In the 2020 issue of the yearly State of Agile report conducted by
VersionOne Inc. 95% of the participating organizations indicated to be using agile method-
ologies [26]. Likewise, the research area around large-scale agile development has seen
increasing activity, with 47% of publications in this area being from the past two years
[63]. Considering the formal inception of agile methodologies in 2001, over the past 20
years they have gained significant traction. In 2001, several authors compiled the central
values and principles of their software development methodologies and coined the term
"agile" [6]. These agile methodologies include, among others, the SCRUM framework by
Schwaber and Sutherland [54] and eXtreme Programming (XP) by Beck [5]. While such
methodologies had been used before 2001, the Agile Manifesto sparked a conversation
around the agile approach [66].

Agile methodologies had initially been designed for usage in non-critical projects devel-
oped by small, colocated teams [14, 66]. Nevertheless, given their proven benefits, agile
methodologies have become increasingly appealing to larger organizations as well [14].
As a consequence, several scaling agile frameworks have emerged that focus on the appli-

1

1. Introduction

cation of agile methodologies in large-scale environments with multiple products and de-
velopment teams. The Scaling Agile Frameworks (SAFe) and Scrum of Scrums are among
the most popular scaling agile frameworks, as of today [26]. However, applying agile
methodologies at scale comes with several new challenges, such as additional coordina-
tion overhead, dependencies between teams, and more [14]. Identifying these challenges
as well as potential solutions to them is the subject of an ongoing research conversation. At
the International Conference on Agile Software Development 2014 (XP2014 Conference),
Dingsøyr and Moe [16] organized a workshop to lay out a research agenda for challenges
and solutions in large-scale agile software development. In the resulting research agenda,
among others, the participants identified Organization of large development efforts1, Key per-
formance indicators in large development efforts2, and Knowledge sharing and improvement3 as
top priority research areas [16]. In a more recent installment of their workshop at XP2019
Conference, Moe et al. [43] identify lack of clear and common goals as a top barrier to
autonomy of agile teams, and put measurement of performance on the research agenda
[43]. Further, in a recent mapping study on the state-of-the-art of large-scale agile software
development, Uludağ et al. find that there is no notable research stream on performance
measurement of large-scale agile initiatives [63]. This is where this master’s thesis seeks to
contribute to the current research conversation. On the one hand, this thesis investigates
how goals are established in large-scale agile organizations, contributing to the organiza-
tional models and project management area of the research agenda. On the other hand, by
also investigating reporting processes and approaches in large-scale agile organizations, a
contribution to the key performance indicators and knowledge sharing and improvement
areas of the research agenda shall be made.

1.2. Research Objectives

Following the previously outlined motivation, we formulate three research questions (RQs)
that we seek to answer with this research project. The structure of this master’s thesis is
oriented around these RQs.

Research Question 1: How are goals in large-scale agile software development
established and reported at the case organization?

The first research question seeks to describe the current situation of goal-setting and re-
porting in large-scale agile software development in practice. To answer this research
question we conduct a case study at a large German car manufacturer. The question inves-
tigates which approaches practitioners at the case organization are using at the moment.

1Description: "Organizational models, portfolio management, project management, agile product-line engi-
neering." [16]

2Description: "Identify appropriate metrics are [sic] to monitor progress and support transparency." [16]
3Description: "How to ensure feedback for learning, use of knowledge networks and learning practices." [16]

2

1.3. Approach

Research Question 2: What are challenges and reasons for establishing and
reporting goals in large-scale agile software development?

The second research question is concerned with challenges that practitioners are facing
with their current approaches of goal-setting and reporting. Further, the question also
is about the reasons behind why the current goals and approaches are used. It seeks to
understand what the motivation of practitioners was to implement goal-setting and re-
porting as they did. To answer this research question we also employ the case study used
to answer RQ1.

Research Question 3: How can these challenges for establishing and reporting
goals in large-scale agile software development be addressed?

The third research question seeks to investigate how the identified challenges from RQ2
can be addressed. To answer this research question, a list of propositions is formulated that
we hypothesize may address the identified challenges. These propositions are presented
to and evaluated by practitioners. Based on these propositions a process model for goal-
setting and reporting in large-scale agile development is built.

1.3. Approach

To answer the research questions, this thesis follows a Design Science Research (DSR) ap-
proach [23, 47]. The goal of Design Science Research is to create innovative artifacts that
solve problems in organizations or enhance organizational capabilities [23]. Specifically,
we follow the principles of Action Design Research (ADR), a DSR methodology designed
for "generating prescriptive design knowledge through building and evaluating ensemble
artifacts in an organizational setting" [57]. Compared to plain DSR, ADR emphasizes that
artifact building and evaluation are not two separate, sequential steps [57]. Instead ADR
integrates artifact building and evaluation in an iterative way, with formative evaluations
that "contribut[e] to the refinement of the artifact" [57].

The ADR methodology defines four stages [57]. In the Problem Formulation stage a
research opportunity is identified based on existing research or practical challenges in or-
ganizations [57]. The research objective is formulated based on the identified problems. In
this thesis, Chapter 4 represents the problem formulation stage. Anticipated from a lack
of existing research, this chapter conducts a case study to investigate existing approaches
and challenges of goal-setting and reporting in large-scale agile software development.
The identified challenges form the problem formulation for this thesis, which will be ad-
dressed with the artifact. The case study follows the guidelines by Runeson and Höst [52],
which is explained in Section 4.1. It can be classified as a single-case, embedded case study
[68]. How the case study fits into the overall ADR research approach is also visualized in
Figure 1.1.

3

1. Introduction

Case Study – Chapter 4
(Yin 2014, Runeson & Höst 2009)

Single-case, embedded case study

Organization: IT department of a large
German car manufacturer

Understanding current state of how goals
and progress reporting is implemented:
• Stakeholders
• Processes
• Used methods (goal-setting, qualitative

reporting, metrics, etc.)

23 semi-structured interviews at
case organization:
• 12 data collection interviews
• 11 evaluation interviews

Data from documents

Environment

Action Design Research
(Sein et al. 2011, Hevner et al. 2004)

Knowledge Base
Literature Review – Chapter 2 & 3

• Large-scale agile development

• Literature on establishing goals and
reporting routines

• Goal-setting theory

• Known approaches to report progress

• Quantitative and qualitative reporting

• Related work

Foundation

Artifact
Process to establish goals and

report progress

Identify routines and challenges
Chapter 4

Define objectives of artifact
Chapter 4

Ongoing shaping of artifact in
organizational context

Chapter 5 & 6

Relevance Rigor

Figure 1.1.: Visualization of the overall research approach, including the Action Design
Research by Sein et al. [57] and the case study research approach by Runeson
and Höst [52]

The second stage of ADR is Building, Intervention, and Evaluation [57]. This stage is
realized in Chapters 5 and 6 of this thesis. In Chapter 5, a theoretical model of goal-setting
and reporting in large-scale agile development is built based on the initial case study, us-
ing propositions to address the identified challenges. This theoretical model, specifically
the propositions that form its basis, is subsequently evaluated in Chapter 6. The artifact
creation follows the methodology for theory building in software engineering by Sjøberg
et al. [58], which is explained in Section 5.1. Based on the evaluation results and collected
feedback, potential improvements to the propositions are discussed in the second part of
Chapter 6. This realizes the third stage of ARD, Reflection and Learning [57]. The learn-
ings and knowledge generated throughout this thesis are formalized in the process models
for goal-setting and reporting, which are created based on the propositions. This can be
mapped to the Formalization stage of ADR [57].

The chapters of this thesis and how they map to the stages of Action Design Research
are visualized in Figure 1.2. Overall, in this thesis we conduct one full cycle of the ADR
stages, followed by an outlook of how the artifacts might be improved in a potential next
design iteration. The research can be classified as exploratory and improving, as defined
by Runeson and Höst [52]. Exploratory, because with the case study we seek to find out
how goal-setting and reporting are happening in practice. Improving, because by formu-
lating the propositions we try to address existing challenges in practice, and to describe
how a general process for goal-setting and reporting can look like.

4

1.3. Approach

Researchers

Practitioners

Chapter 4
(1. round of interviews)

Chapter 5

Chapter 6
(2. round of interviews)

Chapter 6

Alpha
version

Beta
version

Artifact

• Challenges
• Reasons
• Propositions

Contributions

• Suggested
process

Problem
Formulation

Building, Intervention,
and Evaluation

FormalizationReflection
and Learning

Figure 1.2.: Visualization of how the steps of Action Design Research by Sein et al. [57]
map to the chapters of this thesis

A balance between relevance and rigor is central to the Design Science Research ap-
proach [23]. By reviewing and incorporating extant literature we ensure that our research
is rigorous. Relevancy of our research is ensured by using insights and challenges from
the case study with a real, productive organization for the problem formulation.

The remainder of this master’s thesis is structured as follows. In Chapter 2 scientific
foundations, on which this thesis is built on, are reviewed and explained. Chapter 3 dis-
cusses related work in the area of goal-setting and reporting in large-scale agile software
development. The case study that we conducted at a German car manufacturer is pre-
sented in Chapter 4. Chapter 5 develops the artifacts, which are the propositions to ad-
dress the identified challenges, and the process models for goal-setting and reporting built
on these propositions. The propositions are evaluated and potential areas of improvement
of the artifacts are discussed. This is presented in Chapter 6. Lastly, Chapter 7 summarizes
the key findings and limitations of this thesis. Chapter 8 gives an outlook for potential
future research.

5

1. Introduction

6

2. Foundations

This chapter presents the foundations and concepts on which this thesis builds. Important
concepts used in the following chapters are explained and relevant literature is presented.
First, in Section 2.1 agile software development and its central values are described. This
section also explains how large-scale agile software development is defined. Second, Sec-
tion 2.2 explains the concepts of traditional goal-setting theory, and how this theory can
be transferred into agile settings. Finally, in Section 2.3 important types of reporting and
necessary concepts to understand their differences are discussed.

2.1. Large-Scale Agile Software Development

This section provides theoretical background on agile software development and defines
what is considered large-scale agile in the context of this thesis. Also, two common scaling
agile frameworks are described in detail.

2.1.1. Agile Software Development Methodologies

Today, agile software development methodologies are the dominant approach of develop-
ing software [26]. Several frameworks are applied by organizations to implement agility,
with Scrum, Kanban, and hybrids of these two being the most popular ones [26]. The term
"agile" has been coined by the Agile Manifesto, a summary of the values and principles
that is common to all the agile development approaches [6, 66]. Those central values in-
clude the focus on the individuals and their interactions over formal processes or fixed
tools [6]. Documentation is subordinated to working software, as is fixed contracts to fre-
quent customer collaboration [6]. Further, following a fixed plan is disregarded in favor
of the ability to adapt to changing environments and requirements [6]. In summary, while
traditional development methodologies have approached software development as a de-
fined process, agile methodologies approach it as an empirical process and incorporate
frequent adjustment to changes and unforeseen circumstances [66]. As indicated by the
values and principles of the Agile Manifesto, agile approaches typically do not offer a lot
of guidance in evaluating and reporting progress. The official Scrum guide, for example,
does not mention any metrics [56], and Ken Schwaber, the original author of Scrum, only
mentions the Velocity as a metric in his description of the Scrum development process [54].
The Agile Manifesto states that "working software is the primary measure of progress" [6]
when using agile methodologies.

7

2. Foundations

2.1.2. Large-Scale Agile Software Development

Originally, agile software development methodologies have been designed for use in small,
co-located teams [9]. However, in recent time they have also been increasingly applied to
larger projects and by larger organizations [26]. Further, the research stream concerned
with large-scale agile software development has seen increased activity in the past few
years, with over 47% of research activity happening in the previous two years [63]. How-
ever, research has also investigated and documented several challenges that arise when
applying agile methodologies to large-scale projects [14, 61]. Given this popularity and
challenges, several scaling agile frameworks have emerged that try to make application of
agile methodologies to scaled projects easier. Two of these frameworks, SAFe and LeSS,
are explained in the following sections.

Further, for the context of this thesis, a clear definition of the term large-scale agile is nec-
essary. In literature, no clear definition has emerged yet [15]. Dingsøyr et al. [15] propose
a taxonomy of scale that defines various manifestations of scale. They argue against using
size measures such as cost or code size as indication of the scaling size due to industry
specific differences. Instead, they propose using the coordination overhead as an indicator
of scaling size [15]. The coordination overhead in their taxonomy is based on a 7 (+/-
2) rule of thumb [15]. Based on coordination overhead they define small-scale as a single
team, and large-scale as ranging from two to nine teams because additional coordination
is needed compared to the small-scale case [15]. Finally, Dingsøyr et al. [15] also define
the very large-scale which covers cases of ten or more teams. Other authors are defining
large-scale agile quite differently. Dingsøyr and Moe [16] give an overview of different def-
initions for large-scale that they collected at the XP2014 conference, of which many rely on
size measures.

In line with this taxonomy by Dingsøyr et al. [15], this thesis defines large-scale agile
development as cases where multiple teams are working together on one product using
agile software development methodologies. Further, we also consider cases as large-scale
agile where agile methodologies have been rolled out throughout the whole organization,
thus also covering the very large-scale definition of Dingsøyr et al. [15].

2.1.3. Scaled Agile Framework (SAFe)

The Scaled Agile Framework (SAFe) was originally designed by Dean Leffingwell [50] in
his book on "scaling software agility" [36]. Today, SAFe is the most commonly used scaling
agile framework according to the 14th State of Agile Report by VersionOne Inc. [26]. SAFe
is also being used by several of the interviewees of the case study that is part of this thesis.
Hence, the SAFe framework is explained in this section.

SAFe builds on the values and principles of agile and lean product development [35].
It offers four different configurations, called Essential, Large Solution, Portfolio, and Full
SAFe. The Full SAFe is displayed in Figure 2.1. Essential SAFe comprises the Team and
the Program level that together form an Agile Release Train (ART) [35]. In the Essential

8

2.1. Large-Scale Agile Software Development

3

© Scaled Agile, Inc.

Overview
The Scaled Agile Framework® (SAFe) is an online knowledge base of proven, integrated principles,
practices, and competencies to implement Lean, Agile, and DevOps at scale.

The Big Picture graphic (Figure 3) on scaledagileframework.com offers direct access to SAFe’s
extensive library of content. Each icon on this graphic links to a supporting article and related
resources. The SAFe website also includes a variety of additional advanced-topic articles, downloads,
presentations, videos, and a glossary translated into many languages.

Measure
& GrowBusiness Agility

Operational Value Streams

System
Team

Lean UX

Metrics

Vision

Milestones

CoP

Roadmap

Shared
Services

Core
Values

Lean-Agile
Mindset

Implementation
Roadmap

SAFe
Principles SPC

PORTFOLIO

Portfolio Backlog
NFRsK

an
ba

n

Guardrails

Lean BudgetsPB

Epic

Enabler
Epic

KPIs

Development Value Streams

Coordination

Solutions

Strategic
Themes

Portfolio
Vision

Enterprise Government

Capability

Enabler

 Solution
Demo

 Solution
Demo

 Supplier
SOLUTION

TRAIN

LARGE
SOLUTION

NFRs

Solution Backlog

K
an

ba
n

MBSE

Compliance

Set-Based

Variable
Fixed

Pr
e

Po
st

Pr
e

Po
st

CD

CI

CE

ESSENTIAL

Leffingwell, et al. © Scaled Agile, Inc.

NFRs

Team Backlogs

Design Thinking

Customer Centricity

• Plan
• Execute
• Review
• Retro

Scrum

XP

Kanban

K
an

ba
n

NFRs

Program Backlog Solution
Context

Solution

DevOps

Sec

Built-In
Quality

Architectural Runway

GoalsGoals

PI
IterationsIterations

PI

CD

CI

CE

System DemosSystem Demos

Enabler

Story

Feature

GoalsGoals IterationsIterations

System DemosSystem Demos

Enabler

Story

Feature

Story

Enabler
PI

 P
la

nn
in

g

PI
 P

la
nn

in
g

PI
 P

la
nn

in
g

IP
 It

er
at

io
n

IP
 It

er
at

io
n

Release on Demand

PI Objectives

Continuous
Exploration

Continuous
Integration

Continuous
Deployment

Continuous Delivery Pipeline

AGILE RELEASE TRAIN

Lean-Agile Leadership

N

Organizational
Agility

Agile
Product
Delivery

Enterprise
Solution
Delivery

Team and
Technical

Agility

Lean Portfolio
Management

Continuous
Learning

Culture

Business | Technology

Agile Teams

Business
Owners

Product
Mgmt

System
Arch/Eng

RTE

Scrum
Master

Product
Owner

Solution
Mgmt

Solution
Arch/Eng

STE

Epic
Owners

Enterprise
Architect

5.1

Figure 3. Full SAFe configuration

© Scaled Agile, Inc.

Figure 2.1.: Overview of the Full SAFe configuration, taken form the SAFe 5 guide [25]

configuration Agile Teams, Systems Architects, Product Management, Release Train Engi-
neers (RTEs), Business Owners, and Customers are present [35]. The ART aligns all the
stakeholders to a common roadmap and operates in Program Increments (PIs) [35]. Inside
of the ART, the iterations of the Agile Teams are synchronized, which is called the cadence
of the ART. A PI is "a time-boxed increment[...] for planning, execution, and inspecting and
adapting" [35]. Typically, a PI is prefaced by a PI Planning and a new solution is presented
at a System Demo and released at the end of a PI.

The next bigger scaling configuration in SAFe is called Large Solution. It builds on Es-
sential SAFe and allows to coordinate the work of multiple ARTs [35]. This coordination is
handled by the Solution Train [35]. The Solution Train maintains its own Solution Kanban
and operates in the Solution Context, which describes the environment that the Solution
will operate in [35]. Compared to Essential SAFe, the Large Solution configuration adds
the roles of the Solution Train Engineer (STE), Solution Management, and Solution Archi-
tect [35]. These roles are responsible for coordination of working methodology, solution
content, and solution architecture across all the involved ARTs, respectively [35]. Further,
compared to Essential SAFe, Large Solution SAFe adds Pre- and Post-PI Planning events
and an overall Solution Demo where individual ARTs’ results are evaluated together [35].

9

2. Foundations

The Portfolio configuration of SAFe is intended to make sure that the SAFe program
is aligned with the overall enterprise strategy [35]. Just like Large Solution SAFe, Portfo-
lio SAFe builds on the Essential configuration and adds several new aspects. The Value
Stream is added to make sure that the used resources of the enterprise are actually pro-
viding value to the customer or the business, thus ensuring a flow of value [35]. Further,
Portfolio SAFe adds a Portfolio Kanban, to make the work of the Portfolio visible, and bud-
geting practices that build on the Lean values [35]. The Portfolio Kanban contains Portfolio
Epics which are coordinated by the Epic Owners, a new role added by the Portfolio con-
figuration [35]. Further, Portfolio SAFe adds the roles of the Enterprise Architect and Lean
Portfolio Management (LPM), which are ensuring strategic direction from a technical and
investment perspective [35].

Finally, Full SAFe is the biggest configuration and comprises all the aforementioned
configurations [35]. The Full SAFe configuration is displayed in Figure 2.1. It includes the
Team, Program, Large Solution, and Portfolio levels.

Throughout all levels SAFe emphasizes Inspect and Adapt, as is also part of the general
agile values. ARTs and value streams are conducting Inspect and Adapt workshops during
which they define improvement Backlog Items based on the current state of work [35].

Goals in SAFe

Among many practices and guidelines, SAFe also provides goal-setting mechanisms and
metrics as part of the framework [25]. These elements of the framework are of particular
relevance since this thesis is concerned with goals and reporting.

Iteration
Goals

Team
PI Objectives

Program
PI Objectives

Solution
PI Objectives

1

*

1

*

1

*

Figure 2.2.: The layers of PI Objective roll-up,
based on the SAFe 5 guide [25]

Figure 2.2 gives an overview of the
hierarchy of goals as defined by SAFe.
"Program Increment (PI) Objectives are
a summary of the business and technical
goals that an Agile Team or train intends
to achieve in the upcoming Program Incre-
ment (PI)" [25]. They are created by Ag-
ile Teams during the PI Planning event and
represent things they want to accomplish
in the next PI. PI Objectives can, but do not
have to, relate to features [25]. SAFe recom-
mends PI Objectives be formulated using
the SMART technique (Specific, Measur-
able, Achievable, Realistic, Time-bound)
[25]. During PI Planning the PI Objectives
are assigned a relative business value on
a scale from 1 to 10 by Business Owners
[25]. In general, PI objectives are defined
and rolled up bottom-up [25]. All the team

10

2.1. Large-Scale Agile Software Development

objectives, once committed, are summarized into Program PI Objectives by the Release
Train Engineer (RTE) [25]. Further, after all Agile Release Trains (ARTs) have planned their
Program PI Objectives, the Solution Train Engineer summarizes them into Solution PI Ob-
jectives [25]. The Solution PI Objectives are used to communicate to stakeholders what the
Solution Train will deliver in the PI [25].

"Iteration Goals are a high-level summary of the business and technical goals that the
Agile Team agrees to accomplish in an Iteration" [25]. The Iteration Goals make sure teams
are working towards the PI Objectives [25]. They are intended for the team to keep a larger
view of what is planned to be achieved in the iteration, and to be able to understand and
communicate the business value that will be delivered [25]. Further, they allow for more
detailed dependency handling on the team-level [25]. The Iteration Goals are a set of state-
ments that summarize the stories that have been planned to be in the Iteration Backlog [25].
The Iteration Goals are derived from the PI Objectives for the current Program Increment
as well as the planned stories in the Iteration Backlog [25]. The Iteration Backlog, in turn,
is influenced by the available capacity of the team for the upcoming iteration [25]. At the
end of the Iteration Planning everyone commits to the Iteration Goals [25].

Reporting and Metrics in SAFe

Even though SAFe declares the actual software to be the primary measure of progress
towards the defined objectives, the framework also provides several metrics. In SAFe,
metrics are defined as follows:

Metrics are agreed-upon measures used to evaluate how well the organization is pro-
gressing toward the Portfolio, Large Solution, Program, and Team’s business and tech-
nical objectives.

— Definition of metrics by the SAFe framework [35]

The metrics in SAFe are structured according to the different configurations. Table 2.1
shows an overview of several of the metrics and measurements that are part of the SAFe
framework. We encourage the reader to also refer to the official SAFe website1, as there
are several visualizations provided to further explain the respective metrics and measure-
ments.

1https://www.scaledagileframework.com/metrics

11

2. Foundations

What is evaluated Measurements / metrics

Agility
Business Agility Self-Assessment
Organizational Agility
Self-Assessment

Internal and external progress Lean Portfolio Metrics

Lean and Systems Thinking Lean Portfolio Management Self-Assessment

Culture Continuous Learning Culture Self-Assessment

Predictability
Solution Train Predictability Measure
Program Predictability Measure

Performance

Solution Train Performance Metrics
Program Performance Metrics
Team PI Performance Report
DevOps Health Radar

Lean-Agile Principles and Practices

Enterprise Solution Delivery Self-Assessment
Agile Product Delivery Self-Assessment
Lean-Agile Leadership Self-Assessment
Team and Technical Agility Self-Assessment

Product Progress
Feature Progress Report
Cumulative Flow Diagram

Efficiency
Continuous Delivery Pipeline Efficiency
Recovery over Time Deployments and Releases
per Timebox

Table 2.1.: Overview of the metrics provided by the SAFe framework [25]

2.1.4. Large-Scale Scrum (LeSS)

Next to the Scaled Agile Framework (SAFe), there are several other popular scaling agile
frameworks. Large-Scale Scrum (LeSS) is among the most popular scaling agile frame-
works, with 4% of respondents in the latest State of Agile Report using it [26]. Even though
LeSS is not as popular as SAFe (which is used by 35% of respondents [26]), this section pro-
vides an in-depth look into LeSS because multiple of the participants in the case study of
this thesis are using LeSS.

Figure 2.3 gives an overview of the whole Large-Scale Scrum framework. LeSS is struc-
tured in two general parts [34]. The first part is the smaller "standard" LeSS framework,
that is intended for use cases with one Product and up to eight teams [34]. The LeSS

12

2.1. Large-Scale Agile Software Development

Figure 2.3.: Overview of the LeSS framework, taken from the LeSS website [11]

framework defines the roles of the Product Owner, the Scrum Master, and the Feature
Teams [34]. As is the case in Scrum, the Product Owner is concerned with product content
matters while the Scrum Master takes care of working methodologies and collaboration
improvement [34]. A Feature Team by the definition of LeSS is a cross-functional team
that takes care of feature implementation over the whole lifecycle [34]. In LeSS, there is
one overall Product Backlog and individual Sprint Backlogs for each of the Feature Teams
[34]. Just like in SAFe, Sprints of the teams are aligned. This is called a product-level Sprint
in LeSS [34]. Each Sprint in LeSS is prefaced by Sprint Planning One and Sprint Planning
Two [34]. Sprint Planning One is done together by all the teams, while Sprint Planning
Two is conducted individually by each team. Happening at the end of each overall Sprint,
the product Sprint Review is used to share the newly developed product increment with
the customers and other stakeholders [34]. After each Sprint an overall Retrospective is
done to discuss issues among the participating teams that came up in the individual team
Retrospectives [34]. Finally, regular Product Backlog Refinements are conducted with all
teams to facilitate understanding and discovery of dependencies across the product [34].

The second part is the bigger LeSS Huge, which can be applied to use cases with more
than eight teams [34]. A central aspect of LeSS Huge are the so-called Requirement Areas.
They are defined as the most important groups of requirements by the customers [34].
The Requirement Areas are used to split up the overall product in different areas, which
becomes necessary in the large-scale contexts where LeSS Huge is applicable [34]. This
split is implemented by assigning each Product Backlog Item to one of the Requirement
Areas [34]. Again, like in standard LeSS, all areas operate in a synchronized product Sprint

13

2. Foundations

[34]. Feature Teams are also assigned to individual Requirement Areas and are working
according to the standard LeSS framework inside these areas [34].

Goals in LeSS

In contrast to the Scaled Agile Framework, Large-Scale Scrum does not provide explicit
guidance on goal-setting. However, it provides information regarding how to structure
the different Backlogs used in product development. Based on the principle of Scrum, in
Large-Scale Scrum there is only one overall Product Backlog [34]. The Backlog Items that
are in the Product Backlog should be "[...] focused around end-to-end customer goals" [34].
In the case of LeSS Huge the overall Product Backlog is complemented with additional
Area Backlogs [34]. The Area Backlogs essentially are a decomposition of the Product
Backlog by assigning each Backlog Item to exactly one customer Requirement Area [34].
Thus, each Area Backlog can be described as a filtered view on the Product Backlog [34].

Apart from the product-oriented goals, LeSS also promotes the Go See management
method that has two organizational goals [34]:

• Better problem-solving capability. Understand the problems both on the customer
and on the team side, and thus increasing the capability to solve them.

• Improved organizational decision making. Understand the context that teams are
operating in and the impact that (management) decisions outside the teams can have
on their work. This will ensure the connectedness of decisions to the actual work
environment.

Reporting and Metrics in LeSS

The LeSS framework emphasizes that metrics by themselves cannot be considered good or
bad [34]. Instead, the framework recommends that targets and according metrics should
be set by the people that are actually using them [34]. Further, each used metric should
serve a clearly defined and articulated purpose, avoiding waste by working towards goals
with no purpose [34]. However, unlike SAFe, the LeSS framework does not provide a set
of metrics that the user can pick from.

2.1.5. Other Scaling Frameworks

Several other frameworks exist for applying agile methodologies at scale apart from SAFe
and LeSS. Among the most popular scaling agile frameworks are Nexus, Scrum of Scrums,
Disciplined Agile Delivery (DAD), and others [26].

The Nexus framework defines a goal structure similar to the SAFe framework. Each
Scrum Team has so-called Team Sprint Goals [55]. This is in line with the Sprint Goals in
"standard" Scrum. The Team Sprint Goals should be aligned with the Nexus Sprint Goal
[55]. The Nexus Sprint Goal "[...] is the sum of all the work and Sprint Goals of the Scrum
Teams within the Nexus" [55]. It is defined in the Nexus Sprint Planning [55]. Each Nexus

14

2.2. Establishing Goals

comprises multiple Scrum Teams that develop a common Product [55]. The Nexus works
towards the Product Goal, which "[...] describes the future state of the product and serves
as a long-term goal of the Nexus" [55].

The Nexus framework does not cover the topic of reporting.
We do not elaborate on other frameworks here because they are not relevant in the con-

text of the case study conducted in this thesis.

2.2. Establishing Goals

Section 2.1 described the foundations regarding agile software development methodolo-
gies and their application in large-scale settings. Next, this section presents the theoretical
background about goal-setting in organizational contexts. This section covers traditional
goal-setting theory and how goals are used in software development.

2.2.1. Goal-Setting Theory

Goal-setting theory was originally developed in organizational psychology [39]. It has
been developed and empirically tested for over 50 years as of today [38, 39]. In its core,
goal-setting theory describes goals as being based on discontent with the current situation
and the desire to attain an objective [39].

Mediators between goals
and performance

Goal difficulty Harder goals require greater efforts

Necessary knowledge and skills Goals require usage of existing skills or to attain
new skills

Task-specific confidence May mediate other factors such as personality,
job autonomy, participation in decisions

Motivation The motivation to pursue the goal

Moderators of goal-setting

Feedback Necessary to track progress already made

Commitment Viewing the goal as important

Task complexity How hard necessary knowledge and skills are to
acquire

Situational constraints Overload, resource scarcity, etc.

Figure 2.4.: Overview of the mediators of goal performance and moderators of goal-setting
by Locke and Latham [39]

The relationship between goals and the individual’s or organization’s performance in
achieving the goals is mediated by several factors, according to the theory. First, goal
difficulty influences performance, as harder to achieve goals require more effort and thus
lead to increased focus on goal-relevant action [39]. Second, the needed and available
skills for attaining a goal are also relevant. A goal may be achieved with existing skills

15

2. Foundations

or knowledge, or require the individual or organization to acquire new ones [39]. Finally,
also self-efficacy and motivation to achieve a certain goal are mediating the performance
[39].

Apart from those mediators, further influence factors can have effects on performance in
goal-attainment. Regular feedback is necessary to be able to evaluate the progress already
made [39]. The individual or organization has to actually commit to the goal [39]. Further,
task complexity, which depends on how hard it is to acquire the necessary knowledge
and skills, influences achievement of a goal [39]. And finally, situational constraints in an
organization, such as stress or available resources, can also influence goal-attainment [39].

Goal-setting theory does not discriminate where goals are coming from. In the contrary,
it shows that goals are equally effective if assigned by a third party, created participa-
tory, or are self-set [39]. A specific type of goal in goal-setting theory is the learning goal
[39]. These are goals that focus on acquiring necessary skills or knowledge to be able to
achieve further, more complex goals afterwards. These kinds of goals are seen as enhanc-
ing metacognition, which is the ability to plan, monitor, and evaluate progress towards goal
achievement [39]. Metacognition is considered to be of particular importance in environ-
ments with minimal structure and guidance [39]. It is worth noting here, that environ-
ments with minimal structure and guidance are the intended application scenario for agile
development methodologies, as explained in Section 2.1.

Goal-setting for groups is also covered by goal-setting theory. It is considered to add
additional complexity, because the group’s goals might be conflicting with the goals of
the participating individuals [39]. Studies have shown that personal goals of individuals
that are incompatible with the group goals affect the group performance negatively [39].
Additionally, feedback to individuals in the group tends to shift focus onto individual
performance. Only feedback provided on group level has a moderating effect towards
group goals (cf. Figure 2.4) [39]. This seems to indicate that group-level performance
reporting and feedback is a necessary moderator for group performance.

Finally, on the highest organizational scaling level a clear vision was found to have pos-
itive impact on shared goal-setting inside organizations and on achievement of growth
goals [39].

Besides goal-setting theory developed by Locke and Latham [38, 39], the management
philosophy coined by Peter Drucker is also concerned with management by objectives.
In his book on people and performance, Drucker elaborates on management by objec-
tives in organizations [48]. Drucker emphasizes general managers in companies should
be focused on business performance, and outnumber functional managers who are con-
cerned with specialized workmanship [48]. Effective management has to primarily "direct
the vision and efforts of all managers toward a common goal" [48]. For that end, every
employee needs clear objectives that define what they have to contribute to overall or-
ganizational performance, according to Drucker [48]. Objectives have to consider both
short-term and long-term success [48]. According to Drucker, all managers should define
their own objectives themselves, while higher management only accepts or rejects them

16

2.2. Establishing Goals

[48]. Every employee needs to know the overall company goals to be able to define their
own goals [48]. Such an understanding can only be achieved via "communications up" by
lower management to upper management [48].

Drucker also emphasizes that every objective should allow managers to measure their
performance towards the goal [48]. The measurement result, however, should not be used
for control from higher management, but rather for self-control [48]. Using such reports
for control from above causes employees to focus on optimizing these reports instead of
doing their actual job, according to Drucker [48]. Reports should rather be a tool used by
the person that fills them out [48]. Further, Drucker cautions that every measurement has
to properly fit into the overall organizational perspective, to avoid managers optimizing
towards the wrong measures [48].

2.2.2. Goals in Software Development

Goal-oriented Requirements Engineering

Goals are commonly used in the context of software engineering, especially in the require-
ments engineering step of projects [51]. In a comparison of several goal-oriented require-
ments engineering (GORE) methods, Regev and Wegmann [51] give an overview of dif-
ferent definitions and types of goals in software engineering. They find that requirements
engineering in general uses goals for "[...] providing the rationale (why) for an envisioned
system" [51]. Hence, goals are used to derive concrete requirements [51]. Ideally it should
be possible to trace back specific requirements to a goal of the organization. However,
the concept of goals is defined differently by existing GORE frameworks [51]. Based on
these varying definitions, Regev and Wegmann define goals to refer to an envisioned state
of a system, that is formulated by a stakeholder [51]. The compared GORE methods also
provide different types of goals. Achievement Goals are defined as goals of an organization
or system with clearly defined post-conditions for fulfillment [51]. Maintenance Goals are
goals to not enter a specific state, or to keep an existing state constant as is [51]. Softgoals are
goals without clearly specified criteria of when the desired state is achieved. Thus, they of-
fer room for subjective judgment and interpretation [51]. Additionally, some frameworks
also use beliefs and constraints [51].

Throughout this thesis we aligned our working definition of goals with the definition
provided by the Goal-based Requirements Analysis Method (GBRAM):

Goals are high level objectives of the business, organization, or system. They express
the rationale for proposed systems and guide decisions at various levels within the
enterprise.

— Definition of goals by the GBRAM method [1], as described by Regev and
Wegmann [51]

17

2. Foundations

We chose this definition, because we are not focusing on any one specific stakeholder in
software development and the definition incorporates the different possible stakeholder
viewpoints ("business, organization, or system"). In addition, this definition takes into
account different possible scaling levels in an organization at which goals can apply ("var-
ious levels within the enterprise"). This is particularly relevant for this thesis, because we
are focusing on large-scale organizations that encompass different scaling levels.

In another paper on Goal-oriented Requirements Engineering, van Lamsweerde [64] in-
vestigates the use of goals in requirements engineering. They define a goal as an "[...]
objective the system under consideration should achieve" [64]. Van Lamsweerde differ-
entiates goals by their level of abstraction — high-level, strategic or low-level, technical —
and their type of concern — functional or non-functional [64]. In contrast to requirements,
goals typically require cooperation of multiple agents to achieve them [64]. If a goal can be
achieved by an individual agent, it is considered a requirement by van Lamsweerde [64].
Additionally, van Lamsweerde [64] elaborates on logical reasoning about goals, which is
not of relevance for this thesis.

Goal Question Metric Approach

The Goal Question Metric (GQM) Approach by Basili et al. [2] is part of the Encyclopedia
of Software Engineering [40]. Its focus is on software engineering, but without special
consideration of agile methodologies or large-scale settings. The central approach of GQM
for progress measurements consists of three parts [2]. First, goals need to be specified for
the project to be measured. Second, data from the organization’s operation needs to be
defined that will be used for evaluating the progress towards the goals. And third, rules
need to be specified as to how to interpret the data with respect to the goal [2].

Accordingly, the model used by the GQM approach consists of three layers [2]. A goal is
defined for a specific object, either a product, process, or resource [2]. Additionally, each
goal is defined for a reason and from a point of view by a stakeholder [2]. A goal is always
relative to the environment it is defined in, e.g., the current state of the organization [2]. For
each goal, questions are formulated that describe how the evaluation of goal-achievement
is performed [2]. And again for each of these questions data is specified that will be used
to answer it [2]. This represents the metric for evaluation of the goal. Basili et al. [2] dis-
tinguish between objective data, that is independent from a stakeholders viewpoint, and
subjective data, which depends on the object and the viewpoint from which it is collected.

In a subsequent publication, Basili et al. [3] extend their approach to ensure alignment
to business. The extension is called GQM+Strategies [3]. It separates goals into three cate-
gories: business, software-development, and project-specific goals [3]. Strategies serve the pur-
pose of breaking down goals into goals of the next lower level, respectively [3]. Business
strategy breaks down business goals by specifying goals at software level, while software
level strategy breaks down software-development goals into project-specific goals [3]. At
each level a traditional GQM tree is used to operationalize and measure goals [3].

18

2.3. Reporting Progress

Goals in Large-Scale Agile Software Development

Establishing goals in agile environments is subject to recent research conversation. In a
workshop at 2018 International Conference on Agile Software Development (XP 2018),
Stray et al. [60] identify lack of clear and common goals as one of the top barriers to
autonomous agile teams. Lack of trust within teams also is among the top barriers, causing
team members to not commit to team goals [60], while lack of trust between teams and
management causes increased demand for reporting and control from management [60].

How goals are considered in scaling agile frameworks was elaborated in Section 2.1.

2.2.3. Types of Goals

Throughout the previous sections we already mentioned several categorizations of goals
used by agile frameworks or other publications. This section summarizes another publi-
cation focused solely on types of goals.

In a case study with 75 managers of companies from three countries, Bateman et al. [4]
created a taxonomy that structures goals along two dimensions: goal content and goal
level. The content of goals is distinguished in ten categories [4]: Personal, Financial, Cus-
tomer, Market, Operations, Product, Organization, People, Competitive, and Strategy making.
Further, goals can be relevant to the organization on different levels [4]. Process goals are
goals that represent the ongoing, tactile operation of business, e.g., continuous learning,
interacting with customers, and coordinating employees [4]. Project goals are time-bound
and focused on a discrete business project, e.g., setting up a new production plant, or hir-
ing a new expert [4]. Next, strategic goals focus on differentiation of the organization [4].
They are the basis for resource allocation and often refer to deliverables to customers, qual-
ity, or pricing. Enterprise goals are goals for the organization as a whole, e.g., growth, or
revenue increase [4]. Finally, ultimate goals are at the top of the goal-hierarchy [4]. They
represent long-term objectives and are of personal or societal nature, e.g., retirement, or
improving attractiveness of country as a business location.

The differentiation of goals along the dimensions of content and organizational level is
similar to the one made by van Lamsweerde [64] in the requirements engineering domain,
as explained earlier. Both authors are considering the level as well as the content type of
goals as important factors for categorization of goals. This will be the basis for structuring
and categorizing the goals that we observe in the case study in Section 4.

2.3. Reporting Progress

This section explains the theoretical background on reporting progress towards goals. Re-
porting is important for organizational success. A study by Müller et al. [44] found that
establishing reporting on portfolio-level is positively associated with achieving results.
Regarding large-scale environments, a shared reporting approach was found to help orga-
nizations achieve their goals by channeling information from lower organizational levels

19

2. Foundations

to higher levels [44]. Müller et al. recommend to establish and standardize common re-
porting practices in an organization, to be able to compare projects on specific metrics [44].

Throughout this thesis we refer to reporting as quantitative in cases where metrics form
the central aspect, and as qualitative in cases where no metrics are used to evaluate status.
In the following, relevant literature on reporting in organizations is discussed.

2.3.1. Quantitative Reporting

The ISO/IEC 15939:2007 standard defines a measurement process for software engineering
and management in general [24]. The standard focuses on describing central activities
necessary to establish, execute, and improve measurements in projects or organizations
[24]. Concrete metrics themselves are not provided by the standard.

Establish
measurement process

Plan
measurement process

Perform
measurement process

Evaluate
measurement

Figure 2.5.: The four core activities of the ISO/IEC 15939:2007 standard as described by the
IEEE [24]

The ISO standard splits the measurement process into four separate steps [24]. In a first
step, management and employees have to define requirements for the process, and allocate
and assign resources needed to carry out the actual process in the later steps [24]. Manage-
ment and employees have to commit to the defined scope and communicate so. Second,
the measurements have to be planed [24]. This entails defining which object is to be mea-
sured, which information need is to be satisfied, which measures should be used, and how
the data is to be collected, analyzed, and reported [24]. The third step focuses on executing
the actual measurements [24]. This means generating and collecting the necessary data on
the one hand, and analyzing the data and communicating the results on the other hand
[24]. In the fourth and final step of the process, both the results of the measurement anal-
ysis and the measurement process itself should be evaluated [24]. Identified opportunities
for improvement have to be applied to the product as well as the measurement process
[24]. The standard also describes that the four main steps of the process can and should be
conducted iteratively to enable adjustment of previously conducted steps to new insights
[24].

The Project Management Body of Knowledge Guide (PMBOK-Guide) by the Project
Management Institute (PMI) has an extension focused on agile methodologies. The PMI
Agile Practice Guide [27] describes — among other aspects of agile methodologies —
measurements in agile projects. The Agile Practice Guide recommends usage of met-
rics primarily to improve the ability to make forecasts and as a basis for decision making
[27]. However, the guide emphasizes that empirical metrics in agile — like all predictive

20

2.3. Reporting Progress

measurements — might not reflect the actual state accurately and experience unforeseen
changes [27]. It differentiates between capacity-based and flow-based measurements [27].
Capacity-based measurements use the number of stories or story points to evaluate per-
formance, while flow-based measurements such as lead time and cycle time focus on time
and should be used to identify performance bottlenecks [27]. The guide emphasizes that
using only story points for measurement violates the agile principle that working software
should be the primary measure of progress [27]. They recommend every team to define
their own set of measurements, while acknowledging the disadvantage of missing com-
parability between teams [27]. Finally, the PMI Agile Practice Guide suggests that also
Earned Value Management can be applied in agile environments [27]. Earned Value Man-
agement (EVM) is a project management technique that stems from industrial engineering
and has been transferred to the software engineering domain [21]. The EVM approach
consists of ten steps that are summarized in Table 2.2.

Kupiainen et al. [32] conducted a systematic literature review on the usage of metrics in
agile and lean software development. In their paper, they review 774 papers and finally se-
lect 30 primary studies for detailed analysis [32]. Reasons behind usage of metrics, as well
as effects of using metrics in agile and lean software development are their central objec-
tives [32]. The findings of the literature review cluster these reasons and effects of metrics
into five key areas [32]. Sprint and project planning comprises three activities for which met-
rics are used: prioritization, scoping, and resourcing. This category contains the fewest
identified metrics. The progress tracking area contains metrics measuring project progress,
visibility, goal-achievement, and workflow balance. Software quality measurement metrics
measure the level of quality, both directly on the product and indirectly via test-metrics.
The fixing software process problems category contains the most identified metrics. Metrics
in this category are intended to understand problems in the development processes, and
to help fix these problems. Finally, the motivating people area comprises metrics that are
used for motivating employees and to positively influence their behavior. Negative effects
on employee behavior, however, are also a possible outcome of applying such metrics, as
pointed out by Kupiainen et al. [32]. Employees may cut corners to try to keep the metrics
at the desired level [32]. Additionally, Kupiainen et al. [32] present an overview of all iden-
tified metrics in the literature, structured according to the taxonomy of software metrics
by Fenton and Pfleeger [20]. They differentiate between the entities product, process, or
resource, and the attributes internal or external that are measured [20, 32]. In summary, the
most important metrics in agile and lean software development identified by Kupiainen et
al. [32] are velocity, effort estimations, customer satisfaction, build status, technical debt,
and progress based on working code. Velocity and effort estimations are also the metrics
mentioned most often throughout the 30 primary studies of the review [32].

2.3.2. Reporting Practices

This section describes reporting practices that are relevant for the case study of this thesis.
The Balanced Scorecard is explained first, followed by Objectives and Key Results.

21

2. Foundations

Step Explanation

1 Define work scope The complete scope of the work has to be defined up-
front.

2 Create integrated bottom-
up plan

Overall scope has to be broken down into sub-cells, so-
called Control Account Plans (CAPs). In sum, the CAPs
represent overall progress.

3 Formally schedule CAPs Definition of what has to be achieved when in the
project.

4 Assign Each CAP to an Ex-
ecutive for Performance

Each CAP is assigned the responsibility of an executive.

5 Establish a Baseline that
Summarizes CAPs

Definition of how the CAPs are summarized to evaluate
overall progress.

6 Measure Performance
Against Schedule

The actual performance has to be compared to the
planned schedule periodically. A difference between ac-
tual and planned state is referred to as schedule vari-
ance.

7 Measure Cost Efficiency
Against the Costs Incurred

The actually achieved value of the project has to be com-
pared to the actually incurred costs periodically. A dif-
ference between the two values is referred to as cost-
efficiency factor.

8 Forecast Final Costs Based
on Performance

Based on the actual performance, the projects final costs
have to be forecasted periodically.

9 Manage Remaining Work The remaining work has to be managed and planned
based on the current state.

10 Manage Baseline Changes Changes to the scope of the project have to be contin-
uously integrated into the baseline and evaluation ap-
proach.

Table 2.2.: Overview of the central steps of Earned Value Management (EVM) for software
projects, as described by Fleming and Koppelman [21]

Balanced Scorecard

The Balanced Scorecard (BSC) is a reporting tool developed by Kaplan and Norton [28].
It tries to provide the top-management of an organization with a combination of finan-
cial and operational measures of the business [28]. The business is represented from four
perspectives in the Balanced Scorecard: the customer, internal, innovation and learning, and
financial perspectives [28]. For each of the perspectives, the BSC holds different goals, and
for each goal an appropriate measure is defined [28]. A exemplary BSC is shown in Figure
2.6.

The elements in the customer perspective focus on how the organization is viewed by its

22

2.3. Reporting Progress

Financial Perspective
Goals Measures

Customer Perspective
Goals Measures

Internal Business Perspective
Goals Measures

Innovation and Learning Perspective
Goals Measures

Figure 2.6.: Template for a Balanced Scorecard based on Kaplan and Norton [28]

customers [28]. These typically are concerns and measures of time, quality, performance
and service, and cost [28]. The internal business perspective focuses on internal operations
that are necessary to achieve said customer satisfaction [28]. Thus, here the measures typ-
ically revolve around the business processes. Kaplan and Norton emphasize the crucial
importance of information systems for aggregating the necessary internal data to do the
measurements [28]. In the innovation and learning perspective, the BSC focuses on measures
to continuously improve products and processes [28]. And finally, the financial perspective
revolves around measures of the financial success of the organization.

In summary, the BSC is a tool to "[...] translate a company’s strategy into specific mea-
sureable objectives" [28]. However, the strategy itself is not defined using the BSC [28].

Objectives and Key Results

Objectives and Key Results (OKRs) are a practice to set goals for a specific period of time,
e.g., a quarter of a year [67]. As implied by the name the central concepts of the practice are
Objectives and Key Results [67]. An Objective is a sentence that should be formulated quali-
tative and in a way that motivates people [67]. No metric or measurement should be part
of an Objective [67]. Further, Objectives should be time-bound with a clear period within
which it should be achieved [67]. Objectives should be actionable by the organization /
program / team independently [67].

Key Results on the other hand should be quantitative [67]. They are the vehicle to quan-
tify and operationalize an Objective [67]. The number of Key Results per Objective should

23

2. Foundations

be limited, e.g., to about three [67]. Hence each Key Result should define a clear metric for
evaluation and a target value for this metric [67].

In general, OKRs should be ambitious for the organization / team, but still be within the
achievable range [67]. As a result of this ambitiousness, OKRs might be not or only par-
tially achieved. This has to be part of the mindset of teams, to maintain good spirits amid
failure to achieve all OKRs [67]. The OKRs should be established in a focused meeting with
the senior management [67]. Before this meeting all employees should be encouraged to
raise potential Objectives they think should be pursued by the organization / team in the
next quarter [67]. Using these Objectives from employees as well as Objectives of the man-
agement, the team in the meeting has to determine the most important ones to pursue in
the next quarter [67]. Further, the management team has to define metrics that could be
used for measuring the achievement of each selected Objective [67]. These metrics form
the basis for formulating the Key Results [67]. Finally, for each Key Result a target value
has to be defined that is — as explained earlier — ambitious but still doable [67].

24

3. Related Work

Chapter 2 presented the theoretical foundations and key concepts that are relevant to this
thesis. This chapter discusses several publications with topics that are related to goal-
setting and reporting in large-scale agile environments.

Stettina and Schoemaker (2018) [59]

Stettina and Schoemaker [59] conduct a multiple case study in ten large organizations.
The focus of the case study is on reporting routines, artifacts, and metrics in Agile Portfolio
Management [59]. A particular focus is on knowledge boundaries inside the organizations,
and how they are passed by the identified artifacts and routines [59]. Figure 3.1 shows an
overview of the findings by Stettina and Schoemaker [59].

Reporting Routines Reporting Artifacts Reporting Metrics Reporting Responsibility

• Cadence-driven
• PMO-driven
• Tool-driven

• Tool-based
• Document-based
• Interaction-based

• Performance
• Quality
• Progress
• Status
• Contextual

• Development (Team,
Architects)

• Product (Product /
Portfolio managers)

• Process (Scrum Master,
Release Train Engineer,
etc.)

Figure 3.1.: Overview of the findings by Stettina and Schoemaker [59]

In general, Stettina and Schoemaker differentiate between quantitative and qualitative
reporting [59]. Both, quantitative and qualitative reporting are present in the organizations
of their study [59]. They find, that qualitative reporting is used to provide context, strate-
gic insight, and possible opportunities, while quantitative reporting is used to quantify
progress and value, and to provide tactical insights [59].

In the study, Stettina and Schoemaker identify three types of reporting routines [59].
Cadence-driven reporting is oriented around development cadence, such as Sprint-length
[59]. PMO-driven reporting is based on templates and is primarily done manually [59].
These templates may be provided by project management frameworks or the Project Man-
agement Office (PMO). Tool-driven reporting is facilitated by tools such as Jira [59]. It is
done ad hoc and serves day-to-day reporting needs. Further, Stettina and Schoemaker also
identify three types of reporting artifacts [59]: Tool-based artifacts, which are part of tools like
Jira, document-based artifacts, such as Excel sheets or PowerPoint slides, and interaction-
based artifacts, which are byproducts of interactions between people [59]. They observe

25

3. Related Work

that usage of document-based artifacts is decreasing with increase of agile maturity of the
organization [59]. Finally, they also identify five types of metrics [59]. Performance met-
rics, which measure efficiency of work, quality metrics, progress metrics, status metrics, and
contextual metrics which provide information on the work [59].

Apart from these findings on routines, artifacts, and metrics they also observe a divi-
sion of reporting responsibility into three sections [59]. First, overall product performance
reporting is done by product and portfolio managers [59]. Second, reporting on product
quality and dependencies is in the responsibility of development teams and architects [59].
Third, reporting on process quality and working methodology is done by Scrum Masters
and similar roles [59].

While Stettina and Schoemaker [59] focus on reporting in their study, the perspective on
where goals to report on are coming from and how goals are established is not considered.
Challenges with the existing approaches are not discussed. Further, they do not investigate
the reasons for why the studied organizations apply certain reporting practices or which
challenges the practices are addressing.

Lappi et al. (2018) [33]

In a systematic literature review Lappi et al. [33] investigate project governance prac-
tices in agile projects. They analyze 42 papers along six dimension of project governance:
goal-setting, incentives, monitoring performance, coordination, roles and decision-making, and ca-
pability building. For the scope of this thesis, the goal-setting and performance monitoring
aspects of project governance are of particular interest. The findings of Lappi et al. [33] in
these two categories are summarized in the following.

Goal-setting in agile projects is found to often include close cooperation with customers
to establish a shared understanding of project goals and product vision [33]. The most im-
portant actors involved in goal-setting are found to be Agile Teams and customers. Lappi
et al. [33] describe that a product vision is a frequently used mechanism for goal-setting,
because it allows for specific goals to emerge and adapt throughout the product life cycle,
instead of fixing goals up-front. Agile projects rely on this product vision and backlogs for
goal-setting and coordination [33]. They also find that goal-setting for agile projects typ-
ically is described as a continuous, iterative process rather than a separate, up-front step
[33]. Further, Lappi et al. [33] note that alignment of project goals with the overall strategy
of the organization is discussed seldom in current literature.

For the performance monitoring aspect of agile project governance, Lappi et al. [33] find
that iteration reviews are the most frequent reporting practices of Agile Teams, used to
demonstrate recent work to customers and collect feedback. They note that the deliver-
ables created in the teams’ Sprints are commonly used for overall project progress mea-
surement and monitoring as well [33]. This usage of deliverables for progress measure-
ment and monitoring is attributed to the lack of clear project goals in the earlier phases,
since goal-setting is described as continuous and iterative [33]. Consequently, goals are
considered to not be suitable to report progress towards, especially in early project phases

26

[33]. Lappi et al. [33] state that indicators for agile project performance, in contrast to tra-
ditional ones, do not focus on individual tasks, activities, and people. Metrics specifically
designed for agile environments are found to be discussed only by few papers in the liter-
ature review [33]. Further, they find that Scum Masters and Agile Coaches are responsible
for team-level performance monitoring, while other measurements are done by the teams
themselves [33].

In their summary, Lappi et al. [33] state that agile projects seem to have weaker links
to overall organizational strategy than traditional projects, due to the more short-term, it-
erative approach of agile methodologies. They find that connecting product and project
vision to longer-term outcome goals is not discussed in current literature [33]. There is a
knowledge-gap on how to connect and align objectives across the different scaling levels
of an organization to its strategy [33]. They express the need for further research on this
topic. Further, Lappi et al. [33] find that, while multiple papers discussed team autonomy,
they did not find literature on how to ensure this autonomy in practice. They conclude that
future research on agile project governance should focus on empirical studies to investi-
gate how it is applied on different scaling levels in organizations [33]. Research should
be conducted on how agile projects can be connected to organizational strategy via gov-
ernance practices [33]. This master’s thesis seeks to address some of these gaps in current
research, as explained earlier in the motivation. Since this thesis focuses on large-scale ag-
ile environments, especially the aspects concerning different organizational scaling levels
pointed out by Lappi et al. are in scope.

Moe et al. (2019) [42]

In their publication, Moe et al. [42] investigate team autonomy in large-scale agile projects.
A particular focus of the study is on goals of teams in large-scale agile, and where these
goals are coming from [42]. For the paper, Moe et al. [42] conduct a multiple case study
with three companies in the banking and software industries. Overall, they observe 14
teams in three projects using interviews and observations [42]. As part of their key find-
ings, they identify two barriers for team autonomy in large-scale agile [42].

The first barrier is "[...] how goals for the teams are set, what they entail, and how they
are communicated to the team" [42]. This is called overall direction by the authors [42]. The
second barrier "[...] entails how teams coordinate with their environment" [42], which is
called external coordination by the authors [42].

In the study, they find that shared direction for teams is important in large-scale agile
settings [42]. Teams should clearly understand the common goals of the large-scale project,
as it is the teams who are in charge of understanding and carrying out the necessary work
to achieve the goals [42]. Further, they find that these shared goals "[...] are often set by
management without involving the teams, the goals are often equal to deliverables and
deadlines, and team members are not always sure what the goals are" [42]. The authors
mention that, according to research, motivation and commitment to goals are increased if
teams are participating in the goal-setting process [42]. However, the study finds that the

27

3. Related Work

participatory approach is not used in practice [42].
Thus, goals are often not seen as such by the teams [42]. In the study, they identify that

teams often interpret goals as delivery deadlines [42]. Goals are seen as merely something
to strive for by the teams, because the actual higher-level goals are not communicated to
the teams [42]. According to Moe et al. [42], this mismatch of understanding between
management and teams is due to the lack of an "arena" for defining shared goals with the
direct involvement of the teams. This in turn leads to missing commitment to goals by
individuals and teams [42]. It will cause individuals and teams to set their own goals [42].
Hence, the authors emphasize the importance of team-participation in defining goals [42].

The results of the study by Moe et al. [42] are an important input to the research project
of this master’s thesis. The identified barriers and suggested remedies by Moe et al. inform
our answer to the third research question, which seeks to address common challenges in
large-scale agile goal-setting and reporting.

Schnabel and Pizka (2006) [53]

Schnabel and Pizka [53] present a process model for software development, called Goal-
Driven Software Development Process (GDP). The GDP is based on two central design deci-
sions. First, the process focuses on goals over requirements for communication between
business and software development [53]. Schnabel and Pizka [53] justify this with the
claim that requirements are often elicitated by authors that lack technical expertise, and
that development of a software systems may also require adjustments on the supported
business functions. Second, the process explicitly incorporates top-down and bottom-up
thinking [53]. Goal-definition is driven by stakeholders and business analysts, which con-
stitutes the top-down part of the GDP. Decisions on feasibility and technical details are
driven by software developers, representing the bottom-up part of the GDP. Schnabel and
Pizka [53] use the term "top-down thinking and bottom-up acting" for this combined approach.

The understanding of goals in the GDP is based on the Goal-Question Metric approach
by Basili et al. [2] (see Section 2). Goals in the GDP are qualitative, informal descriptions
of stakeholder needs, that are supported by a set of questions that describe how goal-
achievement should be evaluated [53].

The GDP consists of three general activities that are carried out in iterations [53]:

1. Goal identification. Stakeholders and developers collaboratively define goals in
small groups. Stakeholders are exclusively responsible for stating the business needs,
while developers take care of assessing feasibility and possible technological solu-
tions.

2. Vertical distribution of tasks. Goals are assigned to small groups of programmers,
which are responsible for deciding how to achieve the goals. The distribution is done
by developers themselves.

3. Implementation and testing. The software is implemented and tested by develop-
ers. Tests should be based on goals, by evaluating the questions assigned to the goal.

28

While the authors of the GDP clearly reference agile methodologies such as Scrum and
eXtreme Programming, they do not explicitly categorize their approach as being agile [53].
They state that the GDP is an iterative and incremental process, with similarities to existing
agile and non-agile process models [53]. Further, the approach is not explicitly designed
for large-scale use cases [53]. Schnabel and Pizka [53] present the application of the GDP
in one case of eight programmers and two business analysts. Reporting is only implic-
itly considered by the GDP via questions that are linked to goals. Reporting practices or
routines are not discussed by Schnabel and Pizka [53].

So, while the GDP is not designed for large-scale agile environments that are of interest
to this master’s thesis, it serves as a good starting point for structuring the goal-setting
process in Chapter 5.

Boerman et al. (2015) [10]

Boerman et al. [10] develop a model for measuring and reporting in agile software devel-
opment. Their model focuses on measuring quality, progress, and predictions, as well as
reporting status on these qualities to external stakeholders that are not part of the actual
development [10]. Similar to Schnabel and Pizka [53], Boerman et al. [10] base their model
on the Goal Question Metric (GQM) approach by Basili et al. [2]. A clear focus is put on
Backlogs as a basis for reporting [10].

The reporting model by Boerman et al. [10] focuses on the goals functional compliance of
the developed software system, fulfillment of schedule, optimization of value for money,
and minimization of risk of wasted effort. From these goals, they derive several metrics
that should be reported on [10]: enhancement rate, scope prognosis, project size remaining,
changed backlog items, added backlog items, rejected backlog items, project size, time prognosis,
estimation shift, priority shift, backlog items at risk, software quality, expenses prognosis, and
effort at risk. They evaluate the chosen metrics in interviews with an IT program manager,
and by applying them to historic data at a case organization [10]. Apart from changed
backlog items, all metrics were evaluated to be medium to highly feasible and useful by
the interviewee [10]. In the case study, the biggest challenge they faced was availability
and quality of data to calculate the metrics for reporting [10]. They conclude that data
quality for reporting should be considered right from the beginning of a project, and that
further research should be conducted to define a set of default metrics for reporting in
agile software development [10].

Compared to Boerman et al. [10] the goal of this thesis is not to propose a fixed, concrete
set of reporting dimensions and metrics. Rather, this thesis tries to consider and describe
reporting routines in general, while also incorporating the goal-setting side.

Cheng et al. (2009) [12]

In their paper, Cheng et al. [12] analyze how monitoring and controlling software de-
velopment can be achieved using key performance indicators (KPIs) and interventions.

29

3. Related Work

Their goal is to provide a set of KPIs and interventions, that can be used by development
managers for any agile methodologies [12]. KPIs are considered to show performance of
current methods [12]. According to Cheng et al. [12], management needs to take action —
called intervention — whenever KPIs go out of the previously specified desired area. KPIs
are used to ’trigger’ management interventions [12].

Using a case study with one organization, Cheng et al. [12] identify an initial list of
KPIs and interventions used in agile software development. They divide the KPIs and
interventions into four different aspects: team, person, task, and quality [12]. Team KPIs
focus on current and future productivity of the development teams, while person KPIs
focus on individuals’ current and future productivity [12]. Task KPIs show work progress
and spent time, and quality KPIs focus on softwae quality with the customer as a primary
source of input [12]. Accordingly, the interventions focus on controlling and improving
team productivity and collaboration, individual welfare and capability, task management,
and awareness of quality [12]. After the initial case study, they validate the KPIs and
interventions in three more case studies with software product companies [12]. In total, 24
KPIs and 26 interventions are identified [12].

Cheng et al. [12] state that KPIs should be made visible for the whole organization, to
allow other departments to see the current status of the development. Further, they learn
that assigning development managers to a fixed team allows them to learn and build up
expertise together and, as a consequence, enables more accurate planning [12]. Finally,
they recommend to look at the most important KPIs daily in the stand-up meeting. This
ensures early discovery of problems and allows to directly discuss potential causes [12].
They conclude that future research is needed on KPIs and interventions, and a method for
establishing KPIs and trigger values [12].

As part of this thesis we plan to add to research on KPIs, as demanded by Cheng et al.
[12]. However, Cheng et al. do only focus on KPIs and interventions on the reporting side.
They do not cover the goal-setting process and their research is not specific to large-scale
agile environments.

Dreesen et al. (2020) [18]

Dreesen et al. [18] approach agile software development from a control theoretical per-
spective. They define control in their paper as "any process in which a person or group of
persons or organization of persons determines [...] what another person or group or orga-
nization will do" [18]. Given this definition, goal-setting can be seen as a control process in
cases where goals are not self-assigned. Thus, the paper by Dreesen et al. [18] is relevant
to this thesis. We summarize the findings of Dreesen at al. [18] in the following.

Dreesen et al. [18] investigate whether control mechanisms used by agile development
methodologies influence team autonomy and team performance. They hypothesize that
agile practices likely use different control modes than traditional methodologies, and thus
likely have different effects on team performance and autonomy [18].

Control theory differentiates two general types of formal and informal control modes [18,

30

P1 Greater use of informal controls positively impacts (a) team autonomy and (b) team
performance.

P2 Greater use of formal control negatively impacts (a) team autonomy, while it posi-
tively affects (b) team performance.

P3 Greater degrees of an enabling control style positively affect (a) team autonomy,
(b) team performance, and (c) control congruence.

P4 Greater degrees of control congruence positively affect team performance.

Table 3.1.: The propositions made by Dreesen et al. [18] on the relation between control
modes, team autonomy and team performance

30]. While formal control focuses on defining and structuring what has to be achieved
and how, informal control allows for more autonomy of teams (clan control) or individuals
(self-control) [18, 30]. Dreesen et al. also define the concept of control congruence as the level
of agreement and understanding of a control between controller and controllee [18].

In a first step, Dreesen et al. [18] map 29 common agile practices to the different control
modes. Based on their findings in literature and this mapping, Dreesen et al. [18] make
four propositions that theorize on the relation between control modes, team autonomy and
team performance. The propositions are shown in Table 3.1. The theory is tested using an
embedded, multiple-case study [18]. Dreesen et al. find that control practices used by agile
methodologies have a positive impact on team performance [18]. They attribute this to a
combination of informal controls — which allow teams and individuals to choose meth-
ods of goal achievement on their own — and formal controls — which provide a general
structure on what to achieve — that are used by agile methodologies [18]. Additionally,
they find that a high control congruence positively influences team performance in agile
software development [18].

While the work of Dreesen et al. [18] is not focusing on goal-setting or reporting explic-
itly, their findings on control in large-scale agile are highly relevant for our case study in
Chapter 4. Especially their findings on control congruence and on effects of the mixture
of informal and formal control mechanisms help us understand challenges and propose
potential solutions.

Murphy and Cormican (2015) [45]

Murphy and Cormican [45] conduct a case study to investigate the implementation of a
goal-centered performance management program in a large, global software organization.
Based on existing literature, they identify five critical success factors for software produc-
tivity measurement [45]:

• Organization. The measurement program should be based on organizational goals.
Each metric has to be tied to a specific goal. Dedicated personnel should be allocated
to drive the measurements.

31

3. Related Work

• Management practices. Metrics should be introduced incrementally over time. The
measurements should be standardized to reduce efforts and be based on an agree-
ment by included departments.

• People. All stakeholders have to clearly understand the rationale behind the measure-
ments. Developers should be involved in the design of the measurement program.

• Information and communication. The rationale behind all metrics has to be communi-
cated clearly, as well as information on which data is used for what purpose. Feed-
back mechanisms should be established to show how the collected data is used.

• Technology. The collection of data and calculation of metrics should be automated as
far as possible. Data should be stored in a repository to enable trend analysis over
time.

These success factors from literature are used by Murphy and Cormican [45] to struc-
ture the case study they conduct. In the case study, they interview senior managers, middle
managers, and software developers [45]. Their findings contain several reasons at the case
organization that hinder success of software performance measurement. These reasons
include fixation on individual processes instead of an enterprise-wide focus of measure-
ments, project-oriented (i.e., fixed duration) instead of product-oriented (i.e., continuous)
understanding of measurements, fear of exposition of failures instead of learning from
measurement results, and subjective measurement decision-making and data manipula-
tion due to personal relationships and lack of data audits [45]. Based on these reasons,
Murphy and Cormican [45] recommend to implement measurements with a holistic view
of the whole organization, to focus measurement at the actual customer value, and to
clearly articulate how each management decision relates to overall goals of the organiza-
tion [45].

The success factors and hindering reasons identified by Murphy and Cormican [45] are
relevant for designing the propositions and process models in Chapter 5. However, they
focus on software measurement and do not explicitly consider agile or large-scale settings.
Their findings thus may only partially be applicable to the case study of this thesis.

Korpivaara et al. (2021) [31]

Korpivaara et al. [31] investigate how scaled agile organizations set performance objec-
tives and metrics. They focus on challenges of performance measurement in scaled agile
organizations [31]. For their study they initially derive a set of five performance dimen-
sions of agile development organizations from existing literature [31]. These dimensions
are financial value, customer value, internal process efficiency, collaboration and culture, and inno-
vation and learning. Based on these dimensions they then design their interviews for a case
study [31]. In the case study they find that on a higher unit-level in the organization focus
primarily is on customer satisfaction and financial value [31]. These unit-level objectives
are found to be driven by the overall strategy of the organizations, while they do not find
indication for influence of agile methodologies on objectives [31]. On lower levels of the

32

organizations — program- and team-level — they find that some objectives are cascaded
from higher-level objectives, while they also observe a shift in objectives from a focus on
what towards a focus on how [31]. Lower-level performance measurement is found to have
a higher focus on efficiency [31]. This difference in focus on performance dimensions is
one of their key findings [31].

In general, Korpivaara et al. [31] identify seven performance objectives. These objec-
tives are productivity, time to market, quality, continuous improvement, employee engagement,
customer satisfaction, and alignment [31]. Further, in their study they document several chal-
lenges of measurement in scaled agile programs [31]. These challenges include a perceived
disconnect between KPIs and delivered work by teams, influence of external factors on
metrics, inadequate data availabality and consistency, high efforts in collecting data, lack
of skills in setting metrics, and lack of standardization of measurement practices [31].

Korpivaara et al. [31] suggest future research to validate their findings in other organi-
zations and industries. Their findings are highly relevant to this thesis, as we are also in-
vestigating challenges and performance measurement in scaled agile organizations. How-
ever, compared to Korpivaara et al. this thesis additionally considers qualitative reporting.
Goal-setting practices are also only documented by Korpivaara et al. if they have a direct
connection to performance measurement.

Karhapää et al. (2021) [29]

The study by Karhapää et al. [29] is not directly related to the topic of this thesis. How-
ever, they pursue a similar goal in the area of quality requirements (QRs) management in
agile software development. Similar to the goal of this thesis regarding goal-setting and
reporting practices, Karhapää et al. [29] seek to understand how QRs are managed in ag-
ile development, and why. This thesis, as explained previously, seeks to understand how
goal-setting and reporting are done in agile development, and why. Thus, we consider the
work by Karhapää et al. relevant as related work, since we can refer to their methodol-
ogy and research approach for this research project. Karhapää et al. [29] follow the theory
building approach by Sjøberg et al. [58], which we also apply in Chapter 5.

In their study, Karhapää et al. [29] conduct 36 interviews in four case organizations to
identify challenges as well as practices of QRs management in agile settings. Based on the
findings collected from these interviews they derive a theoretical model that conceptual-
izes how existing practices relate to context factors of the observed organizations, and how
existing practices address the identified challenges [29].

Since their concrete findings are focused on QRs management, we do not elaborate about
them in detail here. In summary, Karhapää et al. [29] identified 40 challenges in their
interviews. However, they note that they did not find any new challenges that were not
yet described in existing literature [29]. They structure the challenges in QR elicitation, QR
analysis, specifying QRs, QR implementation, and QR validation. The practices they identify
are categorized in proactive, reactive, and interactive [29].

33

3. Related Work

Berntzen et al. (2019) [8]

In their study, Berntzen et al. [8] investigate how Product Owners (POs) contribute to
work coordination in large-scale agile development. Their research is conducted from a
coordination theory perspective, based on Gittel [8, 22]. According to coordination theory
shared goals, among others, are central to coordination [8]. Berntzen et al. [8] state that
overall goals of a large-scale agile development program can be broken down into a goal
hierarchy. They state that breaking goals down allows teams to work on their own goals
while still contributing to the overall goals [8].

Using a case study approach, Berntzen et al. [8] collect data at a large-scale agile devel-
opment program using 12 interviews and observation. Their findings indicate that while
coordination practices vary between different contexts of POs, high-quality communica-
tion is important to establish and maintain shared goals and knowledge [8]. POs contribute
to this by frequently communicating both with their team and other POs [8]. They also
observe that the coordination practices are changing over time in the case organization,
which they attribute to the continuous improvement methods applied in agile settings
(e.g., retrospectives) [8]. Finally, they observe that unscheduled conversations contribute
to aligning goals, particularly in cases where not all POs have to be involved [8].

The study by Berntzen et al. [8] does not explicitly consider reporting practices. How-
ever, their findings on how Product Owners contribute to coordination, goal alignment,
and shared knowledge in large-scale agile settings are relevant for this thesis. We build on
this knowledge in Chapter 5, where we make propositions on how to address identified
challenges.

Dikert et al. (2016) [14]

Dikert et al. conduct a systematic literature review on challenges and success factors in
large-scale agile transformations [14]. In their review they document 35 challenges and
group them into nine categories [14]. These categories are change resistance, lack of in-
vestment, agile difficult to implement, coordination challenges in multi-team environment, differ-
ent approaches emerge in a multi-team environment, hierarchical management and organizational
boundaries, requirements engineering challenges, quality assurance challenges, and integrating
non-development functions [14]. Besides the challenges, Dikert et al. also document 29 suc-
cess factors for large-scale agile development, which they group into eleven categories
[14]. While Dikert et al. [14] focus on challenges in large-scale agile transformations, their
scope is larger than the one of this thesis. This thesis specifically focuses on goal-setting
and reporting in large-scale agile software development, and not on conducting transfor-
mations towards large-scale agile setups. Both topics of goal-setting and reporting are not
explicitly reflected in the categories of challenges documented by Dikert et al. [14].

34

4. Case Study

This chapter describes the case study conducted as part of this thesis. First, Section 4.1
presents the objectives of the case study as well as the methodology used to collect data.
Section 4.2 gives an overview of the organizational setup of the industry partner of the
study. Finally, Sections 4.3 and 4.4 summarize the findings of the case study, with focus on
existing approaches at the case organization for goal establishing and reporting towards
goals, as well as identified challenges with this current situation.

4.1. Methodology

The case study of this thesis is based on the guidelines and recommended steps by Rune-
son and Höst for conducting case studies in the context of software engineering [52]. It can
be classified as a single-case, embedded study [68]. The objective of the case study was to
gain an initial understanding of the approaches of goal establishing and reporting towards
goals in practice. While the Foundations and Related Work sections of this thesis outline
existing literature and frameworks that form the theoretical frame of reference, we used the
case study to also collect insights from practitioners who are dealing with goals and re-
porting in their daily work. The case organization from which we sampled the interview
participants is described in detail in Section 4.2. Ultimately, the research questions to be
answered by the case study reflect the first two overall research questions of this thesis:

• How are goals in large-scale agile software development established and reported at
the case organization?

• What are challenges and reasons for establishing and reporting goals in large-scale
agile software development?

The selection of the case study methodology is made based on these two research ques-
tions and the criteria defined by Yin [68] and Benbasat [7]. These criteria encompass the
form of the research questions, the question whether the research requires control of be-
havioral events, the question whether the research focuses on contemporary events, and
the question whether the studied phenomena are covered by an established theoretical
base [7, 68]. The research questions both are how questions. Our research does not re-
quire behavioral control, because it seeks to study a real, productive organization applying
large-scale agile software development. We are interested in active organizations, hence
the focus clearly is on contemporary events. And finally, large-scale agile development
is still a novel area of research lacking an established theoretical base [14]. According to

35

4. Case Study

these answers to the criteria, the case study methodology is selected as the appropriate
methodology [7, 68].

Throughout the case study, data source triangulation was achieved by using multiple
techniques of data collection [52]. Third degree data was collected in the form of docu-
ments, pages from the corporate wiki, backlogs, presentation slides, and others. This data
was collected by the researchers and provided by the participating interviewees. First
degree data was collected using semi-structured interviews and represents the most im-
portant source of data for this study.

Introduction Reporting I Reporting IIGoals

Figure 4.1.: The five phases of the semi-structured interviews

The semi-structured interviews followed a structure of four phases. The different phases
of the interviews are illustrated in Figure 4.1, and the overall structure of the interviews is
shown in Figure 4.2. The interviews started with a structured section containing questions
about the personal background of the interviewee, their experience with large-scale agile
software development, and their role in the current agile setup. Further, the first section
contained questions about the development organization of which the participant is a part
of. The second section of the interviews was concerned with the current organization-
specific goals pursued by the participant’s development organization, as well as the pro-
cess of how these goals were defined. The questions in this section were open questions,
which allowed interviewees to detail the processes currently in place. Finally, the last two
sections of the interviews were focused on the reporting procedures used in the devel-
opment organizations of the interviewees. The third section concentrated on team-level
reporting, and the last section on higher-level reporting approaches.

Personal
Background

Goals & Goal
Establishing

Higher-level
Reporting

Team Reporting

Figure 4.2.: Overview of the structure of the semi-structured interviews, based on the pyra-
mid by Runeson and Höst [52]

Each interview lasted approximately 90 minutes. All interviews, except one (partici-
pant asked not to be recorded), were audio-recorded with the consent of the participant

36

4.2. Case Description

and transcribed afterwards. A preliminary discussion was held with every participant a
few days before the actual interview, to ensure a common understanding and definition
of relevant concepts of the interview. Further, during the preliminary discussion, a writ-
ten summary of the research project was handed out to the interviewees to ensure their
awareness of how the collected data is used.

All the collected data was analyzed and coded using the qualitative data analysis soft-
ware tool MAXQDA. The analysis and coding followed the guidelines by Miles et al. [41].
An initial immersion of the researcher was achieved by exploring and reading the whole
data set [41]. After this initial immersion, the first cycle coding was conducted [41]. In
the first cycle, a descriptive coding technique was applied, assigning codes to significant
chunks of data that summarize the chunk in a short phrase or word [41]. Descriptive cod-
ing was chosen as it allowed to create an initial inventory of topics that could be used as
a basis for the second cycle coding to uncover patterns across all the different data [41].
The codes were created using an integrated approach [13, 41]. A provisional starting list of
codes was created deductively by the researcher, based on the general structure of the in-
terviews and the relevant concepts of the research project [13, 41]. The individual codes
then emerged inductively during the process of analysis and coding, reflecting the encoun-
tered concepts and patterns in the data [13, 41]. This mixed approach was chosen because
the categories of relevant concepts were already known before data collection, but the ac-
tual concepts should emerge from the data itself [13, 41]. After the first cycle, a second
cycle coding was conducted [41]. The second cycle built on the inventory of topics created
in the first cycle. Recurring, overlapping patterns across the different data were grouped
using pattern codes [41]. The artifact built in Chapter 5 is based on these pattern codes
that emerged during data analysis.

Interview participants were sampled from four of the major processes of the industry
partner organization. The initial sampling was intentional [52] and happened primar-
ily via the Agile Master group inside of the industry partner organization. This group
is mainly concerned with work processes and methodology improvement, and is repre-
sented across all organizational scaling levels. They are also involved in the goal-setting
and reporting processes, hence they served as a natural first sampling source. After the
first preliminary discussions with participants were done, we made use of snowball sam-
pling and contacted further potential interviewees who were recommended to us. All the
participants of the case study interviews are listed in Table 4.1. Every participant is as-
signed an alias that is unique and used to refer to the respective interviewee throughout
this thesis.

4.2. Case Description

Describing the context of empirical research in software engineering is important to un-
derstand the relevance of its findings [19]. Thus, this section describes the context and the
participating organization of the case study.

37

4. Case Study

No. Alias Role
LSAD
experience

Softw. Dev.
experience

Program
Duration
(h:m)

1 AM1 Agile Master 3 - 5 years 3 - 5 years A1 1:42
2 PO1 Product Owner 3 - 5 years 11 - 15 years B1 1:10
3 BE1 Business Expert 6 - 10 years 6 - 10 years B2 1:29
4 AM2 Agile Master 3 - 5 years 6 - 10 years B2 1:21
5 PO2 Product Owner 3 - 5 years 11 - 15 years B2 1:00
6 PO3 Product Owner 3 - 5 years 11 - 15 years B2 0:52
7 AM3 Agile Master 3 - 5 years 11 - 15 years B3 1:11

8 STE1
Solution Train
Engineer

3 - 5 years 6 - 10 years C1
no
recording

9 LM1 Line Manager 6 - 10 years 6 - 10 years C2 1:15
10 AM4 Agile Master 3 - 5 years > 20 years C2 1:31
11 AM5 Agile Master 11 - 15 years 11 - 15 years D1 1:24

12 DEV1
Developer,
Software Architect

1 - 2 years 6 - 10 years D2 1:23

Table 4.1.: Overview of the interview participants

The case study was conducted from March to September 2021. The industry partner
for the case study is a large German car manufacturer. The organization has well above
100.000 employees, generated a revenue of roughly 100 billion EURO in 2020, and is active
internationally. Since the focus of this thesis is in the context of software engineering, the
interview participants were located at the internal IT department.

The case organization has been using agile development methodologies for the last 6
to 10 years. Large-scale agile programs have been existing for 3 to 5 years as of 2021.
The interview participants gave varying numbers regarding agile and large-scale agile
experience of the company, which we attribute to the large size of the overall organization.
The time frames named are the most frequently mentioned.

Overall, the organization is structured along major processes that are relevant for auto-
making. These processes represent important steps in the value chain of the organization.
For each process, the value proposition and especially the customer served are different.
The IT department of the organization spans across all the aforementioned processes. This
is the case because IT services are necessary in all functions and process steps of the case
organization.

Inside the different departments of the organization the general organizational struc-
ture is standardized and independent from specific agile frameworks. Figure 4.3 gives
an overview of the organizational scaling levels at the industry partner. A Domain is the
equivalent of a portfolio of Products at the case organization. Hence, a Domain can —
but does not have to — contain multiple Products. A Product itself can — but also does

38

4.2. Case Description

Sub-Product (Team)

Product (Program)

Domain (Portfolio)

Developers

Sub-Product Owner

Agile Master

Product Owner

Agile Master

Domain Owner

Agile Master

Line Manager

Figure 4.3.: Overview of the scaling levels at the case organization

not have to — consist of multiple Sub-Products. We refer to the Product level at the case
organization as Programs in this thesis. And finally, a Sub-Product is the Team level. Each
Sub-Product can be developed by one or multiple Agile Teams. At each of the organiza-
tional scaling levels an Agile Master is facilitating continuous improvement of the working
methodologies. This role is very similar to the Scrum Master role in Scrum but is always
present regardless of which agile methodologies or frameworks are applied. Further, a
structure of Product Owners is present across the scaling levels. They are in charge of
work content and prioritization at the different levels. Finally, the Line Management is
responsible for resource and people management. They represent the disciplinary leader-
ship.

Process A

Process A, representing the activities from a product idea to a concrete offering to the end
customer, is the first step in the process chain. The activities in program A1 are concerned
with research and development of autonomous driving functionalities for the vehicles pro-
duced by the case organization. The overall setup of the program is structured according
to the LeSS framework. As interviewee AM1 told us, the program was set-up together with
Craig Larman, the initial author of LeSS. The LeSS program comprises around 100 Agile
Teams, 1200 internal employees in total, and is supported by roughly the same number of
external employees. Teams are distributed across six different countries. Reporting at pro-
gram A1 happens every two weeks on all levels. At team-level, reporting of work progress
is done at the end of each Sprint in the Sprint Review meeting. Product-level reporting
happens every other week, alternating with team-level reporting. The same principle ap-
plies between domain- and product-level reporting.

39

4. Case Study

Process B

The next step, Process B, represents the process from making an offer to receiving an actual
order by a customer. The activities in program B1 are revolving around software and
processes for handling the logistics and sales of used vehicles. The program does not use
any scaling agile framework, but rather relies on the default vertical scaling given by the
organizational structure. It contains 5 Agile Teams with about 40 internal employees, and
equally many external employees. Teams are distributed across five different countries.
Sub-Product Owners of program B1 report work progress of their teams at the beginning
of each month, while Product Owners report overall Product progress once each quarter
of the year. The Domain Owner reports yearly. On all levels, the program is using a
standardized template called GMP Sheet. This template is explained in detail in Section
4.3.3.

Program B2 is responsible for the development of vehicle connectivity software and
services, mostly with a focus on the off-car components. The program is using SAFe, and
consists of roughly 300 internal and 1000 external employees structured in about 80 Agile
Teams. Teams are distributed across six different countries. At program B2, teams report
in the Sprint Review at the end of each Sprint. Products report work progress at the end of
each Program Increment (PI), while the overall Domain reports at the end of each Domain
Cycle, which is four months at program B2.

Finally, program B3 develops the software needed by dealers to run their business and
integrate with the manufacturers’ systems and processes. Program B3 is using the LeSS
framework and has about 250 internal and external employees in total, split into 22 Agile
Teams. Teams are distributed across four different countries. Every two weeks, at the end
of the Sprint, they participate in a Product Sprint Review. All teams report their progress
in this meeting. The Product progress is not reported separately, rather the Product Sprint
Review with the teams is also the Product’s reporting.

Process C

In the third step, Process C contains the activities from receiving an order to delivering the
product or service to the customer. The activities of program C1 are focused on replacing
and renewing software systems for all planning- and ordering processes in the company’s
car manufacturing departments. The program is using SAFe and contains about 120 peo-
ple structured in 15 Agile Teams. Teams are distributed across two different countries.
Every three weeks, teams report their progress in a solution-wide PI Sync meeting. They
evaluate each of their PI Objectives on a six-value scale (done, on track, partly, in danger,
paused, not started). In a weekly Solution Jour Fixe the Product Owners, Agile Masters,
and Solution Train Engineers — who are similar to Domain Agile Masters — assemble an
overall Domain reporting. On the one hand, an automated Jira report collects informa-
tion on how many Backlog Items of the current PI are done, in test, in progress, or open.
And on the other hand, Product Owners give a qualitative evaluation statement of their

40

4.3. Establishing of Goals

Product’s current status, including a traffic light indication (see Section 4.4).
Program C2 is developing software solutions for the actual shopfloors in the production

plants as well as for logistics of car parts. The overall program contains around 1000 people
and is using a mixture of practices from both the SAFe and LeSS frameworks. The number
of teams was not known by the interviewees. Teams are distributed across five different
countries. They report their work progress in a product-wide Sprint Review meeting at the
end of each product-cycle. Some milestones are reported in dedicated meetings together
with affected stakeholders, in cases of deadlines that are not in sync with the product-cycle.
On domain-level progress is reported yearly.

Process D

Finally, Process D bundles financial activities like car financing and leasing. Program D1
is part of a subsidiary company of the case organization. The subsidiary company is fully
owned by the car manufacturer and focuses on mobility leasing and fleet services. Pro-
gram D1 is developing a software product that unifies and standardizes the leasing pro-
cesses for the various mobility offerings of the company across different international mar-
kets. The subsidiary company has roughly 2000 employees in total, while program D1 has
120 employees who are structured in 17 Agile Teams. Teams are located in two different
countries. Program D1 is using the LeSS framework. Every two weeks, at the end of the
product-cycle, work progress on program goals is reported in an overall Demo and Sprint
Review. Overall progress is evaluated based on automated Jira reports of each team’s
Sprint results. This is enabled by linking team-level Backlog Items to overall program
goals (see linked chain of Backlog Items described in Section 4.3.3).

Program D2 is mostly driven by regulations that the financial department of the au-
tomaker has to adhere to. Program D2 is in charge of implementing and maintaining priv-
ileged access management throughout the organization’s IT systems to ensure access to
systems is only granted to users properly authenticated and authorized. No specific scal-
ing agile framework is used by program D2. It employs a staff of about 50 people in total,
grouped into roughly 7 teams. Teams are located in four different countries. Reports on
team-level are created on a weekly basis and collected by a dedicated person on program-
level. Program-level reports are created by this dedicated person based on stakeholders’
needs.

4.3. Establishing of Goals

This section details the results of the second part of the case study interviews. Participants
were asked to describe their current organization-specific goals, as well as the approach of
how these goals were defined in the organization. Together with Section 4.4, this section
answers the first and second research questions.

41

4. Case Study

4.3.1. Goal-Setting Process

At the case organization a company-wide goal management process (GMP) is used. It is
mandatory for all Domains at the case organization, regardless of the used work method-
ologies. The process was mentioned and explained in seven of the twelve interviews (PO1,
STE1, BE1, AM2, LM1, AM4, PO2), suggesting that it is highly relevant across the company.
It is used to break down goals across all the organizational scaling levels, based on the
overall goals for the company defined by the Board of Directors and strategic management
circles. The overall company targets are defined using Balanced Scorecards and serve as
the input for the GMP. These overall goals are then broken down across the scaling levels
by the Product Owner structure that is explained in Section 4.2. This process of breaking
goals down was explained by PO1 and BE1 to be happening in workshops between the
Product Owner at the current level and all the Product Owners from the next lower level.
This means a Domain Owner will conduct a workshop with all of the Domain’s Product
Owners to derive the Domain goals from the GMP goals. The same holds true for the
other scaling levels, and Agile Teams are involved in these sessions via their Sub-Product
Owner. It was emphasized by PO1 and BE1 that by this approach also bottom-up input
to the goal-setting is ensured. While the top-down process of defining goals is mostly fo-
cused on what is set to be achieved, the input from the respective lower level ensures that
also the how is taken into consideration. These workshops are designed to be conducted
in iterations, ensuring top-down goals are aligned with bottom-up input.

While this process was executed once a year on all levels before the introduction of ag-
ile methodologies at the case organization, the frequency of execution has changed since
then. Today, the overall strategic goals are set yearly, but can span multiple years. On
the domain-level Domain goals are derived from the overall strategic goals yearly. On
the product-level, the frequency is now differing from Product to Product. Typically, as
mentioned by PO1, BE1, and LM1, Products derive goals quarterly from the annual Do-
main goals. Finally, Sub-Product goals are defined depending on the development cadence
of the Agile Teams. For Scrum implementations Sub-Products might derive Sprint goals
based on the Sprint length, for example. The cadence of how often goals are set is called a
Domain Cycle or Product Cycle, respectively. Figure 4.4 shows how goal-setting using the
GMP is implemented in program C2.

Despite the very standardized GMP, goal-setting at the case organization is varying be-
tween different programs. For program D1 interviewee AM5 described an involved pro-
cess called dual-track agile goal-setting. It is used to turn long-term program goals into
iteration goals. Hence, it is a concrete example of how program D1 implements goal-
setting in the boundaries specified by the GMP. The goal of the dual-track approach is to
ensure participation of the Agile Teams throughout the whole process of goal-setting, es-
pecially with a focus on product-related goals. In essence, the dual-track approach is the
definition of the next set of quarterly goals while the current quarter of the year is still run-
ning. The input to the process are the higher-level GMP goals on the one hand, as well as
all additional goals gathered by Agile Teams, customers, partners, or other sources. In the

42

4.3. Establishing of Goals

derive contribute

derive

select contribute

derive contribute

Define Domain goals
(Head Of + Domain

Owners)

Meeting
Yearly GMP Sheet,
Quarterly Domain Objectives and
Key Results with linked Sagas
Quarterly

Target definition by
Board of Directors and
heads of organizations

Meeting
Balanced Scorecard with
targets on org. level
Yearly

Define Product goals
(Domain Owner +
Product Owners)

Meeting
Quarterly Product Objectives and
Key Results with linked Epics
Quarterly

Define PI goals /
PI Planning

(PO, SPOs, AMs, Teams)

Meeting
Goals for PI / Product cycle
(selection of Epics)
Every Product cycle

Define iteration goals /
Sprint Planning

(SPOs, AMs, Teams)

Meeting
User Stories linked to
Product Key Results
Every iteration / Sprint

Legend:
Artifact used for
goal-setting
Cadence

Figure 4.4.: GMP goal-setting as implemented in program C2; the notation is based on the
one used by Stettina and Schoemaker [59]

first phase, the collected goals are aligned by the Product Owners. If a goal is considered
relevant, adequate Sagas are documented in the Program Backlog. Thereafter, Agile Teams
conduct a first research and ideation into potential solution directions for the Saga(s). If
necessary, a first prototype is created to understand the problem better. The results of this
research phase and potential solution directions are documented in Epics in the Program
Backlog. In this phase, teams also make a first effort estimation for the Epics together
with the Product Owners. Finally before the new quarter is launched, a so-called "Vision,
Roadmap, and Direction (VRD) Focus Day" is conducted, during which all stakeholders to-
gether — lead by the Product Owners — prioritize and plan the Epics for the next quarter
based on their goals. Guided by the Epics, Agile Teams are then responsible to define and
refine their own Sprint goals throughout the upcoming quarter of the year. This dual-track
approach is similar to the process depicted in Figure 4.4. However, it is not using OKRs
and contains more involved planning and exploration than the process in Figure 4.4.

43

4. Case Study

4.3.2. Types of Goals

Source Research Domain Goal Content Goal Scaling Level

Bateman et al. [4]
General
Management

Personal, Financial,
Customer, Market,
People, Operations,
Product, Organization,
Competitive,
Strategy Making

Ultimate, Enterprise,
Strategic, Project,
Process

van Lamsweerde [64]
Software Development,
Requirements Engineering

functional,
non-functional

high-level strategic,
low-level technical

Basili et al. [2, 3] Software Development
Product, Process,
Resource

Business,
Software Development,
Project-Specific

SAFe [25, 35]
Large-Scale Agile
Software Development

-
Solution, Program,
Team, Iteration

Table 4.2.: Overview of goal categorizations in related research domains

The goals we collected in the interviews were of different types. To give a holistic
overview of all the goals we categorized them using the attributes content and scaling level.
We chose these two dimensions for categorization based on existing literature. Both goal
content and goal level are attributes used by Bateman et al. [4] in their taxonomy of man-
agement goals. Further, both dimensions are also present in publications from research
areas that we covered in Section 2. An overview of literature using these two dimensions
for goal categorization is shown in Table 4.2.

We decided to adopt all three types of goal content from the GQM approach by Basili et
at. [2], because they are reflected in our collected data of goals. These are Product, Process,
and Resource goals. Additionally, we identified two more types, Strategic and Legal, Security
& Compliance goals, reflected in our data. Table 4.3 provides an overview of the definitions
of the identified goal content types. Table 4.4 lists all goals identified in the case study.

In total we identified 51 goals on all organizational scaling levels. The large majority
of observed goals is relevant at the portfolio-level (domain; 21 goals) and at the program-
level (product; 26 goals). Only a smaller part of the goals is relevant on team-level (sub-
product; one goal) and enterprise-wide (seven goals). We also identified that 2 goals are
additionally relevant for the line management; these are goals that are concerned with
management of employees as a "resource". Further, we find that the majority of the goals
can be categorized as process goals (22 goals) and as product goals (15 goals). Seven goals
can be categorized as strategic goals, four as resource goals, and three as legal, security &
compliance goals.

We further find that both process and product goals are roughly equally often pursued on

44

4.3. Establishing of Goals

portfolio- and on program-level. In contrast, Korpivaara et al. [31] find in their study that
process efficiency objectives are of higher importance on program- and team-level than
on portfolio-level (see summary in Chapter 3). Thus, we note that our findings are not
in line with those of Korpivaara et al. [31] regarding the focus of objectives on certain
organizational scaling levels.

Goal Content Definition of Category

Product Goals Goals related to artifacts, documents or deliver-
ables produced during the lifecycle of the offered
product or service. Based on Product goals from
GQM [2].

Process Goals Goals related to internal work processes of
the organization, typically associated with time.
Based on Process goals from GQM [2].

Resource Goals Goals related to resources of the organization
that are used by processes for product develop-
ment. Based on Process goals from GQM [2].

Strategic Goals Long-term goals, usually relevant to multiple
programs and products, that steer decisions and
overall direction of the organization.

Legal, Security & Compliance Goals Obligatory goals that must be attained; often set
/ defined by entities outside of the organization

Table 4.3.: Overview of the identified categories of goals at the case organization

45

4. Case Study

Goal Category Scaling Level Source
System stability Product Product C1, B3,

B2, C2
Legal compliance Legal, Security &

Compliance
Domain,
Product

C1, B2,
C2, D2

Customer value Product Product B1, B3
Customer satisfaction Product Domain B2, B3
Service availability Product Product C1, B2
Transition to cloud Strategic Enterprise B2, C2
Process efficiency Process Domain C2, D1
Process standardization Process Enterprise C2, D1
From specialist roles to Feature Teams Process Product B3, C1
Release of product Strategic Domain,

Product
A1, C2

Transition from car leasing to mobility leasing Strategic Enterprise D1
New market entry Strategic Enterprise D1
Knowledge transfer and community enablement Process Domain B2
Product enablement Process Domain B2
Security Legal, Security &

Compliance
Product B2

Scalability Product Product B2
Service measurability Product Product B2
System performance Product Product, Sub-

Product
B2

Reduce cost Resource Product B2
Increase employee engagement Process Domain B2
Improve quality Product Domain B2
Increase productivity Process Product B2
Decrease time to market Process Product B2
Improve collaboration Process Domain B2
Reduce lead-time Process Product B3
Clear definition of rights and responsibilities of
each role

Process Product B3

Serviceability Product Product B3
Market share Strategic Enterprise B3
Return on investment Resource Product B3
From project to product Process Product B3
From coordinate to integrate to coordination
through integration

Process Product B3

From independent teams to continuous cross-team
cooperation

Process Product B3

From organizing around technology to organizing
around customer

Process Product B3

From resource thinking to people thinking Process Product B3

46

4.3. Establishing of Goals

Competitiveness in the market Strategic Enterprise B2
Upgradeability Product Domain,

Product
B2

Always fresh Product Product B2
Verfication of product Product Product A1
Customer-orientation via user journeys Product Domain C1
Reduction of complexity Product Domain C1
Replacing old IT system Product Domain C1
Reduction of days-to-sell Process Domain B1
Product consolidation and harmonization Strategic Domain B1
Generate customer leads Process Product B1
Reduce days employees call in sick Resource Domain, Line

Organization
C2

Euros spent per employee Resource Domain, Line
Organization

C2

Create a new roles & rights concept Process Domain D2
Implement strong authentication Legal, Security &

Compliance
Enterprise D2

Flexibility Process Domain B2
Improve structure of requirements Process Domain B2
Pursue agile working model Process Domain B2

Table 4.4.: List of all identified goals of the initial case study

4.3.3. Goal Definition and Documentation Techniques

As part of the research question on how goals are established, we were also interested
in specific definition and documentation techniques used for goal-setting. This section
summarizes the findings on techniques used at the case organization for goal definition
and documentation.

The standardized Goal Management Process used by the company also comes with pre-
defined templates for goal documentation. These templates were described and shown to
us by PO1, BE1, AM2, and LM1. The templates are called GMP Sheets. They are used for
goal definition as well as goal reviewing and reporting. Just like the GMP itself, usage of
the templates is mandatory at the highest level — in all observed programs the Domain
is documenting and reporting with the templates. The templates are filled by the Product
Owner at the respective organizational level. At lower organizational levels usage of the
templates varies between different programs. It is not mandatory to use them on lower
levels than the domain-level, but some programs (e.g. B1) are using them on all levels for
the sake of consistency. The templates are differentiating between change- and performance-
goals. Change-goals are referring to necessary changes in the organization to realize the
overall strategy. They can be qualitative as well as quantitative. Performance-goals have
to be quantitative and represent operational targets that are clearly measurable. In total,

47

4. Case Study

the guidelines of the company recommend to not use more than five goals at one organi-
zational level. For each goal, the name, summary, and target date are documented. For
quantitative goals, the target value is documented as well. Typically, the templates are
documented using PowerPoint slides (described by BE1, AM5), but public Confluence
pages are used as well (described by PO1, AM5). The templates are not only used for goal
definition and documentation, but also for goal review and reporting. This is explained in
Section 4.4.

Another important way how programs document their goals are Backlogs. As ex-
plained in Section 2, Backlogs are a central tool in several agile frameworks such as SAFe
and LeSS. Backlogs are used in every observed program at the company, usually with the
help of tools like Jira or CodeBeamer. The most important principle that we observed in
the usage of Backlogs (STE1, AM1, BE1, AM2, LM1, AM4, AM5, PO2, PO3) is to establish
a clearly linked chain of sub-goals across all organizational scaling levels. Domains are
using highest-level Backlog Items, typically called Saga, that contribute to the long-term
Domain goals. Products are using middle-level Backlog Items, typically called Epics, that
have to be linked to a Saga they are contributing to. The achievement of the Domain goal
directly depends on fulfillment of all linked Saga Backlog Items. The same holds true for
Epics and User Stories, which contribute to Product and Team-level goals. This approach
is not only used to break down larger goals into smaller chunks, but is equally important
for ensuring clear visibility of how work contributes to (higher-level) goals. Interviewee
LM1 stated: "So, in this approach in this Domain it’s pretty straight forward and you can kind
of draw a red line directly from the targets from the Board of Directors across all of the hierarchies
[...]". Depending on the Domain, requirements contributing to goals of different levels
were documented in the same Backlog or in different Backlogs for each level. Interviewee
AM4 described that program C2 is using an additional, separate Backlog for organiza-
tional development goals and goals resulting from Retrospectives. Further, interviewee
AM2 described that labels are used by program B2 to cluster Backlog Items into four goal
categories: Customer Functionality, Legal, Security & Compliance, Stability and Quality, and
Fit for Future. The labels are used to give additional structure to the Backlog and allow for
filtering.

Most commonly goals at the organization are formulated using the SMART technique
(Specific, Measurable, Achievable, Relevant, Time-bound). The GMP guidelines demand
users to formulate their goals SMART. Interviewees STE1, BE1, and AM5 explicitly men-
tioned using the technique.

Further, Objectives and Key Results (OKRs) are used in four programs (C1, C2, B2, D2).
Figure 4.4 shows the usage of OKRs in program C2 in combination with the mandatory
GMP elements. The tools used by the organization allow everybody to view OKRs of any
Domain, Product, and Sub-Product, if they are used by the respective unit. This is possible
because OKRs are documented inside of the organigram. The exact way of implementing
OKRs, however, is chosen by the Domain. Interviewee LM1 gave a detailed description of
their program’s OKR approach. Based on the yearly Domain targets — which comprise of
input from GMP, stakeholders, and Domain-internal topics — quarterly Objectives are de-

48

4.4. Reporting towards Goals

rived for the Domain. Objectives are formulated qualitatively. This is done by the Domain
Owner and the most important external stakeholders. Interviewee LM1 stated: "So, it’s not
like the Domain Owners together with the stakeholders define all Objectives and all Key Results by
themselves. [...] That’s a big part, to be honest, of the daily work. But there is still room for topics
coming up from the teams. [...] They are able to bring those topics up for discussion as some kind
of bottom-up input. So, the OKR process is designed in a way that both is possible". However,
no standardized process to incorporate bottom-up input from teams exists. Interviewee
LM1 also acknowledged that bottom-up input to Objectives is considered only up "[...] to
the main department. But not above, probably". For each of the Objectives, quantitative Key
Results are defined for the quarter. Based on these quarterly Domain OKRs, each Product
derives their own quarterly Product OKRs. On both levels, the number of Objectives is
limited to five, and the number of Key Results per Objective is limited to four. Each Key
Result has to contain a specific KPI. Backlog Items are then linked to the Key Results. This
allows for a quantitative evaluation of how many of the linked Backlog Items are already
finished. The Key Result is achieved once all linked Backlog Items are finished. The Ob-
jective, in turn, is achieved once all linked Key Results are achieved. Interviewee LM1
explained the reason for this approach: "In this Domain we try to assure with this approach
that the yearly targets get implemented on a constant basis and the progress is transparent".

In this section we only discussed the most commonly observed goal-setting practices. To
fully answer the first research question of this thesis, all the identified goal-setting practices
of the case study are documented in Appendix B.1.

4.4. Reporting towards Goals

The final part of the interviews was focused on reporting routines used to report progress
towards the different goals. This section describes how reporting is done at the participat-
ing programs of the case organization.

4.4.1. Types of Reporting

In general, across the several scaling levels at the organization, we observed different
approaches to reporting. Product, strategic, and legal goals are reported in a "recipient-
oriented way" (LM1, DEV1) at a recurring cadence. In the case organization this type of
reporting is the counterpart to the GMP on the reporting side. It is mostly done via Prod-
uct and Domain Review meetings, as suggested by scaling agile frameworks LeSS [34] and
SAFe [35]. The higher in the organizational structure, the more important this type of re-
porting is. On domain-level it is mandatory to use the standardized GMP Sheets for this
reporting. The GMP Sheets are described in Section 4.3. This reporting is mainly compiled
manually (PO1, BE1, AM2, LM1). It is done by the Product Owners at the different levels,
supported by the development reporting of the Agile Teams on the lower levels.

Process and resource goals, on the other hand, are monitored continuously. The Agile

49

4. Case Study

Masters are responsible for this reporting, and sometimes Line Managers are involved as
well. In contrast, this type of reporting is automated to a high degree, e.g., relying on au-
tomated Jira Dashboards and tool-generated reports (AM2, AM3, AM4, AM5). It mainly
serves the purpose of internal information and facilitating planning and continuous im-
provement.

This observation of a separation of reporting responsibility is in line with the findings
of Stettina and Schoemaker [59]. However, in our observations the separation between
development and product reporting responsibility is not as clear-cut than it is for pro-
cess reporting responsibility. This differs from the findings by Stettina and Schoemaker
[59]. We rather find that the separation between development and product reporting re-
sponsibility becomes more evident the higher the organizational scaling level at which the
reporting is done. This is because Sub-Product Owners are involved in team-level devel-
opment reporting as well as product reporting, while Product and Domain Owners almost
exclusively focus on their product reporting responsibility.

4.4.2. Reporting on Team Level

On team-level we observed a primary focus on the continuous, process-oriented and the
development-oriented types of reporting. Interviewee AM5 explained why this is the case:

So, in terms of evaluation of the team it is much more important to focus on the process
side of things rather than the output side of things. Because output is always a result
of how well the team operates, and you can’t just force the team to produce more. There
is always an underlying reason as to why they are potentially producing less. So,
that’s what we focus on in terms of reporting on the team level with those quantitative
metrics.

The Say-Do-Rate is the most common metric used for reporting at the team-level. It was
described to us by interviewees LM1, PO1, AM1, AM2, AM3, AM4, and AM5. The Say-Do-
Rate is a metric that compares the number of Backlog Items planned for an iteration with
the number of Backlog Items actually achieved at the end of the iteration:

SayDoRate =
#ItemsAchieved

#ItemsP lanned

As this metric refers to Backlog Items achieved in a given time-frame, it is calculated at the
end of this time-frame. On team-level, this is typically the end of each Sprint, but it can
also be calculated quarterly or yearly, depending on the time-frame of interest. Further, it
can also be calculated per goal, using the Backlog Items that are linked to the goal. The
calculation of this metric is done by the Agile Master of the Sub-Product. It is reported to
the Sub-Product Owner, who can use this information for planning of the next iteration.
This reporting is categorized as quantitative. Interviewees AM1 and AM5 explained that
the Say-Do-Rate should be preferred over metrics based on Story Points at the team-level.

50

4.4. Reporting towards Goals

Story Points should only be used for team-internal discussion and estimation (DEV1, AM1,
AM4). The reason for that is to avoid putting external pressure on teams to plan more
Backlog Items, and that teams can manipulate metrics based on Story Points quite easily.

Interviewee AM5 additionally mentioned that the Say-Do-Rate is used to chart a pre-
dictability trend of a team. The predictability trend shows the development of the Say-
Do-Rate of a team over time. It shows whether the team is improving in planning their
iterations. Again, this chart is created by the Agile Master to facilitate the Product Owner.
Table 4.5 lists all metrics identified at the team-level used by the participating programs.

Name Description Program

Say-Do-Rate Ratio of Backlog Items planned for an iteration and
Items actually achieved by the end of it. Calcu-
lated at the end of each iteration by Agile Master.
Trended out continuously by Agile Master, called
Predictability Trend. Formula: SayDoRate =
#ItemsAchieved/#ItemsP lanned

A1, B1, B2, B3, C2, D1

Average Time to Market /
Average Lead Time

Average time a Backlog Item takes from creation
until finished. Monitored and trended out contin-
uously by Agile Master.

B2, C1, D1

Average Cycle Time Average time a Backlog Item is in
state "In Progress". Monitored and
trended out continuously by Agile
Master. Formula: AvgCycleT ime =
#AvgWorkInProgress/#AvgThroughput

C2, D1

No. of new Tickets Automatically generated daily by system. B3, C2
Ticket Resolution Ratio Ratio of closed and newly created tickets in a time

period. Automatically generated daily by system.
B3, C2

Technical Debt Ratio Shows whether an Iteration created more technical
debt than it solved. Calculated at the end of each
Sprint by Agile Master. Formula: DebtRatio =
#DebtItemsCreated/#DebtItemsSolved

D1

Productivity Number of finished Backlog Items per time. Cal-
culated and trended out by Agile Team.

B2

No. of Deployments Counted daily by Agile Team. B3
Share of Voice Share of speaking time occupied by each partici-

pant during (Sprint) Review meeting. Monitored
by Agile Master Review meeting.

B3

Service Availability Share of time systems were available in a given
time frame. Automatically monitored by system.

B2

Team Collaboration Happi-
ness

How happy the Agile Team was with working to-
gether in the last Sprint. Collected by Agile Master
in each Sprint Retrospective.

D1

Team Delivery Happiness How happy the Agile Team was with what they
delivered in the last Sprint. Collected by Agile
Master in each Sprint Retrospective.

D1

Table 4.5.: List of identified metrics at the team-level

51

4. Case Study

Given this focus on continuous, process-oriented reporting on team-level, we still ob-
served product- and development-oriented reporting. The most commonly mentioned
means of development-oriented reporting at the case company is the Sprint Review. It
was described by interviewees LM1, BE1, PO3, AM1, AM2, AM3, and AM5. In the Sprint
Review meetings the Agile Teams, Agile Master, Sub-Product Owner, and sometimes also
the Product Owner participate. The user itself was only mentioned by AM1 as a partici-
pant in the Sprint Review. It is conducted at the end of each Sprint, which is typically every
one to four weeks at the case organization. In the Sprint Review, the results achieved in
the last Sprint are presented by the team to the other stakeholders. This typically includes
a live demo of new functionality, as well as a review of the goals of the Sprint. All six
interviewees that mentioned the Sprint Review characterized it as a qualitative review.

4.4.3. Reporting on Product and Domain Level

Moving up from the team-level, we observe that the continuous, process-oriented report-
ing remains of high importance. The reports are highly automated and continuously up-
dated by tools. As on team-level, the Agile Masters are responsible for this reporting.
On product- and domain-level the observed programs are focusing on trend analysis of
several metrics over individual measurements at one point in time. For this purpose,
Value Stream Dashboards are used in programs B2 and B3, which are based on Data-
Warehousing approaches for Jira. This allows for sophisticated analysis of trends and
variances in Backlogs over time. The Value Stream Dashboards contain graphs showing
the number of Backlog Items currently in progress, the throughput, average lead time and
cycle time for each month of the past years, the lead time development for different types
of Backlog Items over the past two years, and further trends. Similarly, program C2 main-
tains a Product and Team Fitness Tracker on Confluence, where Products and Teams are
documenting information on velocity trends, velocity volatility, predictability trends, and
the average number of continuous improvement Backlog Items in progress. Table 4.6 lists
all observed metrics at product- and domain-level.

Name Description Level of Ob-
servation

Program

Say-Do-Rate See description in Table 4.5. Product, Do-
main

A1, C2, D1

Lead Time See description in Table 4.5. Product, Do-
main

B1, D1

Velocity The sum of completed effort (estimated in
Story Points) in one iteration / Product cycle /
Domain cycle. Used in automated dashboards.

Product B3, C2

No. of Incidents The number of system outages / incidents
in one iteration that affected customer experi-
ence. Collected by (Sub-)Product Owner.

Product, Do-
main

B2, D1

52

4.4. Reporting towards Goals

Estimated vs. Unesti-
mated Backlog Items

Comparison of the number of unestimated and
already estimated items in the Backlog. Shows
whether the team can keep up with newly in-
coming requests, especially when tracked over
longer periods of time. Used in automated
dashboards.

Product, Do-
main

B2, B3

Avg. Age of Unre-
solved Issues by Pri-
ority

For each priority category of Backlog Items, the
average age of all Backlog Items currently in
the Backlog is computed. Used in automated
dashboards.

Product, Do-
main

B2, B3

Created vs. Resolved
Backlog Items

Comparison of the number of newly created
Backlog Items and the number of resolved
Backlog Items in one cycle. Shows whether
the open work is increasing or decreasing over
time. Used in automated dashboards.

Product, Do-
main

B2, B3

Resolved Backlog
Items / Throughput

Number of finished Backlog Items in an cycle.
Used in automated dashboards.

Product, Do-
main

B2, B3

Work in Progress
(WIP)

Number of Backlog Items currently in state "In
Progress". Used in automated dashboards.

Product, Do-
main

B2, B3

Service Availability Fraction of time a service is available in an cy-
cle. Collected by (Sub-)Product Owner.

Product B2

Compliance Level Fraction of applications that have an approved
security classification and documented risks in
the central risk documentation tool. Collected
by (Sub-)Product Owner and Domain Owner.

Domain B1

Security Patch Level Fraction of applications that are patched
within the operating Service Level Agreements
(SLAs). Collected by (Sub-)Product Owner and
Domain Owner.

Domain B1

No. of implemented
Sagas per Domain
Cycle

Number of Sagas from the Domain Backlog
that have been resolved in a Domain Cycle.
Collected by Agile Master.

Domain B2

User Satisfaction For each new release, stakeholders are sur-
veyed for their satisfaction in the acceptance
test / review meeting. Rating on a scale from 1
(not satisfied) to 10 (satisfied).

Product D1

Market Acceptance
Test Duration

The duration that the market acceptance test /
review meeting took. Longer meetings may in-
dicate need for improvement.

Product D1

Technical Debt Ratio See description in Table 4.5. Product, Do-
main

D1

Days to Sell The number of days it takes for a newly arrived
product unit (vehicle) to be sold.

Domain B1

Cycle Time See description in Table 4.5. Product, Do-
main

D1

53

4. Case Study

Agile Quality Score After each cycle, the internal Product Owner
and the external development team rate each
other on a scale from 1 to 5 stars. Discrepancies
in evaluation have to be discussed afterwards.
Collected by Agile Master.

Product B3

Capacity Available capacity (personnel) for an cycle. Es-
pecially valuable when interpreting Velocity.

Product C2

Overall Mood In the overall retrospective, the Agile Mas-
ter regularly asks each team to rate their cur-
rent mood as one of the following: "Sunny",
"Clear", "Overcast", "Rainy", "Thunderstorm".
The responses are tracked over time to identify
trends / changes in mood of the teams.

Product B3

Test Line Coverage The ratio of program code that is covered by
tests. Automatically generated by tool.

Product, Do-
main

D1

Test Decision Cover-
age

The ratio of decision statements in program
code that is covered by tests. Automatically
generated by tool.

Product, Do-
main

D1

Test Success Rate The ratio of executed application tests that suc-
ceed. Automatically generated by tool.

Product, Do-
main

D1

Avg. No. of Con-
tinuous Improve-
ment Process Items
Planned

Average number of continuous improvement
process Backlog Items that have been planned
and done in the last three cycles. Collected by
Agile Master.

Product C2

Velocity Volatility Indicates how much the Velocity changes be-
tween the cycles. Low volatility is considered
good. Collected by Agile Master.

Product C2

Table 4.6.: List of identified metrics at product- and domain-level (metrics also used on
team-level printed in italic)

Interviewees BE1, PO2, AM1, AM2, AM3, and AM4 emphasized that a linked chain of
sub-goals is also important for higher-level reporting. It allows to connect progress made
by the teams to the higher-level program goals. This aspect is already explained in detail
in Section 4.3 on goal documentation techniques.

Further, on product- and domain-level Agile Masters are continuously employing au-
tomated quality checks on the Backlog Items. We observed checks of Backlog Items’ ad-
herence to the Definition of Ready and Definition of Done. They generate statistics on
whether Backlog Items contain proper linkage to parent items, a textual description, esti-
mation in Story Points, definition of acceptance criteria, linkage to addressed defects, and
more. Those checks are monitored for Backlog Items in both Domain and Product cycles.

This presence of continuous, process-oriented reporting on all organizational levels fits
our observation that process goals are the largest part of goals at the case organization
(see Section 4.3). It seems intuitive that pursuing many process goals poses a demand for
process-oriented reporting.

On the other hand, we observed increasing importance of product-oriented reporting

54

4.4. Reporting towards Goals

the higher the organizational level. Reporting based on the Goal Management Process
(GMP) plays a major role in this category. It was explained to us by interviewees PO1, BE1,
AM2, and LM1. As with goal-setting, GMP-based reporting is mandatory on domain-
level, and also frequently used on product-level. For this purpose, the GMP provides
standardized GMP Sheets. The GMP Sheets are explained in Section 4.3. Approaches on
how these templates are filled differ between programs. The sheets are filled in Domain
Reviews, Product Reviews, Area Retrospectives, PI Plannings, and similar events. This
largely depends on the scaling agile framework chosen by a particular program. Figure
4.5 shows the variants of GMP-based reporting that we observed.

Scaling
Level Program B1 Program B2 Program C2

Domain

when: quarterly and yearly
who: Domain Owner
how: GMP Sheet

when: half-yearly
who: Domain Owner, Product Owners
how: workshop to fill GMP Sheet

when: yearly
who: Domain Owner, Stakeholders
how: discussion to fill GMP Sheet,
using OKRs that were derived from
GMP goals

Product

when: quarterly
who: Product Owners
how: Confluence page, autonomously
filled by POs with traffic lights per
goal

when: quarterly / end of PI
who: Product Owners, Sub-Product
Owners
how: Confluence page

when: deadline of Objective /
milestone
who: Product Owners, Sub-Product
Owners
how: Key Results linked to Objective

Sub-
Product

when: monthly
who: Sub-Product Owners
how: Confluence page, autonomously
filled by SPOs with traffic lights per
goal

when: end of Sprint
who: Sub-Product Owners, Teams
how: Sprint Review

when: deadline of Objective /
milestone
who: Sub-Product Owners, Teams
how: Key Results linked to Objective

Figure 4.5.: Overview of observed variants of GMP-based reporting

A frequently used means of reporting at the company is the so-called Traffic-Light Re-
porting (PO1, AM1, AM2, LM1, BE1, PO2, PO3). It entails assignment of a color — green,
yellow, or red — to a goal, which signals the current achievement status. A green color sig-
nals that progress towards goal-attainment is on track as planned. Yellow signals problems
that are deemed resolvable by the reporter. The red color code is assigned in cases where
the reporter does not see possibility to autonomously resolve problems and is seeking help.
This type of reporting is a mandatory part when filling the GMP Sheets, but is also used
independently of the GMP. We observed two ways of how the appropriate color codes are
derived. On the one hand, reporters may assign a color code based on their qualitative
judgment and discussion with stakeholders. This is suitable for non-quantifiable goals.
Programs B1 and B2 are exclusively applying this approach. On the other hand, the color
code may be based on quantitative metrics and defined thresholds for each color-code.
Program A1 is using the Say-Do-Rate as a basis for traffic-light reporting of team progress
to the Product Owners. Program C2 is assigning color codes to Key Results in their OKR
setup. They are using the Say-Do-Rate as well to select colors for Key Results based on
their linked Backlog Items. Based on how the color codes are derived, the traffic-light

55

4. Case Study

reporting can be categorized as qualitative or quantitative.

Summary on usage of metrics for reporting

In total, we observed the usage of 12 metrics on the team-level, 22 metrics on the product-
level (program-level), and 16 metrics on the domain-level (portfolio-level). Metrics there-
fore seem to be of common use for reporting and measurements on all scaling levels at the
case organization, with a tendency towards usage on product-level (program-level).

In this section we documented all the observed metrics, but we only discussed the most
commonly observed reporting practices. To fully answer the first research question of this
thesis, all the identified reporting practices of the case study are documented in Appendix
B.1.

4.5. Challenges and Reasons

To answer the second research question, we also investigated the reasons and challenges
behind the current approaches of goal-setting and reporting at the case organization. In
total we collected 19 challenges, 14 reasons behind the selected reporting approaches, and
13 reasons behind the selected goals. While not all of them are specific to large-scale agile
environments we decided to document them anyway to ensure a holistic portrayal of the
current situation. A list of all identified challenges is shows in Table 4.7, a list all identified
reasons for the current reporting approaches in Table 4.8, and a list of all identified reasons
for the current goals in Table 4.9. The challenges are used to define the objectives for
the model approach developed in Chapter 5. Challenges that are specific to large-scale
agile environments are printed italic in the table. In this section, we elaborate on the most
common challenges and reasons.

Challenges

A very frequent challenge we encountered are prioritization conflicts between different
goals (C2). This is clearly a goal-setting challenge, however it is not strictly specific to
large-scale agile software development. It was explained by interviewees LM1, AM1, AM4,
and AM5. Prioritization conflicts may arise from different goals set by stakeholders, goals
set by the program itself, or rules that limit the number of allowed goals to be set — as
implemented by the OKR approach in program C1.

56

4.5. Challenges and Reasons

ID Name Description Category Interviewees

C1 External dependencies
limiting autonomous
goal-setting

External dependencies like stakeholder commit-
ment to goals, dependencies on other products
or teams make it hard to define clear goals that
can be achieved autonomously by the Product /
Domain.

Goal-
Setting

PO1, STE1,
LM1, PO3

C2 Prioritization conflicts
between goals

Balancing different needs of stakeholders. Goal-
Setting

LM1, AM1,
AM4, AM5

C3 No goals for individ-
ual employees

Reporting on individual employees is not al-
lowed by workers union or too resource-
intensive in large programs.

Goal-
Setting

PO1, STE1

C4 Management control
limits team autonomy

Fixed yearly / quarterly goals limit autonomy
of Product Owners and Agile Teams. Reporting
demanded by management is perceived as in-
trusive by Agile Teams.

Goal-
Setting,
Reporting

AM4, AM5,
STE1, DEV1,
PO2

C5 Unclear goals from
higher levels

Goals received from higher org. levels are not
clearly defined and explained to all stakehold-
ers.

Goal-
Setting

AM2

C6 Define current state
and target state for
qualitative goals

For qualitative, non-measurable goals it is often
hard to clearly define the current state and the
target state to be achieved.

Goal-
Setting

AM2

C7 Missing attachment of
teams to goals

Agile Teams lack attachment and commitment
to goals they did not define themselves.

Goal-
Setting

AM4

C8 Too rigid fixation on
goals

Focusing on goals causes lack of appreciation for
necessary routine / operational work.

Goal-
Setting

AM3, LM1

C9 External contracts
limiting Feature Team
working model

External contractors are not allowed to operate
as cross-functional Feature Teams. Instead, they
own specific components only.

Goal-
Setting

AM3

C10 Missing link between
organizational goals
and realization

Organizational goals often do not clearly define
what is to be done and implemented to achieve
the goal.

Goal-
Setting

AM3

C11 Resource constraints
for goal-setting and
reporting

The goal-setting and reporting processes con-
sume a lot of resources.

Goal-
Setting

BE1, PO3,
DEV1

C12 Reporting qualitative
goals is arbitrary

Reporting qualitative goals is based on "arbi-
trary" judgment of individuals and allows for
green-shifting.

Reporting PO1, AM1,
AM2, AM3

C13 What to report on
higher levels

Higher-level reports often lack focus. They ei-
ther report too detailed or lack necessary infor-
mation to identify problems. It is hard to define
what is (not) relevant to be reported on higher
levels.

Reporting AM1, LM1,
PO3

C14 Missing link to higher-
level goals

Progress reports do not clearly show how it con-
tributes to goals on higher levels.

Reporting PO1, STE1

C15 Missing automation Assembly of reports is often done manually,
which consumes resources.

Reporting PO1

C16 Gathering data Collecting data for reports is resource-intensive. Reporting PO1, BE1

57

4. Case Study

C17 Conflict of interest
hindering objective
reporting

Conflicts of interest caused, e.g., by office poli-
tics or bonus payments connected to reporting
outcomes, hinder objective reporting.

Reporting PO1, BE1

C18 Cost-benefit trade-off
of reporting

It is hard to determine how much reporting is
needed to provide necessary information while
minimizing effort and cost.

Reporting BE1, PO2,
PO3

C19 Reporting delayed due
to hierarchy

Due to hierarchies in large-scale organizations,
reports often reach higher levels with a certain
time delay.

Reporting PO2

Table 4.7.: List of all identified challenges of the case study (challenges specific to large-
scale and / or agile settings printed italic)

Another common challenge is the limitation of team autonomy by management con-
trol (C4). Fixed goals defined by higher-level management can limit autonomy at lower
levels. This was phrased by interviewee AM4 as follows:

I am struggling with the advantages of agility on the team level sometimes, because
we tell the teams what they have to do within one quarter, and then we break it down
into four Sprints of three weeks. And actually the four Sprints of three weeks they
are predefined completely because you know what you have to do. So, agility from one
Sprint to another is not really necessary.

This effect not only applies to the Agile Teams but it also restricts the (Sub-)Product Own-
ers in their ability to autonomously prioritize the Backlog in their area. Further, stake-
holders that expect accurate deadlines and effort predictions can be another cause for this
problem. It forces programs to stick to deadlines instead of allowing for necessary adap-
tation of schedules and team-priorities. On the other hand, several interviewees also men-
tioned that reporting demands are perceived by the teams as management control, while
not being the actual intention behind such demands. This challenge was discussed by
interviewees AM4, AM5, STE1, PO2, and DEV1. It is both a goal-setting and reporting
challenge.

Next, reporting progress towards qualitative goals (C12) is also a common challenge.
Qualitative in this context refers to goals that cannot be clearly measured and that do not
come with defined thresholds for achievement. In such cases, the person tasked with com-
piling the report often has to base the evaluation of goal-progress on discussions or their
individual judgment. This is identified by interviewees as a frequent source of seemingly
arbitrary reports. Interviewees also mentioned green-shifting along the reporting hierar-
chy. Problems reported at lower levels were displayed less concerning on higher levels,
because reporters on higher levels deemed the problems less serious. This is a reporting
challenge that was named by interviewees PO1, AM1, AM2, and AM3.

58

4.5. Challenges and Reasons

Reasons

In Section 4.4 we described the observation that product-oriented reporting is of increas-
ing importance on higher levels. The reason behind this observation, which is also overall
one of the most commonly named reasons, is in stakeholder-orientation. As explained
by interviewees AM4 and AM5, external stakeholders are primarily interested in develop-
ment output and product progress (R2). Because higher-level reporting — in contrast to
team-level reporting — is also done for external stakeholders, this may explain the shift of
importance of product-oriented reporting. On the other hand, process-oriented reporting
is less relevant for external stakeholders according to the interviewees, because external
stakeholders often do not care about internal development processes and work methods.
Another reason, based on which interviewees PO1 and PO2 selected reporting practices,
are organizational regulations and governance (R12). Depending on the process or port-
folio that a program is part of, often there are overarching regulations by the governance
department that impose specific reporting practices to be used by all programs. The rea-
sons behind the identified reporting practices are documented in Table 4.8. Based on our
observations we structured the reporting reasons into four categories. Information needs
describe that certain reporting practices are applied by interviewees because they had a
concrete need for information to be addressed. Agile values and principles describe that
reporting practices are selected based on agile values. Regulations describe that some re-
porting practices are chosen because of regulations that influence how reporting can or
has to be done. Size of program / organization describes that interviewees applied certain
reporting practices because of the size of their agile development environment.

A commonly named reason behind the identified goals are customer requests (AM1,
AM2, PO2). Interviewees explained that they are pursuing goals because customers re-
quested them to move into a certain direction. Intuitively, this makes sense because ulti-
mately the goal of any large-scale agile development program is to satisfy the needs of the
customers. Another reason, named by PO1 and AM5, is the organizational strategy. Inter-
viewees explained that they derived goals for their programs from the overall strategy of
the organization. By doing so, they ensure that the organizational strategy is reflected in
the program goals and is actually implemented by the program’s daily work. All identified
reasons behind the identified goals are listed in Table 4.9. Again, based on our observa-
tions we grouped the reasons behind the goals into four categories. Internal needs describe
that goals have been derived from internal needs and desire. Customer needs describe that
goals have been set based on requests from customers towards the large-scale agile devel-
opment organization. Strategy of organization describes that certain goals are pursued based
on the overall strategy of the organization. Regulations describe that goals are driven by
regulations that the organization has to comply with — thus such goals are not optional
but obligatory to pursue.

59

4. Case Study

ID Name Description Category Source

Information Needs
R1 Type of reporting depends

on goal and stakeholder
The suitable reporting is chosen based on
the type of goal and stakeholders’ informa-
tion demands.

Team Re-
porting,
Higher-level
Reporting

AM4,
PO3

R2 External stakeholders are
mostly interested in prod-
uct and program progress

Product-oriented reporting becomes more
important on higher levels, because ex-
ternal stakeholders are more interested in
product progress than internal processes.

Higher-level
Reporting

AM5,
AM4

R3 Learning by doing No precedent existed at the organization.
The current approach emerged by experi-
mentation.

Team Re-
porting,
Higher-level
Reporting

STE1

R4 Reporting should provide
needed information to plan
next iteration

The information needs to plan the next iter-
ation influence what should be reported in
the current iteration.

Higher-level
Reporting

AM5

R5 Understand team perfor-
mance

The reporting was implemented to gain un-
derstanding of how teams perform.

Team Re-
porting

DEV1

R6 Higher management only
interested in quantitative
summary

Higher management is only interested in
an aggregated, quantitative summary.

Team Re-
porting

PO3

Agile Values and Principles
R7 Avoid putting pressure on

Agile Teams
Say-Do-Rate reporting is chosen to mini-
mize external pressure on Agile Teams.

Team Re-
porting

AM1

R8 Organizational goals are
never really done

Measurements of organizational goals are
trended out because they only indicate im-
provement relative to time.

Team Re-
porting

AM3

R9 Reporting based on scaling
agile framework

The chosen reporting method is suggested
by the scaling agile framework in use.

Team Re-
porting

AM5

R10 Working process is most
important on team-level

Focus is on working process at team-level,
because output is result of how well teams
are working.

Team Re-
porting

AM5

Regulations
R11 Restrictions by workers

union
Regulations by the workers union prohibit
reports lower than team-level.

Team Re-
porting

AM4

R12 Organizational regulations
and governance

Reporting is regulated and standardized
(partially) by the organization, especially
the GMP.

Higher-level
Reporting

PO1,
PO2

Size of Program / Organization
R13 Product-goal reporting on

team-level gives only iso-
lated information

Focus is on working process at team-level,
because team-level reports lack program
context and only provide isolated informa-
tion.

Team Re-
porting

AM5

R14 Large-scale programs rely
on automation

With increasing program size automation
of reporting becomes more important.

Higher-level
Reporting

STE1

Table 4.8.: List of all identified reasons for reporting approaches in the case study

60

4.5. Challenges and Reasons

Name Description Source

Internal Needs
Metric indicates need
for improvement

An internally monitored metric indicates need for improve-
ment because of currently bad measurement values.

AM2

Operational mis-
alignment between
markets

Processes and tools between markets are differing, causing
portability and efficiency issues.

AM5

Legacy IT systems Legacy systems and applications, and modernization needs in-
fluence goal-setting.

STE1

Changing internal
processes

Changes to internal processes and structures influence goal-
setting.

STE1

Integration with
other parts of com-
pany

Products and organizational structures have to be integrated
and aligned.

AM1

Goal is quantifiable Preference is given to goals that allow for quantitative evalua-
tion.

PO1

Missing flexibility
and speed

The organization was not flexible enough to deal with the
changing environment, and thus pursued agile methods.

PO3

Customer Needs
Customer requests Goals are derived directly from customer requests. AM1, AM2,

PO2
Increased orientation
on customer value

The agile transformation increases focus of goal-setting on cus-
tomer value

AM3

Changing customer
needs

Changing ways of working and needs of customers influence
goal-setting process.

AM5

Strategy of Organization
Goal as part of strat-
egy

Goals are directly derived from the overall organizational strat-
egy

PO1, AM5

Changing company
priorities

Changes to the overall company priorities (e.g., electrification,
sustainability) influence goal-setting.

STE1

Regulations
Governmental regu-
lations

Governmental agencies (e.g., TÜV) and regulations influence
goal-setting.

AM1, DEV1,
PO2

Table 4.9.: List of all identified reasons for the specific goals pursued in the case study

61

4. Case Study

62

5. Theoretical Model

This chapter formalizes our findings from literature and our initial case study. Based on
these findings, we theorize on important propositions for goal-setting and reporting in
large-scale agile software development. Using this theory, we then develop a model ap-
proach for goal-setting and reporting in large-scale agile environments. The propositions
and the approach represent the core artifacts of this thesis, and are developed to answer
the third research question. They also aim at providing guidelines to practitioners on how
to establish goals and implement reporting routines in large-scale agile software devel-
opment. Further, they explain possible actions to avoid and mitigate common challenges
that may arise in this context. Our model approach is not intended to replace established
scaling agile frameworks, it rather seeks to offer additional guidance independent of the
exact framework that might be applied. This chapter is structured as follows: Section 5.1
describes the methodology used to build the theory. Then, Section 5.2 explains the relevant
constructs and propositions for our approach. The concrete process model derived from
the constructs and propositions is discussed in Section 5.3.

Throughout this chapter the text and figures will reference challenges and reasons iden-
tified in the previously presented case study. Challenges, which are addressed by a certain
design decision of our model, are referenced using the IDs from Table 4.7 starting with "C"
(e.g., C1, C14). Reasons, which a design decision of our model is based on, are referenced
using the IDs from Tables 4.8 starting with "R" (e.g., R1, R5).

5.1. Methodology

To formalize and structure the findings from the previous sections we follow the guidelines
by Sjøberg et al. [58]. The guidelines describe recommended steps for theory-building in
software engineering. Because this thesis focuses on large-scale agile software develop-
ment, these guidelines are applicable. Sjøberg et al. differentiate five types of theories [58].
The goal-setting and reporting approach developed in this chapter can be classified as de-
sign and action theory, because it describes "how to do things" [58]. Karhapää et al. [29]
develop a similar theoretical model using the framework by Sjøberg et al. [58] focusing on
management of quality requirements in agile software development. While not dealing
with the same topic, we reference Karhapää et al. [29] for methodical guidance on using
the framework by Sjøberg et al. [58].

Following Sjøberg et al. [58], a theory in software engineering comprises entities of the
types actor, technology, activity, and software system. In the theory, an actor can apply

63

5. Theoretical Model

technologies to carry out activities on the software system of concern [58]. Actors can be
individuals, teams, or even the whole organization [58]. Technologies are methods, tech-
niques, or tools that are used to carry out an activity, which in turn can be the planning,
building, or analysis of a software system [58]. Additionally, a theory also contains propo-
sitions [58]. Propositions represent interactions between constructs, and influence that one
entity in the theory has on another entity.

5.2. Model Constructs and Propositions

This section presents all the entities and propositions that are part of the model. These
entities and propositions are based on our findings from literature and the case study, and
form the basis for the suggested approach that is described later in this thesis. This section
describes the actors, which activities they are executing, and which technologies they are
using for their activities. Tables 5.1 and 5.2 list and summarize all the propositions that
are discussed in the following. General propositions formalize general design decisions
for the goal-setting and reporting approach. Mitigation propositions on the other hand are
intended to address the identified challenges from the case study. They represent practices
that should be applied to address specific challenges. Thus, the mitigation propositions
are central to answer the third research question of this thesis.

Since this thesis is concerned with goal-setting and reporting in large-scale agile soft-
ware development, this can be described as the scope in which our theory and approach
are applicable. Hence, only constructs and propositions relevant to goal-setting and re-
porting in large-scale agile software development are part of the model. As proposed by
Sjøberg et al. [58] we also present our model using their UML-like notation.

5.2.1. Actors

Our model approach to goal-setting and reporting comprises the actors Agile Team, Ag-
ile Master, Product Owner, and Line Manager. All of these actors are part of the overall
organization, which itself is modeled as an actor. The organization has different scaling
levels at which actors can be operating on. Dividing the organization into scaling levels
or areas is common to scaling agile frameworks (cf. [25, 34]). For consistency reasons, we
adopt the terminology used in the case study, which contains Team, Program, Portfolio,
and the overall Organization as scaling levels. Figure 5.1 gives an overview of the actors
in the model. This selection of actors is influenced by roles and responsibilities in several
popular agile frameworks such as Scrum, SAFe, LeSS, and Nexus [25, 34, 55, 56], as well
as on the observations at the case organization. While Agile Masters and Product Owners
are usually present on all scaling levels throughout the organization, Agile Teams only op-
erate on team-level. Line Managers are operating on all levels if necessary, while typically
being assigned to one team or program. Each actor has a reporting and goal-setting re-
sponsibility, which are the central and only responsibilities that are in scope of our model.

64

5.2. Model Constructs and Propositions

Activity

Goal-Setting Process

 cadence

Reporting Process

 cadence
 type
 recipient

Goal-Setting Practice

Definition Practice

Documentation Practice

Communication Practice Communication Practice

Documentation Practice

Assembly Practice

Reporting Practice

Technology

Goal

 type

 scaling level

 clarity

 visibility

 dependencies

 acceptance

Large-Scale Agile
Development Organization

System

Line ManagerProduct Owner

Agile MasterAgile Team

Large-Scale Agile
Development Organization

 scaling level
 regulations
 size

Actor

 reporting responsibility
 goal-setting responsibility
 compensation

Figure 5.1.: Overview of the actors in the theoret-
ical model

The reporting responsibility is mod-
eled based on our findings in Section
4.4, and is in line with Stettina and
Schoemaker [59]. Reporting respon-
sibility can be of type development,
product, or process [59]. Development
reporting responsibility in our ap-
proach is placed with the Agile Teams
and Sub-Product Owners. As Agile
Teams operate only on team-level, we
found that development reporting is
of particular relevance at lower levels,
while product and process reporting
are relevant throughout all scaling lev-
els (see Section 4.4). Product reporting
responsibility is placed with the Prod-
uct Owner hierarchy (i.e., the Product
Owners at the different scaling levels)
in our approach, and process reporting responsibility with the Agile Masters and Line
Managers. On team-level our model suggests to mainly focus on development and
process-oriented reporting, based on our case study findings that external delivery pres-
sure on teams should be minimized (R7, R10, R13). Product-oriented reporting should be
the focus on program- and portfolio-level, because external stakeholders that receive the
overall reporting are usually mostly interested in product and program progress (R2), not
in internal working processes of the program. Hence, we propose P1: The scaling level at
which an actor operates influences their reporting responsibility and the necessary type of reporting.
Further, the correct type of reporting not only depends on the scaling level, but also on the
stakeholders that an actor is reporting to (R1, R2, R4). We propose P2: The recipient of the
report influences what should be reported and by whom.

Goal-setting responsibility, on the other hand, is structured according to the goal con-
tent categories we identified in Section 4.3. In contrast to reporting responsibility, goal-
setting responsibility for certain types of goals is not clearly mapped to specific actors in
our model. We find in the case study that goals are based on internal needs, customer
needs, overall strategy of the organization, as well as regulations (see Table 4.9). Intervie-
wees (LM1, AM5) explicitly mentioned that goals of several categories could be coming
from different actors (see Section 4.3). Thus, in our approach we propose M1: Goal-setting
responsibility should be shared among actors, to facilitate collaborative goal-setting practices. In-
stead of exclusive goal-setting responsibility of specific actors for certain types of goals, all
actors should be able to contribute and propose goals of any type. The shared responsi-
bility of all actors gives the required freedom for collaborative goal-setting activities and
practices. Collaborative goal-setting addresses the challenges of missing attachment of
Agile Teams to goals (C7) and receiving unclear goals from higher levels (C5), which we

65

5. Theoretical Model

identified in the case study. This design decision is influenced by findings from literature,
that shared goals and collaborative goal-setting are important for effective coordination
in large-scale agile software development [8, 42]. It is also supported by classical goal-
setting theory, which postulates better group performance resulting from collaborative
goal-setting [39]. Schnabel and Pizka [53] emphasize collaborative goal-setting in their
process as well.

ID Description Based on Explanation

P1 The scaling level at which the actor op-
erates influences their reporting respon-
sibility and the type of necessary report-
ing

R2, R7,
R10, R13

AM4, AM5 state higher-level report is product-
oriented; AM1, AM5 state team-level report is ori-
ented on team needs and working-process; AM5
states product-oriented report on team-level lacks
overall context

P2 The recipient of the report influ-
ences what should be reported and
by whom

R1, R2,
R4

PO3, AM4, AM5 state report is oriented on re-
cipient needs; AM5 states report has to provide
needed info to plan next iteration on all levels

P3 A hierarchy of goals should be estab-
lished to determine how a goal affects
the organization based on its scaling
level

R1 Lower-level goals should always clearly state to
which goals on the next higher level they con-
tribute; however, goals only relevant up to a spe-
cific scaling level might not contribute to higher-
level goals, but still not be a top-level goal;
Berntzen et al. [8] make a similar observation

P4 Automation of reporting becomes
more important the bigger the size
of the program

R14 STE1 states with increasing size automation be-
comes more important to cope with increasing
complexity; Murphy and Cormican report a sim-
ilar relation for software measurement [45]

P5 Regulations (e.g., from govern-
ment or the organization) constrain
which reporting practices can be ap-
plied

R11, R12 AM4 states workers council prohibits reporting on
individual level; PO1, PO2 state (parts of) higher-
level report is standardized by top management;
GMP is standardized for whole organization

P6 Process-oriented reporting should track
trends across longer periods of time to
improve ability to make reliable predic-
tions

R4, R8 Single measurements of a metric do only show the
current state; trends have to be tracked to iden-
tify changes to work processes over time and to
be able to provide reliable predictions (AM5); In
line with a continuous understanding of measure-
ments postulated by Murphy and Cormican [45]

P7 Team-mood should be tracked regularly
using metrics

R10 Mood of the team should be regularly evaluated
in retrospectives using a metric (e.g., 5 star rating
(AM3)); the mood-development should be tracked
over time; good working processes are crucial on
team-level (AM5)

Table 5.1.: List of all general propositions of the theoretical model (large-scale and / or
agile specific propositions in italics)

66

5.2. Model Constructs and Propositions

5.2.2. Activities and Technologies

To carry out activities on the software system actors need to apply certain technologies
[58]. According to the scope of our model, we structure the activities into the goal-setting
process and the reporting process. To carry out the goal-setting process, actors need to ap-
ply techniques for definition, documentation, and communication of goals. And to carry
out the reporting process, actors need to apply techniques for assembly, documentation,
and communication of reports. We structure these key activities of goal-setting and report-
ing based on the case study. The modeling approach is influenced by Karhapää et al. [29],
who modeled activities and practices for quality requirements management in a similar
way in their theory. Figure 5.2 gives an overview of the activities and technologies that are
part of the model.

Activity

Goal-Setting Process

 cadence

Reporting Process

 cadence
 type
 recipient

Goal-Setting Practice

Definition Practice

Documentation Practice

Communication Practice Communication Practice

Documentation Practice

Assembly Practice

Reporting Practice

Technology

Goal

 type

 scaling level

 clarity

 visibility

 dependencies

 acceptance

Large-Scale Agile
Development Organization

System

Line ManagerProduct Owner

Agile MasterAgile Team

Large-Scale Agile
Development Organization

 scaling level
 regulations
 size

Actor

 reporting responsibility
 goal-setting responsibility
 compensation

(a) Activities

Activity

Goal-Setting Process

 cadence

Reporting Process

 cadence
 type
 recipient

Goal-Setting Practice

Definition Practice

Documentation Practice

Communication Practice Communication Practice

Documentation Practice

Assembly Practice

Reporting Practice

Technology

Goal

 type

 scaling level

 clarity

 visibility

 dependencies

 acceptance

Large-Scale Agile
Development Organization

System

Line ManagerProduct Owner

Agile MasterAgile Team

Large-Scale Agile
Development Organization

 scaling level
 regulations
 size

Actor

 reporting responsibility
 goal-setting responsibility
 compensation

(b) Technologies

Figure 5.2.: Overview of the (a) activities and (b) technologies in the model

Goal-Setting

For the goal-setting process actors need to define and prioritize the goals that should be
pursued. Goal-setting responsibility is shared among all the actors of our model and we
emphasize collaborative goal-setting, as discussed in the previous section. Our findings
indicate that goals may originate from any internal or external stakeholders of the ag-
ile program, such as customers, upper management, Agile Teams etc. To ensure all goals
from these various sources are properly defined, goal definition practices should be agreed
on and applied. Only clearly defined goals should be considered by the program. The
program should establish a Definition of Ready (DoR) (cf. [49]) for goals, similar to the
Definition of Done for Backlog Items used in Scrum [56]. We suggest the Definition of
Ready to describe the practices that actors have to apply to define a goal. In general, goal
definition practices are used by actors to describe the goal and what is to be achieved. They

67

5. Theoretical Model

also describe how goal progress is to be evaluated and what is considered goal achieve-
ment. In particular, the actor should define metrics that describe how progress towards
the goal is measured, and define sources for the data needed to calculate these metrics
(cf. Goal Question Metric approach [2, 3]). This suggestion is influenced by Murphy and
Cormican, who make a similar recommendation for the software measurement domain
[45]. We identified several goal definition practices in the case study. The SMART tech-
nique is used by programs B2, C1, and D1. Objectives and Key Results were described
to us by interviewees LM1 and DEV1 and are supported by tools throughout the whole
case organization. Interviewee AM5 described usage of program press releases to us. In
program D1, Product Owners write artificial press releases that describe the situation that
is expected once a specific goal was already achieved. Based on these findings, we propose
M2: Goal definition practices ensure clear understanding of goals and understanding of what to
report to illustrate goal progress. By enforcing and applying such goal definition practices
in the goal-setting process, actors can avoid unclear goals (C5) and clearly define what
has to be reported to illustrate progress towards a specific goal, especially on higher lev-
els (C13). By directly linking metrics to each goal, it becomes easier for the implementing
Agile Teams and other actors to evaluate the current state as well as progress towards the
target state (C6). The linked metric also ensures clarity on which data has to be collected
to evaluate the indicator.

Besides proper definition, goals also have to be documented. The aim is to document
and store what is to be achieved, and to make this knowledge retrievable for discussion
and future reference. Our model emphasizes transparency for the documentation of goals,
because transparency is a key value of agile methodologies [56] and was emphasized as
an important action against several challenges in the case study (LM1, AM1, AM2, AM5).
Only artifacts documented transparently can be used for transparent decisions and goals
[56]. We identified multiple possible practices for documentation of goals in literature and
our case study. A very common one is the Backlog. It is used by all programs that are
part of the initial case study. Backlogs are also used by several scaling agile frameworks
(e.g., [25, 34, 55]). Different types of goals are stored and maintained in Backlogs. In the
case study we observe that typically product, architectural, compliance, and operational
goals are documented in Backlogs. However, we also observed goals of other types to be
documented in Backlogs. Program C2 is using a dedicated Backlog for Organizational De-
velopment Goals, while program A1 is documenting all types of goals in Backlogs. Based
on these findings we propose M13: All goals should be maintained in Backlogs to facilitate clear
understanding and transparency. Another documentation practice we identified — which
is also used in conjunction with Backlogs — is to establish a linked chain of sub-goals.
This is a finding from the case study (see Section 4.4). Hence, we propose M3: A linked
chain of sub-goals across scaling levels should be established to facilitate transparency. By clearly
linking each goal and Backlog Item to the goals on the next higher scaling level, report-
ing can later show how work contributes to overall progress (C14). It gives a clear link
between high-level goals and their operationalization (C10) via Backlog Items, and thus
reduces arbitrariness of reporting higher-level progress (C12). As a result, the linked chain

68

5.2. Model Constructs and Propositions

facilitates transparency. Berntzen et al. [8] also observe that breaking down goals into a
hierarchy may facilitate coordination. Another common goal documentation practice is
the GMP Sheet, which was already mentioned in Section 4.3. It is based on PowerPoint
slide templates. Being part of the Goal Management Process, the GMP Sheet is mandatory
to use for all Domain Owners. The corporate Wiki, which is based on Confluence at the
case organization, also serves for goal documentation in several programs (B2, B3, C1, C2,
D1, D2). A benefit to public documentation of goals in the corporate Wiki is transparency,
as mentioned by interviewee AM2. Consequently, we propose M4: Goals should be docu-
mented publicly for all actors and stakeholders to facilitate transparency. Ensuring transparency
of goals by using these documentation practices addresses the challenge of unclear goals
(C5). Further, having a clear documentation of all goals improves actors’ and stakeholders’
understanding of why certain measurements are necessary. This is demanded by Murphy
and Cormican for software measurements [45], and we think should also apply for orga-
nizational measurements.

ID Description Addresses Explanation

M1 Goal-setting responsibility should be
shared among actors, to facilitate col-
laborative goal-setting practices

C5, C7 All actors and stakeholders can define goals of any
kind (but not prioritize them); Based on statements
by LM1, AM5; Literature finds shared, collabora-
tive goal-setting facilitates group performance [38]
and coordination in LSAD [8, 42, 53]

M2 Goal definition practices (e.g.,
SMART, OKRs, GQM) ensure clear
understanding of goals and un-
derstanding of what to report to
illustrate goal progress

C5, C6,
C13

SMART is used in programs B1, B2, C1, D1; OKRs
is used by programs B2, C1, C2, D2; GQM recom-
mends directly linking metrics to goals, that an-
swer specific questions [2]; The used goal defini-
tion technique should be documented in the Defi-
nition of Ready document

M3 A linked chain of sub-goals across scal-
ing levels should be established to facil-
itate transparency

C10,
C12, C14

Link team goals to program goals, and program
goals to portfolio goals; Commonly implemented
with linked Backlog Items, using Stories (team),
Epics (program), Sagas (portfolio); Jira or similar
solutions are used by programs A1, B2, C1, C2, D1;
Berntzen et al. [8] make a similar observation

M4 Goals should be documented pub-
licly for all actors and stakeholders
to facilitate transparency

C5 Usage of public documentation, e.g., Wiki-pages,
allows everyone to access the most recent goals
(AM2, AM3, AM5, PO3, DEV1, LM1, STE1); En-
sures transparency and mitigates unclear goals;
Helps to understand rationale behind measure-
ments, as demanded by Murphy and Cormican
[45]

M5 Goals from external stakeholders should
be broken top-down along the Product
Owner hierarchy to ensure considera-
tion of dependencies and coordination

C1, C2 Breaking down goals for the next lower level
should be done collaboratively with Product Own-
ers from both levels; e.g., via regular workshops
according to development cycles similar to GMP
process at case org.; Influenced by findings on im-
portance of POs for coordination by Berntzen et al.
[8]

69

5. Theoretical Model

M6 Definition, prioritization, and commu-
nication of middle- to lower-level goals
should involve Agile Teams, to ensure
consideration of technical aspects and
acceptance of goals by the teams

C2, C4,
C7

Agile Teams should always be involved in the
’how’ of goals (AM2); E.g., via participation in
workshops for breaking down goals in addition
to participation in Refinements and Plannings on
team-level; Murphy and Cormican also suggest to
involve developers [45]

M7 Process-oriented reporting should be
fully automated using Backlogs (e.g.,
using tools like Jira and Dashboards)

C15,
C16, C18

Process-oriented reporting is conducted continu-
ously, thus effort has to be minimized using au-
tomation; Automation can be facilitated by using
quantitative reporting, e.g., via Jira Dashboards,
Value Stream Dashboards (PO1, AM2, AM3, AM4,
AM5, LM1, STE1)

M8 Product-oriented reporting should be
partially automated by linking goals to
higher-level goals and predefine metrics
for each goal, based on the linked sub-
goals

C15, C18 Predefined metrics for product-oriented reporting
should be calculated automatically as far as pos-
sible; Manual, qualitative evaluation should still
be added by the reporter (STE1); Korpivaara et al.
suggest in their study that metrics should be con-
nected to goals [31], and Murphy and Cormican
even suggest to link every metric to a goal [45];
Also helps to show the impact and relevance of
metrics, as suggested by Oza and Korkola [46]

M9 Focus of team-level reporting should be
on artifacts that were produced in the
last iteration (development-oriented re-
porting) and on overall process moni-
toring, rather than on individual work

C3, R7,
R10

Focusing reports on individuals is detrimental to
group performance [38]; Reports focused on arti-
facts are dominant on team-level [33]

M10 Compensation of actors should not
be linked to reporting outcomes

C17 Conflicts of interest, e.g., compensation based on
reports, should be avoided (C17); Otherwise, such
conflicts may cause manipulation (cf. C17, [45,
48]); Reports have to be used in regular retrospec-
tives to derive improvement actions

M11 An arena should be established for
teams to explicitly report on work
that does not directly contribute to
the most important goals (“routine
work”)

C8 Work that is not directly contributing to goals has
to be made visible and be appreciated; Otherwise
people will avoid such tasks (LM1, AM3)

M12 Focus of product- and
development-oriented reporting
should not be on metrics only

C8 Except for process-oriented reporting, reports
should not only focus on metrics; qualitative eval-
uation and explanations are important to transfer
information (AM5)

M13 All goals should be maintained in
Backlogs to facilitate clear under-
standing and transparency

C5 Goals of all types are documented and maintained
in Backlogs by programs A1, B1, B2, B3, C1, C2,
D1, and D2.

Table 5.2.: List of all mitigation propositions of the theoretical model, which address one
or more identified challenges (large-scale and / or agile specific propositions in
italics)

70

5.2. Model Constructs and Propositions

Finally, defined and documented goals also have to be communicated among the dif-
ferent actors in the model. Because in large-scale settings not all actors can be in direct
contact with the customer, documenting and communicating goals is key to ensure shared
direction [42]. Since our approach emphasizes collaborative goal-setting this is of particu-
lar relevance. Four interviewees in the case study (PO1, LM1, AM1, AM5) emphasized the
importance of communication for goal-setting. For communication, the cadence and scal-
ing level attributes of the goal-setting process are relevant. A balance has to be achieved
between the challenges of external dependencies that limit autonomous goal-setting of the
Agile Teams (C1) and missing attachment of Agile Teams to goals not set by themselves
(C7) [8]. While involvement of teams in defining the goals is central to agile software de-
velopment, Agile Teams cannot be involved in all levels of goal-setting across the program
or organization [8, 42]. Instead, we suggest to establish a hierarchy of goals. In our ap-
proach we propose P3: A hierarchy of goals should be established to determine how a goal affects
the organization based on its scaling level. This recommendation is based on our findings in
the case study (STE1, AM1, BE1, AM2, LM1, AM4, AM5, PO2, PO3) and supported by lit-
erature [8]. Goals of the Portfolio should ideally be reached by achieving sub-goals at the
program-level, which in turn can be finished by realizing their sub-goals for teams. As a
consequence, the scaling level at which a goal affects the organization is important to de-
termine how the goal fits into this hierarchy and which actors drive communication. Schn-
abel and Pizka [53] use a similar concept they call "vertical distribution" of goals. However,
their concept does not consider a hierarchy across multiple organizational scaling levels.
Based on the proposed hierarchy of goals, we further propose M5: Goals from external stake-
holders should be broken top-down along the Product Owner hierarchy to ensure consideration of
dependencies and coordination. This addresses the challenge of external dependencies limit-
ing autonomous goal-setting of teams (C1). The proposition is influenced by observations
on the importance of Product Owners for coordination in large-scale agile development by
Berntzen et al. [8]. Using the goals broken down from top, teams can autonomously define
their own goals while relying on higher levels to consider dependencies. Additionally, we
propose M6: Definition, prioritization, and communication of middle- to lower-level goals should
involve Agile Teams, to ensure consideration of technical aspects and acceptance of goals by the
teams. This addresses the challenge of missing attachment of teams to goals (C7). Murphy
and Cormican also suggest that teams should be involved in defining appropriate metrics
[45]. The combination of propositions M5 and M6 is similar to the concept of "top-down
thinking and bottom-up acting" by Schnabel and Pizka [53]. However, Schnabel and Pizka
only consider stakeholders ("top") and developers ("bottom") [53], while in our approach
we consider multiple organizational scaling levels that are present in large-scale develop-
ment, and several other actors and stakeholders specific to large-scale agile methodologies.
Further, in contrast to Schnabel and Pizka, we also emphasize that Agile Teams in large-
scale agile development should not only act upon given goals ("bottom-up acting"), but
should be actively involved in the definition of goals as well ("thinking").

71

5. Theoretical Model

Reporting

For the reporting process we identified three types of key practices that actors should ap-
ply: assembly, documentation, and communication of the report. As explained in the
description of the actors, our approach differentiates between process-, product-, and
development-oriented reporting, based on Stettina and Schoemaker [59]. Assembling re-
ports is the area where most of the identified challenges from the case study are located. In
general, assembling of reports should be automated as far as possible (PO1, AM4). Based
on our observation that especially large-scale programs rely on automation (R14), we pro-
pose P4: Automation of reporting becomes more important the bigger the size of the program.
Thus, in large-scale agile environments automation is of high importance. This proposition
is supported by Murphy and Cormican, who observe a similar relation for software mea-
surements [45]. To mitigate challenges of missing automation (C15) and gathering data
(C16), and to improve the cost-benefit trade-off of regular reporting (C18), our approach
emphasizes automation of report assembly to the highest possible extent. We propose M7:
Process-oriented reporting should be fully automated using Backlogs. Fully automated process-
oriented reporting enables continuous reporting with low effort. Based on our findings
in the case study and in literature, the process-oriented report on all scaling levels should
mostly be using Backlog analysis with metrics. All metrics identified in the case study
are listed in Section 4.4. Our observations further indicate, that process metrics should
be tracked over time to uncover trends and improve the planning capability for upcom-
ing iteration (R4). Thus, we propose P6: Process-oriented reporting should track trends across
longer periods of time to improve ability to make reliable predictions. This proposition is in line
with the continuous understanding of measurements postulated by Murphy and Cormi-
can [45]. In particular, interviewees AM3 and AM5 emphasized the importance of tracking
team-mood over time to be able to correlate mood trends with trends of other metrics. We
propose P7: Team-mood should be tracked regularly using metrics.

Product-oriented reporting, on the other hand, is typically less automated. This can be
mitigated by proper goal-setting as described above (especially proposition M2). Thus,
we also propose M8: Product-oriented reporting should be partially automated by linking goals
to higher-level goals and predefine metrics for each goal, based on the linked sub-goals. Defining
metrics for each goal, combined with a target value for the metric, and ensuring that sub-
goals are properly linked to their parent goals in the Backlog facilitates automated evalua-
tion of product progress (C15) (cf. [45]). Development-oriented reporting, which is based
on the actual artifacts produced in an iteration and presenting them to stakeholders [33],
hardly can be automated. Based on our observations in the case study to avoid putting
external pressure on Agile Teams (R7) and that the working process is most important on
team-level (R10), we further propose M9: Focus of team-level reporting should be on artifacts
that were produced (i.e., development-oriented reporting) and overall process monitoring (i.e.,
process-oriented reporting), rather than on individual work. Focus should be on produced
artifacts (cf. [33]), how well the team is functioning, and ensuring they can deliver what
they set out to achieve (AM5). According to goal-setting theory, focusing on individual

72

5.2. Model Constructs and Propositions

work could even be detrimental to team performance [38]. Thus, as a side-effect, this fo-
cus on process-oriented reporting addresses the challenge of not being allowed to report
on individual employees (C3). Reporting, as found in the case study, is also influenced
by regulations from government and organizational regulations (R11, R12). Based on this
observation, we also make the general proposition P5: Regulations (e.g., from government or
the organization) constrain which reporting practices can be applied.

Interviewees PO1 and BE1 described situations of conflict of interest to us, if the actor
that assembles a report is compensated based on said report (C17). To mitigate this chal-
lenge of conflicts of interest (C17), we propose M10: Compensation of actors should not be
linked to reporting outcomes. Based on agile values (cf. agile manifesto [6]), reports should
not be seen as ways to formally control people but rather as a means for continuous im-
provement. Murphy and Cormican similarly emphasize that software measurements and
reports should be seen as a means for continuous improvement to avoid fear of exposition
and data manipulation [45].

Once all the data and information necessary for assembling the report has been collected,
it should be documented. The same principles of goal documentation also apply here. Our
approach emphasizes transparency for all actors, to allow everyone to access reports and
retrieve information as needed. Documentation practices we identified include the GMP
Sheet, public pages in the corporate Wiki, and presentation slides on a publicly shared
folder (see Section 4.4).

Communication of reports is the third area of practices that actors have to apply. Since
reports are assembled to consolidate data and inform other actors and stakeholders, com-
municating the report is a central aspect of the reporting-process. As proposed above
(propositions P1, P2), the correct type of reporting depends on both the scaling level of the
actor and on the stakeholders that the actor is reporting to (R1, R4). While reports should
be oriented around the goals they are addressing and the recipients to whom is reported,
we identified the challenge that routine work is often underrepresented in reports and
consequently remains unappreciated (C8). To mitigate this challenge, in our approach we
propose M11: An arena should be established for teams to explicitly report on work that does not
directly contribute to the most important goals (“routine work”). We emphasize to also report
on work that does not directly contribute to the most important goals.

In general, we observe that interviewees try to keep a balance between quantitative and
qualitative reporting. As process-oriented reporting is primarily based on quantitative
metrics in our approach, we recommend to also incorporate qualitative parts into product-
oriented reporting, and to primarily focus on artifacts in development-oriented reporting,
as described by Settina and Schoemaker [59]. We formalize this in proposition M12: Focus
of product- and development-oriented reporting should not be on metrics only.

In Figure 5.3 all propositions are shown and linked to the respective entities in the theo-
retical model, using the UML-like notation proposed by Sjøberg et al. [58].

While we defined propositions to address most of the identified challenges, for some
challenges we did not define any propositions to address them. These challenges are C9,
C11 and C19. To address challenge C9: External contracts limiting Feature Team working model

73

5. Theoretical Model

Goal

 type

 scaling level

 clarity

 transparency

 dependencies

 acceptance

Large-Scale Agile
Development Organization

System

Line Manager

Product Owner

Agile Master

Development Team

Team mood

Large-Scale Agile
Development Organization

 scaling level

 regulations

 size

Actor

 reporting responsibility
 goal-setting responsibility
 compensation

Communication Practice

Documentation Practice

Assembly Practice

Communication Practice

Documentation Practice

Definition Practice

Reporting PracticeGoal-Setting Practice

Technology

Goal-Setting Process

 cadence

Reporting Process

 cadence
 type
 recipient

Activity

M10

P7

P6

M7, M8

P4
P5

M6

M5

P3

P2

P1

M3,
M4

M2

M1

Figure 5.3.: The theoretical model that formalizes the basis for our goal-setting and report-
ing approach. All constructs and depictable propositions are shown. General
propositions are depicted with dotted arrows, mitigation propositions with
solid arrows. Visualized using the UML-like notation by Sjøberg et al. [58].

it would be required to change German labor law because it is currently only allowed
to assign work to external teams via a "bridge" contact person. This would be clearly
out of scope for organizational goal-setting and especially for this master’s thesis. For
challenge C11: Resource constraints for goal-setting and reporting the operating mode of the
organization itself is the cause for the challenge. The organization itself could resolve this
challenge by reallocating resources. However, in current market situations this seems not
to be possible, hence this challenge inevitably will persist. Finally, to address challenge
C19: Reporting delayed due to hierarchy more direct communication seems to be the obvious
solution. However, in large organizations it is simply not possible for every employee

74

5.3. Process Model

to directly communicate with every other employee — indirection in communication is
inherent to large organizations.

5.3. Process Model

Based on the formalized constructs and propositions, in this section we describe a process
model for goal-setting and reporting in large-scale agile software development. It depicts
the overall picture and describes how the individual propositions fit together. The goal-
setting part of our process is influenced by Schnabel and Pizka [53], and the reporting part
of our process is influenced by the ISO/IEC 15939:2007 process [24].

5.3.1. Goal-Setting Process

Figure 5.4 shows the key activities of the process for goal-setting. The individual steps of
the model are explained in detail in the following sub-sections.

Identify goal

In the first step, internal actors and external stakeholders of the large-scale agile develop-
ment environment identify goals based on their needs. External stakeholders are stake-
holders that are not directly involved in the actual agile working environment, but have
an interest in the developed portfolio or product. These stakeholders can be from the
same organization (e.g., the Board of Directors) or from outside of the organization (e.g.,
customers). Needs of actors are considered internal, while needs of stakeholders are con-
sidered external. This consideration of goals from different actors and stakeholders in the
first steps of the process realizes the proposition of shared goal-setting responsibility (M1).

Define and document goal

Each identified goal has to be defined and documented according to the definition and
documentation practices of the portfolio or program. To realize proposition M13, Backlog
Items that contribute to a goal should be directly linked to this goal, using a dedicated
Backlog tool, e.g., Jira. For clear differentiation, on each organizational scaling level a
different type of Backlog Item should be used to document Backlog Items that contribute
to goals. In Jira this can be Saga on portfolio-level, Epic on program-level, and User Story
on team-level. Each goal, in turn, has to be linked to the next higher-level goals that it is
contributing to (P3, M3). Further, we recommend to formulate quantifiable Key Results for
each goal on portfolio- and program-level, similar to the Goal Question Metric Approach
(GQM) [2]. Each Key Result should be calculated based on one metric. This metric, in turn,
should be calculated based on the sub-goals or Backlog Items that contribute to the goal.
Using this two-fold approach ensures a traceable hierarchy of goals from top to bottom,
makes each goal quantifiable, and transparently documents how each of the sub-goals and

75

5. Theoretical Model

B
o

a
rd

 o
f

D
ir

e
c
to

rs

/
d

e
c
is

io
n

 c
ir

c
le

s

C
u

s
to

m
e
rs

,
o

th
e
r

d
e
p

a
rt

m
e
n

ts

St
ak

eh
ol

de
rs

In
te

rn
al

 a
ct

or
s

D
e
v

e
lo

p
e
rs

P
ro

d
u

c
t

O
w

n
e
r

A
g

il
e
 M

a
s
te

rs

P
ro

g
ra

m
 O

w
n

e
r

P
o

rt
fo

li
o

O
w

n
e
r

L
in

e
 M

a
n

a
g

e
r

go
al

-s
et

tin
g

re
sp

on
si

bi
lit

y
(M

1,
 M

5,
 M

6)

in
te

rn
al

 n
ee

d
(M

1)
ex

te
rn

al
 n

ee
d

(M
1)

Id
e
n

ti
fy

 g
o

a
l

D
e
fi

n
e
 &

d
o

c
u

m
e
n

t
g

o
a
l

R
e
fi

n
e
 &

p
ri

o
ri

ti
z
e
 g

o
a
l

D
ef

in
iti

on
 &

D

oc
um

en
ta

tio
n

Te
ch

n.

Co
m

m
un

ic
at

io
n

Te
ch

n.

ha
s t

o
be

 b
ro

ke
n

do
w

n
in

to
 su

b-
go

al
s

fo
r l

ow
er

 le
ve

ls

lin
ke

d
ch

ai
n

(M
3)

C
o

m
m

u
n

ic
a
te

g
o

a
l

D
ef

in
iti

on
 &

D

oc
um

en
ta

tio
n

Te
ch

n.

B
re

a
k

 d
o

w
n

 t
o

s
u

b
-g

o
a
ls

Im
p

le
m

e
n

t

R
e
g

u
la

to
ry

b
o

d
ie

s

A
ct

iv
ity

Te
ch

ni
qu

e
Re

la
te

d
pr

op
os

iti
on

Le
ge

nd
:

Ex
cl

us
iv

e
O

R

pa
rti

ci
pa

te

sc
al

in
g

le
ve

l (
P3

)

M
2,

 M
4,

 M
13

M
2,

 M
4,

 M
13

sc
al

in
g

le
ve

l (
P3

)

Figure 5.4.: Visualization of the recommended goal-setting process

76

5.3. Process Model

Backlog Items contributes to overall progress. It thus realizes propositions P3, M2, M3, and
M4. In cases where the Key Result cannot be based on a sensible metric, we recommend to
use the ratio of linked sub-goals or Backlog Items that are already finished as an indicator.
In such a case, the goal should specify how the progress can be reported qualitatively. Our
recommended structure of goals using linked Backlog Items and Key Results is visualized
in Figure 5.5. Using such a structure realizes the proposition to establish a linked hierarchy
of goals and Backlog Items (M3). Depending on the scope and level of impact of a goal,
Backlog Items of the corresponding organizational level should be linked. This realizes
the proposition that the scaling level determines how a goal fits into the hierarchy of goals
(P3).

Portfolio Goal

Saga

(Backlog Item)

User Story

(Backlog Item)

Key Result 1

Key Result 2

…

realize

contribute to

contribute to

linked to linked chain (M3)

Predefined
metrics (M8)

Epic

(Backlog Item)

contribute to

Program Goal

Key Result 1

Key Result 2

…

realize

contribute to

User Story

(Backlog Item)

Epic

(Backlog Item)

achieved by

…

Related proposition

Legend:

Linkage

Figure 5.5.: Suggested structure and linkage of goals using a combination of Backlog Items
and Key Results

Refine and prioritize goal

Based on the iteration cadence on the scaling level at which the identified goal is relevant,
it has to be refined and prioritized by the Portfolio / Program / Product Owner and, on
team- and program-level, the Agile Team. To realize M5, goals coming from the head of
the department, the Board of Directors, or other departments of the organization should
be introduced to the program via the Portfolio Owner.

Refinement and prioritization should be conducted as recommended by the chosen scal-
ing agile framework, e.g., SAFe or LeSS. The refinement and prioritization should be con-
ducted collaboratively, because goal-setting responsibility is shared among all actors. We

77

5. Theoretical Model

recommend to conduct a refinement and prioritization meeting at the beginning of each
new iteration at each scaling level. All actors that are active on this scaling level should
participate in this meeting, as well as the Product Owner(s) of the next lower scaling level.
This allows the goals to be broken down along the Product Owner hierarchy, and ensures
consideration of potential dependencies. This design decision is influenced by findings
from literature, which indicate that frequent communication between Product Owners is
important for coordination in large-scale agile environments [8]. At team-level and, when-
ever possible, on program-level Agile Teams should participate in the refinement and pri-
oritization meetings, to realize M6. The teams are responsible for consideration of technical
feasibility and solution strategies for the goals and derived requirements. We recommend
this combined approach of top-down definition of goals and bottom-up inclusion of Ag-
ile Teams to ensure both consideration of dependencies to other programs or teams and
(technical) solution strategies. Further, shared responsibility for goal-definition and prior-
itization makes sure all actors commit to the goals. This realizes propositions M1, M2, M5,
and M6. To ensures attachment of Agile Teams to the goals, the teams have to be involved
in the goal-setting process at least on team-level and preferably also on program-level. In
large-scale agile development it is crucial for all teams to understand the goals and to find
common ground for what is to be achieved [42]. Otherwise, teams may perceive goals as
requirements and deliverables only [42], causing them to develop own goals incompatible
with program goals. This can result in decrease of team performance [39].

Communicate goal

Once a goal has been refined and prioritized by the actors of the respective scaling level,
the commitment has to be communicated to all stakeholders and actors. At the very least,
we recommend to grant all stakeholders and actors access to the Backlogs at all scaling
levels.

Break down to sub-goals

As a result of our recommendation to break down goals into sub-goals, the goal-setting
process has to be iterative. Breaking down goals causes the need for a new cycle of defin-
ing, documenting, and communicating the sub-goals at the next lower scaling level. Break-
ing down goals into sub-goals is a non-trivial task, as our observations have shown. Hence,
we recommend the new cycle of defining the sub-goals again to start with the first step in
the goal-setting process, identify goal, and then run through the whole process. As men-
tioned above, Figure 5.5 shows our recommended approach for goal- and Backlog Item-
linkage. The need for further breaking down a goal typically depends on the scaling level
of the goal. Goals on portfolio- and program-level should be broken down into sub-goals
to ensure work of Agile Teams is connected to the higher-level goals. Goals on team-level
do not need to be broken further down. Instead, goals on team-level are implemented
by the Agile Teams via according Backlog Items (e.g., User Stories). Higher-level goals,

78

5.3. Process Model

in turn, are implemented by implementing their respective sub-goals and linked Backlog
Items on that level. Ideally, every goal and requirement the Agile Teams are working on is
linked to a higher-level goal.

While the steps identification, prioritization, and implementation are also present in the pro-
cess by Schnabel and Pizka [53], we add the steps definition & documentation and communica-
tion. We make this addition to put emphasis on collaborative goal-setting and transparency
for all actors and stakeholders. Further, while vertical distribution is a simple process-step
in the approach by Schnabel and Pizka [53], in our approach goals are iteratively broken
down into sub-goals and thus vertically distributed "by design". This is due to the explicit
consideration of large-scale environments in our approach, whereas Schnabel and Pizka
[53] do not consider multiple scaling levels.

5.3.2. Reporting Process

Program

Team
Iteration 2 Iteration 3

Development Team,

Product Owner

Cadenced: Iteration

Development-oriented

Product Owner

Cadenced: Iteration

Product-oriented

Portfolio Owner

Cadenced: Portfolio Cycle

Product-oriented

Program Cycle 2Program Cycle 1

Iteration 1

Portfolio

Continuous

Process-oriented

Agile Master

Portfolio Cycle

Program Owner

Cadenced: Program Cycle

Product-oriented

Continuous

Process-oriented

Agile Master

focus on artifacts
(M9, P5)

arena for routine
work (M11)

scaling level (P1)

recipient (P2)

recipient (P2)

track trends (P6)
automate process-
oriented rep. (M7)

partial
automation (M8)

Continuous

Process-oriented

Agile Master, Line Manager
Legend:

Report to higher level

Report to current level

Report to external stakeholder

Related proposition

Figure 5.6.: Visualization of the different types of reporting on each scaling level based on
the observations from the case study, as well as relevant propositions

For the reporting process in our model, we differentiate between the three types of re-
porting development-oriented, process-oriented, and product-oriented. This differentiation is
taken from existing literature [59]. However, because our approach is focused on large-
scale environments, in addition to extant literature we also consider the different scaling

79

5. Theoretical Model

levels (team, program, portfolio) at which reporting takes place. This considers the propo-
sition that the scaling level of an actor influences the reporting (P1). Further, our process
suggests to connect the reportings across the different scaling levels and details when each
reporting should be conducted. Figure 5.6 visualizes the presence of the three types of
reporting on the different scaling levels, based on our observations in the case study (see
Section 4.4), with the addition of indicators for relevant propositions.

Product-oriented reporting

Product-oriented reporting should be present on all three scaling levels. In line with liter-
ature, it is the responsibility of the Product / Program / Portfolio Owner in our approach
[59]. Product-oriented reporting should appear in a rhythm, aligned with the iteration
cadence on the respective scaling level. To realize proposition M8, it should be at least
partially automated to reduce efforts, using automatically calculated metrics defined in
the goals. Figure 5.7 shows example metrics that can be used in product-oriented report-
ing. As we observed, typically at least a Say-Do-Rate should be calculated on each level,
to keep an overview of how much of the committed work has been achieved. However,
based on our observations, product-oriented reporting typically contains also a qualita-
tive part to give reporters (i.e., the Product Owner hierarchy) the opportunity to explain
and communicate information besides metrics. This is based on proposition M12. Thus,
product-oriented reporting is a mixture of quantitative and qualitative reporting. As of
propositions M3 and M8, focus of product-reporting is on progress towards the goals that
contribute to the goals on the next higher-level. E.g., the Product Owner should report
progress on the ten User Stories that contribute to a Key Result of a quarterly Epic on
program-level. This can be done using a Say-Do-Rate to show how many of the ten com-
mitted User Stories have actually been finished in the last Sprint. On program-level, in
turn, the Program Owner can report progress of an Epic to portfolio-level by calculating
the metrics that are defined in the Key Results of the Epic. Often, product-oriented report-
ing also needs qualitative evaluation to inform about unforeseen changes or impediments
(as formalized in proposition M12). In such cases we suggest to at least add a color coded
explanation to the affected metric(s), using orange for impediments that can be solved
autonomously and red for escalation (similarly as observed in the case study).

Process-oriented reporting

Process-oriented reporting should also be present on all three scaling levels. It is the re-
sponsibility of the Agile Master at the respective scaling level [59]. Focus is on work
processes [59]. To implement propositions M7 and P6, our case study findings indicate
this reporting should be fully automated to enable it to continuously monitor changes
and trends in working processes. We suggest automation using Dashboards as offered by
tools, e.g., Jira or eazyBI. Hence, it is a quantitative reporting that exclusively uses metrics.
Figure 5.7 shows example metrics that can be used in process-oriented reporting. Typi-

80

5.3. Process Model

cal process-oriented metrics are the average cycle and lead time at each scaling level. On
program- and team-level Velocity trends (see Velocity Forecast in Appendix B.2 for de-
tailed explanation) are important to be able to reliably plan upcoming iterations. Agile
Masters should track the chosen metrics over longer periods of time, to be able to identify
trends or changes over time. As of proposition P2, the identified trends and changes are
reported to internal actors (primarily teams and Product Owners) to facilitate planning.
Suggested metrics to monitor in process-oriented reporting include average lead and cy-
cle time, or the ticket resolution ratio. Additionally, Agile Masters should keep track of
team-mood or happiness metrics (e.g., simple five-star ratings via small surveys in chat
apps) over time, as proposed in P7. While not directly being a process-measurement, it
should be tracked continuously as part of the process-oriented reporting. This allows to
compare and correlate changes in process-metrics with team-mood.

Development-oriented reporting

Finally, as proposed in M9, development-oriented reporting should be present on team-
level. This type of reporting is primarily the responsibility of the development team
[59], supported by the Product Owner as we observed. Development-oriented reporting
should be conducted at the end of each team iteration [59], and in cooperation with the
other teams, at the end of each program cycle. Unlike the other two types of reporting,
development-oriented reporting focuses on the artifacts created during the past iteration
(i.e., working software) [59], not the artifacts that represent the goals (i.e., Backlog Items).
The reporting typically is done in the review or demo meeting [59], depending on the used
scaling agile framework. Based on our observations the recipients are customers and users,
and given the focus on artifacts, the report is of qualitative nature. However, we suggest to
collect quantitative data during the report meetings, to be able to calculate metrics such as
user satisfaction, test duration, or team-mood after the development reporting took place.
This data can be used as input for process-oriented reports to detect trends across multiple
iterations. Figure 5.7 shows example metrics that can be collected in development-oriented
reporting, to allow for trend observation in process-oriented reporting. These typically in-
clude software measurements such as test coverage, test success rate, number of deploy-
ments, but also customer happiness (e.g., using a simple rating from the customer) and
technical debt ratio (the number of closed technical debt items vs. newly created ones in
the last iteration). Apart from this, development-oriented reporting should also report on
work done in the teams that does not directly contribute to specific goals, as proposed in
M11. We suggest to assign a slot during iteration review meetings, dedicated for review of
such routine and maintenance work. This is essential to keep up motivation of the teams
to work on such tasks.

81

5. Theoretical Model

Type of Reporting

Development Product Process

Scaling
Level

Portfolio -
• Saga Say-Do-Rate
• Security Patch Level

• Avg. Saga Cycle Time, Lead Time
• Estimated vs. Unestimated Items

Program
• Customer Happiness
• Technical Debt Ratio

• Epic Say-Do-Rate
• Security Patch Level

• Program Velocity Forecast
• Avg. Epic Cycle Time, Lead Time
• Estimated vs. Unestimated Items

Team

• Customer Happiness
• Technical Debt Ratio
• Test Line Coverage
• Test Decision Coverage
• Test Success Rate

• Story Say-Do-Rate • Team Velocity Forecast
• Team Mood Trend
• Avg. Story Cycle Time, Lead Time
• Burn-Down Chart
• Cumulative Flow Diagram

Figure 5.7.: Example metrics from the case study for each type of reporting and scaling
level; similar to the one Stettina and Schoemaker created for their case study
[59]

All three types of reporting should follow a standard process of four activities. We sug-
gest a process based on the propositions we formalized in the theory, and align it with our
goal-setting process. Figure 5.8 visualizes the key activities of the process for reporting.
The goal-setting and reporting processes are interdependent and influence each other. Es-
pecially the recommended hierarchy and linkage of goals and Backlog Items (Figure 5.5)
is relevant to reporting, to realize proposition P4. It allows for automation and systematic
calculation of defined Key Result metrics, using dedicated Backlog tools (e.g., Jira).

Collect data

In the first step of the suggested reporting process the necessary data has to be collected.
The needed data are determined by the goals that are reported. In cases of goals that define
Key Results with metrics the needed data depend on the input for the calculation of these
metrics. For goals where no quantitative metrics were defined the needed data may be of
qualitative nature, e.g., user feedback. To realize proposition P4, we recommend to base as
many reports as possible on data that can be automatically generated and collected from
the Backlogs or other dedicated systems. Using the exemplary Backlog structure displayed
in Figure 5.5, the status of goals can be automatically derived from linked sub-goals via
their contributing Backlog Items. For goals without defined Key Result metrics we suggest
to rely on simple Say-Do-Rates for quantitative reporting. This allows to keep an overview
of whether the committed sub-goals have actually been achieved while granting autonomy
of the lower levels which goals to commit to.

82

5.3. Process Model

C
o
ll

e
c
t

d
a
ta

A
s
s
e
m

b
le

 &

d
o
c
u
m

e
n
t

re
p
o
rt

C
o
m

m
u
n
ic

a
te

re
p
o
rt

A
n
a
ly

z
e
 &

in
te

rv
e
n
e

au
to

m
at

io
n

(P
4)

re
gu

la
tio

ns
 (P

5)

re
ci

pi
en

t (
P2

)
au

to
m

at
io

n
(P

4)

re
ci

pi
en

t (
P2

)

Id
e
n
ti

fy
 g

o
a
l

D
e
fi

n
e
 &

d
o
c
u
m

e
n
t

g
o
a
l

a
d
ju

s
t

n
e
w

re
fi

n
e

id
e
n
ti

fy

n
e
e
d
e
d
 d

a
ta

A
ss

em
bl

y
&

D

oc
u.

 T
ec

hn
.

C
om

m
un

ic
at

io
n

Te
ch

n.

A
ss

em
bl

y
Te

ch
n.

In
te

rn
al

 a
ct

or
s

D
e
v
e
lo

p
e
rs

P
ro

d
u
c
t

O
w

n
e
r

A
g
il

e
 M

a
s
te

rs

P
ro

g
ra

m
 O

w
n
e
r

P
o
rt

fo
li

o
O

w
n
e
r

L
in

e
 M

a
n
a
g
e
r

re
po

rt
in

g
re

sp
on

si
bi

lit
y,

sc
al

in
g

le
ve

l (
P1

)

re
ci

pi
en

t (
P2

)

A
ct

iv
it

y

Te
ch

ni
qu

e

R
el

at
ed

 p
ro

po
si

ti
on

L
eg

en
d:

E
xc

lu
si

ve
 O

R

Figure 5.8.: Visualization of the recommended reporting process (greyed out steps of goal-
setting process are added for reference)

83

5. Theoretical Model

Assemble and document report

Using the collected data, the report can be assembled and documented. This includes the
calculation of used metrics for the goals that are reported. Depending on the scaling level
and recipient different tools and forms of documentation may be used, as proposed in
P1 and P2. We recommend to publicly document all reports using Dashboards and Wiki-
pages to ensure transparency across actors and scaling levels (similar to proposition M4).

Communicate report

After assembly the responsible reporting actor has to actively communicate the results to
the recipient. For cadenced reports (i.e., product- and development-oriented) we suggest
to setup dedicated meetings or slots in existing meetings for communication and analysis
of the results. Continuous reports (i.e., process-oriented) should be communicated to re-
cipients if significant changes are observed by the Agile Master. For this we suggest ad-hoc
meetings.

Analyze and intervene

Finally, depending on the analysis the recipient draws from the report, an intervention
might be necessary. We define three types of interventions. First, changes might be nec-
essary to existing goals. Thus, the existing goals need to be refined again and the changes
need to be documented. The goal then has to go through the standard steps of prioritiza-
tion and communication again in the next cycle. This ensures transparency for all actors
and stakeholders as well as propagation of changes to other scaling levels. Second, new
goals may emerge as a result of the analysis. And third, adjustments might be necessary
to the way of how the report is assembled in the following cycles. This might be the case if
the recipient decides that the reported information is insufficient, inconclusive, or redun-
dant.

Parts of our reporting process are influenced by step 4.3 of the ISO/IEC 15939:2007 soft-
ware engineering measurement process [24]. Both processes comprise data collection (ISO
step 4.3.2) and analysis (ISO step 4.3.3), as well as communication of results (ISO step 4.3.4).
However, our process makes several additions and changes that are specific to large-scale
agile environments. First, we inter-connect our reporting process with the goal-setting
process. The goals defined in the goal-setting process influence data collection. The results
gathered from the analysis of the report in turn influence the steps identification and defi-
nition and documentation of the goal-setting process. This allows for continuous, iterative
improvement of the goals and the reporting process itself, which fits the agile value of har-
nessing change (cf. agile manifesto [6]). Second, in our process the whole report, including
the results of analysis, should be made available to all interested parties. The ISO process
only suggests to communicate the results of analysis. This difference is due to the empha-

84

5.3. Process Model

sis of our approach on transparency. Sharing the whole report, not only the results, avoids
manipulation and "green-shifting" (i.e., deriving only favorable results from data) of analy-
sis results (C12). Third, our process adds a dedicated step for assembly and documentation of
reports. This is due to our observations that these activities constitute a considerable effort
in reporting. Data needs to be processed and visualized between collection and analysis,
which is of vital importance and can be done using various techniques and approaches.
Fourth, our process explicitly considers reporting across organizational scaling levels and
with different focus areas. This is specific to large-scale environments. Our suggested
approach differentiates between product-, process-, and development-oriented reporting.
Using our suggested linkage structure for goals and Backlog Items, reports become inter-
connected across organizational scaling levels. Higher-level reports are based on linked
sub-goals and predefined metrics. Such large-scale settings are not explicitly considered
by the ISO/IEC 15939:2007 software engineering measurement process.

85

5. Theoretical Model

86

6. Artifact Evaluation and Improvement

This chapter presents the evaluation of the propositions that we conducted at the case
organization. First, Section 6.1 describes the methodology that is used to evaluate the
propositions. Subsequently, the results of the evaluation are presented and discussed in
Section 6.2. For every proposition, the collected feedback is summarized. In the final
Section 6.3 adjustments to the propositions and process models are described, which we
derive from the evaluation feedback.

6.1. Methodology

The goal of the evaluation was to investigate whether practitioners of large-scale agile de-
velopment agree to the propositions that we made based on our findings from the initial
case study and literature. Further, we wanted to collect qualitative feedback and insights
on the propositions. We decided to focus on the evaluation of the propositions because
of two reasons. First, the propositions are the central artifact to answer the third research
questions, since the mitigation propositions intend to address identified challenges. Sec-
ond, the propositions form the basis and central building blocks of the process models.

No. Alias Role
LSAD
experience

Softw. Dev.
experience

Duration
(h:m)

1 PO1 Product Owner 3 - 5 years 11 - 15 years 0:25
2 BE1 Business Expert 6 - 10 years 6 - 10 years 0:38
3 AM2 Agile Master 3 - 5 years 6 - 10 years 0:52
4 PO4 Product Owner 3 - 5 years 6 - 10 years 0:41
5 PO5 Product Owner 6 - 10 years 11 - 15 years 0:37
6 AM6 Agile Master 6 - 10 years 11 - 15 years 0:37
7 PO6 Area Product Owner 3 - 5 years > 20 years 0:38
8 LM1 Line Manager 6 - 10 years 6 - 10 years 0:38
9 AM7 Agile Master 6 - 10 years > 20 years 0:38
10 DEV1 Developer, Software Architect 1 - 2 years 6 - 10 years 0:27
11 PO3 Product Owner 3 - 5 years 11 - 15 years 0:25

Table 6.1.: Overview of the evaluation interview participants (participants that did not take
part in the initial case study interviews are outlined bold)

87

6. Artifact Evaluation and Improvement

To achieve this objective of the evaluation, we decided to conduct a second round of
semi-structured interviews with practitioners from the case organization. In general, the
chosen evaluation can be described as observational because we are using our case organi-
zation to evaluate the artifact, and as descriptive because we are leveraging knowledge and
insights from practitioners to collect arguments for the artifact’s utility [23].

In the first section of the interviews, similar to the initial case study interviews, we asked
interviewees to describe their role and experience with large-scale agile software develop-
ment. To evaluate the propositions, in the second section we had interview participants
answer two questions for each proposition. In the first question, we asked them to assert
whether they agree or disagree to the proposition, using a five-point Likert scale [37]. Pos-
sible answers included strongly agree (1), agree (2), neither agree nor disagree (3), disagree (4),
and strongly disagree (5).

After they had chosen their answer to the first question, we also asked the interviewee to
explain why they chose this answer and give further thoughts on the proposition. We then
coded and analyzed these qualitative answers similarly to the initial case study interviews.
Again, we conducted a first cycle of coding and assigned descriptive codes to relevant
passages of the feedback [41]. Using this inventory of topics for the second cycle coding,
we then inductively grouped them using pattern codes for recurring concepts [41]. We
chose this approach because it allowed us to uncover recurring topics across the different
interviews, while avoiding to introduce any bias from the researchers via a pre-defined
coding structure.

In total, we conducted 11 interviews for the evaluation. An overview of the partici-
pants is depicted in Table 6.1. The complete questionnaire that we used for the evaluation
interviews can be found in the Appendix A.2.

6.2. Evaluation of Propositions

In this section we describe the evaluation results that we collected in the evaluation inter-
views. For each proposition, the statistical results are presented and the qualitative feed-
back from the interview participants is discussed. Figures 6.1 and 6.2 depict an overview
of the evaluation results for the general propositions as well as the mitigation propositions,
respectively.

P1: The scaling level at which an actor operates influences their reporting
responsibility and the necessary type of reporting.

The evaluation of proposition P1 resulted in an average rating of 1.73 with a standard de-
viation of 0.62. Interviewees identified two major dimensions of reporting responsibility
that are influenced by the scaling level of an actor. The first dimension is the focus of the re-
porting. Participants pointed out that higher level reporting has to aggregate information
to a higher degree than lower-level reporting (PO1, PO4, PO5, PO6, DEV1). Examples for

88

6.2. Evaluation of Propositions

P1: The scaling level at which an actor operates influences their reporting
responsibility and the necessary type of reporting.

x̄ = 1.73
x̃ = 2
σ = 0.62

P2: The recipient of the report influences what should be reported and by whom.
x̄ = 1.73
x̃ = 2
σ = 0.62

P3: A hierarchy of goals should be established to determine how a goal affects
the organization based on its scaling level.

x̄ = 1.82
x̃ = 2
σ = 0.94

Strongly
Agree (1) Agree (2)

Neither
Agree nor

Disagree (3) Disagree (4)
Strongly

Disagree (5)

P4: Automation of reporting becomes more important the bigger the size of the
program.

x̄ = 1.18
x̃ = 1
σ = 0.39

P5: Regulations (e.g., from government or the organization) constrain which
reporting practices can be applied.

x̄ = 1.91
x̃ = 2
σ = 0.9

P6: Process-oriented reporting should track trends across longer periods of time
to improve ability to make reliable predictions.

x̄ = 1.82
x̃ = 2
σ = 0.83

P7: Team-mood should be tracked regularly using metrics.
x̄ = 1.18
x̃ = 1
σ = 0.39

Average Median

Figure 6.1.: Evaluation results of the general propositions

this aggregation named by participants include lower granularity of reported information,
or usage of different KPIs on different scaling levels. This feedback corroborates our find-
ings in Section 4.4 of different metrics on different scaling levels. The second dimension
identified by participants is the scope of reporting responsibility (BE1, LM1, PO3). Inter-
viewees explained, that while what has to be reported by a specific actor remains similar
on the different scaling levels, the scope of included programs, teams, or employees does
change. This finding indicates that the static assignment of specific actors to specific types
of reporting (e.g. Agile Masters to process-oriented reporting) as reported in literature (cf.
Stettina and Schoemaker [59]) and observed by us in Chapter 4 is feasible, while the scope
of a specific type of reporting may be different on different scaling levels.

89

6. Artifact Evaluation and Improvement

M1: Goal-setting responsibility should be shared among actors, to facilitate
collaborative goal-setting practices.

x̄ = 1.27
x̃ = 1
σ = 0.45

M2: Goal definition practices (e.g., SMART, OKRs, GQM) ensure clear
understanding of goals and understanding of what to report to illustrate goal
progress.

x̄ = 1.45
x̃ = 1
σ = 0.66

M3: A linked chain of sub-goals across scaling levels should be established to
facilitate transparency.

x̄ = 1.55
x̃ = 1
σ = 0.66

Strongly
Agree (1) Agree (2)

Neither
Agree nor

Disagree (3) Disagree (4)
Strongly

Disagree (5)

M4: Goals should be documented publicly for all actors and stakeholders to
facilitate transparency.

x̄ = 2.18
x̃ = 2
σ = 0.94

M6: Definition, prioritization, and communication of middle- to lower-level
goals should involve Agile Teams, to ensure consideration of technical aspects
and acceptance of goals by the teams.

x̄ = 1.27
x̃ = 1
σ = 0.45

M8: Product-oriented reporting should be partially automated by linking goals to
higher-level goals and predefine metrics for each goal, based on the linked sub-
goals.

x̄ = 1.64
x̃ = 2
σ = 0.48

M9: Focus of team-level reporting should be on artifacts that were produced in
the last iteration (development-oriented reporting) and on overall process
monitoring, rather than on individual work.

x̄ = 1.73
x̃ = 2
σ = 0.62

x̄ = 1.09
x̃ = 1
σ = 0.29

M5: Goals from external stakeholders should be broken top-down along the
Product Owner hierarchy to ensure consideration of dependencies and
coordination.

M7: Process-oriented reporting should be fully automated using Backlogs (e.g.,
using tools like Jira and Dashboards).

x̄ = 1.45
x̃ = 1
σ = 0.5

M10: Compensation of actors should not be linked to reporting outcomes.
x̄ = 2.09
x̃ = 2
σ = 1.24

M11: An arena should be established for teams to explicitly report on work that
does not directly contribute to the most important goals (“routine work”).

x̄ = 1.64
x̃ = 1
σ = 0.77

M12: Focus of product- and development-oriented reporting should not be on
metrics only.

x̄ = 1.45
x̃ = 1
σ = 0.5

M13: All goals should be maintained in Backlogs to facilitate clear
understanding and transparency.

x̄ = 3.09
x̃ = 3
σ = 1.08

Average Median

Figure 6.2.: Evaluation results of the mitigation propositions

90

6.2. Evaluation of Propositions

P2: The recipient of the report influences what should be reported and by whom.

The evaluation of proposition P2 resulted in an average rating of 1.73 with a standard de-
viation of 0.62. Interviewees pointed out that reporter and recipient should mutually agree
on what should be reported (PO4, BE1, DEV1), instead of relying on predefined reporting
templates or framework suggestions. Participants stated that every report should have a
clearly and transparently stated reason, and that recipients tend to prefer reports tailored
to their task. However, interviewee PO6 noted that the requestor of a report might be dif-
ferent from the actual recipient (e.g., proactive information report of Program Owners to
Domain Owner). Thus this proposition might not be true for certain reports.

P3: A hierarchy of goals should be established to determine how a goal affects the
organization based on its scaling level.

The evaluation of proposition P3 resulted in an average rating of 1.82 with a standard de-
viation of 0.94. Several participants pointed out that a hierarchy of goals should be estab-
lished, and that sub-goals should be linked to higher-level goals that they are contributing
to (AM7, LM1, DEV1, PO4, PO5, PO6). This is an interesting observation, as proposition P3
does not explicitly mention a linkage of goals, but merely a reflection of the organizational
hierarchy in the goals. A linkage is explicitly suggested in proposition M3. Based on this
feedback a consolidation of propositions P3 and M3 might be feasible. This interpretation
is corroborated by interviewees PO1 and PO4, who explicated that a hierarchy of goals on
its own seems not useful unless combined with a linkage between sub-goals and higher
goals. Besides this topic, interviewee AM2 also suggested to limit the number of possible
goals on a certain scaling level, similar to the limit of Objectives in the OKR practice.

P4: Automation of reporting becomes more important the bigger the size of the
program.

The evaluation of proposition P4 resulted in an average rating of 1.18 with a standard
deviation of 0.39. We observed that several interviewees were in favor of automation of
reporting in general (LM1, BE1, PO4). Increasing size of a program is seen as an additional
driver that further intensifies the need for automation, due to efforts quickly becoming
infeasible otherwise (DEV1, PO4, PO5, PO6). Further, interviewee AM7 mentioned that
one should distinguish between what was achieved and what was done. Reporting of what
was achieved can be realized using KPIs, according to AM7, and should be as automated
as possible. Showing what was done cannot be achieved via automated reports, on the
other hand. This distinction made by AM7 is similar to the separation of process- and
development-oriented reporting. Interviewee AM2 mentioned that transparency also be-
comes more important with increasing size of the agile organization.

91

6. Artifact Evaluation and Improvement

P5: Regulations (e.g., from government or the organization) constrain which reporting
practices can be applied.

The evaluation of proposition P5 resulted in an average rating of 1.91 with a standard
deviation of 0.9. Several interviewees mentioned that existing regulations are currently
constraining the reporting practices that can be used in their programs (AM2, AM7, LM1,
BE1, PO3). Most prominently, participants named the restriction of not being allowed
to report on individual employees and contractors, which is seen to hinder transparency.
Interviewee LM1 described participation in controversial discussions on whether a report
on the performance of a Product can be seen as an individual performance evaluation of
the Product Owner — which would be violating existing regulations at the organization.

P6: Process-oriented reporting should track trends across longer periods of time to
improve ability to make reliable predictions.

The evaluation of proposition P6 resulted in an average rating of 1.82 with a standard
deviation of 0.83. Interviewees AM7 and PO5 cautioned that such a tracking over longer
periods of time requires a certain stability in the organization and team composition, to
ensure comparability between different points in time. Given this stability, participants
acknowledged that the tracking over longer periods of time allows for identification of
extraordinary effects and evolution of teams, which cannot be achieved with individual
data points in time (PO4, LM1, DEV1). Interviewee AM2 even emphasized continuous
monitoring over tracking across longer periods of time, and LM1 suggested to also apply
this practice to other types of reporting.

However, interviewees pointed out that there might be metrics not feasible for tracking
and comparison over time (BE1, PO5), and that individual data points in time might be
valuable as well (BE1, PO3).

P7: Team-mood should be tracked regularly using metrics.

The evaluation of proposition P7 resulted in an average rating of 1.18 with a standard
deviation of 0.39. Multiple interviewees emphasized that team mood influences team per-
formance, and thus is important to consider (LM1, BE1, DEV1, PO5). Interviewees AM6
and AM7 mentioned team mood should be tracked using a metric in each Retrospective
meeting. PO5 urged to consider team mood in planning meetings as well. On the other
hand, AM6 emphasized that direct personal discussions with the teams should remain the
primary means of understanding the current mood of the team.

M1: Goal-setting responsibility should be shared among actors, to facilitate
collaborative goal-setting practices.

The evaluation of proposition M1 resulted in an average rating of 1.27 with a standard
deviation of 0.45. Interviewees emphasized that good goal-setting is always a combination

92

6.2. Evaluation of Propositions

of top-down and bottom-up interaction (LM1, BE1, PO4). No single actor’s knowledge
is sufficient to do all goal-setting independently (BE1, LM1), and teams should not only
execute goals set on higher levels but contribute to the goal-setting with their technical
expertise (PO5). DEV1 and PO1 mentioned that shared goal-setting increases team buy-in
and transparency of goals. Participant AM7 cautioned that shared goal-setting and aligned
goals are a prerequisite in order for teams to be able to operate autonomously.

M2: Goal definition practices (e.g., SMART, OKRs, GQM) ensure clear understanding
of goals and understanding of what to report to illustrate goal progress.

The evaluation of proposition M2 resulted in an average rating of 1.45 with a standard de-
viation of 0.66. In general, interviewees tended to be indiscriminate about which specific
goal-setting practice to use, but rather emphasized that one goal-setting practice should be
agreed on and standardized in a large-scale agile program (LM1, BE1, PO4, PO5). Agree-
ing on one specific goal-setting practice comes with several benefits, according to the par-
ticipants. It reduces overhead as all actors and stakeholders know how goals should be
defined (LM1), it ensures that goals are aligned both horizontally and vertically in the or-
ganization (DEV1), and it makes it possible to see trends in goal creation over time because
goal definition is more consistent (LM1). AM2 and AM7 both stressed to use goal definition
practices with a strong theoretical backing, and to refrain from too much customization of
these practices.

M3: A linked chain of sub-goals across scaling levels should be established to
facilitate transparency.

The evaluation of proposition M3 resulted in an average rating of 1.55 with a standard de-
viation of 0.66. LM1 and AM7 explained that the linkage of sub-goals to higher-level goals
is a necessity to ensure a stringent implementation of an organization’s overall strategy.
It ensures that everyone is aware of why the defined goals are being pursued (BE1, PO4)
and makes sure that goals actually contribute to a higher-level objective (PO6). However,
multiple interviewees stressed that — while in general the linkage should be enforced —
there may still be goals that cannot be directly linked to any higher-level objective (AM2,
LM1, PO3, PO5, PO6). A commonly referred example are technical changes to the software
product that are identified as necessary by the Agile Team but do not directly contribute to
any higher goal, e.g., a version upgrade to an existing database (AM2). So, while a linkage
of goals to higher-level goals facilitates a goal-oriented operation of the organization, it
should not be forced on every necessary work-item in the daily work.

93

6. Artifact Evaluation and Improvement

M4: Goals should be documented publicly for all actors and stakeholders to facilitate
transparency.

The evaluation of proposition M4 resulted in an average rating of 1.09 with a standard
deviation of 0.29. This is the best evaluation result of all propositions. Public documen-
tation of goals, according to the participants, yields several benefits. It helps actors and
stakeholders to identify who is working on similar objectives (AM7, LM1), and thus con-
tributes to reducing redundant work (AM7, LM1). Further, it helps to align expectations
of different stakeholders (PO4) and allows to identify a potential mismatch between goals
and stakeholder expectations (AM2). Finally, it also facilitates transparency by clearly dis-
closing why actors and stakeholders are acting the way they do (DEV1, PO1).

M5: Goals from external stakeholders should be broken top-down along the Product
Owner hierarchy to ensure consideration of dependencies and coordination.

The evaluation of proposition M5 resulted in an average rating of 2.18 with a standard
deviation of 0.94. While interviewees DEV1, PO3 and PO4 agreed that a top-down distri-
bution of external goals via the hierarchy of Product Owners does ensure that goals are
properly defined and distributed, the evaluation shows that there is no clear consent on
proposition M5. Proposition M5 was discussed in combination with proposition M6 in
the interviews, as those two propositions are closely tied to each other. Most interviewees
emphasized proposition M6 to be more important than proposition M5 for scaled agile
development efforts. AM2 suggested to determine whether goals should be broken down
and distributed via the Product Owners depending on how specific a goal is. Very spe-
cific goals that can be clearly assigned to individual teams may not need such a top-down
process, but can be directly discussed with the team.

This evaluation result suggests changes to proposition M5. The top-down process should
only be applied in cases when stakeholders come up with broad, unspecific goals that can-
not be clearly allocated to individual teams and thus entail dependencies and the need for
coordination.

M6: Definition, prioritization, and communication of middle- to lower-level goals
should involve Agile Teams, to ensure consideration of technical aspects and
acceptance of goals by the teams.

The evaluation of proposition M6 resulted in an average rating of 1.27 with a standard
deviation of 0.45. In contrast to the top-down part of the goal-setting process described in
proposition M5, the bottom-up involvement of the Agile Teams in goal-setting proposed
in M6 resulted in a more positive evaluation by practitioners. One important reason why
teams have to be involved is the lack of technical expertise on higher organizational levels
(PO1, PO3). Interviewees BE1 and PO5 emphasized that goals should never be commit-
ted to stakeholders without involvement of the Agile Teams. While Agile Teams should

94

6.2. Evaluation of Propositions

be involved in goal-setting, the final say in prioritization of goals in large-scale agile de-
velopment should remain with the Product Owner (AM2, LM1). Based on this, LM1 also
stressed that while teams should be part of the goal-setting process, they should not be
held accountable for goal-setting.

M7: Process-oriented reporting should be fully automated using Backlogs (e.g., using
tools like Jira and Dashboards).

The evaluation of proposition M7 resulted in an average rating of 1.45 with a standard de-
viation of 0.5. Interviewees LM1, BE1, DEV1, PO3, and PO5 emphasized that automation
should be pursued as much as possible to reduce manual effort of process-oriented report
generation. PO5 even thinks that any additional, manually created report besides the ac-
tual development Backlog is unnecessary overhead, because the Backlog should represent
the current state of development at any given point in time. However, AM2, PO1, PO4, and
PO5 cautioned to always consider context information when interpreting and discussing
automatically generated reports based on metrics. The team or actor in charge of a metric
should always be involved in discussions of it, to be able to provide background and con-
text information if needed. Additionally, automating the generation of a specific report is
always a trade-off between the stability of said report and the effort of automating it (LM1,
DEV1). Reports that remain consistent for longer periods of time (e.g., process-oriented
reports) are more suitable to be automated than reports that are different each time (e.g.,
development-oriented reports).

M8: Product-oriented reporting should be partially automated by linking goals to
higher-level goals and predefine metrics for each goal, based on the linked sub-goals.

The evaluation of proposition M8 resulted in an average rating of 1.64 with a standard de-
viation of 0.48. Participants LM1, BE1, and PO6 explained that product-oriented reporting
should be a mixture of quantitative and qualitative means of reporting, as well as manual
and automatic generation. DEV1 and PO3 also explicitly agreed that progress of higher-
level goals should be derived from linked sub-goals.

M9: Focus of team-level reporting should be on artifacts that were produced in the last
iteration (development-oriented reporting) and on overall process monitoring, rather
than on individual work.

The evaluation of proposition M9 resulted in an average rating of 1.73 with a standard
deviation of 0.62. PO1, PO3, and PO4 explained that only the team result is what counts
and should be reported. Since the Agile Team is self-managed, it is also up to the team how
work is coordinated internally. Further, PO1 and PO5 referenced existing work regulations
that do not allow to report on individuals (cf. proposition P5). On the other hand, for

95

6. Artifact Evaluation and Improvement

participants AM6 and PO5 it is still important to highlight exceptionally good individual
contributions in the team-level reporting.

M10: Compensation of actors should not be linked to reporting outcomes.

The evaluation of proposition M10 resulted in an average rating of 2.09 with a standard de-
viation of 1.24. This proposition was evaluated rather controversially by the practitioners.
While several interviewees agreed that compensation should not be linked to reporting
outcomes (AM2, AM6, AM7, LM1, DEV1, PO1, PO3, PO6), some also disagreed with the
statement (BE1, PO4, PO5). AM2, LM1, and PO5 emphasized that compensation based
on individual performance should be avoided to improve team performance, which is in
line with goal-setting theory. Further, AM7, LM1, and PO5 explained that linking com-
pensation to KPIs tempts actors to game the system and manipulate those KPIs, leading
to local optimization instead of desired global optimization (PO5). However, using a simi-
lar argumentation, higher-level team or organization goals can be used for compensation,
according to AM2 and PO4, because this would yield global optimization. Finally, LM1
argues that an implicit linkage between reporting outcomes and monetary compensation
can never be avoided, since well performing individuals tend to be paid more and be pro-
moted more quickly within the organization.

Based on these evaluation results we derive the need to make proposition M10 more
precise. The suggestion by practitioners that compensation can indeed be linked to higher-
level (program, portfolio, organization) goals should be considered in M10.

M11: An arena should be established for teams to explicitly report on work that does
not directly contribute to the most important goals ("routine work").

The evaluation of proposition M11 resulted in an average rating of 1.64 with a standard
deviation of 0.77. Several interviewees think that there should be more positive recognition
for employees doing their normal work very good (AM2, LM1, PO3, PO5). Nevertheless,
multiple participants also emphasized that Agile Teams should focus their work efforts on
the most important topics, and if teams are working on topics that are not part of any goal,
goals seem to not represent the priorities of the organization correctly (AM7, PO4, PO6).
AM7 emphasized to not use such an arena as an excuse why work has been focused on
less important topics. DEV1 suggested to allow teams to decide whether such an arena is
established or not.

M12: Focus of product- and development-oriented reporting should not be on metrics
only.

The evaluation of proposition M12 resulted in an average rating of 1.45 with a standard de-
viation of 0.5. Almost all participants mentioned that product- and development-oriented
reporting should not focus on metrics only, but has to also comprise context information

96

6.3. Adjustments based on Evaluation

and direct human interaction (AM2, AM6, LM1, BE1, DEV1, PO3, PO4, PO5). Only AM7
raised a concern, that focus on qualitative reporting may leave too much room for justi-
fication and excuses why certain metrics are bad. Hence, a balance has to be achieved
between rigorous evaluation using metrics and enough qualitative information to be able
to interpret the metrics correctly.

M13: All goals should be maintained in Backlogs to facilitate clear understanding and
transparency.

The evaluation of proposition M13 resulted in an average rating of 3.09 with a standard
deviation of 1.08. This proposition was evaluated very controversially and received the
worst evaluation result of all propositions. During evaluation interviews, we observed
two basic points of view regarding this statement. On the one hand, several observed
cases see the Backlog as a central point in their development effort where all objectives (i.e.,
goals as well as requirements) should be stored (DEV1, PO6). On the other hand, multiple
participants are of the opinion that goals and requirements should be strictly separated,
and hence that goals should not be documented in a Backlog (AM2, PO4, PO5). Further,
interviewees LM1, BE1, and PO5 acknowledged that it also depends on the definition of a
Backlog.

Ultimately participants from both sides, however, agreed that there has to be at least a
connection between the development Backlogs and the organizational goals (AM2, AM6,
LM1, BE1, PO1, PO4), and that goals should be documented digitally (AM2, AM7, PO1,
PO4). They emphasized that Backlog Items — especially requirements that are maintained
in Backlogs — have to be linked to the respective organizational goal that they are con-
tributing to. Hence, this can be interpreted as an extension of proposition M3 to also cover
development requirements.

6.3. Adjustments based on Evaluation

Propositions

Based on the evaluation results summarized in the previous section, we derived several
potential areas of improvement to the propositions.

We observed that for practitioners the hierarchy of goals proposed in P3 is not of high
value on its own. Rather, practitioners only see value in such a hierarchy if combined with
linking goals to higher-level goals they contribute. This is what is proposed in M3. Con-
sidering this evaluation observation, we suggest to merge propositions P3 into proposition
M3. This yields the following new proposition M3: A hierarchy of goals should be established.
Goals should be linked to the goals on the next higher level that they are contributing to, to facilitate
transparency (liked chain of sub-goals).

Next, interviewees did not evaluate the top-down process of goal-setting described in
M5 very positively. We observed, that such a top-down process is only valuable to agile

97

6. Artifact Evaluation and Improvement

practitioners in cases where stakeholders come up with broad, unspecific goals that cannot
clearly be allocated to individual teams and thus entail dependencies and the need for
coordination. Based on this feedback we make the following adjustment to proposition
M5: Goals from external stakeholders that cannot be clearly assigned to individual teams should be
broken top-down along the Product Owner hierarchy to ensure consideration of dependencies and
coordination.

In the evaluation interviews we also learned that the topic of compensation is discussed
controversially in large-scale agile environments. The general proposition M10 — com-
pensation in general should not be linked to reporting outcomes — was agreed to by part
of the interviewees while rejected by another part. Interviewees instead suggested to link
compensation to higher-level goals. While lower-level or individual goals are not suitable
to link compensation to, because this would lead to local optimization, higher-level goals
are deemed suitable by participants. Using this suggestion, we rephrase proposition M10:
Compensation of actors should not be linked to reporting outcomes of lower-level or individual
goals. Instead, use only higher-level goals for variable compensation.

Finally, proposition M13 was also discussed controversially and received the worst eval-
uation result. We observed that there was no common agreement as to whether goals
should or should not be maintained in Backlogs. Hence, we delete proposition M13 from
the list of propositions. Additionally to this feedback, we also observed that practition-
ers do find consensus in linking Backlog Items to the goals that they are contributing to.
Proposition M3 can therefore be adjusted to also cover Backlog Items in the linked chain
of sub-goals. We make the following changes to M3: A hierarchy of goals should be estab-
lished. Goals and Backlog Items should be linked to the goals on the next higher level that they are
contributing to, to facilitate transparency (liked chain of sub-goals).

General Aspects

At the end of the interviews, we asked the participants whether they had any further topic
or comment related to the interview that might be of interest to the research project. With
this question we sought to uncover potential topics that were not yet covered.

One topic that was mentioned by several interviewees (PO1, PO3, PO4, PO5) is the need
for regular inspect and adapt cycles for goals, as well as for the goal-setting and reporting
processes. The interviewees stressed that in an large-scale agile environment it is impor-
tant to not only be agile in product development, but also to be agile in the design of work
processes and goals. Thus, they see the need to regularly discuss the goal-setting and
reporting processes in retrospectives, in order to identify potential problems or opportu-
nities for improvement. This aspect is partially reflected in the analyze and intervene step
of our process model. In this step — as described in Section 5.3 — we recommend several
interventions on goals based on the analysis results. Using the feedback we collected in
the evaluation, this list of possible interventions should be extended by an intervention
focused on processes. We suggest to add an intervention adjust also for the goal-setting
processes, similar to the adjust intervention for the reporting process. Adjustments to the

98

6.3. Adjustments based on Evaluation

goal-setting process might be necessary if goals cannot be reported towards properly, if
goals lack quality in definition, if goals are repeatedly missed, and other cases.

Another topic that was mentioned by interviewees PO4 and PO5 is limiting the number
of goals at a certain organizational level. At one level (e.g., for one team, or for one Product)
the maximal number of goals should be limited per iteration, according to interviewees.
This is similar to how e.g., the OKR approach limits the number of Objectives and the
number of Key Results per Objective. However, while we see that limiting the number of
goals may increase focus on the most important topics, we suggest to not do so in general.
We rather think this is a decision that should be taken based on the specific goal definition
practice (e.g., OKRs) used by a program.

99

6. Artifact Evaluation and Improvement

100

7. Discussion

This section summarizes the key findings that we learned from the presented research
project. It also reviews quality considerations and potential limitations of the master’s
thesis.

7.1. Key Findings

Reporting responsibility is separated and dependent on the scaling level in large-scale
agile environments

We find that reporting responsibility in agile development is split into three parts, develop-
ment, product, and process reporting, which is in line with existing literature (cf. [59]). We
further find that in large-scale agile programs different types of reporting are of changing
importance depending on the scaling level. While process- and product-oriented reporting
are found to be of equal importance across scaling levels, development-oriented reporting
is mostly relevant on lower organizational scaling levels. In contrast to literature (cf. [59])
we find that Product Owners are also sometimes involved in development-oriented re-
porting on lower organizational scaling levels.

The presence of process- and product-oriented reporting on all scaling levels at the case
organization may correlate with our observation that the majority of goals can be catego-
rized as process or product goals. It seems intuitive to us that pursuing many process and
product goals poses a demand for process- and product-oriented reporting.

Bottom-up perspective becomes more important for goal-setting in large-scale agile
organizations

In literature the bottom-up perspective of agile teams is often described as focusing on how
to achieve or implement organizational goals, while the what of the goals is the respon-
sibility of the top-down perspective of Product Owners and management (e.g., see [31,
53]). Our case study, and especially the evaluation of propositions M5 and M6, shows that
in large-scale agile software development this distinction may not be suitable anymore.
We observe that practitioners see the need for including the agile teams in all aspects of
goal-setting up to the program-level in the organizations. This is due to increased com-
plexity and scope of developed software products, which cannot be overseen by one of the
two perspectives alone. Our findings indicate that integrated goal-setting where goals are

101

7. Discussion

defined, selected, and prioritized collaboratively seems suitable to cope with these chal-
lenges.

Most goals are set at the portfolio- and program-level at the large-scale agile case
organization

We observed that at the case organization most goals were set at the portfolio- and program-
level. On portfolio-level we documented 21 goals, and on program-level we documented
26 goals. We identified one goal that was only set at the team-level, and seven goals that
were relevant enterprise-wide. This may indicate that in large-scale agile organizations
the middle levels (portfolio and program) are of higher relevance for goal-setting than the
lowest (team) and highest (enterprise) level.

We further find that both process and product goals are roughly equally often pursued
on portfolio and on program level. This observation stands in contrast to the findings by
Korpivaara et al. [31], who find in their study that process efficiency objectives are more
often set at the program-level compared to higher levels in organizations.

Metrics are of common use on all scaling levels at the large-scale agile case
organization

In the case study we documented 33 metrics used by the observed programs. Metrics at
the case organization are used on all scaling levels, with most of them being applied at
the program-level. Several individual metrics are also tracked on multiple scaling levels.
However, we did not observe any metric that is used by all participating programs of the
study. The choice of used metrics is highly individual to the programs and their current
situations, and adjusted by them over time. This may indicate that there is no set of met-
rics that should always or never be used. Instead, metrics are used to satisfy concrete
information needs that are dependent on the current situation and goals.

Many challenges are not specific to large-scale agile environments

A considerable part of the identified challenges of goal-setting and reporting are not spe-
cific to large-scale agile software development. Instead, those challenges are general chal-
lenges that arise with goal-setting and reporting in (agile) organizations, such as depen-
dencies, regulations, reporting on qualitative goals, and others. As a result, also parts of
the propositions that we formulated, and parts of the process models we documented,
are not specific to only large-scale agile software development. Instead, they might also
be applicable to other software development environments. This shows that while agile
methodologies change parts of the working processes in large-scale organizations quite
drastically compared to traditional methodologies, not all aspects and challenges are af-
fected. Also, agile methodologies certainly are no silver bullet for solving all challenges

102

7.1. Key Findings

in large organizations. This finding is in line with extant literature on challenges of large-
scale agile software development and transformations (e.g., cf. [14, 62]).

In practice, the distinction between goals and requirements is blurred

Goals are often seen as abstract concepts that are out of reach of "ordinary" employees in
large software development programs. Every objective "ordinary" employees deal with
is often simply considered a requirement. Higher-level Backlog Items (e.g., Epic, Saga)
are considered to be requirements by some, while others consider them to be goals. User
Stories are mostly considered to be requirements that contribute to or implement higher-
level goals. This is clearly reflected in the evaluation results of proposition M13, where
we observed two opinions on whether goals can be Backlog Items or not. Based on this
observation organizations should try to transparently document their goals, and clearly
show for requirements if and to which goals they contribute. We captured this suggestion
in several of our propositions (e.g., M3, M4).

Development-oriented reporting is not perceived as reporting in agile development

In the evaluation interviews, when explaining the split of reporting into three types of
responsibility (development, product, and process reporting) as described in literature,
several interviewees expressed skepticism. They provided us the feedback that, in their
opinion, development-oriented reporting such as Review meetings, System Demos, etc.,
are not something they would typically consider under the term reporting. We learn that
the term is coined quite negatively in the case organization. Many interview participants
associated reporting directly with management control. This might be the case because
most of the observed case programs transitioned from traditional software development
to agile methodologies, rather than being set up with agile methodologies from scratch. In
the traditional development processes reporting was indeed linked to management control
at the case organization.

Story Points are not used for higher-level reporting in large-scale agile development

At the studied large-scale agile case organization we did not observe systematic usage of
Story Points for reporting processes above the team-level. Story Points are used to estimate
the effort of specific work items in the development Backlog. We would have expected to
find usage of Story Points also for reporting purposes. However, at the case organization
Story Points are mostly used for team internal discussions of work packages and effort
estimation. Team-level reporting was also observed to use Story Points. On higher-levels,
however, we did not observe systematic use of Story Points for reporting.

103

7. Discussion

Control was not identified as a reason behind reporting

Controlling of work was not identified as an explicit reason behind any type of goal-setting
or reporting at the case organization. We would have expected control to be among the rea-
sons for certain reporting approaches, especially because control theory is a well studied
area of research (e.g., cf. Dreesen et al. [18]). However, management control was still
perceived by interviewees as a challenge for team autonomy. This indicates that commu-
nication and culture are essential in agile environments, to clearly define what is the actual
purpose behind goals and reports.

7.2. Limitations

This section reviews the quality of the presented research and discusses potential threats
to validity and reliability. Yin [68] formulates four principles for data collection in case
study research. We applied these principles to the case study that we conducted as part
of this thesis. The first principle recommends to use multiple sources of evidence [68].
We realized this principle by using first degree data and third degree data for our case
study. First degree data was collected via the interviews we conducted with practition-
ers at the case organization. Third degree data was collected via documentation, internal
Wiki pages, presentations, and other sources collected at the case organization. The sec-
ond principle recommends to maintain a case study database [68]. We maintained such a
database, which contains all the collected data from the case organization, relevant litera-
ture, transcripts, data codings, and other researcher generated artifacts. The third principle
recommends to maintain a chain of evidence [68]. We ensured a stringent chain of evidence
by coding and analyzing the collected data using a defined structure of codes, following
the methodology of Miles et al. [41]. Finally, the fourth principle recommends to be care-
ful when using data from electronic sources [68]. We only collected electronic data from
internal sources at the case organization to ensure they are authentic and reliable.

Following the definitions by Runeson and Höst [52] we differentiate between construct
validity, internal validity, external validity, and reliability. Construct validity considers
whether the studied phenomena really represent what should be investigated based on
the research questions [52]. To address potential threats to construct validity, as suggested
by Yin [68], we used multiple sources of data (data triangulation) and established a chain
of evidence. Additionally, we interviewed participants with diverse roles and experience
in software development to ensure to gather insights from multiple perspectives. Internal
validity considers whether the findings of the research actually represent the studied phe-
nomena authentically [52]. To address potential threats to internal validity, we conducted
a preparation meeting with each case study participant before the actual interview. This
ensures a common understanding of concepts and terms between researchers and partici-
pants. External validity considers whether the findings of the research can be generalized
to situations beyond the specific case at hand [52]. We conducted a single case, embedded

104

7.2. Limitations

case study. While only one organization was studied, multiple programs at the organiza-
tion were considered, each of which create their working processes independently from
each other. However, our findings are strictly limited to the scope of large-scale agile soft-
ware development. Reliability considers whether the same study could be replicated by
another researcher later on [52]. To address potential threats to reliability, we described our
coding system in detail and listed all interview questionnaires in the appendix of this the-
sis. However, while we did cross-case analysis between the studied programs, the findings
are specific to the case organization. Another organization may be using very different ap-
proaches for goal-setting and reporting. Thus the same study may be replicated by another
researcher using our documentation, but results may differ quite significantly.

105

7. Discussion

106

8. Conclusion

The last chapter of this thesis summarizes our findings to answer the research questions,
and gives an outlook to possible future research to be conducted in the area of goal-setting
and reporting in large-scale agile software development.

8.1. Summary

In this section we summarize the answers to the research questions of the thesis.

RQ1. How are goals in large-scale agile software development established and
reported at the case organization?

At the studied case organization, a large German car manufacturer, we identified 51 goals
and structured them into the five categories Product, Process, Resource, Strategic, and Legal,
Security & Compliance. We documented 20 goal-setting practices across the seven programs
we studied in the initial case study. On the reporting side, we documented the application
of 33 metrics in total, with 12 metrics being applied on team-level and 26 metrics being
applied on program- and portfolio-level. 26 reporting practices have been documented
from the studied programs.

In summary, the goal-setting and reporting at the case organization are dominated by
an obligatory, organization-wide, standardized process. This process has been established
before agile methodologies were used at the organization, and has been adapted to them
over time. Apart from this process, goal-setting and reporting varies between the stud-
ied programs, and no further standardized practices are applied. Especially between the
different programs we observed different approaches to goal-setting and reporting, since
programs choose those internal practices autonomously. Programs are using custom doc-
umentation and tools for maintaining their goals, as well as different ways to assemble
and document their reports. The most common goals we observed are system stability
and legal compliance, while most other goals are specific to individual programs. The ma-
jority of the goals we documented can be categorized as process or product goals, and most
goals are set at portfolio- and program-level. Most commonly programs are using wiki
pages, Backlogs, and linkage to higher-level goals for goal-setting. For reporting, traffic
light colors, sprint reviews, and all kinds of Dashboards (e.g., in Jira) are applied most
often.

107

8. Conclusion

RQ2. What are challenges and reasons for establishing and reporting goals in
large-scale agile software development?

To answer the second research question, we documented 19 challenges from the case orga-
nization. 11 challenges refer to goal-setting, while 9 challenges refer to reporting — with
one challenge referring to both categories. The most commonly named challenges include
perceived management control limiting team autonomy, external dependencies that limit
team autonomy, and prioritization conflicts between goals.

Also, we identified 14 reasons behind the chosen reporting practices, and 13 reasons be-
hind the goals that we documented for the first research question. We structured the rea-
sons for the reporting practices into the four categories Information Needs (4), Agile Values
and Principles (4), Regulations (2), and Size of Program / Organization (2). The most common
reasons named for reporting include selecting reports based on the stakeholders and based
on what is compliant with organizational regulations and governance. The reasons behind
the goals can be structured into Internal Needs (6), Customer Needs (3), Strategy of Organiza-
tion (2), and Regulations (1). Most commonly, the reasons behind why programs pursue
goals include requests directly made by a customer and having to fulfill governmental
regulations.

RQ3. How can these challenges for establishing and reporting goals in large-scale agile
software development be addressed?

To address the identified challenges, we formulated 20 propositions. Seven of these propo-
sitions are general statements on goal-setting and reporting, while the remaining 13 propo-
sitions are intended to address (most of) the identified challenges. These propositions for-
malize our learnings from literature and the case study. They describe a theoretical basis
for the process models for goal-setting and reporting that we developed. The process mod-
els in turn describe which of our propositions are relevant in which steps of goal-setting
and reporting, and how they all fit together. The evaluation of the 20 propositions shows
that in general practitioners agree with our theory on goal-setting and reporting. The state-
ment that received the best evaluation — with all but one interviewees strongly agreeing
— proposes to document all goals publicly for all actors and stakeholders. This shows that
transparency is key for agile practitioners in large-scale organizations. The proposition to
document all goals in Backlogs, on the other hand, received the worst evaluation result.
We learned that practitioners do not find a consensus as to how goals could be maintained
in Backlogs and often prefer to keep requirements and goals clearly separate.

After the evaluation, based on the collected feedback we made adjustments to two
propositions, merged one proposition into another one, and deleted one proposition. The
final set of propositions — in particular the remaining 12 propositions that address identi-
fied challenges — form the result for the third research question.

108

8.2. Outlook

8.2. Outlook

In this project we implemented one cycle of the Action Design Research approach. We
pointed out potential areas of improvement that we identified in the evaluation in Chap-
ter 6. Thus, future work should use the evaluation results to conduct a second cycle of the
Action Design Research approach, to further refine the propositions and process models.
Further, the designed processes should be actually implemented at an active organization
as part of the intervention of a future Action Design Research cycle. Such an implementa-
tion was out of scope of this master’s thesis due to time constraints. Apart from additional
Action Design Research cycles, the findings should be corroborated or refuted by further
similar research projects with other case organizations. By investigating goal-setting and
reporting in other large-scale agile organizations, our findings could be better generalized
by future work.

109

8. Conclusion

110

A. Appendix

A.1. Case Study Interviews

First Part: General Information

1. What is your large-scale agile development (stakeholder) role?
2. How long have you been working in the field of software development?
3. How long have you been working in agile software development?
4. How long have you been working in large-scale agile software development?
5. How long has your company been working with agile software development?
6. How long has your company been working with large-scale agile software develop-

ment?
7. Does your company operate internationally?
8. Which sector does your company operate in?
9. How many employees does your company have?

10. How large is the development group / organization?
11. How many teams are co-located and how many teams are distributed?
12. In which countries are the teams located?
13. Which scaling agile frameworks are you using for the software development pro-

cess?
14. To which level do you scale agile practices?
15. Are we allowed to contact you again for further research?

Second Part: Goals in Large-Scale Agile Development

1. What are the most important organization-specific goals that you are pursuing in
your agile environment?

2. How do you categorize this goal?
3. What are the reasons that you are using this goal?
4. How important is this goal?
5. To which stakeholders is the goal relevant?
6. Which stakeholders were involved in defining the goal?
7. How were the individual teams involved in defining this goal?
8. Did you use specific techniques for defining this goal?
9. How is the goal documented and communicated?

10. Which challenges did you face when establishing this goal for / with the teams?

111

A. Appendix

11. How do you approach these challenges?
12. Which actions can be (ideally) implemented to avoid these challenges?

Third Part: Reporting Team Progress on Goals

1. How do the teams report their progress towards the goal?
2. How do you categorize this reporting?
3. Why did you choose this type of reporting?
4. Which stakeholder(s) are responsible for this reporting?
5. When and how often is the progress reported?
6. Are you using (planning to use) any tools for the reporting?

Fourth Part: Reporting Overall Progress on Goals

1. How is overall program / product progress towards the goal reported?
2. How do you categorize this reporting?
3. Why did you choose this type of reporting?
4. How are individual team reports used for reporting overall program / product progress?
5. Which stakeholder(s) are responsible for reporting overall program / product progress?
6. When and how often is overall program / product progress reported?
7. Which stakeholder(s) are interested in the report of overall program / product progress?
8. What are the biggest challenges you are facing in reporting of overall program /

product progress?
9. How do you approach these challenges?

10. Which actions can be (ideally) implemented to avoid these challenges?
11. Are you using (planning to use) any tools for reporting overall program / product

progress?

Fifth Part: Discussion

1. How can research support the usage of metrics in the industry?
2. Do you want to add any further information, comment, or a topic that we missed?

A.2. Evaluation Interviews

First Part: General Information

1. What is your large-scale agile development (stakeholder) role?
2. How long have you been working in the field of software development?
3. How long have you been working in agile software development?
4. How long have you been working in large-scale agile software development?

112

A.2. Evaluation Interviews

Second Part: General Propositions

The approach considers processes for goal-setting and reporting. It comprises the actors
Portfolio / Program / Product Owner, Agile Master, Line Manager, and Agile Team. These
actors are working on the scaling levels Portfolio, Program, and Team. All actors are part of
the overall organization. Customers, the Board of Directors, top-management, and other
departments are considered external stakeholders to the large-scale agile development en-
vironment.

Questions under (a) use Likert scale answers: Strongly agree, Agree, Neither agree nor
disagree, Disagree, Strongly disagree.

Proposition P1:
a. The scaling level at which an actor operates influences their reporting responsibility

and the necessary type of reporting.
b. Why do you think the scaling level does (not) have an influence on the actors’ report-

ing responsibility and necessary type of reporting?
Proposition P2:

a. The recipient of the report influences what should be reported and by whom.
b. Why do you think the recipient of the report does (not) have an influence on what

should be reported and by whom?
Proposition P3:

a. A hierarchy of goals should be established to determine how a goal affects the orga-
nization based on its scaling level.

b. Why do you think a hierarchy of goals should (not) be established?
Proposition P4:

a. Automation of reporting becomes more important the bigger the size of the program.
b. Why do you think that automation of reporting does (not) become more important

the bigger the program?
Proposition P5:

a. Regulations (e.g., from government or the organization) constrain which reporting
practices can be applied.

b. Why do you think that regulations do (not) constrain which reporting practices can
be applies?

Proposition P6:
a. Process-oriented reporting should track trends across longer periods of time to im-

prove ability to make reliable predictions.
b. Why do you think process-oriented reporting should (not) track trends across longer

periods of time?
Proposition P7:

a. Team-mood should be tracked regularly using metrics.
b. Why do you think team-mood should (not) be tracked regularly?

113

A. Appendix

Third Part: Propositions to Address Challenges

Proposition M1:
a. Goal-setting responsibility should be shared among actors, to facilitate collaborative

goal-setting practices.
b. Why do you think goal-setting responsibility should (not) be shared among actors?

Proposition M2:
a. Goal definition practices (e.g., SMART, OKRs, GQM) ensure clear understanding of

goals and understanding of what to report to illustrate goal progress.
b. Why do you think goal definition practices do (not) facilitate clear understanding of

goals and reporting?
Proposition M3:

a. A linked chain of sub-goals across scaling levels should be established to facilitate
transparency.

b. Why do you think such a linked chain of sub-goals does (not) facilitate transparency?
Proposition M4:

a. Goals should be documented publicly for all actors and stakeholders to facilitate
transparency.

b. Why do you think goals should (not) be documented publicly to facilitate trans-
parency?

Proposition M5:
a. Goals from external stakeholders should be broken top-down along the Product

Owner hierarchy to ensure consideration of dependencies and coordination.
b. Why do you think goals from external stakeholders should (not) be broken top-down

along the Product Owner hierarchy?
Proposition M6:

a. Definition, prioritization, and communication of middle- to lower-level goals should
involve Agile Teams, to ensure consideration of technical aspects and acceptance of
goals by the teams.

b. Why do you think Agile Teams should (not) be involved in definition, prioritization,
and communication of middle- to lower-level goals?

Proposition M7:
a. Process-oriented reporting should be fully automated using Backlogs (e.g., using

tools like Jira and Dashboards).
b. Why do you think process-oriented reporting should (not) be fully automated?

Proposition M8:
a. Product-oriented reporting should be partially automated by linking goals to higher-

level goals and predefine metrics for each goal, based on the linked sub-goals.
b. Why do you think product-oriented reporting should (not) be partially automated?

Proposition M9:
a. Focus of team-level reporting should be on artifacts that were produced in the last it-

eration (development-oriented reporting) and on overall process monitoring, rather

114

A.2. Evaluation Interviews

than on individual work.
b. Why do you think focus of team-level reporting should not be on developed artifacts

and process monitoring?
Proposition M10:

a. Compensation of actors should not be linked to reporting outcomes.
b. Why do you think compensation of actors should (not) be linked to reporting out-

comes?
Proposition M11:

a. An arena should be established for teams to explicitly report on work that does not
directly contribute to the most important goals (“routine work”).

b. Why do you think such an arena should (not) be established?
Proposition M12:

a. Focus of product- and development-oriented reporting should not be on metrics
only.

b. Why do you think focus of product- and development-oriented reporting should
(not) be on metrics only?

Proposition M13:
a. All goals should be maintained in Backlogs to facilitate clear understanding and

transparency.
b. Why do you think that all goals should (not) be maintained in Backlogs?

115

A. Appendix

116

B. Appendix

B.1. Identified Goal-Setting Practices

Name Description Type Source

SMART Goals should be phrased specific, measurable, achievable,
reasonable, and time-bound.

Definition STE1, BE1,
AM5, PO1

Objectives
and Key
Results

Goals should be phrased as qualitative Objectives. Each
Portfolio and Program should have up to five Objectives
per iteration. Each Objective, in turn, has up to four Key
Results. Key Results are formulated quantitatively, such
that the degree of their achievement can be measured.
Once all Key Results are achieved, the Objective they be-
long to is achieved. The organization follows books by
Doerr [17] and Wodtke [67].

Definition DEV1, LM1,
STE1, AM2

Product Press
Releases

Goals are defined using fictional product press releases.
The product press release describes the situation that is
intended to be, once the goal has been reached. It is writ-
ten together with the goal definition, and should help ac-
tors and stakeholders understand what the result of the
goal will have to look like.

Definition AM5

Weighted
Shortest Job
First (WSJF)

Goals that deliver the most value in the shortest period of
time should be prioritized. It can be calculated by divid-
ing the cost of delay by the effort size of the goal. WSJF is
also described in the the SAFe framework [25].

Prioritization LM1, PO1

Scoping Yearly meeting to define milestones with target dates
throughout the year. Milestones are based on the yearly
goals of the portfolio, derived from the GMP goals. These
milestones serve as input to the PI Plannings throughout
the year. In the Scoping the Portfolio Owner, Program
Owners, Product Owners, and all Agile Masters take part.

Meeting STE1

Goal Man-
agement
Process
(GMP)

Process to break down goals from the Board of Direc-
tors along the hierarchy of Portfolio / Program / Prod-
uct Owners. Goals are broken down from one level into
sub-goals on the next level in a workshop between the re-
spective Owners at the two scaling levels involved. Goals
defined via this process have to be documented and re-
ported using the GMP Sheet. The process focuses on
defining what has to be done, but not how.

Process PO1, PO2,
STE1, BE1,
LM1, AM2,
AM4

117

B. Appendix

Dual-Track
Agile Goal-
Setting

The dual-track approach is the definition of the next set
of quarterly goals while the current quarter of the year
is still running. The input to the process are the higher-
level GMP goals on the one hand, as well as all additional
goals gathered by Agile Teams, customers, partners, or
other sources. It consists of alignment of goals by POs,
documentation in the Backlog, research and ideation of
potential solution directions, estimation, and the Vision,
Roadmap, and Direction (VRD) Focus Day. In the VRD day,
all actors and stakeholders select the goals for the next
quarter collaboratively.

Process AM5

PI Planning The PI Planning serves the purpose of defining concrete
goals for the PI, based on the milestones that were defined
in the Scoping. The PI Planning consist of several steps.
Two weeks before the PI Planning, the solution level de-
fines and communicates the top milestones and priorities
for the next PI ("solution vision"). Based on this solution
vision, the Product Owners and their teams derive a prod-
uct vision and according PI Objectives. All people of the
Solution participate in the actual PI Planning, which lasts
for one day. Every Product presents their planned Prod-
uct Vision and PI Objectives. Each Product has a 1:1 "de-
pendency session" with every other Product, to identify
and discuss dependencies. After the PI, before each new
Sprint the STE and POs have a shared session to discuss
dependencies. The PI Planning is part of SAFe [25].

Meeting STE1, AM2,
PO2, PO3

APO / Saga
Refinement

All goals are directed to the Area Product Owners / Pro-
gram Owners. They conduct a recurring refinement ses-
sion with all Program Owners. In this session they refine
and break down the goals to the next lower level.

Meeting AM1, AM4,
PO3

Team Refine-
ment

The goals received from the APO / Saga Refinement are
refined and (if necessary) further broken down by the Ag-
ile Team. The Team Refinement is described in the Scrum
Guide as Product Backlog refinement [56].

Meeting AM1, AM4

Linked Chain
of (Sub-
)Goals

Each goal is linked to the goal it contributes to on the next
higher organizational scaling level. This is done in differ-
ent ways, e.g., using Backlogs, Confluence pages, Power-
Point slides.

Definition,
Documenta-
tion

STE1, BE1,
LM1, AM1,
AM2, AM4,
AM5, PO2,
PO3

Cluster Back-
log Items

Similar to Linked chain of (sub-)goals. Instead of linking,
Backlog Items are clustered / grouped in the Backlog ac-
cording to the goal they contribute to. Can be done just
by grouping visually, or by applying labels to items.

Definition,
Documenta-
tion

AM2

Individual
Backlog for
Business
and Orga-
nizational
Goals

In Program C2, goals relevant to business and goals rele-
vant to organizational development are kept in separate
Backlogs.

Documentation AM4

118

B.1. Identified Goal-Setting Practices

Backlog Not only requirements, but also goals of all types are
stored as Backlog Items in various Backlogs. Some pro-
grams maintain one central Backlog for all items, while
others maintain multiple Backlogs with different focus.

Documentation PO1, PO3,
DEV1, STE1,
AM1, AM4,
AM5

GMP Sheet The GMP Sheet documents all goals at a certain organi-
zational scaling level. For each goal a summary, current
state, target state, deadline, and optional remarks are doc-
umented. This sheet is used both for documentation and
reporting of goals.

Documentation PO1, BE1

Central Wiki
Page for
Goals

Several programs are maintaining Wiki pages (e.g., in
Confluence), where all current goals are documented.
This typically is done with a simple list, often linking to
the respective Backlog Items. Usually, the current state
and responsible people are also documented in the list.

Documentation PO3, DEV1,
LM1, STE1,
AM2, AM3,
AM5

Weekly KPI
Review

Program B1 conducts a weekly KPI review meeting. All
Program Owners and Product Owners participate. The
meeting is intended to identify problems early and allow
for discussion. Based on the identified problems and dis-
cussions, goals are set and / or refined.

Meeting,
Communica-
tion

PO1

Product Jour-
Fixe

After each PI Planning in Program C1, all Product Own-
ers conduct a jour-fixe with their teams to discuss the
committed priorities and goals. The meeting is intended
for "post-processing" of the PI Planning and for clarifying
what has to be done.

Meeting,
Communica-
tion

STE1

PI Focus
Topic

For each Program Increment, PO3 defines a PI Focus
Topic. This is the most important topic for the PI, usually
a topic that has a (tight) hard deadline.

Prioritization PO3

Domain Plan-
ning

The Domain Planning consist of several refinement ses-
sions with the stakeholders. Based on the goals from the
stakeholders and the Domain, Sagas are formulated in the
Domain Backlog. These Sagas are then the basis for the
individual PI Plannings later on. Stakeholders, Domain
Owners, and Product Owners participate in the meeting.

Meeting PO3

Table B.1.: List of identified goal-setting practices and meetings in the initial case study
interviews

119

B. Appendix

B.2. Identified Reporting Practices

Name Description Reporting
Type

Level Source

Informal ad-
hoc reporting

Informal reporting based on ad-hoc meetings and
communication in the office. This type of report-
ing does not have a standard format or medium.

All All AM4

Goal Man-
agement Pro-
cess (GMP)
Reporting

The standardized GMP comes with predefined
templates (GMP Sheets) to be filled for reporting
back to the top-management. The templates are
mandatory to use at portfolio-level, but also often
used on lower levels for consistency. A detailed
description of the GMP and GMP Sheets is given
in Sections 4.3.1 and 4.4.3.

Product Portfolio
(manda-
tory),
all

LM1,
AM2, BE1,
PO1

Team Veloc-
ity Forecast

Each team has a Velocity Forecast that is calcu-
lated based on the average Velocity of the past five
Sprints. It is used by teams and Programs to plan
how much can be achieved in the next iteration cy-
cle. The trend of the Velocity Forecast should be
stable or going up; if it is decreasing investigation
is necessary. The volatility of the Velocity Forecast
can also be analyzed. If it is highly volatile, the
team is not predictable, and one should investigate
why.

Process Program,
Team

B2, C2

Saga per Cus-
tomer

Program D1 has an overarching Saga for each cus-
tomer, to bundle all goals and requirements that
refer to this customer in one place. This allows to
easily see all work relevant for this customer in one
place.

Process All PO1

Burndown
Chart

The Burndown Chart shows the remaining
amount of work over time during an iteration.

Process All B2, B3

Cumulative
Flow Dia-
gram

The Cumulative Flow Diagram gives an overview
of the amount of Backlog Items in a certain state at
a particular point in time.

Process All B2, B3

Dashboards Dashboards (e.g., using Jira) are used to automat-
ically track metrics and plot charts such as Burn-
down Charts, Cumulative Flow Diagram. They
are used especially for process-oriented reporting
by Agile Masters. For metrics that can be moni-
tored using Dashboards, see Tables 4.5 and 4.6.

Process All All pro-
grams

Traffic Light Status or progress towards a goal is reported by as-
signing a color. Green is assigned if everything is
ok. Orange signals problems that can be solved by
the reporting actor on itself. Red signals the need
for escalation and external help. Red may also sig-
nal dependencies that are out of the influence of
the reporting actor.

Product All PO1, PO2,
PO3, LM1,
BE1, AM1,
AM2

120

B.2. Identified Reporting Practices

Weekly solu-
tion jour-fixe

Weekly report of status of all Products part of the
SAFe Solution. On the one hand, an automatic sta-
tus report is generated from the status of all Back-
log Items for each Product. On the other hand,
each Product Owner assigns a Traffic Light eval-
uation to each of their goals. The two reports are
compared, and potential discrepancies between
them or problems are discussed. Evaluation by
Product Owners is typically weighted higher than
the auto-generated report.

Product Portfolio,
Program

STE1,
AM3

Team Sprint
Review

The standard Sprint Review meeting is used
for development-oriented reporting by the Agile
Teams. The developed artifacts are presented by
the team and reviewed by the customer. The
Sprint Review meeting is detailed in the Scrum
Guide [56].

DevelopmentTeam AM1,
AM2,
AM3,
AM5, BE1,
LM1, PO3

Overall
Sprint Re-
view

At the end of each Program cycle, all Agile Teams
of the Program hold an overall Sprint review to-
gether. The Program Owner and — if available —
the customers take part in the review. All goals,
Backlog Items, and the developed artifacts them-
selves are reviewed. Also called Product Incre-
ment Review in some programs.

DevelopmentProgram,
Team

BE1, LM1,
AM1,
AM5,
PO2, PO3

PI Sync The PI Sync takes place every three weeks. Each
team has to evaluate the current state of their PI
Objectives. State is evaluated as either Done, On
Track, Partly, In Danger, Paused, Not Started, or
N.A. Product Owners collect the states of all their
teams in a central Wiki page.

Product Program,
Team

STE1

Milestone
achievement
report

In the beginning of a PI Planning, the milestones of
the last PI are reviewed. Specific goals and Backlog
Items are not considered, the Solution only eval-
uates whether the overall milestones have been
achieved. If not, in the PI Planning they analyze
the impact on the next PI and on the overall mile-
stones that were defined in the Scoping.

Product Portfolio,
Program

LM1, AM2

Area Cycle
Retrospec-
tives

At each scaling level, after the end of the respec-
tive iteration cycle (Sprint, Program Cycle, Portfo-
lio Cycle) there is a retrospective. The retrospec-
tive serves the purpose of continuous improve-
ment, as described in the Scrum guide [56]. Is-
sues from retrospectives can also be escalated to
the next higher-level retrospective if they cannot
be resolved on the current level. Thus, the retro-
spectives provide a line of escalation.

Product All AM1

Highlights
and learnings
of the quarter

Each quarterly report (in any form) at Program C2
should contain a written statement that mentions
the highlights and learnings of the past quarter.

Product Program AM4

121

B. Appendix

OKR achieve-
ment report

In Program C2 goals are defined and documented
using OKRs. These OKRs are then also used to re-
port back progress across the organizational levels,
up to the portfolio-level. Each Objective is evalu-
ated and reported based on its Key Results. Key
Results, in turn, are evaluated using the linked
Backlog Items.

Product Portfolio,
Program

LM1

Product goal
review Wiki
page

The central Wiki page for goals (see goal-setting
practices) is also used for reporting the current
achievement state of the goals. For each goal, a
Traffic Light color is assigned to signal its state.

Product Program B2, PO1,
STE1

Automated
Backlog
checks

Automatic checks of the Backlog (e.g., using Jira).
These can be checks for whether acceptance crite-
ria have been defined, parent / child goals have
been linked, effort has been estimated, a descrip-
tion has been added, etc.

Process All AM4, B1

Team and
Program Fit-
ness Tracker

A central Wiki page where all Agile Teams of a
Program self-report their "fitness". Teams them-
selves document their Predictability / Velocity
Forecast, Velocity Forecast trend, and Velocity
Forecast volatility. The page allows the Program
Owner to keep an overview of all teams. The Pre-
dictability trend (Say-Do-Rate) is also tracked for
the whole Portfolio over the last three cycles. The
Portfolio Predictability is calculated as the median
of all Programs’ Predictabilities.

Process Portfolio,
Program,
Team

C2

Mood survey A recurring survey on the current mood of the
employees in the Program. Can be easily imple-
mented via macros, e.g., in Confluence. Results are
reported to the Agile Masters and next higher or-
ganizational level, to correlate recent changes (e.g.,
in performance) with mood.

Process Program,
Team

AM3

Saga progress
overview Ex-
cel

Products in program B2 are using an Excel tem-
plate to report progress on Sagas to the Domain
Owner and higher-level management. For each
Saga a Product is involved in the Excel shows how
many of the linked sub-items of the Saga are al-
ready done or still open. The Excel sheet is filled
by Product Owners after every Domain Cycle.

Product Program PO2, PO3

Weekly (Sub-
)PO sync

Program B2 has a weekly sync meeting, where
Sub-Product Owners and Product Owners check
in on each other. Sub-Product Owners report and
discuss current issues or problems.

Product Program,
Team

PO3

122

B.2. Identified Reporting Practices

Product Plan
Review

Program B2 has a weekly meeting, where Sub-
Product Owners and Product Owners participate.
Sub-Product Owners report progress on all Epics
that their teams are currently working on. If an
Epic is postponed to another iteration, it receives
a sticker on a whiteboard. If multiple stickers ac-
cumulate on an Epic it indicates need for action by
Product Owners.

Product Program PO2

Operations
Community

In a weekly meeting, Sub-Product Owners and
Product Owners review the current state of oper-
ational KPIs. In case of system outages or unex-
pected KPI changes, the responsible PO has to ex-
plain what happened, whether and how it affected
the customer, and what to do to avoid this incident
in the future.

Process Program PO2

Risk Owner Program B2 has a dedicated role called Risk
Owner. A Risk Owner is assigned a certain risk
that was identified by the program, and has to
monitor changes / events that may affect this risk
or cause it to realize. If so, the Risk Owner has to
report immediately to the Product Owners.

Product Program PO2

Agile Matu-
rity Assess-
ment

The Portfolio of which Program C2 is a part of is
using an Excel-based tool to evaluate the agile ma-
turity of their programs. The assessment covers
questions from the areas of roles, artifacts, events,
tools, agile values, and company values. Each pro-
gram has to answer these questions regularly to
document their evolution regarding agile matu-
rity.

Process Program C2

Table B.2.: List of identified reporting practices and meetings in the initial case study inter-
views

123

B. Appendix

124

C. Appendix

C.1. Detailed Results of the Evaluation

Proposition Strongly
Agree (1)

Agree (2) Neither
Agree nor
Disagree (3)

Disagree (4) Strongly
Disagree (5)

P1 4 6 1 0 0
P2 4 6 1 0 0
P3 5 4 1 1 0
P4 9 2 0 0 0
P5 4 5 1 1 0
P6 5 3 3 0 0
P7 9 2 0 0 0
M1 8 3 0 0 0
M2 7 3 1 0 0
M3 6 4 1 0 0
M4 10 1 0 0 0
M5 3 4 3 1 0
M6 8 3 0 0 0
M7 6 5 0 0 0
M8 4 7 0 0 0
M9 4 6 1 0 0
M10 5 3 0 3 0
M11 6 3 2 0 0
M12 6 5 0 0 0
M13 2 0 4 5 0

Table C.1.: Quantitative evaluation results per answer option for each proposition

125

Bibliography

[1] Ana I. Anton. “Goal Identification and Refinement in the Specification of Software-
Based Information Systems”. PhD Dissertation. Georgia Institute of Technology, 1997.

[2] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. “The goal question met-
ric approach”. In: Encyclopedia of software engineering (1994), pp. 528–532.

[3] Victor R. Basili, Mikael Lindvall, Myrna Regardie, Carolyn Seaman, Jens Heidrich,
Jürgen Münch, Dieter Rombach, and Adam Trendowicz. “Linking Software Devel-
opment and Business Strategy Through Measurement”. In: Computer 43.4 (2010),
pp. 57–65. DOI: 10.1109/MC.2010.108.

[4] Thomas S. Bateman, Hugh O’Neill, and Amy Kenworthy-U’Ren. “A hierarchical tax-
onomy of top managers’ goals”. In: Journal of Applied Psychology 87.6 (2002), p. 1134.
DOI: 10.1037/0021-9010.87.6.1134.

[5] Kent Beck. “Embracing Change with Extreme Programming”. In: IEEE Computer
32.10 (1999), pp. 70–77. DOI: 10.1109/2.796139.

[6] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Suther-
land, and Dave Thomas. Manifesto for Agile Software Development. 2001. URL: https:
//agilemanifesto.org (visited on 05/10/2021).

[7] Izak Benbasat, David K. Goldstein, and Melissa Mead. “The Case Research Strategy
in Studies of Information Systems”. In: MIS Quarterly 11.3 (1987), pp. 369–386. DOI:
10.2307/248684.

[8] Marthe Berntzen, Nils B. Moe, and Viktoria Stray. “The Product Owner in Large-
Scale Agile: An Empirical Study Through the Lens of Relational Coordination The-
ory”. In: Agile Processes in Software Engineering and Extreme Programming. Ed. by
Philippe Kruchten, Steven Fraser, and François Coallier. Cham: Springer Interna-
tional Publishing, 2019, pp. 121–136. DOI: 10.1007/978-3-030-19034-7_8.

[9] Barry W. Boehm and Richard Turner. “Management challenges to implementing ag-
ile processes in traditional development organizations”. In: IEEE Software 22.5 (2005),
pp. 30–39. DOI: 10.1109/MS.2005.129.

[10] Martin P. Boerman, Zeeger Lubsen, Damian A. Tamburri, and Joost Visser. “Mea-
suring and Monitoring Agile Development Status”. In: 2015 IEEE/ACM 6th Interna-
tional Workshop on Emerging Trends in Software Metrics. 2015, pp. 54–62. DOI: 10.1109/
WETSoM.2015.15.

127

https://doi.org/10.1109/MC.2010.108
https://doi.org/10.1037/0021-9010.87.6.1134
https://doi.org/10.1109/2.796139
https://agilemanifesto.org
https://agilemanifesto.org
https://doi.org/10.2307/248684
https://doi.org/10.1007/978-3-030-19034-7_8
https://doi.org/10.1109/MS.2005.129
https://doi.org/10.1109/WETSoM.2015.15
https://doi.org/10.1109/WETSoM.2015.15

Bibliography

[11] The LeSS Company B.V. LeSS Framework. 2021. URL: https://less.works/less/
framework/index.html (visited on 03/15/2021).

[12] Tjan-Hien Cheng, Slinger Jansen, and Marc Remmers. “Controlling and monitoring
agile software development in three dutch product software companies”. In: 2009
ICSE Workshop on Software Development Governance. 2009, pp. 29–35. DOI: 10.1109/
SDG.2009.5071334.

[13] Daniela S. Cruzes and Tore Dyba. “Recommended Steps for Thematic Synthesis in
Software Engineering”. In: 2011 International Symposium on Empirical Software Engi-
neering and Measurement. 2011, pp. 275–284. DOI: 10.1109/ESEM.2011.36.

[14] Kim Dikert, Maria Paasivaara, and Casper Lassenius. “Challenges and success fac-
tors for large-scale agile transformations: A systematic literature review”. In: Journal
of Systems and Software 119 (2016), pp. 87–108. DOI: 10.1016/j.jss.2016.06.013.

[15] Torgeir Dingsøyr, Tor E. Fægri, and Juha Itkonen. “What Is Large in Large-Scale? A
Taxonomy of Scale for Agile Software Development”. In: International Conference on
Product-Focused Software Process Improvement. Cham, DE: Springer, 2014, pp. 273–276.
DOI: 10.1007/978-3-319-13835-0_20.

[16] Torgeir Dingsøyr and Nils B. Moe. “Towards Principles of Large-Scale Agile Devel-
opment. A Summary of the Workshop at XP2014 and a Revised Research Agenda”.
In: Agile Methods. Large-Scale Development, Refactoring, Testing, and Estimation. Cham,
DE: Springer, 2014, pp. 1–8. DOI: 10.1007/978-3-319-14358-3_1.

[17] John Doerr. Measure what matters: How Google, Bono, and the Gates Foundation rock the
world with OKRs. Penguin, 2018.

[18] Tim Dreesen, Phil Diegmann, and Christoph Rosenkranz. “The impact of modes,
styles, and congruence of control on agile teams: Insights from a multiple case study”.
In: Proceedings of the 53rd Hawaii International Conference on System Sciences. 2020. DOI:
10.24251/hicss.2020.764.

[19] Tore Dybå, Dag I.K. Sjøberg, and Daniela S. Cruzes. “What Works for Whom, Where,
When, and Why? On the Role of Context in Empirical Software Engineering”. In:
Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement. ESEM ’12. Lund, Sweden: Association for Computing Machin-
ery, 2012, pp. 19–28. DOI: 10.1145/2372251.2372256.

[20] Norman E. Fenton. Software Metrics: A Rigorous and Practical Approach. Ed. by Shari L.
Pfleeger. 2. ed. London: PWS Publishing, 1998.

[21] Quentin W. Fleming and Joel M. Koppelman. “Earned Value Project Management:
A Powerful Tool for Software Projects”. In: The Journal of Defense Software Engineering
19.6 (1998), pp. 19–23.

[22] Jody H. Gittell. “Relational coordination: Coordinating work through relationships
of shared goals, shared knowledge and mutual respect”. In: Relational perspectives in
organizational studies: A research companion (2006), pp. 74–94.

128

https://less.works/less/framework/index.html
https://less.works/less/framework/index.html
https://doi.org/10.1109/SDG.2009.5071334
https://doi.org/10.1109/SDG.2009.5071334
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/10.1007/978-3-319-13835-0_20
https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.24251/hicss.2020.764
https://doi.org/10.1145/2372251.2372256

Bibliography

[23] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. “Design Science
in Information Systems Research”. In: MIS Quarterly 28.1 (2004), pp. 75–105. DOI:
10.2307/25148625.

[24] “IEEE Standard Adoption of ISO/IEC 15939:2007 - Systems and Software Engineer-
ing - Measurement Process”. In: IEEE Std 15939-2008 (2009), pp. 1–55. DOI: 10.1109/
IEEESTD.2009.4775910.

[25] Scaled Agile Inc. SAFe 5. 2021. URL: https://www.scaledagileframework.com (vis-
ited on 03/13/2021).

[26] VersionOne Inc. 14th annual state of agile report. 2020. URL: https://stateofagile.
com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494 (visited on
03/13/2021).

[27] Project Management Institute. Agile Practice Guide. 1st edition. Boston, MA: Project
Management Institute, 2017.

[28] Robert S. Kaplan and David P. Norton. The Balanced Scorecard — Measures that Drive
Performance. 1992. URL: https://hbr.org/1992/01/the- balanced- scorecard-
measures-that-drive-performance-2 (visited on 08/21/2021).

[29] Pertti Karhapää, Woubshet Behutiye, Pilar Rodríguez, Markku Oivo, Dolors Costal,
Xavier Franch, Sanja Aaramaa, Michał Choraś, Jari Partanen, and Antonin Abherve.
“Strategies to Manage Quality Requirements in Agile Software Development: A
Multiple Case Study”. In: Empirical Software Engineering 26.2 (2021), pp. 1–59. DOI:
10.1007/s10664-020-09903-x.

[30] Laurie J. Kirsch. “The Management of Complex Tasks in Organizations: Controlling
the Systems Development Process”. In: Organization Science 7.1 (1996), pp. 1–21. DOI:
10.1287/orsc.7.1.1.

[31] Ida Korpivaara, Tuure Tuunanen, and Ville Seppänen. “Performance Measurement
in Scaled Agile Organizations”. In: Proceedings of the 54th Hawaii International Confer-
ence on System Sciences. 2021, pp. 6912–6922. DOI: 10.24251/HICSS.2021.830.

[32] Eetu Kupiainen, Mika V. Mäntylä, and Juha Itkonen. “Using metrics in Agile and
Lean Software Development – A systematic literature review of industrial stud-
ies”. In: Information and Software Technology 62 (2015), pp. 143–163. DOI: 10.1016/
j.infsof.2015.02.005.

[33] Teemu Lappi, Teemu Karvonen, Lucy E. Lwakatare, Kirsi Aaltonen, and Pasi Kuvaja.
“Toward an Improved Understanding of Agile Project Governance: A Systematic
Literature Review”. In: Project Management Journal 49.6 (2018), pp. 39–63. DOI: 10.
1177/8756972818803482.

[34] Craig Larman. Large-Scale Scrum. Ed. by Bas Vodde. 1st edition. Boston, MA: Addison-
Wesley Professional, 2016.

129

https://doi.org/10.2307/25148625
https://doi.org/10.1109/IEEESTD.2009.4775910
https://doi.org/10.1109/IEEESTD.2009.4775910
https://www.scaledagileframework.com
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://hbr.org/1992/01/the-balanced-scorecard-measures-that-drive-performance-2
https://hbr.org/1992/01/the-balanced-scorecard-measures-that-drive-performance-2
https://doi.org/10.1007/s10664-020-09903-x
https://doi.org/10.1287/orsc.7.1.1
https://doi.org/10.24251/HICSS.2021.830
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.1177/8756972818803482
https://doi.org/10.1177/8756972818803482

Bibliography

[35] Dean Leffingwell. SAFe 4.5 Reference Guide: Scaled Agile Framework for Lean Enter-
prises. 2nd edition. Boston, MA: Addison-Wesley Professional; Safari, 2018.

[36] Dean Leffingwell. Scaling Software Agility: Best Practices for Large Enterprises. Pearson
Education, 2007.

[37] Rensis Likert. “A technique for the measurement of attitudes”. In: Archives of Psy-
chology (1932).

[38] Edwin A Locke and Gary P Latham. “Building a Practically Useful Theory of Goal
Setting and Task Motivation: A 35-year Odyssey”. In: American psychologist 57.9 (2002),
p. 705. DOI: 10.1037/0003-066X.57.9.705.

[39] Edwin A. Locke and Gary P. Latham. “New Directions in Goal-Setting Theory”. In:
Current Directions in Psychological Science 15.5 (2006), pp. 265–268. DOI: 10.1111/j.
1467-8721.2006.00449.x.

[40] John J. Marciniak. Encyclopedia of Software Engineering. 2nd. USA: Halsted Press, 2002.

[41] Matthew B. Miles, A. Michael Huberman, and Johnny Saldaña. Qualitative Data Anal-
ysis. A Methods Sourcebook. 3. ed. Los Angeles, USA: SAGE Publications, 2013.

[42] Nils B. Moe, Bjørn H. Dahl, Viktoria Stray, Lina S. Karlsen, and Stine Schjødt-Osmo.
“Team Autonomy in Large-Scale Agile”. In: Proceedings of the Annual Hawaii Interna-
tional Conference on System Sciences (HICSS). AIS Electronic Library. 2019, pp. 6997–
7006. DOI: 10.24251/HICSS.2019.839.

[43] Nils B. Moe, Viktoria Stray, and Rashina Hoda. “Trends and Updated Research Agenda
for Autonomous Agile Teams: A Summary of the Second International Workshop at
XP2019”. In: Agile Processes in Software Engineering and Extreme Programming – Work-
shops. Ed. by Rashina Hoda. Cham: Springer International Publishing, 2019, pp. 13–
19. DOI: 10.1007/978-3-030-30126-2_2.

[44] Ralf Müller, Miia Martinsuo, and Tomas Blomquist. “Project Portfolio Control and
Portfolio Management Performance in Different Contexts”. In: Project Management
Journal 39.3 (2008), pp. 28–42. DOI: 10.1002/pmj.20053.

[45] Thomas Murphy and Kathryn Cormican. “Towards holistic goal centered perfor-
mance management in software development: Lessons from a best practice analy-
sis”. In: International Journal of Information Systems and Project Management 3.4 (2015),
pp. 23–36.

[46] Nilay Oza and Mikko Korkala. “Lessons Learned In Implementing Agile Software
Development Metrics”. In: UK Academy for Information Systems Conference Proceedings
2012. 38. 2012.

[47] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee. “A
Design Science Research Methodology for Information Systems Research”. In: Jour-
nal of Management Information Systems 24.3 (2007), pp. 45–77. DOI: 10.2753/MIS0742-
1222240302.

130

https://doi.org/10.1037/0003-066X.57.9.705
https://doi.org/10.1111/j.1467-8721.2006.00449.x
https://doi.org/10.1111/j.1467-8721.2006.00449.x
https://doi.org/10.24251/HICSS.2019.839
https://doi.org/10.1007/978-3-030-30126-2_2
https://doi.org/10.1002/pmj.20053
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302

Bibliography

[48] Drucker Peter. People and Performance. Routledge, 2012.

[49] Ken Power. “Definition of Ready: An Experience Report from Teams at Cisco”. In:
Agile Processes in Software Engineering and Extreme Programming. Ed. by Giovanni
Cantone and Michele Marchesi. Cham: Springer International Publishing, 2014, pp. 312–
319. DOI: 10.1007/978-3-319-06862-6_25.

[50] Abheeshta Putta, Maria Paasivaara, and Casper Lassenius. “Benefits and Challenges
of Adopting the Scaled Agile Framework (SAFe): Preliminary Results from a Mul-
tivocal Literature Review”. In: Product-Focused Software Process Improvement. Ed. by
Marco Kuhrmann, Kurt Schneider, Dietmar Pfahl, Sousuke Amasaki, Marcus Ciolkowski,
Regina Hebig, Paolo Tell, Jil Klünder, and Steffen Küpper. Cham: Springer Interna-
tional Publishing, 2018, pp. 334–351. DOI: 10.1007/978-3-030-03673-7_24.

[51] G. Regev and A. Wegmann. “Where do Goals Come from: the Underlying Principles
of Goal-Oriented Requirement Engineering”. In: 13th IEEE International Conference
on Requirements Engineering (RE’05). 2005, pp. 353–362. DOI: 10.1109/RE.2005.80.

[52] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical Software Engineering 14.2 (2009), pp. 131–
164. DOI: 10.1007/s10664-008-9102-8.

[53] Ingo Schnabel and Markus Pizka. “Goal-Driven Software Development”. In: 2006
30th Annual IEEE/NASA Software Engineering Workshop. 2006, pp. 59–65. DOI: 10 .
1109/SEW.2006.21.

[54] Ken Schwaber. “SCRUM Development Process”. In: Proceedings of the 10th Annual
ACM Conference on Object Oriented Programming Systems, Languages, and Applications.
1995, pp. 117–134. DOI: 10.1007/978-1-4471-0947-1_11.

[55] Ken Schwaber. The Nexus Guide. 2018. URL: https://www.scrum.org/resources/
nexus-guide (visited on 03/15/2021).

[56] Ken Schwaber and Jeff Sutherland. The Scrum Guide. 2020. URL: https://scrumguides.
org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf (visited on 05/10/2020).

[57] Maung K. Sein, Ola Henfridsson, Sandeep Purao, Matti Rossi, and Rikard Lindgren.
“Action Design Research”. In: MIS Quarterly 35.1 (2011), pp. 37–56. DOI: 10.2307/
23043488.

[58] Dag I. K. Sjøberg, Tore Dybå, Bente C. D. Anda, and Jo E. Hannay. “Building Theories
in Software Engineering”. In: Guide to Advanced Empirical Software Engineering. Ed. by
Forrest Shull, Janice Singer, and Dag I. K. Sjøberg. London: Springer London, 2008,
pp. 312–336. DOI: 10.1007/978-1-84800-044-5_12.

[59] Christoph J. Stettina and Lennard Schoemaker. “Reporting in agile portfolio man-
agement: routines, metrics and artefacts to maintain an effective oversight”. In: In-
ternational Conference on Agile Software Development. Springer, Cham. 2018, pp. 199–
215.

131

https://doi.org/10.1007/978-3-319-06862-6_25
https://doi.org/10.1007/978-3-030-03673-7_24
https://doi.org/10.1109/RE.2005.80
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/SEW.2006.21
https://doi.org/10.1109/SEW.2006.21
https://doi.org/10.1007/978-1-4471-0947-1_11
https://www.scrum.org/resources/nexus-guide
https://www.scrum.org/resources/nexus-guide
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://doi.org/10.2307/23043488
https://doi.org/10.2307/23043488
https://doi.org/10.1007/978-1-84800-044-5_12

Bibliography

[60] Viktoria Stray, Nils B. Moe, and Rashina Hoda. “Autonomous Agile Teams: Chal-
lenges and Future Directions for Research”. In: Proceedings of the 19th International
Conference on Agile Software Development: Companion. XP ’18. Porto, Portugal: Associ-
ation for Computing Machinery, 2018. DOI: 10.1145/3234152.3234182.

[61] Ömer Uludağ, Nina-Mareike Harders, and Florian Matthes. “Documenting Recur-
ring Concerns and Patterns in Large-Scale Agile Development”. In: Proceedings of the
24th European Conference on Pattern Languages of Programs. EuroPLop ’19. Irsee, Ger-
many: Association for Computing Machinery, 2019. DOI: 10.1145/3361149.3361176.

[62] Ömer Uludağ, Martin Kleehaus, Christoph Caprano, and Florian Matthes. “Identify-
ing and Structuring Challenges in Large-Scale Agile Development Based on a Struc-
tured Literature Review”. In: 2018 IEEE 22nd International Enterprise Distributed Ob-
ject Computing Conference (EDOC). 2018, pp. 191–197. DOI: 10.1109/EDOC.2018.00032.

[63] Ömer Uludağ, Pascal Philipp, Abheeshta Putta, Maria Paasivaara, Casper Lassenius,
and Florian Matthes. “Revealing the State-of-the-Art in Large-Scale Agile Develop-
ment: A Systematic Mapping Study”. In: arXiv preprint arXiv:2007.05578 (2020).

[64] Axel van Lamsweerde. “Goal-Oriented Requirements Engineering: A Guided Tour”.
In: Proceedings Fifth IEEE International Symposium on Requirements Engineering. 2001,
pp. 249–262. DOI: 10.1109/ISRE.2001.948567.

[65] Leo R. Vijayasarathy and Charles W. Butler. “Choice of Software Development Method-
ologies: Do Organizational, Project, and Team Characteristics Matter?” In: IEEE Soft-
ware 33.5 (2016), pp. 86–94. DOI: 10.1109/MS.2015.26.

[66] Laurie Williams and Alistair Cockburn. “Agile software development: It’s about
feedback and change”. In: IEEE Computer 36.6 (2003), pp. 39–43. DOI: 10.1109/MC.
2003.1204373.

[67] Christina Wodtke. Introduction to OKRs. O’Reilly Media, Inc, 2016.

[68] Robert K. Yin. Case Study Research: Design and Methods. 5th ed. Los Angeles, USA:
SAGE Publications, 2014.

132

https://doi.org/10.1145/3234152.3234182
https://doi.org/10.1145/3361149.3361176
https://doi.org/10.1109/EDOC.2018.00032
https://doi.org/10.1109/ISRE.2001.948567
https://doi.org/10.1109/MS.2015.26
https://doi.org/10.1109/MC.2003.1204373
https://doi.org/10.1109/MC.2003.1204373

	Abstract
	Outline of the Thesis
	Introduction
	Motivation
	Research Objectives
	Approach

	Foundations
	Large-Scale Agile Software Development
	Agile Software Development Methodologies
	Large-Scale Agile Software Development
	Scaled Agile Framework (SAFe)
	Large-Scale Scrum (LeSS)
	Other Scaling Frameworks

	Establishing Goals
	Goal-Setting Theory
	Goals in Software Development
	Types of Goals

	Reporting Progress
	Quantitative Reporting
	Reporting Practices

	Related Work
	Case Study
	Methodology
	Case Description
	Establishing of Goals
	Goal-Setting Process
	Types of Goals
	Goal Definition and Documentation Techniques

	Reporting towards Goals
	Types of Reporting
	Reporting on Team Level
	Reporting on Product and Domain Level

	Challenges and Reasons

	Theoretical Model
	Methodology
	Model Constructs and Propositions
	Actors
	Activities and Technologies

	Process Model
	Goal-Setting Process
	Reporting Process

	Artifact Evaluation and Improvement
	Methodology
	Evaluation of Propositions
	Adjustments based on Evaluation

	Discussion
	Key Findings
	Limitations

	Conclusion
	Summary
	Outlook

	Appendix
	Case Study Interviews
	Evaluation Interviews

	Appendix
	Identified Goal-Setting Practices
	Identified Reporting Practices

	Appendix
	Detailed Results of the Evaluation

	Bibliography

