
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Augmenting Knowledge-Based Conversational
Search Systems With Large Language Models

Manuel Klettner

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Augmenting Knowledge-Based Conversational
Search Systems With Large Language Models

Erweiterung von wissensbasierten
Konversationssuchsystemen mit großen

Sprachmodellen

Author: Manuel Klettner
Supervisor: Prof. Dr. Florian Matthes
Advisor: M.Sc. Phillip Schneider
Submission Date: October 15, 2023

I confirm that this master’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, October 15, 2023 Manuel Klettner

Acknowledgments

I want to seize this opportunity to express my gratitude to everyone who supported me
through my academic journey, particularly during the process of writing this master’s thesis.
Specifically, I thank Prof. Dr. Florian Matthes, who enabled me to work on such an exciting
topic with significant current relevance. Furthermore, I extend my appreciation to M.Sc.
Phillip Schneider for consistently offering valuable guidance and advice throughout the
creation of this thesis. Lastly, I would like to thank my family and friends, who unwaveringly
supported me during my academic pursuit.

Abstract

Conversational interfaces are increasingly used by websites and apps, including office soft-
ware as well as creativity tools. This trend reflects a shift towards natural language in
human-computer interaction, which is also facilitated by utilizing Large Language Models to
generate responses aligned with user intents. Although this approach is effective for tasks like
text summarization and text generation, there are still some shortcomings. Issues include hal-
lucination, outdated information, data lineage, and reproducibility. Integrating a knowledge
base as a grounding mechanism can mitigate these problems in the context of conversational
interfaces for information search. Such a system needs to fulfill two main tasks. First, it has to
translate the user intent into a database query, also known as a specific form of semantic pars-
ing. Subsequently, a response has to be generated, grounded on the retrieved data. This thesis
empirically evaluates the suitability of Large Language Models for augmenting components
of such a system. We analyze the effectiveness of four Large Language Models and different
prompting techniques for semantic parsing on a conversational question-answering dataset
called SPICE. We identify common errors in the generated SPARQL queries using automatic
metrics and a human evaluation. Furthermore, we discuss strategies to mitigate such issues
and enhance performance. Our experiments show that Large Language Models can generate
database queries based on conversations. Furthermore, we observe that fine-tuning or few-
shot prompting can substantially improve their semantic parsing capabilities. We assess four
Large Language Models of varying sizes in combination with different prompting techniques
for data-to-text generation. We utilize the triple verbalization benchmark called WebNLG to
analyze their performance, reliability, and common issues of predicted texts. We demonstrate
with our experiments that Large Language Models can create natural language text based on
a set of related triples. The models’ abilities can be improved significantly through fine-tuning
techniques, few-shot prompting, and post-processing. We create two new model variations
of LLaMA by fine-tuning it for semantic parsing and data-to-text generation. As part of
this thesis, we share the corresponding model adapters created using Low-Rank Adaptation.
These models outperform the 20-times larger GPT-3.5-Turbo model on the respective tasks.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Challenges & Research Questions . 6
1.4 Outline . 7

2 Fundamentals 8
2.1 Dialogue Systems . 8

2.1.1 Conversational Search . 8
2.1.2 Semantic Parsing . 9
2.1.3 Data-To-Text Generation . 10

2.2 Pre-Trained Language Models . 10
2.2.1 Transformers . 10
2.2.2 Popular Large Language Models . 11

2.3 Evaluation Metrics . 13
2.3.1 Performance Metrics . 13
2.3.2 Sentence Similarity Metrics . 14

3 Related Work 18

4 Methodology 20
4.1 Research Procedure . 20
4.2 Literature Review . 20
4.3 Selection of Large Language Models . 21
4.4 Selection of Prompting Techniques . 22
4.5 Semantic Parsing . 24

4.5.1 Dataset . 24
4.5.2 Prompts . 26

4.6 Data-To-Text Generation . 27
4.6.1 Dataset . 28
4.6.2 Prompts . 29

v

Contents

5 Results 30
5.1 RQ1: Literature Review . 30

5.1.1 Semantic Parsing . 30
5.1.2 Data-To-Text Generation . 32

5.2 RQ2: Selection of Large Language Models & Prompting Techniques 33
5.2.1 Semantic Parsing . 34
5.2.2 Data-To-Text Generation . 36

5.3 RQ3: Evaluation . 37
5.3.1 Semantic Parsing . 37
5.3.2 Data-To-Text Generation . 40

6 Discussion 42
6.1 RQ1: Literature Review . 42

6.1.1 Semantic Parsing . 42
6.1.2 Data-To-Text Generation . 43

6.2 RQ2: Selection of Large Language Models & Prompting Techniques 44
6.2.1 Semantic Parsing . 45
6.2.2 Data-To-Text Generation . 46

6.3 RQ3: Evaluation . 47
6.3.1 Semantic Parsing . 47
6.3.2 Data-To-Text Generation . 57

6.4 Limitations . 66

7 Conclusion & Outlook 68
7.1 Summary . 68
7.2 Future Work . 70

List of Figures 72

List of Tables 73

Acronyms 74

Bibliography 76

vi

1 Introduction

1.1 Motivation

Interest in conversational interfaces has risen significantly over the last few years. Apart
from research, they have found their way into many people’s lives and become increasingly
integrated into consumer and enterprise applications. One product group that has become
popular in recent years is voice assistants such as Amazon Alexa, Google Assistant, or
Siri. They are integrated into smartphones, smart speakers, or headphones and can send
commands to smart home devices like lights, blinds, and thermostats, play music, or answer
general questions. Another category of applications is text-based conversational interfaces.
These can be bots or plugins for communication platforms such as Slack, Discord, or Telegram
and enable interactions with "systems" in addition to humans. These chatbots can deliver
event notifications through text messages and empower users to request information or
command external systems using written instructions. AI image generators are another
group of text-based tools that became popular. They generate an image based on the user’s
textual description in the prompt. Two examples that deliver impressive results are Stable
Diffusion and Dall-E3. Due to a paradigm shift in the last year, there is considerable attention
on conversational agents based on Large Language Models (LLMs). Prior approaches lead
to agents supporting only a limited variety of interactions and tasks, usually within a
predefined domain. LLMs, on the other hand, provide increasing flexibility, with chatbots
supporting users while learning languages, writing code, summarizing texts, writing essays,
and searching for information.

In this thesis, we focus on text-based conversational search. Hence, we are interested in
information retrieval based on dialogue interactions with multiple turns. Such systems help
to reduce the search’s result space iteratively to relevant information [1, 2]. Although various
approaches are already available, current solutions still have downsides.

A common approach used before the rise of LLMs, referred to as the conventional approach,
works as follows. For every type of request the conversational agent should handle, a
corresponding user intent is defined by providing a list of examples. Furthermore, the agent’s
responses are specified by creating system utterances. Multiple alternative versions can be
provided for each response type, and a single one is selected randomly at run time. These
template responses can also contain placeholders filled with different information depending
on the user’s request. Stories connect intents and utterances. They describe the conversational
flow between user and agent within one interaction. Examples of frameworks for developing
such systems are Rasa, Amazon Lex, and Google Dialogue Flow. One problem with this
approach is the agent’s limited functionality and domain expertise since all supported
interactions must be defined manually. Hence, only a restricted set of user intents can be

1

1 Introduction

handled appropriately, while others lead to fallback responses that frequently fail to meet
user expectations. Furthermore, template queries are needed to integrate external knowledge
sources, such as information from a database. These queries need to be created manually and
are enriched with entities extracted from the user intent during run time. This manual creation
process naturally limits supported functionality. Additionally, some template adaptations
might be required if the database schema changes. The rule-based nature of this approach
can lead to frustrated users since they need to memorize supported functionality, and slight
deviations in wording might lead to fallback responses.

A method that addresses the downsides of the restricted conventional approach and recently
gained lots of attention utilizes Pre-Trained Language Models (PLMs), trained on vast amounts
of data self-supervised by predicting tokens in natural language texts. Through this procedure,
the model learns to understand and generate text while capturing knowledge contained in the
training data. Scaling up the model size and training leads thereby to emergent capabilities
of LLMs [3, 4]. The abilities of LLM can be refined further via fine-tuning on conversational
data, instruction fine-tuning, or Reinforcement Learning from Human Feedback (RLHF) [5, 6].
Using these methods, the model learns to align with human preferences and extrapolates this
behavior to unseen questions and tasks. Although this approach has considerable potential,
some drawbacks and risks still need to be considered, especially in the area of conversational
search. One issue when employing LLMs for information retrieval is the occurrence of
hallucinations. This phenomenon refers to situations in which the model produces responses
that sound convincing despite being factually incorrect. Another problem is the unreliability
of responses, which might change when asking the same question multiple times, occasionally
resulting in contradicting answers. Furthermore, intrinsic knowledge of models is restricted to
their training data. Hence, any events that happened after training are unknown. Additionally,
the predicted output lacks references to the sources from which the answer is derived, making
the verification process challenging [7, 8]. Thus, relying on the currently available systems for
information retrieval comes with substantial downsides and risks. Grounding mechanisms
are required to mitigate these risks, ensuring truthful and reliable responses.

We address these issues by augmenting the traditional chatbot architecture with LLMs
while utilizing a graph knowledge base to ground its responses. Therefore, we mainly focus
on two tasks. Firstly, translating natural language user questions into database queries, also
known as a specific form of semantic parsing. The second task, data-to-text generation, deals
with creating a natural language response based on structured data. For these use cases,
we evaluate LLMs optimized for conversational interactions, possessing various sizes and
training methodologies. Furthermore, we perform a series of experiments with different
prompting and post-processing techniques.

1.2 Problem Statement

With this thesis, we want to address common issues of conventional (Problem 1) as well as
LLM-based (Problem 2-5) conversational search systems.

2

1 Introduction

Problem 1 - Domain Specificity The functionality and domain are limited when using
the conventional approach to create a conversational search system. Moreover, the system’s
complexity significantly increases when supporting multiple use cases and conversation flows.
The cause of this issue is that user intents, system utterances, and stories need to be defined
manually. Furthermore, template queries need to be created when integrating a database to
acquire knowledge. Figure 1.1 shows an example of defining an intent, utterance, and story
when using the Rasa framework to create a chatbot that responds to a greeting from the user.

Thus, while conversational agents employing LLMs can support users on a wide range
of requests, the conventional approach is inherently limited, especially when dealing with
unanticipated user requests.

Figure 1.1: This figure shows the definition of a user intent (greet), a user utterance (utter_greet),
and a story (happy path) for a chatbot created with the Rasa framework that
responds to a greeting of the user. The list of examples for the intent is shortened
to increase readability

Problem 2 - Hallucinations As LLMs learn how an expected answer looks like during
training, it sometimes creates responses that sound convincing to users but are factually
incorrect. In some instances, this is due to lacking knowledge of the model; in other cases, the
model contains the correct information but does not include it in the response. Thus, when
users trust these systems, it can lead to negative societal implications, such as misinformation
and dissemination of conspiracy theories. An example of such a hallucination occurred in
Google’s announcement of their chatbot Bard. When it was asked about discoveries from the
James Webb Space Telescope, it responded, among other things, with: "JWST took the very
first pictures of a planet outside of our own solar system" [9]. According to NASA’s website,
this is factually incorrect as it states that the first image was taken in 2004 and hence before

3

1 Introduction

the James Webb Space Telescope became operational [10].

Problem 3 - Reproducibility Asking the chatbot multiple times the same question leads
to different answers that are not reliably reproducible. In some instances, these responses
are just varying formulations of the same content, but in other cases, they are inconsistent,
including information that might contradict each other. When the model returns a faulty
response, it may occasionally recognize its mistake after being asked about the correctness of
its response. This issue demonstrates that incorrect responses are not always caused by a lack
of knowledge. Figure 1.2 shows such an example using ChatGPT.

Source: This image was created using ChatGPT (GPT-3.5) in June 2023 [11].

Figure 1.2: In this figure, we ask ChatGPT about countries starting with the letter v, and it
returns a wrong response but recognizes its error when asking for clarification.

Problem 4 - Outdated Information LLMs acquire knowledge during training of the model
weights. Since the weights are fixed during inference time, it does not learn new information
while users interact with it. Hence, the knowledge of a LLM is limited by its training data.
Once the model is trained, intrinsic information can only be updated through additional
training or fine-tuning, which requires significant computational resources, time, and energy.
When we ask ChatGPT about a recent event, it responds that it was only updated with new
information until September 2021. This example is displayed in Figure 1.3.

4

1 Introduction

Source: This image was created using ChatGPT (GPT-3.5) in June 2023 [11].

Figure 1.3: In this figure, we ask ChatGPT about the announcement of Metas "LLaMA" and
receive the response that it does not know due to a knowledge cutoff date

Problem 5 - Data Lineage To gain an understanding of language, LLMs are trained on
vast amounts of data. In the inference process, the generated responses can draw upon
information from many documents that constitute the underlying training data. As users
have no insight into the sources of the generated response, they do not know if the answer
is trustworthy and correct. Hence, one needs to verify the responses with external means,
limiting its usefulness as a search engine. Furthermore, quality, trustworthiness, and possible
biases of training data can not be assessed by users due to the large quantities of documents
and because most companies do not publish information about their training process.

Scope Above, we have identified one problem with employing the traditional approach
for conversational search systems and highlighted four challenges when utilizing a strictly
LLM-based method. To address these limitations, in this thesis, we consider a system that
combines both approaches by augmenting individual components of a conventional chatbot
with LLMs. Figure 1.4 visualizes such a system. The input is a textual prompt containing a
natural language question. The Natural Language Understanding (NLU) component, shown
on the left, handles this request. It is responsible for translating the question into a database
query, a task also known as semantic parsing. Subsequently, the query is sent to a knowledge
base to acquire relevant information. Afterward, the retrieved data is forwarded to the
dialogue management component. It keeps track of previous interactions with the user,
including a history of states and entities based on the current question, data received from the
NLU component, as well as former requests and responses. This component decides in what
manner the conversational agent should respond. To be more specific, it does not generate
a concrete answer text but rather decides the type of response the system should provide.
This answer could be, for example, a clarifying question or the requested information. Due
to limited time, a dedicated dialogue management component is out of the scope of this
thesis. For state and entity tracking, we rely on the capabilities of the LLM used for NLU.
A dedicated dialogue management approach can be addressed in future work. Finally, the
user question and retrieved data from the knowledge base are used to create an answer. The
response is returned in natural language to ensure user-friendliness. The part of the system

5

1 Introduction

responsible for this operation is Natural Language Generation (NLG), and the corresponding
task is called data-to-text generation.

Figure 1.4: This figure shows the scope of the thesis. The out-of-scope component is high-
lighted in orange

1.3 Research Challenges & Research Questions

Challenge 1: We need to investigate approaches for harnessing LLMs in semantic parsing
and text generation

RQ1: Which previous studies have investigated using LLMs for the tasks of semantic parsing and text
generation? Semantic parsing and text generation are no new research fields. Consequently,
with research question 1, we want to examine existing methodologies that address the stated
tasks. This process is crucial since it allows us to discern effective approaches from those
that require improvement. Furthermore, it enables us to evaluate our system against the
performance of existing solutions.

Challenge 2: We need to find suitable LLMs and prompts for the two considered tasks

RQ2: What selection of Large Language Models and Prompting techniques are suitable for a compara-
tive analysis of the considered tasks? Our work utilizes existing pre-trained language models
since training an LLM from scratch takes tremendous time and resources. As a multitude of
LLMs are available, it is impossible to consider them all. Thus, we need to select promising
ones with different characteristics like model size, training procedure, and training data.
Furthermore, the formulation and structure of a prompt significantly impact a model’s
performance. Therefore, we need to select some well-established prompting techniques for
comparison.

RQ3: How capable are the selected Large Language Models and prompting strategies for semantic
parsing and triples-to-text generation based on automatic and human evaluation? With the third

6

1 Introduction

research question, we investigate the performance of chosen LLMs and prompting techniques.
We compare them against each other and do an evaluation specifically for semantic parsing
and triples-to-text generation. For this purpose, we use automatic metrics to get a broad
understanding of their capabilities on a large number of samples. Additionally, we want to
get detailed insights into their shortcomings and limitations. Thus, we conclude the analysis
with a human evaluation on a subset of generations. We provide the code of our experiments
and the adapters for the two fine-tuned LLaMA LLMs in our GitLab repository 1.

1.4 Outline

To address the identified research questions, this thesis is structured as follows. Chapter 2
provides the foundational knowledge required to understand this thesis’s content. In Chapter
3, we give an overview of related research. The fourth chapter addresses the methodology
used to obtain our results. First, it describes the procedure of our Literature Review. Then,
the criteria for selecting LLMs and prompting techniques are explained. After that, it reports
the utilized approaches and datasets for semantic parsing and data-to-text generation. The
results of the three research questions are contained in Chapter 5. A detailed analysis and
insights derived from our results are part of the sixth chapter. There, we start by reporting
our key findings and conclude by reporting the limitations of our work. The last chapter
provides a summary of the thesis and suggestions for further research.

1https://gitlab.lrz.de/ge49gah/MastersThesis_Code

7

https://gitlab.lrz.de/ge49gah/MastersThesis_Code

2 Fundamentals

This chapter provides the foundational knowledge required to understand the rest of this the-
sis. It starts by defining dialogue systems and, more specifically, Conversational Search (CS).
Moreover, semantic parsing and data-to-text generation, two crucial parts of the considered
CS system using an external knowledge base, are explained. We continue with the Natural
Language Processing (NLP) section by providing an overview of transformers, the most
prominent methodology for creating LLMs, and describe the properties of the different popu-
lar language models. At the end of this chapter, we explain the evaluation metrics utilized
to analyze the selected LLMs and prompting techniques, including the performance metrics
used to evaluate semantic parsing and the sentence similarity measurements employed to
test data-to-text generation.

2.1 Dialogue Systems

According to Deriu et al. [12], there are three main classes of Dialogue Systems (DS). These
are conversational, task-based, or question-answering systems. They are controlled by the
user in natural language and can be employed for different use cases like virtual assistants
or Information-seeking systems. DS provide the user with a text-based, speech-based, or
multi-modal interface. Thereby, dialogues are usually structured in turns.

• Conversational agents often try to mimic human behavior and are built for open-domain
dialogues following an unstructured nature. An early example of such a system is
called ELIZA [13].

• Task-based systems help the user to solve a specific task. They are usually developed for a
particular domain and follow a predefined structure. An example is a virtual assistant
in a car that helps the driver to set the desired destination in the navigation system.

• Question Answering systems try to answer natural language questions of the user. They
commonly utilize external knowledge bases to retrieve the required information and can
be capable of only single-turn or multi-turn interactions supporting follow-up questions.

2.1.1 Conversational Search

CS is defined by Vakulenkco et al. [14] as "the task of retrieving relevant information by
using a conversational interface". Conversational interfaces enable humans to interact with
machines in natural language, either by voice or text, and aim to make the interaction with
systems more intuitive. Moreover, they are well-suited for explorative search, involving

8

2 Fundamentals

the process of refining the search space through multiple conversational exchanges. This
capability is essential in extensive, multi-domain information sources like knowledge graphs
[15, 16]. Multiple inconsistent definitions are available for CS, and researchers have no clear
consensus yet on which one to prefer. In general, these systems have the goal of helping users
to describe their information needs and provide suitable results that fulfill those demands. In
addition, it should be possible for users to refine results based on their preferences.

Radlinki et al. [17] defines five desired properties for conversational search systems as
follows:

1. User Revealment, meaning that the system helps users to define their information needs

2. System Revealment, which refers to the capability of the system to show its abilities and
properties of its knowledge base

3. Set Retrieval, describes that the system assists the user by providing sets of complemen-
tary items that fit the given information need

4. Memory, means that the system keeps track of the conversation history so that the user
or system can refer to previously mentioned statements

5. Mixed Initiative denotes the ability of the system to choose an appropriate level of
initiative, while users can always take it.

Although the system we address in this thesis does not fulfill all these properties, we
still consider it a conversational search system. The primary reason is that in addition to
conducting natural language information searches, the user can refine search results by
providing follow-up questions. This helps to uncover the system’s capabilities and assists in
defining the user’s information needs. Furthermore, the system maintains a record of the
conversation history, allowing for indirect references to entities that have been mentioned
previously.

2.1.2 Semantic Parsing

Translating a natural language utterance into a logical, machine-readable representation,
like a database query, is called semantic parsing. Much of the existing research focuses on
text-to-SQL transformation, but some work also addresses other query languages such as
SPARQL or Cypher. Traditional methods for creating database queries based on natural
language rely on templates that are selected and filled using rule-based approaches. Most
current research utilizes PLMs instead to achieve state-of-the-art results. The natural language
question is often first translated into a constrained intermediate language before the final
database query is created. Semantic parsing is a crucial task, as it has the potential to be the
enabler for utilizing information from databases for non-technical users.

An example of semantic parsing, more specifically text-to-SPARQL translation, is:

Question: "How tall is the Eiffel tower?"

Query: "SELECT ?x WHERE { wd:Q243 wdt:P2048 ?x . }"

9

2 Fundamentals

The variable of the result value is thereby "?x" while Q243 refers to the Wikidata entity "Eiffel
Tower" and P2048 to the property "height".

2.1.3 Data-To-Text Generation

Verbalizing structured data into natural language text is also know as data-to-text translation.
Structured data can be JSON, XML, RDF triples, or tables. Hence, research consists of multiple
tasks, such as generating explanations for table values or creating fluent text for a set of RDF
triples. An RDF triple contains the following form:

:alice foaf:age 25 .

It contains a subject (alice), predicate (age), and object (25) as well as namespace prefixes,
here defined as ":" and "foaf:". Verbalizing a set of such triples is the task we address in this
thesis. For the above RDF triple, a desired generation would be:

Alice is 25 years old.

Triples-to-text translation is relevant to make graph data, usually specified as RDF triples, more
understandable to regular users. As for many NLP tasks, this has traditionally been addressed
using strategies comprised of rules and templates. Current state-of-the-art approaches use
PLMs, combined with fine-tuning, prompt-tuning, or prefix-tuning.

2.2 Pre-Trained Language Models

PLMs are models already trained on vast amounts of data. Thus, they can be employed
directly to solve general tasks or fine-tuned to enhance their performance on domain or
task-specific instructions. In the following, we first give an overview of the transformer
architecture widely used for PLMs. Afterward, we provide an overview of popular LLMs
and their characteristics.

2.2.1 Transformers

All explanations of this section and its subsections are based on [18]. The transformer
architecture was introduced by Vaswani et al. in the year 2017 with their paper titled:
"Attention is all you need" [19]. This publication led to a paradigm shift, with most state-of-
the-art approaches of NLP tasks currently utilizing transformer models. Using self-supervised
learning, they are trained on large amounts of textual data, usually from the internet. This
learning approach means that the data does not need to be labeled by humans manually.
Instead, tasks are selected that use the texts themselves as ground truth. For example, one
such training method for self-supervised learning is to mask a word in a text, predict it, and
compare it with the original term. The models gain a statistical understanding of language
through training on various texts. These are called foundational models or PLMs, as they
have general language knowledge but are not yet trained for specific tasks. They can be
fine-tuned on task-related training data to optimize a PLM for a particular use case. For a

10

2 Fundamentals

more detailed explanation of the transformer architecture, we refer to the initial paper by
Vaswani et al. [19]. In the following, we explain three different types of transformer models.

Auto-Encoding Transformer

If a model only uses the encoder part of the transformer in its architecture, it is called
an auto-encoding transformer or encoder model. Transformers use a mechanism called
attention in their architecture, which indicates words that are most important to consider
when predicting a token. For encoder models, attention layers can access the entire input
sentence. Thus, when a word in the sentence is masked, it can take terms to the left and right
of the mask into account, which is called bi-directional attention. Auto-encoding transformers
can be pre-trained using masked word prediction, which refers to predicting a corrupted
(masked) word in a sentence. This architecture best suits sentence classification, named entity
recognition, and extractive question answering. One of the most popular models of this
family is Bert.

Auto-Regressive Transformer

A decoder model, called auto-regressive transformer, only uses the decoder part of transformer
architecture. In contrast to encoder models, its attention layers can only access words before
a given word. Therefore, pre-training is usually done by predicting the next token of an
unfinished sentence. Since the original text is known, the predictions are compared to the
ground truth to calculate the loss and update the model weights. These kinds of models are
most suitable for text generation tasks, with GPT-2 being an example of a model belonging to
this family.

Sequence-to-Sequence Transformer

Encoder-decoder models, also known as sequence-to-sequence transformers, use both parts of
the transformer architecture, as proposed in the original paper. Thereby, the attention layers
of the encoder have access to the entire input sentence. In contrast, the attention layers of
the decoder can only attend to words before the given word. For pre-training such models,
multiple subsequent words can be replaced with a single mask. The goal of this task is
to predict the original words. Encoder-decoder models are usually used for summarizing,
translation, or generative question answering. Popular models are BART and T5.

2.2.2 Popular Large Language Models

This subsection describes the fundamentals of popular LLMs. We give a brief overview of the
utilized training strategies and datasets. Furthermore, we name some essential properties of
the models. For detailed information, we refer to the corresponding papers.

11

2 Fundamentals

LLaMA LLaMA refers to a group of models developed by Meta and open-sourced in
February 2023 with a non-commercial license. They are available in four different sizes. To be
more specific, a 7B, 13B, 33B, and 65B parameter model is available. The smallest LLM (7B)
of this family utilizes an adapted transformer model architecture and has been pre-trained
on publicly available and open-source data. For this training, they use multiple datasets,
including:

• English CommonCrawl [20] and C4 [21]

• GitHub projects distributed under open-source licenses like MIT

• Wikipedia entries in 20 different languages

• Two Book datasets

• ArXiv for scientific data

• StackExchange for questions and answers

The 7B model was trained with around one trillion tokens, with most tokens only being used
for one epoch during training. [22]

Alpaca A version of LLaMA that improves its instruction-following capabilities through
supervised fine-tuning is Alpaca. This LLM is created by researchers at Stanford and is
available with 7B parameters. The model is fine-tuned on 52k instruction-following examples.
To create this dataset, the researchers use the self-instruct approach [23], utilizing OpenAI’s
text-davinci-003. As Alpaca is based on LLaMA, its license only permits non-commercial use.
[24]

Vicuna The Vicuna models are a fine-tuned version of LLaMA optimized for conversations
with a 7B and 13B model being available. For fine-tuning, they created a dataset based
on ChatGPT conversations that users shared on the website ShareGPT.com. The dataset
contains around 70k samples, and the authors do not publish it. The model allows multi-turn
conversations with a maximum context length of 2048 and uses the same license as LLaMA.
[25]

LLaMA - Finetuned Like Vicuna, this model is also based on LLaMA but fine-tuned for our
specific tasks. Instead of full fine-tuning, we use the Low-Rank Adaptation of Large Language
Models (LoRA) [26] approach. This technique significantly reduces trainable parameters and
GPU memory requirements while performing similar to regular fine-tuning. We use the
scripts from the git-cloner GitHub repository [27] based on the Vicuna training code [28] but
optimized for low-resource GPUs. The training datasets and the exact command, including
hyperparameters, are part of our GitLab repository 1. The resulting models support a context
length of 512 tokens and have the same license as LLaMA.

1https://gitlab.lrz.de/ge49gah/MastersThesis_Code

12

https://gitlab.lrz.de/ge49gah/MastersThesis_Code

2 Fundamentals

Text-Davinci-003 In contrast to the previously mentioned models, Text-Davinci-003 is a
closed-source model created by OpenAI. It has a context length of 4k tokens. In one of their
research papers, the model is referred to as GPT-3 175B [3], but OpenAI states on their website
that the size of the model available through the API might differ to some extent [29]. Text-
davinci-003 was trained using RLHF [30]. More specifically, Proximal Policy Optimization
(PPO) [31] was used. The training procedure consists of the following steps.

1. A dataset is created, containing human written responses to a set of prompts

2. The model is fine-tuned using supervised learning on these samples and on model
outputs that are ranked with the highest quality score by labelers

3. Another dataset is created. This time, humans compare model outputs and label their
preferences

4. A Reward Model (RM) model is trained to utilize the second dataset. It predicts which
model response labelers would favor

5. The fine-tuned model is trained further using the RM as a reward function. The goal is
to maximize reward utilizing the PPO algorithm

More details about this procedure can be found in the paper "Training language models to
follow instructions with human feedback" [32].

GPT-3.5-Turbo Similar to Text-Davinci-003, GPT-3.5-Turbo is a closed-source model by
OpenAI. Therefore, limited information is available as they do not disclose information like
the number of model parameters or the datasets used for training. Although not officially
confirmed, GPT-3.5-Trubo is expected to have approximately a size of 150B parameters.
Furthermore, the supported context length of the standard model is 4k tokens [33]. The
model is an improvement of text-davinci-003 but enhanced for the chat use-case [29].

2.3 Evaluation Metrics

In this section, we look in detail at the metrics used for automatic evaluation. First, we
describe metrics that measure how closely related the result set is compared to the desired
solution. In the thesis, use them to analyze the performance of semantic parsing. Afterward,
an explanation for measurements is given, comparing generated sentences with desired
lexicalizations. We refer to those as sentence similarity measurements. They are used to
analyze the approaches for triples-to-text generation.

2.3.1 Performance Metrics

The basis for the following explanations is [34]. If there is a desired set (gold standard), we
can classify each element of the actual result into four categories.

13

2 Fundamentals

1. True Positive (TP) are entities that are part of both the gold standard and the received
result

2. True Negative (TN) are the inverse. Hence, elements that belong neither to the gold
standard nor to the received result

3. False Positive (FP) are entities contained in the actual but not in the desired result

4. False Negative (FN) are missing items. Thus, they are not part of the result, although
they belong to the gold standard

These four groups are used to calculate the following measurements.

Precision This metric describes how many correct results are returned out of all results. If
only relevant elements exist in the solution, this measure is one. Important to note is that it
does not give any information about missing but desired entities. Hence, if the gold standard
contains 500 entities, but only one (correct) entity is contained in the result, precision is still

optimal with a value of one. Precision =
TP

TP + FP

Recall The measure describing how many of the desired results are contained in the actual
solution is called recall. If all elements of the gold standard are contained in the result, this
measure is one. Thus, it is also one if only one item in the gold standard exists but 500,

including the desired one, in the actual result. Recall =
TP

TP + FN

F1-Score The f1-score addresses the limitations of recall and precision by combining both
metrics into a single score. It is one if recall and precision are one. Thus, the desired solution

needs to match exactly. F1-score =
2

1
precision + 1

recall

=
TP

TP + FN+FP
2

Accuracy We use accuracy to measure the performance of binary classification. More
specifically, if there is always a single (integer or boolean) result, the solution is either
correct or incorrect. Hence, this metric denotes the number of accurate predictions out of all

predictions. Accuracy =
TP + TN

TP + TN + FP + FN

2.3.2 Sentence Similarity Metrics

The following metrics are used to compare generated sentences with their expected lexicaliza-
tions. They are commonly used to measure the quality of translation systems, transforming
sentences from a source into a target language. We utilize these metrics to estimate the
performance of different systems in translating triples into natural language text.

14

2 Fundamentals

Bilingual Evaluation Understudy (BLEU) One of the most popular metrics for comparing
the similarity of sentences is called Bilingual Evaluation Understudy (BLEU). It is calculated
by first denoting the Brevity Penalty (BP). C is the candidate translation length, and r is the
length of the reference corpus.

BP ≡

1 if c > r ,

e(1−r)/c if c ≤ r .

Then, BP is used to compute BLEU.

BLEU ≡ BP × exp (
N

∑
n=1

wn log pn)

With N = 4, wn =
1
n

, and pn =
#correct_predicted_n-grams
#total_predicted_n-grams

.

The score is between zero and one, with one being the optimal outcome.
One of the advantages of BLEU is the possibility to consider multiple reference translations.

Furthermore, it is a commonly used metric, ensuring comparability of the results with
other research. As BLEU utilizes n-grams for calculating the score, it does not depend on
embeddings or models that must be trained with large amounts of text. Thus, it is also
applicable for low-resource language. An additional upside is the fast computation of the
score [35].

Nevertheless, BLEU also comes with some downsides. It does, for example, only consider
exact word matches as correct. Hence, stems and synonyms are counted as different words,
and it does not take their meaning into account. Furthermore, it does not consider the order
of words as it only counts correctly predicted n-grams [36].

Metric for Evaluation of Translation with Explicit ORdering (METEOR) To calculate the
Metric for Evaluation of Translation with Explicit ORdering (METEOR) score, Precision (P)
and Recall (R) need to be computed for the unigrams first. This calculation works analogous
to the description in subsection 2.3.1.

P =
#correct_predicted_unigrams
#total_predicted_unigrams

R =
#correct_predicted_unigrams
#total_re f erence_unigrams

Using P and R, Fmean can be calculated:

Fmean =
10PR

R + 9P
Furthermore, a penalty term is created based on the alignment to the reference sentence.
There is only one chunk in the optimal case, with the reference string matching the generation
exactly. In the worst case, there is no overlap, and each unigram is a separate chunk.

15

2 Fundamentals

Penalty = 0.5 × (
#chunks

#unigrams_matched
)3

Using Fmean and the penalty term, the meteor score can be computed.

METEOR = Fmean × (1 − Penalty)

An upside of METEOR is that it takes stems and synonyms into account. It also con-
siders the word order through alignment. Additionally, it is widely used, which enables
comparability of research results. Furthermore, this score has fast computation times [37].

METEOR has limitations as it requires external resources like stemmer and synonym
lexicon. Hence, only a limited number of languages are supported. In addition, it might
penalize sentences that have the same meaning but a different surface form compared to the
reference [36].

Translation Edit Rate (TER) A measure that counts the number of operations needed to
reach reference sentences based on a provided text is called Translation Edit Rate (TER).
These edit operations are insertion, deletion, substitution of single words, and shifts of word
sequences. TER is thereby calculated as follows:

TER =
#o f _edits

average_#o f _re f erence_words

An advantage of this metric is that it is simple to understand, as no complex mathematical
equations are involved.

A downside is that it does not take semantics into account since it does not consider
synonyms and stems of words [38].

Bert To calculate the Bert-score, a sequence of vectors for reference sentence x =< x1, ..., xk >

and candidate sentence x̂ =< x̂1, ..., x̂l >, generated by the embedding model, are required. P
and R are computed, matching each token of a sentence to the token with the highest cosine
similarity of the other sentence. Thus, the similarity score is maximized.

RBERT =
1
|x| ∑

xi∈x
max
x̂j∈x̂

xT
i x̂j

PBERT =
1
|x̂| ∑

x̂j∈x̂
max
xi∈x

xT
i x̂j

Based on PBERT and RBERT the f1 measure is calculated.

FBERT = 2
PBERT × RBERT

PBERT + RBERT

Optionally, the Bert score is available with importance weighting by utilizing inverse document
frequency (idf), but we do not use it in this thesis.

A major advantage of the Bert score is that it considers the semantics of a sentence by
utilizing embeddings and not just its words. Thus, it takes paraphrases into account. The
Bert score is applicable for most texts since it uses BERT embeddings available in over 100

16

2 Fundamentals

languages. Furthermore, it penalizes different word ordering between candidate and reference
sentences if this changes the meaning.

A downside of the Bert-score is slower computation compared to other metrics like BLEU,
especially if no GPU is available [36].

17

3 Related Work

This chapter gives a broad overview of existing research for semantic parsing and data-to-text
generation. We first summarize how these tasks were addressed traditionally. Afterward, we
look at the evolution of such systems over time towards modern procedures.

Semantic Parsing Semantic parsing aims to map utterances written in natural language
to logical forms. Use cases range from generating database queries to understanding and
executing commands or improving the capabilities of conversational agents. For several
decades, there has been continuous research interest in this field [39]. Early approaches relied
on handcrafted rules based on syntax, linguistic features, and pattern matching [40, 41]. Thus,
these systems were inherently inflexible and domain-specific. Then, statistical techniques that
train models on desirable input-output mappings became more prominent. These approaches
learn, for example, a lexicon that pairs phrases to their corresponding logical representations
from data. Research papers addressing such statistical methodologies are [42, 43, 44]. With
the rising popularity of deep learning architectures leading to significant advancements in
many fields of NLP, semantic parsing has been modeled as a machine translation problem.
For this end-to-end approach, a neural network is trained on large amounts of data to convert
a natural language input directly into the target meaning representation. Currently, many
systems utilize sequence-to-sequence neural networks based on the transformer architecture
that became popular with the seminal paper "Attention is all you need" by Vaswani et al.
[19]. Since the resulting models develop a statistical understanding of language based on
the training examples, they have a high degree of flexibility and generalize across several
domains. Thus, the need for handcrafted lexicons, rules, or templates is obviated [45, 46,
47]. Hybrid techniques, combining traditional components with neural models, exist as
well. These approaches reduce the decoding complexity of a neural network by imposing
constraints through grammars and pre-established structures [48, 49].

Most existing literature about semantic parsing focuses on generating a meaning represen-
tation for a single user utterance in isolation. A growing body of recent research considers
additional information, like the context of a question, for creating the logical forms [50].
One such field is Conversational Question Answering (CQA), which is closely related to
CS. These approaches incorporate previous questions and answers, commonly called the
conversation history, to provide more contextually relevant translations through improved
question disambiguation and handling of indirectly referenced entities. [51] is an example of
such a system. It takes the interaction history during generation into account.

Datasets suitable for assessing CQA systems are currently scarce. Given that many existing
benchmarks are specialized to particular domains or have constrained scale, we opt for the
recently introduced SPICE dataset [52]. It extends [53] by providing SPARQL queries for the

18

3 Related Work

corresponding natural language questions. In addition, the authors of SPICE develop and
provide two strong baseline models. The first approach is based on [54] and generates the
entire query in a single step, utilizing a sequence-to-sequence model. The second baseline
creates SPARQL templates that are subsequently populated using classifiers [55].

Data-To-Text Generation Early approaches have utilized rule-based pipelines, consisting
of multiple components with distinct tasks. The system of [56], for example, comprises four
sequential modules. The first creates facts based on provided data, which are subsequently
transformed into sentences in the second component. After ordering these messages, the
last step creates the resulting output of the pipeline. For these tasks, phrase lexicons and
domain-specific grammars are used, which limits the flexibility and generalizability of the
system significantly. [57] gives an overview of such traditional NLG techniques. Related
to these traditional pipeline-based approaches is research using domain-specific ontologies
and rules to generate natural language text from data [58]. PLMs lead to advancements in
many NLP areas, including NLG and more specifically data-to-text generation [59]. One
limitation of neural approaches is that lots of data is required to train or fine-tune models on
specific tasks, making the development of such systems unsuitable for low-resource settings.
To address this issue, multiple researchers investigate zero-shot or few-shot learning for
data-to-text translation [60, 61]. Similar to semantic parsing, some hybrid approaches exist,
combining the traditional pipeline architecture with neural models [62, 61]. [63], for instance,
utilizes templates to transform triples into sentences that are subsequently combined by a
PLM into a coherent paragraph.

Besides automatically creating texts based on data, another challenge lies in evaluating
these generations. Dou et al. [8] address the human evaluation of machine text by creating
the framework SCARECROW for analyzing common error categories. Their work aims to
make the framework usable for people without NLP expertise and to standardize the human
evaluation of NLG tasks. They define ten error types, including "bad math", "commonsense"
issues, and "self-contradiction". In addition, they evaluate LLMs of different sizes on these
categories against human written texts. For details, we refer to their paper [8].

In this thesis, we do a qualitative analysis of triples-to-text generations by investigating com-
mon error types with the help of human annotators. We do not use the entire SCARECROW
framework, but their work heavily influences the creation of our error categories. We omit
some of their error types, such as "bad math", because they are redundant for our dataset. In
the end, we use off-prompt and redundant in addition to inaccurate, which aggregates multiple
SCARECROW categories like grammar, self-contradiction, and commonsense. Furthermore, we
introduce the two new error types mistranslated and unlexicalized that are specific to our
task. Thereby, mistranslated refers to cases where the created text is in a different language
than intended. For example, if the set of triples contains some Spanish names, confusing
the LLM to verbalize the triples in Spanish instead of English. Since some triples contain
terms not used in the same form in human texts like "public_company", some models fail to
transform them into more natural phrases ("public company"). Thus, this is an instance of the
unlexicalized error. A detailed explanation of all five issue types is shown in Table 6.4.

19

4 Methodology

4.1 Research Procedure

The general research procedure of this thesis proceeds as follows. First, we review literature
to find existing research for semantic parsing and text generation leveraging LLMs as they
are crucial components comprising conversational search systems. Afterward, we select 4
LLMs of different sizes, being created using diverse training procedures. With this collection
of models, we want to test the influence of LLM, possessing a wide range of characteristics,
on downstream tasks. Furthermore, we choose two well-established prompting techniques
that we evaluate with each of the selected models. Since the research addressing LLMs
and prompt engineering is evolving quickly, we want to pick well-established techniques
that will likely generalize to other models. After that, we look in detail at the two relevant
tasks, i.e., semantic parsing and data-to-text generation. Starting with semantic parsing, we
select a dataset suitable for a comparative evaluation. Then, we create prompt templates
for both chosen prompting techniques. These templates are filled with data at run-time.
This is followed by performing inference using the test set to generate the evaluation data.
Once the predictions are finished, we post-process the results in a rule-based manner to
prevent common deviations from the gold standard. Afterwards, we run the evaluation
scripts to generate the metrics used to assess performance. The research procedure utilized
for data-to-text generation is analogous to semantic parsing.

4.2 Literature Review

This section discusses how we approach answering the first research question. Hence, we
address finding previous research about utilizing LLMs for semantic parsing and data-to-text
generation. Therefore, we do a systematic literature review using scientific databases to find
academic papers. First, we develop a search string for each of the two topics. Afterward,
we use these queries for three academic databases, namely, ACM Digital Library, IEEE
Xplore, and Scopus, filtering studies by title, keywords, and abstract to find matching results.
Furthermore, we do forward and backward snowballing based on the preliminary results.
Forward snowballing refers to looking at work that cites relevant papers, while backward
snowballing means considering papers cited by relevant articles [64]. We define inclusion and
exclusion criteria to ensure that only relevant work is included. These are used for filtering
the first results to receive the final set of considered academic work.

20

4 Methodology

Inclusion and Exclusion Criteria We only take peer-reviewed papers into account that
have been published in journals or were presented at academic conferences, to assure a high
quality of the sources. Furthermore, they have to be written in English and deal with English
texts or datasets since our work focuses on semantic parsing and data-to-text generation in
the English language. Full access to the contents of the academic work needs to be granted
to us. Otherwise, it will be excluded since it is crucial to take the entire information of
considered approaches into account. Additionally, we include work only if it is published
within or after 2020 as the paper "Retrieval-augmented generation for knowledge-intensive
nlp tasks." of Lewis, Patrick, et al. [65] was released this year and sparked interest in research
about grounding conversational agents with external knowledge bases, which is the focus
of our work. Hence, the period of publication is from January 2020 to August 2023. Lastly,
the studies have to be closely related to semantic parsing or data-to-text generation utilizing
LLMs. This is determined by screening the title and abstract of the preliminary results.

Search Queries We iteratively develop two search strings for querying the scientific databases.
Each of them utilizes Boolean operators to connect multiple keywords. The first search string
focuses on semantic parsing, more specifically, generating database queries. Therefore, we
include "semantic parsing", "query generation", and "query creation" using the OR operator.
Moreover, we are only interested in approaches utilizing LLMs for the generation. Thus, one
of the terms "large language model", "pretrained language model" or "pre-trained language
model" must also be contained. The resulting query is:

("semantic parsing" OR "query generation" OR "query creation") AND ("large
language model" OR "pretrained language model" OR "pre-trained language model"
)

The second search string addresses work about data-to-text generation. Hence, we include
the terms "data-to-text" and the more specific task of interest, "triples-to-text". Again, we
are interested in research employing LLMs. So we add "large language model", "pretrained
language model" and "pre-trained language model". This results in the query:

("data-to-text" OR "triples-to-text") AND ("large language model" OR "pretrained
language model" OR "pre-trained language model")

4.3 Selection of Large Language Models

The number of different models we can test is limited due to time and resource constraints.
Therefore, we need to choose a small but diverse set of models to cover a broad range of
characteristics and potential insights while respecting the given limitations. For this selection,
we first consider the different attributes of popular models and how they vary.

One of the properties stated most often when comparing models is their size, measured
in the number of parameters they possess. It influences the capacity of the model to learn
and recognize patterns from data. Furthermore, it impacts the performance of tasks like

21

4 Methodology

answering questions and generating text. Wei et al. show in their work that some capabilities
of LLMs do emerge with increasing parameter size [4]. However, increasing the complexity
of the model comes with some downsides. For example, it raises the resource requirements
to run and train the model, especially regarding required GPU memory. Hence, it influences
the upfront investment cost for hardware and the variable cost of electricity usage. A typical
size for a small LLM of a model family is around 7 billion parameters. In contrast, one of the
largest models to date is Google’s switch-c. With a size of over 1.5 trillion parameters it is
over 200 times this size [66]. Important to note is that not all companies publish the details of
their models. Hence, only speculations about the model size are available for some models
like OpenAI’s GPT-4 [67]. Considering that our hardware can only run models with up to 7
billion parameters reliably, we select mainly LLMs of that size. To also include a larger model
in the evaluation, we add one commercial model that is not hosted by ourselves and that we
can only access through a provided API endpoint.

A second aspect that is important to us is the accessibility of the models. In general, there
are LLMs that are fully open-sourced, which enables complete control of the model and its
usage through hosting it on one’s own servers. This enhances the reproducibility of tests
and makes fine-tuning possible. In contrast, closed-sourced LLMs are usually deployed on
a company’s servers and only accessible through an API. Using these models for research
might introduce some uncertainties since there is limited control, and it is often not known
what pre- and post-processing steps are done to the input prompt and response. This makes
it challenging to reason about the cause of certain observed behavior. Furthermore, the model
or other parts of the request-response pipeline could change without notice, hindering test
repeatability. Although there are many issues when using closed-source models for research,
these are some of the most powerful models to date.

Another variation of the models is regarding their training procedure and corpus of
training data. Multiple kinds of data can be utilized for training a model and influence its
capabilities on different tasks. The corpus can, for example, contain factual data like Wikipedia
articles, conversational data such as Reddit forum posts, or code snippets from open-source
projects. Furthermore, there are various training procedures, including pre-training using next
word or masked token prediction. Additionally, there are methods to optimize models for
specific tasks, such as fine-tuning or aligning outputs to human preferences using RLHF. The
combination of data and training procedure influences the generated output and capabilities
of the models significantly. To get a general intuition about the performance of models on
various tasks, we use the Open LLM Leaderboard from Hugging Face [68].

4.4 Selection of Prompting Techniques

Prompt engineering is the field of research investigating how a model’s capabilities and its
generated output are affected by using different prompting techniques and best practices. It
is based on the observation that the formatting and formulation of a prompt significantly
impact the quality of the produced output. Furthermore, prompts can be enriched with
additional information to nudge the model to generate factually correct answers. This

22

4 Methodology

technique is known as grounding the responses. Examples can be included in instructions
to enable in-context learning. As Prompt Engineering has recently gained popularity, we
use grey literature, like blog posts, in addition to academic papers, to get an overview of
well-established and emerging approaches. In the following, we give a brief overview of the
most prominent prompting techniques and best practices we consider when selecting the
prompts we use in this thesis.

Prompting Techniques Zero-shot prompting is one of the most straightforward techniques.
It refers to providing a natural language description of a task in the prompt. Wei et al. show
that this capability can be improved by instruction tuning [69].
Example:

Translate the following sentence into German.
EN: The quick brown fox jumps over the lazy dog.
DE:

Few-shot prompting means adding examples of input-output pairs to the prompt to
teach the model in context how to solve a task. This technique has significantly improved
performance, in some instances comparable to fine-tuning approaches. When only one
example is provided, it is also called one-shot prompting [3].
Example:

Translate the following sentence into German.

EN: Hello, how are you?
DE: Hallo, wie geht es Ihnen?

EN: The quick brown fox jumps over the lazy dog.
DE:

Chain-of-thought prompting tries to improve reasoning capabilities of the LLM. Instead
of returning only the answer, the model is nudged to include the individual steps necessary
to produce the result. This behavior can be achieved by adding examples to the prompt,
demonstrating expected generations [70]. Another variation of this technique is called zero-
shot chain-of-thought prompting. Instead of providing examples, the phrase: "Let’s think
step by step" is added to the prompt [71].
Example:

Q: Bob receives a gift of 10 apples from his grandmother. After sharing half of
them with Alice, he consumes two. Unfortunately, a third of the remaining
apples begin to rot. How many of Bob’s apples are still in good condition?

A: Let’s think step by step.

Prompting Best Practices There exist multiple best practices when creating prompting
templates. Many are based on anecdotal evidence and are part of grey literature like blog
posts or the documentation of LLM providers. We consider these best practices as they are

23

4 Methodology

recommended by the most relevant companies in this area while keeping in mind that some
are not yet scientifically evaluated.

When using few-shot prompting, a common practice is to provide a diverse set of examples.
These could vary in terms of complexity or type of data. For example, when the task is to
classify a text into three categories, one could provide three examples in the prompt, one for
each category. This variability prevents bias of the model towards a single class and helps it
to distinguish between the different cases.

Furthermore, the structure of a prompt is essential. It can be formatted, separating the
individual parts using a dedicated token or new line. Additionally, keywords can help to
nudge the models to solve the task correctly [72].

Models trained for chat often enable specifying three different roles in the conversation.
The system role defines the general behavior or persona of the agent. The user prompt
provides the input data, while the assistant returns the system’s response. Furthermore,
multiple conversational turns of the user and assistant can be part of the request and define a
conversation history [72].

It is often reported that giving the model a command using imperative language works
better than asking the model to perform the task with a question [73]. Hence, it is better to
tell the model, "Classify the following text as positive and negative", instead of asking, "Is
the following text positive or negative?". Additionally, the instruction should be written in a
short and precise manner while telling the model what to do instead of what not to do [74].

We select two well-established prompting techniques, where we expect a generalization
to many models. Furthermore, we take best practices into account when creating concrete
prompt templates.

4.5 Semantic Parsing

As well-established approaches are already available for querying unstructured data, for
example, by using embeddings and vector databases, we focus on knowledge bases containing
structured data. Graph databases are a popular choice for storing large amounts of highly
connected data since they are more flexible than SQL databases and fast even for complex
queries. In this thesis, we consider RDF graphs, more specifically using the query language
SPARQL, since this is one of the most common query languages for graph databases, and
there are extensive and freely accessible knowledge bases like Wikidata and DBpedia available.
While other graph database query languages like Cypher would be interesting, suitable and
established datasets for these languages are limited.

4.5.1 Dataset

We use the dataset SPICE (Semantic Parsing for Conversational Question Answering over
Knowledge Graphs) [52]. It is derived from CSQA [53] and contains user interactions with an
assistant in a conversational style. Each independent conversation is thereby separated into a
distinct file. The dataset provides a natural language question, its SPARQL parse, and the

24

4 Methodology

corresponding answer for each conversational turn. In some instances, a clarifying question
from the assistant and the corresponding response of the user is contained in addition to the
SPARQL query and database result. Moreover, coreference resolution is needed to answer
some questions, as they refer to entities mentioned in prior conversational turns. Hence,
within one conversation, the desired response can depend on the conversation history, and
some of the questions require complex SPARQL queries. In total, SPICE contains 197k
conversations, with an average conversational turn length of 9.5. The test set comprises 27,797,
while 152,391 are in the training set.

One of the advantages of utilizing the SPICE dataset is that it uses SPARQL queries that are
compatible with Wikidata, a freely available and established knowledge graph. Furthermore,
the SPICE data is conversational. Thus, it consists of multiple conversations, each containing
several turns. This structure is crucial when evaluating a chatbot since it closely resembles the
actual use of such a system. Other datasets like LC-Quad are less suitable for us as they do
not use this conversational style, including references to previously mentioned entities [75].
Another advantage of SPICE is that it specifies a type and subcategory, called a description,
for each question. It contains questions of 60 different types and categories, allowing for a
detailed analysis of the results. An official evaluation script that generates metrics for these
question categories is also provided. We use this script during our evaluation to ensure
comparability to existing and future research. Lastly, the training set, containing over 150k
conversations, is large enough for fine-tuning a LLM.

Nevertheless, the SPICE dataset also comes with some downsides. Since the dataset was
created and published recently, not many other systems and their evaluations are available for
comparison. This is not a significant issue as the authors of the dataset provide some baseline
systems and report their performance metrics. Another disadvantage is the large test set size
since we can not consider all samples given our resource constraints. This limitation must be
considered when comparing the performance of our approaches with the baseline systems.

Dataset Preparation Before using the dataset, preprocessing is required as the entities, types,
and relations it specifies only provide Wikidata references without their labels. As we do not
want to rely on the models to resolve these entities based on their intrinsic knowledge, we
explicitly add them to the dataset. If, for example, the list of entities contains a reference to
Q30, we map "United States of America" to it. The lookup of these entities via wikidata.org
could also be done during run-time, but this would significantly slow down execution times.

Furthermore, we create a fine-tuning dataset. Since we are limited by our available
hardware, only a small part of the test set is used to keep required GPU hours below one day.
Thus, we create a dataset for fine-tuning consisting of 30,000 conversations. Each contains
between one and four independent conversational turns to simulate zero- and few-shot
prompting. Thereby, they utilize the same system message and prompt structure compared
to inference. To ensure the high quality of training data, we filter out all instances where no
SPARQL query is provided for the gold standard. We also ignore clarifying questions since
these are not the focus of our work.

It is not feasible for us to do inference with the entire test set as it would approximately

25

4 Methodology

require 27,797convs×9.5avg turns×3sec
(60×60×24)sec ≈ 9 days to run one of the eight considered model-

prompt combinations. Therefore, we only use a subset containing 1500 conversational
turns. To create this subset, we first compute the distribution of the entire test
set regarding the 60 question categories. Based on this distribution, we calculate
the required samples for each class given the desired test set size. Afterward, we
randomly select files, considering the required samples of each question category, for
preprocessing. We choose entire files and can not sample conversational turns at this
point, as they are not independent, and the entire file is needed for constructing a
prompt that contains the conversation history. Once enough files are preprocessed
to cover the distribution, we do inference for each question category. To ensure
consistency across multiple test runs, we process the folders and files in an ascending
manner until the required samples have been processed.

4.5.2 Prompts

In the following, we give an overview of the content each prompt needs to contain
and the process we use to create the prompt templates. The resulting prompts are
part of chapter 5.

Some data needs to be included explicitly in the prompt. The reason for this
is twofold. First, not every piece of information required to generate a suitable
response was part of the model’s training. Second, data is needed to ground the
model’s responses, preventing hallucinations. In the case of SPICE, such information
is mapping entities, relations, and types to Wikidata entities. We add this information
explicitly to the dataset and include it within the prompt. This procedure could
also be done dynamically in the pipeline of the conversational agent by extracting
entities with existing NLP solutions and retrieving the reference of this entity directly
from Wikidata. The main reason for us to add it to the dataset instead is improved
execution time, which is crucial for evaluating the system with large amounts of
data. Since the model should be able to resolve references to entities mentioned in
previous conversational turns, a conversation history needs to be part of the prompt.
Furthermore, the model does not know the desired structure of the expected SPARQL
query. Thus, we need to add additional information to the prompt, describing how
variables should be named and what namespace prefixes are already defined. As the
resulting queries should be executable, we need to instruct the model to generate
SPARQL queries, refraining from explanations and notes.

In general, constructing the prompt is an iterative process for us. It is visualized in
Figure 4.1. To start, we select one of the considered models that we expect to perform
best on the given task, based on the Open LLM Leaderboard from Hugging Face
[68]. Then, we construct an initial prompt and use this model to perform inference
on a sample with little complexity. After observing deviations of the predicted query
from the gold standard, we change the prompt by adapting the formulation and

26

4 Methodology

structure or adding additional instructions. We repeat this procedure until no further
improvement is apparent. Once a basic prompt is developed, we do inference with
each of the considered models on a limited amount of samples, in our case 20, using
an unseen part of the training set. After that, we try to observe common error patterns
again and improve the prompt based on the observations. This step is repeated until
we can not observe further improvements and results in the final prompt.

Figure 4.1: This figure displays our process of creating prompts

4.6 Data-To-Text Generation

Verbalizing knowledge, often found as structured data, into natural language text
(data-to-text) is essential for conversational interfaces as they need to present this
information to users in an understandable manner. Thus, the second task we address,
besides semantic parsing, is data-to-text generation. As a SPARQL query, in combi-
nation with its result, can be formulated as a set of triples, we focus specifically on
verbalizing triples into a natural language answer (triples-to-text). The following is
an example demonstrating how our system works from start to finish.

27

4 Methodology

User question:

How old is Alice?

SPARQL query:

SELECT ?age
WHERE {
:alice foaf:age ?age .

}

Query result:

age: 25

Resulting set of RDF triples:

:alice foaf:age 25 .

Desired answer sentence:

Alice is 25 years old.

4.6.1 Dataset

For translating triples to text, the WebNLG dataset is a well-established benchmark.
While there are multiple versions available, we use WebNLG+ 2020 [76] as it is newer
than the original version from 2017 [77] and focuses on English, other than the most
recent version of 2023, which addresses low resource languages. Two Challenges are
available for the WebNLG+ 2020 dataset. Namely, mapping a set of RDF triples to text
(RDF-to-text) and extracting a set of RDF triples from a provided text (text-to-RDF).
Both tasks are available in English and Russian. Since we are interested in generating
a natural language text based on a set of triples, we only consider the corresponding
English data of this task. The dataset contains 13,211 entries in the train set, 1,667 in
the dev set, and 1,779 in the test set.

Each entry of the dataset contains multiple properties. We consider "category",
"modifiedtripleset", "lexicalisations", and "size" for our use-case. "Category" describes
the topic of the triple set content. While the training set contains 16 topics like Food,
Artist, and University, the test set includes three additional, unseen ones. These
are Film, Scientist, and MusicalWork. The property "modifiedtripleset" contains
the collection of triples that we use as the basis of text generation. This is an
improved version of the "originaltripleset" as it uses cleaned and reformulated triples.
Furthermore, it merges related sets of triples into a single set. The gold standard is
part of "lexicalisations", a list of possible natural language formulations for a given
set of triples. For each of the provided lexicalisations, a comment rates the quality as
good, bad, or toFix. We only consider translations marked as good for evaluation.

28

4 Methodology

The last property that we utilize is called "size". It denotes the number of tripels
contained in the corresponding set. In the WebNLG dataset, this range is between
one and seven triples.

We chose the WebNLG dataset for our work because lots of existing research and
systems are available using this data. Additionally, the authors provide an official
evaluation script and leader board, ensuring comparability of different approaches.
Furthermore, it provides a sufficient number of training examples for fine-tuning.
Another advantage is that it specifies multiple lexicalizations for most sets of triples.
Thus, we can take more variety of language into account when calculating evaluation
metrics. Since the topic and size for each triple set are reported, the dataset enables
us to consider this information when analyzing the performance of different models
and prompts.

A disadvantage of WebNLG is that although the training set is big enough for
fine-tuning, having additional samples would likely improve performance further.

Dataset Preparation We construct a dataset for fine-tuning based on the 13,211
samples from the training set. For this, we use data augmentation to increase its
size to 26,422 conversations, each consisting of one to four conversational turns.
When creating the dataset, we randomly select each conversation’s length. Afterward,
we randomly choose samples from the training set for each conversational turn.
Hence, each turn is independent, and the conversations simulate zero- and few-shot
prompting. As the mean length of a conversation in the fine-tuning dataset is 2.5
and we create 26,422 conversations, each sample of the training set is, on average,
contained five times, but in different conversational contexts.

For evaluation, we use the entire test set. Thereby, we compare the generated
sentences with all corresponding lexicalizations marked as "good", omitting cases
that are labeled "bad" or "toFix".

4.6.2 Prompts

The prompts suitable for this task are more straightforward than the ones for semantic
parsing, as this problem is less complex. Information required to be part of the input
are instructions for solving the task and the set of triples that should be translated into
human-readable text. We follow the same process for developing suitable prompts as
for semantic parsing. Thus, we refer to Figure 4.1 and its description in section 4.5
for details.

29

5 Results

5.1 RQ1: Literature Review

In the following, we provide the results of our literature review, aiming to give an
overview of existing approaches that utilize LLMs for the tasks of semantic parsing
and data-to-text generation. This overview helps situate our work within the current
research field, comparing it to related and dissimilar approaches.

5.1.1 Semantic Parsing

The search string for semantic parsing, as described in section 4.2, returns 50 candidate
papers. One is from ACM Digital Library and the other 49 from Scopus. The query
has not led to any results for IEEE Xplore. After filtering the papers further based
on inclusion and exclusion criteria, 16 results remain, with all except one from the
Scopus database. We find two additional research papers relevant to the given topic
based on backward snowballing.

(a) Distribution of semantic parsing papers per year (b) Semantic parsing publications per affiliated coun-
tries

Figure 5.1: Statistics of Semantic Parsing Publications Utilizing LLMs

As displayed in Figure 5.1, most of the considered research was published in 2022
and is affiliated with institutions located in the United States. Important to note is
that for some papers, we count multiple countries, as we take all the countries into
account that correspond to institutions affiliated with the authors.

30

5 Results

Publications LLMs are optimized to create natural language responses. Therefore,
instead of translating a natural language question directly into a structured and logical
representation, the research of [78] focuses on generating a controlled language first
that is closely related to English (canonical utterances). Thereby, they employ explicit
decoder constraints. In a subsequent step, this representation is mapped to the
target representation. They test few-shot prompting with GPT-3 and fine-tune the
two models, GPT-2 XL and BART, reporting promising results even when utilizing
a small number of examples. The work of [79] is similar but evaluates OpenAI
Codex [80] instead and reports improved performance. [81] build on the work of
[78] as well. They improve the BART model by augmenting training for semantic
parsing with the two additional tasks, mask infilling, and denoising. Furthermore,
they increase the amount of training data through self-training and paraphrasing. A
constrained decoder is also used by [49]. In contrast to the abovementioned research,
they do not use intermediate representations and generate SQL directly using the T5
model. Constrained decoding should thereby ensure that only valid SQL is generated.
Furthermore, they propose a method for ranking alternative SQL generations. Other
work focuses on retrieving suitable examples for in-context learning based on the
current request [82], [83]. Instead of trying to predict the entire formal representation
of a natural language input at once, [84] decomposes the problem into smaller tasks.
With the LLM answering a sequence of prompts, each corresponding to a sub-clause
of the SQL query. Pointer generator networks allow the prediction of words from a
vocabulary or to copy input tokens to the output. They are used by Rongali et al. [47]
in combination with a transformer model to generate user intent and filled slots based
on a user question. Banerjee et al. [46] use pointer generator networks to generate
SPARQL queries in their experiments but find that the T5 PLM outperforms this
approach. One challenge when performing text-to-SQL parsing is to generalize well
to unseen databases. For this problem, one crucial task is to link the schema correctly
to entities in the natural language question. [45] addresses this issue by utilizing
a probing procedure to exploit relation structures contained in PLMs. Examining
different training procedures for LLMs is another area of research. [85] compare
in-context learning, fine-tuning, and prompt-tuning for different models, focusing on
scaling curves. In addition to evaluating the influence of model size on performance,
they analyze the generations for common error types. In contrast, [86] compares
prompt-tuning and fine-tuning in low-resource settings for semantic parsing. They
find that prompt-tuning outperforms fine-tuning when only few samples are available.
Sun et al. [87] explore prefix-tuning and bias-term tuning compared to full and partial
fine-tuning. They test those methods using few-shot and regular data settings. While
the work we mentioned so far addresses creating structured representations, there is
also research in semantic parsing focusing on other aspects of this task and not on the
generation itself. [88], for example, presents a pre-training approach specifically for
conversational semantic parsing. [89] check the robustness of prompt-based semantic

31

5 Results

parses that use LLMs against adversarial attacks. There are also some comparative
studies available providing an overview of existing research [90], [91], [92].

5.1.2 Data-To-Text Generation

For data-to-text generation with LLMs, the search query defined in section 4.2 delivers
27 results. Of these papers, 26 are found using Scopus, while one is from IEEE Xplore.
Based on these candidate papers, we selected 13 for further investigation. One of
them is from IEEE Xplore, the rest from Scopus.

(a) Distribution of Data-To-Text Papers per Year (b) Affiliated Countries of Data-To-Text Publications

Figure 5.2: Statistics of Data-To-Text Generation Research Using LLMs

Figure 5.2 shows that, similar to research about semantic parsing with LLMs, most
papers about data-to-text generation that use LLMs are published in the year 2022.
Of the considered work, less has been released in 2023 than in 2022, as the end date
of our literature research is 31 August 2023. Again, the majority of publications are
affiliated with institutions located in the United States, but here, the gap to other
countries is much smaller

Publications Translating a set of triples into a coherent text is a challenging task.
Therefore, [63] and [62] use templates to transform each triple separately into natural
language. Then, these sentences are fused into more cohesive paragraphs using a
PLM. Instead of utilizing templates, [61] create a short sentence for each triple with
GPT-3 before merging them with the T5 model. Jolly et al. [93] use templates in
the second stage of their process. First, they generate text based on the triple set
with a fine-tuned model. Afterward, they increase semantic coverage by inserting
missing information slots with templates into the created text. Using these results,
they further fine-tune their LLM. Improving semantic coverage is something [94]
is working on as well. They try to prevent the generation of unfinished semantic
concepts or duplications by introducing a memory module that tracks the history

32

5 Results

of already-used information. Others try to predict a plan before generating the text
[95]. Gong et al. [96] also use a planning-then-writing pipeline. In addition, they
employ prefix tuning and refine generations with a diffusion model. [97] introduce an
approach that combines prefix tuning with conditional input-dependent information.
For the WebNLG dataset, for example, they improve performance using the known
categories as conditional input. In their work, [98] develop a selective token generator
using reinforcement learning. This approach chooses a generator for each output
token, with the choice being a PLM or a task-specific adapter. Similar to semantic
parsing, research compares few-shot prompting, prompt tuning, and fine-tuning
[60]. Furthermore, there is work on sample selection strategies when labeling and
fine-tuning on a small number of instances [99]. In contrast, [100] try improving
performance by training a model on a large heterogeneous dataset of multiple sources.
In the field of data-to-text generation, there is also research that does not deal with
creating text from triples. [101], for example, try to create explanations for table
values. Hence, they concentrate on a different task called table-to-text generation.

5.2 RQ2: Selection of Large Language Models & Prompting
Techniques

We choose four different models for the comparative analysis of triples-to-text gen-
eration and semantic parsing. These are LLaMA, Vicuna, GPT-3.5-Turbo, and a
fine-tuned LLaMA model tailored to our specific tasks, denoted as LoRA, named after
the fine-tuning methodology employed. Table 5.1 shows the selected models and
gives an overview of some essential properties. Access describes how the models can
be accessed and used. Parameters are the model’s size regarding its parameters in
billions and training denotes the training procedure applied for creating the models.

LLaMA The LLaMA model was developed and open-sourced by Meta. It is impor-
tant to note that due to its noncommercial license, LLaMA is unsuitable for enterprise
environments, and access is mainly granted to academic researchers. Since we have
access to the model weights, we run it on our server, which gives us complete control
of the test and evaluation environment. We only consider the 7B version for the
experiments, which was trained with one trillion tokens from publicly available
datasets. LLaMA is a purely pre-trained model and, hence not optimized for our
tasks [22].

Vicuna Like LLaMA, we only consider the Vicuna model with 7B parameters. It
is a fine-tuned version of LLaMA utilizing approximately 70K conversations from
ShareGPT.com to optimize it for the chatbot use case. As it is based on LLaMA,
Vicuna also uses a noncommercial license [25].

33

5 Results

LoRA We create two models, one optimized for semantic parsing and one for triples-
to-text generation, by fine-tuning LLaMA. We refer to these two models as LoRA
since we utilize the LoRA approach to create adapters instead of fine-tuning the entire
model [26]. We merge the resulting LoRA adapters with the LLaMA 7B weights to
improve inference times. Since the resulting LLMs are based on LLaMA, they are not
applicable for commercial use.

GPT-3.5-Turbo With approximately 150B parameters, GPT-3.5-Turbo is the largest
model we consider for the evaluation. As this is a proprietary model of OpenAI, only
limited information is available regarding training methodology and data or the exact
size of the model. We use the version gpt-3.5-turbo-0613 for our experiments, which
has been available since June 2023 [33] .

Table 5.1: This table shows an overview of all models we include in the evaluation. It
describes the access, number of parameters in billions, and training procedure for
each LLM.

LLaMA Vicuna LoRA GPT-3.5-Turbo

Access Open Source * Open Source * Open Source * Closed Source
Parameters 7B 7B 7B ~150B **

Training Pre-Trained Fine-Tuned
(Chat)

Fine-Tuned
(Our Tasks)

Reinforcement Learning from
Human Feedback (RLHF)

* Noncommercial license
** Not officially acknowledged

5.2.1 Semantic Parsing

We chose to use one zero-shot and one few-shot prompt. For both, we utilize the
chat prompting structure, consisting of the roles "system", "user", and "assistant". We
specify the same system message for each prompting strategy using the "system"
role. For the few-shot prompt, we define the examples as previous conversational
turns by providing mocked intents of the user and utterances of the assistant as part
of the prompting template. The conversation history of the user intent is created by
including the last three conversational turns in the prompt if these exist. We append
"USER" and "SYSTEM" tags for this conversation history. An example of such a
history can be seen in the few-shot prompt template.

In the following, we show the two resulting prompt templates. Roles are color-
coded using blue for "system", black for "user", and green for "assistant". Parts of
the prompt marked with "<>" are variables that are inserted at runtime based on the
current sample.

34

5 Results

Zero-Shot Prompt

Generate a SPARQL query that answers the given ’Input question:’. Use ’Enti-
ties:’, ’Relations:’ and ’Types:’ specified in the prompt to generate the query. The
SPARQL query should be compatible with the Wikidata knowledge graph. Pre-
fixes like ’wdt’ and ’wd’ have already been defined. No language tag is required.
Use ’?x’ as variable name in the SPARQL query. Remember to provide only a
SPARQL query in the response without any notes, comments, or explanations.

<conversation_history>

Input question: <utterance>
Entities: <entities>
Relations: <relations>
Types: <types>

Few-Shot Prompt For the few-shot prompt, we use three examples of the task. The
utilized cases require different SPARQL constructs, including ASK, SELECT, WHERE,
COUNT, DISTINCT, and UNION. Furthermore, the last sample demonstrates the use
of a conversation history to resolve an entity referenced from a previous conversa-
tional turn.

Generate a SPARQL query that answers the given ’Input question:’. Use ’Enti-
ties:’, ’Relations:’ and ’Types:’ specified in the prompt to generate the query. The
SPARQL query should be compatible with the Wikidata knowledge graph. Pre-
fixes like ’wdt’ and ’wd’ have already been defined. No language tag is required.
Use ’?x’ as variable name in the SPARQL query. Remember to provide only a
SPARQL query in the response without any notes, comments, or explanations.

Input question: Is New York City the place of death of Cirilo Villaverde ?
Entities: {’Q727043’: ’Cirilo Villaverde’, ’Q60’: ’New York City’}
Relations: {’P20’: ’place of death’}
Types: {’Q56061’: ’administrative territorial entity’}

SPARQL query: ASK { wd:Q727043 wdt:P20 wd:Q60 . }

Input question: How many works of art express Michael Jordan or pain ?
Entities: {’Q41421’: ’Michael Jordan’, ’Q81938’: ’pain’}
Relations: {’P180’: ’depicts’}
Types: {’Q838948’: ’work of art’}

35

5 Results

SPARQL query: SELECT (COUNT(DISTINCT ?x) AS ?count) WHERE { { ?x
wdt:P180 wd:Q41421 . ?x wdt:P31 wd:Q838948 . } UNION { ?x wdt:P180
wd:Q81938 . ?x wdt:P31 wd:Q838948 . } }

Conversation history:
USER: Which administrative territory is the native country of Cirilo Villaverde ?
SYSTEM: {’Q241’: ’Cuba’}

Input question: Which is the national anthem of that administrative territory ?
Entities: {’Q241’: ’Cuba’}
Relations: {’P85’: ’anthem’}
Types: {’Q484692’: ’hymn’}

SPARQL query: SELECT ?x WHERE { wd:Q241 wdt:P85 ?x . ?x wdt:P31
wd:Q484692 . }

<conversation_history>

Input question: <utterance>
Entities: <entities>
Relations: <relations>
Types: <types>

5.2.2 Data-To-Text Generation

Similar to semantic parsing, for the triples-to-text task of the WebNLG dataset, we
also decided to use one zero-shot and one few-shot prompt. Again we utilize the chat
structure with the three roles "system", "user" and "assistant", specifying the same
system message for both prompting techniques.

For the zero- and few-shot prompt templates, we display the "system" role in blue,
the "user" role in black, and "assistant" in green. "<>" marks parts of the prompt that
are substituted at runtime based on the input.

Zero-Shot Prompt

Generate a concise text for the given set of triples. Ensure that the generated
output only includes the provided information from the triples.

Input triples: <triples>

36

5 Results

Few-Shot Prompt The examples of the few-shot prompt are taken from the three
categories: Athlete, Politician, and Building of the training set. Furthermore, we
increase the complexity of the samples by starting with one triple, increasing it to
three in the second sample, and using five triples for the last set.

Generate a concise text for the given set of triples. Ensure that the generated
output only includes the provided information from the triples.

Input triples: [{’object’: ’Mike_Mularkey’,’property’: ’coach’,’subject’: ’Ten-
nessee_Titans’}]

Output text: Mike Mularkey is the coach of the Tennessee Titans.

[{’object’: ’Albert_E._Austin’, ’property’: ’successor’, ’subject’: ’Alfred_N._Phillips’},
{’object’: ’Connecticut’, ’property’: ’birthPlace’, ’subject’: ’Alfred_N._Phillips’},
{’object’: ’United_States_House_of_Representatives’, ’proper ty’: ’office’, ’subject’:
’Alfred_N._Phillips’}]

Output text: Albert E. Austin succeeded Alfred N. Phillips who was born
in Connecticut and worked at the United States House of Representatives.

Input triples: [{’object’: ’College_of_William_&_Mary’, ’property’: ’owner’, ’sub-
ject’: ’Alan_B._Miller_Hall’}, {’object’: ’2009-06-01’, ’property’: ’completionDate’,
’subject’: ’Alan_B._Miller_Hall’}, {’object’: ’101 Ukrop Way’, ’property’: ’address’,
’subject’: ’Alan_B._Miller_Hall’}, {’object’: ’Williamsburg,_Virginia’, ’property’:
’location’, ’subject’: ’Alan_B._Miller_Hall’}, {’object’: ’Robert_A._M._Stern’, ’prop-
erty’: ’architect’, ’subject’: ’Alan_B._Miller_Hall’}]

Output text: The Alan B Miller Hall’s location is 101 Ukrop Way, Williams-
burg, Virginia. It was designed by Robert A.M. Stern and was completed on 1
June 2009. Its owner is the College of William and Mary.

Input triples: <triples>

5.3 RQ3: Evaluation

5.3.1 Semantic Parsing

The results we achieved for semantic parsing on the SPICE dataset are shown in
Table 5.2. As described in section 4.5, all metrics are computed on 1,500 conversational
turns of the test set, as it is not feasible for us to use the entire test set due to resource

37

5 Results

and time constraints. We list the results for each of the ten question types separately.
While we report the f1-Score for categories where the result is a set of entities,
accuracy is used to measure the performance of results that return an integer or
boolean value. Furthermore, we report the Exact Match (EM) of generated queries
compared to the gold standard. We utilize rule-based post-processing on all the
results to ensure consistent use of white spaces and remove "SPARQL query:" from
the beginning of the output. "LoRA-7B zero-shot-512" differs from the other model-
prompt combinations, using a max token length of 512 instead of 128 tokens. In this
way, we want to test if the model-prompt combination delivering the highest overall
performance can still be improved by alleviating the max token restriction. The best
values for each question type and metric are marked in bold. The result space for
each of the reported measurements ranges from zero to 1, with one being the optimal
output.

Table 5.2: This table shows the results for semantic parsing on a subset of the SPICE test
set for all LLM and prompt combinations. All outputs are post-processed in a
rule-based manner. Depending on the question type, we report f1-score or accuracy

Question Type Model-Prompt F1-Score EM Accuracy

Simple Question (Direct)

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.352 0.724
Vicuna-7B zero-shot 0.003 0.000
Vicuna-7B few-shot 0.127 0.230

GPT-3.5-Turbo zero-shot 0.324 0.337
GPT-3.5-Turbo few-shot 0.804 0.741

LoRA-7B zero-shot 0.867 0.970
LoRA-7B zero-shot-512 0.867 0.970

LoRA-7B few-shot 0.963 0.917

Simple Question (Coreferenced)

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.350 0.568
Vicuna-7B zero-shot 0.000 0.000
Vicuna-7B few-shot 0.189 0.321

GPT-3.5-Turbo zero-shot 0.491 0.234
GPT-3.5-Turbo few-shot 0.636 0.623

LoRA-7B zero-shot 0.882 0.867
LoRA-7B zero-shot-512 0.892 0.873

LoRA-7B few-shot 0.844 0.786

Clarification

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.000 0.000
Vicuna-7B zero-shot 0.000 0.000
Vicuna-7B few-shot 0.012 0.000

GPT-3.5-Turbo zero-shot 0.000 0.000
GPT-3.5-Turbo few-shot 0.000 0.000

LoRA-7B zero-shot 0.000 0.000
LoRA-7B zero-shot-512 0.000 0.000

LoRA-7B few-shot 0.000 0.000

38

5 Results

Table 5.2: This table shows the results for semantic parsing on a subset of the SPICE test
set for all LLM and prompt combinations. All outputs are post-processed in a
rule-based manner. Depending on the question type, we report f1-score or accuracy

Question Type Model-Prompt F1-Score EM Accuracy

Comparative Reasoning (All)

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.001 0.000
Vicuna-7B zero-shot 0.000 0.000
Vicuna-7B few-shot 0.072 0.000

GPT-3.5-Turbo zero-shot 0.015 0.000
GPT-3.5-Turbo few-shot 0.006 0.000

LoRA-7B zero-shot 0.000 0.000
LoRA-7B zero-shot-512 0.315 0.114

LoRA-7B few-shot 0.001 0.000

Comparative Reasoning (Count) (All)

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.000 0.000
Vicuna-7B zero-shot 0.000 0.000
Vicuna-7B few-shot 0.000 0.000

GPT-3.5-Turbo zero-shot 0.000 0.000
GPT-3.5-Turbo few-shot 0.000 0.000

LoRA-7B zero-shot 0.000 0.000
LoRA-7B zero-shot-512 0.165 0.165

LoRA-7B few-shot 0.000 0.000

Quantitative Reasoning (Count) (All)

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.0227 0.152
Vicuna-7B zero-shot 0.000 0.000
Vicuna-7B few-shot 0.008 0.091

GPT-3.5-Turbo zero-shot 0.008 0.197
GPT-3.5-Turbo few-shot 0.212 0.485

LoRA-7B zero-shot 0.561 0.591
LoRA-7B zero-shot-512 0.561 0.591

LoRA-7B few-shot 0.417 0.492

Logical Reasoning (All)

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.109 0.000
Vicuna-7B zero-shot 0.000 0.000
Vicuna-7B few-shot 0.001 0.000

GPT-3.5-Turbo zero-shot 0.631 0.000
GPT-3.5-Turbo few-shot 0.912 0.246

LoRA-7B zero-shot 0.900 0.926
LoRA-7B zero-shot-512 0.900 0.926

LoRA-7B few-shot 0.810 0.779

Verification (Boolean) (All)

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.000 0.000
Vicuna-7B zero-shot 0.000 0.000
Vicuna-7B few-shot 0.162 0.365

GPT-3.5-Turbo zero-shot 0.000 0.000
GPT-3.5-Turbo few-shot 0.480 0.926

LoRA-7B zero-shot 0.851 0.939

39

5 Results

Table 5.2: This table shows the results for semantic parsing on a subset of the SPICE test
set for all LLM and prompt combinations. All outputs are post-processed in a
rule-based manner. Depending on the question type, we report f1-score or accuracy

Question Type Model-Prompt F1-Score EM Accuracy
LoRA-7B zero-shot-512 0.858 0.939

LoRA-7B few-shot 0.777 0.926

Simple Question (Ellipsis)

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.000 0.000
Vicuna-7B zero-shot 0.000 0.000
Vicuna-7B few-shot 0.000 0.000

GPT-3.5-Turbo zero-shot 0.342 0.158
GPT-3.5-Turbo few-shot 0.609 0.351

LoRA-7B zero-shot 0.855 0.754
LoRA-7B zero-shot-512 0.855 0.754

LoRA-7B few-shot 0.618 0.526

Quantitative Reasoning (All)

LLaMA-7B zero-shot 0.000 0.000
LLaMA-7B few-shot 0.000 0.000
Vicuna-7B zero-shot 0.000 0.000
Vicuna-7B few-shot 0.004 0.000

GPT-3.5-Turbo zero-shot 0.032 0.000
GPT-3.5-Turbo few-shot 0.019 0.000

LoRA-7B zero-shot 0.000 0.000
LoRA-7B zero-shot-512 0.000 0.000

LoRA-7B few-shot 0.000 0.000

5.3.2 Data-To-Text Generation

Table 5.3 shows the evaluation results for every model and prompt combination on
the WebNLG dataset. Copy-Baseline is thereby defined as copying the input triple
set to the output without applying any changes. In addition to the metrics of each
model output, we report the performance after applying a rule-based post-processing
to the predictions of the models. These results are marked with "pp" after the model
and prompt name. With post-processing, we fix small deviations of the model output
from the gold standard, like removing "Output text:" at the beginning of the response.
The evaluation metrics contained in the table are BLEU, METEOR, TER, and the
BERTScore, including precision, recall, and f1. For TER, a lower score is better. For
all other metrics, the performance is considered better for higher values. For BLEU,
results can be up to 100, while for METEOR and BERTScore, outcomes can be one in
the optimal case. The best results for each column are marked in bold. While LLAMA-
7B zero-shot performs the worst compared to all model-prompt combinations we
tested, the fine-tuned model LoRA-7B few-shot-pp with post-processing reaches the
best results on every metric.

40

5 Results

Table 5.3: This table displays the results for triples-to-text generation on the WebNLG test set
for all LLM and prompt combinations. Model names prepended with "pp" use a
rule-based post-processing of the output.

Model-Prompt Bleu Meteor TER BERT-
Score P

BERT-
Score R

BERT-
Score F1

Copy-Baseline 0.21 0.02 0.95 0.78 0.81 0.79
LLaMA-7B zero-shot 6.42 0.21 1.03 0.8 0.88 0.84
LLaMA-7B zero-shot-pp 14.21 0.25 0.76 0.88 0.9 0.89
LLaMA-7B few-shot 11.65 0.26 1.03 0.8 0.91 0.85
LLaMA-7B few-shot-pp 37.9 0.36 0.53 0.94 0.94 0.94
Vicuna-7B zero-shot 26.66 0.35 0.68 0.92 0.93 0.92
Vicuna-7B zero-shot-pp 26.66 0.35 0.68 0.92 0.93 0.92
Vicuna-7B few-shot 39.09 0.38 0.64 0.92 0.94 0.93
Vicuna-7B few-shot-pp 43.9 0.39 0.51 0.95 0.95 0.95
GPT-3.5-Turbo zero-shot 41.71 0.41 0.56 0.95 0.95 0.95
GPT-3.5-Turbo zero-shot-pp 41.71 0.41 0.56 0.95 0.95 0.95
GPT-3.5-Turbo few-shot 39.78 0.4 0.65 0.93 0.95 0.94
GPT-3.5-Turbo few-shot-pp 44.23 0.41 0.5 0.95 0.96 0.95
LoRA-7B zero-shot 47.25 0.4 0.55 0.93 0.94 0.94
LoRA-7B zero-shot-pp 52.55 0.41 0.42 0.96 0.96 0.96
LoRA-7B few-shot 47.3 0.4 0.55 0.93 0.94 0.94
LoRA-7B few-shot-pp 52.89 0.41 0.42 0.96 0.96 0.96

41

6 Discussion

We discuss the results of each research question in this chapter. Starting with the
literature review, we compare existing research that utilizes LLMs in semantic parsing
and data-to-text generation with our work. After highlighting the differences and
commonalities, we identify the research gap for both tasks. The second section
explains why we chose the four selected LLMs for our analysis. Then, we continue
describing insights obtained through iteratively developing prompts for semantic
parsing and data-to-text generation. The third section provides a detailed examination
of the outcomes for each task, encompassing quantitative and qualitative assessments.
In the final section of this chapter, we point out the limitations of our work.

6.1 RQ1: Literature Review

This section compares existing research to our work regarding semantic parsing and
data-to-text generation. In addition, we identify research gaps for both tasks.

6.1.1 Semantic Parsing

With the first research question, we start this thesis by doing a literature review
to get an overview of existing approaches and to identify the research gap. In
contrast to extensive comparative studies in existing work, our literature review is
non-exhaustive, and we refer to [90, 91, 92] for a more detailed overview of research
addressing semantic parsing. Graph databases are frequently employed to manage
vast amounts of data with complex relationships, making them particularly suitable
for large knowledge bases. Since we focus on employing semantic parsing for such
knowledge bases, we utilize SPARQL, a widely recognized query language developed
for graph databases, in our work. On the contrary, lots of existing research focuses
on SQL and hence relational databases instead [49, 45, 90, 92, 84]. There are many
sophisticated approaches to improve the performance of LLMs on specific tasks, like
prefix-tuning or prompt-tuning, that are investigated in existing work [87, 86, 85]. To
ensure high practical relevance, we focus on prompt engineering techniques as they
address optimizing the wording and formatting of a natural language prompt and
can be utilized by non-expert users. Furthermore, these techniques do not require
access to model weights and can thus be employed on closed-source commercial
LLMs. In addition, all prompt variations and their influence on the model output can

42

6 Discussion

easily be interpreted by humans. Similarly, we do not use a complex procedure for
selecting few-shot prompt examples. Instead, we choose them manually, keeping best
practices in mind. Since we only add three samples to the prompt, our approach is
applicable to low-resource environments. In contrast, using the provided user input,
[83] and [82] determine few-shot examples at run-time. [47] improves traditional slot
filling by utilizing an LLM. We only focus on end-to-end approaches, taking a user
question as input and translating it directly into a query using an LLM. Although
we compare models of two different sizes, we do not analyze model scale in detail,
as [85]. Instead, we test the influence of multiple training procedures on the same
PLM. More specifically, we use LLaMA, Vicuna, and LoRA. The performance of one
substantially larger model is provided for comparison. While we create a semantic
parser utilizing LLMs, we do not analyze its robustness against adversarial attacks.
We refer to [89] for research in this area.

Research Gap There is currently a lack of research that evaluates different LLMs
and prompting techniques for conversational semantic parsing using SPARQL. More
specifically, we have not found work analyzing the performance of different training
techniques on the same PLM for that task. Furthermore, there is a lack of a detailed
human analysis investigating common error groups and their relative frequency for
multiple model-prompt configurations.

Thus, to the best of our knowledge, there is no existing work evaluating different
LLMs and prompting techniques for conversational semantic parsing using SPARQL
and identifying as well as analyzing common error groups.

6.1.2 Data-To-Text Generation

Multiple research papers pursue a two-step approach for triples-to-text generation.
First, they transform individual triples into sentences, for example, by utilizing
templates. Afterward, they fuse these sentences into a paragraph with the help of a
PLM [63, 62, 61]. We translate a set of triples into natural language text in a single
step with a LLM, as we focus on comparing and analyzing different model-prompt
configurations instead of trying to achieve state-of-the-art performance. Similar to
semantic parsing, we only consider prompt engineering techniques and best practices.
Thus, we do not address prompt-tuning or prefix-tuning like [96, 97, 60]. To keep the
pipeline consistent with semantic parsing, only changing the prompt formulations
and post-processing, we do not add a dedicated memory [94] or insert missing
information to improve semantic coverage [93]. Furthermore, we create the text
based on user input and do not use planning strategies before generating text [95,
96]. Since we also utilize closed-source models where we do not have access to the
model weights, an approach that uses task-specific adapters in combination with
selective token generation [98] is not suitable for our comparative analysis. Other

43

6 Discussion

work addresses sample selection for fine-tuning [99] or learning from multiple sources
[100]. In contrast, we only use the provided WebNLG training set to fine-tune the
LoRA model, as we are mainly interested in a detailed comparison of different models
and prompting techniques. In addition to triples-to-text generation, additional tasks
exist beyond data-to-text translation, which are not within the scope of our research.
An example is the creation of natural language explanations for table values, a topic
addressed by [101].

Research Gap Considering existing research, there is, to the best of our knowledge,
currently no detailed comparative analysis of conversational LLMs and prompt
configurations for triples-to-text generation. In addition to quantitative analysis, we
are especially interested in an extensive human analysis of error categories and their
occurrence rates across the various model-prompt combinations.

6.2 RQ2: Selection of Large Language Models & Prompting
Techniques

Large Language Model Selection One of our main criteria for model selection is
choosing open-source models we can execute on our server. This choice gives us
complete control of the entire pipeline, ensuring that no modifications are performed
to the input prompt and model output without our involvement. When we started
with the selection process in April 2023, some of the most capable and popular
open-sourced LLMs regarding their size were LLaMA, Alpaca, and Vicuna. The
latter two are based on the former. We exclude Alpaca as it was fine-tuned on an
instruction-following instead of a conversational prompting structure. Thus, it is
not optimized to use the roles "System", "Assistant", and "User" together with a
conversation history. Therefore, it would require us to use different prompts, which
hinders comparability.

Both LLaMA and Vicuna are families of models with different sizes available. After
performing some tests on the hardware available to us, consisting of one NVIDIA
Tesla V100 16GB GPU, we chose the smallest version with seven billion parameters of
the two LLMs. While we can run the next larger models using 13 billion parameters
for small prompts, more extensive input leads to an out-of-memory error. Thus, we
decide against these models and focus only on their smaller counterparts.

As a third LLM, we fine-tune LLaMA for the respective tasks. Given that all models
we have thus far chosen are based on the same PLM, it allows us to examine the
impact of fine-tuning, be it for conversational contexts or task-specific scenarios,
while mitigating potential confounding factors. Instead of full fine-tuning, we use
the LoRA approach, which requires less computational resources while achieving
similar performance. We also decide against other adapter approaches as they usually

44

6 Discussion

introduce additional latency during inference, which is not the case for LoRA after
merging its weights [26].

In addition to models we can host ourselves, we want to include one LLM in the
comparison, considered to be one of the state-of-the-art conversational agents, in April
2023. This selection allows us to investigate differences in performance and reliability
of much smaller models compared to large commercial solutions. Since OpenAI is
one of the most prominent providers of chatbots and their models are accessible
through a publicly available API, we decided to utilize one of their LLMs for our
tests. We select GPT-3.5-Turbo as usage of GPT-4 through the API is around twenty
times more expensive [102] and thus less relevant for researchers and practitioners.
We do not use OpenAIs Text-Davinci-003 as it does, similar to Alpaca, not use the
chat completions prompting structure. To ensure comparability, we pin the exact
model version (0613) of GPT-3.5-Turbo in the code.

We utilize the same four LLMs for both tasks, semantic parsing and data-to-text
generation. Thus, we can analyze their performance on different types of requests.

6.2.1 Semantic Parsing

Prompt Creation

System Message We use an iterative refinement process to create the system message.
Next to a general description of the task, we improve the prompt with additional
instructions to prevent common errors in model generations. One such issue is that
they often define namespaces and their prefixes before generating the actual query.
As the gold standard does not expect this, we add "Prefixes like ’wdt’ and ’wd’ have
already been defined." to the prompt. This sentence resolves the problem because it
instructs the model to use the namespaces "wdt" and "wd" without specifying them,
similar to the desired solution. When testing a small number of training samples, we
also recognize that the generated queries often filter the entities based on a tag for
"en", the English language. In contrast to Wikidata, the SPICE knowledge graph does
only use English. Hence, no language labels exist and such queries do not lead to
the correct results. Therefore, we add "No language tag is required." to the system
message. The evaluation script of SPICE calculates next to f1-scores and accuracy,
also the exact match performance for each question type. This metric denotes the
number of instances using the same characters for the generated query and the gold
standard. Since the expected results always use "?x" for a variable, we also instruct
the LLM to use it by adding "Use ’?x’ as variable name in the SPARQL query" to the
prompt. In general, models like Vicuna or GPT-3.5-Turbo are verbose and tell the user
frequently their reasoning for the response. On the contrary, we want to receive an
executable query without additional explanations or comments. Thus, we finish the
system message with: "Remember to provide only a SPARQL query in the response
without any notes, comments, or explanations.".

45

6 Discussion

The role "SYSTEM" should only be used once for an entire session. Using this role
a second time, for example in-between interactions of "USER" and "ASSISTANT",
degrades the performance in our tests significantly and leads to unexpected outputs.
Similarly, when using the FastChat library [28], it is crucial to use the roles "USER"
and "ASSISTANT" in a strictly alternating fashion.

Few-Shot Examples Generally, few-shot prompting is more robust to system message
variations than zero-shot prompting due to the demonstration of expected outputs in
the examples. The selection of appropriate samples is thus crucial to achieve a high
performance. For query generation, we select instances that show the use of multiple
SPARQL constructs like DISTINCT, UNION, AS, and WHERE. Furthermore, we use
the same variable naming and namespace prefixes as in the gold standard. Each of
the three examples uses a different question type. Moreover, each query produces a
distinct result type. The first question expects a Boolean result and demonstrates the
use of the keyword ASK. It is the most straightforward instance since we are trying
to increase complexity with each example. The second query produces an Integer as
a result and uses, therefore, the COUNT construct. Because two result sets need to be
combined and counted, the query is more intricate than the first one. The last sample
asks for an entity using an indirect reference to the result of the previous question.
It shows the use of a conversation history based on former interactions and has the
most extensive input of the three examples.

We follow prompting best practices by incorporating keywords like "Input ques-
tion:" or "SPARQL query:", to signal the model about the start of a new piece of content
and its meaning. Furthermore, we group semantically related text of the prompt
using formatting such as line breaks. Keeping this formatting and the keywords
consistent across all examples and the user input is essential. Minor misspellings or
additional line breaks might confuse the models, resulting in undesired generations.
We observe high sensitivity mainly for the LLaMA-based models. GPT-3.5-Turbo is
more robust to structure variations, but we do not know if this is due to the LLM
itself or additional input pre-processing.

6.2.2 Data-To-Text Generation

Prompt Creation

System Message Compared to semantic parsing, the system message of the triples-
to-text task is shorter. In the first sentence, we describe the problem to be solved.
We emphasize creating a concise text since the gold standard lexicalizations usu-
ally aggregate information from multiple triples into a small number of sentences.
Furthermore, we nudge the model with this wording to avoid creating additional
remarks or explanations. The exact phrasing of the sentence is crucial. In some
initial tests, we use "Generate a concise textual description[...]" instead of "Generate a

46

6 Discussion

concise text[...]", which results in undesired responses for multiple instances, like in
the following example.

Tripleset: [’object’: ’FC_Karpaty_Lviv’, ’property’: ’club’, ’subject’: ’Aleksan-
dre_Guruli’, ’object’: ’FC_Dinamo_Batumi’, ’property’: ’club’, ’subject’: ’Alek-
sandre_Guruli’]

Lexicalization: ’Aleksandre Guruli played for FC Karpaty Lviv and FC Di-
namo Batumi.’

Prediction: ’The given set of triples describes two objects, FC_Karpaty_Lviv and
FC_Dinamo_Batumi, both of which have the property "club" and the subject
"Aleksandre_Guruli"’

To prevent additional, potentially hallucinated information, we add "Ensure that
the generated output only includes the provided information from the triples" to the
end of the system message.

Few-Shot Examples When selecting the samples of the few-shot prompt, we follow
the same principles for semantic parsing. Hence, the examples are sorted by in-
creasing complexity. While the first set only contains one triple, this subsequently
increases to three and five. Additionally, we chose a different topic for each sample
to prevent bias. The three utilized categories are Athlete, Politician, and Building.

Again, we adhere to prompting best practices. The keyword "Input tiples:" marks
the user input, and "Output text:" the desired response. These sections are also
separated by line breaks to group semantically related content.

6.3 RQ3: Evaluation

In this section, we describe insights gained from analyzing the results of semantic
parsing and data-to-text generation. We first address the quantitative analysis for
both tasks, performed with automatic evaluation metrics. Afterward, we look at the
findings of the corresponding human evaluation. With this comparative analysis, we
aim to comprehensively examine capabilities and shortcomings inherent in current
LLMs and prompting techniques. Furthermore, we present common error types
occurring for the two investigated tasks.

6.3.1 Semantic Parsing

We start with a quantitative analysis of the SPICE dataset and the evaluation results.
Afterward, we examine the outcomes of the human evaluation.

47

6 Discussion

Quantitative Analysis

Dataset Before we look in detail at the result of the different models and prompt
combinations, we try to get an intuition about the dataset and its characteristics.
Figure 6.1 displays the distribution of samples for each question category in the test
(sub)set we use for evaluation. As we can see, the data is highly skewed towards the
categories "Simple Question (Direct)" and "Simple Question (Coreferenced)", with
more than half of the 1,500 samples belonging to one of these two classes. "Simple
Question (Direct)", the most dominant question type, contains 460 instances over 9,5
times the amount of samples compared to "Quantitative Reasoning (All)". This uneven
distribution needs to be considered when calculating an average performance per
model-prompt combination. Creating the mean performance using the results of each
question category would put more weight on samples in small classes. Therefore, the
performance of each question type should be weighed by the number of its instances
when aggregating the results.

Figure 6.1: This figure shows the number of samples (x-axis) for each question type (y-axis)
in the subset of the SPICE test set that we use for evaluation

In addition to the distribution of samples per question type, it is also interesting
to analyze the complexity of the expected SPARQL queries for each class. Since we
can not measure how complex a specific query is to generate, we use its length as a
proxy. The length is thereby measured for the gold standard query in the number
of characters. The box plot in Figure 6.2 shows this measure grouped by question
type. The category "Clarification" does not contain any values, as it labels cases
where the system is expected to ask a clarifying question instead of generating a
query. Therefore, we will exclude it in further descriptions of this plot. The first

48

6 Discussion

five classes of questions and "Simple Question (Ellipsis) have a mean length that is
less than 200 characters, with four of them using, on average, less than 150. The
queries of the remaining three categories have more than 1000 characters over five
timers longer on average. Thus, we assume that queries belonging to these three
classes are more complex and, hence, more difficult to generate than the others. It
is also important to note that the variability of query lengths is a lot higher for the
three complex query types than for all others, with "Quantitative Reasoning (Count)
(All)" being an exception. This observation is interesting as the question types are
sorted descending by the number of samples. Hence, the query types showing high
variation are also the ones with a relatively small number of instances, while the two
largest groups of questions show only minor deviations. Consequently, we expect a
consistent performance in query generation of categories containing a high number
of samples in combination with low complexity variation.

Figure 6.2: This figure displays the lengths of SPARQL queries, in the number of characters
(x-axis), for each question type (y-axis). The character length of the category
"Clarification" is zero, as the system asks a clarifying question for this type instead
of generating a query.

Result Next, we analyze the results of the automatic evaluation script provided by
the SPICE dataset. Table 5.2 show the detailed results. The script calculates the result
for each of the 10 question types and all their subtypes, which leads to 57 different

49

6 Discussion

categories. As a detailed investigation for each of them would be costly and the
number of samples too small to reach reliable conclusions, we only focus on the ten
top-level question categories without separating them further. There are three kinds
of outputs when executing the expected SPARQL queries. "Verification (Boolean)
(All)" is the answer to a yes/no question. Hence, the results are represented with
the Boolean values true and false. The two classes, "Quantitative Reasoning (Count)
(All)" and "Comparative Reasoning (Count) (All)", return an integer value for each
question. "Clarification" does not return any result, as the system should respond
with a clarifying question. Since we ignore these instances during fine-tuning and
when creating the prompt templates, as this is not the focus of our work, performance
for this class is always bad, and we disregard it in further explanations. For all other
classes, the expected results of the corresponding queries are sets of entities. These
are evaluated using EM and f1-score. For the three categories with boolean or integer
results, EM and accuracy are used instead. We mark them with a "*" at the end of the
question type name in the plots.

First, we want to validate our intuition about the complexity of queries, as depicted
in Figure 6.2, by assessing the mean performance of all model-prompt configurations
for each question type. The results of this comparison are shown in Figure 6.3.

Figure 6.3: This plot depicts the performance of all model-prompt configurations, measured
as f1-score/accuracy (x-axis), for each question type (y-axis). Categories using
accuracy as measurement are marked with "*".

50

6 Discussion

There, we see the performance on the x-axis measured as f1-score. If the question
category ends with "*", we use accuracy instead. As expected, we observe the three
categories containing complex queries to score a low performance. For the rest of the
question types, there is a high variance in performance for the different model-prompt
combinations. Surprisingly, "Logical Reasoning (All)" achieves a significantly higher
median performance compared to "Verification (Boolean) (All)" although having on
average higher complexity.

Utilizing the heat map in Figure 6.4, we look at the performance of each model-
prompt configuration in detail. Each row corresponds to one question type (y-axis),
while there is one column for each model-prompt configuration (x-axis). Question
types are again sorted by number of instances. The cell values denote the performance
measured in terms of the f1-score. However, when the question category is marked
with an asterisk (*), we employ accuracy as the performance metric instead. High
performance is colored green, while bad results are marked in dark blue. First, we
compare LLaMA to Vicuna. Looking at the outcomes of zero-shot prompting, we see
that they do not achieve a reasonable performance for any category. In the context
of few-shot prompting, the results of both models, particularly for the five smallest
categories, remain close to zero. For the other question types, LLaMA generates
superior queries than Vicuna. "Verification (Boolean) (All)" is an exception as the
situation is reversed, and Vicuna performs better. Next, we consider GPT-3.5-Turbo.
It shows meaningful improvements using Zero-shot prompting for "Simple Question
(Ellipsis)", "Logical Reasoning (All)", and "Simple Question (Coreferenced)", compared
to the results of LLaMA and Vicuna. While it does perform poorly for "Verification
(Boolean) (All)" in contrast to Vicuna few-shot, the overall results with regards to all
question types are still higher than for LLaMA and Vicuna, no matter the prompting
technique. Utilizing few-shot prompting, GPT-3.5-Turbo creates considerably better
queries than with the zero-shot technique. It leads to significant improvements for
almost all categories. We observe the most considerable increase in the accuracy
of "Verification (Boolean) (All)", from 0.000 to 0.926. The question type with most
samples, "Simple Question (Direct)," is also improved significantly with an increase
for the f1-score of 0.480. The fine-tuned LLaMA model, which we refer to as LoRA,
enhances the results of most categories even further. Comparing the regular LoRA
zero-shot and few-shot achievements, we see that zero-shot outperforms few-shot
for all but the first question type. We hypothesize that the examples of the few-shot
prompt do not add any value here but instead introduce a negative bias since the
model already learned the task during fine-tuning. The LoRA configuration using
512 instead of 128 maximum tokens performs similarly to the regular zero-shot LoRA
results. Only the two classes, "Comparative Reasoning (All)" and "Comparative
Reasoning (Count) (All)" show significantly better scores. This observation indicates
that the model generated correct output for some queries but stopped too early
due to reaching the limit of tokens, which naturally leads to syntax errors during

51

6 Discussion

query execution. Considering the varying complexity of the expected generations, as
seen in Figure 6.2, further increasing the max token limit might lead to additional
improvements.

Figure 6.4: This plot visualizes the performance of model-prompt configurations (y-axis) for
each model-prompt configuration (x-axis). Cell values of the heat map contain
f1-scores or accuracy. "*" marks categories using accuracy as measurement.

To enhance clarity and facilitate a comprehensive understanding, we include
an additional chart illustrating which model-prompt combination yields the most
favorable overall results (Figure 6.5). It lists the models and prompts on the y-axis
and a score between 0 and 1 on the x-axis. This measure is the weighted average of
f1-scores and accuracy for each question type regarding the number of contained
samples in each category. Few-shot prompting consistently outperforms zero-shot
learning, except for the fine-tuned LoRA model which has already learned the
expected output format during fine-tuning. LoRA zero-shot with 512 max token
length delivers the best performance, improving the same model with a maximum
number of 128 tokens. Thus, raising this parameter might lead to further performance
improvements. Another observation is that GPT-3.5-turbo with few-shot learning
generates worse results than a fine-tuned LLaMA model, although it is over 20
times larger and, therefore, more costly. Compared to the BertSPG baseline from the
SPICE paper [52], lora-7b_zero-shot-512 performs worse for "Quantitative Reasoning

52

6 Discussion

(Count) (All)", "Clarification" and the three question types where queries exceed
the maximum token threshold. The other five question categories have comparable
evaluation metrics. Thus, the overall performance (0.724) is lower than BertSPG with
0.815. However, these numbers are unreliable indicators since we only use a subset of
the test data for evaluation.

Figure 6.5: This chart shows the performance of each model-prompt configuration as a score
comprised of mean accuracy/f1-score of each question type weighted by the
number of instances in each category (x-axis)

Human Evaluation

Previously, we analyzed model-prompt configurations qualitatively using the auto-
matically calculated evaluation metrics f1-score, accuracy, and EM. To get further
insights into the model generations and their most common error types, we perform
a qualitative analysis with the help of human annotators. We sample 15 instances
randomly for each question type, 150 in total, and investigate the corresponding
output of each model for zero-shot and few-shot prompting with post-processing.
One researcher labeled these samples for all model-prompt combinations according to
predefined error categories. Subsequently, another researcher assessed the annotated
instances for validity. There are eight considered error types, denoting common
issues in query generations like invalid SPARQL syntax, incorrect query results but
valid syntax, or unrelated predictions. These issue types are defined in Table 6.1,
providing explanations and examples.

53

6 Discussion

Table 6.1: Overview of eight considered error types with samples from generated model
predictions (PRED) and human annotations (GOLD). Some of the errors are high-
lighted in blue.

Issue Type Definition Example

Off-prompt Prediction is unre-
lated to the prompt
and contradicts the
desired output for-
mat.

GOLD: SELECT ?x WHERE { wd:Q23487488 wdt:P702 ?x .
?x wdt:P31 wd:Q863908 . }

PRED: Input question: What is the nucleic acid sequence
that is encoded by 16S rRNA methyltransferase GidB
SSA_0605 ? Entities: {’Q23487488’: ’16S rRNA methyl-
transferase [...]

Cut-off Prediction matches
GOLD exactly but
ends abruptly

GOLD: [...] WITH { SELECT DISTINCT ?x (0 AS ?tup-
count) WHERE { { { ?x wdt:P122 ?b . ?x wdt:P31
wd:Q7275 . } } FILTER NOT EXISTS [...]

PRED: [...] WITH { SELECT DISTINCT ?x (0 AS ?tup-
count) WHERE { { { ?x wdt:P122 ?b . ?x wdt:P31 w

Syntax Error Generated query is
invalid SPARQL

GOLD: SELECT DISTINCT ?x WHERE { ?x wdt:P166 ?y .
VALUES ?y { wd:Q918055 wd:Q133160 wd:Q920783 }. ?x
wdt:P31 wd:Q502895 . }

PRED: SELECT ?x WHERE { ?x wdt:P166 ?award ?award
wdt:Q918055 ?award wdt:Q133160 ?award wdt:Q920783
}

Different Query Deviating SPARQL
query returning
correct result

GOLD: SELECT ?x WHERE { wd:Q6177791 wdt:P451 ?x .
?x wdt:P31 wd:Q502895 . }

PRED: SELECT ?x WHERE { ?x wdt:P451 wd:Q6177791 .
?x wdt:P31 wd:Q502895 . }

Incorrect Result Valid SPARQL
query delivering
undesired result

GOLD: SELECT ?x WHERE { wd:Q6177791 wdt:P451 ?x .
?x wdt:P31 wd:Q502895 . }

PRED: SELECT ?x WHERE { ?x wdt:P451 ?p . ?p
wdt:Q502895 ?type . ?type wdt:commonName ?x . }

Deviating Entities Prediction uses
entity reference
not specified in the
prompt

GOLD: SELECT DISTINCT ?x WHERE { ?x wdt:P101 ?y
. VALUES ?y { wd:Q1622272 wd:Q170790 }. ?x wdt:P31
wd:Q502895 . } }

PRED: SELECT ?x WHERE { ?x wdt:P101 wd:Q1622272 .
?x wdt:P101 wd:Q170790 . ?x wdt:P31 wd:Q5 . }

Namespace Defi-
nition

Prediction defines
namespaces in-
stead of using wd
and wdt

GOLD: SELECT ?x WHERE { [...]

PRED: PREFIX wdt: <http://www . wikidata .
org/entity/> PREFIX wd: <http://www . wikidata .
org/prop/direct/> SELECT ?x WHERE { [...]

Language Filter Predicted query fil-
ters the language

GOLD: SELECT ?x WHERE { wd:Q123179 wdt:P69 ?x . ?x
wdt:P31 wd:Q163740 . }

PRED: SELECT ?x WHERE { ?x wdt:P69 ?y . FILTER
(LANG(?y)=’en’) . } LIMIT 1

54

6 Discussion

Utilizing the results of human annotations, we calculate relative frequencies of
error types in Table 6.2. In the samples for human evaluation, there are six instances
where manual labeling is impossible since the gold queries are missing. Thus, such
instances are excluded, reducing the sample size to 144. Values in the table marked
with "*" exclude off-prompt predictions in the relative frequency calculation. This
exclusion is necessary to avoid misleading results, as many off-prompt predictions
automatically reduce the incidence of other error types, given that this category
is mutually exclusive with all other issues. For "Syntax Error", we exclude cut-off
predictions additionally ("**"). Generations belonging to the cat-off category match
the gold query exactly but stop at some point since the maximum token limit of the
model is reached. Hence, although these queries are not syntactically valid since the
end of the query is missing, they would be correct if the maximum token limit of
the model is increased. Thus, there is no issue with the model’s capabilities, and
a change of the hyperparameter would fix the issue. Looking at "Incorrect Result",
we are interested in the number of times a model-prompt combination generates a
syntactically but not semantically valid query. Thus, in addition to off-prompt results,
syntax errors are excluded, which is marked with "***".

Table 6.2: Relative frequency of error categories for zero-shot and few-shot prompts in a
random sample of 150 predictions. This subset has missing gold queries in six
instances, which we exclude from the evaluation below

Issue Type LLaMA Vicuna GPT-3.5-Turbo LoRA
relative frequency: zero-shot / few-shot

Off-prompt 1.00 / 0.10 0.13 / 0.10 0.10 / 0.10 0.10 / 0.10
Cut-off - / - - / - - / - 0.33 */ 0.24 *

Syntax Error - / 0.16 ** 0.71 **/ 0.26 ** 0.20 **/ 0.17 ** 0.01 **/ 0.10 **

Different Query - / - - / - 0.08 / 0.06 0.01 / 0.01
Incorrect Result - / 0.82 *** 0.97 ***/ 0.86 *** 0.69 ***/ 0.63 *** 0.12 ***/ 0.20 ***

Deviating Entities - / 0.05 * 0.04 */ 0.02 * 0.06 */ 0.03 * 0.02 */ 0.04 *

Namespace Definition - / - 0.11 */ - - / - - / -
Language Filter - / - 0.33 */ 0.06 * 0.07 */ 0.02 - / -
* Excluding off-prompt predictions
** Excluding off-prompt and cut-off predictions
*** Excluding off-prompt and syntax error predictions

Considering the zero-shot results, LLaMA produces the worst outputs, with all
results not following the instructions and being off-prompt. Vicuna improves this,
while GPT-3.5-Turbo and LoRA generate even better results, especially regarding
the "Syntax Error" and "Incorrect Result" categories. Vicuna creates the worst results
for few-shot prompting, followed by LLaMA and GPT-3.5-Turbo. LoRA returns the
least amount of errors in almost all categories, although performing worst compared

55

6 Discussion

to utilizing zero-shot prompting. In the following, we look at each issue type and
examples of common errors.

The off-prompt category describes instances where the predictions do not follow
the general instructions of the prompt, for example, by not providing a SPARQL
query. All instances of LLaMA zero-shot contain this error, suggesting that a textual
description of a complex task without any examples is insufficient. Looking at the
other results of the issue, we conclude that providing examples in the prompt or
aligning models to follow human instructions by fine-tuning improves their behavior
significantly. Furthermore, we observe 0.10 as the lower bound for corresponding rel-
ative frequencies. The reason for this phenomenon is the question type "Clarification",
which does expect a clarifying question instead of a query as the model response.
Since we do not consider this behavior in the prompts and the fine-tuning dataset, all
model-prompt combinations try to generate a SPARQL query to answer the question
instead of asking for clarification, resulting in off-prompt generations for each of the
15 "Clarification" samples.

A prediction is considered "Cut-off" if it matches the expected output, but genera-
tion stops before completing the query. The maximum token length, a hyperparameter
for LLMs, is the cause of this issue. Increasing it would mitigate the problem. Regard-
ing the analyzed model-prompt combinations, only LoRA creates such predictions.
The token limit is only reached for very complex queries. All modes, besides LoRA,
deviate from the gold result before reaching the maximum amount of tokens. To see
if we can improve the generations for LoRA, we also experimented with increasing
the limit from 128, which we use for all model-prompt configurations, to 512. Indeed,
the four times higher limit improves performance as shown in Figure 6.4, but we do
not include its result in the human analysis.

With the "Syntax Error" category, we want to investigate how many generated
queries are executable. Therefore, we exclude off-prompt predictions from the
calculation of relative frequencies. Besides LoRA, few-shot prompting improves the
relative number of syntactically valid queries compared to zero-shot. GPT-3.5-Turbo
is significantly better than Vicuna in the zero-shot and few-shot scenario, while
LLaMA few-shot shows comparable frequencies. LoRA generates the lowest number
of syntax errors. We hypothesize that this is caused by seeing the most examples of
correct SPARQL due to fine-tuning.

"Different Query" is not an error but was added to the issue types since it lowers
EM performance. GPT-3.5-Turbo zero-shot generated most instances of this group,
with few-shot prompting reducing it to some extent.

The category "Incorrect Result" comprises all syntactically correct predictions that
return incorrect or incomplete results when executed using the SPICE database.
Generations of the "Syntax Error" and "Off-Prompt" categories are excluded from
the relative frequencies of this group. Few-shot prompting is better than zero-shot
performance in this category for all models besides LoRA. Vicuna shows the worst

56

6 Discussion

results, followed by LLaMA, GPT-3.5-Turbo, and LoRA. Sometimes, the error is
caused by a reversed order of triple elements in the query. In other cases, using
unsuitable entity references leads to unexpected results.

"Deviating Entities" refers to Wikidata references used in the predicted query
but not specified as part of the prompt. All model-prompt combinations show a
comparable relative frequency of this issue. Looking at these cases more closely, we
see that parts of the original reference are omitted in some instances, for example,
using Q5 instead of Q502895. In addition, two samples provide limited information
in the prompt’s conversation history, leading to models hallucinating other references.
This issue could be mitigated by adding the references of all entities, types, and
relations to the conversation history of the prompt.

In the system prompt, we instruct the model to refrain from defining namespace
prefixes and to use "wdt" and "wd" instead, which are predefined. With "Namespace
Definition", we measure the relative frequency of cases where the model does not
follow the instruction. Only Vicuna zero-shot shows this undesirable behavior with a
frequency of 0.11.

Similar to the previous category, we also analyze how well the model follows
the system instructions with the "Language Filter" error group. Since the SPICE
knowledge graph only contains data in English, no language labels are provided.
Thus, filtering in the query for a language does not lead to any results, even if it is
otherwise valid. Therefore, in the system prompt, we specify that the generated query
should not filter for languages. Only Vicuna and GPT-3.5-Turbo do not respect this
order, with few-shot prompting showing significant improvements over zero-shot.

6.3.2 Data-To-Text Generation

In this subsection, we perform the quantitative analysis and human evaluation for
triples-to-text generation.

Quantitative Analysis

Dataset Starting with the quantitative analysis, we first examine the WebNLG dataset
and its characteristics. The test set contains 1,779 samples belonging to 19 different
categories. This distribution is displayed in Figure 6.6, with the number of instances
on the x-axis and the categories on the y-axis. The categories with the highest number
of instances are "MusicalWork", "Film", and "Scientist", which together constitute
around 45% of all test examples. Notably, these three topics are only included in the
test set and are hence not seen during training or validation. The smallest categories
are "Politician" and "ComicsCharacter" with 29 and 30 samples, less than one-third of
93.6, the mean number of instances per topic. The uneven distribution of samples
needs to be taken into account when analyzing the results of triples-to-text generation
since the topic of the triples might influence the performance of utilized LLMs.

57

6 Discussion

Figure 6.6: This chart visualizes the number of instances (x-axis) in each category (y-axis) of
our test set. It is a sub-selection of the WebNLG test data.

Figure 6.7: This chart shows the number of samples for each triple set size in the data we use
for evaluation. It is a subset of the WebNLG test data.

58

6 Discussion

Furthermore, based on human experience, we reason that the task of verbalizing
triples gets more challenging for an increasing amount of triples. While a single triple
can often be translated into natural language text at first glance, it takes substantially
more cognitive capacity for larger groups containing multiple instances. Thus, we
use the amount of triples contained in a set as a proxy for the complexity of the
task. Figure 6.7 presents the distribution of samples per triple set size. The y-axis
shows the number of triples within the set, while the x-axis denotes the amount of
instances belonging to each group. The plot demonstrates that sets containing one,
two, or three triples are most common in the data, and around 350 instances belong
to each of these classes. For larger triple sets, the amount of samples decreases with
an increase in the complexity (size) of the group. The most complex class in this data
contains seven triples, and 79 instances belong to this group in the test set.

Figure 6.8: This chart depicts the median triple set size (x-axis) for each category (y-axis) of
the subset from the WebNLG test data that we employ for evaluation.

When analyzing the results, we want to determine if the topic of the verbalization
influences the performance and if the score depends on the number of related triples
that need to be translated into natural language text. Therefore, we create Figure 6.8,
which shows the categories on the y-axis and the size of the corresponding triple
sets on the x-axis. Ten of the 16 classes have a median triple number of three. For
"WrittenWork" the median is only two, while four groups have the largest average
value with five triples. In addition, there are three categories with three point five

59

6 Discussion

and one with four triples. Hence, if the performance of model-prompt combinations
is independent of the topic that needs to be verbalized, we expect it to correlate with
the median number of triples as visualized in this figure.

Results After analyzing the characteristics of the test set in the previous paragraph,
we now evaluate the different model-prompt combinations and their achievements
on this dataset. As we can see in Table 5.3, few-shot prompting with post-processing
works best for all models, but the performance gains vary depending on model size
and training technique. Considering the BLEU score, LLaMA few-shot-pp more
than doubles the quality of results compared to LLaMA zero-shot-pp from 14.21 to
37.9. The improvement for Vicuna is less drastic, but its zero-shot-pp performance is
already significantly better than LLaMA. The bleu score increases by 17.21 for Vicuna
few-shot-pp compared to zero-shot-pp. There are only minor improvements for
the large GPT-3.5-turbo model with an absolute increase of 2.52, but again, starting
with higher scores for zero-shot-pp. The difference between LoRA zero-shot-pp and
few-shot-pp is negligible. Since few-shot-pp is always the best prompting technique,
we only consider it for further quantitative analysis.

(a) METEOR score per number of triples (b) BLEU score for each size of triples

Figure 6.9: This plot displays the METEOR or BLEU score (y-axis) of each model utilizing
few-shot prompting with post-processing. The performance is separated by the
size of the triple set (x-axis). We use a sub-selection of the WebNLG test data for
this evaluation.

In the first plot of Figure 6.9, we compare the METEOR score of different models
regarding the number of triples that should be verbalized. Considering all four LLMs,
the line decreases steadily until six triples. Then, it stays flat for LLaMA and shows a
minor increase for the other three models. In general, the shape of the different lines is
similar, besides an offset in the y-axis values. This plot supports our intuition that the

60

6 Discussion

difficulty of triples-to-text translation for LLMs increases with the number of related
triples that need to be considered. In addition, it allows us to compare the different
models with each other. No matter the number of triples, LLaMA performs worst.
While its performance for single triples is almost as good as Vicuna’s, the results
quickly deteriorate for more complex triple sets. Although a lot smaller in size, the
METEOR score of Vicuna is surprisingly close to GPT-3.5-Turbo, and the difference in
performance stays roughly the same for varying sizes of triples. While the fine-tuned
LoRA model achieves the best results for up to four triples, its performance closely
matches GPT-3.5-Turbo regarding five, six, and seven triples. Possible reasons could
be fewer instances for these three groups in the training set or better performance
in general for larger models on more complex tasks. The second plot displays the
BLEU score for the same model-prompt combinations for each number of triples.
Considering this measure, the improvement of LoRA compared to GPT-3.5-Turbo is
much more evident than in the first plot. Furthermore, the performance of Vicuna
is closer comparable to GPT-3.5-Turbo. Nevertheless, in general, the course of the
curves is similar to the first graphic.

Figure 6.10: This graphic depicts the number of sentences (y-axis) that each model generates
for triples of different sizes (x-axis) of the WebNLG dataset. The models are
displayed in distinct colors. The size of the dots indicates the number of instances
that belong to this position. Instead of utilizing the full WebNLG test data, we
use a subset.

To investigate why the models accomplish various METEOR scores, we look at
the number of generated sentences for each triple set size and model in Figure 6.10.
This scatter plot denotes the number of triples in the given set on the x-axis. The
y-axis shows the amount of generated sentences, and the dots in the graphic are
colored according to the corresponding model. Once more, we only consider few-
shot prompting in combination with post-processing. Furthermore, the number of

61

6 Discussion

sentences belonging to the desired lexicalizations are depicted in yellow. As there
are many samples for each triple category, possibly resulting in texts with varying
lengths, multiple dots might exist for each model and triple set size. The size of the
dots corresponds to the number of samples at this position in the plot. The figure
shows that LLaMA (blue dots) is a lot more verbose compared to the other models
and the gold standard. Vicuna and GPT-3.5-Turbo also generate, in multiple cases,
more sentences than the lexicalization. In contrast, the number of sentences LoRA
creates correlates closely with the desired result. We hypothesize that LoRA delivers
the best results, according to automatic evaluation metrics, as it learned the desired
structure and amount of expected sentences during fine-tuning for each of the triple
set sizes.

Figure 6.11: In this figure, we show the BLEU performance (x-axis) of each model for the five
best and worst performing categories (y-axis). These results are calculated based
on a subset of the WebNLG test set.

To determine if the topics of the 19 categories influence the results of the LLMs,
we depict in Figure 6.11 the five best and worst categories for each model. Each of
the four box plots provides the BLEU score of the respective model on the x-axis. On
the y-axis, the topics are listed and sorted by mean performance. Since we expect an
influence of the triple set sizes contained in the categories, we compare this graphic

62

6 Discussion

with the median amount of triples, as shown in Figure 6.8, during the analysis. For
all models, "University" is the best-performing topic. This observation is surprising;
with an average number of 3.5 triples in each set, there are 11 categories with lower
complexity. "CelestrialBody" and "WrittenWork" are in the top three, "Scientist" in
the top four, and "Artist" in the top five for three of the four models. The topic with
the lowest average number of triples (2) is "WrittenWork". While it performs well for
most models, it is not contained in the top five of LoRA, similar to "CelestrialBody"
and "Scientist". Looking at the five categories with the lowest BLEU score of each
model, we see that "Food" is consistently ranked as the worst topic. "SportsTeam"
and "ComicsCharacter" are for each model among the four categories with the lowest
score, while "MusicalWork" is ranked among the four lowest topics for all models
besides Vicuna. With an average of five triples per set, "Food" and "SportsTeam" are
among the most complex categories. Thus, their low performance is no surprise.
Out of the three topics, "MusicalWork", "Film", and "Scientist", which are not part of
the training set, only "MusicalWork" belongs to the five worst performing categories
of LoRA. Notably, this type is also ranked low by the other models, which were
not trained on any topics. Thus, we conclude that LoRA generalizes well to unseen
classes not part of the fine-tuning dataset.

To sum up, we find with this quantitative analysis that few-shot prompting per-
forms generally better than zero-shot prompting. Furthermore, the results for some
models can be improved significantly by applying rule-based post-processing to
remove common issues of generations. In addition, we see zero-shot prompting to
perform better for models fine-tuned on conversations compared to regular PLMs and
notice further improvements with an increase in model size. According to automatic
metrics, the best results can be achieved by fine-tuning a model on the specific task.
This technique performs better than in-context learning utilizing a 20 times bigger
model. For the task of triples-to-text generation, a major influence on the quality
of the generated text is the number of related triples that need to be verbalized.
Moreover, the topic of the triples might influence the generated results. Compared to
the state-of-the-art approach from [97] (BLEU: 0.62, METEOR: 0.45, TER: 0.35), our
similarity scores are lower. However, considering the BERT-Score, LoRA-7B performs
identical with 0.96.

Human Evaluation

Next to the automatic evaluation, we also perform a human analysis to investigate
common errors in model predictions and discover potential shortcomings of automatic
evaluation metrics. Two researchers manually labeled 150 few-shot and 150 zero-shot
predictions for this detailed investigation. The generations are sorted by lowest
average BLEU and METEOR scores of all models to find the most prominent issues.
These problems are classified into five common error groups inspired by the Scarecrow

63

6 Discussion

paper [8]. The categories we are considering are listed in Table 6.3 together with a
description for each type. For example, sometimes triples are lexicalized incorrectly,
some information is missed, or inaccurate facts are added. Furthermore, the LLMs
might misinterpret the prompt and generate undesired output or repeat the same
information multiple times.

Table 6.3: Overview of five identified issue types with examples from generated model
predictions (PRED) and human annotations (GOLD).

Issue Type Definition Example

Off-prompt Prediction is un-
related to the
prompt and con-
tradicts the de-
sired output for-
mat.

GOLD: GMA Network is a public company.

PRED: The input triples are: [{’object’: ’Public_company’,
’property’: ’type’, ’subject’: ’GMA_Network_(company)’}].

Inaccurate Prediction is in-
complete or fac-
tually incorrect.

GOLD: Binignit is a dessert that comes from the Philippines.

PRED: Philippines is a dessert.

Mistranslated Triples are
verbalized in a
language other
than English.

GOLD: The Mexican based city of Ciudad Ayala in Morelos
stands at 1147 metres above sea level and is in the PDT time
zone.

PRED: Ciudad Ayala es parte de Morelos, que es un estado
en México. Ciudad Ayala tiene una elevación de 1147 metros
sobre el nivel del mar [...]

Redundant Unnecessary
repetition of
triple informa-
tion.

GOLD: The Pontiac Rageous, a car with a coupe body style,
assembled in Detroit Michigan, was first and last produced in
1997.

PRED: 1997 Pontiac Rageous was produced in Detroit, Michi-
gan, in 1997. It was a coupe. It was assembled in 1997. It was
produced in 1997 [...] It was a coupe. It was assembled in
1997 [...]

Unlexicalized Entities or rela-
tions are not lex-
icalized.

GOLD: The Fellowship of the Ring was followed by The Two
Towers.

PRED: The_Fellowship_of_the_Ring was followed by
The_Two_Towers.

Based on the manual analysis, we create relative frequencies of error types, shown
in Table 6.4. Values marked with "*" are cases where the considered LLM generated
off-prompt results. In these circumstances, the relative frequency only considers
generations being on-prompt. Otherwise, the results would be misleading as this
would artificially reduce the relative proportion of the other error categories.

Looking at the overall results, LLaMA has by far the highest error frequencies for

64

6 Discussion

Table 6.4: Relative frequency of issue types for zero-shot and few-shot
prompts in a sample of 150 predictions with lowest averaged
BLEU and METEOR scores.

Issue Type LLaMA Vicuna GPT-3.5-Turbo LoRA
relative frequency: zero-shot / few-shot

Off-prompt 0.65 / - 0.27 / - - / - - / -
Inaccurate 0.60 */ 0.61 0.41 */ 0.48 0.13 / 0.11 0.19 / 0.17
Mistranslated - / - 0.01 */ - - / - - / -
Redundant 0.23 */ 0.07 0.02 */ - 0.01 / 0.01 - / 0.01
Unlexicalized 0.69 */ - 0.27 */ - 0.07 / - - / -
* Excluding off-prompt predictions

almost all types, followed by Vicuna. For GPT-3.5 and LoRA, there is no imminent
ordering. However, both have at least three times lower relative frequencies than
LLaMA and two times less regarding Vicuna, with redundancy in the results of
few-shot prompting being an exception.

For few-shot prompting, more than half of the results the LLaMA model produces
(0.65) are not related to the desired output and hence are classified as off-prompt.
Vicuna reduces this issue to 27%, while it is not present for GPT-3.5 or LoRA. Thus,
we can observe that models aligned with human preferences or trained on the specific
task follow a prompt’s instructions more closely. This problem is completely resolved
when examples of expected generations are presented to the LLMs in context, using
few-shot prompting. With this technique, none of the considered models generated
off-prompt outputs.

The category "Inaccurate" is one of the most common error types. It refers to
imprecise generations and encompasses the utilization of erroneous numerical rep-
resentations, such as a displacement of the decimal point or the substitution of
entirely different digits. Other typical issues include ignoring information, adding
hallucinated facts, or confusing semantic relations between triples. An example for
the last problem is a changed ordering of "followedBy", or "preceededBy" properties.
For LLaMA (0.60/0.61) and Vicuna (0.41/0.48), this is a lot more prominent than for
GPT-3.5-Turbo (0.13/0.11) and LoRA (0.19/0.17). Zero-shot and few-shot prompting
show similar behavior regarding this error type.

In rare instances, the Vicuna model creates its output in a different language than
the input prompt, for which we always use English. We can only observe such
generations for input triples containing many foreign words, for example, in Spanish.
As we can solely perceive this phenomenon in Vicuna, this may be due to fine-tuning
instructions for translation tasks.

Repeating the information of triples is mainly an issue of LLaMA. We see this
redundancy in some instances where LLaMA starts regenerating the same terms

65

6 Discussion

continuously until it reaches the maximum token limit. This recurrence is less of a
problem for few-shot prompting and the other models in general.

The unlexicalized error category refers to generations copying entities from the
triples without reformulating them into their regular word forms. This behavior is an
issue for all models besides LoRA, with 0.69 for LLaMA, 0.27 for Vicuna, and 0.07
for GPT-3.5-Turbo. Providing examples for correct lexicalizations of such sequences
within the samples of the few-shot prompt solves this issue effectively for all models.

When investigating model predictions manually during human evaluation, we
notice, for some instances, a low similarity score according to automatic metrics.
However, the generation is semantically consistent with the desired result. We
identify two possible reasons for this observation. First, since the triples are arranged
according to (object, property, subject), the models are nudged to start a sentence in
some cases with the object. This results in generations using the passive voice (e.g.
"Death on a Factory Farm was edited by Geof Bartz."). Most lexicalizations created by
human annotators start instead with the subject of the sentence and create texts in
active language (e.g. "Geof Bartz is the editor of the film Death on a Factory Farm.").

A second reason might be that the gold standards aggregate lots of information
in a small number of sentences (e.g. "Nurhan Atasoy was born and currently resides
in Turkey, a unitary state whose area is comprised by 1.3 percent water, where he currently
resides in the city of Istanbul."). In contrast, most generations, especially the ones not
from models fine-tuned on this specific task, tend to do this to a lower extent. Instead,
they usually create more sentences with less complexity (e.g., "Nurhan Atasoy resides
in Istanbul. Turkey is a unitary state and the government type of Turkey is a unitary state.
Nurhan Atasoy also resides in Turkey. Turkey has 1.3% of its area covered by water. Nurhan
Atasoy was born in Turkey."). This phenomenon can also be seen when looking at
Figure 6.10. As this writing style can be learned better by fine-tuning on the WebNLG
dataset, LoRA outperforms the other considered LLM-prompt combinations with
regards to the automatic metrics while having a similar amount of issues compared
to GPT-3.5-Turbo when looking at the human evaluation.

6.4 Limitations

Internal Validity Factors that might influence the outcome of an evaluation without
being part of the study are, according to Wohlin et al. [103], threats to the internal
validity.

One such limitation is that we run the LLMs only once on the whole evaluation
set. As the generations of models are not deterministic and might produce different
outputs on multiple runs, it is beneficial to execute the tests multiple times and
average the results. However, we could not do so due to limited resources and time
constraints. Running the evaluation sets of both tasks with all eight considered
model-prompt combinations would take several working days since we only have

66

6 Discussion

a single NVIDIA Tesla V100 16GB GPU available. To mitigate this issue, we make
all code and scripts available that are required for other researchers to replicate our
experiments.

Another issue is that we selected GPT-3.5-Turbo, a closed-source model, for our
comparative analysis. Thus, we do not have complete knowledge about the char-
acteristics of the LLM, as well as the pre- and post-processing steps employed by
OpenAI. Therefore, we can not guarantee the repeatability of our results as this
model or input-output processing might change without notice. We acknowledge
this compromise because we cannot run models of comparable size on our own. To
minimize variations of the model due to updates, we specify the exact version in the
code.

For human evaluation, two annotators label typical error categories of the genera-
tions. This process might introduce bias as the labelers are involved in the project. To
reduce this risk, each sample is marked based on predefined categories that include a
clear description.

External Validity How generalizable the outcomes of an evaluation are to outside
environments needs to be addressed when external threats to validity are considered
[103].

In our work, we compare four LLMs in combination with two prompting techniques.
The number of considered models and prompts could be expanded to improve
generalization. Since each additional model or prompt would exponentially increase
the number of combinations, and we need to adhere to resource and time constraints,
further increasing this thesis’s scope is impossible for us. To counteract this limitation,
we publish the full prompts and code needed to replicate and extend our research.
Furthermore, we use OpenAI’s API and an implementation of Fastchat [28] that
replicates it for open-source models. Thus, our experiments can easily be expanded
to other LLMs without significant code changes. In addition, we provide detailed
results of our analysis, enabling other researchers to compare their approaches with
our work.

A further shortcoming is using a single dataset for each of the two considered tasks.
Moreover, for semantic parsing, we only utilize a sub-selection of the test set for our
evaluation. Although this limits the generalization of our results, using more data
was impossible as this would increase the required GPU hours. To make the subset of
SPICE representative of the entire test set, we select random samples while ensuring
a similar distribution regarding number of instances per question type.

Similarly, for the human evaluation, a larger amount of samples and annotators
would be necessary for generalizability. For data-to-text, we labeled samples perform-
ing worst on average to provide an upper bound for error frequencies.

As we only consider English data in our tests and the selected models are mainly
trained for English, we do not expect our results to apply to other languages.

67

7 Conclusion & Outlook

7.1 Summary

In this section, we summarize the outcomes for each of the research questions.
Furthermore, we describe shortly the methodology used to obtain the results.

RQ1: Which previous studies have investigated using LLMs for the tasks of semantic
parsing and text generation?

Methodology We perform a systematic literature review for semantic parsing and
data-to-text generation. We focus primarily on approaches utilizing LLMs for solving
these tasks. We select relevant literature by defining search strings in addition to
inclusion and exclusion criteria. Following the defined principles, we query three
scientific databases and filter the results by screening the abstracts of the papers. We
identify the research gaps addressed in this thesis based on the resulting research
literature.

Findings The literature review results in 18 relevant publications about semantic
parsing and 13 data-to-text generation papers. We recognize a lack of research
evaluating different LLMs and prompting techniques for conversational semantic
parsing using SPARQL. Moreover, there is no detailed analysis of model predictions
investigating common error categories and their relative frequencies for this task.
Regarding data-to-text generation, we found no detailed comparison of conversational
LLMs and prompt configurations for triples-to-text generation. Furthermore, there is
a lack of comprehensive human evaluation regarding error types and their occurrence
rates for each model-prompt combination.

RQ2: What selection of Large Language Models and Prompting techniques are suitable for
a comparative analysis of the considered tasks?

Methodology First, we select a set of model characteristics to consider when choosing
LLMs. Then, we compare popular LLMs regarding their performance on publicly
available metrics. We primarily select models that can run on our available hardware
to minimize external influence in the experiments. Furthermore, we try to have some
variation in the considered characteristics of the LLM. Before developing specific
prompts for semantic parsing and triples-to-text generation, we use academic papers

68

7 Conclusion & Outlook

to get an overview of the most eminent prompting techniques and best practices.
Since Prompt Engineering has only recently gained popularity, we also consider grey
literature to find emerging approaches. Based on these insights, we select established
techniques for the comparison.

Findings We chose four models for the analysis. These LLMs include LLaMA 7B,
Vicuna, and a fine-tuned LoRA model, with the latter two being fine-tuned variations
of the former. We host these three models on our server to have complete control
over the experiments. Additionally, we select GPT-3.5-Turbo, a large proprietary
model commonly utilized for commercial solutions of the company OpenAI. Thus,
we include a variety of training procedures and model sizes in our evaluation. We
create one zero-shot and one few-shot prompting template for each task. The chat
structure is used for all prompts, consisting of "system", "user", and "assistant" roles.
The system message describes the general task, while the user and assistant messages
provide examples of requests and desired responses. Furthermore, we consider best
practices regarding prompt formatting and few-shot sample selection.

RQ3: How capable are the selected Large Language Models and prompting strategies for
semantic parsing and triples-to-text generation based on automatic and human evaluation?

Methodology We utilize the official evaluation script of SPICE for semantic pars-
ing and WebNLG for triples-to-text generation to calculate automatic metrics. For
qualitative analysis, we perform a human evaluation, investigating common error
categories of the generated content. For this purpose, we utilize 150 instances from
each dataset and model-prompt combination. Two evaluators iteratively annotate
these predictions to derive common issue types. Afterward, we calculate the relative
frequency for each category and model-prompt configuration.

Findings We find that LoRA 7B with zero-shot prompting yields the best overall
results for conversational semantic parsing on the SPICE dataset. Although this
model is around 20 times smaller than GPT-3.5-Turbo, its generations are better due
to being fine-tuned for the specific task. For all other models, few-shot prompting
performs significantly better compared to zero-shot. The second-best model, GPT-3.5-
Turbo, more than doubles its average weighted performance score from 0.28 to 0.61
by utilizing few-shot over zero-shot prompting. Regarding the human evaluation, we
find that a too-low maximum token limit constraints the performance of LoRA. It
prevents the model from completing complex query generations that are otherwise
correct, leading to low evaluation metrics for three out of ten question types. For
the most common issue categories, Syntax Error and Incorrect Query Result, LoRA
shows the lowest relative frequencies, followed by GPT-3.5-Turbo. Furthermore, we
analyze how closely the different model-prompt combinations follow the prompt’s

69

7 Conclusion & Outlook

instructions. LLaMA zero-shot does not generate SPARQL queries for any of the
samples, but using few-shot prompting instead mitigates this behavior. Although
Vicuna and GPT-3.5-Turbo follow the general task described in the prompt, both
ignore some specific instructions in multiple cases.

For triples-to-text generation, a less complex task than semantic parsing, the fine-
tuned LoRA model achieves the best overall results as well, but the difference between
the LLMs are smaller. The quantitative analysis shows that few-shot prompting
outperforms zero-shot prompting in general. Additionally, utilizing rule-based post-
processing to mitigate common issues significantly increases the performance of some
models. The number of related triples needing to be verbalized greatly influences
the quality of the generated output. With the human evaluation, we see that some
predictions receive a low score by automatic metrics, although they are semantically
consistent with the desired output. We recognize two possible reasons for this
phenomenon. In some cases, the models generate a natural language text in passive
voice, while the gold standards use active language or vice-versa. In other cases, the
lexicalizations consolidate information into a limited number of sentences, whereas
most models not fine-tuned for this task do so to a lesser extent.

7.2 Future Work

This section outlines suggestions for future research to enhance conversational seman-
tic parsing and triples-to-text generation with LLMs. First, we explore opportunities
to enhance the performance of these two tasks. Afterward, we present potential
advancements in the evaluation procedures.

Improving the Conversational Search System

The currently considered system components only engage in one-sided conversations.
Thus, the user poses questions, and the system answers them based on information
from the knowledge base and by considering the conversation history. Introducing
a dedicated dialogue management component would enable the system to support
users in discovering their information needs by asking clarifying questions and
filtering search results based on additional information. An example of such a system
is AgentGPT [104].

Research concerned with LLMs is evolving rapidly. In the last months, multiple
new models were published, including LLaMA 2, the successor of LLaMA that
we utilize in this thesis. These newer models could lead to a higher quality of
generations due to improved pre-training methodologies and datasets. Thus, one
could investigate to what extent they further enhance the performance of semantic
parsing and data-to-text generation components.

70

7 Conclusion & Outlook

We only considered two of the most established prompting techniques in this
thesis. Few-shot chain-of-thought prompting or least-to-most-prompting may further
enhance the models’ performance. By implementing these techniques in semantic
parsing, the model could learn to address sub-queries first before combining them
into the final SPARQL output, thus reducing the complexity of individual steps.
Likewise, in the context of triples-to-text generation, the model can be guided to
verbalize each triple individually before consolidating the information into a coherent
paragraph.

Extending Evaluation

Since GPT-3.5-Turbo is a closed-source model, we do not know what input and
output processing is applied by OpenAI that influences our experiments. If available
computational resources allow, including larger, self-hosted models in the comparison
would be interesting. Using multiple LLMs of the same model family with different
parameter sizes would enable us to test the effect of an increased model size while
keeping everything else equal. In addition, one could fine-tune a larger version of
LLaMA with the LoRA approach to see if it brings further benefits compared to the 7
Billion version.

Generalizability is inherently constrained since we rely only on one dataset for
semantic parsing and another for triples-to-text creation. To mitigate this limitation, a
broader range of data can be incorporated into the evaluation process. Ideally, the
new samples should cover additional topics and have varying complexity. Other
languages could be included as well.

To validate the reliability of the human analysis, additional annotators could assess
the same samples independently. So far, only a single person labels each instance.
Furthermore, one could increase the number of annotated samples for a more reliable
quantification of error types.

Evaluating the entire conversational search approach end-to-end with users would
be interesting. Such a case study requires creating a dedicated tool or a plugin for
existing chatbots first. It would allow us to analyze the quality of results based on
realistic user questions instead of curated datasets.

71

List of Figures

1.1 Rasa Chatbot Intent, Utterance, and Story 3
1.2 Unreliability of LLMs . 4
1.3 Outdated Information of LLMs . 5
1.4 Scope of the Thesis . 6

4.1 Prompt Creation Process . 27

5.1 Statistics of Semantic Parsing Publications Utilizing LLMs 30
5.2 Statistics of Data-To-Text Generation Research Using LLMs 32

6.1 SPICE: Distribution of Samples per Question Type 48
6.2 SPICE: Lenght of SPARQL Queries per Question Type 49
6.3 SPICE: Performance per Question Type . 50
6.4 SPICE: Performance per Question Type and Model-Prompt 52
6.5 SPICE: Performance per Model-Prompt Configuration 53
6.6 WebNLG: Instances per Category . 58
6.7 WebNLG: Number of Instances per Triple Size 58
6.8 WebNLG: Median Triple Size per Category 59
6.9 WebNLG: METEOR and BLEU Score per Model and Triple Set Size . . 60
6.10 WebNLG: Number of Sentences Generated per Triple Set Size 61
6.11 WebNLG: BLEU Performance of Categories 62

72

List of Tables

5.1 Overview of Selected Models . 34
5.2 Results of Semantic Parsing Using SPICE 38
5.2 Results of Semantic Parsing Using SPICE 39
5.2 Results of Semantic Parsing Using SPICE 40
5.3 Results of Triples-To-Text Generation Using WebNLG 41

6.1 SPICE: Error Categories with Examples . 54
6.2 SPICE: Issue Types with Relative Frequencies 55
6.3 WebNLG: Issue Types with Examples . 64
6.4 WebNLG: Error Categories with Relative Frequencies 65

73

Acronyms

BLEU Bilingual Evaluation Understudy. 15, 17, 40, 60–63, 72

BP Brevity Penalty. 15

CQA Conversational Question Answering. 18

CS Conversational Search. 8, 9, 18

DS Dialogue Systems. 8

EM Exact Match. 38, 50, 53, 56

FN False Negative. 14

FP False Positive. 14

LLM Large Language Model. 1–8, 10–12, 19–23, 25, 26, 30–32, 34, 38–47, 56, 57, 60–62,
64–72

LoRA Low-Rank Adaptation of Large Language Models. 12, 34, 44, 45

METEOR Metric for Evaluation of Translation with Explicit ORdering. 15, 16, 40, 60,
61, 63, 72

NLG Natural Language Generation. 6, 19

NLP Natural Language Processing. 8, 10, 18, 19

NLU Natural Language Understanding. 5

P Precision. 15, 16

PLM Pre-Trained Language Model. 2, 9, 10, 19, 31–33, 43, 44, 63

PPO Proximal Policy Optimization. 13

R Recall. 15, 16

RLHF Reinforcement Learning from Human Feedback. 2, 13, 22

74

Acronyms

RM Reward Model. 13

RQ Research Question. vi, 6, 30, 33, 37, 42, 44, 47, 68, 69

TER Translation Edit Rate. 16, 40

TN True Negative. 14

TP True Positive. 14

75

Bibliography

[1] F. Radlinski and N. Craswell. “A Theoretical Framework for Conversational Search”.
In: Proceedings of the 2017 Conference on Conference Human Information Interaction and
Retrieval. CHIIR ’17. Oslo, Norway: Association for Computing Machinery, 2017,
pp. 117–126. isbn: 9781450346771. doi: 10.1145/3020165.3020183. url: https://doi.
org/10.1145/3020165.3020183.

[2] M. Aliannejadi, L. Azzopardi, H. Zamani, E. Kanoulas, P. Thomas, and N. Craswell.
“Analysing Mixed Initiatives and Search Strategies during Conversational Search”. In:
Proceedings of the 30th ACM International Conference on Information & Knowledge Man-
agement. CIKM ’21. Virtual Event, Queensland, Australia: Association for Computing
Machinery, 2021, pp. 16–26. isbn: 9781450384469. doi: 10.1145/3459637.3482231. url:
https://doi.org/10.1145/3459637.3482231.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P.
Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R.
Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D.
Amodei. “Language Models are Few-Shot Learners”. In: Advances in Neural Information
Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H.
Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 1877–1901. url: https://proceedings.
neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf.

[4] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,
D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W.
Fedus. Emergent Abilities of Large Language Models. 2022. arXiv: 2206.07682 [cs.CL].

[5] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin,
T. Bos, L. Baker, Y. Du, et al. “Lamda: Language models for dialog applications”. In:
arXiv:2201.08239 (2022). doi: https://doi.org/10.48550/arXiv.2201.08239.

[6] OpenAI. Chatgpt: Optimizing language models for dialogue. OpenAI. 2022. url: http:
//web.archive.org/web/20230109000707/https://openai.com/blog/chatgpt/.

[7] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung.
“Survey of Hallucination in Natural Language Generation”. In: ACM Comput. Surv.
55.12 (Mar. 2023). issn: 0360-0300. doi: 10.1145/3571730. url: https://doi.org/10.
1145/3571730.

76

https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3459637.3482231
https://doi.org/10.1145/3459637.3482231
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2206.07682
https://doi.org/https://doi.org/10.48550/arXiv.2201.08239
http://web.archive.org/web/20230109000707/https://openai.com/blog/chatgpt/
http://web.archive.org/web/20230109000707/https://openai.com/blog/chatgpt/
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730

Bibliography

[8] Y. Dou, M. Forbes, R. Koncel-Kedziorski, N. A. Smith, and Y. Choi. “Is GPT-3 Text
Indistinguishable from Human Text? Scarecrow: A Framework for Scrutinizing Ma-
chine Text”. In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 7250–7274. doi: 10.18653/v1/2022.acl-long.501. url:
https://aclanthology.org/2022.acl-long.501.

[9] Google. Bard announcement tweet. Accessed: 2023-08-02. url: https://twitter.com/
Google/status/1622710355775393793.

[10] P. Brennan, K. Walbolt, and T. Schirner. 2M1207 b - First image of an exoplanet. Accessed:
2023-08-02. url: https://exoplanets.nasa.gov/resources/300/2m1207-b-first-
image-of-an-exoplanet/.

[11] OpenAI. ChatGPT. Accessed: 2023-06-10. url: https://chat.openai.com/.

[12] J. Deriu, A. Rodrigo, A. Otegi, G. Echegoyen, S. Rosset, E. Agirre, and M. Cieliebak.
“Survey on evaluation methods for dialogue systems”. In: Artificial Intelligence Review
54 (2021), pp. 755–810. url: https://doi.org/10.1007/s10462-020-09866-x.

[13] J. Weizenbaum. “ELIZA—a Computer Program for the Study of Natural Language
Communication between Man and Machine”. In: Commun. ACM 9.1 (Jan. 1966), pp. 36–
45. issn: 0001-0782. doi: 10.1145/365153.365168. url: https://doi.org/10.1145/
365153.365168.

[14] S. Vakulenko. Knowledge-based Conversational Search. 2019. arXiv: 1912.06859 [cs.IR].

[15] P. Schneider, N. Rehtanz, K. Jokinen, and F. Matthes. “From Data to Dialogue: Lever-
aging the Structure of Knowledge Graphs for Conversational Exploratory Search”.
In: Proceedings of the 37th Pacific Asia Conference on Language, Information and Compu-
tation. Hong Kong, China: Association for Computational Linguistics, 2023. arXiv:
2310.05150. url: https://arxiv.org/abs/2310.05150.

[16] P. Schneider, A. Afzal, J. Vladika, D. Braun, and F. Matthes. “Investigating Con-
versational Search Behavior for Domain Exploration”. In: Advances in Information
Retrieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland,
April 2–6, 2023, Proceedings, Part II. Dublin, Ireland: Springer-Verlag, 2023, pp. 608–
616. isbn: 978-3-031-28237-9. doi: 10.1007/978-3-031-28238-6_52. url: https:
//doi.org/10.1007/978-3-031-28238-6_52.

[17] F. Radlinski and N. Craswell. “A theoretical framework for conversational search”. In:
Proceedings of the 2017 conference on conference human information interaction and retrieval.
2017, pp. 117–126.

[18] H. Face. The Hugging Face Course, 2022. https://huggingface.co/course. [Online;
accessed September, 6, 2023]. 2022.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017).

77

https://doi.org/10.18653/v1/2022.acl-long.501
https://aclanthology.org/2022.acl-long.501
https://twitter.com/Google/status/1622710355775393793
https://twitter.com/Google/status/1622710355775393793
https://exoplanets.nasa.gov/resources/300/2m1207-b-first-image-of-an-exoplanet/
https://exoplanets.nasa.gov/resources/300/2m1207-b-first-image-of-an-exoplanet/
https://chat.openai.com/
https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://arxiv.org/abs/1912.06859
https://arxiv.org/abs/2310.05150
https://arxiv.org/abs/2310.05150
https://doi.org/10.1007/978-3-031-28238-6_52
https://doi.org/10.1007/978-3-031-28238-6_52
https://doi.org/10.1007/978-3-031-28238-6_52
https://huggingface.co/course

Bibliography

[20] G. Wenzek, M.-A. Lachaux, A. Conneau, V. Chaudhary, F. Guzmán, A. Joulin, and
E. Grave. “CCNet: Extracting high quality monolingual datasets from web crawl data”.
In: arXiv preprint arXiv:1911.00359 (2019).

[21] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. “Exploring the limits of transfer learning with a unified text-to-text transformer”.
In: The Journal of Machine Learning Research 21.1 (2020), pp. 5485–5551.

[22] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N.
Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. LLaMA:
Open and Efficient Foundation Language Models. 2023. arXiv: 2302.13971 [cs.CL].

[23] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi.
Self-Instruct: Aligning Language Models with Self-Generated Instructions. 2023. arXiv:
2212.10560 [cs.CL].

[24] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B.
Hashimoto. Stanford Alpaca: An Instruction-following LLaMA model. https://github.
com/tatsu-lab/stanford_alpaca. 2023.

[25] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang,
J. E. Gonzalez, I. Stoica, and E. P. Xing. Vicuna: An Open-Source Chatbot Impressing
GPT-4 with 90%* ChatGPT Quality. Mar. 2023. url: https://lmsys.org/blog/2023-
03-30-vicuna/.

[26] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-Rank Adaptation of Large Language Models. 2021. arXiv: 2106.09685 [cs.CL].

[27] git-cloner. Fine-tuning vicuna-7b on a single 16G GPU. Accessed: 2023-08-10. url: https:
//github.com/git-cloner/llama-lora-fine-tuning/tree/main.

[28] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P.
Xing, H. Zhang, J. E. Gonzalez, and I. Stoica. Judging LLM-as-a-judge with MT-Bench
and Chatbot Arena. 2023. arXiv: 2306.05685 [cs.CL].

[29] OpenAI. Model index for researchers. Accessed: 2023-09-10. url: https://platform.
openai.com/docs/model-index-for-researchers.

[30] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. “Deep reinforce-
ment learning from human preferences”. In: Advances in neural information processing
systems 30 (2017).

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy
optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017).

[32] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S.
Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens,
A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe. Training language models to
follow instructions with human feedback. 2022. arXiv: 2203.02155 [cs.CL].

[33] OpenAI. GPT-3.5-Turbo-0613. Accessed: 2023-08-19. url: https://openai.com/blog/
function-calling-and-other-api-updates.

78

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2212.10560
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2106.09685
https://github.com/git-cloner/llama-lora-fine-tuning/tree/main
https://github.com/git-cloner/llama-lora-fine-tuning/tree/main
https://arxiv.org/abs/2306.05685
https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers
https://arxiv.org/abs/2203.02155
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates

Bibliography

[34] A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. 2nd ed.
O’Reilly Media, Inc., 2019.

[35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “Bleu: a method for automatic
evaluation of machine translation”. In: Proceedings of the 40th annual meeting of the
Association for Computational Linguistics. 2002, pp. 311–318.

[36] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. “BERTScore: Evaluating
Text Generation with BERT”. In: CoRR abs/1904.09675 (2019). arXiv: 1904.09675. url:
http://arxiv.org/abs/1904.09675.

[37] S. Banerjee and A. Lavie. “METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments”. In: Proceedings of the acl workshop on
intrinsic and extrinsic evaluation measures for machine translation and/or summarization.
2005, pp. 65–72.

[38] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul. “A Study of Translation
Edit Rate with Targeted Human Annotation”. In: Proceedings of the 7th Conference
of the Association for Machine Translation in the Americas: Technical Papers. Cambridge,
Massachusetts, USA: Association for Machine Translation in the Americas, Aug. 2006,
pp. 223–231. url: https://aclanthology.org/2006.amta-papers.25.

[39] A. Kamath and R. Das. “A Survey on Semantic Parsing”. In: Automated Knowledge Base
Construction (AKBC). 2018. doi: https://doi.org/10.48550/arXiv.1812.00978.

[40] W. A. Woods. “Progress in natural language understanding: an application to lunar
geology”. In: Proceedings of the June 4-8, 1973, national computer conference and exposition.
1973, pp. 441–450.

[41] G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum. “Developing a natural
language interface to complex data”. In: ACM Transactions on Database Systems (TODS)
3.2 (1978), pp. 105–147.

[42] J. Krishnamurthy and T. Mitchell. “Weakly Supervised Training of Semantic Parsers”.
In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning. Jeju Island, Korea: Association
for Computational Linguistics, July 2012, pp. 754–765. url: https://aclanthology.
org/D12-1069.

[43] J. M. Zelle and R. J. Mooney. “Learning to Parse Database Queries Using Inductive
Logic Programming”. In: Proceedings of the Thirteenth National Conference on Artificial
Intelligence - Volume 2. AAAI’96. Portland, Oregon: AAAI Press, 1996, pp. 1050–1055.
isbn: 026251091X.

[44] L. S. Zettlemoyer and M. Collins. “Learning to Map Sentences to Logical Form:
Structured Classification with Probabilistic Categorial Grammars”. In: Proceedings of
the Twenty-First Conference on Uncertainty in Artificial Intelligence. UAI’05. Edinburgh,
Scotland: AUAI Press, 2005, pp. 658–666. isbn: 0974903914.

79

https://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://aclanthology.org/2006.amta-papers.25
https://doi.org/https://doi.org/10.48550/arXiv.1812.00978
https://aclanthology.org/D12-1069
https://aclanthology.org/D12-1069

Bibliography

[45] L. Wang, B. Qin, B. Hui, B. Li, M. Yang, B. Wang, B. Li, J. Sun, F. Huang, L. Si, and Y. Li.
“Proton: Probing Schema Linking Information from Pre-Trained Language Models for
Text-to-SQL Parsing”. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. KDD ’22. Washington DC, USA: Association for Computing
Machinery, 2022, pp. 1889–1898. isbn: 9781450393850. doi: 10.1145/3534678.3539305.
url: https://doi.org/10.1145/3534678.3539305.

[46] D. Banerjee, P. A. Nair, J. N. Kaur, R. Usbeck, and C. Biemann. “Modern Baselines
for SPARQL Semantic Parsing”. In: Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR ’22. Madrid, Spain:
Association for Computing Machinery, 2022, pp. 2260–2265. isbn: 9781450387323. doi:
10.1145/3477495.3531841. url: https://doi.org/10.1145/3477495.3531841.

[47] S. Rongali, L. Soldaini, E. Monti, and W. Hamza. “Don’t Parse, Generate! A Sequence
to Sequence Architecture for Task-Oriented Semantic Parsing”. In: Proceedings of The
Web Conference 2020. WWW ’20. Taipei, Taiwan: Association for Computing Machinery,
2020, pp. 2962–2968. isbn: 9781450370233. doi: 10 . 1145 / 3366423 . 3380064. url:
https://doi.org/10.1145/3366423.3380064.

[48] Z. Lin, J. Z. Liu, and J. Shang. “Towards Collaborative Neural-Symbolic Graph Semantic
Parsing via Uncertainty”. In: Findings of the Association for Computational Linguistics: ACL
2022. Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 4160–
4173. doi: 10.18653/v1/2022.findings-acl.328. url: https://aclanthology.org/
2022.findings-acl.328.

[49] S. Arcadinho, D. Aparício, H. Veiga, and A. Alegria. T5QL: Taming language models for
SQL generation. 2022. arXiv: 2209.10254 [cs.LG].

[50] Z. Li, L. Qu, and G. Haffari. “Context Dependent Semantic Parsing: A Survey”. In: Pro-
ceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain
(Online): International Committee on Computational Linguistics, Dec. 2020, pp. 2509–
2521. doi: 10.18653/v1/2020.coling-main.226. url: https://aclanthology.org/
2020.coling-main.226.

[51] A. Suhr, S. Iyer, and Y. Artzi. “Learning to Map Context-Dependent Sentences to
Executable Formal Queries”. In: Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers). New Orleans, Louisiana: Association for Computational
Linguistics, June 2018, pp. 2238–2249. doi: 10.18653/v1/N18- 1203. url: https:
//aclanthology.org/N18-1203.

[52] L. Perez-Beltrachini, P. Jain, E. Monti, and M. Lapata. Semantic Parsing for Conversational
Question Answering over Knowledge Graphs. 2023. arXiv: 2301.12217 [cs.CL].

[53] A. Saha, V. Pahuja, M. Khapra, K. Sankaranarayanan, and S. Chandar. “Complex
Sequential Question Answering: Towards Learning to Converse Over Linked Question
Answer Pairs with a Knowledge Graph”. In: Proceedings of the AAAI Conference on

80

https://doi.org/10.1145/3534678.3539305
https://doi.org/10.1145/3534678.3539305
https://doi.org/10.1145/3477495.3531841
https://doi.org/10.1145/3477495.3531841
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.18653/v1/2022.findings-acl.328
https://aclanthology.org/2022.findings-acl.328
https://aclanthology.org/2022.findings-acl.328
https://arxiv.org/abs/2209.10254
https://doi.org/10.18653/v1/2020.coling-main.226
https://aclanthology.org/2020.coling-main.226
https://aclanthology.org/2020.coling-main.226
https://doi.org/10.18653/v1/N18-1203
https://aclanthology.org/N18-1203
https://aclanthology.org/N18-1203
https://arxiv.org/abs/2301.12217

Bibliography

Artificial Intelligence 32.1 (Apr. 2018). doi: 10.1609/aaai.v32i1.11332. url: https:
//ojs.aaai.org/index.php/AAAI/article/view/11332.

[54] Y. Gu, S. Kase, M. Vanni, B. Sadler, P. Liang, X. Yan, and Y. Su. “Beyond I.I.D.: Three
Levels of Generalization for Question Answering on Knowledge Bases”. In: Proceedings
of the Web Conference 2021. WWW ’21. Ljubljana, Slovenia: Association for Computing
Machinery, 2021, pp. 3477–3488. isbn: 9781450383127. doi: 10.1145/3442381.3449992.
url: https://doi.org/10.1145/3442381.3449992.

[55] E. Kacupaj, J. Plepi, K. Singh, H. Thakkar, J. Lehmann, and M. Maleshkova. “Conver-
sational Question Answering over Knowledge Graphs with Transformer and Graph
Attention Networks”. In: Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume. Online: Association for Compu-
tational Linguistics, Apr. 2021, pp. 850–862. doi: 10.18653/v1/2021.eacl-main.72.
url: https://aclanthology.org/2021.eacl-main.72.

[56] K. Kukich. “Design of a knowledge-based report generator”. In: 21st Annual Meeting of
the Association for Computational Linguistics. 1983, pp. 145–150.

[57] E. Reiter and R. Dale. “Building applied natural language generation systems”. In:
Natural Language Engineering 3.1 (1997), pp. 57–87.

[58] P. Cimiano, J. Lüker, D. Nagel, and C. Unger. “Exploiting ontology lexica for generating
natural language texts from RDF data”. In: Proceedings of the 14th European Workshop on
Natural Language Generation. 2013, pp. 10–19.

[59] R. Lebret, D. Grangier, and M. Auli. “Neural text generation from structured data
with application to the biography domain”. In: arXiv preprint arXiv:1603.07771 (2016).

[60] M. Keymanesh, A. Benton, and M. Dredze. What Makes Data-to-Text Generation Hard for
Pretrained Language Models? 2022. arXiv: 2205.11505 [cs.CL].

[61] J. Xiang, Z. Liu, Y. Zhou, E. P. Xing, and Z. Hu. ASDOT: Any-Shot Data-to-Text Generation
with Pretrained Language Models. 2022. arXiv: 2210.04325 [cs.CL].

[62] Z. Kasner and O. Dušek. Neural Pipeline for Zero-Shot Data-to-Text Generation. 2022.
arXiv: 2203.16279 [cs.CL].

[63] Z. Kasner and O. Dušek. Data-to-Text Generation with Iterative Text Editing. 2021. arXiv:
2011.01694 [cs.CL].

[64] B. A. Kitchenham, D. Budgen, and P. Brereton. Evidence-based software engineering and
systematic reviews. Vol. 4. CRC press, 2015.

[65] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M.
Lewis, W.-t. Yih, T. Rocktäschel, et al. “Retrieval-augmented generation for knowledge-
intensive nlp tasks”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 9459–9474.

[66] W. Fedus, B. Zoph, and N. Shazeer. “Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity”. In: CoRR abs/2101.03961 (2021). arXiv:
2101.03961. url: https://arxiv.org/abs/2101.03961.

81

https://doi.org/10.1609/aaai.v32i1.11332
https://ojs.aaai.org/index.php/AAAI/article/view/11332
https://ojs.aaai.org/index.php/AAAI/article/view/11332
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.18653/v1/2021.eacl-main.72
https://aclanthology.org/2021.eacl-main.72
https://arxiv.org/abs/2205.11505
https://arxiv.org/abs/2210.04325
https://arxiv.org/abs/2203.16279
https://arxiv.org/abs/2011.01694
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961

Bibliography

[67] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[68] E. Beeching, C. Fourrier, N. Habib, S. Han, N. Lambert, N. Rajani, O. Sanseviero,
L. Tunstall, and T. Wolf. Open LLM Leaderboard. Accessed: 2023-08-13. 2023. url:
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.

[69] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and
Q. V. Le. Finetuned Language Models Are Zero-Shot Learners. 2022. arXiv: 2109.01652
[cs.CL].

[70] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D.
Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. 2023. arXiv:
2201.11903 [cs.CL].

[71] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large Language Models are
Zero-Shot Reasoners. 2023. arXiv: 2205.11916 [cs.CL].

[72] OpenAI. GPT best practices. Accessed: 2023-08-14. url: https://platform.openai.
com/docs/guides/gpt-best-practices.

[73] M. Amer. Generative AI with Cohere: Part 1 - Model Prompting. Accessed: 2023-08-14.
url: https://txt.cohere.com/generative-ai-part-1/.

[74] J. Shieh. Best practices for prompt engineering with OpenAI API. Accessed: 2023-08-14. url:
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-
engineering-with-openai-api.

[75] M. Dubey, D. Banerjee, A. Abdelkawi, and J. Lehmann. “LC-QuAD 2.0: A Large Dataset
for Complex Question Answering over Wikidata and DBpedia”. In: The Semantic Web –
ISWC 2019. Ed. by C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I. Cruz, A. Hogan,
J. Song, M. Lefrançois, and F. Gandon. Cham: Springer International Publishing, 2019,
pp. 69–78. isbn: 978-3-030-30796-7.

[76] T. Castro Ferreira, C. Gardent, N. Ilinykh, C. van der Lee, S. Mille, D. Moussallem, and
A. Shimorina. “The 2020 Bilingual, Bi-Directional WebNLG+ Shared Task: Overview
and Evaluation Results (WebNLG+ 2020)”. In: Proceedings of the 3rd International
Workshop on Natural Language Generation from the Semantic Web (WebNLG+). Dublin,
Ireland (Virtual): Association for Computational Linguistics, Dec. 2020, pp. 55–76. url:
https://www.aclweb.org/anthology/2020.webnlg-1.7.

[77] C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini. “The WebNLG Chal-
lenge: Generating Text from RDF Data”. In: Proceedings of the 10th International Confer-
ence on Natural Language Generation. Santiago de Compostela, Spain: Association for
Computational Linguistics, Sept. 2017, pp. 124–133. doi: 10.18653/v1/W17-3518. url:
https://aclanthology.org/W17-3518.

[78] R. Shin, C. H. Lin, S. Thomson, C. Chen, S. Roy, E. A. Platanios, A. Pauls, D. Klein,
J. Eisner, and B. V. Durme. Constrained Language Models Yield Few-Shot Semantic Parsers.
2021. arXiv: 2104.08768 [cs.CL].

82

https://arxiv.org/abs/2303.08774
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://platform.openai.com/docs/guides/gpt-best-practices
https://platform.openai.com/docs/guides/gpt-best-practices
https://txt.cohere.com/generative-ai-part-1/
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://www.aclweb.org/anthology/2020.webnlg-1.7
https://doi.org/10.18653/v1/W17-3518
https://aclanthology.org/W17-3518
https://arxiv.org/abs/2104.08768

Bibliography

[79] R. Shin and B. V. Durme. Few-Shot Semantic Parsing with Language Models Trained On
Code. 2022. arXiv: 2112.08696 [cs.CL].

[80] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf,
G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I.
Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam,
V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer,
P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba.
Evaluating Large Language Models Trained on Code. 2021. arXiv: 2107.03374 [cs.LG].

[81] S. Rongali, K. Arkoudas, M. Rubino, and W. Hamza. Training Naturalized Semantic
Parsers with Very Little Data. 2022. arXiv: 2204.14243 [cs.CL].

[82] O. Rubin, J. Herzig, and J. Berant. Learning To Retrieve Prompts for In-Context Learning.
2022. arXiv: 2112.08633 [cs.CL].

[83] V. Gupta, A. Shrivastava, A. Sagar, A. Aghajanyan, and D. Savenkov. RETRONLU:
Retrieval Augmented Task-Oriented Semantic Parsing. 2021. arXiv: 2109.10410 [cs.CL].

[84] J. Yang, H. Jiang, Q. Yin, D. Zhang, B. Yin, and D. Yang. SeqZero: Few-shot Compositional
Semantic Parsing with Sequential Prompts and Zero-shot Models. 2022. arXiv: 2205.07381
[cs.CL].

[85] L. Qiu, P. Shaw, P. Pasupat, T. Shi, J. Herzig, E. Pitler, F. Sha, and K. Toutanova.
Evaluating the Impact of Model Scale for Compositional Generalization in Semantic Parsing.
2022. arXiv: 2205.12253 [cs.CL].

[86] N. Schucher, S. Reddy, and H. de Vries. The Power of Prompt Tuning for Low-Resource
Semantic Parsing. 2022. arXiv: 2110.08525 [cs.CL].

[87] W. Sun, H. Khan, N. Guenon des Mesnards, M. Rubino, and K. Arkoudas. “Unfreeze
with Care: Space-Efficient Fine-Tuning of Semantic Parsing Models”. In: Proceedings
of the ACM Web Conference 2022. WWW ’22. Virtual Event, Lyon, France: Association
for Computing Machinery, 2022, pp. 999–1007. isbn: 9781450390965. doi: 10.1145/
3485447.3511942. url: https://doi.org/10.1145/3485447.3511942.

[88] T. Yu, R. Zhang, A. Polozov, C. Meek, and A. H. Awadallah. “{SC}oRe: Pre-Training
for Context Representation in Conversational Semantic Parsing”. In: International
Conference on Learning Representations. 2021. url: https://openreview.net/forum?id=
oyZxhRI2RiE.

[89] T. Y. Zhuo, Z. Li, Y. Huang, F. Shiri, W. Wang, G. Haffari, and Y.-F. Li. On Robustness of
Prompt-based Semantic Parsing with Large Pre-trained Language Model: An Empirical Study
on Codex. 2023. arXiv: 2301.12868 [cs.CL].

83

https://arxiv.org/abs/2112.08696
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2204.14243
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2109.10410
https://arxiv.org/abs/2205.07381
https://arxiv.org/abs/2205.07381
https://arxiv.org/abs/2205.12253
https://arxiv.org/abs/2110.08525
https://doi.org/10.1145/3485447.3511942
https://doi.org/10.1145/3485447.3511942
https://doi.org/10.1145/3485447.3511942
https://openreview.net/forum?id=oyZxhRI2RiE
https://openreview.net/forum?id=oyZxhRI2RiE
https://arxiv.org/abs/2301.12868

Bibliography

[90] M. Visperas, A. J. Adoptante, C. J. Borjal, M. T. Abia, J. K. Catapang, and E. Peramo.
“On Modern Text-to-SQL Semantic Parsing Methodologies for Natural Language
Interface to Databases: A Comparative Study”. In: 2023 International Conference on
Artificial Intelligence in Information and Communication (ICAIIC). 2023, pp. 390–396. doi:
10.1109/ICAIIC57133.2023.10067134.

[91] Y. Lan, G. He, J. Jiang, J. Jiang, W. Xin Zhao, and J.-R. Wen. “Complex Knowledge
Base Question Answering: A Survey”. In: IEEE Transactions on Knowledge and Data
Engineering (2022), pp. 1–20. doi: 10.1109/TKDE.2022.3223858.

[92] N. Rajkumar, R. Li, and D. Bahdanau. Evaluating the Text-to-SQL Capabilities of Large
Language Models. 2022. arXiv: 2204.00498 [cs.CL].

[93] S. Jolly, Z. X. Zhang, A. Dengel, and L. Mou. “Search and Learn: Improving Semantic
Coverage for Data-to-Text Generation”. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence 36.10 (June 2022), pp. 10858–10866. doi: 10.1609/aaai.v36i10.21332.
url: https://ojs.aaai.org/index.php/AAAI/article/view/21332.

[94] E. Seifossadat and H. Sameti. “Improving semantic coverage of data-to-text generation
model using dynamic memory networks”. In: Natural Language Engineering (2023),
pp. 1–26.

[95] H. Gao and Z. Wei. “Neural Data-to-Text Generation Guided by Predicted Plan”.
In: 2022 IEEE 2nd International Conference on Information Communication and Software
Engineering (ICICSE). 2022, pp. 53–59. doi: 10.1109/ICICSE55337.2022.9828913.

[96] H. Gong, X. Feng, and B. Qin. “DiffuD2T: Empowering Data-to-Text Generation with
Diffusion”. In: Electronics 12.9 (2023). issn: 2079-9292. doi: 10.3390/electronics12092136.
url: https://www.mdpi.com/2079-9292/12/9/2136.

[97] J. Clive, K. Cao, and M. Rei. Control Prefixes for Parameter-Efficient Text Generation. 2022.
arXiv: 2110.08329 [cs.CL].

[98] D. Jo, T. Kwon, E.-S. Kim, and S. Kim. Selective Token Generation for Few-shot Natural
Language Generation. 2022. arXiv: 2209.08206 [cs.CL].

[99] E. Chang, X. Shen, H.-S. Yeh, and V. Demberg. On Training Instance Selection for Few-Shot
Neural Text Generation. 2021. arXiv: 2107.03176 [cs.CL].

[100] S. Duong, A. Lumbreras, M. Gartrell, and P. Gallinari. “Learning from Multiple Sources
for Data-to-Text and Text-to-Data”. In: Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics. Ed. by F. Ruiz, J. Dy, and J.-W. van de Meent.
Vol. 206. Proceedings of Machine Learning Research. PMLR, Apr. 2023, pp. 3733–3753.
url: https://proceedings.mlr.press/v206/duong23a.html.

[101] I. Ampomah, J. Burton, A. Enshaei, and N. Al Moubayed. “Generating Textual Ex-
planations for Machine Learning Models Performance: A Table-to-Text Task”. In:
(2022).

[102] OpenAI. Pricing. Accessed: 2023-09-23. url: https://openai.com/pricing.

84

https://doi.org/10.1109/ICAIIC57133.2023.10067134
https://doi.org/10.1109/TKDE.2022.3223858
https://arxiv.org/abs/2204.00498
https://doi.org/10.1609/aaai.v36i10.21332
https://ojs.aaai.org/index.php/AAAI/article/view/21332
https://doi.org/10.1109/ICICSE55337.2022.9828913
https://doi.org/10.3390/electronics12092136
https://www.mdpi.com/2079-9292/12/9/2136
https://arxiv.org/abs/2110.08329
https://arxiv.org/abs/2209.08206
https://arxiv.org/abs/2107.03176
https://proceedings.mlr.press/v206/duong23a.html
https://openai.com/pricing

Bibliography

[103] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén. Experimenta-
tion in Software Engineering. Computer Science. Springer Berlin Heidelberg, 2012.

[104] Reworkd. AgentGPT. Accessed: 2023-10-13. url: https://github.com/reworkd/
AgentGPT.

85

https://github.com/reworkd/AgentGPT
https://github.com/reworkd/AgentGPT

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Research Challenges & Research Questions
	Outline

	Fundamentals
	Dialogue Systems
	Conversational Search
	Semantic Parsing
	Data-To-Text Generation

	Pre-Trained Language Models
	Transformers
	Popular Large Language Models

	Evaluation Metrics
	Performance Metrics
	Sentence Similarity Metrics

	Related Work
	Methodology
	Research Procedure
	Literature Review
	Selection of Large Language Models
	Selection of Prompting Techniques
	Semantic Parsing
	Dataset
	Prompts

	Data-To-Text Generation
	Dataset
	Prompts

	Results
	rq1: Literature Review
	Semantic Parsing
	Data-To-Text Generation

	rq2: Selection of Large Language Models & Prompting Techniques
	Semantic Parsing
	Data-To-Text Generation

	rq3: Evaluation
	Semantic Parsing
	Data-To-Text Generation

	Discussion
	rq1: Literature Review
	Semantic Parsing
	Data-To-Text Generation

	rq2: Selection of Large Language Models & Prompting Techniques
	Semantic Parsing
	Data-To-Text Generation

	rq3: Evaluation
	Semantic Parsing
	Data-To-Text Generation

	Limitations

	Conclusion & Outlook
	Summary
	Future Work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

