
FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Designing a Business Platform using Microservices.

Rajendra Kharbuja

FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Designing a Business Platform using Microservices.

Entwerfen einer Business Plattform mit Microservices.

Author: Rajendra Kharbuja
Supervisor: Prof. Dr. Florian Matthes
Advisor: Manoj Mahabaleshwar
Submission Date: March 15, 2016

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, March 15, 2016 Rajendra Kharbuja

Acknowledgments

I would forever be thankful to my supervisor Prof. Dr. Florian Matthes, my advisors
Manoj Mahabaleshwar and Andrea Stubbe for providing me such a great opportunity
to work on this research. I am very grateful to my advisors for guiding and supporting
me throughout the research.

I would like to express my sincere gratitude to Andrea Stubbe, Klaus Herrmann,
Rene Rath, Igor Rohal, Krzysztof Pankowski, Michael Stephan, Sebastian Graca, Sushil
Shilpakar, Tomasz Lempart and Viktor Kubinec at SAP Hybris for helping me under-
stand the implementation process of microservices followed at SAP Hybris.

Finally, I would like to thank my colleagues Sushil Shilpakar and Nemanja Popovic for
proofreading this thesis report.

Abstract

The microservices architecture provides various advantages such as agility, independent
scalability etc., as compared to the monolithic architecture and thus has gained a lot
of attention. However, implementing microservices architecture is still a challenge
as many concepts within the microservices architecture including granularity and
modeling process are not yet clearly defined and documented. This research attempts
to provide a clear understanding of these concepts and finally create a comprehensive
guidelines for implementing microservices.
Various keywords from definitions provided by different authors are taken and cateogo-
rized into various conceptual areas. These concepts along with the keywords are
researched thoroughly to understand the microservices architecture. Additionally, the
three important drivers: quality attributes, constraints and principles, are focused for
creating the guidelines.
Even though microservices emphasize on the concept of creating small services, the
findings of this research indicate that the notion of appropriate granularity is more
important. The granularity of microservices depends upon four basic concepts which
are : single responsibility, autonomy, infrastructure capability and business value.
Additionally, the quality attributes such as coupling, cohesion, etc. should also be
considered for identification of microservices.
Furthermore, in order to identify microservices, either the domain driven design ap-
proach or the use case refactoring approach can be used. Although, both of these
approaches can be effective in identifying microservices, the concept of bounded con-
text in domain driven design approach identifies autonomous services with single
responsibility. Apart from the literature, a detailed study of the architectural approach
used in industry named SAP Hybris is conducted. The interviews conducted with their
key personnels has given important insight into the process of modeling as well as
operating microservices. Moreover, the challenges for implementing microservices as
well as the approach to tackle them are discussed based on the literature review and
the interviews conducted at SAP Hybris.
Finally, the findings are used to create a detailed guidelines for implementing microser-
vices. The guidelines captures how to implement microservices architecture and how
to tackle the associated operational complexities.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Monolithic Architectural Approach . 1

1.1.1 Types of the Monolithic Architectural Approach 2
1.1.2 Advantages of the Monolithic Architectural Approach 3
1.1.3 Disadvantages of the Monolithic Architectural Approach 4

1.2 Microservices Architectural Approach . 6
1.2.1 Decomposition of an Application 6

1.2.1.1 Scale Cube . 6
1.2.1.2 Shared Libraries . 8

1.2.2 Definitions . 8
1.3 Motivation . 9
1.4 Research Approach . 11

1.4.1 Data Collection Phase . 11
1.4.2 Data Synthesis Phase . 12

1.5 Research Strategy . 13
1.6 Summary . 15

2 Granularity 16
2.1 Introduction . 16
2.2 Basic Principles of the Service Granularity 17
2.3 Dimensions of the Service Granularity . 18

2.3.1 Dimensions given by Interface Perception of Consumers 18
2.3.2 Dimensions given by Interface Realization 19
2.3.3 R3 Dimension . 21
2.3.4 Retrospective . 24

2.4 Summary . 25

3 Quality Attributes of Microservices 27
3.1 Introduction . 27

v

Contents

3.2 Quality Attributes . 28
3.3 Quality Metrics . 29

3.3.1 Context and Notations . 29
3.3.2 Coupling Metrics . 30
3.3.3 Cohesion Metrics . 33
3.3.4 Granularity Metrics . 34
3.3.5 Complexity Metrics . 37
3.3.6 Autonomy Metrics . 38
3.3.7 Reusability Metrics . 39

3.4 Basic Quality Metrics . 40
3.5 Principles based on Quality Attributes . 41
3.6 Relationship among Quality Attributes 43
3.7 Summary . 44
3.8 Problem Statement . 45

4 Modeling Microservices 46
4.1 Introduction . 46
4.2 Modeling using Use Cases . 47

4.2.1 Use Cases Refactoring . 47
4.2.2 Process for Use Cases Refactoring 48
4.2.3 Rules for Use Cases Refactoring 49

4.2.3.1 Decomposition Refactoring 50
4.2.3.2 Equivalence Refactoring 50
4.2.3.3 Composition Refactoring 51
4.2.3.4 Generalization Refactoring 51
4.2.3.5 Merge Refactoring . 51
4.2.3.6 Deletion Refactoring . 52

4.2.4 Example Scenario . 52
4.3 Modeling using Domain Driven Design 58

4.3.1 Process to implement Domain Driven Design 58
4.3.1.1 Ubiquitous Language . 58
4.3.1.2 Strategical Design . 60

4.3.2 Microservices and Bounded Context 63
4.3.3 Example Scenario . 64

4.4 Summary . 70
4.5 Problem Statement . 71

5 Architecture at SAP Hybris 72
5.1 Overview . 72

vi

Contents

5.2 Vision . 73
5.3 SAP Hybris Architecture Principles . 74
5.4 Modeling Microservices at SAP Hybris 76

5.4.1 Hypothesis . 77
5.4.2 Interview Compilation . 78
5.4.3 Interview Reflection on Hypothesis 82

5.5 Modeling Approach at SAP Hybris derived by interview compilation . 85
5.6 Case Study . 87
5.7 Deployment Workflow . 91

5.7.1 SourceCode Management . 91
5.7.2 Continuous Deployment . 92

5.8 Summary . 94

6 Challanges of Microservices Architecture 95
6.1 Introduction . 95
6.2 Integration . 96

6.2.1 Sharing Data . 96
6.2.2 Inter-Service Communication . 98

6.2.2.1 Synchronous and Asynchronous 99
6.2.2.2 Example . 100

6.3 Distributed System Complexity . 101
6.3.1 Breaking Change . 101
6.3.2 Handling Failures . 102

6.4 Operational Complexity . 105
6.4.1 Monitoring . 105
6.4.2 Deployment . 107

6.5 Summary . 109

7 Guidelines 110
7.1 Context . 110
7.2 Process to Implement Microservices Architecture 111
7.3 Principles And Guidelines . 112

8 Conclusion 118

9 Related Work 121

10 Future Directions 123

vii

Contents

11 Appendices 124
11.1 CAP Theorem . 124
11.2 Eventual Consistency . 124
11.3 Command Query Responsibility Segregation(CQRS) 125
11.4 Single Responsibility Principle . 125
11.5 BlueGreen Deployment . 125
11.6 Canary Release . 126

Acronyms 127

List of Figures 129

List of Tables 131

Bibliography 133

viii

1 Introduction

The software architecture is a set of principles assisting software architects and devel-
opers for system or application design [DMT09]. It defines a process to decompose
a system into modules, components and specifies their interactions [Bro15]. In this
chapter, two different architectural approaches namely monolithic architectural ap-
proach and microservices achitectural approach, are discussed. First, a conceptual
understanding of the monolithic architectural approach is presented, which is followed
by its various advantages and disadvantages. Then, an overview of the microservices
architectural approach is explained. In the Section 1.3, the motivation for the current
research is discussed which is then followed by a list of research questions. Finally, in
the Section 1.4 and the Section 1.5, the approach that is used to conduct the current
research is illustrated. The purpose of this chapter is to provide a basic background
context for the following chapters.

1.1 Monolithic Architectural Approach

A mononlithic architectural approach is one in which even a modular application
is deployed as a single artifact. Figure 1.1 shows the architecture of an Online-Store
application that has a clear separation of components such as Catalog, Order, etc., as well
as respective models such as Product, Order, etc. Despite the modular decomposition
of the application, all the components are deployed as a single application artifact on
the server [Ric14a][Ric14c].

Figure 1.1: Monolith Example from [Ric14a]

1

1 Introduction

1.1.1 Types of the Monolithic Architectural Approach

According to [Ann14], a monolith can be of several types depending upon the viewpoint,
as shown below:

1. Module Monolith: If all the code to realize an application share the same code-
base and need to be compiled together to create a single artifact for the whole
application then the architecture is called Module Monolithic Architecture. An
example of this architecture is shown in Figure 1.2. The application on the left
side of the figure, has all the code in the same codebase in the form of packages
and classes without clear definition of modules and gets compiled to a single
artifact. However, the application on the right side is developed as a number
of modular components. Each component has a separate codebase and can be
compiled to different artifact [Ann14].

Figure 1.2: Module Monolith-Example from [Ann14]

2. Allocation Monolith: An Allocation Monolith is created when code is deployed
to all the servers as a single version. All the components running on the servers
have the same version at any time. The Figure 1.3 gives an example of the
allocation monolith. The system on the left side of Figure 1.3 has the same version
of the artifact for all the components on all the servers. It does not make any
difference whether or not the system has a single codebase and artifact. However,
the system on the right as shown in the figure is realized with multiple versions
of the artifacts in different servers at any time [Ann14].

2

1 Introduction

Figure 1.3: Allocation Monolith-Example from [Ann14]

3. Runtime Monolith: In the runtime monolith, a single process runs the whole
application. The application on the left side of Figure 1.4 shows an example
of runtime monolith where a single server process is responsible for the whole
application. Whereas the application on the right has allocated multiple server
processes to run distinct set of component artifacts of the application [Ann14].

Figure 1.4: Runtime Monolith-Example from [Ann14]

1.1.2 Advantages of the Monolithic Architectural Approach

The monolithic architectural approach is appropriate for small applications and has the
following benefits:

• It is easy to develop a monolith application since various development tools in-
cluding IDEs are created around the single application concept [Ric14c] [Gup15].

3

1 Introduction

Furthermore, it is also easy to test the application by creating appropriate
environment on the developer’s machine [FL14] [Gup15].

• The deployment can be simply achieved by moving the single artifact for the
application to an appropriate directory in the server [Ric14c] [FL14] [Gup15]
[Abr14].

• The scaling can be easily accomplished by replicating the application horizon-
tally across multiple servers behind a load balancer as shown in Figure 1.1
[Ric14c] [FL14]. [Gup15].

• The different teams are working on the same codebase so sharing a functionality
can be easier [Gup15].

1.1.3 Disadvantages of the Monolithic Architectural Approach

As the requirements of the system grows over time, the corresponding system’s code-
base becomes large and the size of team increases. Under such circumstances, the
monolithic architecture faces many challenges as explained below:

• Limited Agility: As the whole application has a single codebase, changing
even a small feature and releasing it in the production takes time. Firstly, a
small change can trigger changes to other dependent code. In huge monolithic
applications, it is very difficult to manage modularity especially when all the
team members are working on the same codebase [Abr14]. Secondly, to deploy
a small change in the production, the whole application has to be deployed
[NS14] [Ric14a] [Gup15]. Thus continuous delivery gets slower. This is more
problematic when multiple changes have to be released on a daily basis. The
slow pace and low frequency of release will highly affect agility [Abr14] [Ric14a]
[Ric14c] [Gup15].

• Decrease in Productivity: It is difficult for a new developer to understand the
application because of the size of the codebase. Although it also depends upon
the structure of the codebase, it can still be difficult to grasp the significance of
the code when there is no hard modular boundary. A developer can be easily
intimidated as the size of the application gets bigger [NS14] [Ric14a] [Ric14c] .
Secondly, the development environment can be slow to load the whole applica-
tion which will affect the development speed [Ric14c]. To summarize, the speed
of understandability, execution and testing can be slow in big monoliths.

4

1 Introduction

• Difficult Team Structure: The division of a team as well as tasks assignment
to the team members can be challenging. Most common ways to partition
teams in monolithic architectural approach are by technology and by geography.
However, partitioning either by technology or by geography may not be appro-
priate in all cases [Abr14] [New15]. In any case, the communication among the
teams can be difficult and slow [NS14]. Additionally, it is not easy to assign
complete vertical ownership to a team for a particular feature, all the way from
development to release. If something goes wrong in the deployment, there is
always a confusion who should find the problem, is it either the operations
team or the last person who commited the code. The appropriate team structure
and the ownership of code are very important for agility.

• Long Term Commitment to Technology Stack: The technology to use is chosen
before the development phase during requirement analysis while considering
the maturity of current technology at that time. All the teams in the project
need to follow the same techonology stack throughout the lifecycle of the ap-
plication [NS14] [Ric14a]. However, not all the features in the application are
the same and hence cannot be solved using same technology in the best way.
Nevertheless, the technology advances rapidly. So, the solution thought right at
the time of planning can be outdated and there can be a better solution available
at present. In monolithic applications, it is very difficult to migrate to a newer
technology stack and can be a rather painfull process [Abr14] [Ric14c] [Gup15].

• Limited Scalability: The scaling of the monolith application can be performed
in either of two ways. The first way is to replicate the application along many
servers and dividing the incoming request using a load balancer in front of
the servers [NS14] [Ric14c]. Another approach is using identical copies of
the application in multiple servers as in previous case but partitioning the
database access instead of user request. Both of these scaling approaches
improve the capacity and availability of the application. However, the individual
requirement regarding scaling for each component can be different which
cannot be addressed using this approach. Also, the complexity of the monolith
application remains the same because we are replicating the whole application.
If there is a problem in a component, the same problem can affect all the
servers running the copies of the application, this does not improve resilency
[Mac14][NS14] [Ric14c] .

5

1 Introduction

1.2 Microservices Architectural Approach

With a monolith, it is easy to start development. But as the system gets bigger and
complicated over time, it becomes very difficult to be agile and productive [Ric14a]
[New15]. The disadvantages listed in the Section 1.1.3 outweighs its advantages as
the system gets old. The various qualities such as scalability and agility need to be
maintained for the whole lifetime of the application. It becomes complicated due to
the fact that the system needs to be updated continuously as the requirements keep
changing and evolving over time. In order to tackle these disadvantages, microservices
architectural approach is followed [New15].
The microservices architecture uses the approach of decomposing an application into
smaller autonomous components [New15]. The following Section 1.2.1 provides details
of the various decomposition techniques.

1.2.1 Decomposition of an Application

There are various ways to decompose an application. This section discusses two
different ways of breaking down an application.

1.2.1.1 Scale Cube

The Section 1.1.3 captured various disadvantages related to the monolithic architectural
approach. In [FA15], authors propose an approach called scale cube to address the
challenges related to agility, scalability and productivity. The scale cube provides three
dimensions of scalability as shown in the Figure 1.5. An application can be scaled
either along any one dimension or multiple dimensions simultaneously based upon
the situation and desired goals of the system.

6

1 Introduction

Figure 1.5: Scale Cube from [FA15]

The scaling along each dimensions are described below.

1. X-axis Scaling: It is achieved by cloning the application and data along multiple
servers. A pool of requests are sent to a load balancer and the requests are deli-
gated to the servers. Each of the servers has the latest version of the application
and has access to all the data required. In this regard, it does not make any
difference which server fulfills the request. Rather, it is about how many requests
are fulfilled at any time. It is easy to scale along X-axis as the number of requests
increases. The solution is as simple as to add additional clones. However, with
this type of scaling, it does not scale with the increase in data. Moreover, it also
does not scale when there is a large variation in the frequency of any type of
request because all the requests are handled in an unbiased way and allocated to
servers in the same way [FA15][Mac14][Ric14a].

2. Z-axis Scaling: The scaling is obtained by splitting the request based on certain
criteria or information regarding the requestor or customer affected by the request.
It is different than X-axis scaling in the way that the servers are responsible for
different kinds of requests. Normally, the servers have the same copy of the appli-
cation but some can have additional functionalies depending upon the requests
expected. The Z-axis scaling helps in fault isolation and transaction scalability.
Using this scaling, certain group of customers can be provided additional func-
tionalities. Additionally, a new functionality can be tested to a small group of
customers to minimize the risk [FA15][Mac14][Ric14a].

7

1 Introduction

3. Y-axis Scaling: The scaling along this dimension means the splitting of the
application’s responsibility. The separation can be done either by a) data, b) the
actions performed on the data or c) the combination of both. The respective
ways can be referred to as resoure-oriented or service-oriented splits. While the
x-axis or z-axis splits are rather duplication of the same functionalities along
servers, y-axis is more about duplication of specialized functionalities along
servers. The major advantage of this scaling is that each request is scaled and
handled differently according to its necessity. As the logic and the associated data
are separated, developers can focus and work on a small section at a time. This
increases productivity as well as agility. Additionally, a fault in a component is
isolated and can be handled gracefully without affecting rest of the application.
However, scaling along Y-axis can be costly compared to scaling along other
dimensions [FA15][Mac14][Ric14a].

1.2.1.2 Shared Libraries

Libraries are the standard ways of sharing functionalities among various services and
teams. This capability is provided as a feature of the programming languages. The
shared libraries however do not provide technology heterogeneity. Furthermore, a)
independent scaling b) independent deployment and c) independent maintainance
cannot be achieved unless the libraries are dynamically linked. In such cases, any small
change in the library leads to redeployment of the whole system. Moreover, sharing
the code is a form of coupling and should be avoided [New15].

Decomposing an application into individual features gives various advantages such
that each feature can be a) scaled independently, b) deployed independently, c) agile
and d) assigned easily to the teams. Microservices use the decomposition technique
proposed by the scale cube. The advantages of microservices architectural approach
are discussed further in the Section 6.1.

1.2.2 Definitions

There are several definitions given by several pioneers and early adapters of the mi-
croservices architectural approach.

Definition 1:

"It is the way to functionally decompose an application into a set of collaborat-
ing services, each with a set of narrow, related functions, developed and deployed
independently, with its own database" [Ric14b].

8

1 Introduction

Definition 2:

"It is a style of software architecture that involves delivering systems as a set of very
small, granular, independent collaborating services" [Woo14].

Definition 3:

"Microservice is a loosely coupled Service-Oriented Architecture with bounded
contexts" [Coc15].

Definition 4:

"Microservices are Service-Oriented Architecture done right" [FL14] [RTS15].

Definition 5:

"Microservices architecture style is an approach to developing a single application
as a suite of small services, each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API. These services are built around
business capabilities and independently deployable by fully automated deployment
machinery. There is a bare minimum of centralized management of these services,
which may be written in different programming languages and use different data
storage technologies" [FL14].
Similar to other architectural approaches, microservices ephasize on increasing cohesion
and decreasing coupling. Besides that, it breaks down the system along business
domains (following the single responsibility principle) into granular and autonomous
services, each service run on separate processes. Additionally, the architecture focuses
on the collaboration of these services using light weight mechanisms.

1.3 Motivation

The various definitions presented in the previous section highlights different key terms
such as:

1. collaborating services

2. developed and deployed independently

9

1 Introduction

3. build around business capabilities

4. small, granular services

These concepts are very important to understand and realize the microservices ar-
chitecture correctly and effectively. The first two terms in list, relate to the runtime
operational qualities of the microservices whereas the later two address modeling
qualities. In this regard, it indicates that the definitions highlight on both modeling as
well as operational aspects of software applications.
However, if an attempt is made to have a clear in-depth understanding of each of the
key terms, then various questions can be raised without suitable answers. The different
questions (shown in column ’Questions’) either related to modeling or operations
(shown in column ’Type’) are listed in the Table 1.1.

Questions Type

1 How small should be the size of microservices? Modeling
2 How do microservices interact and coordinate with each other? Operation
3 How to deploy and maintain microservices independently when there are dependencies among microservices? Operation
4 How to derive and map microservices from business capabilities? Modeling
5 What are the challenges when implementing microservices and how to tackle these challenges? Operation

Table 1.1: Various Questions related to Microservices

Without clear answers to these questions, it is difficult to say that the definitions
presented in the Section 1.2.2 are adequate to follow the microservices architecture. To
a large extent, the process of creating microservices is not clearly documented. The
research in this area of formalizing the process of modeling and operating microservices
is still in its infancy. Additionally, even though a lot of industries such as amazon,
netflix, etc., are following this architecture, the process of modeling and implementing
microservices is not clear. The purpose of this research is to provide a clear under-
standing about the process of designing microservices by focusing on the following
questions.

Research Questions

1. How are boundary and the size of microservices defined?

2. How to map business capabilities to define microservices?

3. What are the best practices to tackle the challenges introduced by microservices?

a) How does the collaboration among microservices happen?

10

1 Introduction

b) How to deploy and maintain microservices independently when there are
dependencies among them?

c) How to monitor microservices?

1.4 Research Approach

A research is an iterative procedure with the goal of collecting as many relevant
documents as possible so that the research questions could be answered rationally.
Therefore, it becomes very important to follow a consistent research procedure. For the
current research, the approach is chosen by refering to [np07]. It consists of two major
phases. a) Data Collection Phase and b) Data Synthesis Phase
The following sections explain each of the phases in detail.

1.4.1 Data Collection Phase

In this phase, research papers related to the reseach questions are collected. The Figure
1.6 shows the basic steps of this phase.

Figure 1.6: Data Collection Phase

1. Select Search Terms
At first, various search terms which define the research topics and questions are
selected using the following strategies.

a) keywords from research questions and various definitions

b) synonyms of keywords

c) accepted and popular terms from academics and industries

11

1 Introduction

d) references discovered from selected research papers

A consise list of initial keywords which are selected from various definitions of
microservices are listed in Table 1.2.

2. Search and Gather Research Papers
The search terms selected in the previous step are utilized to discover various
research papers. In order to achieve that, the search terms are used against various
resources listed below.

a) google scholar

b) IEEExplore

c) ACM Digital Library

d) Researchgate

e) Books

f) Technical Articles

3. Filter the Research Papers Finally, among the research papers collected from
various resources, only the research papers which profound base researches
to back up their result are selected. Using only authentic research papers is
important to provide rational base to the current research. The various criteria
used to filter the research papers are listed below.

a) Is the research paper relevant to answer the research question?

b) Does the research paper have a good base in terms of sources and provide
references of the past studies?

c) Are there any case studies or examples provided to verify the result of the
reseach?

1.4.2 Data Synthesis Phase

During the data synthesis phase, data is gathered from the selected research papers to
create meaningful outputs and provide a good direction to the research. The Figure 1.7
shows various steps within this phase.

12

1 Introduction

Figure 1.7: Data Synthesis Phase

1. Extract Data from selected research papers individually
Firstly, each research paper is scanned and important data relevant to the research
are collected.

2. Synthesize Data
The data collected from each research paper are revised and compared for their
similarities in concepts as well as differences in opinion. These collected data
from all research papers are then synthesized.

3. Create Draft
Finally, draft for the observations are created for future reference which will be
used later for creating the final report.

1.5 Research Strategy

The Section 1.4 emphasizes the importance of having a consistent research procedure.
It suggests on how to conduct a research in a rational manner. In addition, it is equally
important to understand what to research. A good strategy is to narrow down the
areas for conducting research. In this section, a list of areas is identified.
The various definitions in the Section 1.2.2 show that the authors have their own
interpretations about microservices but at the same time agree upon some basic con-
cepts. Nevertheless, each definition can be used to understand different aspect of the
microservices. A distinct set of keywords can be identified from these definitions which
represents these different aspects. The Table 1.2 shows various keywords to focus.
Additionally, there are other columns in the table which represent various aspects of

13

1 Introduction

microservices architecture. These columns are checked or unchecked to represent the
relevance of each keyword.

keywords size Quality of good microservice communication process to model microservices

1 Collaborating Services X
2 Communicating with lightweight mechanism like http X
3 Loosely coupled, related functions X X
4 Developed and deployed independently X
5 Own database X X
6 Different database technologies X
7 Service Oriented Architecture X X
8 Bounded Context X X X
9 Build around Business Capabilities X X X

10 Different Programming Languages X

Table 1.2: Keywords extracted from various definitions of Microservice

Finally, the first group of areas to focus are various aspects shown in columns such
as size, quality of microservices, etc.
The next group of areas which need to be understood, are various drivers for defining
microservices architecture. According to [Bro15], the important drivers for software
architecture are:

1. Quality Attributes
The non-functional requirements have high impact on the resulting architecture.
It is important to consider various quality attributes to define the process of
architecture.

2. Constraints
There are various limitations or disadvantages faced by any architectural approach.
A better knowledge of the constraints and the solution to these constraints is
useful in the process of explaining the architecture.

3. Principles
The various principles are helpful to identify consistent approaches for tackling
various limitations. They are the keys to define guidelines.

So, in order to define the process of modeling microservices, the key aspects related to
quality attributes, constraints and principles are studied thoroughly.

Considering both the Table 1.2 and List 1.5, the first concept to understand is about var-
ious quality attributes influencing microservices architecture. Additionally, the process
of identifying and modeling individual microservices from problem domain is defined.
These areas are first researched based on various academic research papers. Then, the
approach used by the industry for adopting microservices architecture is studied in

14

1 Introduction

order to answer the research questions. The industrial case study is performed in SAP
Hybris. Finally, the various constraints and challenges which affect microservices are
identified. The results of the previous research are used to create various principles for
implementing microservices architecture. These principles provide sufficient ground to
create guidelines for modeling and operating microservices.

1.6 Summary

Although, the size of the microservices is considered as an important concept and is
discussed a lot, there is no concrete answer about what defines the size of a microservice.
Moreover, the size of microservices has a lot of interpretations and no definite answer
regarding how small a microservice should be. So, the first step is to understand the
concept of granularity in the context of microservices.

15

2 Granularity

In this chapter, the size of the microservices is discussed in detail. A major focus is to
research various qualitative aspects which define the granularity of the microservices.
Section 2.2 lists various principles which will guide architects to model the correct size
by considering various aspects such as a) functionality b) data and c) business value.
Furthermore, in the Section 2.3, various interpretations for defining the dimensions of
the microservices are discussed. The section provides a detailed picture about various
factors to determine granularity.

2.1 Introduction

The granularity of a service is often ambiguous and has different interpretations. In
simple term, it refers to the size of the service. However, the size of a service itself
can be vague. It cannot be defined as a single quantitative value because the concepts
defining granularity are subjective in nature. For example, if we choose activities
supported by the service to determine its granularity then we cannot have one single
value. Instead, we have a hierarchical list of activities, where each activity can either
refer to a) a simple state change, b) any action performed by an actor or c) a complete
business process [Linnp], [Hae+np].
Although, the interest upon the granularity of a component or service for the business
users highly depends upon their business value, there is no doubt that the granularity
affects the architecture of a system. The granularity of a service should reflect both
the business perspective as well as the impact upon the overall architecture [Linnp],
[Hae+np].
The increase in size of a component or service is contributed by the level of the abstrac-
tion used. For example, in case of object oriented paradigm, the abstraction is chosen
to represent the real world objects. Each individual unit represents a fine-grained
abstraction with some attributes and functionalities [Linnp], [Hae+np].
The abstractions created in the object oriented approach improves a) development
simplicity and b) application understandability. However, it is not always sufficient
when high order business goals have to be implemented. It indicates the necessity of
coarser-grained units than the units of object oriented paradigm. Moreover, the compo-
nent based development introduces the concept of business components which target

16

2 Granularity

business problems and are coarser-grained. Similarly, in service oriented architecture,
the services provide access to the application and each application is composed of
various component services [Linnp], [Hae+np].

2.2 Basic Principles of the Service Granularity

In addition to the quantitative granularity, it is also helpful to address the qualitative
aspects of granularity. The list below specifies some basic principles derived from
various research papers and defines the qualitative properties of granularity. These
principles will help architects to design microservices with the right granularity.

1. The correct granularity of a service is dependent upon time. The various support-
ing technologies that evolve over time can be an important factor to define the
level of decomposition. For eg: with the improvement in virtualization, container-
ization as well as platform as a service (PaaS) technologies, it is faster and easier
to automate deployment. These technologies makes it easier to support large
number of services. Because of such technologies, the creation and operation of
multiple fine-grained services is possible [HS00].

2. A good candidate for a service should be independent of the implementation but
should depend upon the understandability of domain experts [Hae+np; HS00].

3. A service should be an autonomous reusable component and should support
various cohesions such as functional cohesion (group similar functions), temporal
cohesion (change in the service should not affect other services), run-time cohesion
(allocate similar runtime environment for similar jobs; eg. provide same address
space for jobs of similar computing intensity) and actor cohesion (a component
should provide service to similar users) [Hae+np], [HS00].

4. A service should not support a huge number of operations. In such case, any
change in the service will affect large number of customers and there will be no
unified and simplified view on the functionality. But, if the interface of the service
is small, it will be easy to maintain and understand [Hae+np], [RS07].

5. A service should provide transaction integrity and compensation. The function-
alities supported by the service should be within the scope of one transaction.
Additionally, the compensation should be provided when the transaction fails.
If each operation provided by the service map to one transaction, then it will
improve availability and fault-recovery [Hae+np] [Foo05] [BKM07].

17

2 Granularity

6. The notion of right granularity is more important than that of fine or coarse
granularity. The size depends upon the usage condition. The correct size can only
be achieved by balancing various qualities such as reusability, network usage,
completeness of context, etc. [Hae+np], [WV04].

7. The level of abstraction of the services should reflect the real world business
activities. The situation will help to map business requirements and technical
capabilities easily [RS07].

8. When there are ordering dependencies between operations, it can be easy to
implement and test if the dependent operations are all combined into a single
service [BKM07].

9. There can be two better approaches for breaking down an abstraction. One
way is to separate redundant data and semantically different data. The other
approach is to divide services with limited control and scope. For example: A
Customer Enrollment service which deals with registration of new customers
and assignment of unique customer code can be divided into two independent
fine-grained services: Customer Registration and Code Generation, each service
will have limited scope and separate context of Customer [RS07].

10. If there are functionalities ’A, B, C’ provided by a service which are more likely to
change than other functionalities ’D, E’ in the service, then it is better to extract
the functionalities ’A, B, C’ into a separate fine-grained service so that any further
change on these functionalities will affect only a limited number of consumers
[BKM07].

2.3 Dimensions of the Service Granularity

As already mentioned in the Section 2.1, it is not easy to define granularity of a service
quantitatively. However, understanding granularity can be easier if we can project it
along various dimensions, where each dimension is a qualifying attribute responsible
for determining size of a service. Eventhough the dimensions discussed in this section
do not give the precise quantity to identify granularity, it definitely gives the hint to
locate the service in granularity space. Moreover, it is interesting and beneficial to know
how these dimensions come together for defining the size of the microservices.

2.3.1 Dimensions given by Interface Perception of Consumers

One way to define the granularity of microservices is by understanding the perspective
of the consumer towards the service interface. The various properties of the service

18

2 Granularity

interface responsible to define its size are listed below.

1. Functionality: It defines the amount of functionality offered by the service. The
functionality can be either a default functionality, which means a compulsory
group of logic or operation provided by the service. Another type can be a
parameterized functionality which can be optionally provided depending upon
some values. Based on the scope of the functionality, the service can be either
fine-grained or course-grained than the other services. Considering functionality
criterion, a service offering basic CRUD functionality is fine-grained than a service
which is offers some data accumulation using orchestration [Hae+np].

2. Data: It refers to the amount of data handled or exchanged by the service. The
data granularity can be of two types. The first one is the input data granularity,
which is the amount of data consumed or needed by the service in order to ac-
complish its tasks. The other type is ouput data granularity, which is the amount
of data returned by the service to its consumers. Depending upon the size and
the quantity of business objects consumed or returned by the service interface, it
can be either coarse-grained or fine-grained. Additionally, if the business object
consumed is composed of other objects rather than primitive types, then it is
coarser-grained. For example: the endpoint "PUT customers/C1234" is coarser-
grained than the endpoint "PUT customers/C1234/Addresses/default" because
of the size of data object expected by the service interface [Hae+np].

3. Business Value: According to [RKKnp], each service is associated with an intention
or business goal and follows some strategy to achieve that goal. The extent or
magnitude of the intention can be perceived as a metric to define granularity.
A service can be either atomic or aggregate of other services. The level of
aggregation is directly influenced by the target business goal of the services. An
atomic service can have lower granularity than an aggregate in terms of business
value. For example, sellProduct is coarser-grained than acceptPayment, which is
again coarser-grained than validateAccountNumber [Hae+np].

2.3.2 Dimensions given by Interface Realization

The Section 2.3.1 discusses the aspect of granularity determined by the perception
of customer on service interfaces. However, there can be different opinions on the
dimensions listed in the Section 2.3.1, when it is viewed from the imlementation point
of view. In this section, the same dimensions of granularity listed in the Section 2.3.1
are analyzed again considering various aspects at implementation level.

19

2 Granularity

1. Functionality: In the Section 2.3.1, it is mentioned that an orchestration service has
higher granularity than its constituent services with regard to the default function-
ality. If the realization effort is focused, it may only include compositional and/or
compensation logic because the individual tasks are already accomplished by the
constituent services. Thus, in terms of the effort in realizing the orchestration ser-
vice it is fine-grained than from the view point of interface by consumer [Hae+np].

2. Data: In some cases, services may utilize standard message format. For example:
financial services may use SWIFT for exchanging finanicial messages. These
messages are extensible and are coarse-grained in itself. However, all the data
accepted by the service along with the message may not be required in order to
fulfil the business goal of the service. In that sense, the service is coarse-grained
from the viewpoint of consumer but is fine-grained in realization point of view
[Hae+np].

3. Business Value: It can make a huge impact when analyzing business value of
service if the realization of the service is not considered well. For example: if
we consider data management service which supports storage, retrieval and
transaction of data, it can be considered as fine-grained because it will not directly
impact the business goals. However, since other services are dependent on its
performance, it becomes critical to analyze the complexity associated with the
implementation, reliablity and the change in the infrastructure if needed. From
the realization point of view, the data service is coarse-grained as compared to its
consumer perspective [Hae+np].

Principle: A high value along functionality dimension of a microservice does
not necessarily mean high business value for the microservice.
It may seem that the dimensions: functionality and business value have direct
proportional relationship. The business value of a service reflects business goals
however the functionality refers to the amount of work performed by the service.
A service to show customer history can be considered to have high value along
functionality dimension because of the involved time period and database queries.
However, it may be of a low business value to an enterprise [Hae+np].

20

2 Granularity

2.3.3 R3 Dimension

Keen [Kee91] and later Weill and Broadbent [WB98] introduced a separate group of
criteria to measure the granularity of a service. The granularity of a service is evaluated
in terms of two dimensions as shown in the Figure 2.1

Figure 2.1: Reach and Range model from [Kee91; WB98]

1. Reach: It provides various discrete levels to answer the question “Who can use
the functionality? ” It provides the extent of consumers, who can access the
functionalities provided by the service. It can be a customer, the customers within
an organization, supplier, etc., as shown by the Figure 2.1 [Kee91; WB98].

2. Range: It gives answer to “Which functionality is available? ”. It defines the extent
to which the information can be accessed from the service or shared with the
service. The various levels of functionalities can be simple data access, transaction,
message transfer, etc., as shown in the Figure 2.1 The ’Range’ measures the
amount of data exchanged in terms of the levels of business activities important
for the organization. One example of such activity levels with varying level of
’Range’ is shown in Figure 2.2 [Kee91; WB98]Tje.

21

2 Granularity

Figure 2.2: Example to show varying ’Range’ from [Kee91; WB98]

In the Figure 2.2, the level of granularity increases as the functionality moves
from ’accessing e-mail message’ to ’publishing status online’ and then to ’creating
order’. It is due to the change in the amount of data access involved in each kind
of functionality. Thus, the ’Range’ directly depends upon the level of data access.
As the service grows, ’Reach’ and ’Range’ also peaks up, which means the extent
of consumers as well as the kind of functionality increase. This adds complexity
to the service. The solution proposed by [Coc01] is to divide the architecture
into services. However, only ’Reach’ and ’Range’ can not be enough to define the
service. It is equally important to determine scope of the individual services. The
functionality of the service is defined in two distinct dimensions ’which kind of
functionality’ and ’how much functionality’. So, this leads to another dimension
of the service as described below [Kee91; WB98; RS07].

3. Realm: It tries to create a boundary around the scope of the functionality provided
by the service. If we take the same example shown by Figure 2.2, only ’range’
defining the kind of functionaly such as creating online order does not explicitly
clarifies about what kind of order is under consideration. The order can be
customer order or sales order. The specification of ’Realm’ defining what kind of
order plays an important role here. So, we can have two different services each
with same ’Reach’ and ’Range’ however different ’Realm’ for customer order and
Sales order [Kee91; WB98; RS07].

The consideration of all the aspects of a service including ’Reach’, ’Range’ and
’Realm’ give us a model to define granularity of a service and is called R3 model. The
volume in the R3 space for a service gives its granularity. A coarse-grained service has
higher R3 volume than a fine-grained service. The Figure 2.3 and Figure 2.4 show such
volume-granularity analogy given by R3 model [Kee91; WB98; RS07].

22

2 Granularity

Figure 2.3: R3 Volume-Granularity Analogy to show direct dependence of granularity
and volume [RS07]

Figure 2.4: R3 Volume-Granularity Analogy to show same granularity with different
dimension along axes [RS07]

The Figure 2.3 shows the use of R3 dimensions for comparing the size of the services.
The service on the left side of the Figure 2.3 has high abstraction level as well as high
value for a) Reach, b) Range and c) Realm. However, the service on the right side has
low abstraction level and has low value for a) Reach, b) Range and c) Realm. So, the
service on the left side is a coarse-grained service then the service on the right side
of the figure. Furthermore, the Figure 2.4 depicts how R3 dimensions like a) Reach,
b) Realm and c) Reach can be varied to control the size of the service. The service on
the left side has different value of R3 dimensions than the service on the right side.
However, both services have same volume and thus same value of granularity. It shows
that the values along the three R3 dimensions can be managed in different ways as per
the requirement to make the granularity as low as possible.

23

2 Granularity

2.3.4 Retrospective

The Section 2.3.1 and the Section 2.3.2 divides granularity of a service along three dif-
ferent dimensions: data, functionality and business value. Moreover, the interpretations
from the consumer’s perspective and then the producer’s viewpoint for realization are
made. Furthermore, the Section 2.3.3 divides the aspect of granularity along a) Reach, b)
Range, and c) Realm space. The granularity value of the service is given by the volume
in the R3 space. Despite it, the classification of granularity along data, functionality and
business value does not provide discrete metrics to quantitatively define granularity.
However, the given explanations and criteria are sufficient to compare granularity of
two different services. These can be used to determine if a service is fine-grained than
other service. The R3 model in the Section 2.3.3 also provides various dimensions of
granularity. This makes it easier to visualize the granularity and provides flexibility to
compare the granularity of services.
A case study to evaluate the impact of granularity on the complexity of the architecture
using data, functionality and business criteria is presented in [RS07]. The study is
performed at KBC Bank Insurance Group of Central Europe. During the study, the
impact of each kind of granularity was verified. The important results from the study
are listed below.

1. A coarse-grained service in terms of ’Input Data’ provides better transactional
support, little communication overhead and also helps in scalability. However,
there is a chance of data getting out-of-date quickly.

2. A coarse-grained service in terms of ’Output Data’ also provides good communi-
cation efficiency and supports reusability.

3. A fine-grained service along ’Default Functionality’ has high reusability and
stability but low reuse efficiency.

4. A coarse-grained service due to more optional functionalities has high reuse
efficiency, high reusability and also high stability but the implementation or
realization is complicated.

5. A coarse-grained service along ’Business Value’ has high consumer satisfaction
value and emphasize the architecturally crucial points fulfilling business goals.

Similarly, a study was carried out in Handelsbanken in Sweden, which follows the
Service-Oriented architecture. The purpose of the study was to analyze the impact
of R3 model on the architecture. It is observed that there are different categories of
functionalities essential for an organization. Some functionalities can have higher ’Reach’

24

2 Granularity

and ’Range’ with single functionality, while others may have complex functionality
with low ’Reach’ and ’Range’. The categorization and realization of such functionalities
should be accessed individually. It is not necessary to have same level of granularity
across all services or there is no one right volume for all services. However, if there
are many services with low volume, then many services are additionally needed to
accomplish high level functionalities. Furthermore, it increases interdependency among
services and network complexity. Finally, the choice of granularity is completely
dependent upon the IT-infrastructure of the company. The IT infrastructure decides
which level of granularity it can support and how many of them [RS07].

Principle: IT-infrastructure of an organization affects granularity.
The right value of granularity for an organization is highly influenced by its IT
infrastructure. The organization should be capable of handling the complexities
such as communication, runtime operation, infrastructure, etc., if they choose low
granularity [RS07].

Additionally, it is observed that a single service can be divided into number of
granular services by dividing across either ’Reach’, ’Range’ or ’Realm’. The basic
idea is to make the volume as low as possible as long as it can be supported by IT-
infrastructure. Similarly, each dimension is not completely independent from other.
For example: if the dimension ’reach’ of a service has to be increased from domestic
to global in an organization then the dimension ’realm’ of the functionality has to be
decreased in order to make the volume as low as possible, keep the development and
runtime complexities in check [RS07].

Principle: Keep the volume as low as possible.
If supported by IT-infrastructure, it is recommended to keep the volume of service
as low as possible, which can be achieved by managing the values of a) Reach,
b) Range, and c) Realm. It will help to decrease development and maintenance
overload [RS07].

2.4 Summary

In this chapter, various qualitative aspects related to the granularity of the microservices
are analyzed. The interesting thing to notice is the various dimensions of the size
across data, functionality and business value. However, it is also necessary to look
into the quantitative aspects of granularity. Additionally, the various principles listed

25

2 Granularity

in the Section 2.2 points towards other quality attributes of microservices including
coupling, cohesion, etc. The granularity is not the only attribute which is important
while modeling the microservices but there are also other quality attributes which affect
the granularity and also influence the overall quality of the microservices. The next
task is to study the various quality attributes affecting the microservices and to derive
their quantitative metrics.

26

3 Quality Attributes of Microservices

This chapter defines various quality attributes of the microservices. Also, it provides
different quantitative approaches to evaluate the different quality attributes of the
microservices. Section 3.2 presents a list of quality attributes compiled from various
research papers. In the Section 3.3, various metrics to evaluate these quality attributes
are discussed. Furthermore, in the Section 3.4, a list of basic metrices (derived from the
complex metrics discussed in the Section 3.3) shows the simplified way to determine
the quality of the microservices. Section 3.5 lists various principles to show the impact
of various attributes on the quality of microservices. Finally, relationship amongst
various quality attributes is discussed in the Section 3.6.

3.1 Introduction

One of the various goals of software engineering is to develop applications with
high quality. In case of the applications following service oriented architecture, the
complexity increases over time. So, for these applications, quality assessment becomes
very crucial [ZL09; GL11; Nem+14]. Quality models have been invented over time to
evaluate quality of a software. A quality model is defined by quality attributes and
quality metrics. Quality attributes are the expected properties of software artifacts
defined by the chosen quality model. Quality metrics give the techniques to measure the
quality attributes [Man+np]. The software quality attributes can again be categorized
into two types: a) internal attributes and b) external attributes [Man+np; BMB96]. The
internal quality attributes are the design time attributes which needs to be fulfilled
during the design of software applications. Some of the internal quality attributes are
loose coupling, cohesion, granularity and autonomy [Ros+11; SSPnp; EM14]. On the
other hand, external quality attributes are the traits of the software artifacts produced at
the end of SDLC (Software Development Life Cycle). Some of them are reusability and
maintainability [EM14; Man+np; FL07; Feu13]. The external quality attributes can only
be measured after the end of development. However, it has been evident that internal
quality attributes have huge impact upon the value of external quality attributes and
thus can be used to predict them [HS90; Bri+np; AL03; Shi+08]. The evaluation of both
internal and external quality attributes are valuable in order to produce a high quality
software [Man+np; PRF07; Per+07].

27

3 Quality Attributes of Microservices

3.2 Quality Attributes

As already mentioned in the Section 3.1, the internal and external quality attributes
determine the overall quality of the service getting composed. There are different
researches and studies which have been performed to find the factors affecting the
service qualities. Based on the published research papers, a comprehensive Table 3.1
has been created. The table provides a minimum list of quality attributes which have
been considerd in various research papers for determining the quality of the services.

Attribute [SSPnp] [Xianp] [AZR11] [Shi+08] [Ma+09] [FL07]

1 Coupling X X X X X X
2 Cohesion X X X X X X
3 Autonomy X X X X X X
4 Granularity X X X X X X
5 Reusability X X X X X X
6 Abstraction X X X X X X
7 Complexity X X X X X X

Table 3.1: Quality Attributes

The Table 3.1 gives an overview of the research papers around the quality attributes
of the services. From the table, it can be deduced that most of the research papers
focus on coupling and granularity of the service and only few of them focus on other
attributes such as complexity and autonomy.

Coupling refers to the dependency and interaction among services. The interaction
becomes inevitable when a service requires a functionality provided by another service
for accomplishing its own goals. Similarly, Cohesion of any system is the extent of
appropriate arrangement of elements to perform the functionalities. It affects the degree
of understandability and sensibility of its interface for its consumers. Whereas, the
complexity attribute provides a way to evaluate the difficulty in understanding and
reasoning the context of the service [EM14].
The reusability attribute for a service measures the degree to which it can be used
by multiple consumer services and can undergo multiple composition to accomplish
various high order functionalities [FL07].
Autonomy is a broad term which refers to the ability of a service for a) self-containment,
b) self-controlling, and c) self-governance. Autonomy defines the boundary and context
of the service [MLS07]. Finally, another important quality attribute is granularity that
is described in Chapter 2. The basic signifance of granularity is the diversity and size
of the functionalities offered by the service [EM14].

28

3 Quality Attributes of Microservices

3.3 Quality Metrics

There have been many researches conducted to define quality metrics for components.
A major portion of the researches have been made for object oriented and component
based architectural approaches. These metrics are refined to be used in service oriented
systems [Xianp; SSPnp]. Firstly, various research papers defining the quality metrics of
service oriented systems are collected. Among all research papers, the ones which have
conducted their research based on a decent amount of scientific researches are selected.
It is interesting to notice that the evaluation presented in the research papers are only
performed using the case studies of their own but not real life scenarios. Moreover,
they have used diversity of equations to define the quality metrics. Additionally, all the
research papers do not focus on all the quality attributes. So, a fair comparision and
selection of single dominant way to evaluate the quality metrics is difficult. Nevertheless,
all of them do not discuss about the relationship between all the quality metrics [EM14].
This creates difficulty to map all the quality metrics into a common cohesive family.
Around such situation, this section facilitates the understanding of the quality metrics.
Despite the case that there is no consensus on threshold value of quality metrics which
defines the optimal quality level, the method discussed in this section can still be used
to evaluate and compare the quality of microservices. This definitely helps to identify
good microservices based on various quality attributes. Furthermore, the quality
metrics defined in research papers are quite complex to understand and apply. The
complex metrics can be broken down further to the simple understandable terms called
the basic metrics. The basic metrics are the driving factors for the quality attributes
and are also utilized by most of the research papers to define the quality metrics.
The remaining part of this section discusses the metrics definitions proposed in various
research papers and analyzes them to identify their conceptual simplest form.

3.3.1 Context and Notations

Before looking into the definitions of metrics, it can be helpful to know related terms,
assumptions and their respective notations.

• The business domain is realized with various processes defined as P = {p1, p2...ps}

• A set of services realizing the application is defined as S = {s1, s2...ss}; ss is the
total number of services in the application

• For any service sεS, the set of operations provided by s is given by O(s) =

{o1, o2, ...oo} and |O(s)| = O

29

3 Quality Attributes of Microservices

• If an operation oεO(s) has a set of input and output messages given by M(o).
Then the set of messages of all operations of the service is given by M(s) =

∪oεO(s)M(o)

• The consumers of the service sεS is given by Sconsumer(s) = {Sc1, S2, ...Snc}; nc

gives the number of consumer services

• The producers for the service or the number of services to which the service
sεS is dependent upon is given by Sproducer(s) = {Sc1, S2, ...Snp}; np gives the
number of producer services

3.3.2 Coupling Metrics

[SSPnp] defines following metrics to determine coupling

SOCI(s) = number_o f _operations_invoked

= |{oiεsi : ∃oεscalls(o, oi) ∧ s 6= si}|

ISCI(s) = number_o f _services_invoked

= |{si : ∃oεs, ∃oiεsi calls(o, oi) ∧ s 6= si}|

SMCI(s) = size_o f _message_required_ f rom_other_services

= | ∪M(oi) : (oiεsi) ∨ (∃oεs, ∃oiεsi calls(o, oi) ∧ s 6= si)|

where,

• SOCI is Service Operation Coupling Index

• ISCI is Inter Service Coupling Index

• SMCI is Service Message Coupling Index

• call(o, oi) represents the call made from service ’o’ to service ’oi’

[Xianp] defines

Coupling(Si) = p
ns

∑
j=1

(−log(PL(j)))

=
1
n

ns

∑
j=1

(−log(PL(j)))

30

3 Quality Attributes of Microservices

where,

• ns is the total number of services connected

• ’n’ is the total number of services in the entire application

• p = 1
n gives the probability of a service participating in any connection

[Kaz+11] defines

Coupling =
dependency_on_business_entities_o f _other_services

number_o f _operations_and_dependencies

=
∑iεDs ∑kεO(s) CCO(i, k)

|O(s)|.K
where,

• Ds = {D1, D2, ...Dk} is set of dependencies the service has on other services

• K = |Ds|

• CCO is Conceptual Coupling betweeen service operations and obtained from
BE X EBP (CRUD) matrix table constructed with business entities and business
operations, where BE is business entity and EBP any logical process defined in
an operation.

[Shi+08] defines

coupling(s) =
number_o f _services_connected

number_o f _services

=
nc + np

ns

where,

• nc is number of consumer services

• np number of dependent services

• ns total number of services

31

3 Quality Attributes of Microservices

[AZR11] defines

coupling =
number_o f _invocation

number_o f _services

=
∑|O(s)|

i=1 (Si,sync + Si,async)

|S|

where,

• Si,sync is the synchronous invocation in the operation Oi

• Si,async is the asynchronous invocation in the operation Oi

Research Papers Metrics Definition

1 [SSPnp]

SOCI : number of operation of other services
invoked by the service
ISCI : number of services invoked
by a service
SMCI : total number of messages from
information model required by the operations

2 [Xianp]

Coupling is evaluated as information entropy
of a complex service
component where entropy is calculated using various
data such as total number of atomic components connected,
total number of links to atomic
components and total number of atomic components

3 [Kaz+11]

The coupling is measured by using the dependency
of a service operations with operations of other
services. Additionally, the dependency is considered
to have different weight value for each kind of operation
such as Create, Read, Update, Delete (CRUD) and based on
the type of business entity involved. The weight is
referred from the CRUD matrix constructed in the process.

4 [Shi+08] evaluated by the average number of directly connected services

5 [AZR11]
defines coupling as the average number of synchronous and
asynchronous invocations in all the operations of the service

Table 3.2: Coupling Metrics

The Table 3.2 shows simpler form of metrics proposed for coupling. Although, the
table shows different way of evaluating coupling from different research papers, they

32

3 Quality Attributes of Microservices

somehow agree to the basic metrics to calculate coupling. It can be deduced that the
metrics to evaluate coupling use basic metrics such as a) number of operations, b)
number of provider services, and c) number of messages.

3.3.3 Cohesion Metrics

[SSPnp] defines following metric for cohesion.

SFCI(s) =
number_o f _operations_using_same_message

number_o f _operations

=
max(µ(m))

|O(s)|

where,

• SFCI is Service Functional Cohesion Index

• The number of operations using a message ’m’ is µ(m) such that mεM(s) and
|O(s)| > 0
The service is considered highly cohesive if all the operations use one common
message. This implies that a higly cohesive service operates on a small set of
key business entities as guided by the messages and are relavant to the service
and all the operations operate on the same set of key business entities [SSPnp].

[Shi+08] defines
cohesion =

ns

|M(s)|
[PRF07] defines

SIDC =
number_o f _operations_sharing_same_parameter

total_number_o f _parameters_in_service

=
nop

npt

SIUC =
sum_o f _number_o f _operations_used_by_each_consumer

product_o f _total_no_o f _consumers_and_operations

=
noc

nc ∗ |O(s)|

SSUC =
sum_o f _number_o f _sequentials_operations_accessed_by_each_consumer

product_o f _total_no_o f _consumers_and_operations

33

3 Quality Attributes of Microservices

=
nso

nc ∗ |O(s)|
where,

• SIDC is Service Interface Data Cohesion

• SIUC is Service Interface Usage Cohesion

• SSUC is Service Sequential Usage Cohesion

• nop is the number of operations in the service which share the same parameter
types

• npt is the total number of distinct parameter types in the service

• noc is the total number of operations in the service used by consumers

• nso is the total number of sequentially accessed operations by the clients of the
service

[AZR11] defines

cohesion =
max(µ(OFG, ODG))

|O(s)|
where,

• OFG and ODG are Operation Gunctionality Granularity and Operation Data
Granularity respectively as calculated in the Section 3.3.4

• µ(OFG, ODG) gives the number of operations with specific value of OFG and
ODG

The Table 3.3 gives simplified view for the cohesion metrics. The research papers
presented agree on some basic metrics such as a) similarity of the operation usage
behavior, b) commanility in the messages consumed by operations and c) similarity in
the size of operations.

3.3.4 Granularity Metrics

[SSPnp] defines
SCG = number_o f _operations = |O(s)|

SDG = size_o f _messages = |M(s)|

where,

34

3 Quality Attributes of Microservices

Research Papers Metrics Definition

1 [SSPnp]
defines SFCI which measures the fraction of operations
using similar messages out of total number of operations in the
service operations of the service

2 [PRF07]

SIDC : defines cohesiveness as the fraction of operations
based on commonality of the messages they operate on
SIUC : defines the degree of consumption pattern of
the service operations which is based on the similarity of consumers
of the operations
SIUC : defines the cohesion based on the sequential
consumption behavior of more than one operations of a service by
other services

3 [Shi+08]
cohesion is evaluated by the inverse of average number of consumed
messages by a service

4 [AZR11]

cohesion is defined as the consensus among the operations of
the service regarding the functionality and data granularity
which represents the type of parameters and the operations
importance as calculated in the the Section 3.3.4

Table 3.3: Cohesion Metrics

• SCG is Service Capability Granularity

• SDG is Service Data Granularity

[Shi+08] defines

granularity =
number_o f _operations

size_o f _messages
=
|O(s)|2
|M(s)|2

[AZR11] defines

ODG = f raction_o f _total_weight_o f _input_and_output_parameters

=

(
∑nio

i=1 Wpi

∑nis
i=1 Wpi

+
∑

njo
j=1 Wpj

∑
njs
j=1 Wpj

)

OFG = complexity_weightage_o f _operation =
Wi(o)

∑|O(S)|
i=1 Wi(o)

granularity = sum_o f _product_o f _data_and_ f unctionality_granularity

=
|O(S)|

∑
i=1

ODG(i) ∗OFG(i)

35

3 Quality Attributes of Microservices

where,

• ODG is Operation Data Granularity

• OFG is Operation Functionality Granularity

• Wpi is the weight of input parameter

• Wpj is the weight of output parameter

• nio is the number of input parameters in an operation

• njo is the number of output parameters in an operation

• nis is the total number of input parameters in the service

• njs is the total number of output parameters in the service

• Wi(o) is the weight of an operation of the service

• |O(S)| is the number operations in the service

Research Papers Metrics Definition

1 [SSPnp]
the service capability granularity is calculated by the number of
operations in a service and the data granularity by the
number of messages consumed by the operations of the service

2 [AZR11]

ODG : evaluated in terms of number of input and
output parameters and their type such as simple,
user-defined and complex
OFG : defined as the level of logic provided by
the operations of the services
SOG : defined by the sum of product of data
granularity and functionality granularity for all operations
in the service

3 [Shi+08]
evaluated as the ratio of squared number of operations of
the service to the squared number of messages consumed by
the service

Table 3.4: Granularity Metrics

The Table 3.4 presents various view of granularity metrics based on different research
papers. Based on the Table 3.4, the granularity is evaluated using some basic metrics

36

3 Quality Attributes of Microservices

such as a) the number and type of the parameters, b) number of operations and c)
number of messages consumed.

3.3.5 Complexity Metrics

[ZL09] defines

RIS =
IS(si)

|S|

RCS =
coupling_o f _service
number_o f _services

=
CS(si)

|S|
where,

• CS(si) gives coupling value of a service

• |S| is the number of services to realize the application

• IS(si) gives importance weight of a service in an application

The complexity is rather obtained by relative coupling than by coupling on its own.
A low value of RCS indicates that the coupling is lower than the count of services where
as RCS with value 1 indicates that the coupling is equal to the number of services. This
represents high amount of complexity.
Similarly, a high value of RIS indicates that a lot of services are dependent upon the
service and the service is of critical value for other services. This increases complexity
as any changes or problem in the service affects a large number of services to a high
extent.
[AZR11] defines

Complexity(s) =
Service_Granularity
number_o f _services

=
∑|O(s)|

i=1 (SG(i))2

|S|

where,

• |S| is the number of services to realize the application

• SG(i) gives the granularity of ith service
calculated as described in the Section 3.3.4

37

3 Quality Attributes of Microservices

Research Papers Metrics Definition

1 [ZL09]

RCS : complexity evaluated by the degree of coupling
for a service and evaluated as the fraction of its coupling
to the total number of services
RIS : measured as the fraction of total
dependency weight of consumers upon the service to the total
number of services

2 [AZR11]
the complexity is calculated using the granunarity of service
operations

Table 3.5: Complexity Metrics

The Table 3.5 provides the way to interprete complexity metrics. The complexity is
highly dependent upong a) coupling and b) functionality granularity of the service.

3.3.6 Autonomy Metrics

[Ros+11] defines

Sel f − Containment(SLC) = sum_o f _CRUD_coe f f icients_ f or_each_Business_entity

=
1

h2 − l2 + 1

h2

∑
i=l2

∑
srεSR

(BEi,srXVsr)

Dependency(DEP) = dependency_o f _service_on_other_service_business_entities

=
∑h1i

j=L1i
∑BE

k=1 Vsrjk −∑h1i
j=L1i

∑
j2i
k=L2i

Vsrjk

nc

autonomy =

{
SLC− DEP if SLC > DEP

0 otherwise

where,

• nc is the number of relations with other services

• BEi,sr = 1 if the service performs action sr on the ith BE and sr represents any
CRUD operation and Vsr is the coefficient depending upon the type of action

38

3 Quality Attributes of Microservices

• Vsrjk is the corresponding value of the action in jkth element of CRUD matrix, it
gives the weight of corresponding business capability affecting a business entity

• l1i, h1i, l2i, h2i are bounding indices in CRUD matrix of ith service

Research Papers Metrics Definition

1 [Ros+11]

SLC : defined as the degree of control of a
service upon its operations to act on its Business entities only
DEP : given by the degree of coupling of the
service with other services
autonomy is given by the difference of SLC and DEP
if SLC > DEP else it is taken as 0

Table 3.6: Autonomy Metrics

The Table 3.6 shows a way to interprete autonomy. It is calculated by the difference
SLC-DEP when SLC is greater than DEP. In other cases it is taken as zero. So, autonomy
increases as the operations of the services have full control upon its business entities
but decreases if the service is dependent upon other services.

3.3.7 Reusability Metrics

[SSPnp] defines

Reusability = number_o f _existing_consumers

= |Sconsumers|

[Shi+08] defines

Reusability =
Cohesion− granularity + Consumability− coupling

2

The table 3.7 shows the reusability metrics evaluation. Reusability depends upon a)
coupling, b) cohesion and c) granularity. It decreases as coupling and granularity
increases.

39

3 Quality Attributes of Microservices

Research Papers Metrics Definition

1 [SSPnp]
SRI defines reusability as the number of existing
consumers of the service

2 [Shi+08]

evaluated from coupling, cohesion, granularity and
consumability of a service where consumability is the chance
of the service being discovered and depends upon the fraction
of operations in the service

Table 3.7: Reusability Metrics

3.4 Basic Quality Metrics

The Section 3.3 presents various quality metrics to evaluate quality attributes based
upon different research papers. The metrics are analyzed in order to derive them in
simplest possible form. Eventually, the tables demonstrating the simplest definitions of
the metrics, shows that the quality attributes are measured on the basis of some basic
metrics. Based on the Section 3.3 and based on the research papers, this section lists
basic metrics.

Considering the Table 3.8, it can be deduced that cohesion of a service increases with
the number of operations using similar messages, using similar parameters and serving
same consumer. The same process can be followed for other quality attributes.

40

3 Quality Attributes of Microservices

Metrics C
ou

pl
in

g

C
oh

es
io

n

G
ra

nu
la

ri
ty

C
om

pl
ex

it
y

A
ut

on
om

y

R
eu

sa
bi

lit
y

1 number of service operations invoked by the service + + - -
2 number of operation using similar messages + +
3 number of operation used by same consumer + +
4 number of operation using similar parameters + +
5 number of operation with similar scope or capability + +
6 scope of operation + + -
7 number of operations + + -
8 number of parameters in operation + + -
9 type of parameters in operation + + -

10 number and size of messages used by operations + + + - -
11 type of messages used by operations + +
12 number of consumer services + + - +
13 number of producer services + + - -
14 type of operation and business entity invoked by the service + + - -
15 number of consumers accessing same operation + +
16 number of consumer with similar operation usage sequence + +
17 dependency degree or imporance of service operation to other service +
18 degree of control of operation to its business entities +

Table 3.8: Basic Quality Metrics
Additionally, the effect of the basic metrics upon various quality attributes are also

evaluated and stated under each column such as ’coupling’, ’cohesion’, etc. Here, the
meaning of the various symbols to demonstrate the affect are listed below:

• + the basic metric affect the quality attribute positively

• - the basic metric inversely affect the quality attribute

• there is no evidence found regarding the relationship from the research papers

3.5 Principles based on Quality Attributes

The Section 3.1 has already mentioned that there are two distinct kinds of quality
attributes: external and internal. The external quality attributes cannot be evaluated
during design. However, the external quality attributes can be predicted using the
internal quality attributes. This kind of relationship can be used to design the services
with good quality. Moreover, it is important to identify how each internal attributes
affect the external attributes. The understanding of such relationship will be helpful

41

3 Quality Attributes of Microservices

to determine the combined effect of the quality attributes and to identify the service
with appropriate level of quality based on the requirement. The remaining part of
the section lists some principles to show existing relationship among various quality
attributes and the desired value of the quality attributes for the services.

1. When a service has large number of operations, it means it has large number of
consumers. It will highly affect maintainability because a small change in the
operations of the service will be propagated to large number of consumers. But
again, if the service is too fine granular, there will be high network coupling
[FL07; Xianp; BKM07].

2. Low coupling improves understandability, reusability and scalability where as
high coupling decreases maintainability
[Kaz+11; Erl05; Jos07].

3. A good strategy for grouping operations to realize a service is to combine the
ones those are used together. This indicates that most of the operations are used
by same client. It highly improves maintainability by limiting the number of
affected consumer in the event of change in the service [Xianp].

4. A high cohesive quality attribute defines a good service. The service is easy to
understand, test, change and is more stable. These properties highly support
maintainability [np01].

5. A service with operations those are cohesive and have low coupling, make the
service reusable [WYF03; FL07; Ma+09].

6. Services must be selected in a way so that they focus on a single business
functionality. This highly follows the concept of low coupling [PRF07; SSPnp].

7. Maintainability is divided into four distinct concepts: analyzability, changeability,
stability and testability [np01]. A highly cohesive and low-coupled design should
be easy to analyze and test. Moreover, such a system will be stable and easy to
change [PRF07].

8. The complexity of a service is determined by granularity. A coarse-grained
service has higher complexity. However, as the size of the service decreases, the
complexity of the system also increases [AZR11].

9. The complexity depends upon coupling. The complexity of a service is defined in
terms of the number of dependencies of a service, number of operations as well
as number and size of messages used by the service operations
[AZR11; SSPnp; Lee+01].

42

3 Quality Attributes of Microservices

10. The selection of an appropriate service has to deal with multi-objective opti-
mization problem. The quality attributes are not independent in all aspects.
Depending upon goals of the architecture, tradeoffs have to be made for mutually
exclusive attributes. For example, when choosing between coarse-grained and
fine-grained service, various factors such as governance, high network roundtrip,
etc., also should be considered [JSM08].

11. Business entity convergence of a service, which is the degree of control over
specific business entities, is an important quality for the selection of service. For
example: It is be better to create a single service to create and update an order.
In that way change and control over the business entity is localized to a single
service [Ma+09].

12. Increasing the granularity decreases cohesion but also decreases the amount of
message flow across the network. This is because, as the boundary of the service
increases, more communication is handled within the service boundary. However,
this can be true again only if highly related operations are merged to build the
service. This suggests for the optimum granularity by handling cohesion and
coupling in an appropriate level [Ma+09; BKM07].

13. As the scope of the functionality provided by the service increases, the reusability
decreases [FL07].

14. If the service has high interface granularity, the operations operates on coarse-
grained messages. This can affect the service performance. On the other hand,
if the service has too fine-grained interface, then there will be a lot of messages
required for the same task, which then can again affect the overall performance
[BKM07].

3.6 Relationship among Quality Attributes

In order to determine the appropriate level of quality for a service, it is also important
to know the relationship between various quality attributes. This knowledge will be
helpful to decide tradeoffs among the quality attributes in the situation when it is
not possible to achieve best of all. Based on the Section 3.2 and the Section 3.5, the
identified relationship among the quality attributes are shown in the Table 3.9.

Here, the meaning of the various symbols showing nature of relationship are listed
below:

43

3 Quality Attributes of Microservices

Quality Attributes Coupling Cohesion Granularity

1 Coupling - +
2 Cohesion -
3 Granularity +
4 Complexity + +
5 Reusability - + -
6 Autonomy -
7 Maintainability - + -

Table 3.9: Relationship among quality attributes

• + the quality attribute on the column affects the quality attribute on the corre-
sponding row positively

• - the quality attribute on the column affects the quality attribute on the corre-
sponding row inversely

• there is no enough evidence found regarding the relationship from the research
papers or these are same attributes

Based on the Table 3.9, if granularity of a microservice increases then coupling of other
microservices on it, will also increase. Similarly, relationship among other quality
attributes can also be derived using the table. The idea regarding impact of various
quality attributes amongst each other can be helpful to make decision regarding trade
offs.

3.7 Summary

There is no doubt that the granularity is an important aspect of a microservice. However
there are other different factors such as coupling, cohesion, etc., which affect the
granularity as well as the overall quality of the service. Again, knowing the way to
evaluate these qualities in terms of a quantitative figure can be helpful for easy decision
regarding quality. However, most of the metrices are quite complex so the Section
3.4 compiled these complex mectrics in terms of simple metrices. The factors used to
define these basic metrices are the ones which are easily accessible to developers and
architects during desigin and development phases. So, these basic metrices can be an
efficient and easy way to determine quality of microservices.
Moreover, the external quality attributes such as reusability, scalability, etc., can be
controlled by fixing internal quality attributes such as coupling, cohesion, autonomy, etc.

44

3 Quality Attributes of Microservices

So, finding an easy way to evaluate and fix internal quality attributes can eventually
make it easier to achieve microservices with satisfactory value of external quality
attributes.
Nevertheless, the quality attributes are not mutually exclusive but are dependent on
each other. The Table 3.9 shows basic relationship among them. The table can be
helpful when needed to perform trade-offs among various quality attributes depending
upon goals.

3.8 Problem Statement

Having collected important concepts regarding various quality attributes, which is
one of the major drivers for defining architecture as mentioned in the Section 1.4, the
next important concept is to find the process of modeling microservices as stated in
the Table 1.2. The quality attributes can be a major input for deciding the process of
identifying microservices in a problem domain.

45

4 Modeling Microservices

In this chapter, various approaches to model microservices are identified from literature.
Precisely, two distinct approaches are described in the Section 4.2 and the Section 4.3
respectively. For each process, a detailed set of steps are formulated. Finally, in order
to make it clear, an example problem domain is taken, which is then broken down into
microservices using each of these two distinct models.

4.1 Introduction

In the previous chapters, granularity and other quality attributes of a microservice are
discussed. The qualitative as well as quantitative aspects of granularity are discussed.
Additionally, various quality metrics were discussed to measure different quality
attributes of a microservce. Moreover, a set of principle guidelines and basic metrics to
determine the quality of the microservices, are also listed.
In addition to that, it is equally important to agree on the process to identify the
microservices. In this chapter, various ways to model microservices are discussed.
Basically, there are three high level approaches to identify services: Top-down, bottom-
up and meet-in-the-middle [RS07][Ars04].
The top-down approach defines the process on the basis of the business model. At first,
various models are designed to capture the overall system. Using the overall design,
services are identified upfront in the analysis phase [RS07][Ars04].
The next approach is bottom-up, which relies on the existing architecture and existing
application. The existing application and architecture are studied to identify the
cohesion and consistency of the features provided by various components of the system.
This information is used to aggregate the features and identify services in order to
overcome the problems in the existing system [RS07][Ars04].
Finally, the meet-in-the-middle approach is a hybrid approach of both top-down and
bottom-up approaches. In this approach, the complete analysis of system is not
performed upfront as the case of top-down approach. Where as, a set of priority areas
are identified and used to analyse their business model resulting in a set of services.
The services thus achieved are further analysed critically using bottom-up approach to
identify problems. The problems are handled in next iterations where the same process
as before is followed. The approach is continued for other areas of the system in the

46

4 Modeling Microservices

order of their priority [RS07][Ars04].
Considering the motive of the thesis, which is mainly concerned with green field
development, top-down approaches is taken into consideration. In this chapter, two
different top-down approaches are explained in detail.

4.2 Modeling using Use Cases

A use case is an efficient as well as a fancy way of capturing requirements. Another
technique of eliciting requirement is by features specification. However, the feature
specification technique limits itself to answer only "what the system is intended to
do". On the other hand, use case goes further and specifies "what the system does
for any specific kind of user". In this way, it gives a way to specify and futhermore
validate the expectations as well as concerns of stakeholders at the very early phase
of software development. Undoubtedly for the same reason, it is not just a tool for
requirement specification but an important software engineering technique which
guides the software engineering cycle. Using use cases, the software can be developed
to focus on the concerns that are valueable to the stakeholders and test accordingly
[NJ04].
It can be valueable to see the ways it has been defined.

Definition 1:

"A use case is a sequence of actions performed by the system to yield an observable
result of value to a particular user" [Jac87].

Definition 2:

"A use case is a description of a set of sequences of actions, including variants, that a
system performs that yield an observable result of value to an actor" [RJB99].

4.2.1 Use Cases Refactoring

According to [Jac87] it is not always intuitive to modularize use cases directly. As
per the definitions provided in the Section 4.2, a use case consists of a number of
ordered functions together to accomplish a certain goal. [Jac87] defines these cohesive
functionalites distributed across use cases as clusters. And the process of identifying the
clusters scattered around the use cases, is the process of identifying services. According

47

4 Modeling Microservices

to research papers [NJ04] and [Jac03], use cases possibly consist of various cross-cutting
concerns. The research papers use the term ’use case module’ to define the cohesive set
of tasks. Figure 4.1 demonstrates the cross cutting functionalities needed by a use case
in order to accomplish its goal. For example, the ’use case A’ has to perform separate
functionalities on different domain entities X and Y. Similarly, the ’use case B’ needs to
perform distinct functions on entities X, Y and Z.

Figure 4.1: Use cases with cross-cutting concerns [NJ04]

This situation prompts for the analysis of the use cases for cross cutting tasks and
refactoring of the use cases in order to segregate the cohesive functionalities. Refac-
toring helps to achieve the right level of abstraction and granularity by improving
functionality cohesion as well as elimination of redundancy and finally promoting the
reusablity [DK07].
Furthermore, the refactoring is assisted by various relationships in use case model to
represent dependencies between use cases, which are a) include, b) generalization and
c) extend [NJ04].

4.2.2 Process for Use Cases Refactoring

In order to refactor the use cases and finally map use cases to the services, the research
papers [KY06], [YK06] and [DK07] provide a comprehensive method. In this approach,
use case models are first created and then refactored to create new set of use cases
to accomplish high cohesion in functionality and loose coupling. This will ultimately

48

4 Modeling Microservices

create use cases supporting modularity [Far08]. There are three distinct steps for service
identification using service refactoring.

1. TaskTree Generation
In this step, the initial use case model created during problem domain analysis
is used to create task trees for each distinct use case. The task trees provide
sequence of individual tasks required to accomplish the goal of the respective use
cases [KY06] [YK06] [DK07].

2. Use Cases Refactoring
In this step, the task tree generated in the previous step is analysed. As already
mentioned in the Section 4.2.1, the initial use cases consist of various cross cutting
functionalities which acts on different business entities. In order to minimize
that, refactoring is performed. The rules are discussed in the Section 4.2.3 [KY06]
[YK06] [DK07].

3. Service Identification
The use cases achieved after refactoring have correct level of abstractions and
granularity, representing cohesive business functionality. The resulting individual
use cases promote reuse of common functionality [DK07]. Furthermore, the
approach considers the concerns of stakeholders in terms of cohesive business
functionalities, to be represented by use cases [Far08]. Additionally, the process
also clarifies the dependencies between various use cases. Thus, the final use cases
obtained can be directly maped to individual services [KY06] [YK06] [DK07].

4.2.3 Rules for Use Cases Refactoring

The various refactoring rules according to the research papers [KY06], [YK06] and
[DK07] are discussed in this section. The context is first defined before distinct rules
are presented.

Context 1

If U represents use case model of the application, ti represents any task of U and T
being the set of tasks of U. Then, ∀ti ∈ T, ti exists in the post-refactoring model U’. The
refactoring of a use case model preserves the set of tasks.

49

4 Modeling Microservices

Context 2

A refactoring rule R is defined as a 3-tuple (a. Parameters, b. Preconditions and c.
Postconditions). Parameters are the entities involved in the refactoring, precondition
defines the condition which must be satisfied by the use case u in order for R to be
applied in u. Postcondition defines the state of U after R is applied.
The various refactoring rules are listed below.

4.2.3.1 Decomposition Refactoring

When the use case is complex and composed of various functionally independent tasks,
the tasks can be taken out of the task tree for the use case and represented as a new
use case. The Table 4.1 shows the decomposition rule in detail.

Parameters
u: a use case to be decomposed
t: represents task tree of u
t’: a subtask tree of t

Preconditions t’ is functionally independent of u

Postconditions
1. new use case u’ containing task tree t’ is generated
2. a dependency is created between u and u’

Table 4.1: Decomposition Rule

4.2.3.2 Equivalence Refactoring

If the two use cases share their tasks in the task tree, we can conclude that they are
equivalent and redundant in the use case model. The Table 4.2 shows the rules for the
refactoring.

Parameters u1 , u2: two distinct use cases
Preconditions the task trees of u1 and u2 have same behavior

Postconditions
1. u2 is replaced by u1

2. all the relationship of u2 are fulfilled by u1

3. u2 has no relationship with any other use cases

Table 4.2: Equivalence Rule

50

4 Modeling Microservices

4.2.3.3 Composition Refactoring

When there are two or more small-grained use cases such that they have related tasks,
the use cases can be represented by a composite single use case.

Parameters
u1, u2: the fine-grained use cases
t1, t2: the task trees of u1 and u2 respectively

Precondition t1 and t2 are functionally related.

Postconditions

1. u1 and u2 are merged to a new unit use case u
2. u has new task tree given by t1 ∪ t2

3. the dependencies of u1 and u2 are handled by u
4. u1 and u2 are deleted along with their task trees t1 and t2

Table 4.3: Composition Rule

4.2.3.4 Generalization Refactoring

When multiple use cases share some volume of dependent set of tasks in their task
trees, it can be implied that the common set of tasks can be represented by a new use
case. The Table 4.4 provides the specific of the rule.

Parameters
u1 , u2: two distinct use cases
t1 , t2: task trees of u1 and u2 respectively

Precondition t1 and t2 share a common set of task t = {x1, x2...xn}

Postconditions

1. a new use case u is created using task tree t = {x1, x2...xn}
2. relationship between u with u1 and between u with u2 is created
3. the task tree t = {x1, x2...xn} is removed from task tree of both u1 and u2

4. the common relationship of both u1 and u2 are handled by u and
removed from them

Table 4.4: Generalization Rule

4.2.3.5 Merge Refactoring

When first use case is just specific for second use case and the second use case is only
the consumer for it, the two use cases can be merged into one.

51

4 Modeling Microservices

Parameters
u, u’: the use cases
r defines the dependency of u with u’
t, t’: the task trees of u and u’ respectively

Precondition there is no dependency of other use cases with u’ except u

Postconditions
1. u’ is merged to u
2. u has new task tree given by t ∪ t′

3. r is removed

Table 4.5: Merge Rule

4.2.3.6 Deletion Refactoring

When a use case is defined but no relationship can be agreed with other use cases or
actors then it can be referred that the use case represent redundant set of tasks which
has already been defined by other use cases.

Parameters u: a distinct use case
Precondition the use case u has no relationship with any other use cases and actors

Postconditions the use case u is deleted

Table 4.6: Deletion Rule

4.2.4 Example Scenario

In this section, a case study is taken as an example, which is modeled using use case.
Finally, the use case model is refactored using the rules listed by 4.2.3.

Case Study

The case study is about an international hotel named ’XYZ’ which has branches in
various locations. In each location, it offers rooms with varying facilities and prices.
In order to make it easy for customers to find rooms irrespective of the location of
the customers, it is planning to offer an online room booking application. Using this
application, any registered customer can search for a room according to his/her re-
quirement in any location. When customer is satisfied, the room can be booked online.
The customer is sent notification by email after booking. During the starting days of
the application, the payment is accepted in person only, after the customer gets into
the respective branch. Finally, if the customer wants to cancel the room, he/she can do

52

4 Modeling Microservices

online anytime. The customer will also be notified by e-mail to confirm the cancelation
of booking. It is an initial case study so only important features and conditions are
considered here.

The remaining part of this section presents the steps to indentify the services us-
ing use cases refactoring following the process defined in the Section 4.2.2 and rules
presented in the Section 4.2.3.

Step 1:

The initial analysis of the case study produces use case model shown by figure 4.2.

Figure 4.2: Initial Use Case Model for Online Room Booking Application

Step 2:

For each use case, task trees are generated listing the functionalities needed to ac-
complish the desired goal of the respective use cases.

53

4 Modeling Microservices

Use Case Task Tree

book room

customer enters login credentials
system validates the credentials
customer enters location and time details for booking
system fetch the details of empty rooms according to the data provided
system displays the details in muliple pages
customer choose the room and submits for booking
system generates a booking number
System updates the room
system sends notification to the customer regarding booking

cancel booking

customer enters login credentials
system validates the credentials
customer enters the booking number
system validates the booking number
customer cancels the booking
system updates the room
system sends notification to the customer regarding cancelation

view room details

customer enters login credentials
system validate the credentials
customer enter location and time
system fetch the details of empty rooms according to the data provided
system display the details in multiple pages

Table 4.7: Task Trees for Initial Use Cases

Step 3:

The initial task trees created for each use case at Step 2 is analysed. There are quite
a few set of tasks which are functionally independent of the goal for respective use
case. Similarly, there are few tasks which are common in multiple use cases. The
following Table 4.8 lists those tasks from the tasks trees 4.7 which are either functionally
independent from their corresponding use cases or common in multiple use cases.

54

4 Modeling Microservices

Tasks Type Tasks

Independent Tasks

system validates the credentials
system fetch the details of empty rooms according to the data provided
system generates a booking number
system validates the booking number
system updates the room
system sends notification to the customer

Common Tasks

system validates the credentials
system fetch the details of empty rooms according to the data provided
system updates the room
system sends notification to the customer

Table 4.8: Common and Independent Tasks

Now, for independent tasks the decomposition rule explained by 4.1 can be applied
and for common tasks, the generalization rule given by 4.4 can be applied. The use
cases obtained after applying these rules are shown by the Figure 4.3

Figure 4.3: Use Case Model after applying Decomposition and Generalization rules

Step 4:

55

4 Modeling Microservices

The use case model 4.3 obtained in Step 3 is analysed again for further refactoring. It
can be seen that the use cases ’fetch room details’ and ’update room’ are fine-grained
and related to same business model ’Room’. Similarly, the use cases ’generate booking
number’ and ’validate booking number’ are related to the business entity ’Booking
Number’. The composition rule listed by 4.3 can be applied to these use cases, which
will then result in use case model shown by the Figure 4.4

Figure 4.4: Use Case Model after applying Composition rule

Step 5:
Finally, the use cases obtained in step 4 is used to identify the service candidates. The
final use cases obtained in Step 4 have appropriate level of granularity and cohesive
functionalities. Most importantly, the refactoring has now separated the cross cutting
concerns in terms of various reusable fine-grained use cases as shown by the Figure 4.4.
If we compare the the final use case model shown by the Figure 4.5 with respect to the
Figure 4.1, then it can be implied that the functionalities operating on business entities
as well as the business logic serving separate concerns are separated and represented
by individual use cases. So, the each use case can be mapped to individual services.
The services are as listed in the bottom of the Figure 4.5.

56

4 Modeling Microservices

Figure 4.5: Use Case Model for identification of service candidates

Microservices Layers
The services obtained as shown in the Figure 4.5 from the refactoring process, creates
various levels of abstractions. The levels of abstractions represents different level of
functionality. The services at the bottom layer are core services which serve many higher
level services. These services are not dependent on any other services. ’Notification’
and ’Authentication’ are core services obtained from refactoring. The layer above the
core layer is business layer. The business services can either have entity services, which
control some related business entities or can have task services which provides some
specific business logic to higher level services. ’Room’ and ’Booking Number’ are the
entity services obtained from refactoring. Finally, the top layer is mashup layer which
contains high level business logic and collaborates with business services as well as
core services. ’Room mashup’ , ’Booking’ and ’Booking Cancelation’ are orchestration
layer services. The individual services as well as their respective layers are shown in
the Figure 4.5 [Far08][Emi+np][Zim+05].

57

4 Modeling Microservices

4.3 Modeling using Domain Driven Design

Understanding the problem domain can be a very useful way to design software. The
common way to understand the problem domain and communicate them to the team
is by using various design models. The design models are the abstraction as well as
representation of the problem space. However, when the abstractions are created, there
are chances that important concepts or data are ignored or misread. This can highly
impact the quality of software produced. The software thus developed may not reflect
the real world situation or problem entirely.
Domain Driven Design provides a way to represent the real world problem space so
that all the important concepts and data from real world remains intact in the model.
The domain model thus captured respects the differences as well as the agreement in
the concepts across various parts of the problem space. Moreover, it provides a way to
divide the problem space into manageable independent partitions and makes it easy
for developers as well as all stakeholders to focus on the area of concern and be agile.
Finally, the domain models act as the understandable common view of the business for
both the domain experts as well as the developers. The domain driven design makes
sure that the software developed complies with business needs [Eva03][Ver13].

4.3.1 Process to implement Domain Driven Design

There are three basic parts to implement domain driven design:

1. Ubiquitous Language

2. Strategical Design

3. Tactical Design

As the focus is to describe the process of modeling microservices, only the first two
parts are relevant and are discussed in the later part of this chapter.

4.3.1.1 Ubiquitous Language

Ubiquitous Language is a common language agreed among domain experts and
developers in a team. It is important to have a common understanding about the
concepts of a problem domain and ubiquitous language is the way to assure that.
Domain Experts understand the domain in terms of their own jargon and concept. It is
difficult for a developer to understand them. Usually, during desing and development,
developers translates those jargons into the terms that they understand easily. However

58

4 Modeling Microservices

along the way of translation, major domain concepts can get lost and the immediate
value of the resulting solution might decrease tremendously. In order to prevent
creation of such low valued solution, there should be an approach to define common
vocabularies and concepts understood by all domain experts as well as the developers.
These common vocabularies and concepts make the core of the ubiquitous language
[Eva03][Ver13].
In addition to the common vocabularies and concepts, domain models provide backbone
to create ubiquitous language. The domain models represent not only artifacts but
also define functionalities, rules and strategies. It is a way to express the common
understanding in a visual form, providing an easy tool to comprehend [Eva03][Fow06b].
According to [Fow03], domain model should not be confused with data model. The
data model represents the business in datacentric view however each domain object
contains data as well as logic closely related to the data contained. Domain models are
conceptual models rather than software artifacts but can be effectively visualized using
UML [SR01].

Figure 4.6: Process to define Ubiquitous Language [Eva03]

59

4 Modeling Microservices

The Figure 4.6 visualizes the process of discovering the ubiquitous language in any
problem domain. It is not a time discrete phenomenon but a continous procedure with
various phases occuring in a cycle throughout the development.
Firstly, on arrival of any new term, concept or any confusion, the contextual meaning
of those terms are made clear before adding to the domain vocabulary. Secondly, the
vocabularies and concepts are used to create various domain models following UML.
The domain models and various vocabularies form the common laguage among domain
experts and developers within the team. It is very important to use only domain vocab-
ularies for communication and understanding which helps to reflect the hidden domain
concepts in the implementation. Additionally, it also creates opportunities to find new
vocabularies and refine existing ones in the event of confusion or disagreement [Eva03].
Thus, the common vocabulary and domain models form the core of the ubiquitous
language and the only way of coming up with the better ubiquitous language is by
applying it in communication extensively. Ubiquitous language is not just a collection
or documentation of terms but is the approach of communication within a team.

4.3.1.2 Strategical Design

When applying model-driven approach to an entire enterprise, the domain models
get too large and complicated. It becomes difficult to analyze and understand all at
once. Furthermore, it gets worse as the system gets bigger and complex. The strategical
design provides a way to divide the entire domain models into small, manageable and
inter-operable parts which can work together with low inter-dependency in order to
provide the functionalities of the entire domain. The goal is to divide the system into
modular parts which can be easily integrated. Additionally, the all-cohesive unified
domain models of the entire enterprise cannot reflect differences in contextual vocabu-
laries and concepts [Fow14a][Eva03][Ver13].
The strategical design specifies two major steps which are crucial in identifying mi-
croservices.

Step 1: Divide problem domain into subdomains

The domain represents the problem space solved by the software. The domain can
be divided into various sub-domains based on the organizational structure of the
enterprise and each sub-domain being responsible for certain area of the entire problem
space. The Research Paper [Eng+np] provides a comprehensive set of steps to identify
sub-domains.

60

4 Modeling Microservices

1. Identify core business functionalities and map them into domain:
A core business functionality represents the direct business capability which
holds high importance and should be provided by the enterprise in order for it
to succeed. For example, for any general e-commerce enterprise, the core focus
is to receive the high amount orders from the customers and to maintain the
inventory to fulfil the orders. So, for those kind of e-commerce enterprises, ’Order
Management’ and ’Inventory Management’ are some of the core domains.

2. Identify generic and supporting subdomains:
The business capabilities which are viable for the success of business but do not
represent the specialization of the enterprise falls into the supporting subdomains.
The supporting subdomain does not require the enterprise to excel in these areas.
Additionally, if the functionalities are not specific to the business but in a way
support the business functionalities, then these are covered by generic subdo-
mains. For example: for an e-commerce enterprise, ’Payment Management’ is
a supporting subdomain whereas ’Reporting’ and ’Authentication’ are generic
subdomains [Ver13].

3. Divide existing subdomains with multiple independent strategies:
The subdomains found from earlier steps are analyzed to check if there are
mutually independent strategies to handle the same functionality. The subdomain
can then be further divided into multiple subdomains along each dimension
of strategies. For example: the ’Payment Managment’ subdomain discovered
in earlier step can have different way of handling online payment depending
upon the provider such as bank, paypal, etc. In that case ’Payment Management’
can be further divided into ’Bank Payment Management’ and ’Paypal Payment
Management’.

Step 2: Indentify bounded contexts

As stated earlier of this section, the attempt to use a single set of domain models
for the entire enterprise adds complexity for understanding and analysis. There is
another important reason for not using the unified domain models, which is called
unification of the domain models. Unification represents internal consistency of the
terms and concepts described by the domain models. It is not always possible to have
consistent meaning of terms without any contradictory rules throughout the enterprise.
The identification of the logically consistent and inconsistent domain model creates a

61

4 Modeling Microservices

boundary around domain model. This boundary will bind all the terms which share
consistent meaning from those which are different so that there is clear understanding
of the concept inside the boundary without any confusion. The shared context inside
the boundary is defined as the bounded context.
Definition 1:
" A Bounded Context delimits the applicability of a particular model so that team
members hava a clear and shared understanding of what has to be consistent and how
it relates to other contexts. A bounded context has specific functionality and explicitly
defines boundary around team organization, code bases and database schemas" [Eva03].
Definition 2:
" A Bounded Context is an explicit boundary within which a domain model exists.
Inside the boundary all terms and phrases of the Ubiquitous Language have specific
meaning, and the model reflects the Language with exactness " [Ver13].
Definition 3: " A Bounded Context is a specific responsibility enforced by explicit
boundaries" [Mik12].
Thus, the idea of bounded context provide the applicability of the ubiquitous language
inside its boundary, performing a specific responsibility. Outside the bounded contexts,
teams have different ubiquitous language with different terms, concepts, meanings and
functionalities. In addition to identify independent and specific responsibilities inside a
subdomain in order to discover bounded contexts, there are some general rules which
can be considered as well.

1. Assign individual bounded context to the subdomains identified in Step 1
Each subdomain has distinct functionalities and complete set of independent
domain models to accomplish the functionalities. Thus, one to one mapping of
subdomain and bounded context is possible ideally. However, in real cases, it
may not be always possible which can be tackled using the rules discussed in
further steps. For example: Order Management and Inventory Management are
two distinct sub-domains and also two distinct bounded context each with own
consistent ubiquitous language [Fow14a][Gor13].

2. Identify polysemes
Polysemes are the terms which have different meaning in separate contexts. If
the example of the generic subdomain ’Authentication’ is taken, it has a model
’Account’. The same model ’Account’ can refer to multiple concept such as
social account identified by e-mail or registration account identified by unique
username. The handling of these two separate concepts is also different which
clearly suggests two separate context for each within ’Authentication’ subdomain.
Additionally, there can be polysemes in two separate domains as well. For ex-

62

4 Modeling Microservices

ample: there is also ’Account’ model to identify bank account in the subdomain
’Bank Payment Management’. The identification of polysemes is vital to create
clear boundary around which the concept and handling of such polysemes are
consistent [Fow14a].

3. Identify independent generic functionality supporting the subdomain
There can be a necessity of independent technical functionality required to accom-
plish the business functionality of the subdomain only. Since it is only required
by the particular subdomain, the functionality cannot be nominated as a generic
subdomain. In such a case, the independent technical functionality can be real-
ized as a separate bounded context. For example, in the subdomain ’Inventory
Management’, the functionality of full-text search can be assigned a separate
bounded context as it is independent [Gor13].

4.3.2 Microservices and Bounded Context

Analyzing various definitions of microservices provided in Section 1.2, a list of im-
portant features with respect to specific category such as granularity or quality was
compiled in the table 1.2. In addition to the definitions of bounded context provided
in the Section 4.3.1.2, the following definition of Domain Driven Design can also be
helpful to find analogy between a microservice and a bounded context.

Definition: Domain Driven Design

"Domain Driven Design is about explaining what your company does in isolated
parts, in performing these specific parts and you can have a dedicated team to do this
stuff, and you can have different tools for different teams" [Rig15].

Using Table 1.2 and concepts extracted from various definitions of bounded con-
text as well as Domain Driven Design, the Table 4.9 is generated.

The Table 4.9 lists various features expected by a microservices. Additionally, it also
shows that the tabulated features are fulfilled by a bounded context. Thus, it can
be implied that a microservice is conceptually analogous to a bounded context. The
Section 4.3.1 provided the detailed process to discover bounded contexts within a large
domain, which ultimately also provides guidelines to determine microservices using
domain driven design approach.
Furthermore, there can be found enough evidence regarding the analogy as well as

63

4 Modeling Microservices

Expected features of a microservice Fulfilled by Bounded Context

1 Loosely coupled, related functions X
2 Developed and deployed independently X
3 Own database X
4 Different database technologies X
5 Build around Business Capabilities X
6 Different Programming Languages X

Table 4.9: Analogy of Microservice and Bounded Context

practical implementation of the concept. The table lists various articles which agree on
the analogy and in most cases, have utilized the concepts to create microservices in real
world.

Articles Agreement on the Concept Utilized Bounded Context to create Microservices

1 [Mau15] X X
2 [Hug14] X
3 [FL14] X
4 [Sok15] X
5 [Day+15] X X
6 [Rig15] X
7 [Bea15] X X
8 [KJP15] X X
9 [Vie+15] X X
10 [BHJ15] X X

Table 4.10: Application of Bounded Context to create Microservices

4.3.3 Example Scenario

In this section, a case study of a system is used to identify microservices following the
rules listed in the Section 4.3.1.

Case Study

The case study is for the same hotel introduced in the Section 4.2.4. The hotel ’XYZ’
is thinking of upgrading its current system and adding new business use cases in order

64

4 Modeling Microservices

to tune its competitive edge in the market.
Previously, the hotel only supported booking of the rooms, payment by cash, cancela-
tion of booking and finally viewing of the room details.
The hotel has planned to provide various package offerings to a) general customers and
b) specific group of customers satisfying certain profile. Firstly, a hotel staff creates a
package with name, description, validity time period, applicable type of room, location
of room and discount associated with the package. Furthermore, the package also
contains certain constraints such as a) maximum number of offerings and b) maximum
number of offerings per customer. The offering is represented by a coupon and has
unique indentification code. Once a package is created, the package has to be activated
by the hotel staff or the activation is triggered after certain preset time. Only the
activated packages are visible to the customers. When the customers apply for the
active packages, the customer profile is validated against the expected profile for the
package and then a new coupon is sent to the customer after a successful validation.
The room booking workflow has no changes with respect to the old system where a
customer can view list of rooms with various information and send room booking
request to the system. The system then sends confirmation with unique booking code
to the customer.
Finally, the payment can be performed by debit card or by paypal. During the payment,
the customer can specify a valid coupon. In such case, the payment system redeems
the coupon so that the respective discount represented by the coupon is deducted from
the overall price.
Additionally, a detailed report is made available for the customers showing their various
transactions with the hotel. Similarly, hotel staffs have other various types of reports
such as profit statement and room booking status.
The steps listed in the Section 4.3.1 can be used to design the system defined by the
Case Study 4.3.3.

Step 1:
With reference to the steps shown by the Figure 4.6, the first step is to find out new
domain vocabularies, understand their meaning, agree on them and use them as the
common vocabularies. The Table 4.11 lists some important domain terms taken from
the case study 4.3.3 and clarifies the meaning for each. It is interesting to notice that the
term ’Profile’ has two different meaning for ’Package’ context and ’Customer’ context,
so it is a polyseme.

65

4 Modeling Microservices

Domain Terms Definition
Package a discount offering to certain group of customers
Profile the expected characteristics of customers to be elligible to apply a package

Discount the reduction value offered in the total price for hotel service
Constraint defines the limitation of creating coupons for any package

Coupon represents the authorized assignment of a valid package to a valid customer, which can be used later
Customer Profile the current characteristics of a customer
Room Booking assignment of a room to a customer for certain period
Booking Code a unique code representing the valid room booking

Redeem Coupon request to use the coupon whereby the associated discount value is deducted from the total price
Price the total amount for the hotel service

Table 4.11: Domain Keywords

Step 2:
Next, the subdomains are identified following strategical design discussed in the Sec-
tion 4.3.1.2. The core domains, supporting domains and generic domains are identified
and listed in the Table 4.12.

Core Domains
1 Package
2 Booking
3 Checkout

Supporting Domains
1 Payment
2 User Management

Generic Domains
1 Reporting
2 Authentication

Table 4.12: Subdomains

The supporting domain "User Management" has different strategy for Customers and
Staffs so can be further divided into "Customer Management" and "Staff Management"
subdomains. Similarly, using the same rule, the "Payment" subdomain can also be
further divided into "Paypal" and "CardPayment". The bounded contexts identified in
the supporting domains "User Management" and "Payment" are shown in the Table
4.13.

66

4 Modeling Microservices

1 Payment
1.1 Paypal
1.2 CardPayment

2 User Management
2.1 Customer Management
2.2 Staff Management

Table 4.13: Bounded Contexts in Subdomains

Step 3:
The next action is to identify bounded context following the process described in the
Section 4.3.1.2. The process is implemented in each subdomains. In order to accomplish
this, domain models can be constructed for each subdomain. Along the process, the
various ambguities in the domain models and clear understanding of the concepts are
made visible. This helps to achieve consistent ubiquitious language with the unification
of domain models as well as shared vocabulary inside each subdomain. The boundary
around the uniform and consistent domain models represents the bounded contexts.
Additionally, the rules listed in the Section 4.3.1.2 can be applied wherever appropriate
to identify bounded contexts. The following Section will provide the analysis of major
subdomains for identifying the bounded contexts within.

Customer Management

Figure 4.7: Domain Model for Customer Management

67

4 Modeling Microservices

The management of customer includes two distinct tasks which are managing the
customer itself and management of attributes of each customer representing profile
of the customer at any point of time. Although, these two functionalities are related
to the customer, they are actually loosely coupled and have different performance re-
quirement. For eg: the change in the decision of adding attribute to a customer profile
does not change the way customer is managed and also the rate at which customer
profile is updated is definitely higher than the rate at which customer is managed.
Additionally, not all the attributes from customer is relevant to customer profile which
makes ’Customer’ a polyseme and a shared model between the two bounded contexts
’Customer’ and ’Profile’.

Booking

Figure 4.8: Domain Model for Booking

The Figure 4.8 shows the domain models of "Booking" subdomain. All the domain
models and terms inside the subdomain are consistent and clear. However, the models
’Room’, ’Customer’, ’Booking’ and ’Code’ are closely related to booking functionality
whereas the functionality of generating the booking code can be considered indepen-
dent of booking. This gives two loosely coupled bounded contexts: "Booking" and
"Booking Code". It is also interesting to notice that the models ’Customer’ and ’Room’
are polysemes for the bounded contexts a) ’Customer’ and b) ’Room’.

68

4 Modeling Microservices

Checkout

Figure 4.9: Domain Model for Checkout

The overall billing price calculation during checkout, which includes a) validation
of coupon and b) redeem of the coupon over the total price, is independent of the
orchestration logic during checkout. The subdomain can be realized into two different
bounded contexts ’Checkout’ and ’Price’. Additionally, the domain models ’Customer,
’Discount’, ’Room’, ’coupon’ and ’price’ are polysemes for these bounded context with
respect to other bounded contexts.

Package Management

Figure 4.10: Domain Model for Package Management

69

4 Modeling Microservices

The logic of package management can be considered independent of the way coupon
is generated and validated. The packages are created by staff memeber whereas a
coupon is created upon receiving a request from customer. Additionally, these are very
specific and independent responsibilities, eligible of having own bounded contexts.
The only data shared by these bounded contexts are about the information regarding
eligible rooms and discount values. It should be made clear at this point that the
’Profile’ domain model here is very different than ’Profile’ domain model from ’Profile’
boundend context of ’Customer Management’ subdomain. In here, ’Profile’ model
defines the attributes of generic customer eligible for a specific package, however the
’Profile’ domain model in ’Profile’ bounded context provides the updated characteristics
of any individual customer at the current moment. Similarly, the models such as
’Customer’ and ’Room’ are polysemes.
The same process can be applied to identify bounded contexts for rest of the subdo-
mains.

4.4 Summary

The use cases refactoring process discussed in the Section 4.2 highlights an important
concept regarding use cases fulfilling multiple cross-cutting concerns and provides
an approach of breaking down these concerns into individual use case modules,
each focused on cohesive tasks. This kind of decomposition truely relates to the
characteristics of microservices. On the other hand, domain driven design technique
presented in the Section 4.3 provides a different approach and focus on understanding
the problem domain well using ubiquitous language, dividing the big problem domain
into multiple manageable sub-domains and then finally using the concept of bounded
context to determine individual microservices. The microservices thus obtained are
autonomous and focus on single responsibility.
The use cases refactoring process utilizes use cases as its modeling tool, which is not
only easy but also the familiar tool for architects and developers. This makes use
cases refactoring a faster approach to decompose a problem domain. Whereas, domain
driven design has ubiquitous language and bounded context at its core. Both of these
concepts are complex and new to most architects as well as developers. At the same
time, understanding problem domain correctly at the first attempt is difficult and the
understanding process can take quite a few iterations to get the decomposition right.
Thus, domain driven design is not the faster approach of modeling microservices.
Visualizing a problem domain in terms of diferent use cases seems like a natural way
but dividing a big problem domain into smaller independent manageable sub-domains
as stated by domain driven desing, can be a smarter way to decompose. So, in case of

70

4 Modeling Microservices

big and complex problem domain, it can be very difficult to visualize in terms of large
number of big use cases trees and task trees. This may lead to microservices without
appropriate level of granularity and quality attributes.
A good thing about use cases refactoring is that it provides very easy way to break
down use cases along various level of functionalites or abstractions. However, it
undermines another crucial concept which is data ownership and data decompostion.
In use cases refactoring, an explicit assumption is made about an entity model being
a single source of truth for whole domain, but it is rarely true. Using this approach
does not necessarily produce autonomous services. However, the concept of ubiquitous
lanugage and bounded context used by domain driven design, highly focus on different
and unique local representation of same entity. This highly favors the autonomy of
the resulting microservices. At the same time, the bounded contexts are responsible
for small sets of cohesive functionality. This adheres to single responsibility principle.
Thus, bounded context represents the appropriate size for a microservice.

4.5 Problem Statement

It is interesting to understand the various strategies defined in the literature to decom-
pose a problem domain into microservices. The concept of microservices architecture is
getting very popular recently among a lot of industries. So, the understanding of the
process used in industries can also add bigger value to the thesis. For this reason, the
next step is to study architecture at SAP Hybris as well as the process it followed for
modeling microservices to build its commerce platform.

71

5 Architecture at SAP Hybris

In this chapter, a detailed research of the architecture conducted at SAP Hybris is
discussed. First, the Section 5.2 clarifies the vision of "Hybris as a Service" [YaaS]. Then,
the basic principles for modeling and developing microservices are listed in the Section
5.3. In order to perceive a clear understanding about modeling and deployment process
at SAP Hybris, the Section 5.4 presents detailed interviews conducted with various
key personnels. The modeling process deduced from the interviews is discussed in the
Section 5.5, which is further clarified with an example in the Section 5.6. Finally, the
process of continuous deployment followed at SAP Hybris, which is one of the major
processes when using microservices, is discussed in the Section 5.7.

5.1 Overview

YaaS provides a variety of business services related to different domains such as Com-
merce, Marketing, Billing, etc. Using these offered services, the developers can create
their own business services while focusing more on their own business requirements.
The Figure 5.1 provides the overview of YaaS. YaaS provides various business processes
as a service (bPaaS) essential to develop other applications and services, thus filling up
the gap between SaaS and PaaS.

72

5 Architecture at SAP Hybris

Figure 5.1: YaaS and HCP [Hir15]

5.2 Vision

The vision of YaaS can be made clear with the following statement.

"A cloud platform that allows everyone to easily develop, extend and sell services
and applications" [Stu15].

Additionally, the vision at SAP Hybris can be broadly categorized into following
objectives.

1. Cloud First
The different parts of the application must be independently scalable [Stu15].

2. Autonomy
The development teams should be able to a) develop their modules independent
of other teams and b) freely choose the technology that fits the job [Stu15].

3. Retain Speed
The new features can only be of high value to customers if they are released as
quickly as possible [Stu15].

73

5 Architecture at SAP Hybris

4. Community
It should be possible for the components to be shared across internal and external
developers [Stu15].

The keywords from the various definitions of microservices discussed in the Section
1.2 as well as the characteristics of microservices signifies clearly that microservices
architecture can be a good fit for the YaaS architecture.

5.3 SAP Hybris Architecture Principles

The Agile Manifesto [Bec+11] provides various principles to develop a good software
by minimizing the time for delivering new features. It emphasizes on fast response
to the requirement changes by continuous delivery of software artifacts with close
collaboration between customer and self-organizing teams.
The Reactive Manifesto [Bon+14] lists various qualities of a reactive system which
includes a) responsiveness (acceptable consistent response time, quick detection of a
problem), b) resilience (responsive during the event of a failure) , c) elasticity (respon-
sive during varying amount of workloads), d) asynchronous message passing and e)
loose coupling.
Furthermore, the twelve factors from Heroku [Wig12] provides a methodology for min-
imizing time and cost to develop software applications as services. It emphasizes on a)
scalability of applications, b) explicit declaration as well as isolation of dependencies
among the components and c) multiple continuous deployments from a single version
controlled codebase with separate pipelines to build, release and run.
Finally, the microservices architectural approach provides techniques for developing
an application as a collection of autonomous small sized services, focused on a single
responsibility [Section 1.2]. It recommends to deploy microservices independently
and suggests to use lightweight mechanisms such as HTTP for communication among
the microservices. The architecture offers various advantages, few of them are a)
independent scalability of each microservice, b) resilience achieved by isolating failure
in a component and c) technology heterogeneity among various development teams
[New15].
Following the principles mentioned above, a list of principles is compiled to be used as
guidelines for creating microservices at SAP Hybris [Stu15].

The y-Factors

74

5 Architecture at SAP Hybris

1. Self-Sufficient Teams
The teams have freedom for any decision related to the design and development
of their components. This freedom is balanced by the responsibility for the team
to handle the complete lifecycle of their components including a) deployment,
b) operation, c) performance enhancement in production and d) troubleshoot in
case of any problems [Stu15].

2. Open Technology Landscape
The teams are independent to choose any technology that they believe fits the
requirement. They are completely responsible for the quality of their product.
This gives the teams a feeling of ownership and satisfaction for their products
[Stu15].

3. Release Early, Release Often
The agile manifesto and twelve factors from Heroku also recommends continuous
delivery of product to the clients. This decreases time of feedback and results in a
high customer satisfaction [Bec+11] [Wig12] [Stu15].

4. Responsibility
The teams work directly with the customers on the behalf of their products.
They need to work on the feedbacks provided by the customers. This increases
the quality of the products and improves relationship with customers. All the
responsibilities such as a) scaling, b) maintenance, c) support and d) feature
enhancement are handled by the respective teams [Stu15].

5. APIs First
API is a contract between the service and the consumers. The decision regarding
the design and the development of API is very crucial. API can be one of the
greatest assets if it is good, otherwise it can be a huge liability [Blo16]. The
articles [Blo16] and [Bla08] list various characteristics of good API such as a)
simplicity, b) extensibility, c) maintainability, d) completeness, e) small and f)
single functionality. Furthermore, a good approach to develop an API is to first
design iteratively before starting implementation immediately. It is important in
order to understand the requirement clearly. Another important aspect of a good
API is a complete and updated documentation.

6. Predictable and Easy-to-use UI
The user interfaces should be simple, consistent across the system and also
comply with various user-friendly patterns [Sol12]. The articles [Mar13] and
[Por16] specify additional principles to be considered when designing the user

75

5 Architecture at SAP Hybris

interfaces. A few of them are a) provide clear purpose, b) smart organization and
c) complete functionality.

7. Small and Simple Services A service should be small and focused on cohesive
functionalities. The concept closely relates to the single responsibility principle
[Mar16]. A good approach is to explicitly create boundaries around business
capabilities [New15].

8. Scalability of Technology
The choice of technologies should be cloud friendly such that the products can
scale cost-efficiently and without any delay. It is influenced by the elasticity
principle provided by the reactive manifesto [Bon+14].

9. Design for Failures The service should be responsive at the time of failure. It can
be possible by containment and isolation of failures in each component. Similarly,
the recovery should be handled gracefully without affecting the overall availability
of the entire system [Bon+14].

10. Independent Services
Services should be autonomous. Each service should be able to be deployed
independently. The services should be loosely coupled and able to be updated
independently of each other. The concept is highly enforced by exposing func-
tionalities via APIs and using lightweight network calls as the only way of
communication among services [New15].

11. Understand Your System
It is crucial to have a good understanding of the problem domain in order to
create a good design. The concept of the domain driven design strongly supports
this approach and motivates to indentify individual autonomous components,
their boundaries and the communication patterns among them. Furthermore,
it is also important to understand the expectations of the consumers regarding
performance and then to realize them accordingly. However, this can only be
possible by installing necessary operational capabilities such as a) continuous
delivery, b) monitoring, c) scaling and d) resilience [Stu15] [New15].

5.4 Modeling Microservices at SAP Hybris

With the intention to anticipate the overall belief, culture and practice followed by SAP
Hybris for developing YaaS, a number of interviews are conducted with a subset of key
personnels who are directly involved in YaaS at different roles. The list of interviewees

76

5 Architecture at SAP Hybris

with their corresponsing roles is shown in the Table 5.1. In order to preserve identity,
the real names are replaced with forged ones.

Names Roles
John Doe Product Manager

Ivan Horvat Senior Developer
Jane Doe Product Manager

Mario Rossi Product Manager
Nanashi No Gombe Product Manager

Hans Meier Architect
Otto Normalverbraucher Product Manager

Jan Kowalski Senior Developer

Table 5.1: Interviewee List

5.4.1 Hypothesis

During the process of solving the concerned research questions, various topics of high
value have been discovered. The topics are:

1. Granularity

2. Quality Attributes

3. Process to design microservices

Similarly, based on the research findings, a list of hypothesis is built for each topic
listed above.

Hypothesis 1:

The correct size of microservices is determined by:

1. Single Responsibility Principle

2. Autonomy, and

3. Infrastructure Capability

77

5 Architecture at SAP Hybris

According S. Newman, a good microservice should be small and should focus on
accomplishing one thing well. Additionally, it should be independently deployable and
updatable. This strongly suggests the requirement of SRP and autonomy respectively
[New15]. Futhermore, M. Stine also agrees that the size of a microservice should be
determined by the single responsibility principle [Sti14].
Also, the principle mentioned in 2.3.4 indicates that the advancement in the current
technology and culture of the organization influences the size of the microservices
[RS07].

Hypothesis 2:

Domain driven design is the optimum approach to design microservices.

The concept of domain driven design to design the microservices is suggested by
S. Newman and M. Fowler [New15] [FL14]. Similary, there are various projects which
are using evidence of domain driven design being to design microservices. The list of
projects is shown in the Table 4.10.

5.4.2 Interview Compilation

For each of the topics listed in the Section 5.4.1, a list of questionaires is prepared.
The questions are asked to the interviewees. In the remaining part of this section, the
responses from the interviews on the questionaires are compiled.

1. Granularity

Question 1.1

"Do you consider the size of microservices when desigining microservices architec-
ture?"

78

5 Architecture at SAP Hybris

Question 1.2

"How do you measure size of a microservice?"

Question 1.3

"What factors do you consider when you decide the size of a microservice?"

79

5 Architecture at SAP Hybris

Question 1.4

"Suppose that you do not have the agile culture like continuous integration and
delivery automation and also cloud infrastructure. How will it affect your decision
regarding microservices and their size?"

Response 1.4 John Ivan Jane Mario Nanashi Hans Otto Jan Score
No microservices at all, start with Monolith,
extract one microservice at a time as automation matures

1 1 0 1 1 1 1 1 7

Start with bigger sized microservices with
high business value, low coupling and single Responsibility

0 0 1 0 1 0 1 0 3

Question 1.5

"Are you facing any complexities because of microservices architecture and the size
you have chosen?"

Response 1.5 John Ivan Jane Mario Nanashi Hans Otto Jan Score
communication overhead in network 0 1 0 0 0 0 1 0 2

complexity in failure handling 0 1 0 0 0 0 0 0 1
Monitoring is difficult 0 1 0 0 0 0 1 0 1

Operational support is costly 0 1 1 0 0 0 0 0 2
difficult to trace a request 0 1 1 0 0 0 0 0 2

updates can be difficult due to dependencies among microservices 0 0 1 0 0 0 0 0 1

2. Quality Attributes

80

5 Architecture at SAP Hybris

Question 2.1

"Do you consider any quality attributes when selecting microservices?"

Response 2.1 John Ivan Jane Mario Nanashi Hans Otto Jan Score
Loose Coupling 1 1 1 1 1 1 1 1 8

Cohesion 1 1 1 1 1 1 0 1 7
Autonomy 1 1 0 0 0 1 1 0 4
Scalability 1 0 0 1 1 0 1 1 5

Complexity 1 0 0 0 1 0 1 0 3
Reusability 0 1 0 0 0 0 1 0 2

Table 5.2: Response 2.1

Question 2.2

"Do you consider any metrics for evaluating the quality attributes?"

Question 2.3

"Do you think the table of basic metrics can be helpful?"

81

5 Architecture at SAP Hybris

3. Process to design microservices

Question 3.1

"Do you follow specific set of consistent procedures across the teams to discover
microservices?"

Question 3.2

"Can you define the process you follow to come up with microservices?"

5.4.3 Interview Reflection on Hypothesis

The data gathered from the interviews which are compiled in the Section 5.4.2 can be a
good source to analyze the hypothesis listed in the Section 5.4.1.

82

5 Architecture at SAP Hybris

Hypothesis 1

The correct size of microservices is determined by:

1. Single Responsibility Principle

2. Autonomy, and

3. Infrastructure Capability

The responses from Question 1.3 [5.4.2] point out some important constraints which
play significant role in industries while choosing appropriate size of the microservices.
It can be deduced that the answers closely relate to the Hypothesis 5.4.1. The Figure
5.2 attempts to clarify the relationship among the terms with the hypothesis.

Figure 5.2: Attributes grouping from interview response

The interview unfolds various quality attributes affecting the correct size of a mi-
croservice. Moreover, these quality attributes can be arranged into three major groups,
which are:

1. Single Responsibility Principle

2. Automony

3. Infrastructure Capability

83

5 Architecture at SAP Hybris

The responses from the Question 1.4 [5.4.2] highly suggest the significance of proper
infrastructure to determine the size of the microservices and also the choice of using
microservices architecture. This moves in the direction to support the hypothesis.
Finally, the responses suggest one additional constraint not covered by the hypothesis,
to influence the size of the microservices, the business value provided by the microser-
vices.

Hypothesis 2

Domain driven design is the optimum approach to design microservices.
From the responses to Question 3.1 [5.4.2], it can be implied that the organization has
no consistent set of specific guidelines which are agreed and pratised across all teams.
However, the various reactions to the Question 3.2 [5.4.2] suggest that the process fall
under two classes. The representation of responses from 5.4.2 is repeated here again
for convenience 5.3.

Figure 5.3: Process variations to design microservices

According to one category of reaction, some teams functionally divide a usecase
into small functions based upon various factors such as single responsiblity and the
requirements of performance. This strongly resembles to the use cases modeling
technique described in the Chapter 4.2.
Moreover, within the same group, a partition of teams are also using the concept of

84

5 Architecture at SAP Hybris

bounded context to ensure autonomy, which resembles the domain driven design
approach mentioned in the Chapter 4.3. It is interesting to find out that some of the
teams are using the concept of bounded context implicitly even without its knowledge.
The rest of the teams who are not using bounded context, have no idea about the
concept. It can be implied that they may have different view once they get familiar
with the concept.
Finally, the rest of the interviewees agree on domain driven design approach to be the
process of designing microservices. So, the responses are of mixed nature, both use
cases modeling approach and domain driven design approach are used in desigining
microservices. However, it should also be stated that domain driven design are used
on its own or along with usecase modeling to design the autonomous microservices.

5.5 Modeling Approach at SAP Hybris derived by interview
compilation

The responses from the interviews compiled in the Section 5.4.2 are analyzed for each
topic listed in 5.4.1 separately.

Granularity

Granularity of a microservice is considered as an important aspect when implementing
microservices architecture. The first impression in major cases is to make the size
of microservice as small as possible. However there are also various attributes and
concepts which affects the decision regarding the size of the microservices. The major
aspects are single responsibility principle, autonomy and infrastructure capability.
The single responsibility influences to make the size of a microservice as small as
possible so that the microservice has minimum cohesive functionality and less number
of consumers. On the other hand, in order to make the microservice autonomous, the
microservice should have full control over its resources and have less dependencies
upon other microservices for accomplishing its core logic. This suggests that the size of
the microservice should be big enough to cover the transactional boundary required
for its core logic and have full control on its business resources.
Moreover, the small the size of the service is, the number of required microservices in-
creases for accomplishing the functionalities of the application. This increases network
complexity. Additionally, the logical complexity as well as maintainability also increase.
Undoubtedly, the independent scalability of individual microservice also increases.
However, this increases the operational complexity for maintaining and deploying the
microservices due to the increased number of microservices.

85

5 Architecture at SAP Hybris

As shown in Figure 5.2, various factors affect the size of microservices. The research
findings as well as interview responses lead to the idea that the question regarding
"size" of a microservices has no straight answer. The answer itself is a multiple objective
optimization problem and depends upon a) the level of abstraction of the problem
domain, b) self-governance requirement, c) self-containment requirement and d) the
honest capability of the organization to handle the operational complexity.
Finally, there is an additional deciding factor called "Business Value". The chosen
size of the microservice should provide business value and competitive advantage
to the organization and closely lean towards the organizational goals. A decision
for a group of cohesive functionalities to be assigned as a single microservice means
that a dedicated amount of resources in terms of development, scaling, maintainance,
deployment and cloud infrastructure have to be assigned. A rational decision can be
to evaluate the expected business value of the microservice against the expected cost
value required by it.

Quality Attributes

The teams do not follow any quantitative metrics for measuring various quality at-
tributes. However, they agree on a common list of quality attributes to be considered as
shown in the Table 5.2 . According to the reactions from interviews, the basic metrics
to evaluate the quality attributes visualized in the Table 3.8 can be helpful to model
microservices architecture in an efficient way.

Process to design microservices

There is no single consistent process followed across all the teams at SAP Hybris.
Each team has its own steps to come up with microservices. However, the steps and
decision are highly influenced by a set of YaaS standard principles 5.3 and vision of
SAP Hybris 5.2. The reactions from the interviewees are already visualized in 5.3.
The process followed by a portion of teams closely relate to usecase modeling approach,
where a usecase is divided into several smaller abstractions guided by a) cohesion, b)
reusability and c) single responsibility principle. Within this group, a major number of
teams also use the concept of bounded context in order to realize autonomous boundary
around the microservices. Finally, the remaining portion of the teams closely follow
domain driven design approach, where a problem domain is divided into sub-domains.
In each sub-domain, various bounded contexts are discovered, which is then mapped
into microservices.
The domain driven design approach can be considerd as the most suitable technique
to design microservices. Following this approach, not only the problem domain is

86

5 Architecture at SAP Hybris

functionally divided into cohesive group of functionalities but also leads to a natural
boundary around the cohesive functionalities closely relating to the real world scenario
of the organization. Moreover, following the domain driven design approach, similar-
ities as well as differences in concepts are acknowledged. Finally, the ownership of
business resources and core logic are well preserved.

5.6 Case Study

YaaS provides a cloud platform where the customers can buy and sell applications
and services related to the commerce domain. In order to accomplish this, YaaS offers
various basic business and core functionalities as microservices. The customers can
either use or extend these services and create new services and applications focusing
on their individual requirements and goals.
The following part of this section discuss the steps used to identify microservices under
commerce domain in YaaS.
Step 1:
The problem domain is studied thoroughly to identify core domains, supporting
domains and generic domains.

Sub-domain Type Description

1 Checkout Core handles overall process from cart creation to selling of cart items.

2 Product Supporting deals with product inventory
3 Customer Supporting deals with customer inventory
4 Coupon Supporting deals with coupon management
5 Order Supporting handles orders management
6 Site Supporting handles site configuration
7 Tax Supporting handles tax configuration and tax calculation
8 Payment Supporting handles payment for orders

9 Email Generic provides REST api for sending emails
10 Pubsub Generic provides asynchronous event based notification service
11 Account Generic handles users and roles management
12 OAuth2 Generic provides authentication for clients to access resource of resource-owner
13 Schema Generic storing schema of documents
14 Document Generic provides storage apis for storing and accessing documents

Table 5.3: Sub-domains in YaaS

Step 2:
The major functionality of the commerce platform is to sell products, which makes
’Checkout’ the core sub-domain. The sub-domain is also responsible for a bunch
of other independent functionalities such as cart management and cart calculation.

87

5 Architecture at SAP Hybris

These individual independent functionalities can be rightfully represented by bounded
contexts as shown in the Table 5.4. The bounded contexts are realized using microser-
vices. The other major reason for them to be made microservices, in addition to single
independent responsibility, is different scalability requirements for each functionality.

Bounded Context Description

1 Checkout handles the orchestration logic for checkout
2 Cart handles cart inventory
3 Cart Calculation calculates net value of cart considering various constraints such as tax, discount, etc.

Table 5.4: Bounded Contexts in Checkout

Step 3:
The supporting sub-domain "Product" deals with various functionalities related to
"Product".

Bounded Context Description

1 Category manage category of products
2 Product manage product inventory
3 Price manage price for products

Table 5.5: Functional Bounded Contexts in Product

The bounded contexts listed in Table 5.5 are based upon the independent responsibil-
ity and different performance requirement. Although, each functionality deals with
business entity "Product", the conceptual meaning and scope of "Product" is different
in each bounded context. "Product" is a polyseme.
Again, there are two additional functionalities identified. The first one is a technical
functionality to provide indexing of products so that searching of products can be can
be efficient. The functionality is generic, technical and independent. It has a different
bounded context and can be realized using different microservice. Furthermore, there
is a requirement for mashing up information from microservices such as a) product, b)
price and c) category in order to limit the network calls from client to each individual
service and to improve performance. This is realized using a separate mashup service.
Also, these functionalities have different performance requirement. The identified
bounded contexts are shown in Table 5.6.

88

5 Architecture at SAP Hybris

Bounded Context Description

1 Algolia Search product indexing to improve search performance
2 Product Detail provide mashup of product, price and category

Table 5.6: Supporting and Generic Bounded Contexts in Product

It is important to notice that the decision to realize the functionalities as microservices
considered various technical aspects as performance, autonomy, etc., and non-technical
aspect like business value. The individual microservices such as "Product", "Category",
"Checkout" have high business value to YaaS because they are good candidate services
required by the partners and customers of YaaS.
The various microservices for the sub-domains "Checkout" and "Product", identified
following the steps listed above, forms layers of the microservices based on their level
of abstraction and reusability. The layers are shown in Figure 5.4. The core microser-
vices are technical generic microservices used by business microservices and form the
bottom layer. On the top of generic microservices, are the domain specific business
microservices focused on domain specific business capabilities. The individual business
functionalites provided by business microservices are then used by Mashup layer to
create high level microservices by orchestrating them.

Figure 5.4: Microservices Layers

Step 4:
The same process from steps 1-3 are applied to remaining sub-domains listed in Table
5.3. The Table 5.7 shows a list of services discovered in each sub-domains within the
commerce domain. For example, ’Tax’ and ’Tax Avalara’ are microservices under ’Tax’
sub-domain. Similarly, ’Order’ and ’Order Details’ are microservices related to ’Order’
subdomain.

89

5 Architecture at SAP Hybris

Sub-domain Microservice Description

Checkout
checkout handles the orchestration logic for checkout

cart handles cart inventory
Cart Calculation calculates net value of cart considering various constraints such as tax, discount, etc.

Product

Product manages product inventory
Product Details provides mashup of product, price and category

Category manages category of products
Price manage price for products

Order
Order handles order management

Order Details provide mashup of orders and products

Site
Site handles site configuration

Shipping handles shipping configuration for site

Tax
Tax handles tax configuration

Tax Avalara handles tax calculation using Avalara

Customer Customer deals with customer inventory

Coupon Coupon deals with coupon management

Payment Payment Stripe handles payment for oders using Stripe

Table 5.7: Services in YaaS Commerce domain

Including all the microservices in core, supporting and generic sub-domains for only
commerce domain, the resulting architecture is shown in Figure 5.5. At the bottom
are various generic microservices such as Pubsub, Document, etc. They are utilized
by various business microservices such as Customer, Coupon, etc. On the top are
various mashup microservices such as Checkout, Order-Details and they utilize various
business microservices and core microservices underneath.

Figure 5.5: Microservices Layers For Commerce Domain

90

5 Architecture at SAP Hybris

5.7 Deployment Workflow

Another major aspect apart from modeling microservices is continuous deployment.
One of the major goals of implementing microservices architecture is agility. Agility
can only be maintained when any small change in each microservice can be deployed
into production smoothly without affecting other microservices.

5.7.1 SourceCode Management

Figure 5.6: Sourcecode Management at SAP Hybris

The sourcecode files for each microservices are maintained in BitBucket version control
system. The files are managed using Git. In order to support continuous deployment
and efficient collaboration among the developers working in the same microservice,
various branches are maintained within each repository. The major branch is called
"Master" branch, which is used only for continuous deployment in production. Another
branch is "Develop" branch and is used by developers to add changes continuously. It
is used to create development version of the microservice and undergoes various level
of tests. When sufficient features are ready and verified in "Develop" branch, they are
merged into "Master" branch and realeased from "Master" branch. In this way, "Master"
branch has always unbroken production ready sourcecode.
For adding any major changes or features in the microservices, a new "Feature" branch
is created from "Develop" branch and undergoes various levels of testing before it
is merged with "Develop" branch. In this way, development and verification of any
change can happen independently.

91

5 Architecture at SAP Hybris

5.7.2 Continuous Deployment

In the Section 5.7.1, the concept of maintaining feature branches are discussed. In this
section, the process of deploying the changes of feature branch to the production is
discussed.
The Figure 5.7 shows the complete deployment flow for a microservice. Firstly, a
developer "A" pushes his/her local changes to the remote "Feature" branch at BitBucket.
The changes triggers Teamcity "Build" phase where the changes are first compiled
and then a series of unit tests run against the newly built application which is again
followed by a series of integration tests.
If the tests are successful, the developer will create a pull request in BitBucket, repre-
senting a request to merge his/her changes to "Develop" branch. Developer "B" from
the same team will then review his/her changes and provides comments on BitBucket
interface. After the changes are made and developer "B" is satisfied, he/she approves
the pull request.
The developer "A" or "B" can merge the feature branch into develop branch. This
again triggers "Build" phase in Teamcity. In "Build" phase, the develop branch gets
compiled, followed by unit tests and integration tests. If the tests are successful, then
"Deployment" phase is triggered when code is deployed to "Stage" environment and
a group of smoke tests run to verify the deployment. Now, project owner or quality
assurance team can access the microservice from stage and perform user acceptance
tests. If there are any feedbacks or changes to be made, it will follow the same process
from the beginning.
Now, when there are sufficient features and it is time for release, the "Develop" branch
is merged to "Master" branch. The merge will again trigger "Build" phase in Teamcity.
After successful tests, the "Master" branch is first deployed into "Stage" environment,
where a series of smoke tests runs. After the deployment is successful without any
error, the "Master" branch is deployed into "Production" environment, where various
smoke tests run again to re-assure the deployment.

92

5 Architecture at SAP Hybris

Figure 5.7: Continuous Deployment at SAP Hybris

The deployment is performed using cloud foundry which consists of AWS cloud
underneath. The Figure 5.5 uncovers only microservices at the backend related to com-
merce domain. The complete architecture covering other domains such as Marketing,
Billing, etc., and all layers including User-Interface, PaaS is shown by Figure 5.8. Apart
from Commerce domain, there are various other domains such as Marketing, Sales, etc.
On each domain, same process as discussed in the Case Study 5.6 is followed to identify
various microservices. For example, in ’Marketing’ domain, there are microservices
such as ’Loyalty’, Loyalty Mashup’ services.

93

5 Architecture at SAP Hybris

Figure 5.8: SAP Hybris Architecture [Hir15] [Stu15]

5.8 Summary

In this chapter, the modeling approach used in SAP Hybris is discussed. Again, the
continuous deployment process for each microservice is presented. This adds value
to the findings made regarding modeling process from literature review. Now, as
stated in the Section 1.4, the constraints or challenges are one of the drivers for defining
guidelines. So, the next step is to research about various challenges when implementing
microservices and find the techniques to tackle them. While looking into that, it can
also be interesting to find out how these challenges are being handled at SAP Hybris.

94

6 Challanges of Microservices Architecture

This chapter discusses on various challenges faced while implementing microservices.
In the Section 6.1, various advantages of the microservices architecural approach along
with the challenges are listed. Then each challenge is broken down into several sub-
challenges and discussed further after the Section 6.2. For each challenge, various
techniques which can be used to handle them are also presented. Additionally, in order
to give the insight about approach in industries, the techniques used in SAP Hybris are
also presented.

6.1 Introduction

The Section 1.1.3 lists some drawbacks of monolithic architecture. These disadvantages
have become the motivation for adopting the microservices architectural approach. The
microservices architecture offers opportunities in various aspects however it can also be
challenging to utilize them properly. The responses from Interview Question 5.4.2 also
highlight some prominent challanges. In this section, the challanges and advantages of
microservices architectural approach are discussed [Fow15].

Advantages Challanges

Strong Modular Boundaries
It is not completely true that the monoliths
have weaker modular structure than mi-
croservices. But, as the system gets bigger,
it is very easy for a monolith to turn into a
big ball of mud. However, it is very diffi-
cult to do the same with the microservices.
Each microservice is a cohesive unit with
full control upon its business entities. The
only way to access its data and functionali-
ties is through its API [Fow15].

Distributed System Complexity
The infrastructure of the microservices ar-
chitecture is distributed, which introduces
many complications, as listed by 8 fallacies
[Fac14]. The calls are remote and are im-
minent to accomplish business goals. The
remote calls are slower than local calls and
affect the performance to a great deal. Ad-
ditionally, network is not completely reli-
able which makes it necessary to handle
failures [Fow15].

95

6 Challanges of Microservices Architecture

Independent Deployment
Due to the automony characteristic of the
microservices, each microservice can be
deployed independently. Deployment of
microservices is thus easy compared to
monolith application where a small change
needs the whole system to be deployed
[New15] [Fow15].

Integration
It is challanging to prevent breaking other
microservices when deploying a microser-
vice. Similarly, as each microservice has
its own data, the collaboration among the
microservices and sharing of data can be
complex [Fow15].

Agile
Each microservice is focused to single re-
sponsibility, changes are easy to imple-
ment. At the same time, as the microser-
vices are autonomous, they can be de-
ployed independently, decreasing the re-
lease cycle time [Fow15].

Operational Complexity
As the number of microservices increases,
it becomes difficult to deploy in an accept-
able speed. Additionally, realising new
version of the microservices becomes more
complicated as the frequency of changes
increase. Similary, as the granularity of
microservices decreases, the number of mi-
croservices increases which shifts the com-
plexity towards the interconnections. Ulti-
mately, it becomes difficult to monitor and
debug microservices [Fow15].

In the following sections of this chapter, various ways to tackle the challenges listed
in the Section 6.1 are discussed in detail.

6.2 Integration

The collaboration among various microservices whilst maintaining autonomous deploy-
ment is challenging. In this section, various challanges associated with the integration
and their potential remedies are discussed.

6.2.1 Sharing Data

An easiest way for collaboration among the microservices is to allow the microservices
to access and update a common datasource. However, using this kind of integration
creates various problems.
Problems

1. The shared database acts as a point of coupling among the collaborating mi-
croservices. If a microservice make any changes to its data schema, there is high

96

6 Challanges of Microservices Architecture

probability that other services need to be changed as well. Loose Coupling is
compromised [New15].

2. The business logic related to the shared data may be spread across multiple
services. Changing the business logic is difficult. Cohesion is compromised
[New15].

3. Multiple services are tied to a single database technology. Migrating to a different
technology at any point is hard [New15].

Alternatives
There are three distinct alternatives to tackle the problems listed above.

1. private tables per service - multiple microservices share the same database
underneath but each microservice owns a set of tables [Ric15b].

2. schema per service - multiple microservices share same database however each
microservice owns its own database schema [Ric15b].

3. database server per service - each microservice has a dedicated database server
underneath [Ric15b].

Techniques

The logical separation of data among services discussed in the Section 6.2.1 increases
autonomy but also makes it difficult to access and create consistent view of data.
However, the problems can be compensated using following approaches.

1. The implementation of business transaction which spans multiple microservices
is difficult and also not recommended because of Theorem 11.1. The solution
is to apply eventual consistency 11.2 focusing on increasing availability [Ric16]
[Ric15b].

2. The implementation of queries to join data from multiple databases can be
complicated. There are two alternatives to achieve this [Ric16] [Ric15b].

a) A separate mashup microservice can be used to handle the logic to join data
from multiple microservices by accessing respective APIs.

b) CQRS pattern 11.3 can be used by maintaining separate a) model, and b)
logic for updating as well as querying data.

3. The need for sharing data among various autonomous services cannot be avoided
completely. It can be achieved by one of the following approaches [Ric16] [Ric15b].

97

6 Challanges of Microservices Architecture

a) The data can be directly accessed by using the resource owner’s API.

b) The data can be duplicated into another microservice which accesses the
data. The duplicate data can be made consistent with the owner’s data using
event driven approach.

SAP Hybris uses the technique of maintaining private schema per microservice
as listed in the Section 6.2.1 in order to share data. For this purpose, there is a
generic microservice called "Document" which handles the task of managing data for
all microservices per each tenant and application. Furthermore, SAP Hybris follows
eventual consistency and creates various mashup services for collective view of data
from multiple services. Additionally, data are duplicated to decrease the network
overload and when fresh data are required, resource owner’s API is accessed directly.

6.2.2 Inter-Service Communication

A microservice is an autonomous component but the necessity of interaction among
microservices cannot be denied. The various possible interactions among microservices
is shown in Figure 6.1 [Ric15a].

Figure 6.1: Inteaction Styles among microservices [Ric15a]

One to One interactions

1. Request/Response: It is synchronous interaction where client sends request and
expects for response from the server [Ric15a].

98

6 Challanges of Microservices Architecture

2. Notification: It is asynchronous one way interaction where client sends request
but no reply is sent from the server [Ric15a].

3. Request/async Response: It is asynchronous interaction where client requests
server but does not get blocked waiting for the response. The server send the
response asynchronously [Ric15a].

One to Many interactions

1. Publish/subscribe: A microservice publishes notification which is consumed by
other interested microservices [Ric15a].

2. Publish/async responses: A microservice publishes request which is consumed
by interested microservices. The microservices then send asynchronous responses
[Ric15a].

Techniques

6.2.2.1 Synchronous and Asynchronous

Each of the interactions listed in the Section 6.2.2 has its own place in an application.
An application can contain a mixture of these interactions. However, a clear idea about
the requirement as well as thorough knowledge regarding drawbacks associated with
each interaction is necessary before choosing any type of interaction for a specific case
[New15][Ric14a][Mor15].

Synchronous Interaction
In synchronous interaction, it is simple to understand the flow, The synchronous ap-
proach is a natural way of communication. However, as the volume of interactions get
higher and distributes to various levels or branches, it increases the overall blocking
period of client and thus increases latency. The synchronous nature of interaction
increases temporal coupling between microservices because it demands both consumer
and producer microservices to be active at the same time. Since, the synchronous client
needs to know the address and port of the server to communicate, it also inducess
location coupling. With the cloud deployment and auto-scaling, this is not simple.
Finally, to tackle the location coupling, service discovery mechanishm is recommended
to be used [New15][Ric14a][Mor15].

99

6 Challanges of Microservices Architecture

Asynchronous Interaction
The asynchronous interaction decouples the microservices. It also improves latency as
the client is not blocked waiting for the response. However, there is one additional com-
ponent called message broker to be managed. Additionally, the conceptual understand-
ing of the flow is not natural and not easy to reason about [New15][Ric14a][Mor15].

SAP Hybris uses both asynchronous as well as synchronous communication where
appropriate. For, synchronous, it uses REST calls where as for asynchronous messaging
it uses a generic microservice called "PubSub", which again uses Apache Kafka for
managing publication and subscription of messages. An instance of the various
interaction is shown in the Example 6.2.2.2.

6.2.2.2 Example

The Figure 6.2 shows various interactions during creation of an order. At first, the client,
’checkout microservice’ in this case, sends Restful Post order request to the ’Order
microservice’. Next, the ’order microservice’ publishes ’Order Created’ event and then
sends response to the client. The ’OrderDetails microservice’, which is subscribed to the
event ’Order Created’ acts on the event by first fetching necessary product details from
the ’Product microservice’ using Restful Get request. Finally, the ’OrderDetails service’
sends request to the ’Email microservice’ for sending email to the customer regarding
order details but does not wait for response. The ’Email service’ sends response to
’OrderDetails service’ when email is sent successfully.

Figure 6.2: Interaction during Order creation

100

6 Challanges of Microservices Architecture

6.3 Distributed System Complexity

6.3.1 Breaking Change

Although microservices are autonomous components, they still need to communicate.
Moreover, they also undergo changes frequently. However, some changes can be
backward incompatible and break their consumers. The breaking changes are inevitable
but the impact of the breaking changes can be somehow reduced by applying various
techniques [New15].

Techniques

1. Avoid as much as possible
A good approach to reduce impact of incompatible changes of producer mi-
croservices to the consumers is to defer it as long as it is possible. One way is by
choosing the correct integration technology such that loose coupling is maintained.
For example, using REST as an integration technology is better approach than
using shared database because the former approach encapsulates the underlying
implementation and consumers are only tied to the interfaces [New15].
Another approach is to apply TolerantReader pattern when accessing provider’s
API [Fow11b]. The consumer can get liberal while reading data from the provider.
Without blindly accepting everything from the server, the consumer can filter the
required data only without caring about the payload structure and the sequence
of data. So, if the consumer is tolerant while accessing the provider, the consumer
service can still work even if the provider adds new fields or change the structure
of the response [New15].

2. Catch breaking changes early
It is also crucial to identify the breaking change as soon as it happens. It can be
achieved by using consumer-driven contracts. Consumers will write the contract
to define what they expect from the producer’s API in the form of various
integration tests. These integration tests can become a part of the build process
for the producer microservice. In this way, any breaking change can be detected
in the build process before the API is accessed by the real consumers [New15].

3. Use Semantic Versioning
Semantic Versioning is a way to identify the state of current artifact using com-
pact information. It has the form MAJOR.MINOR.PATCH. MAJOR number is
increased when backward incompatible changes are made. Similarly, MINOR

101

6 Challanges of Microservices Architecture

number is increased when backward compatible functionalities are added. Fi-
nally, PATCH number represents that bug fixes are made which are backward
compatible [New15].
With semantic versioning, the consumers can clearly know if the provider’s cur-
rent update may breaks their API or not. For example, if consumer is using 1.1.3
version of provider’s API and the new updated version is 2.1.3, then the consumer
should expect some breaking changes and react accordingly [New15].

4. Coexist Different Endpoints
Whenever a breaking change on a service is deployed, the new deployment should
be carefully managed not to fail all the consumers immediately. One way is to
support old version of end points as well as new ones. This gives some time
for consumers to react on their side. Once all the consumers are upgraded to
use new version of the provider, the old versioned end point can be removed.
However, using this approach means that additional tests are required to verify
both versions of the end points [New15].

5. Coexist concurrent service versions
Another approach is to support both version of the microservice at once. The
requests from the old versioned consumers need to be routed to old versioned
producer microservice and requests from new versioned consumers to the new
versioned producer microservice. It is mostly used when the cost of updating old
consumers is high. However, this also means that two different versions have to
be maintained and operated smoothly [New15].

At SAP Hybris, breaking change is avoided as much as possible using REST and
also Tolerant Reader pattern. When data is read from another microservice, the
data is first handled by internal mapper library which maps the input data into the
internal representation to be used by microservice. Additionally, for providing detailed
information regarding state of current version of the microservice, semantic versioning
is used. If there is breaking change in few endpoints, then multiple version of them is
also maintained for short period of time giving the consumer fair amount of time for
migrattion. Similarly, if there are breaking changes in most of the endpoints then the
entire microservice is maintained with different versions.

6.3.2 Handling Failures

In the microservices architectural approach, communication among the microservices
is achieved along quite unreliable network, failures are inevitable. So, it becomes

102

6 Challanges of Microservices Architecture

challenging as well as highly necessary to handle the failures. Many strategies can be
applied for the purpose.

Techniques

1. Timeouts
A service can get blocked indefinitely waiting for response from the provider. To
prevent this, a threshold value of waiting time can be set. However, care should
be taken not to choose very low or high value for waiting time [New15] [Ric15a]
[Nyg07].

2. Circuit Breaker
If a request to a service keeps failing, there is no value to keep sending request to
the same server. It can be a better approach to identify when the request fails and
stop sending further request to the provider microservice assuming that there is
problem with the connection. By failing fast in such a way will not only save the
waiting time for the client but also reduces unnecessary network load. Circuit
Breaker pattern helps to accomplish the same. A circuit breaker has three states
as shown in the Figure 6.3. In normal cases when the connection to the provider
is working fine, it is in ’closed’ state and all the connections to the provider goes
through it. Once the connection starts failing and meets the threshold (can be
number of failures or frequency of failures), the circuit breaker switch to ’open’
state. At this state, any more connections through the circuit breaker fail straight
away. After certain time interval, the state changes to ’half open’ to check the
state of provider again. Any connection request at this point passes through. If
the connection is succesful, the state switches back to ’closed’ state, else to ’open’
state [Fow14b] [New15] [Nyg07] [Ric15a].

103

6 Challanges of Microservices Architecture

Figure 6.3: States of a circuit breaker [[Fow14b]]

3. Bulk Head
Bulk Head is the approach of segregating various resources as per requirement
and assigning them to respective purposes. Maintaining such threshold in avail-
able resources will save any resource from being constrained whenever there is
problem in any part. One example of such bulkhead is the assignment of separate
connection pool for each downstream resources. In this way, if there is a problem
in the request from one connection pool, it will not affect another connection pool
and also not consume all available resources [New15] [Nyg07].

4. Provide fallbacks
Various fallback logic can be applied along with timeout or circuit breaker to
provide alternative mechanism to respond. For example, cached data or default
value can be returned as a fallback mechanism [New15] [Ric15a] [Nyg07].

At SAP Hybris, synchronous requests are made recursively for certain number
of times, each attempt waits for the response only for certain fixed amount of time
depending upon the use case. In order to save network resources and provide fault
tolerance, circuit breaker pattern is used.

104

6 Challanges of Microservices Architecture

6.4 Operational Complexity

6.4.1 Monitoring

With monolithic deployment, monitoring can be achieved by sifting through few logs
on the server and looking various server metrics. The complexity can increase to some
extent if the application is scaled along multiple servers. In that case, monitoring can
be performed by accumulating various server metrics and going through each log file
on each host. The complexity goes to whole new level when monitoring microservices
deployment because of large number of individual log files produced by the microser-
vices. In addtion to the difficulty of going through each log file, it is more challenging
to trace any request contextually along all the log files.

Techniques

There are various ways to work around these complexities [New15] [Sim14].

1. Log Aggregation and Visualition
A large number of logs in different servers can be intimidating. The tracing of
logs can be easier if the logs could be aggregated in a centralized location and
then visualized in a better way such as graphs. One of such solutions can be
achieved using ELK stack as shown in the Figure 6.4 [Ani14] [New15].

Figure 6.4: ELK stack

The ELK stack consists of following major components.

105

6 Challanges of Microservices Architecture

a) Logstash Forwarder
It is the component installed in each node which forwards the selected log
files to the central Logstash server.

b) Logstash Indexer
It is the central logstash component which gathers all the log files and
process them.

c) Elastic Search
The Logstash Indexer forwards the log data and stores into Elastic Search.

d) Kibana
It provides a web interface to search and visualize the log data.
The stack makes it easy to trace logs and visualize graphs along various
metrics.

2. Synthetic Monitoring
Another useful aspect of monitoring is to collect various health status such as
availability, response time, etc. There are many tools to make it easier. One such
tool is ’uptime’, which is a remote monitoring application and provides email
notification as well as features such as webhook to notify a url using http POST.
Rather than waiting for something to get wrong, a selected set of important
business logic can be tested at regular interval. The result can be fed into
notification subsystem, which will trigger notification to the responsible parties.
This ensures confidence that any problem can be detected as soon as possible and
can be worked on sooner [Sim14] [New15].

3. Correlation ID
A request from a client is fulfilled by a number of microservices, each microservice
being responsible for certain part of the whole functionality. The request passes
through various microservices until it succeeds. For this reason, it is difficult to
track the request as well as visualize the complete logical path. ’Correlation ID’ is
an unique identification code assigned to the request by the microservice at the
user end and passes the ’Correlation ID’ towards the downstream microservices.
Each downstream microservice does the same and pass along the ID. In this way,
a complete picture of any request is easier to visualize [New15] [Sim14].

SAP Hybris uses ELK stack for monitoring and log visualization. In order to check
the health status of the microservices, ’uptime’ tool is used. The webhook from
the tool updates the central status page showing the current status of all the existing
microservices. Any problem triggered by ’uptime’ is also reflected in this page. Similary,

106

6 Challanges of Microservices Architecture

a set of smoke tests are triggered from continuous integration tool such as TeamCity at
regular interval. In order to track the requests at each microservices, a unique code is
assigned to each request. The code is assigned by API-Proxy server which is the central
gateway for any incoming request into YaaS.

6.4.2 Deployment

A major advantage of the microservices is that the features can updated and delivered
quickly due to the autonomity and independent deployability of each microservice.
However, with the increase in the number of microservices and the rate of changes
that can happen in each microservice, fast deployment is not straight forward. The
culture of doing deployment for monolithic applications does not work perfectly on
microservices. This section discusses how continuous deployment can be achieved in
the microservices.
There are two major parts in deployment. In order to speed up deployment in microser-
vices, approach to accomplish each part has to be changed slightly.

Techiniques

1. Continuous Integration
It is a software development practice in which newly checked in code are followed
by the automated build and verification phase to ensure that the integration was
successful. Following continuous integration does not only automate the artifact
creation process but also reduces the feedback cycle of the code providing oppor-
tunity to improve quality.
To ensure autonomy and agility in microservices, a better approach is to assign
separate sourcecode repository and separate build for each microservice as shown
in the Figure 6.5. Each repository is mapped to a separate build in Continuous
Integration server. Any changes in the microservice sourcecode repository trig-
gers corresponding build in Continuous Integration server and creates a single
artifact for that microservice. An additional advantage of this approach is clear
assignment of the repository ownership and build responsibility to the teams
who owns the respective microservices [New15] [Fow06a].

107

6 Challanges of Microservices Architecture

Figure 6.5: Continuous Integration [New15]

2. Continuous Delivery
It is a discipline in which every small change is verified immediately to check
deployability of the application. There are two major concepts associated with
continuous deployment. First one is continuous integration of the sourcecode
and creation of artifact. Next one is continuous delivery in which the artifact is
fed into a build pipeline. A build pipeline is a series of build stages, each stage
responsible for the verification of certain aspects of the artifact. A successful
verification at each stage ensures more readiness of the artifact to release.

Figure 6.6: Continuous Delivery Pipeline [New15]

A version of build pipeline is shown in the Figure 6.6. Here, faster tests are
performed ahead and then a) slow tests and b) manual testing are performed
down the line. This kind of successive verifications make it faster to identify
problems, create clear visibility of the problems and improve the quality as well
as confidence in the quality of the application.
Each microservice has an independent build pipeline. The artifact build during
continuous integration triggered by any change in the microservices is then fed
into corresponding build pipeline for the microservice [New15] [Fow13].

108

6 Challanges of Microservices Architecture

The variation of continuous integration and deployment used at SAP Hybris is
already discussed in the Section 5.7.

6.5 Summary

In this chapter, various challenges needed to handle when implementing microservices
architectural approach are listed. Each challenge is further broken down into fine
constraints. Secondly, various ways of handling those constraints are discussed. Finally,
the approaches used in SAP Hybris for handling the challenges are also presented.
Microservices architecture provides efficient way to develop agile software. However,
without a good grasp in the techniques to handle the challenges, it may not be a good
idea to start with microservice in the first place.

109

7 Guidelines

7.1 Context

The major objective of the research is to devise some guidelines so that the task of
approaching any complex problem domain using microservices architectural approach
becomes easier. Additionally, a few research questions related to crucial topics on
microservices have emerged. The research questions are taken as stepping stones for
discovering guidelines.
At first, the concept related to the granularity of the microservices is discussed in
Chapter 2. In this chapter, the semantic meaning of the size along with various
dimensions defining granularity are discussed. Finally, various principles to evaluate
the optimum size for microservices are listed.
Secondly, other quality attributes to be considered when designing good microservices
are listed in Chapter 3. The quality metrics to determine each of these quality attributes
are also mentioned. The various quality metrics lead to a limited list of basic metrics.
Finally, various principles to determine quality of good services along with the way the
quality attributes affect each other are recorded.
Furthermore, the various approaches of decomposing problem domain for identifying
microservices are discussed in Chapter 4. The methods discussed are using domain
driven design and using use cases refactoring. The steps involved in each approach are
described along with an example.
In the previous chapters, understanding of various topics such as to a) granularity , b)
quality attributes and c) process of identifying microservices are derived from literature.
In the Chapter 5, an attempt is made to research further on the same topics from
industry experience by studying the architecture at SAP Hybris and conducting various
interviews. Finally, a series of steps are listed to visualize the process of breaking down
a problem domain into the microservices.
The challenges faced while implementing microservices architecture are discussed in
Chapter 6. Additionally, various ways to tackle these challenges are described.

110

7 Guidelines

7.2 Process to Implement Microservices Architecture

As shown in the Figure 7.1, the implementation of the microservices consists of two
major parts and understanding each part is crucial in order to follow the microservices
architecture.

1. Modeling Microservices
At the core of the microservices architecture is problem domain and the impor-
tance of understanding it. Modeling microservices is the process of dividing the
problem domain into various components considering various internal quality
attributes such as coupling, cohesion, etc. The knowledge regarding the quality
attributes is an important input when choosing the efficient process for identifying
the microservices from the problem domain.

2. Operating the Microservices Artifacts in the Production Environment
The microservices are designed to satisfy various external quality attributes
such as scalability, resilience, etc. However, the microservices also introduce
critical challenges. It is not entirely possible to get the advantages from the
microservices architecture unless a) these challenges are identified as well as
tackled appropriately and b) certain implementation and operational practices
are followed.

Figure 7.1: Process to implement microservices architecture

111

7 Guidelines

The microservices architecture follows a process which guides all the way from a)
understanding the problem domain, b) identifying modular components considering
various attributes and c) implementing as well as operating the components to satisfy
various external quality attributes. It is interesting to find how process, principles and
guidelines are related. A process is based upon some basic principles and the principles
helps to define guidelines based upon some specific requirements and environment.
So, in order to understand the process of implementing microservices, it can be helpful
to look into some basic principles.

7.3 Principles And Guidelines

Based upon the research findings as discussed in the previous chapters, various princi-
ples are listed to guide modeling microservices as well as operating them. It is highly
recommended to follow these principles when considering microservices architectural
approach [New15].

1. Correct Granularity
The dimension of granularity for microservice is given by a) the functionality it
performs, b) data it handles and c) the business value it provides [2.3]. These
dimensions make it pretty obvious how to make the size of a service as low
as possible. However, the notion of correct granularity is rather important and
should be focused instead of trying to make the size as low as possible [2.2]. There
are various factors which act together and tailor the size of the microservices.

a) One of the factors is SRP, which influences the functionalities and data
handled by microservices to make it as small as possible. SRP encourages to
focus on small set of cohesive tasks that change for the same reason [Sti14]
[New15]. The influence of SRP on the microservices architecture is also
verified by the result of interview which is compiled in the Section 5.4.2.

b) Another important factor is autonomy. According to S. Newman, a microser-
vice should be able to be deployed and updated independently [New15].
Without any surprise, autonomy is an important quality attribute of the
microservices and is evaluated as its degree of control upon the operations
to act on its business entities 3.3.6. As discussed in the Section 2.2, a mi-
croservice should provide transaction integrity such that it is big enough to
support the activities which fall under one transaction. So, autonomy tends
to limit the scope of functionalities and data such that the microservice is a)
self-contained, b) self-controlling and c) can be self-governed [MLS07].

c) The act of realizing the size of microservices as small as possible comes with

112

7 Guidelines

a price. As the functionality of microservice is squeezed, the number of
microservices needed for any application increases. The task of deploying,
provisioning and governing these microservices can be challenging. So, as
stated in the principles defined in the Section 2.3.4, the decision regarding the
size of service should be rational based upon the current infrastructure and
operational capability to handle such large number of small microservices.
It is further supported by the response of the interview compilation in the
Section 5.4.2.

d) Finally, the size of microservices should also provide business value and
should coincide with the business goal of the organization. It is also evident
from the response of the interview compiled in the Section 5.4.2. Additionally,
the business value being an important dimension of granularity of the
microservices according to the Section 2.3, should be examined at the design
time while decomposing the problem domain.

2. Consider quality attributes as early as possible
The internal quality attributes such as coupling, cohesion, autonomy, etc., should
be controlled as early as possible during the modeling and development phases.
Taking care of the internal quality attributes will eventually help to control the
external quality attributes of the microservices such as reusability, reliability,
resilience, etc. The Table 3.8 which identifies various basic metrics can be helpful
to evaluate the quality of the microservices. For one thing, the metrics such as
scope of opertions, number of operations, etc., used in the basic metrics table
are completely in disposal to the developers and the teams of the microservices.
Secondly, it helps to identify the relationship among them as shown in the Table
3.9 and assists in managing trade offs when needed.

3. Understand the problem domain
As discussed in the Chapter 4, problem domain can be analyzed using either
usecases refactoring approach or domain driven design approach.
Using usecases can break down the problem domain into various levels of abstrac-
tions, each abstraction representing lower scope of functionality. The graphical
approach used in usecases modeling approach can be an effective approach for a)
brainstorming, b) exploring the problem domain and c) finding new usecases.
Another popular approach is using domain driven design to explore the problem
domain. The overall process looks natural and straight forward. In this process,
the complex problem domain is divided into small manageable subdomains
and further into modular autonomous components. Furthermore, the approach
gives emphasis on using ubiquitous language to find autonomous modules and

113

7 Guidelines

define their boundaries. The chapter 4 provides important guidelines for finding
ubiquitous language and bounded contexts.
The graphical approach provided by usecases are more familiar to architects as
well as developers and thus can be faster. However, they tend to focus only on
SRP and scope of the functionalities. Following the process, may likely lose grip
on very important quality attribute of the microservices called autonomy.
On the other hand, domain driven design with its approach of using ubiquitous
language, focuses on autonomy. Additionally, by dividing the problem domain
into smaller manageable components with limited scope, domain driven design
also focuses on SRP. Although the whole proces seems natural, getting the bound-
ary right is a complex process. A clear understanding of the problem domain
is necessary in order to get the bounded context right. So, it can be an iterative
process, starting with bigger boundaries at first and down to smaller modular
boundaries in several iterations.
The knowledge and practice of both usecases modeling and domain driven design
can be helpful. Depending upon the complexity of the problem domain and
experience with it, any of them or combination of them can be used to decompose
the problem domain.

4. Culture of Automation
With such a large number of small services, the task of managing and operating
them manually can become impossible. There are three specific areas where
automation can serve greatly [New15].

a) Automated Continuous Delivery can help building and deploying microser-
vices frequently with consistency. Maintaining continuous integration and
delivery pipeline can make sure that any new changes is consistent to old
system and can be put into release in a matter of few button presses.

b) Automated Testing is another important area to consider when there are
large number of microservices and large number of changes in the backlog.
Without automated testing in the delivery pipeline, it can be hard deploy
changes to release environment without breaking existing functionalities.

c) Infrastructure Automation and Provisioning should not be neglected either,
especially when there can be different technology stacks in different microser-
vices and different infrastructure environments. PaaS such as CloudFoundry
can be helpful for deployment and provisioning easily whereas various con-
figuration management tools such as Puppet, chef, etc., can assist to manage
different technology stacks.

5. Hide Internal Implementation

114

7 Guidelines

Collaboration among the microservices is essential however high coupling by
over exposing the inner-details should be avoided to save autonomy.

a) The first on the checklist is to model the APIs in right way. Rather than
breaking the application into technological boundaries, the problem domain
should be clearly understood to discover clear functional boundaries and
should be modeled around business domains. The concept of bounded
context can be a good approach to define clear APIs, which also reduces
unnecessary coupling [New15].

b) The APIs should be technology agnostic, which means that the technology
used for collaborating between APIs should not guide the internal imple-
mentation of the APIs. Using REST and some form of RPC can be useful
tackle them [New15].

c) In microservices, database is also an integral part of internal implementation.
Already mentioned in the Section 6.2.1, sharing database tightly couples
microservices as it exposes internal data structure details. In order to solve
such coupling, each microservice should atleast have its own a) private tables,
or b) schema, or c) at most separate database server [New15].

d) Additionally, in order to maintain loose coupling, the integration technology
should be chosen carefully. As already discussed in the Section 6.2.2, if
business requirement allows, asynchronous communication styles such as a)
publish/subscribe, b) notification, and c) request/async response should be
chosen over synchronous request/response [New15].

6. Decentralize
Autonomy should not be limited to deployment and updates only. It should be
applied in team organization as well. A team should be autonomous enough to
own the microservices and control all the phases from a) developing the microser-
vices, b) releasing them, and c) maintaining in the production environment. In
order to achieve that, the teams should be trained to become domain-experts in
the business areas related to their microservices. Additionaly, the architecture of
microservices should follow decentralization as well. The business logic should
be divided among microservices and should not be concentrated towards any
specific a) god microservices and b) integration mechanism. The microservices
should be smart enough to handle collaboration among themselves and the
communication mechanism should be as dumb as possible such as REST and
messaging. Also, choreography should be highly applied whenever possible
and orchestration should only be used if the business requirement dictates so
[New15].

115

7 Guidelines

7. Deploy Independently
Microservices should be able to be deployed independently. The Section 6.3.1
already discusses the challenges involved as well as their solutions.

a) In order to avoid breaking changes, a) the integration technology such as
REST should be used to decouple microservices and b) tollerant reader
pattern should be used to implement consumers [New15].

b) To find the breaking changes early during development, consumer-driven
contracts should be implemented as automated tests in the delivery pipeline
of the microservices. Additionally, semantic versioning can be used to clearly
indicate the level of new changes [New15].

c) When breaking changes cannot be avoided, maintaining co-existing end-
points with different versions or co-existing microservice versions can pro-
vide enough time and opportunity for consumers to get updated gracefully
and without breaking APIs [New15].

d) Finally, the release and the deployment can be decoupled using techniques
such as bluegreen deployment [11.5] and canary release [11.6], so that new
changes can be tested in production with confidence and can be released
later reducing the risk [New15].

8. Consumer First
The microservices are developed in order to serve its consumers, so consumers
should be the priority when designing them.

a) APIs should be designed considering its consumers. It should be easy to
a) understand, b) use and c) extend. The name as well as the link of API
should be self intuitive. Additionally, documentation to follow and use
API should be provided. In order help with these, there are various tools
available such as swagger, RAML, etc. The tools not only make it easy to
design and document APIs but also provide capability to try them [Blo16]
[Bla08].

b) Another important concept is to make it easy for consumers to find the mi-
croservices itself. There are various service discovery tools such as zookeeper,
etcd, consul, etc., that can be used [New15].

9. Isolate Failures
The microservices are build on the top of distributed system and it is not false to
say the distributed system cannot be perfectly reliable [Fac14]. Although, with
high number of the microservices and complex collaboration among them over

116

7 Guidelines

unreliable network, the system should not be affected until all the microservices
fail. The solutions are discussed in Section 6.3.2.

a) Timeout should be implemented realizing the fact that remote calls are
different than local calls and they can be slow. A realistic value of timeout
should be chosen based on the use cases scenario.

b) In order to avoid leaking failures and affecting the whole system as a result,
bulkhead should be used to segregate the resources and an appropriate
thereshold value should be maintained for each group of resources.

c) For reducing latency, circuit breaker should be implemented which detaches
a failed node after certain attempts and reattemts automatically. In this way,
it not only removes unnecessary roundtrip time or waiting time but also
saves network resources.

d) Finally, fallback mechanism can be used in conjunction with timeouts and
circuit breaker to provide alternative mechanism such as serving from cache,
etc. In this way, it not only isolates the failures but also serves the request
[New15].

10. Highly Observable
It can be difficult to observe the status of each microservice on each provisioned
hosts considering the number of microservices. The Section 6.4.1 points out some
ideas which can be used to make it easier.

a) Use semantic monitoring to check the current behaviour of the microservices
such as availability, response time, etc. An example of effective tools is
uptime. Additionally, trigger certain tests to verify important logic of the
microservices on regular basis. One way to achieve that is to trigger smoke
tests automatically.

b) In order to get the overall picture of the whole application at one place, use
logs aggregation and visualization tools such as logstash and kibana.

c) Finally, use correlation ids to get a semantic picture of the related requests
which gets branched out along many downstream microservices [New15].

117

8 Conclusion

The software architecture provides a set of guidelines to decompose a system into
subsystems, components and modules. Additionally, it defines the interaction amongst
its individual components. Defining an architecture is an important part in software
development. So, there should be precise guidelines to implement the architecture.
One of the architectural approaches is monolithic architecture in which an application
is deployed as a single artifact. With this architecture, a) development, b) deployment
and c) scaling is simple as long as the application is small. However, as the application
gets bigger and complex, the architecture faces various disadvantages including a)
limited agility, b) decrease in productivity, c) longterm commitment to technology
stack, d) limited scalability, etc. This is where, a different architectural approach called
’Microservices’ comes into play. In this approach, a) an application is composed using
different independent, autonomous components, b) each component fulfils a single
functionality and c) each component can be deployed as well as updated independently.
However, there are various concepts related to the definitions of microservices such as
collaboration, granularity, mapping of business capability, etc. which are not clearly
documented. Moreover, there are no proper guidelines how to follow microservices
architecture. This is the motivation of the current research. The objective of the research
is to clarify various concepts related to the microservices and finally create a precise
guidelines for implementing the microservices.
In order to achieve that, various definitions provided by different authors are taken
as starting point. A list of keywords and areas are selected from them, which are
further investigated during the research. Furthermore, various factors such as a) quality
attributes, b) constraints and c) principles are considered as the building blocks of
any architecture. So, these areas are also considered during the research to create
guidelines.
Granularity of a microservice is considered as an important concept and is discussed a
lot. Granularity is not a one dimensional entity but has three distinct dimensions which
are a) functionality, b) data and c) business value. Increase in any of these dimension
increases granularity. Also, it is important to consider the concept of ’Appropriate’
granularity rather than ’Minimum’ sized microservices. Appropriate granularity of
any microservice is achieved by three basic concepts: Single Responsibility Principle,
Autonomy, and Infrastructure capability.

118

8 Conclusion

Adding to that, other quality attributes such as coupling, cohesion, autonomy, etc. are
as important as granularity. For that purpose, a list of basic metrics are created to
evaluate each quality attributes easily. The quality attributes are not mutually exclusive
but related to each other. The relationship among them is clarified so that it becomes
easy to determine the appropriate tradeoffs when necessary.
Another important concept which is not clearly documented is the process of identi-
fication of microservices and mapping of business capability to microservices. Two
different approaches are discussed which are Using Use Cases Refactoring and Using
Domain Driven Design.
Use Cases Refactoring utilizes use cases to breakdown a problem domain and refactor
them based on various concepts such as similarity in functionality, similarity on entities
they act, etc. A discrete set of rules for use cases refactoring are also present. On
the other hand, domain driven design uses the concept of ubiquitous language and
bounded context to break down a problem domain. The steps for each phase are
also listed. Furthermore, a case study is broken down into microservices using each
approach.
Use cases Refactoring is comparatively easier since architects and developers are more
familiar with the concept. Domain Driven Design on the other hand, is a complex and
iterative procedure. Furthermore, use cases Refactoring considers an entity as a single
source of truth for all sub-domains in the entire system. Using this approach does
not necessarily produce autonomous microservices but focus more on functionalities.
However, the domain driven design using the concept of ubiquitous language and
bounded context creates autonomous microservices with single responsibility.
After conducting research along various literature, another important part is determin-
ing the process followed in industry for which SAP Hybris is chosen. Firstly, various
available documents are studied which suggested vision and principles as being the
driving force for the process of implementing microservices. In order to understand
indepth, interviews are conducted with various key personnels related to YaaS. A major
outcome of the interview is that, in addition to factors such as autonomy, infrastructure
capability and Single Responsibility Principle, Business Value of the microservices
plays significant role when a) identifying microservices and b) defining the optimum
granularity. Finally, the workflow followed during deployment of microservices in
SAP Hybris is also studied in order to clarify the operational approach together with
modeling process.
Understanding constraints is another important driver of architecture. The approach
to handle various constraints can be helpful in defining guidelines. Microservices
architecture has various advantages such as strong modularity, agility, independent
deployment capability however also presents various challenges for maintaining these
advantages. The challenges can be kept into three distinct groups: Distributed System

119

8 Conclusion

Complexity Integration, and Operational Complexity.
Different challenges along each group are discussed. Additionally, the various tech-
niques which can be used to tackle each are listed based on the literature. Finally, the
techniques used in SAP Hybris to handle each challenge are also mentioned.
With all the studies performed, the process of microservices architecture can be disected
along two phases: Modeling Phase and Operation Phase.
During the modeling phase, problem domain is studied and various internal quality
attributes along with business value as well as infrastructure capability are considered.
Whereas during operational phase, various challenges are tackled. The effectiveness of
modeling phase is visible across various external quality attributes in operation phase.
Again, the principles are major driving factor for creating architectural guidelines. The
principles along both modeling and operation phase are listed based on the previous
findings of the research. Finally, for each principles, a set of guidelines are presented.
The guidelines are one of the major outcomes of the research.

120

9 Related Work

Microservices is a quite new architecture and it is not surprising that there are very
few research attempts conducted on the overall process of modeling them. Although
there are a lot of articles which share the experience of using microservices, only few of
them actually share how they achieved the resulting architecture. According to process
described in [LTV14], firstly database tables are divided into various business areas.
Secondly, business functionalities and corresponding tables they act upon, are grouped
together as microservices. It may only be used in special cases because an assumption is
made that there exist a monolith system which has to be broken down into components
as microservices and analysing the codebase is one of the necessary steps followed to
relate business function with database tables. Furthermore, it does not provide any
clear explanation regarding how to break the data into tables handling autonomy. Also,
there is no idea about how different quality attributes will be used when breaking the
monolith into various business areas. Another research paper [Brü+13] also share its
process of finding microservices but does not provide enough explanation except that
the microservices are mapped from product or features of the system.
The approach applied in the current research, as already defined in the Section 1.4,
takes quality attributes and modeling process into account. It can be interesting to see
the related works on these two topics.
Looking back to component oriented architecture can also be helpful to identify some
concepts. The research paper [Lee+01] describes process of using coupling and cohesion
to indentify individual components. In this process, a single use case is mapped to a
component such that interaction among the objects inside components is decreased.
Although the whole process may not be used for services but the idea of use cases can
be applied.
Again, the book by S. Newman explains about various aspects of microservices in-
cluding quality attributes. According to S. Newman, the major quality attributes to
be considered while modeling microservices are coupling, cohesion and autonomy
[New15].
[Ma+09] defines an iterative process evaluating portfolio of services around various
quality metrices in order get the better quality services. It takes various quality at-
tributes such as cohesion, coupling, size etc into consideration to find out their overall
metrics value. The process is iterated until the services are obtained with satisfied

121

9 Related Work

values. The consideration of quality attributes and evaluating them is well thought in
this process but the process of coming up with the initial set of services from business
domain is not well documented.
In the book by S. Newman, the process of modeling microservices is also mentioned
and suggests that the concept of bounded context by domain driven design should be
used to model microservices [New15].
Additionally there are a lot of methodology standards based around SOA to model the
services. Some of these methodologies are SOAF, SOMA, SOAD and others. The paper
[RDS16] presents a detailed list and comparision of these methodologies. Most of them
are not yet implemented in industries and others not compatible with agile practices.

122

10 Future Directions

The current research is conducted on the basis of various academic as well as industrial
researches. It would be interesting if the current research could create opportunities for
new researches.
The Table 3.8 listed some basic metrics which can be used to evaluate the quality of
microservices. The very first thing which can be done is to find the threshold range
that can classify good and bad microservices. A certain number of microservices can
be taken as sample from which microservices with high scalability, reusability or other
external quality attributes can be filtered out from non performing microservices with
low scalability and reusability. Then basic metrics tables can be filled along with their
corresponding values for each microservice. These tables can used to define threshold
values. The threshold values can be verified further by using them when creating new
microservice and checking if their external quality attributes meet the expectations.
Another direction of the research can be finding the priority sequence of quality
attributes for microservices. From literature, the quality attributes such as coupling,
cohesion and autonomy are observed to be of high priority. During the interview
conducted with SAP Hybris, the quality attributes such as scalability and reusability
were given priority when mapping functionalities to microservices. It can be valuable
to research further in literature as well as in other industries regarding the priority of
quality attributes they choose to identify microservices.
The basic metrics table can be leveraged to create a graphical tool which represents
various microservices as nodes and connections between them as lines between nodes.
It would be benefical if various basic metrics can be evaluated only with API definitions
automatically. The graphical tool can be used to show the various quality attributes
using the basic metrics. Depending upon the expected quality, the graphical tool can
be used to change API definition. This can be a great interactive tool for optimizing
quality of microservices at design time.
Nevertheless, the report can always be used as a base to conduct research on other
similar industries as SAP Hybris. It can be interesting to view the result obtained from
the study at various different industries. Given the situation that there are very few
literature research in this area and most of the industries which are using microservices
have not openly communicated the whole lifecycle process of microservices, this
document can be a starting point for any company to implement microservices.

123

11 Appendices

11.1 CAP Theorem

CAP Theorem is published by scientist Eric Brewer and also called as Brewer’s Theorem.
There are three major requirements for deploying an application in a distributed
environment.

1. Consistency
A functionality of a service is accomplished as a whole or not at all. All the nodes
accessing any data see the same version at any given time.

2. Availability
The functionalities provided by a service are available and working.

3. Partition Tolerance
The partitions which occurs due to problems in the network does not affect the
operations of the system unless the whole network fails.

According to the theorem, as the system scales across a number of nodes and the
volume of requests increases, it becomes difficult to achieve all the three qualities but to
compromise any one of them [Bro09]. Network partitions cannot be avoided completely
due to the very nature of distributed system and so is the quality of partition tolerance
has to be maintained. The choice is the trade off between availability and consistency.
It is completely dependent upon business requirement which one to choose [BG13].

11.2 Eventual Consistency

It is a weaker form of consistency which guarantees that all read to a data item return
the same value eventually, if no additional updates are performend to the same data
item. For any update, only the nodes which are viable and reachable at the moment
are updated and the remaining nodes are updated when they are back online [BG13].

124

11 Appendices

11.3 Command Query Responsibility Segregation(CQRS)

In this pattern as shown in the figure 11.1, the conceptual model is divided into two
separate models, each one for update and read. It refers to creating different object
model handled by different logical processes. The database can be shared, where it acts
as an integration point but can have different database as well.

Figure 11.1: CQRS [[Fow11a]]

11.4 Single Responsibility Principle

A responsibility is inferred as a reason to change. According to the principle, a service
should have a single reson to change. In order to achieve that, a service should perform
functionalities which change for the same reason [Mar09] [Sti14].

11.5 BlueGreen Deployment

Continuous Delivery focus on rolling out the changes as fast as possible from devel-
opment to production. However, during the process of releasing there can be subtle
amount of downtime or possibility of errors. With the intention to tackle that, bluegreen
deployment introduces an approach by creating two identical production environments
"blue" and "green" with one active at a time "blue". At this time a routing mechanism
points all traffic towards "blue" environment. Whenever any change has to be rolled
out, it is done in "green" environment. As soon as the environment is fully tested, the
routing mechanism points all traffic towards "green" environment. In this way, there

125

11 Appendices

is negligible amount of downtime and in the event of any problem, the traffic can be
routed back to old "blue" environment [Fow10].

11.6 Canary Release

Canary Relase is an approach to minimize the risk of releasing faulty application to
all users. Similar to the bluegreen deployment, there are two identical production
environments. As one environment is serving live requests, another environment
is used to deploy new changes. After the changes are tested properly, the routing
mechanism exposes few selected users to the new environment to minimize the risk. As
the new system gains confidence, it is rolled out to large group of users and ultimately
to all users [Sat14].

126

Acronyms

API Application Programming Interface.

AWS Amazon Web Services.

CQRS Command Query Responsibility Segregation.

CRUD create, read, update, delete.

DEP Dependency.

HCP Hana Cloud Platform.

IDE Integrated Development Environment.

IFBS International Financial and Brokerage Services.

ISCI Inter Service Coupling Index.

ODC Operation Data Granularity.

ODG Operation Data Granularity.

OFG Operation Functionality Granularity.

PaaS Platform as a Service.

RCS Relative Coupling of Services.

REST Representational State Transfer.

RIS Relative Importance of Services.

RPC Remote Procedure Call.

SaaS Software as a Service.

127

Acronyms

SCG Service Capability Granularity.

SDG Service Data Granularity.

SDLC Software Development Life Cycle.

SFCI Service Functional Cohesion Index.

SIDC Service Interface Data Cohesion.

SIUC Service Interface Usage Cohesion.

SIUC Service Sequential Usage Cohesion.

SLC Self Containment.

SMCI Service Message Coupling Index.

SOA Service Oriented Architecture.

SOAD Service Oriented Analysis and Design.

SOAF Service Oriented Architecture Framework.

SOCI Service Operational Coupling Index.

SOG Service Operations Granularity.

SOMA Service Oriented Modeling and Architecture.

SRI Service Reuse Index.

SRP Single Responsibility Principle.

SWIFT Society for Worldwide Interbank Financial Telecommunication.

UML Unified Modeling Language.

YaaS Hybris as a Service.

128

List of Figures

1.1 Monolith Example from [Ric14a] . 1
1.2 Module Monolith-Example from [Ann14] 2
1.3 Allocation Monolith-Example from [Ann14] 3
1.4 Runtime Monolith-Example from [Ann14] 3
1.5 Scale Cube from [FA15] . 7
1.6 Data Collection Phase . 11
1.7 Data Synthesis Phase . 13

2.1 Reach and Range model from [Kee91; WB98] 21
2.2 Example to show varying ’Range’ from [Kee91; WB98] 22
2.3 R3 Volume-Granularity Analogy to show direct dependence of granular-

ity and volume [RS07] . 23
2.4 R3 Volume-Granularity Analogy to show same granularity with different

dimension along axes [RS07] . 23

4.1 Use cases with cross-cutting concerns [NJ04] 48
4.2 Initial Use Case Model for Online Room Booking Application 53
4.3 Use Case Model after applying Decomposition and Generalization rules 55
4.4 Use Case Model after applying Composition rule 56
4.5 Use Case Model for identification of service candidates 57
4.6 Process to define Ubiquitous Language [Eva03] 59
4.7 Domain Model for Customer Management 67
4.8 Domain Model for Booking . 68
4.9 Domain Model for Checkout . 69
4.10 Domain Model for Package Management 69

5.1 YaaS and HCP [Hir15] . 73
5.2 Attributes grouping from interview response 83
5.3 Process variations to design microservices 84
5.4 Microservices Layers . 89
5.5 Microservices Layers For Commerce Domain 90
5.6 Sourcecode Management at SAP Hybris 91
5.7 Continuous Deployment at SAP Hybris 93

129

List of Figures

5.8 SAP Hybris Architecture [Hir15] [Stu15] 94

6.1 Inteaction Styles among microservices [Ric15a] 98
6.2 Interaction during Order creation . 100
6.3 States of a circuit breaker [[Fow14b]] . 104
6.4 ELK stack . 105
6.5 Continuous Integration [New15] . 108
6.6 Continuous Delivery Pipeline [New15] 108

7.1 Process to implement microservices architecture 111

11.1 CQRS [[Fow11a]] . 125

130

List of Tables

1.1 Various Questions related to Microservices 10
1.2 Keywords extracted from various definitions of Microservice 14

3.1 Quality Attributes . 28
3.2 Coupling Metrics . 32
3.3 Cohesion Metrics . 35
3.4 Granularity Metrics . 36
3.5 Complexity Metrics . 38
3.6 Autonomy Metrics . 39
3.7 Reusability Metrics . 40
3.8 Basic Quality Metrics . 41
3.9 Relationship among quality attributes . 44

4.1 Decomposition Rule . 50
4.2 Equivalence Rule . 50
4.3 Composition Rule . 51
4.4 Generalization Rule . 51
4.5 Merge Rule . 52
4.6 Deletion Rule . 52
4.7 Task Trees for Initial Use Cases . 54
4.8 Common and Independent Tasks . 55
4.9 Analogy of Microservice and Bounded Context 64
4.10 Application of Bounded Context to create Microservices 64
4.11 Domain Keywords . 66
4.12 Subdomains . 66
4.13 Bounded Contexts in Subdomains . 67

5.1 Interviewee List . 77
5.2 Response 2.1 . 81
5.3 Sub-domains in YaaS . 87
5.4 Bounded Contexts in Checkout . 88
5.5 Functional Bounded Contexts in Product 88
5.6 Supporting and Generic Bounded Contexts in Product 89

131

List of Tables

5.7 Services in YaaS Commerce domain . 90

132

Bibliography

[Abr14] S. Abram. Microservices. Oct. 2014. url: http://www.javacodegeeks.com/
2014/10/microservices.html.

[AL03] M. Alshayeb and W. Li. An Empirical Validation of Object-Oriented Metrics in
Two Different Iterative Software Processes. Tech. rep. IEEE Computer Society,
2003.

[Ani14] M. Anicas. How To Use Logstash and kibana To Centralize Logs On Ubuntu 14.04.
June 2014. url: https://www.digitalocean.com/community/tutorials/
how-to-use-logstash-and-kibana-to-centralize-and-visualize-
logs-on-ubuntu-14-04.

[Ann14] R. Annett. What is a Monolith? Nov. 2014. url: http : / / www .
codingthearchitecture.com/2014/11/19/what_is_a_monolith.html.

[Ars04] A. Arsanjani. Service-oriented modeling and architecture How to identify, specify,
and realize services for your SOA. Tech. rep. IBM Software Group, 2004.

[AZR11] S. Alahmari, E. Zaluska, and D. C. D. Roure. A Metrics Framework for
Evaluating SOA Service Granularity. Tech. rep. School of Electronics and
Computer Science University Southampton, 2011.

[Bea15] J. Beard. State Machines as a Service: An SCXML Microservices Platform for the
Internet of Things. Tech. rep. McGill University, 2015.

[Bec+11] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M.
Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas. Man-
ifesto for Agile Software Development. 2011. url: http://agilemanifesto.
org/.

[BG13] P. Bailis and A. Ghodsi. “Eventual Consistency Today: Limitations, Exten-
sions, and Beyond How can applications be built on eventually consistent
infrastructure given no guarantee of safety?” In: 11 (Apr. 2013).

[BHJ15] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Migrating to Cloud-Native
Architectures Using Microservices: An Experience Report. Tech. rep. Sharif
University of Technology and Imperial College London, 2015.

133

http://www.javacodegeeks.com/2014/10/microservices.html
http://www.javacodegeeks.com/2014/10/microservices.html
https://www.digitalocean.com/community/tutorials/how-to-use-logstash-and-kibana-to-centralize-and-visualize-logs-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-use-logstash-and-kibana-to-centralize-and-visualize-logs-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-use-logstash-and-kibana-to-centralize-and-visualize-logs-on-ubuntu-14-04
http://www.codingthearchitecture.com/2014/11/19/what_is_a_monolith.html
http://www.codingthearchitecture.com/2014/11/19/what_is_a_monolith.html
http://agilemanifesto.org/
http://agilemanifesto.org/

Bibliography

[BKM07] P. Bianco, R. Kotermanski, and P. F. Merson. Evaluating a Service-Oriented
Architecture. Tech. rep. Carnegie Mellon University, 2007.

[Bla08] J. Blanchette. The Little Manual of API Design. June 2008. url: http://www4.
in.tum.de/~blanchet/api-design.pdf.

[Blo16] J. Bloch. How to Design a Good API and Why it Matters. Jan. 2016. url: http:
//lcsd05.cs.tamu.edu/slides/keynote.pdf (visited on 01/13/2016).

[BMB96] L. C. Briand, S. Morasca, and V. R. Basili. Property-Based Software Engineering
Measurement. Tech. rep. IEEE Computer Society, 1996.

[Bon+14] J. Bonér, D. Farley, R. Kuhn, and M. Thompson. The Reactive Manifesto.
Sept. 2014. url: http://www.reactivemanifesto.org/.

[Bri+np] L. C. Briand, J. Daly, V. Porter, and J. Wüst. A Comprehensive Empirical Vali-
dation of Design Measures for Object-Oriented Systems. Tech. rep. Fraunhofer
IESE, np.

[Bro09] J. Browne. Brewer’s CAP Theorem. Jan. 2009. url: http : / / www .
julianbrowne.com/article/viewer/brewers-cap-theorem.

[Bro15] S. Brown. “Software Architecture for Developers.” In: (Dec. 2015).

[Brü+13] M. E. Brüggemann, R. Vallon, A. Parlak, and T. Grechenig. “Modelling
Microservices in Email-marketing Concepts, Implementation and Experi-
ences.” In: (2013).

[Coc01] A. Cockburn. WRITING EFFECTIVE USE CASES. Tech. rep. Addison-
Wesley, 2001.

[Coc15] A. Cockcroft. State of the Art in Mircroservices. Feb. 2015. url: http://www.
slideshare.net/adriancockcroft/microxchg-microservices.

[Day+15] S. Daya, N. V. Duy, K. Eati, C. M. Ferreira, D. Glozic, V. Gucer, M. Gupta,
S. Joshi, V. Lampking, M. Martins, S. Narain, and R. Vennam. Microser-
vices from Theory to Practice Creating Applications in IBM Bluemix Using the
Microservices Approach. IBM, Aug. 2015.

[DK07] K.-G. Doh and Y. Kim. The Service Modeling Process Based on Use Case
Refactoring. Tech. rep. Hanyang University, 2007.

[DMT09] E. M. Dashofy, N. Medvidovic, and R. N. Taylor. Software Architecture:
Foundations, Theory, and Practice. John Wiley Sons, Jan. 2009.

[EM14] A. A. M. Elhag and R. Mohamad. Metrics for Evaluating the Quality of
Service-Oriented Design. Tech. rep. Universiti Teknologi Malaysia, 2014.

[Emi+np] C. Emig, K. Langer, K. Krutz, S. Link, C. Momm, and S. Abeck. The SOA’s
Layers. Tech. rep. Universität Karlsruhe, np.

134

http://www4.in.tum.de/~blanchet/api-design.pdf
http://www4.in.tum.de/~blanchet/api-design.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://www.reactivemanifesto.org/
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.slideshare.net/adriancockcroft/microxchg-microservices
http://www.slideshare.net/adriancockcroft/microxchg-microservices

Bibliography

[Eng+np] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J. Richter, M. Voß,
and J. Willkomm. A METHOD FOR ENGINEERING A TRUE SERVICE-
ORIENTED ARCHITECTURE. Tech. rep. Software Design and Management
Research, np.

[Erl05] T. Erl. Service-Oriented Architecture Concepts, Technology, and Design. Prentice
Hall Professional Technical Reference, 2005.

[Eva03] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 2003.

[FA15] M. T. Fisher and M. L. Abbott. The Art of Scalability: Scalable Web Architec-
ture, Processes, and Organizations for the Modern Enterprise, Second Edition.
Addison-Wesley Professional, 2015.

[Fac14] P. Factor. The Eight Fallacies of Distributed Computing. Dec. 2014. url: https:
//www.simple-talk.com/blogs/2014/12/30/the-eight-fallacies-of-
distributed-computing/.

[Far08] N. Fareghzadeh. Service Identification Approach to SOA Development. Tech.
rep. World Academy of Science, Engineering and Technology, 2008.

[Feu13] G. Feuerlicht. Evaluation of Quality of Design for Document-Centric Software
Services. Tech. rep. University of Economics and University of Technology,
2013.

[FL07] G. Feuerlicht and J. Lozina. Understanding Service Reusability. Tech. rep.
University of Technology, 2007.

[FL14] M. Fowler and J. Lewis. Microservices. Mar. 2014. url: http : / /
martinfowler.com/articles/microservices.html.

[Foo05] D. Foody. Getting web service granularity right. 2005. url: http://www.soa-
zone.com/index.php?/archives/11-Getting-web-servicegranularity-
right.html.

[Fow03] M. Fowler. AnemicDomainModel. Nov. 2003. url: http : / / www .
martinfowler.com/bliki/AnemicDomainModel.html.

[Fow06a] M. Fowler. Continuous Integration. May 2006. url: http : / / www .
martinfowler.com/articles/continuousIntegration.html.

[Fow06b] M. Fowler. UbiquitousLanguage. Oct. 2006. url: http://martinfowler.com/
bliki/UbiquitousLanguage.html.

[Fow10] M. Fowler. BlueGreenDeployment. Mar. 2010. url: http://martinfowler.
com/bliki/BlueGreenDeployment.html.

135

https://www.simple-talk.com/blogs/2014/12/30/the-eight-fallacies-of-distributed-computing/
https://www.simple-talk.com/blogs/2014/12/30/the-eight-fallacies-of-distributed-computing/
https://www.simple-talk.com/blogs/2014/12/30/the-eight-fallacies-of-distributed-computing/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://www.soa-zone.com/index.php?/archives/11-Getting-web-servicegranularity-right.html
http://www.soa-zone.com/index.php?/archives/11-Getting-web-servicegranularity-right.html
http://www.soa-zone.com/index.php?/archives/11-Getting-web-servicegranularity-right.html
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/bliki/UbiquitousLanguage.html
http://martinfowler.com/bliki/UbiquitousLanguage.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/BlueGreenDeployment.html

Bibliography

[Fow11a] M. Fowler. CQRS. July 2011. url: http://martinfowler.com/bliki/CQRS.
html.

[Fow11b] M. Fowler. TolerantReader. May 2011. url: http://martinfowler.com/
bliki/TolerantReader.html.

[Fow13] M. Fowler. ContinuousDelivery. May 2013. url: http://martinfowler.com/
bliki/ContinuousDelivery.html.

[Fow14a] M. Fowler. BoundedContext. Jan. 2014. url: http://martinfowler.com/
bliki/BoundedContext.html.

[Fow14b] M. Fowler. CircuitBreaker. Mar. 2014. url: http://martinfowler.com/
bliki/CircuitBreaker.html.

[Fow15] M. Fowler. Microservice Trade-Offs. July 2015. url: http://martinfowler.
com/articles/microservice-trade-offs.html.

[GL11] A. Goeb and K. Lochmann. A software quality model for SOA. Tech. rep.
Technische Universität München and SAP Research, 2011.

[Gor13] L. Gorodinski. Sub-domains and Bounded Contexts in Domain-Driven Design
(DDD). Sept. 2013. url: http://gorodinski.com/blog/2013/04/29/sub-
domains-and-bounded-contexts-in-domain-driven-design-ddd/.

[Gup15] A. Gupta. Microservices, Monoliths, and NoOps. Mar. 2015. url: http://
blog.arungupta.me/microservices-monoliths-noops/.

[Hae+np] R. Haesen, M. Snoeck, W. Lemahieu, and S. Poelmans. On the Definition
of Service Granularity and Its Architectural Impact. Tech. rep. Katholieke
Universiteit Leuven, np.

[Hir15] R. Hirsch. YaaS: Hybris’ next generation cloud architecture surfaces at SAP’s
internal developer conferences. Mar. 2015. url: http : / / scn . sap . com /
community/cloud/blog/2015/03/03/yaas-hybris-next-generation-
cloud - architecture - surfaces - at - sap - s - internal - developer -
conferences.

[HS00] P. Herzum and O. Sims. Business Components Factory: A Comprehensive
Overview of Component-Based Development for the Enterprise. John Wiley
Sons, 2000.

[HS90] S. Henry and C. Selig. Predicting Source=Code Complexity at the Design Stage.
Tech. rep. Virginia Polytechnic lnstirure, 1990.

[Hug14] G. Hughson. Microservices and Data Architecture – Who Owns What Data?
June 2014. url: https://genehughson.wordpress.com/2014/06/20/
microservices-and-data-architecture-who-owns-what-data/.

136

http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/bliki/TolerantReader.html
http://martinfowler.com/bliki/TolerantReader.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/BoundedContext.html
http://martinfowler.com/bliki/BoundedContext.html
http://martinfowler.com/bliki/CircuitBreaker.html
http://martinfowler.com/bliki/CircuitBreaker.html
http://martinfowler.com/articles/microservice-trade-offs.html
http://martinfowler.com/articles/microservice-trade-offs.html
http://gorodinski.com/blog/2013/04/29/sub-domains-and-bounded-contexts-in-domain-driven-design-ddd/
http://gorodinski.com/blog/2013/04/29/sub-domains-and-bounded-contexts-in-domain-driven-design-ddd/
http://blog.arungupta.me/microservices-monoliths-noops/
http://blog.arungupta.me/microservices-monoliths-noops/
http://scn.sap.com/community/cloud/blog/2015/03/03/yaas-hybris-next-generation-cloud-architecture-surfaces-at-sap-s-internal-developer-conferences
http://scn.sap.com/community/cloud/blog/2015/03/03/yaas-hybris-next-generation-cloud-architecture-surfaces-at-sap-s-internal-developer-conferences
http://scn.sap.com/community/cloud/blog/2015/03/03/yaas-hybris-next-generation-cloud-architecture-surfaces-at-sap-s-internal-developer-conferences
http://scn.sap.com/community/cloud/blog/2015/03/03/yaas-hybris-next-generation-cloud-architecture-surfaces-at-sap-s-internal-developer-conferences
https://genehughson.wordpress.com/2014/06/20/microservices-and-data-architecture-who-owns-what-data/
https://genehughson.wordpress.com/2014/06/20/microservices-and-data-architecture-who-owns-what-data/

Bibliography

[Jac03] I. Jacobson. Use Cases and Aspects - Working Seamlessly Together. Tech. rep.
Rational Software Corporation, 2003.

[Jac87] I. Jacobson. Object Oriented Development in an Industrial Environment. Tech.
rep. Royal Institute of Technology, 1987.

[Jos07] N. M. Josuttis. SOA in Practice The Art of Distributed System Design. O’Reilly
Media, 2007.

[JSM08] P. Jamshidi, M. Sharifi, and S. Mansour. To Establish Enterprise Service
Model from Enterprise Business Model. Tech. rep. Amirkabir University of
Technology, Iran University of Science, and Technology, 2008.

[Kaz+11] A. Kazemi, A. N. Azizkandi, A. Rostampour, H. Haghighi, P. Jamshidi,
and F. Shams. Measuring the Conceptual Coupling of Services Using Latent
Semantic Indexing. Tech. rep. Automated Software Engineering Research
Group, 2011.

[Kee91] P. G. Keen. Shaping The Future of Business Design Through Information Tech-
nology. Harvard Business School Press, 1991.

[KJP15] A. Krylovskiy, M. Jahn, and E. Patti. Designing a Smart City Internet of
Things Platform with Microservice Architecture. Tech. rep. Fraunhofer FIT and
Politecnico di Torino, 2015.

[KY06] Y. Kim and H. Yun. An Approach to Modeling Service-Oriented Development
Process. Tech. rep. Sookmyung Women’s University, 2006.

[Lee+01] J. K. Lee, S. J. Jung, S. D. Kim, W. H. Jang, and D. H. Ham. Component Iden-
tification Method with Coupling and Cohesion. Tech. rep. Soongsil University
and Software Quality Evaluation Center, 2001.

[Linnp] D. Linthicum. Service Oriented Architecture (SOA). np. url: https://msdn.
microsoft.com/en-us/library/bb833022.aspx.

[LTV14] A. Levcovitz, R. Terra, and M. T. Valente. “Towards a Technique for Extract-
ing Microservices from Monolithic Enterprise Systems.” In: (2014).

[Ma+09] Q. Ma, N. Zhou, Y. Zhu, and H. Wang1. Evaluating Service Identification
with Design Metrics on Business Process Decomposition. Tech. rep. IBM China
Research Laboratory and IBM T.J. Watson Research Center, 2009.

[Mac14] L. MacVittie. The Art of Scale: Microservices, The Scale Cube and Load Balancing.
Nov. 2014. url: https://devcentral.f5.com/articles/the-art-of-
scale-microservices-the-scale-cube-and-load-balancing.

137

https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://devcentral.f5.com/articles/the-art-of-scale-microservices-the-scale-cube-and-load-balancing
https://devcentral.f5.com/articles/the-art-of-scale-microservices-the-scale-cube-and-load-balancing

Bibliography

[Man+np] M. Mancioppi, M. Perepletchikov, C. Ryan, W.-J. van den Heuvel, and M. P.
Papazoglou. Towards a Quality Model for Choreography. Tech. rep. European
Research Institute in Services Science, Tilburg University, np.

[Mar09] R. C. Martin. The Single Responsibility Principle. Nov. 2009. url: http :
//programmer.97things.oreilly.com/wiki/index.php/The_Single_
Responsibility_Principle.

[Mar13] S. Martin. Effective Visual Communication for Graphical User Interfaces. Jan.
2013. url: http://web.cs.wpi.edu/~matt/courses/cs563/talks/
smartin/int_design.html (visited on 01/13/2016).

[Mar16] R. C. Martin. The Single Responsibility Principle. Jan. 2016. url: http://
programmer . 97things . oreilly . com / wiki / index . php / The _ Single _
Responsibility_Principle.

[Mau15] T. Mauro. Adopting Microservices at Netflix: Lessons for Architectural De-
sign. Feb. 2015. url: https://www.nginx.com/blog/microservices-at-
netflix-architectural-best-practices/.

[Mik12] Mike. DDD - The Bounded Context Explained. Apr. 2012. url: http://
blog.sapiensworks.com/post/2012/04/17/DDD-The-Bounded-Context-
Explained.aspx/.

[MLS07] Y.-F. Ma, H. X. Li, and P. Sun. A Lightweight Agent Fabric for Service Autonomy.
Tech. rep. IBM China Research Lab and Bei Hang University, 2007.

[Mor15] B. Morris. Why REST is not a silver bullet for service integration. Jan. 2015.
url: http://www.ben-morris.com/why-rest-is-not-a-silver-bullet-
for-soa-and-microservice-integration/.

[Nem+14] H. Nematzadeh, H. Motameni, R. Mohamad, and Z. Nematzadeh. QoS Mea-
surement of Workflow-Based Web Service Compositions Using Colored Petri Net.
Tech. rep. Islamic Azad University Sari Branch and Universiti Teknologi
Malaysia, 2014.

[New15] S. Newman. Building Microservices. O’Reilly Media, 2015.

[NJ04] P.-W. Ng and I. Jacobson. Aspect-Oriented Software Development with Use
Cases. Addison-Wesley Professional, 2004.

[np01] np. ISO/IEC 9126-1 Software Engineering Product Quality – Quality Model.
Tech. rep. International Standards Organization, 2001.

[np07] np. Guidelines for performing Systematic Literature Reviews in Software Engi-
neering. Tech. rep. Keele University, 2007.

138

http://programmer.97things.oreilly.com/wiki/index.php/The_Single_Responsibility_Principle
http://programmer.97things.oreilly.com/wiki/index.php/The_Single_Responsibility_Principle
http://programmer.97things.oreilly.com/wiki/index.php/The_Single_Responsibility_Principle
http://web.cs.wpi.edu/~matt/courses/cs563/talks/smartin/int_design.html
http://web.cs.wpi.edu/~matt/courses/cs563/talks/smartin/int_design.html
http://programmer.97things.oreilly.com/wiki/index.php/The_Single_Responsibility_Principle
http://programmer.97things.oreilly.com/wiki/index.php/The_Single_Responsibility_Principle
http://programmer.97things.oreilly.com/wiki/index.php/The_Single_Responsibility_Principle
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
http://blog.sapiensworks.com/post/2012/04/17/DDD-The-Bounded-Context-Explained.aspx/
http://blog.sapiensworks.com/post/2012/04/17/DDD-The-Bounded-Context-Explained.aspx/
http://blog.sapiensworks.com/post/2012/04/17/DDD-The-Bounded-Context-Explained.aspx/
http://www.ben-morris.com/why-rest-is-not-a-silver-bullet-for-soa-and-microservice-integration/
http://www.ben-morris.com/why-rest-is-not-a-silver-bullet-for-soa-and-microservice-integration/

Bibliography

[NS14] D. Namiot and M. Sneps-Sneppe. On Micro-services Architecture. Tech. rep.
Open Information Technologies Lab, Lomonosov Moscow State University,
2014.

[Nyg07] M. T. Nygard. Release It! Pragmatic Bookshelf, Mar. 2007.

[Per+07] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari. Coupling Metrics
for Predicting Maintainability in Service-Oriented Designs. Tech. rep. RMIT
University, 2007.

[Por16] J. Porter. Principles of User Interface Design. Jan. 2016. url: http://bokardo.
com/principles-of-user-interface-design/.

[PRF07] M. Perepletchikov, C. Ryan, and K. Frampton. Cohesion Metrics for Predicting
Maintainability of Service-Oriented Software. Tech. rep. RMIT University, 2007.

[RDS16] E. Ramollari, D. Dranidis, and A. J. H. Simons. “A Survey of Service
Oriented Development Methodologies.” In: (Feb. 2016).

[Ric14a] C. Richardson. Microservices: Decomposing Applications for Deployability
and Scalability. May 2014. url: http : / / www . infoq . com / articles /
microservices-intro.

[Ric14b] C. Richardson. Pattern: Microservices Architecture. 2014. url: http : / /
microservices.io/patterns/microservices.html.

[Ric14c] C. Richardson. Pattern: Monolithic Architecture. 2014. url: http : / /
microservices.io/patterns/monolithic.html.

[Ric15a] C. Richardson. Building Microservices: Inter-Process Communication in a Mi-
croservices Architecture. July 2015. url: https://www.nginx.com/blog/
building-microservices-inter-process-communication/.

[Ric15b] C. Richardson. Does each microservice really need its own database? Sept.
2015. url: http : / / plainoldobjects . com / 2015 / 09 / 02 / does - each -
microservice-really-need-its-own-database-2/.

[Ric16] C. Richardson. Pattern: Database per service. 2016. url: http : / /
microservices.io/patterns/data/database-per-service.html.

[Rig15] J. Riggins. Building Microservices, Toiling With the Monolith and What it
Takes to Get it Right. Aug. 2015. url: http://thenewstack.io/building-
microservices-toiling-with-the-monolith-and-what-it-takes-to-
get-it-right/.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley Professional, 1999.

139

http://bokardo.com/principles-of-user-interface-design/
http://bokardo.com/principles-of-user-interface-design/
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/monolithic.html
http://microservices.io/patterns/monolithic.html
https://www.nginx.com/blog/building-microservices-inter-process-communication/
https://www.nginx.com/blog/building-microservices-inter-process-communication/
http://plainoldobjects.com/2015/09/02/does-each-microservice-really-need-its-own-database-2/
http://plainoldobjects.com/2015/09/02/does-each-microservice-really-need-its-own-database-2/
http://microservices.io/patterns/data/database-per-service.html
http://microservices.io/patterns/data/database-per-service.html
http://thenewstack.io/building-microservices-toiling-with-the-monolith-and-what-it-takes-to-get-it-right/
http://thenewstack.io/building-microservices-toiling-with-the-monolith-and-what-it-takes-to-get-it-right/
http://thenewstack.io/building-microservices-toiling-with-the-monolith-and-what-it-takes-to-get-it-right/

Bibliography

[RKKnp] C. Rolland, R. S. Kaabi, and N. Kraiem. On ISOA: Intentional Services
Oriented Architecture. Tech. rep. Université Paris, np.

[Ros+11] A. Rostampour, A. Kazemi, F. Shams, P. Jamshidi, and A. Azizkandi.
Measures of Structural Complexity and Service Autonomy. Tech. rep. Shahid
Beheshti University GC, 2011.

[RS07] P. Reldin and P. Sundling. Explaining SOA Service Granularity– How IT-
strategy shapes services. Tech. rep. Linköping University, 2007.

[RTS15] G. Radchenko, O. Taipale, and D. Savchenko. Microservices validation: Mjol-
nirr platformcase study. Tech. rep. Lappeenranta University of Technology,
2015.

[Sat14] D. Sato. CanaryRelease. June 2014. url: http://martinfowler.com/bliki/
CanaryRelease.html.

[Shi+08] B. Shim, S. Choue, S. Kim, and S. Park. A Design Quality Model for Service-
Oriented Architecture. Tech. rep. Sogang University, 2008.

[Sim14] S. D. Simone. Sam Newman: Practical Implications of Microservices in 14
Tips. Oct. 2014. url: http://www.infoq.com/articles/microservices-
practical-tips.

[Sok15] B. Sokhan. Domain Driven Design for Services Architecture. Aug. 2015. url:
https : / / www . thoughtworks . com / insights / blog / domain - driven -
design-services-architecture.

[Sol12] K. Sollenberger. 10 User Interface Design Fundamentals. Aug. 2012. url: http:
//blog.teamtreehouse.com/10-user-interface-design-fundamentals.

[SR01] K. Scott and D. Rosenberg. Applying Use Case Driven Object Modeling with
UML: An Annotated e-Commerce Example. Addison-Wesley Professional,
2001.

[SSPnp] R. Sindhgatta, B. Sengupta, and K. Ponnalagu. Measuring the Quality of
Service Oriented Design. Tech. rep. IBM India Research Laboratory, np.

[Sti14] M. Stine. microservices are solid. June 2014. url: http://www.mattstine.
com/2014/06/30/microservices-are-solid/.

[Stu15] A. Stubbe. Hybris-as-a-Service: A Microservices Architecture in Action. May
2015. url: http://www.infoq.com/presentations/hybris.

[Ver13] V. Vernon. Implementing Domain-Driven Design. Addison-Wesley Profes-
sional, 2013.

140

http://martinfowler.com/bliki/CanaryRelease.html
http://martinfowler.com/bliki/CanaryRelease.html
http://www.infoq.com/articles/microservices-practical-tips
http://www.infoq.com/articles/microservices-practical-tips
https://www.thoughtworks.com/insights/blog/domain-driven-design-services-architecture
https://www.thoughtworks.com/insights/blog/domain-driven-design-services-architecture
http://blog.teamtreehouse.com/10-user-interface-design-fundamentals
http://blog.teamtreehouse.com/10-user-interface-design-fundamentals
http://www.mattstine.com/2014/06/30/microservices-are-solid/
http://www.mattstine.com/2014/06/30/microservices-are-solid/
http://www.infoq.com/presentations/hybris

Bibliography

[Vie+15] N. Viennot, M. Lecuyer, J. Bell, R. Geambasu, and J. Nieh. Synapse: A
Microservices Architecture for Heterogeneous-Database Web Applications. Tech.
rep. Columbia University, 2015.

[WB98] P. Weill and M. Broadbent. Leveraging The New Infrastructure: How Market
Leaders Capitalize on Information Technology. Harvard Business School Press,
1998.

[Wig12] A. Wiggins. THE TWELVE-FACTOR APP. Jan. 2012. url: http://12factor.
net/.

[Woo14] B. Wootton. Microservices - Not A Free Lunch! Apr. 2014. url: http://
highscalability.com/blog/2014/4/8/microservices- not- a- free-
lunch.html.

[WV04] L. Wilkes and R. Veryard. “Service-Oriented Architecture: Considerations
for Agile Systems.” In: np (2004).

[WYF03] H. Washizakia, H. Yamamoto, and Y. Fukazawa. A metrics suite for measuring
reusability of software components. Tech. rep. Waseda University, 2003.

[Xianp] W. Xiao-jun. Metrics for Evaluating Coupling and Service Granularity in Service
Oriented Architecture. Tech. rep. Nanjing University of Posts and Telecom-
munications, np.

[YK06] H. Yun and Y. Kim. Service Modeling in Service-Oriented Engineering. Tech.
rep. Sookmyung Women’s University, 2006.

[Zim+05] O. Zimmermann, V. Doubrovski, J. Grundler, and K. Hogg. Service-Oriented
Architecture and Business Process Choreography in an Order Management Sce-
nario: Rationale, Concepts, Lessons Learned. Tech. rep. IBM Software Group
and IBM Global Services, 2005.

[ZL09] Q. Zhang and X. Li. Complexity Metrics for Service-Oriented Systems. Tech.
rep. Hefei University of Technology, 2009.

141

http://12factor.net/
http://12factor.net/
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html

	Acknowledgments
	Abstract
	Introduction
	Monolithic Architectural Approach
	Types of the Monolithic Architectural Approach
	Advantages of the Monolithic Architectural Approach
	Disadvantages of the Monolithic Architectural Approach

	Microservices Architectural Approach
	Decomposition of an Application
	Scale Cube
	Shared Libraries

	Definitions

	Motivation
	Research Approach
	Data Collection Phase
	Data Synthesis Phase

	Research Strategy
	Summary

	Granularity
	Introduction
	Basic Principles of the Service Granularity
	Dimensions of the Service Granularity
	Dimensions given by Interface Perception of Consumers
	Dimensions given by Interface Realization
	R3 Dimension
	Retrospective

	Summary

	Quality Attributes of Microservices
	Introduction
	Quality Attributes
	Quality Metrics
	Context and Notations
	Coupling Metrics
	Cohesion Metrics
	Granularity Metrics
	Complexity Metrics
	Autonomy Metrics
	Reusability Metrics

	Basic Quality Metrics
	Principles based on Quality Attributes
	Relationship among Quality Attributes
	Summary
	Problem Statement

	Modeling Microservices
	Introduction
	Modeling using Use Cases
	Use Cases Refactoring
	Process for Use Cases Refactoring
	Rules for Use Cases Refactoring
	Decomposition Refactoring
	Equivalence Refactoring
	Composition Refactoring
	Generalization Refactoring
	Merge Refactoring
	Deletion Refactoring

	Example Scenario

	Modeling using Domain Driven Design
	Process to implement Domain Driven Design
	Ubiquitous Language
	Strategical Design

	Microservices and Bounded Context
	Example Scenario

	Summary
	Problem Statement

	Architecture at SAP Hybris
	Overview
	Vision
	SAP Hybris Architecture Principles
	Modeling Microservices at SAP Hybris
	Hypothesis
	Interview Compilation
	Interview Reflection on Hypothesis

	Modeling Approach at SAP Hybris derived by interview compilation
	Case Study
	Deployment Workflow
	SourceCode Management
	Continuous Deployment

	Summary

	Challanges of Microservices Architecture
	Introduction
	Integration
	Sharing Data
	Inter-Service Communication
	Synchronous and Asynchronous
	Example

	Distributed System Complexity
	Breaking Change
	Handling Failures

	Operational Complexity
	Monitoring
	Deployment

	Summary

	Guidelines
	Context
	Process to Implement Microservices Architecture
	Principles And Guidelines

	Conclusion
	Related Work
	Future Directions
	Appendices
	CAP Theorem
	Eventual Consistency
	Command Query Responsibility Segregation(CQRS)
	Single Responsibility Principle
	BlueGreen Deployment
	Canary Release

	Acronyms
	List of Figures
	List of Tables
	Bibliography

