Chapter 3.3.3

Lean Languages and Models:
Towards an Interoperable Kernel
for Persistent Object Systems

Joachim W. Schmidt and Florian Matthes

Technical University Hamburg-Harburg
Harburger Schlofistrafie 20
D-21071 Hamburg, Germany

Summary This text is a synopsis of [4].

1. Introduction

Reliable interoperation between independently developed Persistent Object Sys-
tems (POS) requires type-safe access to persistent data objects and generic services:

Persistent Object Management: It is necessary to identify, store, retrieve and
manipulate objects that outlive a single program execution and that may even
exist independently of the application that created them. Appropriate naming
and scoping mechanisms are required to establish temporary or persistent bind-
ings between persistent objects created independently, possibly using different
tools on different machines.

Data Integrity: Type systems represent a particularly successful approach to en-
force integrity constraints on data objects local to a single program. Similarly,
language-independent mechanisms have to be provided for shared, persistent
objects.

Generic Functions: Many functions required in a POS can be obtained by instan-
tiating generic services. Interoperation protocols have to be capable of handling
these generic functions without diminishing data integrity or duplicating code.

In this paper we seek to contribute to the answers of three interrelated questions:
What are appropriate semantic models to describe POS interaction? How can these
semantics be captured in a sound and concise linguistic framework? What is the
impact of such lean languages and models on their supporting system architectures
and their import and export interfaces?

2. Persistent Object System Model

We introduce a POS model to describe the naming, typing and binding concepts
involved in Persistent Object System interoperability. The model itself is based on
concepts of higher-order type systems and is sufficiently expressive to serve as a
language-independent framework for program translation, generation and binding.

The POS model is based on the notion of types, signatures, values and bindings.
Types are understood as (partial) specifications of values. Types include a set of



Joachim W. Schmidt, Florian Matthes

base types, type Any, user-defined type variables, function types, aggregated sig-
natures and type operator applications. Type operators denote parameterized type
expressions that map types or type operators to types or type operators. Values
and types can be named in bindings for identification purposes and to introduce
shared or recursive structures at the value and the type level. Signatures act as
(partial) specifications of static and dynamic bindings. Bindings are embedded into
the syntax of values, i.e. they can be named, passed as parameters, etc. Accordingly,
signatures appear in the syntax of types to describe these aggregated bindings. The
exact mutual dependencies are defined in the full paper.

Interoperability aims at providing flexible and safe mechanisms to share data
and programs across system boundaries. We demonstrate how the POS model cap-
tures modularization as basis for interoperability, distribution (cross-platform in-
teroperability), persistence (interoperability over time) and bulk data abstractions
as provided by the DBPL database programming environment (see Chapter 2.1.2).

Modularization DBPL programs are divided into modules with well-defined im-
port relationships. Definition modules define signatures for type, value and location
bindings defined in implementation modules. Program modules export a single, pa-
rameterless function value, the main program.

Distribution The distributed version of DBPL [1, 2] adds an additional layer of
type-safety to standard remote procedure call mechanisms (RPC) in federated
client-server programming models. In terms of the POS model, RPC-based commu-
nication mechanisms are an implementation technology that enables the creation
of function value bindings between names in a client program and function values
in a server program. The POS model is also capable of giving precise signatures to
the the generic client and server stub generators working themselves on signatures
and bindings. The signatures of the generator functions illustrate a crucial feature
of the POS model: it allows the user to capture type dependencies between the
arguments and the result of a generic function.

clientStubGenerator :Fun(Scope<:Sig() Iface<:Sig()) Fun(s :Serverld) Iface

Each application of the client stub generator to an argument of type Iface will
return a function that returns values of type Iface (parametric polymorphism). Since
the supertype specified in the generator signature (Iface<:Sig()) is different from
the type Any, this form of universal type quantification is also called bounded
parametric polymorphism. On the other hand, in contrast to classical models of
polymorphism, we are assuming that the (function) value returned by the generators
depends on its type argument.

Persistence The concept of orthogonal persistence extends the potential for in-
teroperability along two new dimensions: sharing over time and sharing between
multiple users. Bindings to persistent locations are implemented by maintaining
(at compile- and at run-time) a mapping between module-level location names and
external locations and by having the compiler insert save and load operations at
appropriate code positions for values of appropriate granularity.

Bulk Data In the process of building a POS, it is often necessary to handle large,
dynamic homogeneous collections of objects (e.g., class extents). Furthermore, it
is necessary to represent relationships between object collections and to perform
efficient, set-oriented update and retrieval operations. DBPL provides a generic bulk
types operator Relation and predefined polymorphic operations on values of type
relation. Relations can be viewed as collections of location bindings (indexed by the
key values defined in the relation type declaration). Consequently, it makes sense
to provide element-oriented update operators and destructive iteration capabilities.



Towards an Interoperable Kernel for Persistent Object Systems

Relation types provide a good example for the use of type operators and type-
parameterized functions in the POS model. The built-in DBPL type environment
could be represented as follows:

DBPLBuiltinEnv = Sig(
Relation <:Oper(ElementType<:Any) Any
{} :Fun(E <:Any) Relation(Any)
CARD :Fun(E <:Any rel :Relation(E)) Int
:+ :Fun(E <:Any var lhs :Relation(E) rhs :Relation(E)) Any

This environment declares a type operator Relation that maps arbitrary types (sub-
types of type Any) to a hidden representation type (a subtype of type Any). The
subsequent function signatures make use of this type operator to express the type
constraints on the built-in DBPL functions. For example, the standard function
CARD takes an arbitrary type argument E, a relation rel of type Relation(E) and
returns the cardinality of the relation, a value of type Int.

3. Interoperability and Genericity

The notion of interoperability applies to a more general setting in which indepen-
dently developed, generic systems have to cooperate, i.e. to provide for inter-object
interactions that handle all potential objects the systems may create and main-
tain. In the full paper we report on our experience with such generic cross-language
interoperability via the DBPL/C and the DBPL/SQL gateway and outline gen-
eral requirements for generic gateway implementation. We continue focusing on the
underlying naming, typing and binding concepts presented in terms of the POS
model.

The most primitive (but also most common) form of cross-language interop-
erability is achieved by having a standardized, language-independent link format
that allows static bindings in a language L;mp to bind to values or locations defined
in another language Lesp. In this setting, Limp is able to import from L.zp. The
next step is to define standardized, language-independent parameters passing con-
ventions that allow argument values or argument locations defined in L;,, to be
bound dynamically to function parameters defined in L.gp. If the roles of Lipmp and
L.zp can be interchanged, full cross-language interoperability (including “call-back”
mechanisms) is supported.

Cross-language linking is an instance-base interoperability mechanism limited
to individual function and data values. DBPL generalizes these concepts to pro-
vide transparent translation of families of data structures and expressions that are
defined in terms of generic types and polymorphic functions. Analogous to exter-
nal function bindings, DBPL supports bindings to external persistent objects in
addition to internal persistent DBPL objects [3].

All DBPL statements and expressions referring to these variables are trans-
lated fully transparently into SQL update and selection expressions submitted to
the database management system. These SQL expressions typically take DBPL pro-
gram variables (value and location bindings) as arguments and return (set) values
that are converted appropriately for further processing within DBPL.

Although the system details of the DBPL/SQL gateway are quite delicate and
often require ad-hoc case analysis to achieve good system performance, this specific
gateway implementation follows a more general pattern that directly reflects the
model of typed programming languages in terms of types, signatures, values and



Joachim W. Schmidt, Florian Matthes

bindings. In order to extend a language L;n: by a generic gateway to an exter-
nal language L..: successfully (i.e., to embed L.;: as a sublanguage of Lim), the
following conditions have to be met.

The type syntax of L;n: must be sufficiently expressive to capture the structure
of values in L.y:. This may require extensions to the set of base types (e.g., to
handle SQL date, time and table key values) as well as extensions to the set of
type constructors (e.g., to handle SQL relations, views or indices). In DBPL, the
base type extensions are covered by user-defined abstract data types, while the type
constructors are mapped to built-in DBPL type constructors.

There have to be tools to aid in the mapping between signatures in L;y; and
Lezt. Instead of writing a generator that maps from SQL schema information to
DBPL database definitions or vice versa, we developed an interactive binding tool
that automatically extracts signature information from DBPL module descriptions
and the SQL data dictionary and verifies the compatibility of these separately
developed descriptions.

Tool support is also required at run-time to establish value and location bindings
from names in L;pn: to entities in L.z and vice versa. If expressions of L.y are to be
generated from (a subset of) expressions in Lin: (e.g., SQL queries based on DBPL
queries), the expression syntax of Lin; has to be sufficiently general to emulate
high-level external abstractions present in L.g:.

Finally, there have to be means to ensure that typing assumptions in the static
compilation context of L;n; (expressed, for example, as signatures of database vari-
ables) are met by the corresponding bindings provided in L.;: at run-time. In the
DBPL/SQL context, this limited form of dynamic type checking is achieved by
having the compiler generate run-time type representations for external database
variables that are checked during program startup (accessing the SQL data dictio-
nary).

In addition to these linguistic and technical prerequisites, a smooth integration
of internal and external services also requires adequate architectural support, like
access to the scoping and typing phase of the compiler, support for separate compi-
lation and persistent storage of type and signature information, or abstract program
representations that support static (and possibly dynamic) program analysis and
translation.

4. Towards Open Communicating Environments

In contrast to DBPL, Tycoon (see Chapters 1.1.1 and 2.1.4) takes a rather radi-
cal approach by not maintaining upward compatibility with existing programming
languages and data models. Also its internal protocols for store access, program
representation and linkage do not adhere to pre-existing standards. The Tycoon
environment minimizes the amount of built-in system and language support by
exploiting higher-order type concepts and by strictly separating the issues of data
storage, data manipulation and data modeling into three distinct formalisms and
system layers.

The rationale behind the design of Tycoon is to provide a lean language and
system environment that provides just the kernel services and abstractions needed
to define higher-level, problem-oriented “languages” and “data models”. We expect
such lean languages and systems, where most of the functionality of a Persistent
Object System is achieved by importing external services into a conceptually sound
linguistic framework, to possess a higher potential for scalability, portability and
interoperability than classical “all-in-one” database systems.



Towards an Interoperable Kernel for Persistent Object Systems

Acknowledgement This research was supported by ESPRIT Basic Research, Project
FIDE, #6309.

References

1. W. Johannsen, L. Ge, W. Lamersdorf, K. Reinhard, and J.W. Schmidt. Database
application support in open systems: Language support and implementation. In
Proceedings of the IEEE Fourth International Conference on Data Engineering,
Los Angeles, California, February 1988.

2. W. Johannsen, W. Lamersdorf, K. Reinhard, and J.W. Schmidt. The DURESS
project: Extending databases into an open systems architecture. In Proceedings of
the First Conference on Extending Database Technology, FDBT’88, volume 303
of Lecture Notes in Computer Science, pages 616—620. Springer-Verlag, 1988.

3. F. Matthes, A. Rudloff, J.W. Schmidt, and K. Subieta. A gateway from DBPL
to Ingres: Modula-2, DBPL, SQL+C, Ingres. FIDE Technical Report Series
FIDE/92/54, FIDE Project Coordinator, Department of Computing Sciences,
University of Glasgow, Glasgow G128QQ, August 1992.

4. JJW. Schmidt and F. Matthes. Lean languages and models: Towards an in-
teroperable kernel for persistent object systems. In Proceedings of the IFEE
International Workshop on Research Issues in Data Engineering, pages 2-16,
April 1993.



