Identification, Genericity and Consistency in
Object-Oriented Databases™

Klaus—Dieter Schewe, Joachim W. Schmidt, Ingrid Wetzel

University of Hamburg, Dept. of Computer Science,
Vogt-Kolln-Str. 30, D-W-2000 Hamburg 54

Abstract. It is claimed that object-oriented databases overcome many of
the limitations of the relational data model especially by generalizing the no-
tion of object identification. A clear distinction between objects and values
turns out to be essential for the object-oriented approach whereas the rela-
tional model is based exclusively on values. Since, however, value uniqueness
within scopes is a quite natural constraint for a wide class of applications,
identification by value is also of interest for object-oriented datamodels.
Hence, in this paper we concentrate on those classes where the extents are
completely representable by values. We formalize some basic concepts of
object-oriented databases and show that the finiteness of a database and
the existence of finitely representable recursive types are sufficient to decide
value-representability.

Another advantage of the relational approach is the existence of structurally
determined canonical update operations. We show that this property can be
carried over to object-oriented datamodels iff classes are value-representable.
Moreover, in this case database consistencywith respect to implicitly specified
referential and inclusion constraints will be automatically preserved.

1 Introduction

The success of the relational data model is due certainly to the existence of simple
query and update-languages whereas its modelling power is often criticized for its
limitations [1, 4, 7, 8]. Novel data modelling constructs are required by advanced
database applications and it is claimed that object-oriented databases will satisfy a
much wider range of demands [3, 4, 5, 9, 10, 11, 13, 14]. However, in contrast to the
relational model where a commonly accepted theory existed very early on, there is
not yet a generally accepted object-oriented data model.

Object-oriented databases are based on a clear distinction between wvalues and
objects [6]. A value is identified by itself whereas an object has an identity inde-
pendent of its value. This object identity is usually encoded by object identifiers
[1, 2, 12]. The identifier of an object is immutable during the object’s lifetime; the
object’s value is in general assumed to be mutable. Identifiers can be used to model
relationships naturally by references between objects. This facilitates sharing and
cyclicity.

* This work has been supported in part by research grants from the E.E.C. Basic Research
Action 3070 FIDE: “Formally Integrated Data Environments”.

In contrast to the relational model where identification is modelled by keys,
object identifiers are system-provided and hence do not have a meaning for the user.
Consequently, they have to be hidden from the user.

Values can be classified into types and objects can be grouped into classes.
Roughly speaking, a type defines a fixed set of values and a class defines a finite
collection of objects with the same structure. The content of a class varies over time.
The dynamics of an object-oriented database is defined by methods associated with
objects (classes).

Our intent here is not to describe a concrete object-oriented database language.
Instead we study whether equality of identifiers can be derived from the equality
of values. In the literature the notion of “deep” equality has been introduced for
objects with equal values and references to objects that are also “deeply” equal.
This recursive definition becomes interesting in the case of cyclic references.

Therefore, we introduce functional constraints on classes, in particular uniqueness
constraints, which express equality on identifiers as a consequence of the equality of
some values or references. On this basis we can address the following problems:

— How to characterize those classes that are completely representable (and hence
also identifiable) by values?

— How to characterize those classes for which canonical update operations can be
derived?

— How to define canonical update operations that enforce integrity with respect to
inclusion and to functional and referential constraints as mentioned above?

Our approach to the first and the second of these problems have been reported in
[15] in a more informal way. In this paper we show that the finiteness of a database
and the existence of finitely representable recursive types are sufficient to decide
value-representability. Moreover, in the case of value-representability, we can derive
canonical update operations that enforce consistency with respect to all implicit
referential and inclusion constraints.

The remainder of the paper is organized as follows. In Section 2 we first introduce
concepts of OODBs informally. For their formalization we introduce in Section 3 an
algebraic framework for type specifications similar to [8]. The possibility of defining
parameterized types enables us to formally define classes with implicit referential
and inclusion constraints plus additional user-defined functional constraints. This
will be done in Section 4.

In Section 5 we define formally the notions of value-representability and value-
definability of a class and analyse the referential structure of a given schema. We
derive sufficient conditions for value-representability.

Section 6 discusses the problem of canonical update operations. It consists of the
results on the definability of such operations and their relation to consistency. We
conclude with a short summary and outlook.

2 The Structure of Object-Oriented Databases

In our approach to OODBs each object o consists of a unique identifier id, a set
of (type-, value-)pairs (7}, v;), a set of (reference-, object-)pairs (ref;,0;) and a set

of methods methy. We assume all identifiers id to belong to unique given set ID.
Types represent immutable sets of values. They can be defined algebraically similar
to [8]. Type constructors can be defined analogously by parameterized types. These
can be used to build complex types by nesting and recursive types. We assume that
the set ID of possible object identifiers is also a type. Then an instantiation of a
parameterized type defines a structure that represents a combination of values and
references, where references are expressed by the occurrence of a value of type ID.

Objects can be grouped into classes with some structure built from values and
references. Furthermore, we may associate methods and constraints with each class.
This means of structure building involves implicit referential constraints. Inheritance
on classes is given by IsA-relations, i.e. by set inclusion on object identifiers. Moreover
we introduce subtyping and formalize this by the definition of a continuous function
from a subtype to a supertype. The relation between subtyping and inheritance is
given by an inclusion constraint on classes.

Erample 1. Let us look at a university application, where the objects are persons or
departments. Let (-), {-} and [-] denote type constructors for (tagged) tuples, finite
sets and lists respectively. Let PERSON, DEPARTMENT, PROFESSOR and STU-
DENT be types such that STUDENT and PROFESSOR, are subtypes of PERSON.
The type specifications will be given elsewhere. Then we need the following four
class definitions (omitting additional constraints):

PersonC = structure PERSON end
ProfessorC = IsA PersonC
structure (prof : PROFESSOR , fac : DepartmentC) end
DepartmentC = structure (fac : DEPARTMENT , head : ProfessorC) end
StudentC = IsA PersonC
structure (stud : STUDENT , major : DepartmentC , minor : DepartmentC |
supervisors : { (fac : DepartmentC , prof : [sup : ProfessorC]) }) end

Note that we used names for the references. In this example an object o in the
class ProfessorC is given by (i, (v, j)), where i :: ID is the oid of o, v is a value of
type PROFESSOR and j :: ID is the oid of an object o’ in the class DepartmentC.
Moreover, o also belongs to the class PersonC and is represented there by (i,w),

where the subtype function f: PROFESSOR — PERSON satisfies f(v) = w. |

3 Type Specifications

Our approach to types is an algebraic one similar to [8]. In general a type is speci-
fied by a collection of constructors, selectors and other functions — the signature of
the type — and axioms defined by universal Horn formulae. Now let Np, Ny, N¢,
Ngr, Np, Npyr and V denote arbitrary pairwise disjoint, countably infinite sets rep-
resenting a reservoir of parameter-, type-, class-, reference-, function-, method- and
variable-names respectively.

Definition1l. A {ype signature X consists of a type name t € Np, a finite set
of supertype-/function-pairs T' C Np X Np, a finite set of parameters P C Np, a

finite set of base types B C Np and pairwise disjoint finite sets C, S, FF C Np of
constructors, selectors and functions such that there exist predefined arities ar(c) €
(PUB*U{t})* x{t}, ar(s) € {t} x (PUB*U{t}) and ar(f) € (PUB* U {t})* x
(PUB*U{t}) foreachce C,se Sand feF.

We write f : t — t' to denote a supertype-/function-pair (', f) € T. We write
c:ty X ...xt, —t to denote a constructor of arity (t1...t,,t), s :t — ¢’ to denote
a selector of arity (¢,t') and f : 43 x ... x 1, — t' to denote a function of arity
(t1 .., t). I ¢, = b0 .. .0 € B*, we write bY(b! ...b"). We call S = PU B U {t}
the set of sorts of the signature X.

Definition2. A type declaration consists of a type signature X with type name ¢
such that there exists a type declaration for each b € B — {t} and a set Az of Horn
formulae over X. Moreover, if b(b} ...b") with b € B occurs within a constructor,
selector or function, then b? must have been declared as a parameterized type with
m parameters. We say that (X, Az) defines the parameterized type t(a1, ..., ay), iff
P ={ay,...,a,} # 0 or the proper type t respectively.

A type t is defined either by a type declaration or by mutually recursive equations
involving ¢ as a variable.

The semantics of a type is given by term generated algebras that are quotients of
the term algebra defined by the constructors. Functions are considered to define
additional structure via operations and functions on these algebras. Subtyping is
modelled by the use of a continous function taking the subtype to the supertype.
Recursive types are fixpoints of functors.

Ezample 2. Assume the types NAT, PERSONNAME and ADDRESS to be defined
elsewhere. Then a proper type PERSON as used in Example 1 can be defined as
follows:

PERSON ==
BasedOn NAT ; PERSONNAME ; ADDRESS ;
Constructors
Person : NAT x PERSONNAME x ADDRESS — PERSON ;
Selectors

PersonldentityNo : PERSON — NAT ;

Name : PERSON — PERSONNAME ;

Address : PERSON — ADDRESS ;

Axioms

With P :: PERSON :
Person(PersonldentityNo(P),Name(P),Address(P)) = P ;

With N :: NAT | PN :: PERSONNAME , A :: ADDRESS :
PersonldentityNo(Person(N,PN;A)) = N;

With N :: NAT | PN :: PERSONNAME , A :: ADDRESS :
Name(Person(N,PN,A)) = PN;

With N :: NAT | PN :: PERSONNAME , A :: ADDRESS :
Address(Person(N,PN,A)) = A;

End PERSON ad

In [16] we presented the parameterized type F'SETS(«) denoting finite sets with
elements of type . On this basis, it is easy to define PFUN («, [3), the type of partial
functions (with finite domain) from « to 3.

So far we use only single-sorted algebras, but the extension to many-sorted and
order-sorted algebras is straightforward. Moreover, each value of a given type can
be expressed by a closed constructor term. In the case of recursive types this term
is a rational tree.

4 The Concept of a Class in Object-Oriented Databases

Our approach to OODBs distinguishes between values grouped into types and ob-
jects grouped into classes. The extent of classes varies over time, whereas types
are immutable. Relationships between classes are represented by references together
with referential constraints on the object identifiers involved. Moreover, each class is
accompanied by a collection of methods, but methods will be postponed to Section
6.

Throughout the rest of the paper we assume a proper identifier type ID to be
defined such that only the trivial type L is a supertype of ID. A type T without
any occurrence of 1D will be called a value type.

Each object in a class consists of an identifier, a collection of values and references
to objects in other classes. Identifiers can be represented using the unique identifier
type ID. Values and references can be combined into a representation type, where
each occurence of 1D denotes references to some other classes. Therefore, we may
define the structure of a class using parameterized types.

Definition 3. (i) Let ¢ be a value type with parameters aq, ..., an. Let rq, ... 1, €
Np be distinct reference names and C4,...,C, € N¢ be class names. The ex-
pression derived from ¢ by replacing each «; int by r; : C; for i = 1,...,n is

called a structure expression.

(ii) A class consists of a class name C' € N¢, a structure expression S, a list of super-
classes D1, ..., Dy, and a list of constraints Z;,...,Zy. We call r; the reference
named 7; from class C to class C;. The type derived from S by replacing each
reference 7; : C; by the type ID is called the representation type T of the class
C.

In general a class may be considered as a variable C' of type PFUN(ID,T¢). How-
ever, the introduction of classes is associated inevitably with the introduction of
constraints. In object-oriented databases we want to be able to model inheritance
between classes, which leads to some kind of inclusion constraint. Modelling rela-
tionships between classes via references leads to the introduction of referential con-
straints. Moreover, generalizing the well known key constraints from the relational
theory will give us uniqueness constraints on classes.

Definition4. Let C, C’ be classes of representation types T¢ and T¢: respectively.
Let 2, j be of type ID and v, w be of type T¢.

1) A referential constraint on C' and C’ has the form
(i)

Pair(i,v) € C A o(v,j) = true = j € dom(C"),

where 0 : T¢ x ID — BOOL is a function.
(ii) An inclusion constraint on C' and C’ has the form

Pair(i,v) € C = Pair(i, f(v)) € C’,

where f : T¢ — T¢/ is a subtype function provided such an f exists. Otherwise
it is simply

i € dom(C) = i € dom(C")
(iil) A uniqueness constraint on C' has the form
Pair(i,v) € C A Pair(j,w) € CAf(v) = f(w) = i=3j,

where f :Te — T is a subtype function.

Each reference in the structure expression S of a class C' gives rise to an implicit
referential constraint. Each superclass D of a class C' defines an implicit inclusion
constraint. Moreover, arbitrary constraints may be added as explicit constraints, but
for the purpose of this paper we concentrate on uniqueness constraints.

Ezample 3. Let f: PAIR(PERSON,ID) — PAIR(NAT, ID) be a subtype func-
tion defined by the axiom

With P :: PERSON | I :: ID : f(Pair(P,I)) = Pair(PersonldentityNo(P),I) .
Then a class named MARRIEDPERSONC may be defined as follows:

MARRIEDPERSONC == IsA PERSONC
Structure PAIR(PERSON , spouse : MARRIED PERSONC)
Constraints With I,J :: ID , VW :: PAIR(PERSON,ID) :
Pair(I,V) € MARRIEDPERSONC A Pair(J,W) € MARRIEDPERSONC A
f(V)y=f(W) = I=1
End MARRIEDPERSONC O

Definition5. (i) A schema S is a finite collection of classes C, ..., C, closed under
references and superclasses.

(ii)) An instance D of a schema S assigns to each class C' a value D(C) of type
PFUN(ID,T¢) such that all implicit and explicit constraints on § are satisfied.

5 Object Identification and Value-Representation

According to our definitions two objects in a class C' are identical iff they have the
same identifier. By the use of constraints, especially uniqueness constraints, we could
restrict this notion of equality.

The goal of this section is the characterization of those classes, the objects in
which are completely representable by values, i.e. we could drop the object identi-
fiers and replace references by values of the referred object. We shall see in Section 6
that in case of value-representable classes we are able to preserve an important ad-
vantage of relational databases, i.e. the existence of structurally determined update
operations.

Definition6. Let C be a class in a schema § with representation type T¢.

(i) C is called value-identifiable iff there exists a proper value type I¢ such that for
all instances D of 8§ there is a function ¢ : T¢ — I¢ such that the uniqueness
constraint on C' defined by ¢ holds for D.

(i1) C is called value-representable iff there exists a proper value type Vi such that
for all instances D of § there is a function ¢ : Tz — V¢ such that for D

(a) the uniqueness constraint on C' defined by ¢ holds and

(b) for each uniqueness constraint on C' defined by some function ¢’ : Te — V.
with proper value type V. there exists a function ¢/ : Vo — V{ that is
unique on ¢(codomp(C)) with ¢/ = ¢’ o c.

It is easy to see that each value-representable class C'is also value-identifiable. More-
over, the value-representation type V¢ in definition 6 is unique up to isomorphism.

Theorem 7. Let C' be a class in a schema §. Then C is value-representable iff
C s value-identifiable and C; is value-representable for all references r; : C; in the
structure expression S.

Proof. This follows directly from the definitions. a

5.1 Value-Representability in the Case of Acyclic Reference Graphs

Since value-representability is defined by the existence of a certain proper value type,
it is hard to decide, whether an arbitrary class is value-representable or not. In case
of simple classes the problem is easier, since we only have to deal with uniqueness
and value constraints. In this case it is helpful to analyse the reference structure of
the class. Hence the following graph-theoretic definitions.

Definition 8. The reference graph of a class C in a schema § is the smallest labelled
graph G,., = (V, E,l) satisfying:

(i) There exists a vertex ve € V with I(ve) = {t, C'}, where ¢ is the top-level type
in the structure expression S of C.
(ii) For each proper occurrence of a type t # ID in T there exists a unique vertex

vy € V with I(v;) = {t}.

(iii) For each reference r; : C; in the structure expression S of C' the reference graph
Gief is a subgraph of G,.;.

(iv) For each vertex v; or ve corresponding to t(z1,...,2,) in S there exist unique

edges egi) from vy or ve respectively to vy, in case z; is the type #; or to ve, in

case x; Is the reference r; : C;. In the first case l(egi)) = {S;}, where S; is the

corresponding selector name; in the latter case the label is {S;, r;}.

Definition9. Let S = {Ci,...,Cy} be aschema. Let 8’ = {C1,...,Cl} be another
schema such that for all i either T/, = T¢, holds or there exists a uniqueness
constraint on C; defined by some ¢; : T, — T¢:. Then an identification graph Giq
of the class Cj is obtained from the reference gralph of C] by changing each label C']’-
to Cj.

Ezample 4. Let MARRIEDPERSONC be defined as in Example 3. Then the reference
graph and the identification graph with respect to the uniqueness constraint of this
class are shown in Figure 1. O

{ PAIR , MARRIEDPERSONC { PAIR , MARRIEDPERSONC }

second , spouse second , spouse
{ , Sp , Sp

{ first } { first }

{ PERSON } { NAT }

Fig. 1. The reference graph and identification graph of class MARRIEDPERSONC

Theorem 10. Let C be a class in a schema S with acyclic reference graph G,.;
such that there exist uniqueness constraints for C and each C; such that C; occurs
as a label in Gr.;. Then C is value-representable.

Proof. We use induction on the maximum length of a path in G,.;. If there are no
references in the structure expression S of C' the type T¢ is a proper value type. Since
there exists a uniqueness constraint on C', the identity function ¢d on T¢ also defines
a uniqueness constraint. Hence Vo = T¢ satisfies the requirements of Definition 6.
If there are references r; : C; in the structure expression S of C, then the induction
hypothesis holds for each such C;, because G,y is acyclic. Let V¢ result from S by
replacing each r; : C; by Vi,. Then Vi satisfies the requirements of Definition 6. O

Theorem 11. Let C be a class in a schema S such that there exist an acyclic
tdentification graph Giq and uniqueness constraints for C' and each C; occuring as

a label in G;q. Then C s value-identifiable.

Proof. The proof is analogous to that of Theorem 10 O

Theorem 12. Let C be a class with acyclic reference graph in a schema S. Then
the value-representability of C' is decidable.

Proof. So far the only explicit constraints in our model are uniqueness constraints.
According to Definition 4 equality of identifiers occurs only as a positive literal in
such constraints. Therefore, it is impossible to derive a uniqueness constraint for a
class C' that has not one a priori. Theorem 10 implies that value-representability can
be decided by checking the existence of uniqueness constraints in the class definitions.

a

Theorem 13. Let C be a class in a schema 8 such that there exist an acyclic
tdentification graph. Then the value-identifiability of C' is decidable.

Proof. The proof is analogous to that of Theorem 12. O

5.2 Computation of Value Representation Types

We want to address the more general case where cyclic references may occur in the
schema 8§ = {C1,...,C,}. In this case a simple induction argument as in the proof
of Theorem 10 is not applicable. So we take another approach. We define algorithms
to compute types Vo and I¢ that turn out to be proper value types under certain
conditions. In the next subsection we then show that these types are the value
representation type and the value identification type required by Definition 6.

Algorithm14. Let G(C;) = T¢, provided there exists a uniqueness constraint on
C;, otherwise let G(C;) be undefined. If ID occurs in some G(C;) corresponding to
rj : Cj (J # 1), we write ID;.

Then iterate as long as possible using the following rules:

(1) If G(Cy) is a proper value type and ID; occurs in some G(C;) (j # i), then
replace this corresponding ID; in G(C;) by G(C}).

(ii) If ID; occurs in some G(Cj), then let G(C;) be recursively defined by G(C;) ==
Si, where S; is the result of replacing ID; in G(C;) by the type name G(C;).

This iteration terminates, since there exists only a finite collection of classes. If these
rules are no longer applicable, replace each remaining occurrence of ID; in G(C})

by the type name G(C};) provided G(Cj) is defined. |

Note that the the algorithm computes (mutually) recursive types. Now we give a
sufficient condition for the result of Algorithm 14 to be a proper value type.

Lemmal15. Let C be a class in a schema S such that there exists a uniqueness
constraint for all classes C; occurring as a label in the reference graph Gr.; of C.
Let Vi be the type G(C) computed by Algorithm 14. Then Vi is a proper value type.

Proof. Suppose Vi were not a proper value type. Then there exists at least one
occurrence of I D in V. This corresponds to a class C; without uniqueness constraint
occurring as a label in Gy, hence contradicts the assumption of the lemma. O

Algorithm16. Let F(C;) = T; provided there exists a uniqueness constraint on C;
defined by ¢; : Te, — T;, otherwise let F'(C;) be undefined. If ID occurs in some
F(C;) corresponding to r; : Cj (j # i), we write ID;.

Then iterate as long as possible using the following rules:

(i) If F(Cj) is a proper value type and ID; occurs in some F(C;) (j # i), then
replace this corresponding ID; in F(C;) by F(C}).

(ii) If ID; occurs in some F'(C;), then let F'(C;) be recursively defined by F(C;) ==
S;, where S; is the result of replacing ID; in F(C;) by the type name F/(C;).

This iteration terminates, since there exists only a finite collection of classes. If these
rules are no longer applicable, replace each remaining occurrence of ID; in F(C})
by the type name F(C};) provided F(C}) is defined. |

Lemma17. Let C be a class in a schema S such that there exists a uniqueness
constraint for all classes C; occurring as a label in some identification graph Giq of
C'. Let I be the type F'(C) computed by Algorithm 16 with respect to the uniqueness
constrainits used in the definition of G;q. Then Ic is a proper value type.

Proof. The proof is analogous to that of Lemma 15. O

5.3 The Finiteness Property

Let us now address the general case. The basic idea is that there is always only a
finite number of objects in a database. Assuming the database being consistent with
respect to inclusion and referential constraints yields that there can not exist infinite
cyclic references. This will be expressed by the finiteness property. We show that this
property implies the decidability of value-representability provided the type system
allows recursive types to be defined in such a way that all their values are finitely
representable, i.e. representable as rational trees. Note that the type specifications
introduced in Section 3 satisfy this property.

Definition18. Let C be a class in a schema S and let g; ; denote a path in G,ef
from ve, to ve, provided there is a reference r; : Cj in the structure expression of
Cr. Then a cycle in G,.; is a sequence go1 -+ gn—1, With Co = C,, and Cy # ()
otherwise.

Note that we use paths instead of edges, because the edges in G,.; do not always
correspond to references. According to our definition of a class there exists a ref-
erential constraint on C%, C; defined by oy ; : Te, x ID — BOOL corresponding
to gr,1. Therefore, to each cycle there exists a corresponding sequence of functions
00,1 0n—1,n. This can be used as follows to define a function cyc : ID x ID —
BOOL corresponding to a cycle in G.5.

Definition19. Let C be a class in a schema S and let go1---gn_1,n be a cycle
in Gres. The corresponding cycle relation cyc : 1D x ID — BOOL is defined by
eye(i, j) = true iff there exists a sequence i = dg,i1,...,i, = j (n # 0) such that
(41,v1) € Cy and op 141 (t141,v1) = true forall { = 0,...,n— 1.

Given a cycle relation cye, let cyc™ the m-th power of cye.

Lemma20. Let C be a class in a schema S. Then C satisfies the finiteness prop-
erty, i.e. for each instance D of S and for each cycle in Gr.; the corresponding cycle
relation cyc satisfies

Vi € dom(C).3In.Vj € dom(C).Im < n. (cyc™(i,j) = true = cyc™(i,j) = true) .

Proof. Suppose the finiteness property were not satisfied. Then there exist an in-
stance D, a cycle relation cyc and an object identifier g such that

Vn.3j € dom(C).¥Ym < n. (cyc™(ig, j) = true A cyc™ (ig,j) = false)

holds. Let such a j corresponding to n > 0 be ¢,,. Then the elements ¢y, 71,2, ... are
pairwise distinct. Hence there would be infinitely many objects in D contradicting
the finiteness of a database. O

Lemma?2l. Let D be an instance of schema & = {C1,...,C,}. Then D satisfies
at each stage of Algorithm 14 uniqueness constraints for alli = 1,...,n defined by
some ¢; : Te, — G(Cy).

Proof. Tt is sufficient to show that whenever a rule is applied replacing G(C;) by
G(C;)', then G(C;) also defines a uniqueness constraint on Cj.

Suppose that Pair(i,v) € C; holds in D. Since it is possible to apply a rule to
G(C;), there exists at least one value j :: ID occurring in ¢;(v). Replacing ID; in
G(C;) corresponds to replacing j by some value v; :: G(Cj). Because of the finite-
ness property such a value must exist. Moreover, due to the uniqueness constraint
defined by ¢; the function f : G(C;) — G(C;)' representing this replacement must
be injective on ¢;(codomp(C;)). Hence, ¢; = f o ¢; defines a uniqueness constraint
on Cj. d

Lemma?22. Let D be an instance of schema & = {C1,...,C,}. Then D satisfies
at each stage of Algorithm 16 uniqueness constraints for alli = 1,...,n defined by
some ¢} : Te, — F(C;).

Proof. The proof is analogous to the proof of Lemma 21. O

Lemma23. Let D be an instance of schema S = {C1,...,Cy}. Then al each stage
of the algorithms 14 and 16 for alli =1,...,n there exists a function ¢; : G(C;) —
F(C;) that is unique on c;(codomp(Cy)) with ¢} = ¢; o ¢;.

Proof. Asin the proof of Lemma 21 it is sufficient to show that the required property
is preserved by the application of a rule from Algorithm 14 or 16. Therefore, let
¢; satisfy the required property and let ¢ : G(C;) — G(C;) and f : F(C;) —
F(C;)' be functions corresponding to the application of a rule to G(C;) and F(C)
respectively. Such functions were constructed in the proofs of Lemma 21 and Lemma
22 respectively.

Then f o ¢; satisfies the required property with respect to the application of
f. In the case of applying ¢ we know that g is injective on ¢;(codomp(C;)). Let
h : G(C;) — G(C;) be any continuation of g=1 : g(¢;(codomp(C;))) — G(C;). Then
¢; o h satisfies the required property. O

Theorem 24. Let C be a class in a schema S such that there exists a uniqueness
constraint for all classes C; occurring as a label in the reference graph Gr.; of C.
Let Vi be the type G(C) computed by Algorithm 14. Then C is value-representable
with value representation type Ve .

Proof. Ve is a proper value type by Lemma 15. From Lemma 21 it follows that
if D is an instance of &, then there exists a function ¢ : T¢ — Ve such that the
uniqueness constraint defined by ¢ holds for D.

If V. is another proper value type and D satisfies a uniqueness constraint defined
by ¢’ : T¢ — V., then V/ is some value-identification type Ic. Hence by Lemma 23
there exists a function ¢/’ : Vo — V{ that is unique on ¢(codomp(C)) with ¢/ = ¢’ oc.
This proves the lemma. a

Theorem 25. Let C be a class in a schema S8 such that there exists a uniqueness
constraint for all classes C; occurring as a label in some identification graph Giq of
C. Let I be the type F'(C) computed by Algorithm 16 with respect to the uniqueness
constraints used in the definition of Giq. Then C is value-identifiable with value
wdentification type Ic.

Proof. The proof is analogous to that of Theorem 24. a

Theorem 26. Let C' be a class in a schema 8. Then the value-representability and
the value-identifiability of C' are decidable.

Proof. The proof is analogous to that of Theorem 12. a

6 Existence and Consistency of Generic Update Operations

Methods are used to specify the dynamics of an object-oriented database. Here, we
do not want to give a concrete language for methods. In general methods can be
specified in the style of Dijkstra focussing on deterministic operations [16].

In this paper we are only interested in canonical update operations, i.e. we want
to associate with each class C' in a schema & methods for insertion, deletion and
update on single objects. These operations should be consistent with respect to
the constraints in §. Thus, they are sufficient to express the creation, deletion and
change of objects including the migration between classes. However, we would like
to regard these operations as being “generic” in the sense of polymorphic functions,
since insert, delete and update should be defined for each class. The problem is
that the input-type and the body of these operations require information from the
schema. This leads to polymorphism with respect to meta-types. For the purpose of
this paper we do not discuss this problem.

6.1 Canonical Update Operations

The requirement that object-identifiers have to be hidden from the user imposes the
restriction on canonical update operations to be value-defined in the sense that the
identifier of a new object has to be chosen by the system whereas all input- and
output-data have to be values of proper value types.

We now formally define canonical update operations. For this purpose regard an
instance D of a schema § as a set of objects. For each recursively defined type T let T
denote by replacing each occurrence of a recursive type 7" in T' by UNION (T, I1D).

Definition27. Let C be a class in a schema S. Canonical update operations on C
are insertc, deletec and updatec satisfying the following properties:

(i) Their input types are proper value types; their output type is the trivial type L.
(ii) In the case of insert applied to an instance D there exists a distinguished object

o PAIR(ID,T¢) such that

(a) the result is an instance D’ with o € D’ and D C D’ hold and
(b) if D is any instance with D C D and o € D, then D’ C D.

(iii) In the case of delete applied to an instance D there exists a distinguished object

o PAIR(ID,T¢) such that

(a) the result is an instance D’ with o ¢ D’ and D’ C D hold and
(b) if D is any instance with D C D and o € D, then D C D'.

(iv) In the case of update applied to an instance D = D, U D, where Dy = {o}ifo #
o' and Dy = () otherwise there exist distinguished objects 0,0’ :: PAIR(ID,T¢)
with o = Pair(i,v) and o' = Pair(i,v’) such that

a) the result 1s an 1nstance =D U wit 2N =10,
h It i i D' =D, UD, hDyNDy =0
(b) o€D, o €D,
¢) if D is any instance with D1 C D and o’ € D, then CD.
if D hD; CD and o € D, then D' CD

Quasi-canonical update operations on C' are inserty, deletel, and update, defined
analogously with the only difference of their output type being /D and their input-
type being T for some value-type T

Note that this definition of canonical update operations includes the consistency
with respect to the implicit and explicit constraints on §. We show that value-
representability is sufficient for the existence and uniqueness of such operations. We
use a guarded command notation as in [16] for these update operations.

Lemma28. Let C be a class in a schema S such that there exist quasi-canonical
update operations on C. Then also canonical update operations exist on C.

Proof. In the case of insert define insertc(V :: Vo) == I — insert;(V), i.e. call the
corresponding quasi-canonical operation and ignore its output. The same argument
applies to delete and update. O

6.2 Existence of Canonical Updates in the Case of Value-
Representability

Our next goal is to reduce the existence problem of quasi-canonical update operations
to schemata without IsA relations.

Lemma 29. Let C', D be value-representable classes in a schema 8§ such that C s
a subclass of D with subtype function g : Tc — Tp. Then there exists a function
h : Vo — Vp such that for each instance D of & with corresponding functions
c:Te = Ve and d : Tp — Vp we have h(c(v)) = d(g(v)) for all v € codomp(C).

Proof. By Definition 6 ¢ is injective on codomp(C'), hence any continuation h of
dogoc~! satisfies the required property.

It remains to show that h does not depend on D. Suppose D1, D5 are two
instances such that w = ¢1(v1) = ¢a2(v2) € Ve, where ¢1,dy, hy correspond to Dy
and c¢o, do, ho correspond to Dy. Then there exists a permutation = on I.D such that
ve = w(v1). We may extend « to a permutation on any type. Since ID has no non-
trivial supertype, ¢ permutes with «, hence g(vs2) = @(g(v1)). From Definition 6 it
follows da(g(v2)) = d1(g(v1)), i.e. ha(w) = hy(w). O

In the following let Sy be a schema derived from a schema & by omitting all IsA
relations.

Lemma 30. Let C' be a value-representable class in S such that all its superclasses
Dy ...D, are also value-representable. Then quasi-canonical update operations exist

on C in 8 iff they exist on C and all D; in Sy.

Proof. By Theorem 24 the value-representation type V¢ is the result of Algorithm
14, hence Vi does not depend on the inclusion constraints of S. Then we have

I:1ID — insert(V 1 Vo) ==
I —inserty (hi(V));...; I —inserty (hn(V)); 1 — inserta (V)

where h; : Vo — Vp, is the function of Lemma 29 and insert% denotes a quasi-
canonical insert on C' in Sy. Hence in this case the result for the insert follows by
structural induction on the IsA-hierarchy.

If the subtype function g required in Lemma 29 does not exist for some superclass
D then simply add Vp to the input type. We omit the details for this case.

The arguments for delete and update are analogous. O

Now assume the existence of a global operation Newld that produces a fresh iden-
tifier I :: ID.

Lemma 31. Let C be a value-representable class in Sy. Then there exist unique
quasi-canonical update operations on C'.

Proof. Letr; : C; (i =1...n) denote the references in the structure expression of C'.
If V be a value of type Vi, then there exist values Vij o Vo, (i=1...n,j=1...k)
occurring in V. Let V. = {V;;/Ji; | i = 1...n,j = 1...k;}.V denote the value
of type T¢ that results from replacing each V;; by some J;; :: ID. Moreover, for
I::1ID let

v {{V/I}.Vm- if V occurs in V; ;

6Ly Vij else

Then the quasi-canonical insert operation can be defined as follows:

I:1ID — inserti,(V Vo) ==

IF 3T = ID,V' = Te. (Pair(I',VYe C A (V') =V)

THEN I =T

ELSE I — Newld; Ji1 — insertlcl(Vl(yll)); s Ik, — inserten(vsﬁgn);
C = CU{Pair(I,V)}

FI

It remains to show that this operation is indeed quasi-canonical. Apply the operation
to some instance D. If there already exists some object 0 = Pair(I', V') in C' with
e(V') = V, the result is D’ = D and the requirements of Definition 27 are trivially
satisfied. Otherwise let the distinguished object be o = Pair(1, V) If D is an instance
with D C D and o € D, we have J; ; € dom(C;) forall i = 1...n, j = 1...k;, since
D satisfies the referential constraints. Hence D contains the distinguished objects
corresponding to the involved quasi-canonical operations insert;,. .. By induction on
the length of call-sequences D; ; C Dforalli=1...n,j=1...k;, where D; ; is the
result of J; ; — insert’cl(vig)). Hence D’ = igcup; jD;; U {0} C D. The uniqueness
follows from the uniqueness of V.

The definitions and proofs for delete and update are analogous. O

Theorem 32. Let C' be a value-representable class in a schema 8§ such that all its
superclasses are also value-representable. Then there exist unique canonical update
operations on C'.

Proof. By Lemma 28 and Lemma 30 it is sufficient to show the existence of quasi-
canonical update operations on C and all its superclasses in the schema &y. This
follows from Lemma 31. O

7 Conclusion

In this paper we introduce a structural object-oriented datamodel with a clear dis-
tinction between types and classes. Types are algebraically specified such that each
value of a type is finitely representable. This can be exploited to define constraints
on a schema in a uniform way. Moreover, parameterized type declarations and a
unique object identifier type can be used to represent classes by a partial function
type.

An advantage of the uniform type and constraint declarations is the possibility
to study alternatives for the representation of objects. Our main interest are objects
that could also be represented without using abstract object identifiers. We call them
value-representable. Due to the finiteness of a database value-representability is de-
cidable if uniqueness constraints are the only explicit constraints. Moreover, we show
that value-representability is sufficient for the existence of unique structurally de-
termined canonical update operations that enforce implicit referential and inclusion
constraints.

This constitutes the basis of a behavioural object-oriented datamodel. Therefore,

the next steps will be to extend the outlined approach to a complete formal object-
oriented datamodel including a complete query language, views and transactions.

References

1

10.

11.

12.

13.

14.

15.

16.

. S. Abiteboul: Towards a deductive object-oriented database language, Data & Knowl-
edge Engineering, vol. 5, 1990, pp. 263 — 287

. S. Abiteboul, P. Kanellakis: Object Identity as a Query Language Primitive, in Proc.

SIGMOD, Portland Oregon, 1989, pp. 159 — 173

A. Albano, G. Ghelli, R. Orsini: A Relationship Mechanism for a Strongly Typed

Object-Oriented Database Programming Language, in A. Sernadas (Ed.): Proc. VLDB

91, Barcelona 1991

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, S. Zdonik: The Object-Oriented

Database System Manifesto, Proc. 1st DOOD, Kyoto 1989

F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman, C. Lécluse,

P. Pfeffer, P. Richard, F. Velez: The Design and Implementation of Oz, an Object-

Oriented Database System, Proc. of the 0oDBS II workshop, Bad Miunster, FRG,

September 1988

C. Beeri: Formal Models for Object-Oriented Databases, Proc. 1st DOOD 1989, pp. 370

- 395

C. Beeri: A formal approach to object-oriented databases, Data and Knowledge Engi-

neering, vol. 5 (4), 1990, pp. 353 — 382

C. Beeri, Y. Kornatzky: Algebraic Optimization of Object-Oriented Query Languages,

in S. Abiteboul, P. C. Kanellakis (Eds.): Proceedings of ICDT 90, Springer LNCS 470,

pp- 72 — 88

. M. Carey, D. DeWitt, S. Vandenberg: A Data Model and Query Language for EXO-

DUS, Proc. ACM SIGMOD 88

M. Caruso, E. Sciore: The VISION Object-Oriented Database Management System,

Proc. of the Workshop on Database Programming Languages, Roscoff, France, Septem-

ber 1987

D. Fishman, D. Beech, H. Cate, E. Chow et al.: IRIS: An Object-Oriented Database

Management System, ACM TolS, vol. 5(1), January 1987

S. Khoshafian, G. Copeland: Object Identity, Proc. 1st Int. Conf. on OOPSLA, Port-

land, Oregon, 1986

W. Kim, N. Ballou, J. Banerjee, H. T. Chou, J. Garza, D. Woelk: Integrating an

Object-Oriented Programming System with a Database System, in Proc. OOPSLA 1988

D. Maier, J. Stein, A. Ottis, A. Purdy: Development of an Object-Oriented DBMS,

OOPSLA, September 1986

K.-D. Schewe, B. Thalheim, I. Wetzel, J. W. Schmidt: Fxtensible Safe Object-Oriented

Design of Database Applications, University of Rostock, Technical report, September

1991

K.-D. Schewe, 1. Wetzel, J. W. Schmidt: Towards a Structured Specification Language

for Database Applications, in Proc. Int. Workshop on the Specification of Database

Systems, Glasgow, Springer WICS 1991

This article was processed using the IWTpX macro package with LLNCS style

