
TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Forschungs- und Lehreinheit XIX:

Software Engineering for Business Information Systems

Analysis and Classi�cation of NoSQL Databases and
Evaluation of their Ability to Replace an Object-relational

Persistence Layer

Analyse und Klassi�kation von NoSQL Datenbanken und
Bewertung ihrer Eignung zur Ablösung einer

objektrelationalen Persistenzschicht

Master's Thesis

Author: Kai Orend

Supervisor: Prof. Florian Matthes, Ph.D.

Advisor: Thomas Büchner, Ph.D.

Submission Date: 14.04.2010



Ich versichere, dass ich diese Masterarbeit selbständig verfasst und
nur die angegebenen Quellen und Hilfsmittel verwendet habe.

I assure the single handed composition of this master's thesis only
supported by declared resources.

München, den 14.04.2010

Kai Orend



Abstract

This work deals with distributed databases from the NoSQL movement, which
gained popularity since April 2009. It explains some of the basic problems of dis-
tributed databases and the technologies that are used to solve them. Furthermore,
a selection of NoSQL databases is analyzed and classi�ed. In order to evaluate their
ability to replace an object-relational persistence layer, their feature sets were com-
pared to the requirements of an already existing web collaboration and knowledge
management software. This application was then enhanced with a support layer for
a NoSQL database and later on compared with the equivalent implementations for
relational databases.



Zusammenfassung

Diese Arbeit beschäftigt sich mit Datenbanken aus der erst seit April 2009 beste-
henden NoSQL Bewegung. Sie erklärt einige der grundlegenden Probleme verteilter
Datenbanken und die Technologien die verwendet werden um diese zu lösen. Auÿer-
dem wird eine Auswahl von NoSQL Datenbanken analysiert und klassi�ziert. Um
ihre Eignung zur Ablösung einer objektrelationalen Persistenzschicht zu beurteilen,
wurden ihre Fähigkeiten mit den Anforderungen einer bereits existierenden Web
Collaboration und Knowledge Management-Software verglichen. Diese Anwen-
dung wurde dann mit der Unterstützung für eine NoSQL Datenbank erweitert und
später mit den entsprechenden Implementierungen für relationale Datenbanken ver-
glichen.



Contents

1 Introduction 1

1.1 Example: Amazon . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The Architecture of Amazon . . . . . . . . . . . . . . . . . . 2
1.1.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The NoSQL Movement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Reader's Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Basics 6

2.1 Scaling through Sharding and Replication . . . . . . . . . . . . . . 6
2.1.1 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The ACID Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Eventual Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The CAP Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Multiversion Concurrency Control (MVCC) . . . . . . . . . . . . . 13

2.5.1 Revisions in distributed systems . . . . . . . . . . . . . . . . 15
2.5.2 Vector Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 Hash Histories (HH) . . . . . . . . . . . . . . . . . . . . . . 16

2.6 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.4 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.5 Implementations . . . . . . . . . . . . . . . . . . . . . . . . 20

3 NoSQL Databases 21

3.1 Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 Query Model . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Amazon S3 Simple Storage Service . . . . . . . . . . . . . . . . . . 24
3.2.1 Query Model . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



Contents

3.3 SimpleDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Query Model . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.5 Example: Simple Forum . . . . . . . . . . . . . . . . . . . . 28

3.4 BigTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Query Model . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.4 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.5 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.6 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.7 Failure Handling . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Google App Engine datastore . . . . . . . . . . . . . . . . . . . . . 34
3.5.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.2 Query Model . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.2 Query Model . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.3 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.4 Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.6 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.7 Failure Handling . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 CouchDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7.2 Query Model . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.3 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.4 Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7.6 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7.7 Failure Handling . . . . . . . . . . . . . . . . . . . . . . . . 51

4 NoSQL Database Comparison 53

4.1 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Range Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Durability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 CAP Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



Contents

5 Database Requirements of Tricia 59

5.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.1 Ordering with joined queries . . . . . . . . . . . . . . . . . . 61
5.1.2 Other Requirements . . . . . . . . . . . . . . . . . . . . . . 62

5.2 The choice of a NoSQL database for the prototype . . . . . . . . . . 63

6 Prototype Implementation 64

6.1 The Proceeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Changes in the Architecture of the Persistence Layer . . . . . . . . 65
6.3 The MongoDB Query API for Java . . . . . . . . . . . . . . . . . . 66
6.4 Implementation of the MongoStore . . . . . . . . . . . . . . . . . . 71

6.4.1 Query Building . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.2 Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.3 Count and Delete . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Evaluation 73

7.1 Performance for the test suits . . . . . . . . . . . . . . . . . . . . . 73
7.2 Performance with real world data . . . . . . . . . . . . . . . . . . . 75

8 Conclusion 76

A Listing of MongoQuery.java 78

vii



1 Introduction

Some of today's web applications face the big challenge of serving millions of users,
which are distributed all over the world and who expect the service to be always
available and reliable. Successful web services do not only have big user bases, they
are also growing faster than the performance of computer hardware is increasing.
So at one point or another a web application which attempts to become big needs
the ability to scale.

Scalability of a web application means that any workload or any amount of data
can be processed in a de�ned time if the application can run on enough servers,
which will be referred to in this text as nodes. In the ideal case the relation between
workload, time and needed machines would be linear. A more general de�nitions
of scalability can be found under [43] and [42].
Every application has di�erent requirements towards scalability. Some need the
ability to serve a large number of users at the same time and others might need to
be able to scale with the amount of data.
Some applications like social driven applications even need to scale in both ways.

So the idea is to distribute a web application over as many nodes as necessary. To
see how this can be done, the infrastructure of Amazon is used in this work as an
example for a scalable web application.

1.1 Example: Amazon

Amazon started 1994 as an Online Bookstore and is now one of the biggest market-
places in the Internet with an average of 70.000.000 visitors per month in the year
2009 on amazon.com alone [22]. They started with a monolithic web server which
held the business logic and generated the pages for amazon.com and one database.
This architecture was changed in 2001 to a Service Oriented Architecture (SOA) to
enable the application layer to scale [8].



1. Introduction

1.1.1 The Architecture of Amazon

Requests are handled in Amazon's SOA by front-end servers which are responsible
for the generation of the requested pages. For this the rendering components have
to send requests to approximately 150 services. Each of these services can have
dependencies to other services, which can result into call graphs with more than
two layers [26].

Amazon distinguishes between services with states and stateless aggregation ser-
vices, which are used to distribute the workload to other services and to merge the
results, so they only need caching and no persistence, see �gure 1.1.
The other services can use several di�erent kinds of data stores, dependent on
the requirements of their task. For example, a service with strong requirements
for consistency, like a service involved in payment, can use a Relation Database
Management System (RDBMS), whereas other services with weaker consistency re-
quirements can use one of the distributed storage solutions like Amazon's Dynamo,
S3 or SimpleDB, which are described later on in this work.

1.1.2 Observations

One possible solution to distribute a web application over di�erent nodes is to split
it into several services which all have their own database. This kind of scaling can
only be done until the services cannot be split anymore.

So to be able to scale without restrictions, the database layer must also be scalable.
In order to achieve this, Amazon uses distributed non relational databases like
Amazon S3 and Dynamo.

1.2 The NoSQL Movement

In the past, relation databases were used for nearly everything. Because of their
rich set of features, query capabilities and transaction management they seemed to
be �t for almost every possible task one could imagine to do with a database.

But their feature richness is also their �aw, because it makes building distributed
RDBMSs very complex. In particular it is di�cult and not very e�cient to make
transactions and join operations in a distributed system. This is why, there are now

2



1. Introduction

Figure 1.1: Overview of Amazon's Service Oriented Architecture.

some non relational databases with limited feature sets and no full ACID (see 2.2)
support, which are more suitable for the usage in a distributed environment.

These databases are currently called NoSQL databases. This term just reached
a noticeable awareness level in April 2009 as it can be seen in the Google Trends
result in �gure 1.2, even though the term was �rst used 1998 as a name of a database
[46].

The name �rst suggests that these databases do not support the SQL query language
and are not relational. But it also means �Not Only SQL�, which is not so aggres-
sive against relational databases. This stands for a new paradigm: One database

3



1. Introduction

Figure 1.2: Google Trends result for the term NoSQL.

technology alone is not �t for everything. Instead it is necessary to have di�erent
kinds of databases for di�erent demands, like in the architecture of Amazon.

Most NoSQL databases are developed to run on clusters consisting of commodity
computers and therefore have to be distributed and failure tolerant. To achieve this,
they have to make di�erent trade-o�s regarding the ACID properties, transaction
management, query capabilities and performance. They are usually designed to �t
the requirements of most web services and most of them are schema free and bring
their own query languages.

The goal of this work is to give an overview of the current state of NoSQL databases
and how they can be used for existing web applications.

1.3 Reader's Guide

The �rst part of this work intends to give an overview of the current landscape of
NoSQL databases and explains some of the basic problems of distributed databases
and commonly used technologies to solve them, to better understand the restrictions
of current implementations. Furthermore some NoSQL databases and their concepts
are examined and compared to each other.

The second part evaluates if a NoSQL database can be used for a persistence layer of
a collaborative web application. This is done in this work while extending the persis-
tence layer of an already existing web application to support a NoSQL database.

Chapter 2 : Explains the problems and trade-o�s of distributed databases and
some of the technologies that are used for their implementation.

4



1. Introduction

Chapter 3 : Examines a selection of currently available NoSQL databases.

Chapter 4 : Compares the in chapter 3 examined databases against each other.

Chapter 5 : Analyzes the database requirements of Trica, a collaborative web
platform with an object relation persistence layer.

Chapter 6 : Describes the implementation of a NoSQL support layer for Tricia.

Chapter 7 : Evaluates the implementation from Chapter 6.

Chapter 8 : The conclusion of this work.

5



2 Basics

The intention of this chapter is to explain the problems of distributed databases and
the technologies that are commonly used to solve them. It shows how databases can
be scaled and why distributed database have to make several trade-o�s to achieve
this. Furthermore, the MapReduce pattern is explained, which simpli�es distributed
computing and is used in some NoSQL databases for complex aggregations.

2.1 Scaling through Sharding and Replication

A database can be scalable in three di�erent ways. It can be scalable with the
amount of read operations, the number of write operations and the size of the
database. There are currently two technologies that are used to achieve this: Repli-
cation and Sharding.

2.1.1 Replication

Replication in the case of distributed databases means that a data item is stored
on more than one node. This is very useful to increase read performance of the
database, because it allows a load balancer to distribute all read operations over
many machines. It is also very advantageous that it makes the cluster robust against
failures of single nodes. If one machine fails, then there is at least another one with
the same data which can replace the lost node.

Sometimes it is even useful to replicate the data to di�erent data centers, which
makes the database immune against catastrophic events in one area. This is also
done to get the data closer to its users, which decreases the latency.

But the downside of data replication are the write operations. A write operation
on a replicated database has to be done on each node that is supposed to store the
respective data item. A database has basically two choices for doing this: Either



2. Basics

a write operation has to be committed to all replication nodes before the database
can return an acknowledgment. Or a write operation is �rst only performed on one
or a limited number of nodes and then later send asynchronously to all the other
nodes. The choice of one of this two options decides the availability and consistency
properties of the database, which will be explained later in this work with Brewer's
CAP Theorem.

2.1.2 Sharding

The term Sharding derives from the noun 'shard' as it means that the data inside
a database is splitted into many shards, which can be distributed over many nodes.
The data partitioning can, for example, be done with a consistent hash function
that is applied to the primary key of the data items to determine the associated
shard.

This implicates that a table (if the database uses a concept comparable to tables)
is not stored on one single machine, but in a cluster of nodes. Its advantage is that
nodes can be added to the cluster to increase the capacity and the performance
of write and read operations without the need to modify the application. It is
even possible to reduce the size of a sharded database cluster when the demands
decreases.

The downside of sharding is that it makes some typical database operations very
complex and ine�cient. One of the most important operations in relational
databases is the join operator, which is used to materialize the relations of data
items. A join operation works on two sets of data items, a left one and a right
one, which are connected with a pair of attributes. A distributed join in a sharded
database would require that the database would have to search in the right set
for all items that are associated to each item in the left set. This would require
many requests to all machines that store data items from one of the two sets, which
would cause a lot of network tra�c. Because of this, most sharded databases do
not support join operations.

The more nodes are used inside a sharded database cluster the more is the prob-
ability increased that one of the machines or one of the network connections fails.
Therefore is sharding often combined with replication, which makes the cluster more
robust against hardware failures.

7



2. Basics

2.2 The ACID Properties

One very important feature of relational database is their ability to ensure the
ACID properties for transactions. ACID is an acronym for Atomicity, Consistency,
Isolation and Durability [49].

Atomicity means for a transaction that all included statements are either executed
or the whole transaction is aborted without a�ecting the database.

Consistency means that a database is in a consistent state before and after a
transaction. If the changes of a transaction violate a consistency rule then all
changes of the transaction must be revoked to ensure that only valid data is written
to the database.

Isolation means that transactions can not see uncommitted changes in the
database. This makes transactions unaware of other concurrently running transac-
tions on the system.

Durability requires that changes are written to a disk before a database commits
a transaction so that committed data cannot be lost through a power failure. In
relational databases this is usually implemented with a write ahead log �le. The log
�le allows the database to redo transactions that were committed but not applied
to the database.

Atomicity, Consistency and Isolation are usually implemented in RDBMS using a
central lock-manager. The lock-manager allows transactions to get a lock on the
data they want to read or modify. If a transaction attempts to access data that
is already locked by another transaction it has to wait until the other transaction
releases the lock.

For a distributed system a central lock-manager would be the bottleneck, because
all database nodes would need to contact the lock manager for every operation. This
is why some NoSQL databases are using optimistic replication with Multiversion
Concurrency Control, see section 2.5.

2.3 Eventual Consistency

Later in this chapter the CAP theorem will be introduced, which has the impli-
cation that distributed databases can either be strongly consistent or available.

8



2. Basics

Consequently, most of the NoSQL databases can only provide eventual consistency,
a weaker type of strong consistency. To explain the di�erent types of consistency
the following terminology is used:

A, B, C Unrelated processes that intend to read or modify
the database.

x The data item x
x1, x2, x3 Di�erent values of the item x in the database.
write(Item, V alue) A write operation of a certain process on the

database.
read(Item) = V alue A read operation of a certain process on the

database.

Strong consistency means, that all processes connected to the database will al-
ways see the same version of a value and a committed value is instantly re�ected by
any read operation on the database until it is changed by another write operation,
see �gure 2.1.

Figure 2.1: Strong consistency: The processes A, B and C are always seeing the
same version of the data item.

Eventual Consistency is weaker and does not guarantee that each process sees the
same version of the data item. Even the process which writes the value could get
an old version during the inconsistency window. This behavior is usually caused by
the replication of the data over di�erent nodes [48].

When process A writes x2 it takes some time until the new value is replicated to
each node responsible for this data item.

If the database would wait with the return of the write operation until the new
value is completely replicated, then it would blockade the writing process A and
could cause bad latencies for the client. Furthermore, it could happen that not
all nodes are accessible because of connection problems or hardware failures, which
could blockade the whole application. This alone would not completely solve the

9



2. Basics

Figure 2.2: Eventual consistency: The processes A, B and C can see di�erent ver-
sions of a data item during the inconsistency window, which is caused
by asynchronous replication.

problem that the state of the nodes would be inconsistent during the replication,
unless something like the two phase commit protocol is used [45].

Some distributed databases can ensure that a process can always read its own writes.
For this, the database has to connect the same process always to nodes that already
store the data written by this process. Figure 2.3 shows the behavior of a system
that ensures read-your-own-writes consistency.

Figure 2.3: Read-your-own-writes consistency: The writing process A always reads
its new version of the updated data item x, while other processes might
see an older version during the inconsistency window.

A subtype of read-your-writes consistency is session consistency. Thereby it is only
guaranteed that a process can read its own written data during a session. If the
process A starts a new session, it might see an older value during the inconsistency
window, see �gure 2.4.

Another variant of eventual consistency is monotonic read consistency, which as-
sures that when a newly written value is read the �rst time, all subsequent reads
on this data item will not return any older values, see �gure 2.5. This type of

10



2. Basics

Figure 2.4: Session consistency: The writing process A sees all updates that have
occurred during a session

consistency allows the database to replicate newly written data, before it allows the
clients to see the new version.

Figure 2.5: Monotonic read consistency: All processes alway see the latest version
of a data item that was read from the database.

2.4 The CAP Theorem

The CAP Theorem was introduced by Dr. Brewer in a keynote [7] addressing the
trade-o�s in distributed systems and was later formalized by Gilbert and Lynch
[29]. It states that in a distributed data storage system only two features out of
availability, consistency and partition tolerance can be provided.

Availability means in this case that clients can always read and write data in a
speci�c period of time. A partition tolerant distributed database is failure tol-
erant against temporal connection problems and allows partitions of nodes to be
separated.

11



2. Basics

A system that is partition tolerant can only provide strong consistency with cut-
backs in its availability, because it has to ensure that each write operation only
�nishes if the data is replicated to all necessary nodes, which may not always be
possible in a distributed environment due to connection errors and other temporal
hardware failures.

To describe this in more detail, the following terminology is used:

N The number of nodes to which a data item is repli-
cated.

R The number of nodes a value has to be read from to
be accepted.

W3 The number of nodes a new value has to be written
to before the write operation is �nished.

To enforce strong consistency R + W > N must be complied to ensure that a read
operation always reads from at least one node with the current value [48].

Figure 2.6 shows an example con�guration with N = 3, R = 2 and W = 2. The
new value x2 is written to two nodes and read from two nodes, which results in an
overlap at one node, so that the read operation always has a consistent result.

Figure 2.6: If a data item has to be written to at least two of three nodes and needs
to be read from at least two, then one of the nodes from which the data
item is read must contain the latest version.

But the situation changes if the nodes are separated into two partitions, see �gure
2.7. This could for example, happen through a connection problem. In this case the
database has two options to deal with the problem: Either disallow all write or read
operations that could cause inconsistencies or allow inconsistencies to enforce avail-
ability. In the second case the database needs a way to resolve the inconsistencies

12



2. Basics

when the nodes are not separated anymore, which is usually done with multiversion
concurrency control (MVCC), which will be explained in the next section.

Figure 2.7: If the nodes in the example con�guration are separated into two parti-
tions, the databases becomes unavailable.

Systems with eventual consistency only enforce R+W ≤ N , to be partition tolerant
and available. Thereby some systems can be tuned with di�erent values for R and
W to customize the database for di�erent usage scenarios. A big R and a low W is
good for applications, which write more than they read. And a low R and a big W
are good for applications with more read operations. Lower R and W enhance the
availability, but reduce the consistency, so systems that strictly provide optimistic
replication have R = 1 and W = 1.

2.5 Multiversion Concurrency Control (MVCC)

MVCC is an e�cient method to let multiple processes access the same data in
parallel without corrupting the data and the possibility of deadlocks. It is an
alternative to the Lock based approaches, where every process �rst has to request
an exclusive lock on a data item, before it can be read or updated. MVCC is used
in some relational databases as well as in most distributed databases. It was �rst
described in a dissertation by Reed [44] and was introduced to the database world
through the implementation of InterBase [47].

Instead of letting each process access the data exclusively for a certain amount
of time, MVCC allows processes to read the data in parallel, even if a process is
updating the data. To maintain consistency, each data item has some kind of time
stamp or revision. If a process reads a data item, it does not only get the value of it,
the process also retrieves the revision of the data item. So if this process attempts

13



2. Basics

to update this data item, then it writes the new value with the previously read
revision number to the database. If the actual revision in the store is the same,
then the new value is written and the revision of the data item is incremented.
But if the revision in the store is not the same as the revision read by the writing
process, then there must have been another process which has updated the data
item in the meantime. In a relational database, the writing process would be a
transaction, which would in this case be aborted or restarted. Figure 2.8 shows an
example for the creation of a con�ict in a MVCC system.

Figure 2.8: This �gure shows the creation of a con�ict in a database with MVCC.
Process A and B are both trying to write a new value to the data item x.
Both read at �rst item x including its current revision number. Process
B is the �rst to write its new version to the database. Process A tries
to write a new version of x based on an older version than the current
version in the database and thereby generates the con�ict.

In distributed databases, there are at least two cases for such a con�ict: The �rst
one is that two processes are attempting to write the same data item on the same
node. In this case, the database could detect the con�ict during the write operation
and abort it, so the client would need to reread the data item and retry its desired
update, like the behavior of a RDBMS in this situation.

Another case is that multiple clients update the same data item on di�erent nodes.
If the distributed database uses asynchronous replication, then this con�ict can
not be detected and handled during the write operations. The nodes �rst have to
be synchronized before they can handle the con�ict. The con�ict resolution can
happen during the replication or during the �rst read operation on the con�icting
data item.

Some databases, which implement this, store all con�icting revisions of the data
items and let the client decide how the con�ict should be handled. In such systems
a read request returns all con�icting versions of the value and the client has to
choose one or has to merge the versions and to write the corrected revision back to
the database.

14



2. Basics

2.5.1 Revisions in distributed systems

For optimistic replication it is necessary to determine if multiple versions of the same
data item were created in parallel or in a serial order. Furthermore, the database
needs to know which version the newest is. A simple solution for this would be to
use timestamps, but this would require that all nodes are time synchronized and
it could happen that two nodes write the same item exactly at the same time. To
avoid this problems some distributed databases use time independent mechanisms
to track the versions of the data. Two of them are described in the following.

2.5.2 Vector Clocks

Vector Clocks are based on the work by Lamport [40] and are used by several
databases to determine if a data item was modi�ed by competing processes. Each
data item contains a vector clock, which consists of tuples with a separate clock for
each process which had modi�ed the data item. Each clock starts at zero and is
incremented by its owning process during each write operation. To increment its
own clock, the writing process uses the maximum of all clock values in the vector and
increments it by one. When two versions of an item are merged, the vector clocks
can be used to detect con�icts by comparing the clocks of each process. If more than
one clock di�ers, there must be a con�ict. If there is no con�ict, the current version
can be determined by comparing the maxima clocks of the competing versions.

Figure 2.9 shows an example for Vector Clocks including the data item x and the
two processes A and B. In the beginning the item x holds the Vector Clock ([A, 0]),
because it was initially written by process A. Process B updates the data and
starts its own clock for the item. Since the last maximum version of x was 0, the
process sets its own clock in x to 1. Because A and B were writing to the item
serialized, there is no con�ict detected. In the next step both processes are writing
in parallel to x. Parallel does not necessarily mean that the processes are writing
to x at the same time. It can also be that they write to di�erent replicas, which
may be synchronized at a later time. Both processes increment the vector clock in
the way previously described. At the next synchronization, the two vector clocks
have di�erences at two positions, so there is a con�ict detected, which then needs
to be handled by the client.

The disadvantage of vector clocks is that they get bigger with each process that
writes to a data item.

15



2. Basics

Figure 2.9: Con�ict detection with vector clocks.

2.5.3 Hash Histories (HH)

Hash Histories are described in the paper by Kang, Wilensky and Kubiatowicz [37]
and have the advantage that the version size is independent of the number of nodes
performing write operations on a data item. However hash histories grow with the
number of updates. A HH contains a list of versions of the item. Each version
consists of a hash value calculated from the content of the data item and a revision
number. The revision number is initially zero and then incremented during each
write operation.

The order of write events can be determined by comparing the histories. If the
history of two competing versions contains entries with the same revision number
but an unequal hash value, then there must be a con�ict. Figure 2.10 shows the
example from above for Hash Histories.

Figure 2.10: Con�ict detection with hash histories.

One positive side e�ect of using a hash function for revision identi�cation is that
false con�icts can be detected. This is if two processes make exactly the same
changes to the same revision of an item then no con�ict is created.

16



2. Basics

2.6 MapReduce

MapReduce is a programming model for distributed computation developed by
Google and is described in a paper by Dean and Ghemawat [25]. Applications
that are written inside the MapReduce framework can automatically be distributed
across multiple computers without the need for the developer to write custom code
for synchronization and parallelization. It can be used to perform tasks on large
datasets, which would be too big for one single machine to handle.

In order to instrument a MapReduce framework, the developer has to specify a map
function and a reduce function. The map function is invoked with a key/value-pair
for each data record and returns intermediate key/value pairs, which are used by the
reduce function to merge all intermediate values with the same intermediate key.
So each reduce invocation gets an intermediate key and a list of values belonging
to the key and returns a smaller data set or a single value as �nal result.

Google's MapReduce framework has the following method signatures:

map(key, value) → list(ikey, ivalue)

reduce(ikey, list(ivalue)) → list(fvalue)

Thereby (key, value) is one record of input data and (ikey, ivalue) an intermediate
key/value pair, and fvalue a �nal result value.

2.6.1 Example

The MapReduce paper [25] gives a simple example written in pseudo-code for a
MapReduce job, which takes a list of documents and counts the occurrences of each
word, see listing 2.1.

The map function is called for each document and emits a key/value pair for each
word in the document. This result is forwarded to the reduce function, which is
called for each word in this example and gets a list of occurrences, which are summed
up and then returned as a single value.

17



2. Basics

map( St r ing key , S t r ing value ) :
// key : document name
// value : document contents
f o r each word w in value :

EmitIntermediate (w, "1" ) ;

reduce ( S t r ing key , I t e r a t o r va lue s ) :
// key : a word
// va lues : a l i s t o f counts
i n t r e s u l t = 0 ;
f o r each v in va lue s :

r e s u l t += Parse Int ( v ) ;
Emit ( AsStr ing ( r e s u l t ) ) ;

Listing 2.1: Word counting example for a MapReduce task.

2.6.2 Architecture

The paper does not only describe the MapReduce programming model, it also
describes Google's implementation of a MapReduce framework, which is optimized
for a cluster consisting of computers build with commodity hardware. The described
framework has the requirement to be able to handle failures of single machines.

It consists of a master, which assigns the map and reduce tasks to the available
nodes and is responsible for the failure management. The framework is designed to
work together with GFS, Google's distributed storage system. Figure 2.11 shows
the execution schema of a map reduce task.

Figure 2.11: Overiew of a MapReduce process.

18



2. Basics

Each node assigned with a map task gets an own partition of the input data. The
results of the map function is stored on the local disk of the map node and ordered
by the intermediate keys. The intermediate key-space is also split by the master
and distributed over the reduce nodes. To get the intermediate data each reduce
node has to ask the master for the locations of intermediate data with their assigned
intermediate keys and read it from the responsible map node.

2.6.3 Extension

The shown architecture has one big �aw: For some tasks the reduce nodes would
have to read massive amounts of data over the network. For instance, the shown
example for counting word occurrences would produce a key-value pair for each
single word occurrence, which would need to be transferred over the network to the
responsible reduce node.

That is why the MapReduce framework has an additional method to map and
reduce: A Combiner function, which can be invoked between the map and the reduce
function to partially merge the intermediate data on the map node. The combiner
function is usually the same as the reduce function, but produces intermediate data
and no �nal results. This requires, that the reduce function is associative and
idempotent.

This would mean for the example that the word occurrences would �rst be counted
for each data split and then the reduce function would only have to sum up the
intermediate results. So instead of transferring a key/value pair for each word
occurrence over the network, only one key/value per word and data split would
need to be remotely read by the the reduce nodes in the worst case.

2.6.4 Advantages

The MapReduce framework simpli�es the development of distributed algorithms
by hiding the actual distribution from the developer. But using the MapReduce
framework alone does not guarantee that the performed task is maximal parallelized.
It is necessary for the developer to think about, which parts of a task can be more
e�cient solved with the usage of a combiner function. When this is done, the
MapReduce framework is able to minimize the required network tra�c drastically.

19



2. Basics

2.6.5 Implementations

Aside from Google's own MapReduce implementation there are several other ones.
The most popular implementation in the open source world is Hadoop [13] with its
own distributed �le system HDFS.

MapReduce is also implemented with some variations in various NoSQL databases
to perform queries or to build indexes.

20



3 NoSQL Databases

This chapter introduces a selection of NoSQL databases with di�erent capabilities
and purposes. The �rst three examined databases Dynamo, S3 and SimpleDB are
from Amazon. Dynamo is only a key-value store without any range query capa-
bilities and is only used internally at Amazon and would therefore be not of much
interest for this work. But Dynamo uses some very interesting technologies to
achieve a robust peer to peer architecture, which is described in the Dynamo paper
[26]. This paper had a great in�uence in the NoSQL community and describes a lot
of ideas by which other development teams were inspired, because of this is Dynamo
presented in this chapter but is not part of the comparison in the next chapter.
SimpleDB was chosen, because it is part of Amazon's cloud service, which is cur-
rently one of the biggest. Since SimpleDB has some limitations, which require to
use Amazon's Simple Storage Service S3 in combination with it, it is also brie�y
presented even though S3 is also only a key-value store.

The next two examined databases BigTable and App Engine datastore are from
Google, which makes them interesting because Google is obviously able to scale
with them. BigTable is not directly usable by other than Google, but there are
several publicly available databases, which implement the ideas described in the
BigTable paper. The App Engine datastore is interesting because of two things:
First it is the only database that can be used inside Google's Software as a Service
platform App Engine and is therefore interesting for everyone who intends to develop
an application for this platform. The second fact that makes it interesting is that
the Datastore uses BigTable only as a key-value store with range query capabilities
and provides nevertheless many features and query capabilities that go beyond this.
So the Datastore is a good example for how a database with only some primitive
query features can be used for more complex tasks.

The last two databases MongoDB and CouchDB are the only ones in this survey
which are open source and are not only usable as a service. They also have in
common that they are document oriented and schema free. Both projects have
gained a lot of momentum in the last years and are used in production by large
internet services. However, they have slightly di�erent objectives. CouchDB aims
more for data integrity and optimistic replication whereas MongoDB is built for
high performance.



3. NoSQL Databases

For a better comparison, the databases in this chapter are analyzed with several
aspects in mind. The �rst one is the Data Model, which de�nes how a database
stores data and how it handles concurrent access. The second one is the Query
Model, in which the surveyed databases di�er the most. This category contains
the power of the used query language, its restrictions and how it can be used.

The next two examined facets are Sharding and Replication, to determine how
the databases can be distributed other many machines. And in the Consistency
category is analyzed, which consistency level the databases achieve and which trade-
o�s they are making.

Some of the technical details of the implementations are taken care of in the Ar-
chitecture sections. Another important aspect is how the databases can handle
various types of failures, like single node failures and network problems, this is
discussed under the term Failure Handling.

Some databases in this survey are not examined under all this aspects, due to the
lack of available information or a limited feature set.

There is currently a lot of development in the NoSQL area, therefore there are many
other projects which are not described in this work.

3.1 Dynamo

Dynamo is a distributed key-value storage system that is used internally by Amazon
for its own services [26]. It provides a simple query API which allows clients to
retrieve a value for a unique key and to put key-value pairs into the storage with
values smaller than one megabyte.

The system is designed to work in a network of nodes build from commodity hard-
ware and assumes that each node and every network connection can fail anytime.
This network of nodes can incrementally be enhanced with new nodes and allows
nodes with di�erent capacities to be added without manual partitioning. The work-
load is distributed proportional to the capabilities of the nodes. Each node in this
system has the same responsibilities so there are for example no dedicated nodes
for routing, replication or con�guration. To achieve immunity against disasters af-
fecting complete data-centers, every key-value pair is replicated with a geological
distribution over several data-centers around the world.

22



3. NoSQL Databases

Dynamo can be tuned to achieve di�erent trade-o�s between availability, consis-
tency, cost-e�ectiveness and performance to be suitable for di�erent kinds of ser-
vices. Like some other distributed databases, Dynamo uses optimistic replication
with multiversion concurrency control (MVCC) to achieve a type of eventual con-
sistency.

To meet all these requirements, Dynamo utilizes a mix of existing technologies from
distributed databases, peer to peer networks and distributed �le systems such as
consistent hashing for replication and key partitioning.

3.1.1 Query Model

Dynamo o�ers two API functions to access the store:

get(key): Returns an object with the value represented by this key or a list of
con�icting versions and context objects for each value. A context object contains
the metadata for a value including its revision.

put(key, context, value): Saves a value attached to a key in the storage. The context
is needed for Dynamo to be able to determine if the value is based on the current
revision stored in the database.

3.1.2 Sharding

The data is partitioned in Dynamo with a variant of consistent hashing. Each node
is subdivided into a number of virtual nodes, which are associated with a random
position in the key space. The key space is a ring of numbers into which every key
can be mapped with a hash function. A node is responsible for all keys between its
own position and its predecessor. For example in the ring of �gure 3.1 the virtual
node B is responsible for the key k.

The usage of virtual nodes has the advantage that each real node can be associated
with a number of virtual nodes depending on its capacity and other capabilities to
allow heterogeneity of the underlying hardware.

23



3. NoSQL Databases

3.1.3 Replication

Dynamo allows to specify how many replicas a key should have with the number
N . The responsible node for k replicates k to its N − 1th successors. In Figure 3.1
B is responsible for the replication of k to C, D. So each node has to store all keys
between their own position and their Nth predecessor.

Figure 3.1: The replication schema of Dynamo.

Dynamo uses MVCC to allow the asynchronous synchronization between the replica.
Each update generates a new revision. If this generates a new branch, then the get()
operation will return a list of the con�icting revisions to allow the application layer
to merge the di�erent branches. The revision control in Dynamo is implemented
with vector clocks.

3.1.4 Consistency

Dynamo uses a con�gurable quorum like approach. The client can specify from how
many replicas R a key must be read and how many replicas W must be produced
during a write. With R + W > N this would be equivalent to a quorum system
with strong consistency, but the clients can also set R + W < N in favor of latency
and availability over consistency.

3.2 Amazon S3 Simple Storage Service

S3 is a distributed and scalable key-value storage system comparable to Dynamo.
But unlike Dynamo, S3 can be used by third parties. It can store values up to a

24



3. NoSQL Databases

size of 5 GB. Simple Storage organizes the data into Buckets. A Bucket is used as a
container or a name space for the data. The client can specify a geological location
of a bucket (currently either U.S. or Europe) and can specify access restriction for
it [9].

All data in S3 is replicated to be save against failures of single nodes. Like most
distributed databases it assumes that every node and network connection can fail
any time.

3.2.1 Query Model

Because S3 is a key-value store it has a map like query interface:

Create Bucket: Creates a Bucket with a unique name.
Delete Bucket: Deletes a Bucket.
List Keys: Lists all keys stored inside a Bucket.
Read: Reads the data belonging to a unique key from a

Bucket.
Write: Writes the data associated with a unique key into a

Bucket.
Delete: Deletes an key and its data from the storage.

3.2.2 Consistency

In S3 a write operation is atomic, but there is now way to make atomic write
operations over multiple keys. It does not provide a locking mechanism, if there are
concurrent writes on the same key, then the last one wins.

After the commit of a write or a delete operation it may take a while until the
changes are re�ected by the results of the read and list keys operations, because S3
�rst applies the changes to all replicas and lets them invisible until all data for the
key is replicated.

3.3 SimpleDB

SimpleDB is a schema free and distributed database provided by Amazon as a web
service. Its main feature is its ease of use: SimpleDB does not need a schema,

25



3. NoSQL Databases

decides automatically which indexes are needed and provides a simple SQL like
query interface.

All data stored in SimpleDB is replicated onto di�erent machines in di�erent data
centers to ensure the safety of the data and to increase the performance [10]. It does
not support automatic sharding and consequently can not scale with the amount of
data, unless the application layer performs the data partitioning by itself.

3.3.1 Data Model

SimpleDB lets the client organize the data into domains, which can be compared
with tables in relation databases, with the di�erence that a domain can contain
a di�erent set of attributes for each item. All attributes are byte arrays with a
maximum size of 1024 bytes. Each item can have multiple values for each attribute.
Due to restrictions in the Query Model it is impossible to model relations of objects
with SimpleDB without creating redundant information. So the developer can either
denormalize its data or handle relations in the application layer.

Queries can only be processed against one domain, so if a client needs to aggregate
data from di�erent domains, this must also be done in the application layer. But
it would be unwise to put everything into one domain, because domains are used
in SimpleDB to partition the data, which results in restrictions in the size of one
domain. Furthermore, the query performance is dependent on the size of such a
domain.

3.3.2 Query Model

SimpleDB allows the client to retrieve data with a SQL like select statement against
one single domain with the following format:

select output_list or count(*)

from domain_name

[where expression]

[sort_instructions]

[limit limit]

26



3. NoSQL Databases

output_list: The attributes which should be retrieved by this
query. If replaced by count(∗), the query will return
the number of items that would be in the result.

domain_name: The name of the domain.
expression: The conditions items must ful�ll to be in the re-

sult list. An expression can be a comparison of an
item attribute with a constant value or expressions
connected by logical operators (or, and, not).

sort_instructions: The name of one attribute and the sort direction:
Either asc for ascending or desc for descending.

limit: The maximum number of items to return.

The Query Model of SimpleDB does not allow joins and no comparisons of items
inside a query that is why all comparisons are restricted to be between one attribute
and one constant value. This restrictions may simplify the automatic generation of
indexes and could allow SimpleDB to parallelize the queries, but it is unknown to
the public how SimpleDB works internally.

Because SimpleDB only supports byte array attributes, the sorting is lexicographic.
This must be accounted for when numbers or dates are used for sorting.

3.3.3 Consistency

SimpleDB provides eventual consistency, but without MVCC, so there is no way to
detect con�icts with SimpleDB on the client side.

3.3.4 Limitations

SimpleDB has currently some restrictions for the size of domains, query time, and
number of domains. These limits may change during the lifetime of the service.

27



3. NoSQL Databases

Parameter Limitation
Domain Size 10 GB per domain / 1 billion attributes per domain
Domains per Account 100
Attribute value length 1024 bytes
Maximum items in Select re-
sponse

2500

Maximum query execution
time

5s

Maximum response size for
one Select statement

1MB

For a complete and up to date list see [11].

3.3.5 Example: Simple Forum

This example is intended to show how a simple forum could be implemented with
SimpleDB in combination with Amazon S3. The example forum organizes the posts
into categories and threads.

Domain ForumPosts:

ID Category Thread User Time
23 Cars Motors Tom
33 Cars Motors Joe
44 Boats Fishing Bob
55 Boats Fishing Alice
34 Cars Gears Joe
45 Planes Wings Alice

Because of the limitations for the size of the values, the contents of the posts are
not stored in SimpleDB but in Amazon S3, so the application has to use the Item
ID as a key for S3 to store and retrieve the content. Because the two databases
may not always be consistent, the application needs to be fault tolerant to posts
with contents that are not ready to be retrieved from S3.

The example uses a denormalized structure to avoid joins in the application layer.
If a Category, Thread or User changes, all a�ected rows must be updated. Sim-
pleDB allows to change attributes only for single items, so the applications layer
would need to load all a�ected rows, change them and then write them back to the
database. This operation would be very expensive and would leave the database

28



3. NoSQL Databases

in an inconsistent state in the meantime, because only each single PUT operations
would be atomic. So changes of the Category, Thread or User should either be not
allowed or the application would need another data structure, which would require
joins in the application layer and more requests to the database.

To allow the names of Categories,Threads and User to be changed, they need to
be stored in separate items and referenced in the domain ForumPosts by their ID.
This would require the application to make one additional request for each Post to
get the author name. The Categories and Threads might also be requested very
frequently, so it would be a good idea to cache them, which would reduce the cost
of client side joins for them.

To decide which model �ts best, the developer needs to know how often the values of
certain attributes might be changed to be able to determine if the expensive changes
of redundant data might be amortized by the fewer requests needed to retrieve the
desired information.

3.4 BigTable

BigTable is one of Google's solutions to deal with its vast amount of data. It is
build on top of Google's distributed �le system GFS [28] and is used by Google for
several applications with di�erent demands on the latency of the database. Some
of them require near real time behavior to satisfy the users of Google's web services
and other ones are more throughput oriented batch applications [20].

BigTable is intended to be scalable, distributable and therefore tolerant to hardware
failures. Google's own implementation is not publicly available, besides the usage
inside Google's App Engine, but there are some open source implementations of
BigTable, like Hypertable [16] and Hbase [14], which is based on Hadoop [13].

Another interesting implementation of the ideas described in the BigTable paper is
Cassandra [12], which uses approaches from both BigTable and the Dynamo paper
[26]. BigTable is furthermore the basis for the Datastore in Google's App Engine.

3.4.1 Data Model

Basically BigTable is comparable to a key-value store, but instead of mapping one
key to one value, BigTable maps a tuple consisting of a row key, a column key and

29



3. NoSQL Databases

a timestamp to a value. A row in Google's BigTable consists of a row key and a
variable number of columns. Each column contains a version history of its content,
which is ordered by a timestamp. The rows are stored in lexicographic order of the
row key and are used to partition a table for the distribution to di�erent machines.

Figure 3.2: A value in BigTable is referenced by its row key, the column key con-
sisting of the column family name and the quali�er and a timestamp.
Each row can have any number of columns.

Columns are organized into column families, which is comparable to the concept
of having a list or map inside of each column. BigTable is so designed that every
row can have any number of columns but it assumes that the number of column
families is limited for a table and that the names of the column families are static.
Figure 3.2 shows the structure of a BigTable row with one column. A column key
in BigTable has the syntax "family:quali�er", thereby the quali�er is the key of the
column inside its family.

The access control of BigTable is managed on the column family level, which allows
to have columns with di�erent access restrictions for di�erent applications inside a
row. BigTable only di�ers between two data types: Strings for the values and key
names and int64 for the timestamps of the version history.

To reduce the number of stored versions of a data cell, it can be de�ned that either
only the last n versions are stored or all versions inside a certain time range.

3.4.2 Query Model

BigTable creates indexes over the row-key, the column keys and the timestamps of
the version histories. BigTable does not support any kind of joins, so relations need
to be handled by the application layer, if needed.

30



3. NoSQL Databases

BigTable provides a C++ client library, which can be used to make queries against
a BigTable. It provides an abstraction called scanner, which lets the application
de�ne several �lters for a row key, column families, column key and timestamps and
allows the iteration over the results.

The architecture of BigTable requires that each query restricts the number of the
rows on which the scanner has to look at, because the row key is used to determine
the locations of the necessary tablets, which are explained in the following subsec-
tion. The scanner allows to �lter the row key by de�ning pre�xes and ranges for it.
The data model implies that the results are ordered by the row key, therefore it is
not possible to order the results by di�erent columns.

In addition to the client library of BigTable there are bindings for Google's MapRe-
duce framework, which allows to use BigTable as data source and target for MapRe-
duce tasks.

3.4.3 Sharding

The tables inside a BigTable databases are partitioned by their row-key into several
key-ranges, which are called tablets in BigTable terminology. Each tablet is assigned
to only one tablet server at a time. A master server stores the meta information
about the current assignment of each tablet and assigns the currently unassigned
tablets to currently available tablet servers.

A tablet server can lose its assigned tablets, if the tablet server goes down or the
network is partitioned due to network failures or other events.

Client requests for accessing a certain key-range require to lookup the meta infor-
mation from the master server, to avoid having a bottleneck at the master server,
the client library caches the meta information and only updates it, when a tablet
can not be found by the client under its last known location. This takes a lot
of load from master server and makes the cluster more robust against temporal
unavailabilities.

3.4.4 Replication

BigTable does not directly replicate the database because one tablet can only be
assigned to one tablet server at a time, but it uses Google's distributed �le system

31



3. NoSQL Databases

GFS [28] for the storage of the tablets and log �les, which handles the replication
on the �le level.

3.4.5 Consistency

Since each tablet is only assigned to a single tablet server, BigTable can provide
strong consistency and therefore sacri�ces availability due to the eventual restricted
accessibility of tablets during the recovery from the loss of a tablet server.

BigTable allows to make atomic operations on one row and provides the ability to
make transaction inside a row. But there is no way in BigTable to make transactions
over multiple rows.

3.4.6 Architecture

BigTable uses a kind of master oriented Architecture. The master in a BigTable
cluster is responsible for the assignment of the tablets to the tablet servers. A tablet
server can loose its tablet assignments, if it looses its exclusive lock in Google's
distributed lock manager Chubby [17]. The Master monitors the state of the lock
�les of each tablet server and reassigns the tablets of the server, which have lost
their lock. Figure 3.3 shows an overview of a BigTable cluster.

The Chubby Service consists of �ve servers and uses the quorum based protocol
Paxos [39] to solve the distributed consensus problem. Chubby lets its clients store
small �les and provides exclusive locks for them. BigTable uses Chubby for the
election of a master server and the tablet servers use it to �nd their master. This
makes chubby a possible single point of failure.

The meta-data with the information about the location of the tablets in GFS and
their current assignments is stored in a tree with three levels. The �rst level consists
of a Chubby �le with the meta-data of the root tablet, which contains the meta-data
about the tablets that store the actual meta-data of the BigTable. The BigTable
client library caches the meta information and only refreshes them if it discovers
that the cache locations are outdated.

32



3. NoSQL Databases

Figure 3.3: The Architecture of a BigTable cluster.

3.4.7 Failure Handling

If a tablet server fails it loses its exclusive lock in the chubby service, this is detected
by the master server, which reassigns the tablets of the lost tablet server to the
currently available servers. Because the tablets are stored in GFS, the tablet server
can read their newly assigned tablets from it, but it is not ensured that all write
operations that were committed on the failing tablet server were already written to
the tablet �les. To solve this problem BigTable uses log �les for all write operations
which are comparable to the transaction log �les of relational databases. Each
tablet server writes its own log �le to GFS, hence during the recovery phase each
tablet server that is assigned with a tablet of a previously lost tablet server has
to read its log �le and search it for write operations on the tablets that are now
assigned to the new responsible tablet server.

33



3. NoSQL Databases

Another failure scenario is that the master fails. If this is the case, then the tablet
servers elect a new master server using the Chubby service and restore the meta-data
tablets using the root tablet �le in the Chubby service.

So the real single point of failure in BigTable is Chubby. If the Chubby service
fails, then the tablet server will not be able to coordinate themselves. A temporary
failure in the Chubby service is not a problem, as long as no tablet server or the
master server fails in this time period and no new tablet server needs to be added
to the cluster. To ensure the availability of the Chubby service, it consists of �ve
servers and it requires at least three of them to get an exclusive lock on a Chubby
�le. Because of that it would require more than two servers to fail to break the
Chubby service.

3.5 Google App Engine datastore

The Google App Engine datastore provides applications that are running inside
Google's App Engine with a queryable and schema free datastore. Google's App
Engine is a service that lets third party applications run on Google's infrastructure
inside a sandbox with some restrictions [30].

The datastore is built on top of BigTable and simpli�es the usage of it by hiding
the denormalization that is needed to use BigTable for queries against di�erent
attributes of the same object. Furthermore, the datastore provides transactions
over multiple entities. To simplify the usage of the datastore even more, persistence
APIs for Java and Python are built into the App Engine sandbox.

3.5.1 Data Model

The datastore uses a schema-less data model and supports all primitive data types
of the supported programming languages. Objects in the datastore are stored in
a serialized form inside a BigTable with their identi�er as row key. This makes
the data model of the datastore very similar to the one of the document oriented
databases.

The datastore supports transactions over multiple entities. This requires all objects
in a transaction to be inside the same entity group. An entity group consists of a
root entity, which has other entities as children. Each newly created entity which
is not added to another entity group is per default the root object of its own entity

34



3. NoSQL Databases

group. If an entity is supposed to be in a entity group then it is necessary to add
the entity to the desired entity group before it is written to the database, because
this can not be changed afterwards.
An entity is added to an entity group by setting the entities parent to an entity of
the group. Because of this, every entity has a path of ancestors, which is used by
the datastore as a pre�x for the row key of the entity in the BigTable. This has the
e�ect that entities with the same parents are stored near each other, which allows
the datastore to e�ciently manage transactions inside an entity group [15]. The
entity groups can be used to model all relations that can be described as a tree.

3.5.2 Query Model

Depending on the used programming language, the datastore can be queried with
either the query language GQL for Python programs or JDOQL for programs that
use the Java JDO API. Both are very similar to SQL, but they provide only a subset
of the features provided by relational databases [33].

The datastore query APIs allows to de�ne query conditions over di�erent attributes,
but does not allow to compare entity properties with each other. The conditions
inside a query can only be combined with a logical AND operator, so if an applica-
tion has to use an OR operator the queries must be split and the results must be
combined by the application itself.

Another restriction is that inequality operators like <, <=, >=, >, ! = can only
be used on one property per query. And if a query uses inequality operators and
sort orders, then the �rst sort order must be the property to which the inequality
operators are applied to. Sort orders for queries with an equality �lter are ignored.
These restrictions are necessary because queries in the datastore are materialized
views, which are stored inside a BigTable which supports only one key for sorting
and �ltering [31].

For the same reason it is necessary to de�ne an index for all queries, which use
more than one property. Queries over one property do not need an extra index,
because the datastore automatically indexes every property that is not marked as
unindexed.

The datastore does not have support for any aggregations functions, other than
counting the result set of a query. In addition to that, the number of query results
is limited to 1000.

35



3. NoSQL Databases

3.5.3 Architecture

The datastore uses four BigTables for all applications in the App Engine to store the
entities and indexes [31]. The �rst table is the entity table. Each entity is stored
in a BigTable row as a serialized object in Google's Protocol Bu�er format [32].
Because all applications share the same BigTables, the row key of an entity begins
with the application name, which is followed by the ancestor path and the type and
identi�er of the entity. For a simple example with the entity types BlogPost and
BlogComment the entity key for a comment with a post as parent would have the
form:

BlogApplication/BlogPost : ParentBlogPost/BlogComment : CommentId

Because the datastore stores the entities in serialized form, the structure of the
BigTables do not need be changed to re�ect the entity properties. The three other
tables used by the datastore are �lled with the indexes. Two tables are used for
the automatically generated single property indexes. One of these tables is used to
store the index in ascending order and one in descending order. A single property
index consists only of a row key, which consists of the kind of the entity, the property
name and the value. For the blog comment example, an index entry for the property
author would look like:

BlogApplication/BlogComment/author : AuthorName

The fourth table is used for all queries that a�ect more than one property. These
kind of queries are called Composite Queries in Google's terminology. To be able
to make Composite Queries against the datastore, the developer has to specify
an index before runtime which contains all properties and sort orders. When a
Composite Query is made, the datastore query analyzer �rst searches for an index
that matches the requirements of the the query and then scans the composite index
table only in the range with valid results for the query. This makes querying against
the datastore very fast, because the tablet machine that contains the query results
can constantly read the results without having an additional seek operations on the
hard drive.

An entry for the composite index consisted of the entity type, the entities ancestor
type if required and the property values. For example, an index entry which would
allow to query for all blog comments of a certain post written by a certain author
inside a time range would look like:

36



3. NoSQL Databases

BlogApplication/BlogComment/BlogPost : ParentBlogPost

/author : AuthorName/writeT ime : 22.01.2010 : 08 : 20

This index allows the query analyzer to transform a query like:

WHERE ANCESTOR IS : ParentBlogPost && author=AuthorName && writeTime
> 12 . 0 1 . 2 0 10 : 0 5 : 2 0 && writeTime < 12 . 0 1 . 2 0 12 : 0 5 : 2 0 ORDER BY
writeTime

into a scan from

BlogApplication/BlogComment/BlogPost : ParentBlogPost

/author : AuthorName/writeT ime : 12.01.2010 : 05 : 20

to

BlogApplication/BlogComment/BlogPost : ParentBlogPost

/author : AuthorName/writeT ime : 12.01.2012 : 05 : 20

3.5.4 Consistency

Like BigTable, the datastore is strongly consistent and therefore has a restricted
availability. Because a write operation on an entity requires to write to four di�erent
BigTables and to at least one tablet server for each index a�ecting the entity, many
machines and network connections are involved in one write operation, which all
can fail. So an application must be able to handle situations in which a certain
entity can temporarily not be written.

If this happens, the application can either give the user an error message and stall
the current operation or it can queue the write operation to be tried again later. If
an application uses the second approach, then it circumvents the strong consistency
of the datastore and makes it eventual consistent for this entity, because there are
then at least two versions of the same entity until the queued write operation can
�nally be committed.

37



3. NoSQL Databases

{
"_id" : "154 c48b23c8 f6d14e fc f3659ed8c7312 " , // i d e n t i f i e r
"name" : "Hugo" ,
" hobbies " : [

" spor t " ,
"movies " ,
"programming"

]
}

Listing 3.1: Example MongoDB document as JSON object.

3.6 MongoDB

MongoDB is a schema less document oriented database developed by 10gen and an
open source community [3]. The name MongoDB comes from "humongous". The
database is intended to be scalable and fast and is written in C++.
In addition to its document oriented databases features, MongoDB can be used to
store and distribute large binary �les like images and videos.

3.6.1 Data Model

MongoDB stores documents as BSON (Binary JSON) objects, which are binary
encoded JSON like objects [2]. BSON supports nested object structures with em-
bedded objects and arrays like JSON does. Listing 3.1 shows an example for such
a document. MongoDB supports in-place modi�cations of attributes, so if a single
attribute is changed by the application, then only this attribute is send back to the
database.

Each document has an ID �eld, which is used as a primary key. To enable fast
queries, the developer can create an index for each query-able �eld in a document.
MongoDB also supports indexing over embedded objects and arrays.

For arrays it has a special feature, called "multikeys": This feature allows to use an
array as index, which could for example contain tags for a document. With such
an index, documents can be searched by their associated tags.

Documents in MongoDB can be organized in so called "collections". Each collection
can contain any kind of document, but queries and indexes can only be made against
one collection. Because of MongoDB's current restriction of 40 indexes per collection
and the better performance of queries against smaller collections, it is advisable to

38



3. NoSQL Databases

use a collection for each type of document. Relations in MongoDB can be modeled
by using embedded objects and arrays. Therefore, the data model has to be a
tree. If the data model cannot be transformed into a tree, there are two options:
Denormalization of the data model or client side joins.

The �rst option would imply that some documents would be replicated inside the
database. This solution should only be used, if the replicated documents do not
need very frequent updates.
The second option is to use client side joins for all relations that cannot be put into
the tree form. This requires more work in the application layer and increases the
network tra�c with the database.

3.6.2 Query Model

Queries for MongoDB are expressed in a JSON like syntax and are send to MongoDB
as BSON objects by the database driver. The query model of MongoDB allows
queries over all documents inside a collection, including the embedded objects and
arrays [4]. Through the usage of prede�ned indexes queries can dynamically be
formulated during runtime.

Not all aspects of a query are formulated within a query language in MongoDB,
depending on the MongoDB driver for a programming language, some things may
be expressed through the invocation of a method of the driver.

The query model supports the following features:

1. Queries over documents and embedded subdocuments

2. Comparators (<,≤,≥, >)

3. Conditional operators (equals, not equals, exists, in, not in, ...)

4. Logical operators: AND

5. Sorting by multiple Attributes

6. Group by

7. One aggregation per query

In addition to this, MongoDB allows the expression of more complex aggregations
with a variation of MapReduce. The results of a MapReduce operation can either
be stored as a collection or be removed after the results have been returned to the
client.

39



3. NoSQL Databases

The MongoDB version of MapReduce is a bit di�erent to the original one. Instead
of having a Map, Reduce and a Combiner function, it uses a Map, Reduce and a Fi-
nalize function and requires that the Reduce function is associative and idempotent,
because MongoDB calculates the reduction iteratively. So the Reduce function in
MongoDB is more like the Combiner function in Google's MapReduce model.

The Finalize function is optional and is invoked for each record of the reduction
result and can be used, for example, for a division of the end result, which enables
the calculation of averages. The �nalize function is needed in MongoDB for some
cases, because the reduce function has to be associative and idempotent.

The Map Reduce model of MongoDB has the following signatures:

map(key, value) → list(ikey, ivalue)

reduce(ikey, list(ivalue)) → list(rkey, rvalue)

finalize(rkey, rvalue) → list(fkey, fvalue)

For performance reasons, MongoDB allows to specify a query for a MapReduce
task, so that only the result set of this query is used as input for the map function.
This might be more e�cient in some cases, than invoking the map function for
each element of a collection, because the query can be performed with the usage of
previously generated indexes [5].

3.6.3 Replication

MongoDB does not use MVCC and can, therefore, not provide optimistic replication
and requires to have only one master node with write capabilities at a time.

Replication in MongoDB is implemented with the usage of a log �le on the master
node containing all high-level write operations performed on the database. During
the replication process, the slaves ask the master for all write operations since their
last synchronization and perform the operations from the log on their own local
database. All operations in the log can be performed repeatedly, to be able to
perform the replication without endangering the consistency of the slave database
even if the slave is not sure about its local database state after a failure. MongoDB
supports the following replication setups:

Master Slave

One master with write capabilities and a transaction log, which is asynchronously
forwarded to the slave.

40



3. NoSQL Databases

Replica Pairs

MongoDB supports the con�guration of replica pairs, which is basically a master
slave con�guration, but with the extension that the paired nodes can negotiate
themselves which one the master is. If the current master of the pair fails, then the
current slave will become the new master.

If the network connection between the pair fails, then they have to ask an arbiter
server. The node which can reach the arbiter �rst becomes the master. Without
an arbiter node, the paired nodes would not know if the other node is down or if
they are only disconnected.

Limited Master-Master

MongoDB also supports a restricted master-master setup. In this con�guration only
insert and delete of the write operations are allowed. The reason for this is that any
updates on existing documents would compromise the integrity of the database,
due to the lack of an distributed lock manager or a multi version concurrency
mechanism.

3.6.4 Sharding

MongoDB supports automatic sharding, which is currently in an alpha stage and
consequently has some limitations. A MongoDB cluster consists of three compo-
nents: Shard nodes, con�guration servers and routing services called mongos in
MongoDB terminology. Figure 3.4 shows an overview of an MongoDB cluster.

Shard nodes are responsible for storing the actual data. Each shard can consist of
either one node or a replication pair. In future versions of MongoDB one shard
may consist of more than two nodes for better redundancy and read performance.
The con�g servers are used to store the meta data and routing information of the
MongoDB cluster and are accessed from the shard nodes and from the routing
services.

Mongos, the routing processes are responsible for the performing of the tasks re-
quested by the clients. Depending on the type of operation the mongos send the
requests to the necessary shard nodes and merge the results before they return
them to the client. Mongos for themselves are stateless and therefore can be run in
parallel.

The documents in a MongoDB cluster are partitioned by their owning collection
and by a user speci�ed shard key. A shard key in MongoDB is very similar to an
index and can contain multiple �elds.

41



3. NoSQL Databases

Figure 3.4: Typical architecture of a MongoDB cluster.

This shard key is used to partition the whole collection into shards. Each shard
stores its assigned documents ordered by this key. The documents inside a shard
are organized into chunks. Each chunk contains an ordered set of documents from
one start shard key to a speci�c end shard key. If a chunk gets too big, it will be
split. Chunks are used by MongoDB for the automatic rebalancing of the shards. If
the size of one shard is too big, some of its contained chunks are migrated to other
shards. Chunks are also used to redistribute the data when new nodes are added
or removed.

The con�g servers store a record for each chunk in the cluster, consisting of the
start and end key of the chunk and its assigned shard. This information is used by
the mongos to decide which shard nodes are needed for which requests. Depending
on the type of the operation either only one chard or nearly all shards need to be
consulted to ful�ll a request. For example can a simple �nd query to search for a
document with a speci�c id be routed only to the shard that stores this document,
if the used id is also the shard key. But queries that can not be restricted with the
usage of a shard key need to be send to each shard node of the cluster.

42



3. NoSQL Databases

3.6.5 Architecture

MongoDB is implemented in C++ and consists of two types of services: The
databases core mongod and the routing and autosharding service mongos.

For storage MongoDB uses memory-mapped �les, which lets the operating system's
virtual memory manager decide which parts of the database are stored in memory
and which one only on the disk. This is why MongoDB cannot control, when the
data is written to the hard disk.
The motivation for the usage of memory mapped �les is to instrument as much
of the available memory as possible to boost the performance. In some cases this
might eliminate the need for a separate cache layer on the client side. But there
is currently an alternative storage engine for MongoDB in development, which will
allow MongoDB more control over the timing of read and write operations. Indexes
are stored in MongoDB as B-Trees like in most other databases.

3.6.6 Consistency

MongoDB has no version concurrency control and no transaction management. So
if a client reads a document and writes a modi�ed version back to the databases it
may happen that another client writes a new version of the same document between
the read and write operation of the �rst client.

MongoDB provides only eventual consistency, so a process could read an old version
of a document even if another process has already performed an update operation
on it.

3.6.7 Failure Handling

MongoDB does not use a transaction log to ensure the durability of newly written
data and because of the usage of memory mapped �les it performs lazy writes. So if
a MongoDB node crashes, some data might be lost. Because of interrupted writes
during a crash or hardware failure, some of the database �les may be corrupted.
If a crashed node comes back online, it will require that maintenance utilities of
MongoDB are used to search for corrupted database �les and to �x them.

If a single shard node crashes and it is part of a replication pair, then the other
member of the pair will overtake the complete workload of that shard until the

43



3. NoSQL Databases

broken node is back online or replaced. If all nodes of a shard fail, then the cluster
will be unable to perform operations on data in this shard.

If one of the con�g servers fails, the MongoDB cluster will be unable to perform any
kind of split or migrate operations on the data chunks until the lost con�g server is
back online or replaced.

3.7 CouchDB

CouchDB is a schema free document oriented database with an optimistic replica-
tion mechanism [36]. The project is part of the Apache Foundation and is com-
pletely written in Erlang. Erlang was chosen as programming language, because
it is very well suited for concurrent applications through its light-weight processes
and functional programming paradigm.

CouchDB itself is currently not a distributed database by itself, but it can be
used as such in combination with a proxy layer, which handles the sharding and
node management, but this features might also be integrated in CouchDB in later
releases.

CouchDB is not only a NoSQL database, but also a web server for applications
written in JavaScript. The advantage of using CouchDB as a web server is that
applications in CouchDB can be deployed by just putting them into the database
and that the applications can directly access the database without the overhead of
a query protocol.

3.7.1 Data Model

Data in CouchDB is organized into documents. Each document can have any num-
ber of attributes and each attribute itself can contain lists or even objects. The
Documents are stored and accessed as JSON [24] objects, this is why CouchDB
supports the data types String, Number, Boolean and Array. Listing 3.2 shows a
CouchDB document.

Each CouchDB document has a unique identi�er and because CouchDB uses opti-
mistic replication on the server side and on the client side, each document has also a
revision identi�er. The revision id is updated by CouchDB every time a document
is rewritten.

44



3. NoSQL Databases

{
"_id" : "154 c48b23c8 f6d14e fc f3659ed8c7312 " , // i d e n t i f i e r
"_rev" : "1−4492d097e7826b4e1019441344d88ede " , // r e v i s i o n id
"name" : "Hugo" ,
" hobbies " : [

" spor t " ,
"movies " ,
"programming"

]
}

Listing 3.2: Example CouchDB document as JSON object.

Update operations in CouchDB are performed on whole documents. If a client
wants to modify a value in a document, it has �rst to load the document, make the
modi�cations on it and then the client has to send the whole document back to the
database. CouchDB uses the revision id included in the document for concurrency
control and therefore can detect if another client has made any updates in the
meantime.

CouchDB has no built in support for document types or equivalent to tables, hence
developers have to build the type distinction by themselves. One solution is to have
a type attribute in every document, which speci�es the kind of document. But one
could also use the What walks like a duck, is a duck principle in CouchDB. This
means that the kind of a document is only determined by its attributes and not
by a dedicated type attribute. For example, does CouchDB allow to de�ne queries
that can �nd any kind of document with a tag attribute. Both concepts can be
mixed in CouchDB as they are needed.

One other interesting feature in CouchDB is the option to specify a validation
functions in JavaScript. If a document is updated or created, then CouchDB lets
all user speci�ed validations functions check if they approve with the new document
and gives the validation functions the opportunity to reject not well formed ones.

Such a validation function gets as parameters the new document, the old document
and the user who is trying to make the modi�cation. The user information can be
used by the validation functions to make security checks.

Because of CouchDB distributed architecture, validation functions are not allowed
to have side e�ects and can only read the documents which are given as argument.
For this reason, it is not possible to use validation functions to enforce, for example,
foreign key constraints. Listing 3.3 shows a validation function, which only allows
documents with less than 10 hobbies to be written into the database.

45



3. NoSQL Databases

f unc t i on (newDoc , oldDoc , userCtx ) {
i f (newDoc . hobbies && newdoc . hobbies . l ength >= 10 ) {

throw ({ forb idden : ' too many hobbies ' }) ;
}

}

Listing 3.3: A validation function which restricts the number of hobbies someone
can have.

3.7.2 Query Model

The query model of CouchDB consists of two concepts: Views which are build using
MapReduce functions and a HTTP query API, which allows clients to access and
query the views.

A View in CouchDB is basically a collection of key-value pairs, which are ordered
by their key. Views are build by user speci�ed MapReduce functions, which are
incrementally called whenever a document in the database is updated or created.
This is a di�erence to other distributed databases in which the MapReduce model
is used to instrument already existing indexes for aggregations.

Views should be speci�ed before runtime, as introducing a new View requires that
its MapReduce functions are invoked for each document in the databases. This is
why CouchDB does not support dynamic queries.

The MapReduce pattern in CouchDB is implemented with only a Map and a Reduce
function, but the Reduce function in CouchDB is used as both the Combiner and
the Reduce function in Google's MapReduce paper.

Map functions are invoked with a document as argument. The function can only
access this one document and cannot have any side e�ects nor access the results of
any views. The only thing the function can do is to emit key values pairs based on
a given document. If a reduce function is speci�ed, then these key values pairs are
forwarded to the reduce function, otherwise the emitted pairs are put into the view.
The map function can emit any number of key-value pairs for a single document.

As mentioned before, the Reduce function in CouchDB is a combination of the
Combiner and the Reduce function as described in the MapReduce paper. The
function is invoked with a key and a subset of all the values belonging to it.

A reduce step in CouchDB is separated into two phases: The reduce phase in which
the function is invoked with the output of the map step and a rereduce phase which

46



3. NoSQL Databases

gets the results of the reduce phase. The Reduce function can determine in which of
this two phases it is, by a binary argument that is passed through to the function.

During the reduce phase, the reduce function is invoked for di�erent subsets of
the values associated with the same key, hence the MapReduce implementation of
CouchDB cannot be used for problems that cannot be separated into small subsets
without changing the result. This means that CouchDB assumes that the following
is true for every reduce function:

reduce(values) = rereduce(reduce(values1), reduce(values2), ..., reduce(valuesN))

With values being the value set for a certain key and valuesN being a subset of
values. The reduce function in CouchDB, for example, can be used for aggrega-
tions like counting or calculating other kinds of statistics like averages. The reduce
function is used in CouchDB for problems which are in SQL usually handled by the
group statement and the aggregation functions.

Listing 3.4 shows a MapReduce function that counts the occurrences of hobbies.
The Map function emits a key value pair for each hobby in the document, with the
hobby as key and 1 as value. The reduce function gets the subsets of the values
grouped by the key, so in the reduce phase it only has to return the number of values
in the set and then to sum up the intermediary result in the rereduce phase. The
reduce function could be simpli�ed by summing up the values in both the reduce
and the rereduce phase, but that would not show the di�erence between the two
phases. Figure 3.5 shows a possible execution of the example MapReduce task.

Figure 3.5: Example execution of the MapReduce task.

One feature of CouchDB is the possibility to use complex keys, which means that a
key of a view does not need to consist of only one attribute. A key in CouchDB can
be any kind of JSON object, it is especially possible to use an array with di�erent
attributes in it. This allows to order the documents in a view by di�erent attributes
and enables a more powerful usage of the reduce function, which will be explained
later. The rules by which CouchDB orders complex keys are not well documented,

47



3. NoSQL Databases

//Map func t i on
func t i on ( doc ) {

i f ( doc . hobbies ) {
f o r ( var hobby in doc . hobbies ) {

emit ( doc . hobbies [ hobby ] , 1) ;
}

}
}

//Reduce func t i on
func t i on ( keys , values , r e reduce ) {

i f ( r e reduce ) {
re turn sum( va lues ) ;

} e l s e {
re turn va lue s . l ength ;

}
}

Listing 3.4: A view that calculates the popularity of hobbies.

but it is known that the �rst entry is used as �rst ordering criteria and the second
as second and so on. The ordering rules are sensitive to the data types of the key,
so CouchDB orders numbers as numbers and not as strings.

The usage of complex keys does not only have an impact on the ordering, it also
a�ects the reduce function. If a complex key is used then CouchDB stores results
of the reduce function for every level of the key. This means for an example view
with a simple document counting reduce function and a map function, which emits
a complex key consisting of an attribute A and B that it is possible to query the
view via the HTTP API for the number of documents in the view, the number of
documents with a instance of key A as well as the number of documents with a
certain complex key [A, B].

CouchDB's HTTP API allows simple queries on views by their key. Basically a
query against a view consists of a key range. It is possible to de�ne a startkey and
an endkey or to de�ne only a startkey and a maximal number of search results.

In addition to this, the API allows to get the results of the reduce function for the
di�erent levels of the key, like previously described. Other options allow to invert
the search order in the view, which means that CouchDB would start the search at
the startkey and then would go backwards from there in the index until it reaches
the result limit or the endkey.

48



3. NoSQL Databases

The usage of complex keys in CouchDB provides the functionality to order a view
by di�erent attributes and grouping over di�erent attributes, but it can only be used
if the attribute one wants to query are not in con�ict with the desired ordering.

3.7.3 Replication

CouchDB uses optimistic replication for both the client side and the server side.
Each CouchDB database can be synchronized to another instance. This can either
be triggered manually or used continuously and can be used unidirectional as well
as bidirectional.

The optimistic replication feature of CouchDB enables it to be used for very di�erent
scenarios. For example, it is possible to implement any kind of master-master
replication server setups with this kind of replication. In a master-master setup,
both nodes can be used for writing and reading. Due to the optimistic replication,
such a setup is partition tolerant. If the connection between the two nodes is lost for
a while, then both can operate for themselves until the connection is reestablished.
Because a CouchDB can be synchronized with more than one other database, any
kind of replication topologies can be built.

Another usage scenario is to use the replication not only on the server side, but
also on the clients side. Users can have a replica of a database on their own ma-
chines and can work on it without having a connection to the original one and can
synchronize it any time they like. This usage scenario is currently implemented
with the Ubuntu One Service [41]. This is a synchronization service for Ubuntu
desktops, which allows users to synchronize their �les, calendars and bookmarks
from di�erent desktops. Application that support this feature store their data in
a CouchDB database and let the Ubuntu One Service and CouchDB handle the
synchronization. So CouchDB can not only be used for big databases, but also for
small desktop applications.

The downside of optimistic replication is that a system which instruments it must
be able to handle con�icts between di�erent revisions of the same object. CouchDB
can detect possible con�icts between document revisions and passes them forward to
the application. The con�ict handling of CouchDB is handled while the application
reads a document. Then the application has to decide if it wants to choose one
speci�c version as the correct one or to merge the con�icting documents.

The MVCC in CouchDB is implemented with the usage of hash histories. Because
of this, every document in CouchDB has a revision id, which consists of the number
of updates that had been applied to the document and a hash key of the content.

49



3. NoSQL Databases

CouchDB uses the advantage of hash histories to detect duplicate versions of the
same document, this means that an update of a document only changes the revision
id, if the update really changes the document.

The replication mechanism in CouchDB is implemented using a changes feed which
can be accessed with the REST API. The feed contains a list with the ids of the
documents that were last modi�ed. If a CouchDB instance is replicated to another
one, then the feed is used to determine which documents had been updated since the
last replication. The changes can also be used by the client application, which allows
the client to �re events for document updates and to remove outdated documents
from its cache.

3.7.4 Sharding

CouchDB itself has no built in sharding mechanism yet, but there are currently
two projects which provide sharding support for CouchDB. Because CouchDB's
query model is based on incremental MapReduce functions, the documents inside a
CouchDB database can be partitioned over di�erent databases. This only requires
that the application layer or a proxy has to send queries against the views to all
nodes and then has to merge the results. Despite this, the di�erent shards do not
need to communicate with each other.

The �rst project is The Lounge [38], a tool set that contains proxies, which can
distribute the data to di�erent CouchDB instances. The Lounge is developed and
used by Meebo.com.

The Lounge consists of two proxies: The dumbproxy, which can be used to read
single documents and to write to the cluster. The dumb proxy can decide which
CouchDB instance is responsible for a certain document, by applying a consistent
hash function onto the document identi�er, and then can forward the read and write
request to the responsible machine.

The other proxy is the smartproxy, which is responsible for requests against the
views of the database. For this, the request is send to all nodes in the cluster and
the results are merged by the proxy. Because the view results are already sorted,
they can be merged in O(n).

The other project that provides data partitioning for CouchDB is Cloudant
[21] which provides a hosting service with automatic sharding functionalities for
CouchDB databases.

50



3. NoSQL Databases

In addition to the automatic sharding this service provides a quorum based repli-
cation feature like Dynamo, which is planned to be con�gurable. Currently it runs
with the default setting R = 1, W = 3, N = 3, which means that each document is
written to at least three nodes and read from at least one node. This con�guration
enforces strong consistency.

3.7.5 Architecture

CouchDB consists of one server application, which contains the database service
and the in CouchDB integrated web server. User generated functions such as the
MapReduce and Validation functions are per default JavaScript applications. But
CouchDB has an pluggable language support, which allows to use other program-
ming languages for the user functions as well.

3.7.6 Consistency

The type of consistency of a CouchDB database is dependent on how CouchDB is
used. If CouchDB's built in replication feature is used in a master-master con�gu-
ration, then CouchDB provides eventual consistency. But the replication can also
be used in a master-slave setup, which would provide strong consistency.

Another case is the usage of something like Cloudant's dynamo inspired replication
mechanism, which can also be con�gured to provide strong consistency.

3.7.7 Failure Handling

Because CouchDB itself is not distributed, CouchDB has no mechanism for dealing
with failures of nodes. Currently it only provides the replication mechanism, which
can be used as a tool to build a robust infrastructure. However, the management
of multiple nodes and fail over mechanism needs to be realized with other services.
Because CouchDB uses a HTTP API, the infrastructure can be build using any kind
of HTTP proxies and load balancers. If sharding is used the fail over mechanism
and node management might be part of the used sharding framework.

CouchDB uses an append only B+Tree as �le structure to be robust against power
failures and to minimize the number of seek operations of the hard drive while
writing into the database [34]. If a document is updated, then CouchDB creates

51



3. NoSQL Databases

a new copy of the document and a copy of the complete path in the B+Tree and
changes the pointer to the new root node after the write operation of the part of the
tree is complete. The copy-on-write behavior of CouchDB makes sure that the �les
on the disk are always in a consistent state, even if a power failure occurs. Because
of this, CouchDB does not need a transaction log �le and can always be interrupted
without the risk of corrupting the database �les.

52



4 NoSQL Database Comparison

All examined NoSQL Databases share the same restrictions, which are derived from
their distributed architecture. All of them are victims of the CAP Theorem and
therefore can either only provide eventual consistency or sacri�ce some amount of
availability. One weak spot of all databases is that they do not provide a function-
ality to model relations on the database side, so in almost all cases this has to be
done in the application layer. The line between the di�erent NoSQL databases is
very thin, but they have still some small but very signi�cant di�erences.

4.1 Sorting

Providing a sorted view of a given data set is a typical task for a database. All
examined databases can handle the ordering of objects by a single attribute, but
only the both document oriented databases MongoDB and CouchDB and the App
Engine datastore allow the ordering by multiple attributes. All three of them require
to specify an index to be able to perform the ordering e�ciently.

SimpleDB does not o�er the possibility to order a query result by di�erent at-
tributes, this may be because SimpleDB does not require nor allow the developer to
specify indexes manually. BigTable orders its objects after their primary index, be-
cause there can only be one primary index, BigTable does only support the ordering
by one attribute.

A sometimes important feature of databases is the ordering of a set by the result of
an aggregation, like a count operation or summation. This is for example required
for Top N lists. If an application requires such a feature, one possible solution would
be to let the client handle the creation of top n list in a periodically batch process,
it could even use the database to store and order the result. Table 4.1 shows the
capabilities of the di�erent databases.



4. NoSQL Database Comparison

Order by a single
attribute

Order by multiple
attributes

Order by aggrega-
tion result

SimpleDB yes no no
BigTable yes no no
Datastore yes yes no
MongoDB yes yes no
CouchDB yes yes no

Table 4.1: Comparison of the sorting capabilities of the examined NoSQL databases.

4.2 Range Queries

A range query is a query which de�nes a upper and/or a lower limitation for at
least one attribute. A range query, for example, would be to retrieve all objects
with an age attribute between 16 and 44. All databases considered here can handle
such a query. However BigTable only allows this on the primary index.

Range Queries over multiple attributes connected with a logical operator can be
handled by the Datastore, SimpleDB and MongoDB. CouchDB also allows range
queries over di�erent attributes at the same time, but it uses its complex keys for
this task, this means that the developer has to specify an index with a key consisting
of the attributes on which the range query should be performed. On such an index,
the application makes queries consisting of one startkey and one endkey.

Furthermore, the attributes on which the range queries are performed in CouchDB
are always the same as the attributes which are used for sorting. The App Engine
shares this restriction with CouchDB, because both databases work with material-
ized views with a single index for sorting and range querying.

Table 4.2 shows the di�erences in the expression power for range queries of the
di�erent databases.

4.3 Aggregations

Most of the examined databases have the ability to use MapReduce for aggrega-
tions tasks such as counting, calculating of averages and other statistic calculations.
SimpleDB and the App Engine datastore only support counting without grouping
and do not support any other aggregation functions.

54



4. NoSQL Database Comparison

Range queries on
single attributes

Range queries
on multiple at-
tributes

Range queries
on aggregation
results

SimpleDB yes yes no
BigTable yes no no
Datastore yes yes no
MongoDB yes yes no
CouchDB yes yes no

Table 4.2: Comparison of the range querying capabilities of the examined NoSQL
databases.

Aggregations in BigTable and CouchDB can only be implemented with the usage of
MapReduce functions, but both do this di�erently. BigTable allows to use Google's
MapReduce framework on it, which can use BigTable as data input source and
output target. In contrast to this, CouchDB's incremental MapReduce system
stores the results of MapReduce tasks as index which is incrementally updated
whenever a document is written. The advantage of CouchDB's system is that the
results of a MapReduce task always re�ect the current state of the documents in the
database. But the downside of this is that it is not possible in CouchDB to chain
multiple MapReduce tasks to perform more complex calculations than possible with
one single MapReduce step.

A MapReduce task on something like BigTable might not be well suited for real
time tasks. That is why the typical use case of non incremental MapReduce is
batch processing, which can be done periodically. This kind of MapReduce is more
suitable for large data warehouses, with more complex calculations, which do not
require to be always up to date.

MongoDB provides extra functions for simple aggregations operations like counting,
summations and averages and group by statements comparable to the ones in SQL.
This functions can be used e�ciently in combination with the indexes that can be
speci�ed in MongoDB. In addition to this, MongoDB also supports the usage of
MapReduce functions. Its implementation is like the one for BigTable meant for
batch processing. One advantage of MapReduce tasks in MongoDB is that they
can instrument previously speci�ed indexes for better performance. Especially, a
MapReduce task can be bound to a query, which can be used to reduce the amount
the number of documents, the MapReduce task has to look at.

Table 4.3 shows the di�erences of the aggregation functionalities of the databases.

55



4. NoSQL Database Comparison

Counting Aggregation prim-
itives like Sum-
mations and Aver-
ages

Complex ag-
gregations with
MapReduce

SimpleDB yes no no
BigTable MapReduce MapReduce yes
Datastore yes no no
MongoDB yes yes yes
CouchDB MapReduce MapReduce yes

Table 4.3: Comparison of the aggregation functionalities.

4.4 Durability

Durability means that all write operations that are committed to a database can
never be lost. This requires that new data is written in some way onto the hard disk
before a database can return the acknowledgement of a successful commit operation,
so that committed data can not be lost even in the event of a power failure. In
RDBMS, durability is usually ensured through the usage of a transaction log �le.
In this �le, all transactions are written, before they are committed. If a failure
like a power outage or some other kind of software or hardware failure happens,
the database can use this log to recover committed but not completely applied
transactions.

For distributed databases the term of durability can even be more extended, because
some databases can not only make sure that committed data is always persistent on
a single machine, but they can also make sure that the data is replicated to at least
a speci�c number of machines or even to di�erent data centers distributed around
the world to be safe against geological disasters and permanent failures of single
machines.

However, ensuring durability is very expensive. If a database attempts to ensure
that committed data is always written on at least one hard disk then the hard disk
with the log �le or the database �les becomes the bottleneck. In addition to this, it
is necessary that the write caches of the used operating system and the ones of the
hard disk are disabled to ensure that committed data is really written to the disk
and not only into the write cache, whose data could be lost during a power failure.
This all slows down the write performance of the database.

The other solution to ensure durability is to make sure that committed data is al-
ways replicated to multiple machines, which both reduces the availability and the

56



4. NoSQL Database Comparison

partition tolerance of the database.
This is why the examined databases make di�erent trade-o�s between durability,
availability and partition tolerance. MongoDB, for example, aims mainly for per-
formance and does not make any attempts to make the newly added or changed
data durable. It currently uses memory mapped �les and lets the operating system
decide when a �le has to be written to the disk. MongoDB's replication mechanism
does only lazy replication and therefore cannot provide reliable durability.

The same is the case for CouchDB with its default settings to cache all write op-
eration, but if turned o� CouchDB can make sure that committed data is always
written to at least one disk. Because CouchDB also provides only lazy replication,
this mechanism does not ensure that new data is already replicated to di�erent
nodes after it is committed.

For SimpleDB were no concrete information available about the durability besides
that the data is replicated to di�erent machines and di�erent data centers.

BigTable and the BigTable based Datastore ensure durability and can therefore
only provide limited availability.

Written on at
least one hard
disk after commit

Replicated to
di�erent machines
after commit

On disk integrity

SimpleDB ? ? ?
BigTable Yes, in a commit

log �le stored in
GFS

yes Log �le

Datastore Yes, in a commit
log �le stored in
GFS

yes Log �le

MongoDB no No, only lazy
replication

Recovery may
cause data loss
and requires con-
sistency checks of
the database �les

CouchDB Not in the default
con�guration, but
can be enabled.

No, only lazy
replication. But
improvements in
this area are on
the way.

Append only
B+Tree lets the
database �les
always be in a
valid state.

Table 4.4: Comparison of the the durability properties.

57



4. NoSQL Database Comparison

4.5 CAP Properties

This section tries to compare the CAP properties consistency, availability and par-
tition tolerance of the examined databases with each other. Figure 4.1 shows the
relative distribution of the databases inside these three dimensions.

BigTable and the App Engine datastore are in the left part of the graph, because
they are strongly consistent and not always available and because the datastore is
based on BigTable they have only marginal di�erences. The datastore might be a
little less available than BigTable, because the datastore depends on four di�erent
BigTables.

The other databases provide eventual consistency and therefore are in the right part
part of the graph. CouchDB is the database with the greatest partition tolerance
because of the optimistic replication features. CouchDB, MongoDB and SimpleDB
are all on the same level of availability, because they all use asynchronous replication.
SimpleDB is hard to position in the graph because of the lack of information, but
it can be assumed that is comparable with MongoDB and CouchDB.

Figure 4.1: Relative positions of the NoSQL databases in the CAP theorem.

58



5 Database Requirements of Tricia

One goal of this work is to determine if NoSQL databases can be used for the
persistence layer of a collaborative web application. To do this, Tricia and its
persistence layer is used as an example to determine the requirements for such a
system and to implement a prototype. Furthermore, this chapter deals with the
selection of a suitable NoSQL database for the prototype implementation in the
next chapter.

Tricia is an Open Source Web Collaboration and Knowledge Management Software,
which is developed by Infoasset [35]. It is an implementation of the Introspective
Model-Driven Development paradigm presented in [19] and [18].

Tricia has a persistence layer, which allows to model the data independent from
the underlying database. Queries in Tricia are formulated as Java objects, which
are translated by Tricia to the query language of the underlying database. Because
of this architecture, it is possible to add support for a NoSQL database to Tricia
without having to reimplement every query.

To determine the databases features required to run Tricia, its persistence layer was
modi�ed to record all queries made against a relational database. Then, several tests
with a big code coverage were invoked. This should have covered almost any queries
used by Tricia, but there is small probability that a few queries were not caught by
this analysis.

5.1 Relations

The results of this analysis has shown that queries used by Tricia are not very
complex, for instance, there are no queries with more than one join operation. This
is a very interesting result, because Tricia supports many to many relations, which
are in relational databases usually modeled with a table for the relation, which
stores a foreign key for each side of the relation, like the group member relation in



5. Database Requirements of Tricia

�gure 5.1 . Figure 5.2 shows the implementation of this relation with tables in a
relational database.

Figure 5.1: ER diagram of a simple many to many relationship.

Figure 5.2: Implementation of the many to many example as tables in a RDBMS.

To query, for example, all members of a group, it could expected that a join opera-
tion over three tables would be required to get, for instance, all users belonging to
a group, like in this SQL query:

s e l e c t u .∗ from `User ` u , Member m, `Group ` g where g . id = m. GroupId
and u . id = m. UserId and g . id = GroupOfInterest

Thereby GroupOfInterest is a placeholder for the identi�er of the group from which
all the members are to be retrieved. Because there is only one group involved in
this query, the join operation over the Group and the Member table is unnecessary.
So the query can be reduced to:

s e l e c t u .∗ from `User ` u , Member m where u . id = m. UserId and
m. GroupId = GroupOfInterest

This is very important, because NoSQL databases generally do not support join
operations on the database side, because join operations are very expensive for
distributed databases to perform.
So to implement this with a NoSQL database, the last join operation would either
need to be handled by the application layer itself or the data model would need
to be denormalized. For most cases denormalization is not an option, because it
requires the management of redundant information, which can be expensive and
can cause consistency problems.

60



5. Database Requirements of Tricia

Therefore, the most common solution is to let the application layer handle the
joins. This implies that the persistence layer has to get all required relations from
the relation table and then it has to make an extra request for each element in the
�rst result set to get the objects for the �nal result.
For the group member example the application would �rst make a query to get the
identi�ers of each member of the group and then it would need to fetch the user
objects afterwards.

This can be optimized by using a cache on the application side. Instead of making
a request for each entry in the result set, the persistence layer �rst looks into the
cache and only fetches the objects that are not already cached from the database.

5.1.1 Ordering with joined queries

Another important result is that Tricia uses sort orders on joined queries only on
the �rst table and not on the �nal result. So in the membership example this would
mean that Tricia would only make sorting instructions for the member table, but
not for the user table. Assuming that the member table would have an additional
column for a timestamp, Tricia could make a query like this:

s e l e c t u .∗ from `User ` u , Member m where u . id = m. UserId and
m. GroupId = GroupOfInterest order by m. date

But Tricia would not make a query with a sort instruction for the �nal result like
(assuming the table User would have the additional attribute name):

s e l e c t u .∗ from `User ` u , Member m where u . id = m. UserId and
m. GroupId = GroupOfInterest order by u .Name

The �rst query can easily be divided into two queries and the join operation can be
performed by the application like it was previously described, with the di�erence
that the sort instruction for the member table must be added.

But if Tricia would make queries like the second one, then this would not be enough.
If the application would �rst query for all members with the required groupId
and then would fetch the related user objects from the database with the sorting
instruction for the name of the user, then the �nal result would still be unsorted.
So in this case the application would need to sort the �nal result by itself and this
would require to load all results into memory even if the �nal result set would have
a limited size. This problem could be solved in a few di�erent ways: The �rst
solution would be to denormalize the schema by writing the name of the member

61



5. Database Requirements of Tricia

also into the member table. Then both parts of the query could be ordered by the
user name. The down part of this solution is that it requires that the name to be
written into two di�erent places every time it is changed.

The other solution would be to perform the join operation the other way around.
So the application would start to iterate other all users ordered by their names and
would just skip the ones, which are not members of the group of interest. The
downside of this solution is, that this would not scale for many users.

Which solution should be used depends on the size of the tables and how often
the attributes are changed. In most cases the denormalization would be the most
e�cient.

But because Tricia does not make queries like the second one, the implementation
of an NoSQL layer for Tricia is a lot easier and more e�cient.

5.1.2 Other Requirements

Tricia makes queries which include sort instructions for up to two di�erent attributes
per query. From the aggregation functions, Tricia only uses the count operation to
determine the size of the result sets.

Tricia uses only logical ANDs as operators between the conditions, except for queries
which include conditions on the type of the returned objects. Some objects in Tricia
have a type attribute, which is used to describe class inheritances. So queries with
this type of conditions could look like:

s e l e c t u .∗ from `User ` u , Member m where u . id = m. UserId and
m. GroupId = GroupOfInterest and (u . type=2 or u . type=3 or
u . type=4)

Besides this type of query are no logical ORs used. This also makes the implemen-
tation easier, because this is a special case of an OR relation which can be handled
more e�ciently in some NoSQL databases than other cases of OR relations.

During the survey of Tricia's database requirements only one range query was de-
tected, so range queries do not seem to be very important for collaborative web
services like this one. However, range queries are not a problem for most NoSQL
databases.

62



5. Database Requirements of Tricia

Tricia also uses some database constraints, but because they are also checked in the
application layer, they should never be violated. Because NoSQL databases have
either none or a very limited feature set for constraints, they are ignored for the
prototype implementation in this work.

5.2 The choice of a NoSQL database for the

prototype

The possible choices of NoSQL database for the following implementation can be
narrowed down with the information from this and the last chapter. Because most
queries from Tricia include multiple conditions, the possible choices are reduced to
SimpleDB, App Engine datastore, MongoDB and CouchDB. Because some queries
use sort instructions for up to two attributes, SimpleDB is also eliminated as an
option.

The App Engine datastore has the additional restriction that it can only return up
to 1000 results per query. This could be a problem in some cases, especially if join
operations are handled by the application layer. So the possible choices are reduced
to CouchDB and MongoDB.

CouchDB has the advantage of a better data integrity and durability than MongoDB
and the optimistic replication feature would allow some interesting new use cases
for Tricia. But it also has the disadvantage that it is currently not as distributed
as MongoDB. Another di�erence between them is the query interface: CouchDB
uses views, which are generated by MapReduce tasks. So the usage of CouchDB
would require the implementation of a query analyzer, which would generate the
MapReduce tasks automatically. In contrast to this is the very easy to use API
from MongoDB, which allows dynamic queries and provides a very good integrated
database driver for Java. This is why MongoDB was selected for the example
implementation in this work.

63



6 Prototype Implementation

This chapter describes the implementation of a MongoDB support layer for Tricia.
The persistence layer supports expandability for di�erent databases. A module that
enables the usage of a certain database is called Store in Tricia. Figure 6.1 shows
an overview of the store package with two examples of the already existing relational
database store packages and the new package for the MongoDB support.

Figure 6.1: Overview of the store package, which will be extended with a store for
MongoDB.

6.1 The Proceeding

Replacing the persistence layer of an already existing application comes with various
di�culties. The �rst one with Tricia was that the architecture was designed for



6. Prototype Implementation

relational databases and therefore had to be changed to support data stores that
are not based on SQL.

The second problem was that Tricia can only run on a complete store, so using
a store that is not fully implemented yet would result in a lot of runtime errors,
which would be hard to trace back. So to make the development of the �rst pro-
totype easier, the existing persistence layer for relational databases was modi�ed
step by step to perform all operations in parallel on a relational database and Mon-
goDB. Thereby it was possible to �rst implement some basic features like saving
and loading objects to MongoDB and to test them without the need to implement
everything else �rst.

Running Tricia on two databases in parallel during the development also enabled
the comparison of the query results of the two databases directly during runtime.
This made the development a lot easier, because this showed instantly most bugs
of the new implemented code.

After most of the features of the �rst prototype were implemented and tested, the
architecture of Tricia's persistence layer was changed to support stores that are not
based on SQL. This enabled the implementation of a stand alone store for MongoDB
with the code of the �rst prototype.

To still be able to compare the behavior of the new store to a relational store
a generic store was developed, which can run two other stores in parallel. This
parallel store does not only allow the testing of stores against each other, it also
allows to copy the content of one store to another one, which enables for exam-
ple the conversion of the data from an existing database to a MongoDB instance.
Figure 6.2 shows the class diagram of the ParallelStore. This store encapsulates
two other stores and relays all operations to both of them. In order to this, the
class ParellelContainer encapsulates two other containers and ParallelContent
two contents.

6.2 Changes in the Architecture of the Persistence

Layer

Each Store extends the class Store and if necessary the classes Container and
Content. An instance of Container represents a table and a Content object the
content of a row. Figure 6.3 shows a class diagram of the old architecture for two
example stores.

65



6. Prototype Implementation

Figure 6.2: Overview of the ParallelStore.

Because all existing supported databases were relational databases, some shared
functionalities for relational databases were inside the classes Store, Container
and Content. To enable the integration of a NoSQL store these functionalities
were pulled down into the new classes RdbStore, RdbContainer and RdbContent.
Figure 6.4 shows the new architecture including the MongoStore. The new archi-
tecture also enabled the development of stores that encapsulate other stores like the
ParallelStore and the MonitorStore which is used in the next chapter.

6.3 The MongoDB Query API for Java

The MongoDB driver for Java is not a JDBC driver and provides a completely dif-
ferent interface. The biggest di�erence between the MongoDB driver and the JDBC
interface is that the MongoDB driver provides more database functionalities over
a Java interface, whereas most functionalities of relational databases are accessed
with string commands in SQL syntax, which are passed to the JDBC driver. Figure
6.5 shows on overview of MongoDB Java API.

This architecture is very similar to the one of the Tricia Stores. The class DB
is the equivalent to the Store class in Tricia and Collection is the pardon to the
Container class. For the counterparts DBObject and Content the similarities are
even more obvious, because they both have a map like interface. This makes not

66



6. Prototype Implementation

Figure 6.3: Class diagram of the base store classes and two example stores.

only the implementation of a MongoDB Store for Tricia easier and more elegant
than the one for SQL based databases, it can also be said that the MongoDB Java
API is already a persistence layer for itself.

The following code shows how a connection can be established to a local MongoDB
database �tricia� without authentication.

Mongo m = new Mongo ( ) ;
DB db = m. getDB( " t r i c i a " ) ;

The DB class represents the database and, for example, allows to get a collection
for a certain name. If no collection with the given name exists, then a new one is
created.

DBCollect ion u s e rCo l l e c t i o n = db . g e tCo l l e c t i o n ( " user " ) ;

67



6. Prototype Implementation

Figure 6.4: New architecture of the persistence layer.

Figure 6.5: Overview of the MongoDB Java API classes.

Performing the the same operation with a JDBC driver would require to build
a string in SQL syntax, which then would be passed to the database. The
DBCollection class represents a collection and is used for all operations on this
collection. Getting for example the size of the user collection can be done with
this:

u s e rCo l l e c t i o n . getCount ( ) ;

To do the same with a SQL database and a JDBC driver would need a little more
code as it can be seen in listing 6.1.

MongoDB documents are represented through the class BasicDBObject, which
provides a map like interface. Listing 6.2 shows how this can be used to insert a
new user into the collection.

68



6. Prototype Implementation

t ry {
Statement stmt=dbConnection . createStatement ( ) ;
Resu l tSet s e t = stmt . executeQuery ( " s e l e c t count (∗ ) from user " ) ;
s e t . next ( ) ;
i n t count = s e t . g e t In t ( " count (∗ ) " ) ;
stmt . c l o s e ( ) ;
} catch ( Exception e ) {
}

Listing 6.1: Determining the size of table with the JDBC interface.

BasicDBObject newUser = new BasicDBObject ( ) ;
user . put ( "name" , "Hugo" ) ;
user . put ( "age" , 35) ;

u s e rCo l l e c t i o n . i n s e r t ( user ) ;

Listing 6.2: Creation of a new user document.

The same class is also used to make queries, then it is used as a description for
the desired objects. Listing 6.3 shows how all users with the name �Hugo� can be
retrieved and iterated. If a query needs to contain a range condition instead of a
certain value for an attribute, then it is possible to add a condition to an attribute
instead of a value, like in listing 6.4.

Some queries made by Tricia contain conditions that are connected with an OR
operator, which is not directly supported by MongoDB. But these queries use the
OR only for conditions on the same attribute and look like this in SQL:

s e l e c t ∗ from user where ( type = ' person ' or type = ' admin ' or type
= ' moderator ' )

This special case can be expressed in MongoDB with the in operator, which is used
as a condition to restrict the allowed values to a speci�c set. Listing 6.5 shows how
this can be used to express the previous SQL statement for MongoDB.

BasicDBObject queryUser = new BasicDBObject ( ) ;
queryUser . put ( "name" , "Hugo" ) ;

DBCursor cur = u s e rCo l l e c t i o n . f i nd ( queryUser ) ;
whi l e ( cur . hasNext ( ) ) {

System . out . p r i n t l n ( cur . next ( ) ) ;
}

Listing 6.3: Query for all users with the name "Hugo".

69



6. Prototype Implementation

BasicDBObject queryUser = new BasicDBObject ( ) ;
queryUser . put ( "age" ,new BasicDBObject ( " $gt " , 30) ) ;

DBCursor cur = u s e rCo l l e c t i o n . f i nd ( queryUser ) ;
whi l e ( cur . hasNext ( ) ) {

System . out . p r i n t l n ( cur . next ( ) ) ;
}

Listing 6.4: Query for all users with a age bigger than 30.

BasicDBObject queryUser = new BasicDBObject ( ) ;
BasicDBList types = new BasicDBList ( ) ; // A L i s t o f types

types . put (1 , " person " ) ;
types . put (2 , "admin" ) ;
types . put (3 , "moderator" ) ;

queryUser . put ( " type" , new BasicDBObject ( " $ in " , typeL i s t ) ) ;

DBCursor cur = u s e rCo l l e c t i o n . f i nd ( queryUser ) ;
whi l e ( cur . hasNext ( ) ) {

System . out . p r i n t l n ( cur . next ( ) ) ;
}

Listing 6.5: Query for all user with the types person, admin or moderator.

If Tricia would use the OR operator in other cases, then the persistence layer would
need to split the query for each OR operator and would have to merge the results
in the application layer.

Sort orders in MongoDB are not expressed inside the query itself, instead they are
added to the cursor. Listing 6.6 shows how all users can be retrieved in order of
their age.

DBCursor cur = u s e rCo l l e c t i o n . f i nd ( ) ;
// Set the the cur so r to s o r t by age in ascending order
cur . s o r t (new BasicDBObject ( "age" , 1) ) ;
whi l e ( cur . hasNext ( ) ) {

System . out . p r i n t l n ( cur . next ( ) ) ;
}

Listing 6.6: Retrieve all users ordered by their age.

70



6. Prototype Implementation

6.4 Implementation of the MongoStore

The main functionalities of the MongoStore are in the class MongoQuery. This
is because all operations that are based on a query, like counting query results,
deleting with a query and querying itself require that the query is �rst transformed
into statements for MongoDB. Not being supported by MongoDB, join operations
must be handled by the application itself, which is in this case implemented in the
class MongoQuery.

A MongoQuery is instantiated with a Tricia query and the container on which the
operation should be performed. The resulting MongoQuery object can then be used
to perform operations such as counting, deleting or building an iterator with the
query results. The source code of the MongoQuery class can be found in Appendix
A.

6.4.1 Query Building

Queries in Tricia are formulated using Java objects. Figure 6.6 shows an overview
of the classes that represent queries in Tricia.

Figure 6.6: Overview of the classes that represent queries in Tricia.

71



6. Prototype Implementation

To transform a Tricia query to MongoDB queries, the method buildQuery traverses
the object tree of the query with a visitor. In most cases this method only has to
put the attributes of the query conditions into MongoDB objects. If the given query
contains a join operation, then the algorithm has to build two separate queries and
has to remember the attribute names that are used for the join operation. The part
of the query that has to be performed �rst is stored in the variable joinedQuery.

There are two other special cases besides the handling of joins. The �rst one is the
transformation of or operators into one in operator for queries on the type attribute,
which is already explained in the previous chapter. The other one is the handling
of the not operator. Because the not operator is used by Tricia only to check if
an attribute is not null, it can be transformed into MongoDB's exists operator. If
the not would be used otherwise, then MongoDB's not operator could be used or it
could be eliminated by negating all conditions it is applied to.

6.4.2 Iterators

Query results are returned by the Container class as Iterators and it supports
querying for the identi�er only or for the complete content, the MongoQuery class
provides an IdIterator and a ContentIterator. Those two iterators can encapsulate
either a SimpleIterator or a JoinIterator if the query contains a join operator.

The JoinIterator is the most complex one, because it has to handle the join oper-
ations. The iterator uses two MongoDB cursor for the query, one for the �rst part
of the query and one for the second part. The second cursor must be rebuild every
time the �rst cursor is moved one position forward. And the �rst cursor is moved
forward, when the second cursor has reached its end.

To be able to determine if the iterator has a next element, the JoinedIterator
always needs to be a step ahead. So the next methods returns the last fetched
object and then searches for the following element.

6.4.3 Count and Delete

The count and delete operations are very straight forward for queries without a join
operation. For queries with a join, they have to �rst iterate over the results of the
joinedQuery and then build the query for the delete or count operation for each
element in the �rst result set in order to perform the join.

72



7 Evaluation

This chapter compares the performance of the MongoDB store against the stores
for MySQL [23] and the in memory version of HSQL [27]. In order to do this a
MonitorStore was implemented, which is a generic Tricia store that can encapsulate
any other store and monitors the performance of all operations and queries. This
does not only allow the comparison of the overall performance of the stores but also
the comparison of the e�ciency of di�erent operations. Figure 7.1 shows a class
diagram of the MonitorStore.

Figure 7.1: Overview of the MonitorStore.

7.1 Performance for the test suits

Tricia has a set of test suits that are used to test the current implementation for
bugs. This test cases are not designed as a performance benchmark, they do for
example not �ll the databases with a big amounts of data. But they cover almost



7. Evaluation

anything of the database functionalities that are used by Tricia. So the results of
this test can only give a �rst impression of the performance of the di�erent databases
and does not re�ect the performance with real data. This test was performed on
a single machine with an Intel(R) Core(TM)2 CPU 4300 clocked at 2,7 GHz and
4GB memory running with Ubuntu 9.10.

Table 7.1 shows some of the results of this test. The biggest di�erence is the write
performance, which is not a big surprise, because MySQL writes everything �rst into
a transaction log �le on the hard disk, whereas HSQL and MongoDB are writing
asynchronously to the disk.

Furthermore, HSQL and MongoDB can also perform the queries a lot quicker than
MySQL, this might also be because they can store everything in memory. The fact
that the join operations were performed inside the application layer while using
MongoDB did not have a strong impact during this test, probably because of the
small amount of data.

MySQL HSQL MongoDB
Total time spent
for db operations
(exluding con-
straint creation)

30min 51s 41s

Slowest Operation
with average time

Writing one ob-
ject into WikiPage
in 202ms

Getting one ob-
ject from Job in
3ms

Getting one ob-
ject from Job in
11ms

Average time for
writing one object
into WikiPage

102ms 2ms 1ms

Average time for
getting one object
from WikiPage

2ms 1ms 2ms

Average time of
the slowest count
operation

2ms 1ms 3ms

Average times of
the �ve slowest
queries in ms

13, 5, 5, 4, 2 3, 3, 1, 1, 1 2, 1, 1, 1, 1

Table 7.1: Performance results of the �rst test.

74



7. Evaluation

7.2 Performance with real world data

For testing the read performance of the MongoDB store with real world data, the
database content of a Tricia installation with approximately 440.000 rows was used.
The test itself consisted of 20 simulated users who vised the start page, some wikis
and group pages simultaneously. Each test run made 1600 requests to the Tricia
instance and was performed on a virtual machine with Windows Vista 64 Bit on an
Intel Xeon processor with 2,5GHz and 1,5GB of RAM.

Table 7.2 shows some of the results of this test. MongoDB performed most queries
faster than any of the two other databases. The query with the slowest average
time to MongoDB took a little bit longer than the slowest query in MySQL, how-
ever MongoDB performed the next slowest queries a lot faster than MySQL. In
total MongoDB was more than three times quicker as MySQL and more than two
times faster than HSQL, despite that the join operations were not performed in-
side the database. The results of the MonitorStore showed that the join operations
performed by the MongoQuery class did not have a noticeable impact on the per-
formance.

The total times in table 7.2 show how much time was spent for the �ve database
operations, which consumed the most time during the test.

MySQL HSQL MongoDB
Total time spent
for db operations

3375s 2315s 948s

Average times of
the �ve slowest
operations in ms

1140, 890, 775,
763, 578

1461, 777, 648,
547, 491

1306, 208, 142,
139, 109

The �ve greatest
total times in s

1137, 494, 404,
297, 136

970, 270, 209, 186,
121

433, 150, 105, 90,
56

Table 7.2: Performance results with real world data.

75



8 Conclusion

This work has shown that there are a lot of di�erences between current NoSQL
implementations. This is not a surprising result, because none of the examined
databases aim to be the perfect solution for every problem. Instead each database
has its own properties and features, so that developers have to choose the right
database depended on the requirements of their project. Therefore this work com-
pared the trade-o�s of the examined database implementations and explained why
these are necessary.

Furthermore was an Object-relational Persistence Layer based on a NoSQL database
for a Web Collaboration and Knowledge Management Software successfully imple-
mented. This showed that NoSQL databases can ful�ll the requirements of such an
application. It has also shown that the usage of a NoSQL database can increase
the performance signi�cantly, even on a single machine. Aside from this was the
development process for the replacement of a persistence layer of an already existing
application outlined.

Using MongoDB for the persistence layer also has some disadvantages compared to
established relational databases like MySQL. The biggest problem with MongoDB
is the durability. By using memory mapped �les, MongoDB becomes very vulner-
able to power failures and other kinds of system failures [6].
The other problem is the administration, because MongoDB has no built in graph-
ical con�guration tools or graphical query browsers yet. There are some projects
which attempt to provide graphical user interfaces for the administration of Mon-
goDB databases [1], but they are currently not in a state comparable to the ones
of the already established databases.

The prototype implementation instruments join operations that are performed by
the client to realize the relations between the entities. Even though this imple-
mentation was faster then the counterparts for MySQL, the performance could be
even more increased through the usage of nested documents in MongoDB. But this
would have required more fundamental changes in the architecture of the persistence
layer.



8. Conclusion

Another interesting topic for future works could be the implementation of support
layers for other NoSQL databases for Tricia, which would give the opportunity to
compare the performance of them with real world data.

77



A Listing of MongoQuery.java

package de . i n f o a s s e t . p lat form . s t o r e . mongodb ;

import java . u t i l . HashMap ;
import java . u t i l . I t e r a t o r ;

5 import java . u t i l . L i s t ;

import com . goog l e . common . c o l l e c t .Maps ;
import com .mongodb . BasicDBList ;
import com .mongodb . BasicDBObject ;

10 import com .mongodb . DBCursor ;

import de . i n f o a s s e t . p lat form . s e r v i c e s . Loggers ;
import de . i n f o a s s e t . p lat form . s t o r e . Abst ractAtt r ibute ;
import de . i n f o a s s e t . p lat form . s t o r e . AbstractQuery ;

15 import de . i n f o a s s e t . p lat form . s t o r e . AbstractQueryVis i tor ;
import de . i n f o a s s e t . p lat form . s t o r e . Container ;
import de . i n f o a s s e t . p lat form . s t o r e . Content ;
import de . i n f o a s s e t . p lat form . s t o r e . Join ;
import de . i n f o a s s e t . p lat form . s t o r e . Query ;

20 import de . i n f o a s s e t . p lat form . s t o r e . QueryCondition ;
import de . i n f o a s s e t . p lat form . s t o r e . QueryEquals ;
import de . i n f o a s s e t . p lat form . s t o r e . QueryGreater ;
import de . i n f o a s s e t . p lat form . s t o r e . QueryGreaterOrEqual ;
import de . i n f o a s s e t . p lat form . s t o r e . QueryLess ;

25 import de . i n f o a s s e t . p lat form . s t o r e . QueryLessOrEqual ;
import de . i n f o a s s e t . p lat form . s t o r e . QueryNot ;
import de . i n f o a s s e t . p lat form . s t o r e . S o r t i n gCr i t e r i on ;

pub l i c c l a s s MongoQuery {
30

/∗∗ The Container aga in s t t h i s query i s made . ∗/
MongoContainer conta ine r ;

/∗∗ The query as mongodb ob j e c t . ∗/
35 BasicDBObject mongoQuery = new BasicDBObject ( ) ;

/∗∗ The second part o f the query , i f the query conta in s a j o i n
opera t i on . ∗/

BasicDBObject joinedQuery = new BasicDBObject ( ) ;

40 /∗ True i f the query conta in s a j o i n operat i on . ∗/



A. Listing of MongoQuery.java

boolean j o i n = f a l s e ;

/∗ The conta ine r that i s used f o r the joinedQuery . ∗/
MongoContainer j o inConta ine r ;

45

/∗
∗ The name o f the a t t r i bu t e which i s used to j o i n the que r i e s on

the l e f t
∗ s i d e o f the query .
∗/

50 St r ing l e f t J o i nA t t r i b u t e ;

/∗
∗ The name o f the a t t r i bu t e which i s used to j o i n the que r i e s on

the s i d e
∗ o f the j o i n ed query .

55 ∗/
St r ing r i gh tJo i nAt t r i bu t e ;

/∗ The orde r ing o f the query . ∗/
BasicDBObject orderBy = new BasicDBObject ( ) ;

60

/∗ The orde r ing o f the j o i n part o f the query . ∗/
BasicDBObject joinOrderBy = new BasicDBObject ( ) ;

pub l i c MongoQuery (MongoContainer mongoContainer , AbstractQuery q ,
65 List<Str ing> types ) {

t h i s . c on ta ine r = mongoContainer ;
buildQuery (q , types ) ;

}

70 /∗ Analyzes qu e r i e s and prepares them f o r mongodb . ∗/
p r i va t e void buildQuery ( AbstractQuery q , L i s t<Str ing> types ) {

i f ( ! ( q i n s t an c e o f Query ) ) {
i f ( Loggers . mongoLog . isDebugEnabled ( ) ) {

Loggers . mongoLog . debug ( "unsupported query type "
75 + q . ge tC la s s ( ) ) ;

}
}
Query query = (Query ) q ;
i f ( Loggers . mongoLog . isDebugEnabled ( ) ) {

80 Loggers . mongoLog . debug ( "buildQuery f o r : " + query
+ " in " + conta ine r . getTableName ( ) ) ;

}

// Create type cond i t i on s
85 i f ( types != nu l l ) {

i f ( types . s i z e ( ) == 1) {
mongoQuery . put ( " type " , types . get (0 ) ) ;

} e l s e i f ( types . s i z e ( ) > 1) {
// use the $ in operator f o r mu l t ip l e types

79



A. Listing of MongoQuery.java

90 BasicDBList typeL i s t = new BasicDBList ( ) ;
i n t i = 0 ;
f o r ( S t r ing type : types ) {

typeL i s t . put ( i++,type ) ;
}

95 mongoQuery . put ( " type " ,new BasicDBObject ( " $ in " ,
typeL i s t ) ) ;

}
}

100 // v i s i t a l l par t s o f the query
query . v i s i t (new AbstractQueryVis i tor ( ) {

// t h i s map s t o r e s a l l a l r eady v i s i t e d equa l s c ond i t i on s
HashMap<QueryEquals , QueryEquals> used = Maps

. newHashMap ( ) ;
105

@Override
protec t ed void v i s i tOp (Query q ) {

i f ( used . containsKey (q ) )
// do not look again on an a l ready v i s i t e d query

110 re turn ;
// handle j o i n ope ra t i on s
f o r ( Join j : q . g e tJo in s ( ) ) {

Container cont1 = castToMongoContainer ( j
. g e tF i r s tA t t r i bu t eS i gna tu r e s ( )

115 . getConta iner ( ) ) ;
Container cont2 = castToMongoContainer ( j

. ge tSecondAtt r ibuteS ignature s ( )

. getConta iner ( ) ) ;
i f ( j o inConta ine r != nu l l ) {

120 i f ( Loggers . mongoLog . isDebugEnabled ( ) ) {
Loggers . mongoLog

. debug ( "Quer ies with more than one
j o i n operat i on are not

supported ! " ) ;
}
Thread . dumpStack ( ) ;

125 i f (MongoContainer . stopOnError ( ) )
System . e x i t (−1) ;

}

i f ( cont1 != conta ine r ) {
130

j o inConta ine r = castToMongoContainer ( cont1 ) ;
l e f t J o i nA t t r i b u t e = AbstractAtt r ibute

. getColumnName( j
. ge tSecondAtt r ibuteS ignature s ( ) ) ;

135 r i gh tJo i nAt t r i bu t e = AbstractAtt r ibute
. getColumnName( j

. g e tF i r s tA t t r i bu t eS i gna tu r e s ( ) ) ;
} e l s e {

80



A. Listing of MongoQuery.java

j o inConta ine r = castToMongoContainer ( cont2 ) ;
140 r i gh tJo i nAt t r i bu t e = AbstractAtt r ibute

. getColumnName( j
. ge tSecondAtt r ibuteS ignature s ( ) ) ;

l e f t J o i nA t t r i b u t e = AbstractAtt r ibute
. getColumnName( j

145 . g e tF i r s tA t t r i bu t eS i gna tu r e s ( ) ) ;
}
// convert the id names to MongoDB id names
i f ( r i gh tJo i nAt t r i bu t e . equa l s ( " id " ) )

r i gh tJo i nAt t r i bu t e = "_id" ;
150 i f ( l e f t J o i nA t t r i b u t e . equa l s ( " id " ) )

l e f t J o i nA t t r i b u t e = "_id" ;
// t h i s query obv ious ly has a j o i n opera t i on
j o i n = true ;

}
155 // currentQuerry po in t s e i t h e r to mongoQuerry or to

the
// jo inedQuerry
// depending on the conta ine r o f the cond i t i on
BasicDBObject currentQuery = mongoQuery ;
i f ( q i n s t an c e o f QueryCondition ) {

160 QueryCondition c = ( QueryCondition ) q ;

Container cont = c . ge tAt t r ibu t eS i gna tu r e ( )
. getConta iner ( ) ;

165 i f ( ! cont . getTableName ( ) . equa l s (
conta ine r . getTableName ( ) ) ) {

j o i n = true ;
// t h i s cond i t i on be longs to the jo inedQuerry
currentQuery = joinedQuery ;

170 }

// t r a n s l a t e the d i f f e r e n t types o f c ond i t i on s
in to MongoDB

// cond i t i on s
i f ( q i n s t an c e o f QueryEquals ) {

175 QueryEquals qe = (QueryEquals ) q ;
currentQuery . put ( Abst ractAttr ibute

. getColumnName( qe
. g e tAt t r ibu t eS i gna tu r e ( ) ) , qe

. getValue ( ) ) ;
180 } e l s e i f ( q i n s t an c e o f QueryGreater ) {

QueryGreater qr = ( QueryGreater ) q ;
BasicDBObject b = new BasicDBObject ( ) ;
b . put ( Abst ractAttr ibute . getColumnName( qr

. g e tAt t r ibu t eS i gna tu r e ( ) ) , qr
185 . getValue ( ) ) ;

currentQuery . put ( "&gt " ,b) ;
} e l s e i f ( q i n s t an c e o f QueryGreaterOrEqual ) {

81



A. Listing of MongoQuery.java

QueryGreaterOrEqual qr =
(QueryGreaterOrEqual ) q ;

BasicDBObject b = new BasicDBObject ( ) ;
190 b . put ( Abst ractAttr ibute . getColumnName( qr

. g e tAt t r ibu t eS i gna tu r e ( ) ) , qr

. getValue ( ) ) ;
currentQuery . put ( "&gte " ,b) ;

} e l s e i f ( q i n s t an c e o f QueryLess ) {
195 QueryLess qr = (QueryLess ) q ;

BasicDBObject b = new BasicDBObject ( ) ;
b . put ( Abst ractAttr ibute . getColumnName( qr

. g e tAt t r ibu t eS i gna tu r e ( ) ) , qr

. getValue ( ) ) ;
200 currentQuery . put ( "&l t " ,b ) ;

} e l s e i f ( q i n s t an c e o f QueryLessOrEqual ) {
QueryLessOrEqual qr = (QueryLessOrEqual ) q ;
BasicDBObject b = new BasicDBObject ( ) ;
b . put ( Abst ractAttr ibute . getColumnName( qr

205 . g e tAt t r ibu t eS i gna tu r e ( ) ) , qr
. getValue ( ) ) ;

currentQuery . put ( "&l t e " ,b ) ;
} e l s e {

i f ( Loggers . mongoLog . isDebugEnabled ( ) ) {
210 Loggers . mongoLog . e r r o r ( " cond i t i on type "

+ q . ge tC la s s ( )
+ " i s not supported " ) ;

}
}

215 } e l s e i f ( q i n s t an c e o f QueryNot ) {
// handle not operat ions , which are only supported
// i f they are used to determine i f an a t t r i b u t e

i s s e t
// and can t h e r e f o r e be transformed in to an

$ e x i s t s
// cond i t i on

220 QueryNot qn = (QueryNot ) q ;
i f ( qn . getTerm ( ) i n s t an c e o f QueryEquals ) {

QueryEquals qe = (QueryEquals ) qn . getTerm ( ) ;
currentQuery . put ( Abst ractAttr ibute

. getColumnName( qe
225 . g e tAt t r ibu t eS i gna tu r e ( ) ) ,

new BasicDBObject ( " $ e x i s t s " , t rue ) ) ;
used . put ( qe , qe ) ;

} e l s e {
Loggers . mongoLog

230 . e r r o r ( " cannot proce s s not operator " ) ;

}
}

}
235 }) ;

82



A. Listing of MongoQuery.java

// Handle the s o r t order :
f o r ( So r t i n gCr i t e r i on sc : query . g e tA l l S o r t i n gC r i t e r i o n s ( ) ) {

St r ing name = AbstractAtt r ibute . getColumnName( sc
240 . g e tAt t r ibu t eS i gna tu r e ( ) ) ;

// convert id a t t r i b u t e name to MongoDB
i f (name . equa l s ( " id " ) )

name = "_id" ;

245 i f ( ! s c . g e tAt t r ibu t eS i gna tu r e ( ) . getConta iner ( )
. getTableName ( ) . equa l s ( conta ine r . getTableName ( ) ) )

{
// t h i s o rde r ing i n s t r u c t i o n i s f o r the joinedQuery
i f ( sc . i sAscending ( ) ) {

joinOrderBy . put (name , 1 ) ;
250 } e l s e {

joinOrderBy . put (name,−1) ;
}

} e l s e {
// t h i s one f o r the mongoQuery

255 i f ( sc . i sAscending ( ) ) {
orderBy . put (name , 1 ) ;

} e l s e {
orderBy . put (name,−1) ;

}
260 i f ( j o i n ) {

Loggers . mongoLog
. e r r o r ( " Sor t ing in the second part o f a

j o i n ed query i s not supported " ) ;
}

}
265 }

// some debug code :
i f ( Loggers . mongoLog . isDebugEnabled ( ) ) {

Loggers . mongoLog . debug ( " c reated mongoQuery : "
270 + mongoQuery ) ;

i f ( j o i n ) {
Loggers . mongoLog . debug ( " c reated joinedQuery : "

+ joinedQuery ) ;
Loggers . mongoLog . debug ( " j o i n l e f t : "

275 + l e f t J o i nA t t r i b u t e + " r i gh t : "
+ r i gh tJo i nAt t r i bu t e ) ;

Loggers . mongoLog . debug ( "orderBy : " + orderBy ) ;
}

}
280 }

/∗
∗ @return An i t e r a t o r over the content ob j e c t s in the r e s u l t s e t

o f t h i s

83



A. Listing of MongoQuery.java

∗ query
285 ∗/

pub l i c I t e r a t o r <Content> ge tContent I t e ra to r ( i n t l im i t ) {
i f ( j o i n ) {

re turn new Content I t e ra to r (new Jo i n I t e r a t o r ( l im i t ) ) ;
} e l s e {

290 DBCursor cur so r = conta ine r . g e tCo l l e c t i o n ( ) . f i nd (
mongoQuery ) ;

i f ( l im i t > 0)
cur so r . l im i t ( l im i t + 1) ;

cur so r . s o r t ( orderBy ) ;
295 re turn new Content I t e ra to r (new S imp l e I t e r a t o r ( cur so r ) ) ;

}
}

/∗ @return An i t e r a t o r o f the i d e n t e n t i f i e r s o f the query r e s u l t s .
∗/

300 pub l i c I t e r a t o r <Str ing> g e t I d I t e r a t o r ( i n t l im i t ) {
i f ( j o i n ) {

re turn new I d I t e r a t o r (new Jo i n I t e r a t o r ( l im i t ) ) ;
} e l s e {

DBCursor cur so r = conta ine r . g e tCo l l e c t i o n ( ) . f i nd (
305 mongoQuery ) ;

i f ( l im i t > 0)
cur so r . l im i t ( l im i t + 1) ;

cur so r . s o r t ( orderBy ) ;
r e turn new I d I t e r a t o r (new S imp l e I t e r a t o r ( cur so r ) ) ;

310 }
}

/∗ Dele t e s a l l o b j e c t s in the database that are in the query
r e s u l t s e t . ∗/

pub l i c void d e l e t e ( ) {
315 i f ( j o i n ) {

DBCursor cur so r = jo inConta ine r . g e tCo l l e c t i o n ( ) . f i nd (
joinedQuery ) ;

whi l e ( cu r so r . hasNext ( ) ) {
BasicDBObject obj = ( BasicDBObject ) cur so r . next ( ) ;

320 mongoQuery . put ( l e f t J o i nAt t r i bu t e , obj
. get ( r i gh tJo i nAt t r i bu t e ) ) ;

t ry {
conta ine r . g e tCo l l e c t i o n ( ) . remove (mongoQuery ) ;

} catch ( Exception ex ) {
325 ex . pr intStackTrace ( ) ;

}
}

} e l s e {
330 conta ine r . g e tCo l l e c t i o n ( ) . remove (mongoQuery ) ;

}
}

84



A. Listing of MongoQuery.java

pub l i c MongoContainer castToMongoContainer ( Container cont ) {
335 i f ( cont i n s t an c e o f MongoContainer ) {

re turn (MongoContainer ) cont ;
} e l s e {

re turn (MongoContainer ) conta ine r . g e tS to r e ( )
. getConta iner ( cont . getTableName ( ) ) ;

340 }

}

/∗ @return The s i z e o f the r e s u l t s e t o f t h i s query . ∗/
345 pub l i c i n t count ( ) {

i f ( j o i n ) {
DBCursor cur so r = jo inConta ine r . g e tCo l l e c t i o n ( ) . f i nd (

joinedQuery ) ;
i n t sum = 0 ;

350 HashMap<Str ing , Str ing> used = Maps . newHashMap ( ) ;
whi l e ( cu r so r . hasNext ( ) ) {

BasicDBObject obj = ( BasicDBObject ) cur so r . next ( ) ;
S t r ing id = obj . g e tS t r i ng ( "_id" ) . t oS t r i ng ( ) ;
i f ( ! used . containsKey ( id ) ) {

355 mongoQuery . put ( l e f t J o i nAt t r i bu t e , obj
. get ( r i gh tJo i nAt t r i bu t e ) ) ;

sum += conta ine r . g e tCo l l e c t i o n ( ) . f i nd (mongoQuery )
. count ( ) ;

}
360 }

return sum ;
} e l s e {

re turn conta ine r . g e tCo l l e c t i o n ( ) . f i nd (mongoQuery ) . count ( ) ;
}

365 }

/∗ An I t e r a t o r f o r qu e r i e s without j o i n s . ∗/
p r i va t e c l a s s S imp l e I t e r a t o r implements I t e r a t o r <BasicDBObject> {

DBCursor cur so r ;
370

pub l i c S imp l e I t e r a t o r (DBCursor cur so r ) {
t h i s . cu r so r = cur so r ;

}

375 @Override
pub l i c boolean hasNext ( ) {

re turn cur so r . hasNext ( ) ;
}

380 @Override
pub l i c BasicDBObject next ( ) {

BasicDBObject r e s u l t = ( BasicDBObject ) cur so r . next ( ) ;
r e turn r e s u l t ;

85



A. Listing of MongoQuery.java

}
385

@Override
pub l i c void remove ( ) {

cur so r . remove ( ) ;
}

390

}

/∗ This I t e r a t o r i s used f o r qu e r i e s with a j o i n operat i on . ∗/
p r i va t e c l a s s J o i n I t e r a t o r implements I t e r a t o r <BasicDBObject> {

395 /∗ Cursor over the r e s u l t s o f the joinedQuery . ∗/
DBCursor jo inedCursor ;

/∗ Cursor over the f i n a l r e s u l t s e t s . ∗/
DBCursor cur so r ;

400

/∗ The ob j e c t that was l a s t returned by next ( ) . ∗/
BasicDBObject cur rent ;

/∗ The next ob j e c t that w i l l be returned by next ( ) . ∗/
405 BasicDBObject next ;

i n t l im i t ;

i n t n = 0 ;
410

/∗ Already used ob j e c t s from the jo inedCursor . ∗/
HashMap<Str ing , Str ing> used = Maps . newHashMap ( ) ;

pub l i c J o i n I t e r a t o r ( i n t l im i t ) {
415 i f ( j o inConta ine r == nu l l ) {

Loggers . mongoLog . e r r o r ( " jo inConta ine r nu l l " ) ;
}
// i n i t the cur so r o f the joinedQuery
jo inedCursor = jo inConta ine r . g e tCo l l e c t i o n ( ) . f i nd (

420 jo inedQuery ) ;
// some debug code
i f ( Loggers . mongoLog . isDebugEnabled ( ) ) {

Loggers . mongoLog . debug ( " J o i n I t e r a t o r : cu r so r "
+ joinedQuery + " cursorcount : "

425 + jo inedCursor . count ( ) ) ;
Loggers . mongoLog . debug ( " J o i n I t e r a t o r : cu r so r on "

+ jo inConta ine r . g e tCo l l e c t i o n ( ) . getName ( ) ) ;
Loggers . mongoLog

. debug ( " J o i n I t e r a t o r : cu r so r c o l l e c t i o n s i z e "
430 + jo inConta ine r . g e tCo l l e c t i o n ( )

. getCount ( ) ) ;
}

jo inedCursor . s o r t ( joinOrderBy ) ;

86



A. Listing of MongoQuery.java

435 /∗ Find the f i r s t element . ∗/
searchNext ( ) ;
t h i s . l im i t = l im i t ;

}

440 @Override
pub l i c boolean hasNext ( ) {

re turn next != nu l l ;
}

445 @Override
pub l i c BasicDBObject next ( ) {

cur rent = next ;
searchNext ( ) ; // the i t e r a t o r i s always a step ahead to

determine i f
// the re i s a next element

450 n++;
return cur rent ;

}

/∗
455 ∗ Find the next element . In order to do th i s , t h i s method has

to
∗ perform the j o i n operat i on .
∗/
p r i va t e void searchNext ( ) {

next = nu l l ;
460 i f ( cu r so r == nu l l | | ! cu r so r . hasNext ( ) ) {

// i f the cur so r cannot re turn anymore elements , then
increment

// the jo inedCursor
// un t i l the jo inedCursor has reached i t s end or a new

cur so r i s
// found with

465 // more r e s u l t e lements
whi l e ( jo inedCursor . hasNext ( )

&& ( cur so r == nu l l | | ! cu r so r . hasNext ( ) ) ) {
St r ing value = jo inedCursor . next ( ) . get (

r i gh tJo i nAt t r i bu t e ) . t oS t r i ng ( ) ;
470 i f ( ! used . containsKey ( value ) ) {

used . put ( value , va lue ) ;
mongoQuery . put ( l e f t J o i nAt t r i bu t e , va lue ) ;
i f ( Loggers . mongoLog . isDebugEnabled ( ) ) {

Loggers . mongoLog
475 . debug ( " J o i n I t e r a t o r : cu r so r "

+ mongoQuery ) ;
}
cur so r = conta ine r . g e tCo l l e c t i o n ( ) . f i nd (

mongoQuery ) ;
480 cur so r . l im i t ( l im i t ) ;

}

87



A. Listing of MongoQuery.java

}
}
// i f the cur so r has another element , then get i t

485 i f ( cu r so r != nu l l && cur so r . hasNext ( ) ) {
next = ( BasicDBObject ) cur so r . next ( ) ;
i f ( Loggers . mongoLog . isDebugEnabled ( ) ) {

Loggers . mongoLog . debug ( " J o i n I t e r a t o r : next "
+ next ) ;

490 }

}
}

495 @Override
pub l i c void remove ( ) {

conta ine r . de le teContent ( cur rent . get ( "_id" ) . t oS t r i ng ( ) ) ;
}

}
500

/∗ An I t e r a t o r that r e tu rn s Content ob j e c t s . ∗/
p r i va t e c l a s s Content I t e ra to r implements I t e r a t o r <Content> {

I t e r a t o r <BasicDBObject> i t e r ;
505

pub l i c Content I t e ra to r ( I t e r a t o r <BasicDBObject> i t e r ) {
t h i s . i t e r = i t e r ;

}

510 @Override
pub l i c boolean hasNext ( ) {

re turn i t e r . hasNext ( ) ;
}

515 @Override
pub l i c Content next ( ) {

MongoContent content = conta ine r . contentFactory ( ) ;
BasicDBObject dbObject = i t e r . next ( ) ;
content . i n i t i a l i z e ( conta iner , dbObject . get ( "_id" )

520 . t oS t r i ng ( ) , nu l l ) ;
content . read ( dbObject ) ;
r e turn content ;

}

525 @Override
pub l i c void remove ( ) {

i t e r . remove ( ) ;
}

}
530

/∗ An I t e r a t o r that r e tu rn s only the i d e n t i f i e r s o f the ob j e c t s .
∗/

88



A. Listing of MongoQuery.java

pr i va t e c l a s s I d I t e r a t o r implements I t e r a t o r <Str ing> {

I t e r a t o r <BasicDBObject> i t e r ;
535

pub l i c I d I t e r a t o r ( I t e r a t o r <BasicDBObject> i t e r ) {
t h i s . i t e r = i t e r ;

}

540 @Override
pub l i c boolean hasNext ( ) {

re turn i t e r . hasNext ( ) ;
}

545 @Override
pub l i c S t r ing next ( ) {

re turn i t e r . next ( ) . get ( "_id" ) . t oS t r i ng ( ) ;
}

550 @Override
pub l i c void remove ( ) {

i t e r . remove ( ) ;
}

}
555 }

89



Bibliography

[1] Tim's Daft Junk. http://blog.timgourley.com/post/453680012/

tuesday-night-tech-mongodb-ui-edition, 2010. [Online; accessed
6-April-2010].

[2] 10gen.com: BSON - MongoDB. http://www.mongodb.org/display/DOCS/
BSON, 2009. [Online; accessed 17-November-2009].

[3] 10gen.com: Home - MongoDB. http://mongodb.org/, 2009. [Online; ac-
cessed 17-November-2009].

[4] 10gen.com: Querying - MongoDB. http://www.mongodb.org/display/

DOCS/Querying, 2009. [Online; accessed 17-November-2009].

[5] 10gen.com: Querying - MongoDB. http://www.mongodb.org/display/

DOCS/MapReduce, 2009. [Online; accessed 20-November-2009].

[6] 10gen.com: Durability and Repair - MongoDB. http://www.mongodb.org/

display/DOCS/Durability+and+Repair, 2010. [Online; accessed 6-April-
2010].

[7] A.Brewer, Dr.Eric: PODC keynote. http://www.cs.berkeley.edu/

~brewer/cs262b-2004/PODC-keynote.pdf, 2000. [Online; accessed 10-
Oktober-2009].

[8] acmqueue: A Conversation with Werner Vogels. http://queue.acm.org/

detail.cfm?id=1142065, 2006. [Online; accessed 10-Oktober-2009].

[9] Amazon: Amazon Simple Storage Service. http://docs.

amazonwebservices.com/AmazonS3/latest/index.html?Introduction.

html, 2009. [Online; accessed 14-Oktober-2009].

[10] Amazon: Amazon Simple Storage Service. http://docs.

amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/,
2009. [Online; accessed 5-November-2009].

[11] Amazon: Amazon Simple Storage Service. http://docs.

amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/

index.html?SDBLimits.html, 2009. [Online; accessed 5-November-2009].

[12] Apache Software Foundation: The Apache Cassandra Project. http:

//incubator.apache.org/cassandra/, 2009. [Online; accessed 25-November-
2009].

http://blog.timgourley.com/post/453680012/tuesday-night-tech-mongodb-ui-edition
http://blog.timgourley.com/post/453680012/tuesday-night-tech-mongodb-ui-edition
http://www.mongodb.org/display/DOCS/BSON
http://www.mongodb.org/display/DOCS/BSON
http://mongodb.org/
http://www.mongodb.org/display/DOCS/Querying
http://www.mongodb.org/display/DOCS/Querying
http://www.mongodb.org/display/DOCS/MapReduce
http://www.mongodb.org/display/DOCS/MapReduce
http://www.mongodb.org/display/DOCS/Durability+and+Repair
http://www.mongodb.org/display/DOCS/Durability+and+Repair
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://queue.acm.org/detail.cfm?id=1142065
http://queue.acm.org/detail.cfm?id=1142065
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?Introduction.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?Introduction.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?Introduction.html
http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/
http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/
http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?SDBLimits.html
http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?SDBLimits.html
http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?SDBLimits.html
http://incubator.apache.org/cassandra/
http://incubator.apache.org/cassandra/


Bibliography

[13] Apache Software Foundation: Welcomde to Hadoop! http://hadoop.

apache.org/, 2009. [Online; accessed 25-November-2009].

[14] Apache Software Foundation: Welcome to HBase! http://hadoop.

apache.org/hbase/, 2009. [Online; accessed 25-November-2009].

[15] Barrett, Ryan: Under the Covers of the Google App
Engine Datastore. http://sites.google.com/site/io/

under-the-covers-of-the-google-app-engine-datastore, 2010. [Online;
accessed 20-Januar-2010].

[16] Blue Coast Web: Hypertable An Open Source, High Performance, Scal-
able Database. http://www.hypertable.org, 2009. [Online; accessed 25-
November-2009].

[17] Burrows, M. et al.: The Chubby lock service for loosely-coupled distributed
systems. In Proc. of the 7th OSDI, volume 11, 2006.

[18] Büchner, T.: Introspektive modellgetriebene Softwareentwicklung. VDM Ver-
lag Dr. Müller, 2007.

[19] Büchner, T. and F. Matthes: Introspective Model-Driven Development.
Lecture Notes in Computer Science, 4344:33, 2006.

[20] Chang, F., J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach,
M. Burrows, T. Chandra, A. Fikes and R.E. Gruber: Bigtable: A dis-
tributed storage system for structured data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDIâ06),
2006.

[21] cloudant.com: Cloudant: CouchDB hosting. http://cloudant.com, 2010.
[Online; accessed 15-Januar-2010].

[22] Compete.com: Site Pro�le of amazon.com. http://siteanalytics.

compete.com/amazon.com/, 2009. [Online; accessed 10-Oktober-2009].

[23] Corporation, Oracle: MySQL :: The world's most popular open source
database. http://www.mysql.com, 2010. [Online; accessed 19-March-2010].

[24] Crockford, Douglas: RFC 4627 - The application/json Media Type for
JavaScript Object Notation (JSON). http://tools.ietf.org/html/rfc4627,
2006. [Online; accessed 19-Dezember-2009].

[25] Dean, J. and S. Ghemawat: MapReduce: Simpli�ed data processing on large
clusters.

[26] DeCandia, G., D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall and W. Vogels:
Dynamo: amazon's highly available key-value store. ACM SIGOPS Operating
Systems Review, 41(6):220, 2007.

91

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hbase/
http://sites.google.com/site/io/under-the-covers-of-the-google-app-engine-datastore
http://sites.google.com/site/io/under-the-covers-of-the-google-app-engine-datastore
http://www.hypertable.org
http://cloudant.com
http://siteanalytics.compete.com/amazon.com/
http://siteanalytics.compete.com/amazon.com/
http://www.mysql.com
http://tools.ietf.org/html/rfc4627


Bibliography

[27] Development Group, The hsql: HSQLDB. http://www.mysql.com,
2010. [Online; accessed 19-March-2010].

[28] Ghemawat, S., H. Gobioff and S.T. Leung: The Google �le system. ACM
SIGOPS Operating Systems Review, 37(5):43, 2003.

[29] Gilbert, Seth and Nancy Lynch: Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 33(2):51�
59, 2002.

[30] Google: Google App Engine - Google Code. http://code.google.com/

intl/de/appengine/docs/whatisgoogleappengine.html, 2010. [Online; ac-
cessed 20-Januar-2010].

[31] Google: How Index Building Works - Google App Engine - Google
Code. http://code.google.com/intl/de/appengine/articles/index_

building.html, 2010. [Online; accessed 20-Januar-2010].

[32] Google: protobuf - Project Hosting on Google Code. http://code.google.
com/p/protobuf/, 2010. [Online; accessed 22-Januar-2010].

[33] Google: Queries and Indexes - Google App Engine - Google Code.
http://code.google.com/intl/de/appengine/docs/java/datastore/

queriesandindexes.html, 2010. [Online; accessed 20-Januar-2010].

[34] Ho, Ricky: Pragmatic Programming Techniques: CouchDB Implementa-
tion. http://horicky.blogspot.com/2008/10/couchdb-implementation.

html, 2010. [Online; accessed 16-Januar-2010].

[35] Infoasset: infoAsset : infoAsset - Tricia. http://www.infoasset.de, 2010.
[Online; accessed 23-February-2010].

[36] J. Chris Anderson, Jan Lehnardt, Noah Slater: CouchDB: The
De�nitive Guide. http://books.couchdb.org/relax/, 2009. [Online; ac-
cessed 17-Dezember-2009].

[37] Kang, B., R. Wilensky and J. Kubiatowicz: The hash history approach
for reconciling mutual inconsistency. In INTERNATIONAL CONFERENCE
ON DISTRIBUTED COMPUTING SYSTEMS, volume 23, pages 670�677.
Citeseer, 2003.

[38] Kevin Ferguson, Vijay Raghunathan, Randall Leeds: Lounge.
http://tilgovi.github.com/couchdb-lounge/, 2010. [Online; accessed 15-
Januar-2010].

[39] Lamport, L.: Paxos made simple. ACM SIGACT News, 32(4):18�25, 2001.

[40] Lamport, Leslie: Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558�565, 1978.

[41] Ltd., Canonical Group: Ubuntu One : Home. https://one.ubuntu.com/,
2010. [Online; accessed 14-Januar-2010].

92

http://www.mysql.com
http://code.google.com/intl/de/appengine/docs/whatisgoogleappengine.html
http://code.google.com/intl/de/appengine/docs/whatisgoogleappengine.html
http://code.google.com/intl/de/appengine/articles/index_building.html
http://code.google.com/intl/de/appengine/articles/index_building.html
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://code.google.com/intl/de/appengine/docs/java/datastore/queriesandindexes.html
http://code.google.com/intl/de/appengine/docs/java/datastore/queriesandindexes.html
http://horicky.blogspot.com/2008/10/couchdb-implementation.html
http://horicky.blogspot.com/2008/10/couchdb-implementation.html
http://www.infoasset.de
http://books.couchdb.org/relax/
http://tilgovi.github.com/couchdb-lounge/
https://one.ubuntu.com/


Bibliography

[42] Nussbaum, Daniel and Anant Agarwal: Scalability of parallel machines.
Commun. ACM, 34(3):57�61, 1991.

[43] Project, The Linux Information: Scalable de�nition by The Linux In-
formation Project. http://www.linfo.org/scalable.html, 2006. [Online;
accessed 15-March-2010].

[44] Reed, D. P.: NAMING AND SYNCHRONIZATION IN A DECENTRAL-
IZED COMPUTER SYSTEM. Technical Report, Cambridge, MA, USA, 1978.

[45] Skeen, Dale: Nonblocking commit protocols. In SIGMOD '81: Proceedings
of the 1981 ACM SIGMOD international conference on Management of data,
pages 133�142, New York, NY, USA, 1981. ACM.

[46] Strozzi, Carlo: NoSQL - A Relational Database Management Sys-
tem. http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%

20Page, 2010. [Online; accessed 6-April-2010].

[47] Stuntz, Craig: Craig Stuntz's Weblog - Multiversion Concurrency Con-
trol Before InterBase. http://blogs.teamb.com/craigstuntz/dtpostname/
multiversionconcurrencycontrolbeforeinterbase/#2718, 2005. [Online;
accessed 9-November-2009].

[48] Vogels, Werner: Eventual Consistenz - Revisited - All Things Dis-
tributed. http://www.allthingsdistributed.com/2008/12/eventually_

consistent.html, 2008. [Online; accessed 6-November-2009].

[49] Wikipedia: ACID � Wikipedia, The Free Encyclopedia. http://en.

wikipedia.org/w/index.php?title=ACID&oldid=343104240, 2010. [Online;
accessed 10-February-2010].

93

http://www.linfo.org/scalable.html
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
http://blogs.teamb.com/craigstuntz/dtpostname/multiversionconcurrencycontrolbeforeinterbase/#2718
http://blogs.teamb.com/craigstuntz/dtpostname/multiversionconcurrencycontrolbeforeinterbase/#2718
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://en.wikipedia.org/w/index.php?title=ACID&oldid=343104240
http://en.wikipedia.org/w/index.php?title=ACID&oldid=343104240

	Introduction
	Example: Amazon
	The Architecture of Amazon
	Observations

	The NoSQL Movement
	Reader's Guide

	Basics
	Scaling through Sharding and Replication
	Replication
	Sharding

	The ACID Properties
	Eventual Consistency
	The CAP Theorem
	Multiversion Concurrency Control (MVCC)
	Revisions in distributed systems
	Vector Clocks
	Hash Histories (HH)

	MapReduce
	Example
	Architecture
	Extension
	Advantages
	Implementations


	NoSQL Databases
	Dynamo
	Query Model
	Sharding
	Replication
	Consistency

	Amazon S3 Simple Storage Service
	Query Model
	Consistency

	SimpleDB
	Data Model
	Query Model
	Consistency
	Limitations
	Example: Simple Forum

	BigTable
	Data Model
	Query Model
	Sharding
	Replication
	Consistency
	Architecture
	Failure Handling

	Google App Engine datastore
	Data Model
	Query Model
	Architecture
	Consistency

	MongoDB
	Data Model
	Query Model
	Replication
	Sharding
	Architecture
	Consistency
	Failure Handling

	CouchDB
	Data Model
	Query Model
	Replication
	Sharding
	Architecture
	Consistency
	Failure Handling


	NoSQL Database Comparison
	Sorting
	Range Queries
	Aggregations
	Durability
	CAP Properties

	Database Requirements of Tricia
	Relations
	Ordering with joined queries
	Other Requirements

	The choice of a NoSQL database for the prototype

	Prototype Implementation
	The Proceeding
	Changes in the Architecture of the Persistence Layer
	The MongoDB Query API for Java
	Implementation of the MongoStore
	Query Building
	Iterators
	Count and Delete


	Evaluation
	Performance for the test suits
	Performance with real world data

	Conclusion
	Listing of MongoQuery.java

