On the Derivation of Executable Database
Programs from Formal Specifications*

Thomas Gunther, Klaus-Dieter Schewe, Ingrid Wetzel

University of Hamburg, Dept. of Computer Science,

Vogt-Kolln-Str. 30, D-W-2000 Hamburg 54, FRG

Abstract. Achieving wide acceptance of formal methods in software de-
velopment requires a smooth integration with requirements analysis, design
and implementation. Especially for database application systems there exist
well-known approaches to conceptual modeling as well as a sophisticated im-
plementation technology on the basis of database programming languagues.
The work described in this paper is based on a scenario, where the B method
is coupled with a conceptual modeling language TDL and a database pro-
gramming language DBPL. Both these languages can be represented in B.
We concentrate on the problem of characterizing those B specifications that
are sufficiently refined in order to be transformed into equivalent DBPL pro-
grams. This gives rise to some kind of implementability proof obligation.
Moreover, we show that the transformation itself can be regarded as a term
rewriting task based on a representation by term algebras of the languages
involved. For this task we exploit order-sorted algebra by using the OBJ
system.

1 Introduction

Formal Methods such as B [1], VDM [8], OBJ [4] or Z [14] have often been criticized as
being cumbersome, hard to understand, hard to handle and in any case not suitable
for real application systems of large size. The core of the problem seems to be that
an accompanying methodology is almost always left unclear. How should the user
proceed in order to get a first formal specification? Which refinement steps should
be applied? Where should one stop the refinement process? Therefore, a smooth
integration with requirements analysis, design and implementation is required to
enhance the acceptability of formal methods in software development.

Our approach to solve this problem assumes the coupling of a formal method
with a “front-end” design language and a “back-end” implementation language. We
believe that requirements analysis and first design should be oriented toward the
application domain. There will be no loss of formal software safety as long as the
semantics of the used design language can be described by the formal method.

On the other hand, formal methods will fail their goals, if they ignore the high-
level mechanisms offered by modern programming languages. It should be possible
to capture the semantics of such implementation languages by the formal method
and to exploit this to combine the safety achieved by the use of a formal method
with the efficiency achieved by the use of a sophisticated implementation technology.

* This work has been supported in part by research grants from the E.E.C. Basic Research
Action 3070 FIDE: “Formally Integrated Data Environments”.

4 N

B Formal Method

[Initial Specifications \‘ ‘(Conceptual Design)

(TDL description) j & (TDL)
Refinement
Process
Final Specifications Implementation
(DBPL description) (DBPL)
_ /

Fig. 1. The Development Process

1.1 A Scenario for the Development of Data Intensive Application
Systems

The development of database application systems usually starts with a conceptual
design of a database schema. Semantic datamodels [6] are commonly used for this
purpose. On the other hand, the implementation is usually done using a relational
DBMS or a database programming language such as DBPL [9]. Then the reification
problem occurs, i.e. to transform a given conceptual design into a running imple-
mentation.

The DAIDA project [2, 7] proposed to use formal methods to fill this gap. This
is in accordance with the general approach described above, using a slightly revised
version (TDL) of TAXIS [10] as a “front-end”, DBPL as a “back-end” and a slight
revision of the B formal method [12]. Figure 1 illustrates this scenario.

The transformation of TDL designs into a B representation and standard refine-
ment rules directed towards an implementation in DBPL have been described in [13]
and will not be repeated here. Then the following problems remain:

— characterize final B specifications that are equivalent to DBPL programs, and
— set up an automatic transformation of final specifications into DBPL syntax.

In order to solve the first problem, we have to show that DBPL programs are indeed
equivalent to certain B specifications. We express DBPL language constructs by
pieces of B. Then the characterization consists in some general properties such as
determinism, termination and consistency that are independent from the specific
implementation language and in a specific form required for the data description.

1.2 An Algebraic Approach to Program Generation

In order to solve the second problem we use OBJ, an algebraic specification language
and term rewriting system based on order-sorted algebra. It has been pointed out [4]
that order-sorted algebra is useful for the specification of programming languages,

where terms represent language constructs and conditional equations represent se-
mantic equivalences.

In our case the languages in question are DBPL and B, where constructs of the
former one are equivalent to specific constructs of the latter one. We may exploit
the ordering on sorts to capture this inclusion. Moreover, the conditional equations
are given by the representation of DBPL in B as mentioned above.

Regarding each conditional equation as a rewrite rule and taking a complex term
that represents a final B specification OBJ will produce a normal form term, i.e. a
term representing a DBPL program.

1.3 The Organization of the Paper

The remainder of the paper is organized as follows. After a short review of the B
formal method in Section 2 without discussing refinement we address the derivation
of an implementability proof obligation in Section 3. We briefly describe the imple-
mentation language DBPL and then show the representation of selected language
constructs using B. On this basis we are able to characterize sufficiently refined
formal specifications.

Section 4 is devoted to the transformation task. After a brief introduction into
order-sorted algebra on the basis of OBJ, we proceed to describe in part the algebra
associated with B and DBPL. For selected language constructs this sets up the term
rewriting rules used for the transformation. We conclude with a short valuation of
what has been gained by our approach focussing on the suitability of the chosen
formal method for our problem.

2 Specifications Using the B Formal Method

B is a model-based formal method developed by J. R. Abrial [1]. Basically a B specifi-
cation is composed of a specification of structure and behaviour. The main difference
to its forerunners VDM [8] and Z [14] are the style of operation specification and
the coupling of structure and behaviour specification in basic units called abstract
machines.

2.1 Specification of Structure

The structural part of a B specification consists of a collection of abstract machines
and contexts that are used to specify state spaces. A state space is given by a list
of variable names, called the state variables and by a list of well-founded formulas
of a many-sorted first-order language £ called the invariant and denoted by Z. Free
variables occurring in Z must be state variables.

Each state variable belongs to a unique basic set, which has to be declared in
some context. Hence, in order to complete the state space specification we must give
a list of conterts that can be seen by the machine.

Such a context is defined by a list of basic sets, a list of constant names and a list
of closed formulae over the language £ called properties. A basic set may be either
the set of natural numbers, an abstract set given only by its name, a set given by the

enumeration of its elements or a constructed set, where cartesian product, powerset
and partial function space are the only allowed constructors. We may then assume
to have a fixed preinterpretation of these sorts s by sets D;.

Then the state space of an abstract machine with state variables z{,..., 2z, is
semantically denoted by the set

Y =A{c:{x1,...,2n} =D |o(2;) € Ds, for all i},

where each s; is the sort of the variable z; and D denotes the union of the sets D;.

The language £ associated with an abstract machine can then easily be formal-
ized. The basic sorts of £ are NAT and the other non-constructed basic sorts. The
set of sorts is recursively defined using the basic sorts and the sort constructors pow,
x, — denoting powerset construction, cartesian products and partial functions.

Since we use a fixed preinterpretation of the sorts as sets, one may regard the
elements of these sets as constant symbols in £ of the corresponding sort. Other
function symbols are given by the usual functions +, * on NAT, U, N, \ on powersets
or by the constant declarations in some context. The terms and formulas in £ are
defined in the usual way. The semantics of £ is given by an interpretation (A, o),
where A is a structure extending the preinterpretation on sorts and o is a variable
binding.

We assume A to be fixed and write |5, R, iff R is true under the interpretation
(A, o).

A well-formed formula R of £ such that the free variables of R are state variables
denotes a subset of X, namely

Sr = {o|Es R} .

Hence the invariant serves as a means to distinguish legal states in X from others.

2.2 Specification of Behaviour

The dynamic part of a B specification is given through an initialization assigning
initial values to each of the state variables of an abstract machine and transitions
that update this state space. Both parts are associated with abstract machines.
Both kinds of state transitions are specified using guarded commands introduced by
Dijkstra [3] and generalized by G. Nelson [11].

The semantics of a transition S is given by means of two specific predicate trans-
formers wip(S) and wp(S), which satisfy the pairing condition, i.e. for all predicates
R

wp(S)(R) = wip(S)(R) A wp(S)(truc)

and the wuniversal conjunctivity condition, which states for any family (R;);c; of
predicates

wlp(S)(Vz el Rz) =Viel - wlp(S)(RZ) .

These conditions imply the conjunctivity of wp(S) over non-empty families of predi-
cates. As usual wilp(S) will be called the weakest liberal precondition of S, and wp(S)

will be called the weakest precondition of S. The notation f*, which we shall use
later, denotes the conjugate predicate transformer of f. It is defined by

ff(R) = = f(-R).

The definitions of wlp(S) and wp(S) for all the guarded commands are given in [11].

3 The Formal Description of Database Programs

Let us now proceed to characterize sufficiently refined B specifications with respect
to a follow-on implementation in the relational database programming language
DBPL. First we give a brief overview on DBPL and then outline its representation
in B. We focus on selected DBPL language constructs. On this basis we give a proof
obligation for finalizing the refinement process.

3.1 An Overview on the Language DBPL

The language DBPL [9] integrates an extended relational view of database modeling
into the programming language Modula-2. Basically the extension comprises new
data types, new expressions called access expressions used for queries and orthogonal
persistence.

— DBPL provides a new data type relation which allows relational database mod-
eling to be coupled with the expressiveness of the programming language. This
new datatype is orthogonal to the existing types of Modula-2, hence sets of
arrays, arrays of relations, records of relations, etc. can be modeled.

— Complex access expressions as usual in relational databases allow to express
complex queries on a database without using iteration.

— Persistence is added allowing modules to be qualified as database modules, key-
word DATABASE, which turns the variables in them to be persistent and shared.
Specific procedures are characterized to be transactions denoting atomic state
changes on persistent data. For these transactions DBPL provides mechanisms
for controlled concurrent access to such data and for recovery.

Ezample 1. Let us illustrate DBPL taking an example from [13].

DATABASE MODULE ResearchCompaniesModule;
IMPORT Identifier, String;

TYPE
Agencies = (ESPRIT, DFG, NSF, ...);
CompNames, EmpNames, ProjNames = String. Type;
Emplds = Identifier. Type;
ProjIldRecType =
RECORD projName : ProjNames; getsGrantFrom : Agencies END;
ProjIldRelType = RELATION OF ProjldRecType;
CompRelType = RELATION compName OF
RECORD compName : CompNames; engagedIn : ProjldRelType END;

EmpRelType = RELATION employee OF
RECORD employee : Emplds; empName : EmpNames;
belongsTo : CompNames; worksOn : ProjldRelType END;
ProjRelType = RELATION projld OF
RECORD projld : ProjldRecType;
consortium : RELATION OF CompNames END;

VAR compRel : CompRelType;
empRel : EmpRelType;
projRel : ProjRelType;
TRANSACTION hireEmployee (name:EmpNames;
belongs:CompNames; works:ProjIldRelType) : Emplds;
VAR tEmpld : Emplds;
BEGIN
IF SOME ¢ IN compRel (c.compName = belongs) AND
ALL w IN works (SOME p IN compRel[belongs].engagedIn (w = p))
THEN tEmpld := Identifier.New;
empRel :+ EmpRelType{{tEmpld name,belongs,works}};
RETURN tEmpld
ELSE RETURN Identifier.Nil
END
END hireEmployee;

END ResearchCompaniesModule O

3.2 The Formal Representation of Selected DBPL Constructs

Let us now represent language constructs of DBPL as above in B. We concentrate on
those types, expressions and procedures that are essential in the database context.

Type Representation. In general a type is an algebra, hence consists of a fixed
set of values and fixed operations on that set. Thus, a DBPL type corresponds to
a basic set in a context plus additional functions that can also be represented in a
context using constants and properties.

Let us first examine record types in DBPL that are heterogenous aggregates of
the form

T = RECORDtag, : Dy;...;tag, : D, END;

For concrete record types see Example 1.

Since Dy ...D, are also types, we may assume that there are basic sets also
denoted Dy ... D, represented them. Then the underlying set of the record type T
can simply be represented by the cartesian product

T = Dy x -+ x Dy. (1)

The tags tag; ...tag, are used as designators for the components of the type T,
hence give rise to functions (i = 1,...,n)

tag; € T — D; defined as (2)

tag; = Az - (z €T ANx=(dr,....,dn) | di). (3)

Then (1), (2) and (3) in a context — more precicely in the basic sets, constants
and properties sections respectively — define a B representation of the record type

T.

Ezample 2. Let us take the type declaration

ProjIldRecType =
RECORD projName : ProjNames; getsGrantFrom : Agencies END;

from Example 1. Then a representation in a B context would be

Basic Sets ProjldRecType = ProjNames x Agencies

Constants projName € ProjldRecType — ProjNames
getsGrantFrom € ProjldRecType — Agencies

Properties projName = Az - (& € ProjIdRecType Az = (y,2) | y)
getsGrantFrom = Az - (€ ProjIdRecType Az = (y,z) | z) |

There exists an alternative representation of record types using functions. We omit
the details here [5]. Moreover, the tags are used in expressions and hence also in trans-
actions, e.g. on the left or right hand side of an assignment such as v.projName :=
.... In B this has to represented by applying the function projName to v, i.e.
projName(v). We also omit the details.

Let us now turn to the representation of relation types — for concrete relation
types see Example 1 — such as

T = RELATION key, , ..., key, OF D ;

Basically each element of this type is a finite set of elements of type D with unique
values of the attributes keyy, ..., key,. Assume that the type D has been introduced
and named explicitly — the general case can be easily reduced to this. Then also
functions key; : D — D; are defined (i = 1,...,n), and the set underlying 7T is
representable as

T ={z|ze2PAVdecz-
keyi(d) = keyr(e) A ... ANkey,(d) = keyn(e) = d = e} (4)

If r is a variable of type T, then r[ky, ..., k,] denotes in DBPL the selection of an
element from r with key values k1, ..., k,. This selection function can be represented
in a context as

selp € T'x Dy x---xD, — D defined as (5)
selp = Az, y1,. . yn - (2 €xNkeyi(z) = A . Akeyn(2) =yn | z). (6)

The DBPL expression r[ky, ..., k] then corresponds to selr(r, k1, ..., ky). Then the
representation of the relation type T' comprises (4), (5), (6) and the representation of

operations : 4, : — and : & for the insertion, deletion and update. As an alternative,
relations could also be represented by partial functions as done in [13]. For further
details see [5].

Ezample 3. Take the type declaration

CompRelType = RELATION compName OF
RECORD compName : CompNames; engagedIn : ProjldRelType END;

from Example 1, which can be represented (in part) as follows in a context:

Basic Sets
CompRelType =
{z|ze€ 9CompNamesx ProjldRelType AVdeez-
compName(d) = compName(e) A engagedIn(d) = engagedIn(e) = d = e}
Constants
compName € CompNames x ProjldRelType — CompNames
engagedIn € CompNames x ProjldRelType — ProjldRelType

selCompRelType € CompRelType x CompNames x ProjldRelType
— CompNames x ProjldRelType

Properties
compName = ...
engagedIn = ...

SelCompRelType =
Az,y,z - (v €2 A compName(v) = y A engagedIn(v) =z | v) |

The Representation of Access Expressions. In DBPL queries can be formu-
lated through access expressions that are either constructive or selective. Construc-
tive access expressions describe derivation rules that take the values of some given
relations and produce another relation using the operations of relational algebra. Se-
lective access expressions can only produce subsets of one given relation. The main
difference is the possibility to update relations derived by selective expressions.

Let us concentrate on a selective access expression of the form

EACHeINR: P,

where e is a variable, R a relational expression and P a first-order formula with free
variable e. In B this corresponds to a set expression of the form

{z|ze R A P(2)}. (7)

Access expressions can be used in relational expressions of the form T{exp}, where
T is a relation type and exp is an access expression. This can be represented by the
identity function

idp €T — T with idp =Xz - (zeT| z) (8)

applied to exp. The generalization of (7) and (8) to constructive access expressions
is straightforward. For details see [5].

Ezample 4. Take the type CompRelType of Examples 1 and 3 and the relational
expression

CompRelType { EACH e IN compRel : e.compName = “MyCompany” } .
This can be represented by

idCOmpRe]Type({I | € compRel A compName(z) = “MyCompany”}0

Transaction Representation. Since transition specifications in abstract machines
use parameterized guarded commands and transactions in DBPL are mostly writ-
ten procedurally, there is in general no problem to formally represent transactions.
Therefore, let us focus on insertions, deletions and updates on relations. We already
mentioned these operations when we discussed the representation of relation types.

If r is a variable and R is a relational expression, both of relation type 7', then
r 1+ R denotes the insertion into r of all those elements of R that have key values
not already in r. Analogously r : — R and r : &R are used for deletions and updates
respectively.

Insertion can be represented in B specifications by

r:=idp(rU{z | € RAVe € r - (keyi(e) # key1(2)V- - Vkeys(€) # keyn(2))}) .(9)
The representation of deletions and updates is analogous.
Ezample 5. Take the insertion operation

empRel .+ EmpRelType{{tEmpld,name,belongs,works}}
from Example 1 which is representable as

empRel := id gy, ,RelType (empRel U {z | = (tEmpld,name,belongs, works)

AVe € empRel - employee(e) # tEmpld}) .0

3.3 A Characterization of Implementable Specifications

The representation of DBPL constructs in B specifications sets up a semantic equiv-
alence between DBPL programs and specific B specifications. However, our original
problem was just to find a transformation the other way round. Since this is not
possible for every B specification, we have to characterize those specifications that
are equivalent to DBPL programs. This gives us a proof obligation that indicates
whether the refinement process has to be continued or not.

Before we give this characterization, we make the assumption that there is only
one abstract machine in our specification and that all contexts have been collapsed

into one seen by the one and only machine. This assumption is due to the fact that
we did not yet consider modularization.

Under these assumptions final specifications can be characterized by seven prop-
erties. The first three concern the data structures and are DBPL specific, whereas
the last four are general conditions on operations [12].

Completeness. In the final context all basic sets and all constants are unam-
bigously defined. In particular there are no more abstract sets.

Covering. In the final context all basic sets have the structure of a DBPL type and
all operations corresponding to such a type are defined as constants.

Typing. For each state variable z of the final machine there exists a typing condition
z € T in the invariant section such that 7" is a type defined in the final context.

Consistency. Each operation S in the final machine is consistent with respect to the
invariant Z, i.e. Z = wlp(S)(Z) holds. The initialization Sy satisfies wp(Sp)(7) <
true.

Totality. Each operation S in the final machine is total, i.e. wp(S)(false) < false
holds.

Termination. Provided the invariant holds each operation S in the final machine
always terminates, i.e. T = wp(S)(true) holds. The initialization Sy satisfies
wp(So)(true) < true.

Determinism. Provided the invariant holds each operation S in the final machine is
deterministic, i.e. ZAwlp(S)*(R) = wp(S)(R) holds for all well-formed formulae
R. For the initialization we must have wip(Sp)* (R) = wp(So)(R).

4 Database Program Generation as a Term Rewriting
Process

Let us now address our main problem how to transform a final B specification into
executable DBPL code. Since we neglected modularization aspects in Section 3, it
should be clear that the result will be just one module in DBPL. Moreover, this
should be a database module, i.e. all variables in it are considered to be persistent.

It has been exemplified in [4] that order-sorted algebra is useful for the specifi-
cation of programming languages or even more general for a specification language
such as B. Hence the idea to apply this algebraic approach to our problem, i.e. to
represent B and DBPL in order-sorted algebra. Moreover, in the previous section
we demonstrated that DBPL is representable in B. Thus, each DBPL program may
be considered as a syntactic variant of a specific B specification. In order-sorted al-
gebra this can be represented by using a unified algebra with the sorts from DBPL
being subsorts of corresponding sorts from B and (conditional) equations that relate
DBPL and B expressions. This is our approach here, where we use the OBJ system
to accomplish the task.

A collection of (conditional) equations can also be regarded as a term rewriting
system as OBJ does. Then the reduction of a complex term that represents a final
B specification will result in the required DBPL code.

The rewrite rules that are presented in this section are simpler than the represen-
tation of DBPL in B suggests. This simplification is due to the fact that we assume
them to be applied only to final specifications.

obj AM is protecting ID .

sort set .
subsort identifier enumset rangeset < set .
op INT : —> set .
op POW : set —> set .
op _ /\ _ : set set -> set [assoc comm prec 30] .
sort substitution .
op (L :=_) : lambda expression -> substitution [prec 43]
op (_ Il) : substitution substitution

-> substitution [assoc comm prec 70]
sort command .
subsort substitution < command .

op SKIP : —> command .
op _ ; _ : command command -> command [assoc prec 70]
op _ [1 _ : command command -> command [assoc comm prec 70] .
op _ ==> _ : predicate command -> command [prec 60]
op VAR_IN_END : identifier-list command -> command .
op DO_==>_0D : predicate command -> command .
endo

Fig.2. The OBJ module AM

4.1 An Overview on OBJ

OBJ is an algebraic specification language based on order-sorted algebra. The basic
building block of an OBJ specification is the object or module. Each such object
consists of a signature and azioms. In a signature sorts and operators are declared.
Sorts are arranged in a subsort hierarchy. Each operator has an arity in S* x S,
where S is the set of sorts. Figure 2 gives an example of an object called AM.

The axioms on an OBJ object are expressed as (conditional) equations with
terms built from the constants and operators and an S-indexed family of variables.
Associativity, commutativity, idempotency and neutral elements can be specified by
specific keywords and need not be specified as axioms.

We may assign an order-sorted algebra A with a signature. Doing this we as-
soclate with each sort s a set A, called the carrier of the sort such that subsorts
correspond to subsets and the carriers are disjoint otherwise. Moreover, each opera-
tor f with arity s1 - - - s, — s corresponds to some function f4 @ A5, X -x A5, — As.
If all (conditional) equations are satisfied when interpreted in the usual way in A,
we may associate A with the specification.

In OBJ the semantics of an object is given by an initial order-sorted algebra.
This algebra can be built as a quotient of the order-sorted term algebra constructed
from the constants and the operators of the object with respect to the equivalence
relation defined by the axioms. See [4] for more details.

OBJ supports modular specifications. An object may be built from others using
three different modes called proctecting, extending and uses. The protecting mode

assures that the initial semantics of all old sorts and operators remains completely
unchanged, i.e. no additional closed terms occur (no junk) and no terms are identified
by new equations (no confusion). The extending mode only assures that there is no
confusion, whereas uses assures nothing.

In addition to modularization OBJ also supports parameterization in a sophis-
ticated way. However, this feature will not be used for our problem. Therefore, we
dispense with describing it.

OBJ is supported by a software system that is built around a term rewriting
engine. For term rewriting each (conditional) equation is interpreted as a rewrite
rule in order to replace the left hand side by the right hand side. The OBJ rewrite
engine supports AC and ACI rewriting. Rewriting of a term ¢ is done by running
reduce(t) in the OBJ system.

4.2 Language Representation by Term Algebras

In order to apply OBJ to our problem we define four OBJ modules. The first one is
called ID and contains general identifier and number symbols. We omit the details.

The module AM which protects ID contains the specification of the B syntax. It
is illustrated in part in Figure 2. For a complete description see [5].

In AM we have sorts enumset, rangeset and set that are used for enumerated sets,
for sets defined as subsets of others and for arbitrary (basic) sets. Clearly enumset
and rangeset are subsorts of set. Thus, INT occurs as a constant of sort set and the
intersection N as an associative and commutative operator.

In order to represent guarded commands the sorts substitution and command
are introduced with substitution being a subsort of command containing only the
assignment commands.

The module DBPL which also protects ID contains the specification of the DBPL
syntax. In this module we have among others the sort Type with some subtypes and
the sort Assignment. Type contains the specifications of types. Assignment contains
the specifications of specific operations on relations. The module DBPL is illustrated
in part in Figure 3.

The last module is TRANS without new sorts. It only contains the sorts from AM
(extended) and DBPL, some few new operations and the equations representing the
equivalence between final B specifications and DBPL. The equations are illustrated
in part in Figure 4 with primary focus on record and relation types, access expressions
and transactions. Figure 5 illustrates the complete sort hierarchy in TRANS.

5 Conclusion

The work described in this paper is based on a three stage scenario for the develop-
ment of database application systems.

— The first stage consists in building a conceptual design in some high-level design
language. In our case this language is the dynamically enriched semantic data
model TDL. A conceptual design should be automatically translatable into an
initial formal specification.

obj DBPL is protecting ID .

sort SimpleType .
subsort Ident Enumeration SubrangeType < SimpleType .

sort Type .
subsort SimpleType < Type .
op INTEGER : —> Type .
sort FieldList .
op (_ > _) : IdentList Type -> FieldList [prec 60]
op (_ ;7) : FieldList FieldList -> FieldList [assoc prec 70]

op RECORD_END : FieldList -> Type .
sort RelationKey .
subsort KeyDesignator IdentList < RelationKey .
op _ ,’ _ : RelationKey RelationKey -> RelationKey [assoc prec 40]
op RELATION OF_ : Type -> Type .
op RELATION _ OF
sort Assignment .

: RelationKey Type -> Type .

op (_ :="_) : Designator Expression -> Assignment [prec 60].
op (_ :+ _) : Designator Expression -> Assignment [prec 60].
op (_ :- _) : Designator Expression -> Assignment [prec 60].

op (_ :& _) : Designator Expression -> Assignment [prec 60].
sort Statement .
subsort Assignment < Statement .

endo
Fig.3. The OBJ module DBPL

— The second stage comprises standard refinement rules that direct the completion
and modification of the initial formal specification towards an implementation
in a specific implementation language. In our case the formal method is B and
the implementation language is the relational database programming language
DBPL.

— The last stage consists in a characterization of sufficiently refined specifications
and their automatic transformation into executable database programs.

While the first two stages were discussed in [13] we concentrate on the last stage.
The characterization of implementable specifications could be achieved by repre-
senting DBPL language constructs in B which defines a semantic equivalence. The
transformation was achieved by representing both the B and the DBPL language in
a unified order-sorted algebra such that the semantic equivalences could be used as
(conditional) rewrite rules. For this purpose we used OBJ.

Although we made some restrictive assumptions it could be shown that the au-
tomatic generation of DBPL programs is possible. However, two severe problems
arise.

— B does not provide any notion of orthogonal persistence. Our approach here made
everything persistent, which is possible, but not useful in practice. Therefore,

obj TRANS is extending AM . extending DBPL . extending TRUTH .
var X Y Z : Ident . var E E1 E2 : Expression . var F F1 F2 : Designator .
var K : KeyDesignator . var T : Type . var A Al A2 : AccessExpressionList .

op subdesignator : Designator -> KeyDesignator .

eq subdesignator(X [E]) [E]

eq subdesignator(F [E]) (subdesignator(F) [E])

eq subdesignator(X . Y) =Y .

eq subdesignator(F . Y) = (subdesignator(F) . Y)

eq (POW(T)).set = (RELATION OF T).Type .

eq { X | (X : RELATION OF T) & ALL X1 IN X (ALL X2 IN X ((F1 =’ F2) <=’
(X1 =" X2))) } = { X | (X : RELATION subdesignator(F1) OF T) } .

eq { X | (X : RELATION OF T) & ALL X1 IN X (ALL X2 IN X ((F1 =’ F2) AND
E <= (X1 =>X2))) } ={ X | (X : RELATION subdesignator(F1) OF T)
& ALL X1 IN X (ALL X2 IN X (E <=’ (X1 =” X2))) }

eq { X | (X : RELATION K OF T) & ALL X1 IN X (ALL X2 IN X ((F1 =’ F2) AND

E <=> (X1 ="X2))) } ={ X | (X : RELATION K ,’ subdesignator(F1) OF T)
& ALL X1 IN X (ALL X2 IN X (E <= (X1 = X2))) }

eq { X | (X : RELATION K OF T) & ALL X1 IN X (ALL X2 IN X ((F1 =’ F2) <=’
(X1 => X2))) } = { X | (X : RELATION K ,’ subdesignator(F1) OF T) } .

eq ({ X | X : RELATION OF T }).set = (RELATION OF T).Type .
eq ({ X | X : RELATION K OF T }).set = (RELATION K OF T).Type .
eq RELATION subdesignator(X) OF T = RELATION OF T .

eq SOME X IN E1 (E2 =’ X) = E2 IN El
eq ALL X IN E1 (X IN E2) = E1 <=’ E2 .

eq { X | (X =" E1) AND E2 & (Y : E).predicate } =
{ X | (X="E1) AND E2 & (EACH Y IN E).ElementDenotation } .
eq { X | (X="E1) AND E2 & Q & (Y : E).predicate } =
{X | (X="E1) AND E2 & Q & (EACH Y IN E).ElementDenotation } .
eq (B1 & B2).predicate = (B1 ,’ B2).ElementDenotation-list .
eq{ X | (X="E1) ANDE2 & B } = { E1 OF B :’” E2 }
eq { X OF EACH X IN E1 :> E2 } = { EACH X IN E1 :’ E2 } .
eq { A1 } \/ { A2 } = { (A1 ,’> A2).AccessExpressionlList } .
eq (X . X :Z | X){A}).lambda = (Z{ A }) .Expression .
eq (F := E).substitution = (F :=’ E).Assignment .
eq (F :=?> (Z{ EACHY 1IN F :’> NOT (Y IN E) }).Expression) = (F :- E)
eq (F :=> (Z{ EACHY 1IN F :’ TRUE ,’
EACH Y1 IN E :’ NOT (Y1 IN F) }).Expression) = (F :+ E)
eq (F :=? (Z{ EACH Y1 IN F :’ NOT (Y1 IN E) ,’
EACH Y2 IN E :’ (Y2 IN F) }).Expression) = (F :& E)

endo

Fig.4. The OBJ module TRANS

expression
VI

‘ AccessExpressionList ‘ [predicatelist]
N A

a number ‘Expus(‘Acce$Expron‘ enumeration
<

U AN
RelaIlonKey pression TypeDeclaration
VoD

|dent|f|er list
N
wn | [Faa

SimpleType

enumset

[rangm] [identifier] ‘ IdentLis(‘ ‘Da’gnalor‘ KeyDesignator
A 7

‘ Enumeralion‘ ‘ SubrangeType ‘ ‘ ElementDenotation-list ‘ ‘ CongtantDeclaration ‘

ElementDenotation

operation machine

‘ Aﬁ'gnment‘ ‘ ProcedureDeclaration ‘ ‘ ProgramModuIe‘ ‘ Declaration‘ ‘ Formal Parameters ‘ ‘ ProcedureHeading

Fig.5. The sort hierarchy in the OBJ module TRANS

formal methods that are suitable for database application systems should at
least offer the user to declare parts of the state description being persistent.

— While the operations in final specifications could be nicely characterized by ab-
stract logical formulae involving predicate transformers; the characterization of
final data structures is cumbersome. The reason for this is that DBPL is strongly
typed, whereas B is untyped. Further investigations in formal methods should
solve this mismatch by introducing typed specifications as proposed in [12]. Oth-
erwise we risc to specify on a lower level of abstraction than we implement which
would make formal methods inacceptable.

Despite these outstanding problems it has been made apparent that formal methods
combined with conceptual design as a “front-end” and sophisticated implementation

as a “back-end” enhances the benefits of formal methods, eases their use and at the
same time fills the gap between the conceptual design and the implementation on a
safe mathematical basis.

References

1.

11.

12.

13.

14.

J. R. Abrial: A Formal Approach to Large Software Construction, in J.L.A. van de
Snepscheut (Ed.): Mathematics of Program Construction, Proc. Int. Conf. Groningen,
The Netherlands, June 89, Springer LNCS 375, 1989

. A. Borgida, J. Mylopoulos, J. W. Schmidt, I. Wetzel: Support for Data-Intensive Ap-

plications: Conceptual Design and Software Development, Proc. of the 2nd Workshop
on Database Programming Languages, Salishan Lodge, Oregon, June 1989

E. W. Dijkstra, C. S. Scholten: Predicate Calculus and Program Semantics, Springer-
Verlag, 1989

J. A. Goguen, T. Winkler: Introducing OBJ3, SRI International, Technical Report, Au-
gust 1988

T. Gunther: Charakterisierung und Transformation in DBPL implementierbarer Ab-
strakter Maschinen (in German), Master Thesis, University of Hamburg, August 1992

. R. Hull, R. King: Semantic Database Modeling: Survey, Applications and Research Is-

sues, ACM Computing Surveys, vol. 19(3), September 1987
M. Jarke, J. Mylopoulos, J. W. Schmidt. Y. Vassiliou: DAIDA: An Enwvironment for
FEvolving Information Systems, ACM TolS, vol. 10 (1), January 1992, pp. 1 — 50

. C. B. Jones: Systematic Software Development using VDM, Prentice-Hall Interna-

tional, London 1986
F. Matthes, J. W. Schmidt: DBPL Rationale and Report, FIDE technical report, 1992

. J. Mylopoulos, P. A. Bernstein, H. K. T. Wong: A Language Facility for Designing In-

teractive Database-Intensive Applications, ACM ToDS, vol. 5 (2), April 1980, pp. 185
- 207

G. Nelson: A Generalization of Digkstra’s Calculus, ACM TOPLAS, vol. 11 (4), October
1989, pp. 517 — 561

K.-D. Schewe, J. W. Schmidt, I. Wetzel, N. Bidoit, D. Castelli, C. Meghini: Abstract
Machines Revisited, FIDE technical report 1991/11

K.-D. Schewe, J. W. Schmidt, 1. Wetzel: Specification and Refinement in an Integrated
Database Application Environment, in S. Prehn, H. Toetenel (Eds.): Proc. VDM 91,
Noordwijkerhout, October 1991, Springer LNCS

J. M. Spivey: Understanding Z, A Specification language and its Formal Semantics,
Cambridge University Press, 1988

This article was processed using the WX macro package with LLNCS style

