
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Observing the Learning Process of a
Large-Scale Agile Development Program - A

Case Study from the Technology Sector

Niels Holz

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Observing the Learning Process of a Large-Scale Agile
Development Program - A Case Study from the

Technology Sector

Beobachtung des Lernprozesses eines skalierten agilen
Programms - Eine Fallstudie im Technologiesektor

Author: Niels Holz
Supervisor: Prof. Dr. Florian Matthes

Advisor: M. Sc. Ömer Uludağ
Submission Date: March 15, 2020

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, March 16, 2020 Niels Holz

Acknowledgments

Thank you to everybody supporting my research at Technology LLC., without your sup-
port and eagerness to help me, this thesis would not have been possible. A special thanks
to all program members letting me sit in on meetings and making notes. Of course, once
more, thank you to all my interview partners and everybody involved in the implementa-
tion of the Community of Practice.
Thank you Ömer for having patience during the longer than expected search for a case
study partner and then of course for your continued support throughout my thesis.
Thank you Prof. Dr. Matthes for supervising this thesis.
Finally I want to thank my family and friends for helping me wherever they could! Special
thanks to my sister and my brother-in-law for proofreading my thesis.

vii

Abstract

Agile development has been on the rise in the last couple of years. A Concept created
for small, co-located teams to boost their development process. Seeing the success, large
organizations are more and more interested to apply agile practices themselves. Projects
using agile practices manage to deliver new product increments quicker and with a higher
customer satisfaction. Some new challenges arise through scaling agile, with their cause
in the structure of larger organizations, others are based around the issue of working in
geographical distributed teams, working with legacy systems and having a broad set of
customers. While there is research on challenges of large-scale agile development and
documenting good practices available. There is only little publication on implementing
observed practices and observing lessons learned at other organizations.
The documentation of the as-is situation done in this thesis is based on available research
on different concepts of large-scale agile development and a Large-Scale Agile Develop-
ment Pattern Language for identifying recurring concerns and documenting good and bad
practices. With a detailed picture of the as-is situation an analysis of recurring concerns
and problem areas of the case study partner is possible. Using the already documented
good practices from other research, this thesis then provides the case study partner with
possible fitting patterns to address these concerns. In a final step the introduction of one
presented pattern is observed.
This thesis uses a mixture of exploratory and descriptive case study methodologies. Three
interviews with case study partners were conducted to document the as-is situation of
their large-scale agile development and eleven semi-structured interviews provided the
documentation of recurring concerns and good practices for the stakeholders groups Prod-
uct Owner, Scrum Master and Development Team. These interviews led to the discovery
of 50 pattern candidates, one coordination pattern and one anti-pattern, using the Rule of
Three. Further, this thesis introduces four coordination patterns, one methodology patterns
and one principle to address the problem areas of the Large-Scale Agile Development Pro-
gram. Out of the introduced six patterns, this thesis then goes on to implement and eval-
uate one coordination pattern at the case study partner.
This thesis is part of a major research project to create a pattern catalog for Large-Scale
Agile Development. As part of this research project, this thesis tries to verify, by exam-
ple, already discovered patterns of the pattern catalog and document the deviations of the
application in practice.

ix

x

Contents

Abstract ix

List of Abbreviations xviii

Outline of the Thesis xix

1. Introduction 1
1.1. Motivation . 1
1.2. Research Objectives . 2
1.3. Approach . 3

2. Foundations 5
2.1. Agile Software Development . 5

2.1.1. Definitions and Values . 5
2.1.2. Lean & Agile Development . 8
2.1.3. Scrum . 10

2.2. Large-Scale Agile Development . 12
2.2.1. Definition . 13
2.2.2. Large Scale Scrum . 14
2.2.3. Spotify . 17
2.2.4. Overview of Further Large-Scale Agile Development Frameworks . 18

2.3. Pattern Language . 18
2.3.1. Definition Pattern . 19
2.3.2. Software Development Pattern Languages 19
2.3.3. Large-Scale Agile Development Pattern Language 20
2.3.4. Stakeholders . 24

3. Related Work 27
3.1. Related Work on Large-Scale Agile Development 27
3.2. Related Work on Identifying Recurring Concerns in Large-Scale Agile De-

velopment . 28
3.3. Related Work for identifying good practices in Large-Scale Agile Develop-

ment Programs . 29

xi

Contents

4. Case Study 33
4.1. Case Study Description . 33

4.1.1. Team and Platform of Technology LLC. 33
4.1.2. General Information Interviews and Approach 37

4.2. Large-Scale-Agile Development Program . 38
4.2.1. Agile Transformation . 38
4.2.2. Principles . 41
4.2.3. Roles . 44
4.2.4. Artifacts . 46
4.2.5. Events and Process . 48
4.2.6. Architecture . 50
4.2.7. Summary Large-Scaled-Agile Development Program at Technology

LLC. 52
4.3. Identification of Recurring Concerns . 53

4.3.1. Interviews General Information . 53
4.3.2. Recurring Concerns . 54

4.4. Documenting Good Practices and Bad Practices 67
4.4.1. Identified Patterns . 69
4.4.2. Community of Practice* . 70
4.4.3. Don’t use frameworks as recipes* . 72
4.4.4. Good Practices . 74
4.4.5. Kickoff** . 77
4.4.6. Newsflash . 80
4.4.7. Shifting Responsibilities . 82
4.4.8. Docupedia for Architecture Documentation 84
4.4.9. Dependency Matrix . 86
4.4.10. Epic Plan Game Board . 89
4.4.11. Geographically Distributed Meeting Hours 92
4.4.12. Bad Practices . 94
4.4.13. Don’t assume mutual Terminology Understanding 95
4.4.14. Don’t have New Year Resolution Dilemma 97
4.4.15. Mapping of Concerns and Pattern Candidates 99

4.5. Implementation of Pattern and Lessons Learned 105
4.5.1. Patterns Provided . 105
4.5.2. Celebrate Every Success ** . 107
4.5.3. Presentation of Provided Patterns . 109
4.5.4. Implementation of Community of Practice for Product Owners . . . 111
4.5.5. Deviations configured Design and instantiated Solution 115
4.5.6. Community of Practice for Product Owners - Instantiated Solution ** 117
4.5.7. Lessons Learned from instantiated Community of Practice for Prod-

uct Owners at Technology LLC. 120

xii

Contents

5. Discussion 123
5.1. Key Findings . 123
5.2. Limitations . 125

6. Conclusion 127
6.1. Summary . 127
6.2. Future Work . 127

A. Appendix 129
A.1. Interview Questionnaire for Identifying the adoptions of the Agile Program

at the case study partner . 129
A.2. Semi-structured Interview Questionnaire for Identifying Concerns and Doc-

umenting Good and Bad Practices . 132
A.3. Questionnaire: Pattern Feedback . 133

B. Appendix 135
B.1. Documentation of newly identified Concerns 135
B.2. Documentation of existing identified Concerns 139

C. Appendix 143
C.1. Documentation of Coordination Pattern and Good Coordination Practices . 143

C.1.1. Product Backlog Refinement** . 144
C.1.2. Pre-Planning Coordination . 146
C.1.3. Face-to-Face Knowledge Transfer . 148
C.1.4. Exemplary Knowledge Transfer . 150
C.1.5. Direct Customer Communication . 152
C.1.6. Periodic Round-Table . 154
C.1.7. Process Consultant Meeting . 156
C.1.8. Go-Live Celebration . 158
C.1.9. Third Party Interface-Planning Meeting 160

C.2. Documentation of Good Methodology Practices 162
C.2.1. Definition of Ready and Definition of Done** 163
C.2.2. Reserved Capacity . 165
C.2.3. Scope Change . 167
C.2.4. Bug Prioritization . 169
C.2.5. Acceptance Criteria . 171
C.2.6. Functional Splitting . 173
C.2.7. Process Consultant . 175
C.2.8. Purpose Teams . 177
C.2.9. Story Points . 179
C.2.10. Subtask-Testing . 181
C.2.11. Product Owner Team . 183

xiii

Contents

C.2.12. Automation Lead . 185
C.2.13. Impact Analysis . 187
C.2.14. Incremental On-Boarding . 189
C.2.15. Planning Poker light . 191
C.2.16. Proof of Concept . 193

C.3. Documentation of Good Viewpoint Practices 195
C.3.1. Burn-Down Chart . 196
C.3.2. Jira Board . 199
C.3.3. Interface Architecture . 202
C.3.4. Power BI . 204
C.3.5. Velocity Sheet . 206

C.4. Documentation of Principle Candidates . 209
C.4.1. Avoid extra meetings . 210
C.4.2. Semi Co-Location . 212

C.5. Documentation of Anti-Pattern and Bad Practices 214
C.5.1. Don’t overshoot Coordination Meetings** 215
C.5.2. Don’t have Blurred Boundaries Requirements Engineering 217
C.5.3. Don’t force Team Coherence . 219
C.5.4. Don’t assume autonomous On-Boarding 221
C.5.5. Don’t forward Requirements . 223
C.5.6. Don’t limit KT to KT Workshops . 225
C.5.7. Don’t misuse Estimation Creation . 227
C.5.8. Don’t limit external colleagues access 229
C.5.9. Don’t capsulate teams too much . 231

C.6. Documentation of Patterns for Implementation Process 233
C.6.1. Supervision** . 234
C.6.2. Communicate Architecture** . 237
C.6.3. DDD: Event Storming Workshops** 239
C.6.4. Quality Gates** . 241

Bibliography 243

xiv

List of Figures

1.1. Pattern-Based Design Research[10] . 4

2.1. CHAOS Report 2015 - Success rate all project sizes[54] 6
2.2. Lean Thinking House by Larman and Vodde[30] 9
2.3. Scrum Framework by Scrum.org[49] . 12
2.4. Large-Scale Scrum Framework[3] . 14
2.5. LeSS Principles from The LeSS Company B. V.[3] 16
2.6. Spotify Model from Kniberg and Ivarsson[28] 17
2.7. Spotify Release Support through Operations Squad[28] 18
2.8. Conceptual overview Enterprise Architecture Management Pattern Language

by Schneider and Matthes[47] . 20
2.9. Conceptual overview Large-Scale Agile Pattern Language by Uludağ et al.[55] 21
2.10. Pattern Language Structure by Uludağ et al.[55] 22

3.1. Characteristics of a successful Community of Practice[40] 30

4.1. Detailed view of each Team at case study partner 34
4.2. SunBurst of the teams distribution across locations of the case study part-

ners Large-Scale Agile Development Program 35
4.3. APN-Module Architecture at Technology LLC. 36
4.4. Large-Scale Agile Development Program- Case Study Partner Technology

LLC. . Adapted from the original framework by The LeSS Company B.V.[3] 39
4.5. Large-Scale Agile Development Program - Relationship of program in orga-

nizational context. 41
4.6. Communities of Practice Structure, figure from Technology LLC. 51
4.7. Interview Process for Identifying Recurring Concerns, Good Practices and

Bad Practices by Uludağ et al.[55] . 53
4.8. Identified recurring Concerns of Development Team at Technology LLC. . . 55
4.9. Occurrence Concern Categories Development Team 56
4.10. Identified recurring Concerns of Product Owners at Technology LLC. 59
4.11. Occurrence Concern Categories Product Owners 60
4.12. Identified recurring Concerns of Scrum Master at Technology LLC. 62
4.13. Occurrence Concern Categories Scrum Master 63
4.14. Occurrence Concern Categories All . 64
4.15. Identified recurring Concerns of stakeholder groups at Technology LLC. . . 65

xv

List of Figures

4.16. Patterns and Pattern Candidates documented through Interviews and Ob-
servations . 68

4.17. Kickoff Team B-Setup, Module Responsibilities and Goals for 2020 78
4.18. Dependency Matrix of inter-team dependencies for 2020 at Technology LLC. 87
4.19. Dependency Matrix Model of inter-team dependencies 88
4.20. Epic Plan Game Board for 2019 at Technology LLC. 90
4.21. Epic Plan Game Board Model . 91
4.22. Mapping Concerns and Pattern Candidates of Development Team 100
4.23. Mapping Concerns and Pattern Candidates of Product Owners 102
4.24. Mapping Concerns and Pattern Candidates of Scrum Masters 104
4.25. Concern Categories for Implementation Presentation with bad practices . . 110
4.26. Community of Practice for Product Owners - invitation and Agenda 111
4.27. Community of Practice OneNote Homepage 112
4.28. Screenshot of instantiated Community of Practice for Product Owners - Doc-

umentation . 113
4.29. Screenshot of instantiated Community of Practice for Product Owners - Doc-

umentation contd. 114
4.30. Process proposed for Evaluating instantiated Community of Practice at Tech-

nology LLC. 114
4.31. Evaluation of instantiated Community of Practice for Product Owners . . . 120

C.1. Exemplary Burn-Down Chart at Technology LLC. 197
C.2. Burn-Down Chart Model . 198
C.3. JIRA Board at Technology LLC. 200
C.4. JIRA Board Model . 201
C.5. Power BI Model . 205
C.6. Velocity Sheet for exemplary Team at Technology LLC. 207
C.7. Velocity Sheet Model . 208

xvi

List of Tables

2.1. Scrum Roles, Artifacts and Events adopted from [48] 10
2.2. Patterns and Concepts following the definition of Uludağ et al.[55] 23

4.1. Team conception at case study partner . 33
4.2. Interviews conducted with Duration and type of questionnaire 37
4.3. Observations from different team & program events 38
4.4. Interview partners for Agile Adoption questionnaire 39
4.5. Comparison of the Principles and Values of the Large-Scale Agile Develop-

ment Program at Technology LLC., LeSS and Spotify 43
4.6. Roles and Responsibilities according to expert interviews and observation

notes . 44
4.7. Comparison of the Roles of the Large-Scale Agile Development Program at

Technology LLC., LeSS and Spotify . 45
4.8. Artifacts of the Large-Scale Agile Development Program according to expert

interviews and observation notes . 47
4.9. Comparison of the Artifacts of the Large-Scale Agile Development Program

at Technology LLC., LeSS and Spotify . 47
4.10. Comparison of the Events of the Large-Scale Agile Development Program

at Technology LLC., LeSS and Spotify . 49
4.11. Interviews for Identifying Recurring Concerns, Good and Bad Practices . . 54

xvii

List of Abbreviations

CoP Community of Practice

CO-Pattern Coordination-Pattern

DoD Definition of Done

DoR Definition of Ready

DEV Development Team

DDD Domain-Driven-Design

EAM Enterprise Architecture Management

LSAD Large-Scale Agile Development

LSADPL Large-Scale Agile Development Pattern Language

LSADP Large-Scale Agile Development Program

LeSS Large-Scale Scrum

M-Pattern Methodology-Pattern

MVP Minimum Viable Product

PBR Product Backlog Refinement

PO Product Owner

SM Scrum Master

SoS Scrum of Scrums

sebis chair Chair of Software Engineering for Business Information Systems

V-Pattern Viewpoint-Pattern

List of Tables

Outline of the Thesis

CHAPTER 1: INTRODUCTION

The first chapter presents the motivation of the thesis. It explains the Research Questions
and introduces the Research Approach.

CHAPTER 2: FOUNDATIONS

The Foundations define important terms and present the context in which this thesis is
placed. The chapter summarizes existing research by the sebis chair that this thesis builds
on. Also, the theoretical foundations of agile methods, pattern-based solution approaches,
and coordination theory are presented.

CHAPTER 3: RELATED WORK

The third chapter compares several pattern languages in the agile and large-scale context.
Further, it discusses related work on coordination in large-scale agile software develop-
ment.

CHAPTER 4: CASE STUDY

This chapter presents the case study that is conducted in the thesis. First the case study
partner is introduced and the method for data collection is presented. Followed, by the
findings on the agile transformation, the recurring concerns identified and best and bad
practices documented. Finally this chapter documents th implementation process of the
instantiated pattern at the cases study partner and the findings.

CHAPTER 5: DISCUSSION

The Discussion outlines the key findings of the thesis and discusses the Limitations of this
thesis.

CHAPTER 6: CONCLUSION

Finally this chapter summarizes the work and mentions potential future work.

xix

1. Introduction

1.1. Motivation

While the Agile Manifesto is a collection of principles and values to adhere to when work-
ing in agile development, the research following its publication led to frameworks and
practices describing how to work in agile development. Agile practices and agile teams
create better products with higher quality and customer satisfaction, while being able to
react quickly to changing requirements[23].
Software development using the waterfall or v-model focuses on detailed planning for
each process step and following the respective process proposed by the model.
V-model and waterfall should be chosen over agile practices, when working in a large-
scale development program with clear requirements. Agile practices are more useful for
short time horizons and co-located small teams [5].
The statement " agile practitioners and other researchers concluded that the agile value set
and practices best suit co-located teams of about 50 people or fewer who have easy access
to user and business experts and are developing projects that are not life-critical"[65], has
been challenged by the emergence of Large-Scale Agile Development (LSAD).
These larger organizations hope to emulate the success stories observed in teams working
with agile practices. In recent years, studies have shown the circumstances of a project or
program do not limit the use of agile practices. Version One’s 13th annual state of agile
report[27] shows that 72% of 1319 surveyed organizations, of which 46% have more than
5000 employees, practice some sort of Scrum. Through adapting agile, larger organiza-
tions want to reduce project costs and risks, increase the product quality and be able to
adapt to changing requirements[27]. One major trend is to adopting some sort of scaled
agile practice. Larger organizations are motivated by the successes observed when apply-
ing agile practices. As a result they scale agile practices to fit their construct[22].
When applying agile practices at scale, the larger organizations’ structures introduce im-
pediments, which have to be dealt with in LSAD. With LSAD, multiple teams work on the
same product. These teams can be geographically distributed, therefore, agile practices are
also used to address process problems on the team-level [29, 43]. Dikert et al.[18] identified
29 success factors and a total of 35 challenges for agile transformation. With the challenges
for LSAD having a multitude of origins, one example for an identified challenge is the ac-
ceptance and application of the agile mindset [18]. In a literature review, the Chair of Soft-
ware Engineering for Business Information Systems(sebis chair) identified multiple recur-
ring concerns from different stakeholder groups, which were thereupon categorized[57].
On the basis of these concerns, further research has identified a fitting Large-Scale Agile

1

1. Introduction

Development Pattern Language (LSADPL) and documented several patterns addressing
the aforementioned concerns[uludaug2019documenting]. Both of which will be further
discussed in Section2.3 and overall in Chapter2. Of the identified concerns by Uludağ et
al.[57], eight are connected to the Development Team, fifteen connected to Product Own-
ers and eleven directly connected to Scrum Masters.
Therefore, this thesis focuses first on identifying other concerns of these three stakeholder
groups. Secondly, the thesis will identify patterns addressing these concerns and in a third
step it will introduce already observed patterns from the pattern catalog[61] at the case
study partner, implementing one coordination pattern.

1.2. Research Objectives

This thesis consists of five research questions aimed at analyzing the as-is situation of the
applied and adapted Large-Scale Scrum(LeSS) and Spotify model at the case study part-
ner.
RQ1. How has LeSS been adopted and applied at the case study partner?
The purpose of research question RQ1 is to introduce the case study partner’s Large-Scale
Agile Development Program (LSADP). The goal is a graphical depiction of the LSAD pro-
cess together with identifying and defining involved roles, events and artifacts. Addition-
ally, identifying the agile principles and values pursued by case study partner. RQ2. What
are recurring concerns of stakeholders at the product organization of the case study part-
ner?
Based on the roles identified, matching stakeholder groups will then be examined regard-
ing their recurring concerns. The goal is to validate which recurring concerns from Uludağ
et al.[57] occur in practice as well as adding potentially new recurring concerns.
RQ3. What are good practices for addressing recurring concerns of stakeholders of the
product organization of the case study partner?
Combining the identified recurring concerns to good practices at the case study partner.
These identified good practices are then documented using the LSADPL from Uludağ et
al.[uludaug2019documenting].
RQ4. Which bad practices should be avoided in the product organization of the case
study partner?
In addition, bad practices or so called Anti-Patterns are also documented using the LSADPL
from Uludağ et al.[55].
RQ5. What are the lessons learned of implementing already observed best practices in
the product organization of the case study partner?
Finally on the basis from the findings of RQ2, RQ3 and RQ4, this thesis will introduce
best practices documented in the pattern catalog[61] and observe the lessons learned from
introducing these patterns at the case study partner.

2

1.3. Approach

1.3. Approach

In this thesis, two research approaches have been combined. A descriptive case study to
document the as-is situation of the case study partners’ LSADP and an explorative case
study approach to test the implementation of already applied patterns at the case study
partner. For the descriptive case study, a combination of structured interviews and meet-
ing observations were used. The data described the as-is situation of the LSADP as well
as the agile transformation process of the case study partner. The explorative case study
has been conducted according to the process of Pattern-based Design Research described
by Buckl et al.[10]. As highlighted in Figure1.1 this thesis is documenting patterns from
practice and applies patterns from the theory in the practice. The Pattern-based Design
Research this thesis follows, for identifying recurring concerns (see Section4.3) as well as
patterns (see Section4.4) addressing these concerns can be seen in Figure1.1. The Pattern-
based Design Research by Buckl et al. [10] consists of four stages:

1. Observe & Conceptualize - following a pattern structure to document good prac-
tices.

2. Pattern-based Theory Building and Nexus Instantiation - describing the evolving
process into design theories.

3. Solution Design & Application - solution design to configure the solution of a pat-
tern to organizations needs.

4. Evaluation & Learning - observe deviations from configured design and instantiated
solution and learn from deviations.

This thesis is applying the LSADPL, designed Uludağ et al.[55], for the identification of
recurring concerns, for the three stakeholder groups, Development Team, Product Owner
and Scrum Master, document good and bad practices and use patterns of the pattern cata-
log documented with the LSADPL for implementation at the case study partner.
Section2.3 will discuss in detail why and how the LSADPL used in this thesis was chosen
and what it looks like. This method was conducted and supported by semi-structured in-
terviews, aimed at identifying good practices at the case study partner. Meeting and work
routine observations supplement this method further. Interview partners were presented
with the findings of the completed semi-structured interviews to introduce patterns ob-
served at other organizations. Introducing six patterns from the pattern catalog at the case
study partners’ LSADP. In Cooperation with the case study partner, these patterns were
analyzed to fit their LSADP. The response to the implementation of the chosen pattern
was captured in Section4.5. A final questionnaire summarizes the lessons learned from
introducing patterns, implementing one, of the pattern catalog at the case study partner.
The final questionnaire delivers a quantifiable notion towards the applicability of the im-
plemented pattern from the pattern catalog5.
Overall, this thesis aims to apply the following steps of the Pattern-Based Design Research,

3

1. Introduction

Observe and Conceptualize, Solution Design and Evaluation and Learning.
These steps are represented in the thesis as follows:
First, applied patterns were observed at the case study partners’ LSADP in Section4.4.
Second, appropriate solutions were identified and designed for the LSADP in Section4.5.
Finally, the lessons learned from the application of the solutions presented were evaluated
in Section4.5.7. Focusing on the deviations between configured design and instantiated
solution.

Figure 1.1.: Pattern-Based Design Research[10]

4

2. Foundations

In this chapter we will discuss different foundations for this thesis. The goal of this chapter
is to create a frame for the findings of this thesis.
Therefore, we are revisiting the theoretical aspects of agile software development and the
underlying agile principles (see Section2.1) first.
The topic of LSAD offers several different frameworks to tackle many concerns of the real
work life. In Section2.2 we will discuss some of the frameworks applied at the case study
partner. Additionally we take a look at LSADPL and other Software Development Pattern
Languages, in Section2.3. The for this thesis relevant stakeholder groups of LSADP are
introduced in the Section2.3.4.

2.1. Agile Software Development

This section introduces the concept of Agile Software Development. Beginning with the
Definitions and Values(see Section2.1.1) associated with Agile Software Development. Ad-
ditionally, Lean Development (see Section2.1.2) principles are introduced and differenti-
ated from Agile Software Development. Finally, this section introduces the method of
Scrum (see Section2.1.3) as most large-scale agile methods have their foundation in scaling
Scrum.

2.1.1. Definitions and Values

Agile is a frequently used term in recent years, however, it is not always used with the
same definition in mind. In agile software development, the definition for the term ’Agile’
is a set of principles and values, outlined in the ’Agile Manifesto’[7]. Opposed to tradi-
tional software development practices, where the focus lies on processes and methods to
achieve a long-term planned development goal[9], in Agile Development a set of prin-
ciples and values are the core and a set of agile practices are used to support the Agile
Development process. The influence of these principles and values cannot be underrated,
as the agile practice would not exist and function without them. Agile Development aims
at satisfying the customers with short cycle times, each delivering the highest possible
quality shippable product increments.[46]. Through these agile practices, the focus shifted
from linear development iteration-based development. In agile practices, requirements
are constantly revisited, so by the time they go into production, they are specified to most
accurately represent a customer need[12]. This iterative adaption and possibility to adapt

5

2. Foundations

to change is one of the key benefits agile practices offer over traditional practices. With
traditional projects, requirements are set in stone, which has led to projects realizing in
their final stages that the initially created concept or solution does not represent the ac-
tual customer need[46]. As depicted in Figure2.1 projects using the Waterfall model have

Successful
11%

Failed
29%

Challenged
60%

Waterfall

Successful
39%

Failed
9%

Challenged
52%

Agile

Figure 2.1.: CHAOS Report 2015 - Success rate all project sizes[54]

a three times higher rate of failed projects, than projects using agile practices[54]. The
CHAOS report summarizes responses from over 10.000 software projects in the span of
five years[54]. Reports like the CHAOS Report of 2015 highlight the achievable success
agile practices provide. Agile practices focus on implementing highest priority features
first, as these are usually the most challenging and need to be revised more often. These
high priority features are implemented in the next development cycle. This incremental
approach allows for immediate feedback and resolving the most important features early
on in a project, generating higher customer satisfaction[46]. Without using a fixed sched-
ule, agile practices are able to adapt to changing requirements or circumstances with more
ease. These principles and values have been published in the ’Agile Manifesto’[7] by 17

6

2.1. Agile Software Development

authors, who committed themselves to change their approach to software development.
In total, the 17 authors proposed four values and twelve principles[7] to adhere to when
working in agile software development. The values of the ’Agile Manifesto’[7] are as fol-
lows:

1. Individuals and interactions over processes and tools.

2. Working software over comprehensive documentation.

3. Customer collaboration over contract negotiation.

4. Responding to change over following a plan.

These statements focus on shifting the importance in software development from the right
of each statement to the left[7]. These four values aim at creating higher motivation for
team members, lightweight documentation, customer involvement and adaptable plans
[37]. In accordance with these shifted values, the authors have generated a mindset, which
can create benefits measurable in the amount of delivered features as well as higher soft-
ware quality and higher motivation among team members. Based on these four core values
of agile software development, the authors of the ’Agile Manifesto’[7]further define twelve
principles, which need to be adhered to.

1. Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity–the art of maximizing the amount of work not done–is essential.

7

2. Foundations

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Principles and Values of the ’Agile Manifesto’ focus on the mindset of all team members as
well as a customer-centric approach to software development. While the ’Agile Manifesto’
delivered the values and principles,frameworks building on the ’Agile Manifesto’ inter-
preted the usability of agile practices for small teams consisting of four to ten people[36],
preferably working co-located[37]. Due to these limitations the core values of direct com-
munication and focus on people and customers remain the center of agile practices. It is
important to avoid pseudo agility, in which employees have not adapted agile values of
the "Agile Manifesto"[57]. Employees who follow and believe in the agile mindset lead to
more successful projects.

2.1.2. Lean & Agile Development

The concept of Lean is often used in connection with Agile Development. The term Lean
is associated with the work of Liker in ’The Toyota Way’[30], which introduced the lean
manufacturing practices applied at Toyota. When lean thinking, which similar to the "Ag-
ile Manifesto" represents a shift in organizational priorities from the traditional practices,
is introduced organizations redefine their approach of software development. The essence
of lean thinking is focused around ’building people over building products’[30]. In Lean
a lot of concepts of people management and overall project management are challenged.
The focus of Lean is to minimize waste originating from three sources(see Larman[32]):

1. Variability - verification at iteration length, feature sizes and team composition.

2. Overburden - overtime for arbitrary deadlines, bottlenecks and dependency on these
bottlenecks.

3. Non-Value-Adding actions - hand-offs, task switching, partially done work.

In Combination with avoiding these sources of waste, Lean Development constantly chal-
lenges the status quo of the current development process. When working with a lean
mindset, one should never assume the current process is set in stone. Rather the individ-
uals are encouraged to challenge the process, to make it even more fitting for the team.
Principles of lean are similar to agile principles, the main principles of lean consist of
the elimination of waste, a focus on fast delivery, making decisions as late as possible
and for managers to go visit employees and be closer to work done on a day-to-day ba-
sis[42]. Larman and Vodde[30] summarize the Lean Development concept in the Lean
Thinking House, see Figure2.2 The Lean Thinking House(see Figure2.2) shows the pillars
and core principles of Lean Development. Continuous Improvement, Respect for People,
Management Support and Customer-Centric Development are the pillars of Lean Devel-
opment(compare Figure2.2). These pillars are similar to the agile values. In addition, the

8

2.1. Agile Software Development

Figure 2.2.: Lean Thinking House by Larman and Vodde[30]

Lean House introduces concepts for the product development and 14 principles to follow
when trying to work lean. Kaizen is a term used to describe the principle of continuous
improvement, often associated with creating an environment where continuous learning
and change are encouraged[33].

9

2. Foundations

Differences between Lean Development and Agile Development

While there are many similarities between Lean and Agile Development and their core
principles and values, they are not the same. Agile follows a more prototyping approach
to product development of Do-Inspect-Adapt, while Lean follows a more organized ap-
proach of Inspect-Plan-Do [13]. Lean focuses on the enterprise value stream, while Agile
Development focuses on value creation for the customer[13]. Hence, agile and lean have a
different definition of what value is in software development[20]. Nonetheless, these two
concepts are often combined in software development programs. According to Wang et
al[63], there are six kinds of combinations for lean and agile practices:

1. Non-purposeful combination of agile and lean.

2. Lean for interaction with surrounding environment, agile within.

3. Lean for supporting agile adoption.

4. Lean to improve agile - Kaizen for continuous improvement.

5. Agile practices supporting lean processes.

6. Parallel and synchronized lean and agile.

With all the similarities, the practices of agile and processes of lean are often combined to
reach a new level of improved process at an organization. Both concepts come with sets of
principles aimed at improving the speed and quality of an product with customer needs
and benefits in mind.

2.1.3. Scrum

Scrum is practiced at many organizations, hence, one of the most popular Agile Develop-
ment frameworks[27]. Scrum as a framework was introduced by Ken Schwaber and Jeff
Sutherland[48], who describe it as a ’framework for developing, delivering and sustain-
ing complex products.’[48]. They go on to define Scrum as a framework allows people
to deal with complex problems and still productively create and deliver products of high
value[48]. All in all, Scrum consists of Scrum Teams with respective roles, artifacts and

Roles Artifacts Events
Scrum Master (SM) Product Backlog Sprint
Product Owner (PO) Sprint Backlog Sprint Planning
Development Team Increment Daily Scrum

Sprint Review
Sprint Retrospective

Table 2.1.: Scrum Roles, Artifacts and Events adopted from [48]

10

2.1. Agile Software Development

events, see Table2.1, all aimed at supporting a development process. Scrum stems from
empirical process control theory, stating that knowledge comes from experience[48]. To
support this experience based process of decision making and development ’Scrum em-
ploys an iterative, incremental approach to optimize predictability and control risk’[48].
The responsibilities of the roles are clearly defined. The following roles, artifacts and
events (Adapted from Schwaber and Sutherland[48], Wirdemann and Mainusch[66] and
the Scrum Pattern Community[50]) where created to support the development process:

• Roles:
Scrum Masters are responsible for dealing with impediments to the Scrum Team and
promote Scrum both within the Team and to the outside.
Product Owners are responsible for clear expression of the Backlog Items, prioritizing
the Backlog, making all Backlog items visible, transparent and so every team mem-
ber understands them.
The Development Team is responsible for implementing the items of the Backlog in
batches called Sprint Backlog during the Sprint. The end product of a Sprint is a
Product Increment of a product, which can be delivered to the customer.

• Artifacts:
Product Backlog is the collection of all requirements created by the Product Owner in
cooperation with the customer. The Product Backlog is prioritized and estimated, so
all requirements within the Backlog can easily be assigned to a Sprint.
Sprint Backlog is the collection of all requirements, which will be developed during a
Sprint. The Sprint Backlog is created by the Scrum Team by committing or denying
the requirements proposed by the Product Owner for a Sprint.
Increment is the result of all Sprint Backlog items, it is defined as a Product Increment
which is ’Done’ . The Product Owner decides whether it is released or not.

• Events:
Sprint is defined as an iteration, time-period, during which a Product Increment is
created.
Sprint Planning is the event during which the Product Owner proposes Backlog items
to be added to the Sprint Backlog. The Development Team discusses the items:

1. What will be done during the Sprint?

2. How to implement the Backlog Items which are done during the Sprint?

3. Negotiate amount of Backlog Items committed to Sprint with Product Owner.

4. Agree on a Sprint Goal.

Daily Scrum is the daily meeting to communicate which work was done the last day
and which work will be done the next day. Each member of the Development Team

11

2. Foundations

presents his situation and mentions whether he has any impediments.
Sprint Review is the presentation of the created Increment during the Sprint from the
Scrum Team to the key stakeholders.
Sprint Retrospective is used to critically inspect the Sprint, what was successful and
more importantly what was unsuccessful and needs to be addressed.

Figure 2.3.: Scrum Framework by Scrum.org[49]

The graphical depiction of the Scrum Framework by Scrum.org[49] shows the Scrum pro-
cess as a whole. Overall, the Scrum is used as basis for many LSAD frameworks, which
aim at scaling processes of the Scrum Framework (see Figure2.3) to fit for larger organiza-
tions, teams and projects.

2.2. Large-Scale Agile Development

This section will introduce the term LSAD and defines what can be understood as a LSAD.
Afterwards, two frameworks will be introduced, the Large-Scale Scrum (LeSS) in Sec-
tion2.2.2 and the Spotify model in Section2.2.3. In the end of this section is an overview of
further LSAD frameworks in Section2.2.4.

12

2.2. Large-Scale Agile Development

2.2.1. Definition

LSAD in its core describes different methods and concepts on how to scale agile prac-
tices. The need to scale originates in agile practices, as these were originally designed for
small projects. William and Cockburn state". . . the agile value set and practices best suit
co-located teams of about 50 people or fewer who have easy access to user and business
experts and are developing projects that are not life-critical. "[65]. However, the benefits
associated with agile practices, have led to high interest from large organizations. In gen-
eral there is some ambiguity about what defines LSAD[21].
Dingsøyr et al.[19] define a taxonomy for LSAD projects, based on a similar taxonomy in
requirements engineering. Therefore, they define large-scale as any project with two to
nine teams.
Dikert et al.[18] define large-scale as any project with more than 50 people and at least six
teams.
These definitions of large-scale all associate the amount of teams and people involved in
the project as driving factors to defining what is and what is not a large-scale project.
In their work to define principles for LSAD, Dingsøyr and Moe[22], go on to prove that
people working with agile practices have a similar understanding for the term large-scale.
During a workshop, Dingsøyr and Moe[22] identified different understandings of the term
large-scale, with size of teams and amount of people involved at the core of most defini-
tions. Rolland et al.[44] identified that’...,dealing with an increasing number of actors,
interfaces with existing systems, and unexpected interdependencies – this is what dis-
tinguishes large-scale projects from traditional ones’[44] is what makes the difference be-
tween agile development and LSAD. Bringing together in-house, root metaphor, paradig-
matic,ideological and field assumptions to find a definition for agile in the large[44]. This
thesis applies aspects of the definition of Power[43]. Power[43] identified three aspects
to working in scaled agile organizations:Agile approaches in large organizations, Agile
approaches in a large development effort in a large organization and Organizational
agility. The second aspect implies a need to scale agile methods to support the approach
of working agile in a large development effort. As well as, the interdependency and inter-
communication aspect from Rolland et al.[44]. Combined with Dingsør et al.[20] taxonomy
of large-scale, this thesis’s defines LSAD as follows:

Large-Scale Agile Development utilizes agile methods, principles and values in two to
nine agile teams. These agile teams are inter-dependent and work together on a project.

Agile approaches applicable to both co-located or geographically distributed teams. Agile
teams working together on a project need to communicate and coordinate on many topics,
for example ’Who is responsible for the development of which backlog items?’, ’How can
development on modules be synchronized?’ and many more challenges.

13

2. Foundations

2.2.2. Large Scale Scrum

Large Scale Scrum (LeSS) defines a framework for scaling agile methods associated with
Scrum. LeSS was designed by Larman and Vodde, who describe it as "Scrum applied to
many teams working together on one product"[31]. With their organization TheLeSSCompany
B. V. they define two frameworks, LeSS and LeSS Huge. The difference between these
frameworks lies in the amount of teams working together. LeSS is applied for up to
eight teams and LeSS Huge for more than eight teams and up to a few thousand peo-
ple working on the same product[4]. LeSS relies on the core principles of Scrum. It can

Figure 2.4.: Large-Scale Scrum Framework[3]

be seen as several individual Scrums working together with the additional concepts of
theLeSSframework. Therefore, at the foundation of everyLeSSinstance is the team work-
ing in a Scrum process, see Figure2.4. All Teams share one Product Backlog, one Product
Owner and they work on one Increment. However, each Team consists of its own Scrum
Master and Development Team. The teams work in the same sprint, so they have synchro-
nized sprints, leading to Sprint Planning, Review and Retrospective occurring at all teams
at the same time [31]. Sprint Planning is split up into two instances, Sprint Planning One
and Sprint Planning Two. Sprint Planning One is used to assign requirements from the
Product Backlog to teams. In Sprint Planning One the teams will send representatives, who
in cooperation with the Product Owner will work out the allocation. Sprint Planning Two
is similar to Sprint Planning in Scrum, where the individual teams perform their Sprint
Planning. In cases where backlog items allocated to two or more teams are connected,
Sprint Planning Two can be performed together for those teams[31]. Similar to Scrum, the
Sprint is closed by the Review, Retrospective and Overall Retrospective. Continuous Im-

14

2.2. Large-Scale Agile Development

provement is one major principle ofLeSSand the emphasis of Larman and Vodde[31] on an
Overall Retrospective, discussing cross-team impediments and issues during the sprint to
improve the following sprints, is reflected by that. The Overall Retrospective is attended
by the Product Owner, Scrum Masters and team representatives, in some cases managers
attend as well. The importance of the Overall Retrospective is reflected in the importance
of the Team Retrospective or for simplicity Retrospective. In a Retrospective the same dis-
cussion is held on a team level, with all team members attending. The Sprint Review is
used for the teams to present their results of the Sprint to the Product Owner and eventu-
ally attending Customers[31].
One event to draw special focus on is the Product Backlog Refinement(PBR), it occurs
during the Sprint and aims at refining items still in the Backlog. Product Owner and the
Sprint Teams are part of this event and they work together to define items to the stage of
ready and estimate the items, to allow future allocation to sprint to be more accurate. LeSS
defines three types of PBR, (1) Multi-Team (2) Overall and (3) Single-Team. The order of
the mentioned PBRs represent the usefulness associated with them by The Less Company
B.V.[4]. LeSS clearly states that doing a Mulit-Team PBR is the most useful, while they
would avoid doing a Single-Team PBR as it reinstates boundaries and weakens coordi-
nation and alignment[4]. LeSS and LeSS Huge employ Feature Teams, which are cross-
functional and cross-component full stack teams[30]. A Feature Team is able to cover all
aspects of development and consists of five to nine generalizing specialists[30].
Figure2.4 consists of all relevant artifacts, meetings and roles of the LeSS Framework. LeSS
Huge can be seen as several instances of LeSS stacked on each other[4, 31]. LeSS Huge also
only uses one Product Backlog and a synchronized Sprint, however, a team of Product
Owners is employed to deal with the larger setting. The setup consist of so-called Require-
ments Areas(RA)[31]. These RA are managed by an Area Product Owner, who is assigned
by the Product Owner. Each RA consists of four to eight Area Feature Teams, who work with
the Area Product Owner. The Product Owner focuses on the complete product develop-
ment, while the Area Product Owners focus on their specific area product development.
The Product Owner is responsible for allocating the Area Product Owners and splitting up
the Product into RA[31].
In Combination with the proposed framework, LeSS relies on a set of principles visualized

in Figure2.5. These principles (see Figure2.5) stand for:

• Large-Scale Scrum is Scrum - LeSS is Scrum scaled on all levels instead of applying
it on team level and adding a scaling process[4].

• More with LeSS - LeSS aims at reducing organizational complexity and solve prod-
uct development in a simpler manner[4].

• Systems Thinking - Set of tools to see systems dynamics, mental models and local
optimization[30].

• Lean Thinking - Build people and challenge the status quo, creating a mindset for
continuous improvement[26].

15

2. Foundations

Figure 2.5.: LeSS Principles from The LeSS Company B. V.[3]

• Empirical Process Control - Creating increments of the product, which can be shipped
and inspected for future adaptions of the process[4].

• Transparency - To be able to inspect and adapt your process and enable continuous
improvement.

• Continuous Improvement Towards Perfection - there is no final state of the product
or process, challenge the status quo and try to achieve a better product/process every
day.

• Customer Centric - The customer is the core of the product, focus on creating value
to the customer.

• Whole Product Focus - Focus on the whole product not on the individual parts.

• Queueing Theory - Queues affect the cycle time, so aim at eradicating Queues, by
visualizing the remaining queues and limiting queue sizes[30].

16

2.2. Large-Scale Agile Development

2.2.3. Spotify

The Spotify model introduced in 2012 by Kniberg and Ivarsson[28] works with a scaling
model comparable to matrix organizations, introducing four units of working groups,Squads,
Tribes, Chapters and Guilds, see Figure2.6.

Figure 2.6.: Spotify Model from Kniberg and Ivarsson[28]

The Squad represents the basic unit of development[28] and is similar to a Scrum team. A
Squads’ Product Owner is responsible to further the product development and prioritize
the backlog items. One Squad holds all capabilities required to deliver a product incre-
ment, comparable to Feature Teams except for having an Agile Coach instead of a Scrum
Master to help identify and solve impediments. Squads are meant to be autonomous,
however, dependencies between squads exist and they are represented in a dependency
excel to help resolve dependencies and make them visual[28]. Several Squads working in
a similar area make up a Tribe. Tribes are usually co-located, meaning that all Squads of a
Tribe have it easier to co-operate with each other and exchange knowledge[28]. Within the
Tribes, regular events comparable to the Sprint Review occur, to showcase the work done
by individual Squads. Facing the issue of Economies of Scale, the Spotify model intro-
duces Chapters and Guilds. Chapters and Guild offer a platform for employees working
in the same role to exchange knowledge and solutions already designed. Chapters consist
of people of the same roles in the same Tribe, with one Chapter Lead as line manager for
his chapter members[28]. Whereas Guilds are comparable to Communities of Practice and
spread across Tribes, similar to Communities of Practice, Guilds depend on a coordinating

17

2. Foundations

figure to help guide the Guild[28]. Finally, Spotify introduces the concept of the Operations

Figure 2.7.: Spotify Release Support through Operations Squad[28]

Squad, a Squad with the sole purpose to deliver the infrastructure for the other Squads to
make releases on their own, see Figure2.7.

2.2.4. Overview of Further Large-Scale Agile Development Frameworks

For this thesis the above mentioned agile practices (Scrum) and scaled-agile frameworks(LeSS
and Spotify framework) are most relevant as the case observed in this thesis adopted their
LSADP based on concepts from these two frameworks. However, there are many more
agile practices and LSAD frameworks, for example the Scaled Agile Framework(SAFe®)
which is applicable from a few teams to a whole organization, four-level SAFe®[36]. While
SAFe®finds application at the case study partner, the LSADP observed in this thesis’s case
intentionally did not apply SAFe®, the reasons for this decision are described in Section4.2.
Additional frameworks are the Scrum-at-Scale and Scrum-of-Scrum[53] and many more,
which are summarized and explained at [61].

2.3. Pattern Language

This section introduces the Pattern Language created by Uludağ et al.[55], which is based
on the Pattern-based Design Research by Buckl et al.[10]. However, we will begin with
the definition and terminology of Pattern in Section2.3.1. Afterwards, we will introduce

18

2.3. Pattern Language

some Software Development Pattern Languages in Section2.3.2. Finally we’ll introduce
the LSADPL, in Section2.3.3, applied in this thesis.

2.3.1. Definition Pattern

The definition for a pattern, "Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem, and a solution. "[2] is the basis for most work in the
area of pattern research. Context, Problem and Solution are the three elements found in
every definition of a pattern. Furthermore, patterns help documenting observations from
practice in an organized manor, which makes them reusable[24]. Buschmann et al. [11]
state that patterns endorse good practice, by documenting "existing, well-proven experi-
ence". Similar to those three elements it is defined by Coplien[15] that a best practice has
to be implemented at least three times in similar fashion, for it to be regarded as a pattern.
This Rule of Three is applied in this thesis to differentiate between patterns, which have
to be observed at least three times and Pattern Candidates, which were observed less than
three times. By this Rule of Three a distinction is made for this thesis between best practices,
a pattern observed three or more times in similar implementations and a good practice a
single occurrence of an observed Pattern Candidate. When several patterns are combined,
a Pattern Catalog or Pattern Language is created. For this thesis, the LSADPL by Uludağ
et al.[55] is applied (see Section2.3.3). A Pattern Language offers a connection between
multiple Patterns in a meaningful way[14].

2.3.2. Software Development Pattern Languages

Pattern Languages as a collection of patterns in one topic are help address problems and
resolve them by applying observed solutions. In the area of Software Development, Scrum
can be seen as a collection of patterns to address problems arising in the agile development
progress. As such Beedle et al.[8] defined the Scrum Pattern Language, which build the
patterns by describing Context, Problem, Forces, Solution, Rationale, Examples and Re-
sulting Context for the artifacts and events of Scrum, compare Section2.1.3. Building pat-
terns following the concepts of Context, Problem and Solution originates from an observa-
tion by Christopher Alexander, mentioned in an introduction by James O. Coplien[1]. The
combination of these building blocks of a Pattern Language can also be observed in the
conceptual overview (see Figure2.8) ot the Enterprise Architecture Management (EAM)
Pattern Language by Schneider and Matthes[47]. The evolved EAM Pattern Language
of Schneider and Matthes[47] is based on the EAM by Buckl et al.[10] and introduces
the relation between the different concepts Influence Factors, Stakeholders, Concerns,
Method Patterns & Principles, Viewpoint Patterns , Information Model Patterns and
Data Collection Patterns, compare Figure2.8). Similar to Scrum the relationships between
the different concepts are used to describe a pattern for an EAM solution. Again building
the pattern structure by using the building blocks, defined by Schneider and Matthes[47],
Context, Problem, Solution, Forces, Consequences, Stakeholders and See Also. In a

19

2. Foundations

Figure 2.8.: Conceptual overview Enterprise Architecture Management Pattern Language
by Schneider and Matthes[47]

similar template of Context, Problem and Solution relation, as well as supporting building
blocks for a detailed description of the pattern, are all Pattern Languages build.

2.3.3. Large-Scale Agile Development Pattern Language

Pattern Languages aim at combining patterns observed in a similar area of research. The
LSADPL applied in this thesis was designed by Uludağ et al.[55] and founded on the En-
terprise Architecture Pattern Language by Buckl et al.[10]. Following the work of Uludağ
et al.[55], this thesis uses the LSADPL, which combines five concepts (compare Figure2.10)
Stakeholder, Concern, Large-Scale Agile Pattern, Large-Scale Agile Development Anti-
Pattern and Principle.
The conceptual overview of the LSADPL can be seen in Figure2.9
The definitions of these concepts are shown in Table2.2.

20

2.3. Pattern Language

Figure 2.9.: Conceptual overview Large-Scale Agile Pattern Language by Uludağ et al.[55]

The Figure2.10 outlines all concepts, their types, elements and relation in detail.
For this thesis, the Pattern Language introduced and the definitions for this Pattern Lan-

guage as well as the general definitions regarding practices, patterns and pattern candi-
dates from Section2.3.1 apply. The patterns of the LSADPL by Uludağ et al.[55] consist of
the following building blocks, here the Template for a Coordination Pattern is presented
as designed by Uludağ et al.[55]:

• Pattern Overview- general Information as the Name and a Summary of the Pattern.

• Example - Correct application of the pattern.

• Context - Circumstances creating the Problem.

• Problem - Problems addressed by pattern.

• Forces - Reasons why the problem is difficult to resolve.

21

2. Foundations

Figure 2.10.: Pattern Language Structure by Uludağ et al.[55]

• Solution - Description of how the problem is solved.

• Variants - Different solution variations for the problem.

• Consequences - Benefits and Liabilities of pattern.

• See Also - Is the pattern applied in combination with other patterns.

• Other Standards - Do other Frameworks advice the use of the pattern.

• Known Uses - Which organizations apply the pattern.

This pattern template finds application in this thesis for documenting pattern candidates
observed at the case study partners’ LSADP.

22

2.3. Pattern Language

Patterns and Concepts Definition
Stakeholder Individual or group of individuals Involved or af-

fected by LSAD[57].
Concern Responsibility,task, challenge or goal of an stake-

holder. Concerns reference principles and pat-
terns aimed at resolving these concerns[55].

Coordination Pattern(CO-Patterns) CO-Patterns describe coordination processes(e.g.
tasks) to address recurring concerns in LSAD.

Methodology Pattern (M-Patterns) M-Patterns define concrete steps for addressing
concerns in LSAD.

Viewpoint Pattern (V-Patterns) V-Patterns offer ways of visualizing information(
boards, documents, metrics, models and reports)
addressing recurring concerns in LSAD.

Principle Principles consist of rules and general guidelines,
they might help address recurring concerns in
LSAD.

Anti-Pattern Anti-Patterns describe common mistakes in
LSAD and revised solutions to avoid these mis-
takes.

Table 2.2.: Patterns and Concepts following the definition of Uludağ et al.[55]

23

2. Foundations

2.3.4. Stakeholders

This Section introduces the stakeholders groups Scrum Master (SM) (Section2.3.4), Prod-
uct Owner (PO) (Section2.3.4) and Development Team (DEV) (Section2.3.4) which are the
focus of this thesis. These stakeholder groups and 11 more were identified in Uludağ et
al. [57] with a literature review on identifying and structuring challenges in LSAD. The
LSADPL created by Uludağ et al.[55] goes on to combine these stakeholder groups with
their challenges.

Development Team

Responsibilities
The Development Team(DEV) is responsible for the development of the Backlog Items as-
signed to a Sprint and delivering an Increment of the product as defined in Section2.1.3.
DEV is the combination of all team members working on the development of requirements,
in some cases this can include the SM in a 50 % part-time role. Additionally, DEV is respon-
sible for clarifying non-functional requirements and during the PBR help the POestimate
User Stories accurately. The DEV is self-organizing and usually presents the Increment
during the Sprint Review to the customer and POand in some scaled-agile they are also
responsible for releasing these Increments[28].
Challenges
For DEV, Uludağ et al. [57] identified four challenges:

• How to establish self-organization?

• How to create lightweight documentation?

• How to explain requirements to stakeholders?

• How to coordinate tests and deployment with external parties?

None of these challenges have a direct correlation to LSAD.

Product Owner

Responsibilities
The Product Owner (PO) is responsible for the overall development of the product. Pri-
oritization of items in the Backlog is the major task for the POas he is responsible for
identifying which items will bring the biggest value to the customer and therefore should
be addressed first[31]. POs are responsible for clarifying functional requirements with the
customers of the product and are the interface between agile team and customer[35, 48].
As such, the PO is also responsible for eliciting requirements and transforming them into
User Stories[66] and in a final step he refines these User Stories in cooperation with the
Development Team[48]. In the end, the PO decides when to release an Increment to cus-
tomers.

24

2.3. Pattern Language

Challenges
Most of the challenges associated with the PO are connected to Requirements Engineering,
some challenges are connected to Project Management. For the POstakeholder, Uludağ et
al. [57] identified a total of 14 challenges:

• How to create precise requirement specifications for the development team?

• How to share a common vision?

• How to elicit and refine requirements of end users?

• How to split large and complex requirements into smaller requirements?

• How to facilitate communication between agile teams and other teams using tradi-
tional practices?

• How to communicate business requirements to development teams?

• How to define clear and visible priorities?

• How to deal with unplanned requirements and risks?

• How to enforce customer involvement?

• How to make a cost and schedule estimation?

• How to create and estimate user stories?

• How to establish requirements verification?

• How to define high-level requirements a.k.a. epics?

• How to measure the success of the large-scale agile development program?

These challenges are not limited to LSAD, but can also be observed in small agile projects.

Scrum Master

Responsibilities
The Scrum Master (SM) is as a part of the agile team responsible for enabling the devel-
opment process. In his role he helps the DEV in identifying and resolving impediments
arising during the development process. Overall, the SM is responsible for productivity
and an efficient Sprint[66]. As a enabler he supports not only the DEV in their endeav-
ors, but also the Product Owner. In a scaled agile approach, he is further needed as a
scrum of scrum facilitator for communication and coordination between the different agile
teams[6]. As introduced in Section2.1.3 the SM is responsible for advocating and promot-
ing agile practices not only inside the team, but also to the outside. Additionally, the SM

25

2. Foundations

is responsible for moderating and managing the meetings, making sure that the meetings
fulfill their purpose as defined by him[48]. In the practice, the SM is rarely represented by
a full time role, many agile teams use the SM as a 50% role often in combination with a
50% developer[17, 38]. A part-time SM is often more respected by the Development Team,
as he is regarded as more experienced and more understanding of impediments facing de-
velopers[17].
Challenges
The SM faces multiple challenges traditionally associated with project managers’ concerns.
However, he additionally has to face several challenges regarding agile practices and sup-
porting the agile process. The challenges identified by Uludağ et al. [57] for the SM are
mainly aimed at issues concerning geographical distribution. In total, ten challenges were
identified in this literature review:

• How to coordinate geographically distributed agile teams?

• How to facilitate agile teams to participate at cross-shore meetings?

• How to synchronize working hours of cross-shore agile teams?

• How to deal with lacking team cohesion at different locations?

• How to build trust of stakeholders in agile pratices?

• How to create a culture of continuous improvement?

• How to rearrange physical spaces?

• How to deal with higher-level management interference?

• How to deal with cultural differences between cross-shore agile teams?

• How to synchronize sprints in the large-scale agile development?

Many of these challenges do not only apply to large-scale, but can also be found in small
agile projects.

26

3. Related Work

In this chapter we will introduce some related work in the area of LSAD in Section3.1, work
on identifying recurring concerns in LSAD in Section3.2 and finally introduce related work
observing the learning process of agile programs in Section4.5.

3.1. Related Work on Large-Scale Agile Development

Fuchs and Hess (2018) - Becoming agile in the digital transformation: the process of a
large-scale agile transformation
Fuchs and Hess[25] inspect the process of agile transformation with a multiple-case study
design. As a Result, Fuchs and Hess[25] identify different agile phases of transformation,
each distinguished by organizational efforts at the beginning of each phase. The phases
are Initial Transition to agile practices, Coping actions towards challenges of initial agile
phase, Addressing challenges of second agile phase [25]. Overall, observing the wave-
like process of agile transformation, Fuchs and Hess[25] were able to distinguish the dif-
ferent phases through the organizational effort that initiates each phase, interrupting the
flow with radical change[25]. Instead of an incremental transformation, agile transforma-
tion was found to need several boosts, to initiate new levels of organizational agility[25].

Paasivaaraet al. (2018) - Large-scale agile transformation at Ericsson: a case study
Paasivaara et al.[39] identified with their case study four phases of agile transformation.
Knowledge Transfer and Component-Based Teams, Introducing Agile, Finding Com-
mon Ground Through Value Workshops and Towards Continuous Integration and De-
ployment[39]. Each phase is distinguished by increased efforts to achieve a more agile
organization. However, during the phases, they identified inherent challenges, which
challenged the use of , e.g. cross-functional teams and co-located teams[39]. Ericcson
reacted by transforming into their own setup, focusing on creating common values with
value workshops and including teams as soon as the design and planning for functionali-
ties[39]. The challenges observed by Paasivaara et al.[39] range from Change Resistance,
Technical Debt, Cross-Site Teams to Specialized Teams to name a few. Leading to the
Lessons Learned of which two are of increased interest for this thesis, Limited Team Inter-
changeability teams working on business flows, of which they are experts [39]. Secondly
Stepwise Transformation the agile transformation is not a single big bang process as or-
ganizations need to continuously deliver features, it is more of an step-wise change[39].

27

3. Related Work

Dingsør and Moe(2014) - Towards Principles of large-scale agile development The work
of Dingsør and Moe[22] identifies four principle categories for LSAD.

1. Architecture principles - Coordinating work and the influence of the level of change
on the architecture organization.

2. Inter-team coordination principles - norms and values facilitate communication and
the need for effective knowledge networks in LSAD.

3. Portfolio management principle - consistent alignment between teams and portfolio
vision to achieve the overall portfolio goals and feedback from the LSAD teams to
the portfolio to optimize value of LSAD.

4. Scaling principles - context of agility and scale essential for improving agility and
agility scaled with respect to involved members.

These principles aim at making LSAD success more achievable, by focusing on the correct
adaption of LSAD frameworks.

Uludağ et al.(2019) - Using Social Network Analysis to Investigate the Collaboration
Between Architects and Agile Teams: A Case Study of a Large-Scale Agile Develop-
ment Program in a German Consumer Electronics Company
Uludağ et al.[58] observe the collaboration of architects with agile teams and identify meth-
ods of interaction, as well as how they are perceived and which benefits stem from these
methods. One Finding is the preference of direct communication by the architects, for
which two types of communication were observed inter-team and intra-team communica-
tion. Observing the affiliation between Architects and squads and, to what extent and how
often communication happens. To generate a detailed case description and document the
adopted agile approach Uludağ et al.[58] uses a mixed method approach to identify and
described the agile program observed. Creating a LSADP framework of a German con-
sumer electronics retailers’ agile release train, though a combination of literature review,
observations from events and experts interview. All these data inputs are aimed at elic-
iting certain key aspects of the case study partners’ LSADP. Through the social network
analysis, Uludağ et al.[58] could identify the Solution Architects as central communication
nodes. Indicating their high communication efforts and involvement with the agile teams.
A similar approach finds application in this thesis, with the foundation of 2.2.2 and 2.2.3
and interviews with experts at the case study partner to elicit the LSADP of the case study
partner.

3.2. Related Work on Identifying Recurring Concerns in
Large-Scale Agile Development

Uludağ et al.(2018) -Identifying and Structuring Challenges in Large-Scale Agile Devel-
opment based on a Structured Literature Review

28

3.3. Related Work for identifying good practices in Large-Scale Agile Development
Programs

The work of Uludağ et al.[57] creates a basis for researching LSAD as they introduce not
only challenges observed, but also stakeholder groups and categories for the observed
challenges. The concept of recurring concerns as well as the identification of different
stakeholder groups created the foundation of this thesis. The research paper goes on to
identify 79 challenges of fourteen stakeholder groups by conducting a literature review
over 73 relevant sources. Challenges are categorized into one of eleven categories: Com-
munication & Coordination, Software-Architecture, Geographical Distribution, Knowl-
edge Management, Methodology, Culture & Mindset, Tooling, Requirements Engineer-
ing and Project Management. Based on the work of Cruzes and Dybøa[16] and Ernst[24]
they go on to identify the concepts and pattern types:stakeholders, challenges, methodol-
ogy patterns, architecture principles, viewpoint principles and anti-patterns. The chal-
lenges are then mapped to the stakeholders and in a novelty check, controlling, whether a
challenge is relevant for LSAD or can also be found in normal agile projects. Further, the
work identifies that not all challenges of LSAD are documented in the literature, there are
still challenges that need to be identified. With this work, the research project this thesis is
a part of is initiated, which later produces the LSADPL[55], which is applied in this work.

Dikert et al.(2016) - Challenges and success factors for large-scale agile transformations:
A systematic literature review
Compared to Uludağet al.[57], the work of Dikert et al.[18] identifies 29 success factors in
addition to 35 challenges in agile transformations. The work researches agile transforma-
tions utilizing a literature review of 52 papers, including experience reports[18]. Dikert et
al.[18] identify nine challenge categories from the literature review with ’Agile being diffi-
cult to implement’ being mentioned by 48% of the cases observed. Similarly often identi-
fied where concerns of the category ’Integrating non-development functions’ at 43%. The
most often observed success factors were ’Choosing and customizing the agile approach’
with 50%, ’Management support’ and ’Mindset and Alignment’ both with 40%. From
these findings, Dikert et al.[18] concluded that for an agile transformation to be successful,
the framework has to be adopted to the organization and without addressing the values
behind agile, a transformation is less likely to be successful.

3.3. Related Work for identifying good practices in Large-Scale
Agile Development Programs

Paasivaara, M. (2014) - Communities of practice in a large distributed agile software
development organization–Case Ericsson In this work Paasivaara and Lassensius[40] go
on to identify eight characteristics of a successful Community of Practice(CoP). The eight
characteristics were identified by observing different Community of Practice (CoP) (see
Figure3.1) and collecting experiences through expert interviews.

29

3. Related Work

Figure 3.1.: Characteristics of a successful Community of Practice[40]

Uludağ et al.(2018) - Supporting large-scale agile development with domain-driven de-
sign
The effect of architects and the adoption of (Domain-Driven-Design (DDD) is the founda-
tion of this work by Uludağ et al.[56]. The work not only describes the LSADP of the case
study partner, but also introduces methods applied, which can be seen as best practices of
applying DDD at the case organization. With the tactical DDD approach using the Event
Storming process, which generated a a comprehensive model of the business flow[56], this
thesis has a pattern, which is introduced to this thesis’ case study partner as a possible
solution for several concerns. Uludağ et al.[56] finds that to adopt DDD in a LSAD, orga-
nizations do not need to add further roles. However, the responsibilities of the roles have
to updated. Development teams need to develop and maintain domain models to help the
strategical DDD and the importance of architects increases. Overall, the observed frame-
work is a combination of the tactical and strategical DDD provided and maintained by the
teams and architects surrounding a LeSS approach. For this thesis, the concept surround-
ing the event storming workshop is focus point as it allows architects and the team to align
and conceptualize the domain architecture and helps to generating a better understanding
of a module and all occurring events [62].

30

3.3. Related Work for identifying good practices in Large-Scale Agile Development
Programs

Uludağ et al. (2019) - Documenting recurring concerns and patterns in large-scale ag-
ile development
In Addition to the LSADPL described in Section2.3.3. The work of Uludağ et al.[55] docu-
mented patterns as well as mapped these patterns to concerns. Making it easy to search for
possible solution designs by focusing on the concerns observed in a LSADP. The patterns
documented by Uludağ et al.[55] are available with the introduced pattern language. Ulu-
dağ et al.[55] go on to document the currant concerns, patterns and anti-patterns, which
are part of the pattern language designed. Two of these patterns CO-1 and CO-2 are intro-
duced to the case study partner of this thesis. Additionally, the pattern language allows
documentation of practice-proven solutions to recurring concerns[55]. This thesis goes on
to work on documenting best practices, recurring concerns and applying the aforemen-
tioned pattern of CO-1 at the case study partner. Essentially, working on the future work
described by Uludağ et al.[55]. Additionally the star-notation representing the confidence
level used in this thesis was introduced by Uludağ et al.[55]. The maturity of a pattern is
represented by star notation: two stars, indicating the pattern addresses a genuine prob-
lem, one star indicates the pattern addresses a real problem, no star means the pattern was
useful for a observed problem but needs revision[55].

31

3. Related Work

32

4. Case Study

This chapter summarizes all Findings observed during the case study research. First, the
case study partner will be introduced and a case description will be offered in Section4.1.
Next, this thesis will introduce Then this thesis will introduce the LSADP Framework cur-
rently in use at the case study partner in Section4.2. The findings of the second interview
round with recurring concerns and good and bad practices is discussed in Section4.3. Fol-
lowed by identifying recurring concerns for the three stakeholder groups in the case study
in Section4.3.2. Section 4.4 will introduce Good and Bad Practices observed in the case
study and finally the thesis will close the findings with the implementation of provided
Patterns and the observed Lessons Learned in Section4.5.

4.1. Case Study Description

This section introduces the case study partner, Technology LLC., and describes their cur-
rent team situation(Section4.1.1) of the LSADP. The interview process and interview part-
ners are introduced in Section4.1.2 and the findings of these interviews are then presented
in Section4.2, Section4.3 and Section4.4.

4.1.1. Team and Platform of Technology LLC.

The case study partner of this thesis is situated in the technology sector, therefore we will
call it Technology LLC..

Role Team A Team B Team C Team D Team P Total
Scrum Master 0.5 0.25 1 0.25 2 4
Product Owner 3.08 3.08 1.25 2.58 1 11
Test Team 2 4 1.5 1.5 9
Process Consultant 0.5 2 1 1 4.5
Development Team 2 3.25 3 1 11.5
IT-Architect 1 1
Software Architect 1 1
Test Architect 1 1
Sum of Members 8.08 12.58 7.75 8.58 6 43

Table 4.1.: Team conception at case study partner

33

4. Case Study

Technology LLC. operates as an automobile supplier, invests in the internet-of-things
and has been a leading producer of household appliances for a long time. While the or-
ganization itself has several projects working with the Scaled Agile Framework (SAFe®)
framework, the observed LSADP at the case study partner decided in early 2017 to adopt
the LeSS framework.

TE
AM

 C

SM
-6 PO

-1
0

PO
-3

*

PC
-3

/D
EV

-2
*

DE
V-

3*
DE

V-
10

DE
V-

11TT
-8

TT
-7

TE
AM

 A

PO
-7

PO
-6

*
PO

-2
*

PO
-3

*
PO

-8

SM
-1

*
/P

C-
1

TT
2

TT
1

DE
V-

7
DE

V-
6

PC
-2

/D
EV

-1
7

DE
V-

9

TT
-4

TT
-3

TE
AM

 B PO
-6

*
PO

-3
*

PO
-1

*
PO

-2
*

PO
-8

SM
-5

/D
EV

-1
6

/S
A-

2

TT
-6

TT
-5

DE
V-

8
DE

V-
5*

PC
-1

/D
EV

-4
*

DE
V-

15

TE
AM

 D

PO
-1

1
PO

-6
*

PO
-3

*
PO

-5
*

SM
-4

/D
EV

-1
*/

SA
-1

TT
-9

TT
-7

DE
V-

13
DE

V-
12

PC
-4

/D
EV

-1
8

TE
AM

 P

PO
-4

*
/C

PO

SM
-2

*
/P

DM

TA

SM
-4

/D
EV

-1
*

/S
A-

1

A

SM
-3

*
/A

C

SM
-5

/D
EV

-1
6

/S
A-

2

Le
ge

nd
:

Bo
ld

 ro
le

 =
 ro

le
 in

 te
am

Ita
lic

 ro
le

 =
 ro

le
 o

ut
sid

e
te

am
St

ar
-A

nn
ot

at
io

n(
*)

 =
 ro

le
-id

 in
te

rv
ie

w
ed

SM
 =

 S
cr

um
 M

as
te

r
PO

 =
 P

ro
du

ct
 O

w
ne

r
PC

 =
 P

ro
ce

ss
 C

on
su

lta
nt

TT
 =

 T
es

t T
ea

m

DE
V

=
De

ve
lo

pm
en

t T
ea

m

AC
 =

 A
gi

le
 C

oa
ch

PD
M

 =
 P

ro
du

ct
 D

ev
el

op
m

en
t M

an
ag

er
CP

O
 =

 C
hi

ef
 P

ro
du

ct
 O

w
ne

r
SA

 =
 S

of
tw

ar
e

Ar
ch

ite
ct

A
=

IT
-A

rc
hi

te
ct

TA
 =

 T
es

t A
rc

hi
te

ct

Figure 4.1.: Detailed view of each Team at case study partner

34

4.1. Case Study Description

The teams consist of eight different stakeholder groups, three of which were the focus
of the interviews for identifying recurring concerns, in Section4.3, and documenting good
and bad practices ,in Section4.4. The teams are aggregated as depicted in Table4.1 and
visualized in Figure4.1. The role Test Team is associated with manual testing capabili-
ties. Automation testing is handled by the Test Architect (TA) in cooperation with each
teams’ Development Team. Process Consultants split their work into two dedicated 50 %
blocks, one part developer and one part technical expert, responsible for supporting other
team members with technical impediments. Finally, as observed in other cases, the Scrum
Master role is only partly filled, as most Scrum Master fulfill another responsibility as De-
velopment Team member or in the case of SM-2 and SM-4 as 50 % Software Architects(SA)
and 25% SM and 25% Development Team member[38].

Figure 4.2.: SunBurst of the teams distribution across locations of the case study partners
Large-Scale Agile Development Program

Noteworthy about the case is the high amount of Product Owners in each team in Fig-
ure4.1. Except for Team P, which functions as a platform team supporting the platform
architecture, vision and managing the LSAD. The Product Owner of Team P is the Chief
Product Owner, who is responsible for the whole product development. Similarly, both
Scrum Master of Team P hold more product managing roles. While one focuses on the

35

4. Case Study

correct use and promotion of the agile practices, comparable to an Agile Coach, the other
is responsible for the technical development of the product. Nonetheless, the three mem-
bers of Team P identify themselves as Product Owner and Scrum Master within that team,
respectively. The program teams are geographically distributed over four locations, Fig-
ure4.2 shows the team composition with the respective locations.
As visualized in Figure4.2 every team is geographically distributed, which leads to chal-
lenges in communication and coordination as well as setting meeting times, fitting to all
time zones. However, no team has members in all four locations, and the LSADP tries to
have at least a few members per team working from the same location.
The LSAD studied at the case study partner supports the purchasing process of the whole
organization. PILUM-Purchasing Integration, Lean and Unified Management- is the name
of the product created by the LSADP at the case study partner. The program works on the

Figure 4.3.: APN-Module Architecture at Technology LLC.

36

4.1. Case Study Description

PUR-PDM platform, which combines nineteen modules to bring to the user the PILUM
product. An example for the complexity of one module is given by the module architec-
ture diagram, in Figure4.3. The module referenced in Figure4.3 is responsible for deliv-
ering the information for annual price negotiations(APN). The module has roughly 1000
users worldwide and 4 internal and ten external interfaces. This one module is used by
seven key user groups. As the platform combines seventeen modules of similar size and
complexity, the scale of the platform becomes apparent. In total the platform has 17 ex-
ternal interfaces, 19 modules and nine key user groups. The LSAD the case study partner
works in and detailed role, events and artifacts of the LSAD are presented in Section4.2.

4.1.2. General Information Interviews and Approach

For this thesis a total of 14 expert interviews were conducted, see Table4.2. Two types of
interview styles were conducted for this thesis.

Interview-Partner Duration Interview-Type
Product Owner(PO-1) 1:06:21 h semi-structured
Scrum Master(SM-1) 1:07:24 h semi-structured
Product Owner(PO-2) 1:05:41 h semi-structured
Scrum Master(SM-2) 1:23:33 h structured
Product Owner(PO-3) 1:23:54 h semi-structured
Product Owner(PO-4) 1:17:55 h structured
Development Team(DEV-1) 1:12:48 h semi-structured
Product Owner(PO-5) 1:13:40 h semi-structured
Development Team(DEV-2) 1:02:52 h semi-structured
Development Team(DEV-3) 0:50:42 h semi-structured
Product Owner(PO-6) 1:13:52 h semi-structured
Development Team(DEV-4) 1:16:28 h semi-structured
Development Team(DEV-5) 0:54:52 h semi-structured
Scrum Master(SM-3) 1:12:02 h structured

Table 4.2.: Interviews conducted with Duration and type of questionnaire

One structured interview with the goal of gaining deeper knowledge of the LSADP, adapted
from the work of Uludağ et al.[58] The other interview type was semi-structured with the
goal to identify recurring concerns and good practices, adapted from the work of Uludağ
et al.[55]. Both questionnaires were developed in the larger research project this thesis is
a part of. The two questionnaires used for these interviews are included in the Appen-
dicesA.1 andA.2. The Table4.2 shows the roles and interview types conducted. Addition-
ally during the period of the thesis, observations of the LSADP, including the Kickoff of the
program year 2020, were documented in notes. All observations and the nature of them
are listed in Table4.3 For Section4.2 this thesis used three structured(see AppendixA.1) ex-

37

4. Case Study

Observation-Event Duration Types of Documentation
Dailies 1:45 h Notes
Newsflash 1:00 h Notes
Sprint Review 7:30 h Notes
Sprint Planning 0:45 h Notes
Scrum of Scrums 0:30 h Notes
Product Backlog Refinement 1:00 h Notes
Kickoff 2020 14:00 h Notes and Pictures

Table 4.3.: Observations from different team & program events

pert interviews along with the observations from Table4.3. For Section4.3 and Section4.4
the 11 semi-structured interviews were conducted, with questionnaire (see AppendixA.2)
along with the observations regarding pattern candidates identified.

4.2. Large-Scale-Agile Development Program

This section describes the LSADP at the case study partner,(see Figure4.4). The data has
been collected by conducting three expert interviews with PO-4, SM-2 and SM-3 using
the Agile-Adoption questionnaire (see AppendixA.1) as well as observations from events
and artifacts provided by the case study partner. We will begin with the introduction
and implementation of the LSAD Section4.2.1. Then, we will introduce the Principles in
Section4.2.2 of the LSADP,the Roles in Section4.2.3 with their responsibilities, the Artifacts
in Section4.2.4 and Events in Section4.2.5 of the LSADP. Following, we will discuss how
the topic of architecture (see Section4.2.6) is involved in the LSADP. At the end of each
section will be a comparison between the foundation during the adoption process (LeSS
and Spotify model) and the current LSADP of Technology LLC..

4.2.1. Agile Transformation

The Agile Transformation of Technology LLC.s’ LSADP resulted in the process provided
in Figure4.4 The Teams are represented by their flow line during the Sprint, the flows are
organized from front to the back from Tam A to Team P, respectively. Team P’s Sprint con-
ception differs most from the other teams, this is partly due to the fact that as the platform
team most of its team members are involved in several teams or are responsible for the
overall success of the program. From the three structured expert interviews (see Table4.4)
with SM-2, SM-3 and PO-4 the LSADP was described to function as follows. Technology
LLC.s’ LSADP started adopting scaled-agile practices in the beginning of 2017. As the
program grew, more and more functionalities of what used to be separate systems were
migrated into the new platform. With all these migrations the team grew until at last by
the end of 2016 the decision was made to work in a LSADP and adopt the LeSS framework.

38

4.2. Large-Scale-Agile Development Program

PREVIOUS
SPRINT

SPRINT
PLANNING

SPRINT REVIEW

RETROSPECTIVE
NEXT
SPRINT

OVERALL RETROSPECTIVE

PRODUCT
BACKLOG

REFINEMENT

PRODUCT
BACKLOG

REFINEMENT

DAILY SCRUM

SCRUM OF SCRUMS

SPRINT
BACKLOG

PO

PO

PURPOSE TEAM

Figure 4.4.: Large-Scale Agile Development Program- Case Study Partner Technology
LLC. . Adapted from the original framework by The LeSS Company B.V.[3]

Interview Partner Experience
Product Owner (PO-4) - Chief Product Owner(CPO) 3-5 years
Scrum Master (SM-2) - Product Development Manager (PDM) 1-2 years
Scrum Master (SM-3) - Agile Coach (AC) 3-5 years

Table 4.4.: Interview partners for Agile Adoption questionnaire

’The introduction will never be completed, as we won’t stop adopting our process.’. Scrum Master(SM-
2)(2019).
Agile practices were not new to the case study partner as most people had experience with
agile practices. However, the scaling of these agile practices was somewhat new to every-
body. With the LSADP start at 2017 a transition phase was started in cooperation with an
external coach, who helped them transform to LSAD. Additionally, a two-day workshop
to introduce agile practices was held to start the transition phase.
’LeSSwas selected as it offers transparency, was the most Scrum like framework, yet, seemed easy
to adopt.’ Scrum Master (SM-3) (2019)
In addition to LeSS, the LSADP adopted some practices from the Spotify model as well as
the Scrum of Scrums (SoS) from Scrum at Scale. Another add-on was the introduction of
a Process Consultant, a role already in use in IT-projects at the case study partner, yet not
relevant in LeSS.

39

4. Case Study

’The modules , for purchasing, that we support require a highly domain-specific knowledge. We
then introduced the Process Consultant as a single point of contact for development and product
owners.’ Scrum Master(SM-2) (2019)
Before the introduction of the PC role, the program had something they collectively call
an ’Estimation Disaster’. The developers didn’t have enough domain-knowledge to cre-
ate accurate estimates. These inaccurate estimates and the limited domain-knowledge
led to prolonged Product Backlog Refinements and over-commitment in practically ev-
ery Sprint. During the Transformation phase, there were multiple challenges encountered
by the LSADP. While they introduced scaled-agile to a team of roughly thirty employees,
the program faced challenges in multiple areas:

• Correct application of agile practices - estimation disaster.

• Cultural difference and geographical distribution - four locations and three cultural
backgrounds.

• Historical role distribution of the four locations.

• Self established teams- co-located teams formed, however, no focus on knowledge of
the team members.

• Introducing LeSS without any adaptions.

In the beginning of the Agile Transformation, the LSADP had issues to correctly apply ag-
ile practices, they were stuck in a loop of pseudo-agility and did not focus on the values
and principles of agile, but on the application of agile practices. The shift of responsibil-
ities to the teams entailed that the program faced teams, who had issues to self-organize
and deliver increments. By introducing the Process Consultants and creating common
values regarding agile and focusing on the values and principles that are underlying in
agile, the program was able to address these challenges. They acknowledged the domain-
knowledge issue and led several discussions to understand their values, e.g. quality has a
high value in the Warsaw location.
’Our colleagues from Poland value Quality and Sustainability more, while the German colleagues
valued Delivering features higher.’ Scrum Master(SM-2) (2019)
All three interview partners agree that enabling the teams, by forming Purpose Teams and
introducing Process Consultants were the main factors to address most of their issues. As
the Lesson Learned of their experience with agile transformation, they acknowledged that
too much change at once leads to issues. They also highlighted that adapting a framework
as is, probably will never solve anything. Their program became successful once they ac-
tively adapted their program to fit their needs.
’One major lesson learned is being confident enough to change a framework and create our own
process, find agile practices that fit you, no matter where they origin. While simultaneously always
questioning our own process and trying to improve it.’ Scrum Master(SM-3) (2019)

40

4.2. Large-Scale-Agile Development Program

Two interview partners mentioned to focus on incrementally changing a process and eval-
uating the changes constantly.
’Have a more organic growth and change, incrementally change and observe the effects the changes
have on the process. Have the courage to dismiss practices, if they are not useful for you, even
though they are very common. Product Owner (PO-4) (2019)
As it stands now the LSADP has established itself as a pretty secluded program in the con-
text of Technology LLC.s’ whole organization, see Figure4.5. Around 90% of the LSADP

Figure 4.5.: Large-Scale Agile Development Program - Relationship of program in organi-
zational context.

members have 100 % of their time allocated to the program, especially the development
employees. The interview partners agreed on them applying LeSS and not LeSS Huge, be-
cause the Purpose Teams are not representative of a LeSS Huge adaptation. Further, they
estimated to use about 70 % mainly Scrum practices adapted in LeSS and the other 30 % is
a mix of LeSS practices and Spotify practices. The following stakeholders were identified
by the interviewees:

• CI - Corporate IT - from our team members to the management.

• POI - IT project management and global services department - from our team mem-
bers to the management.

• Customers - every key user department and department using our product.

In total, the stakeholder groups of the LSADP are identified similarly to Figure4.5 Overall,
the LSADP went through two phases of agile transformation so far. Similar to the ob-
served phases in the works of Fuchs and Hess[25] and Paasivaara et al.[39], the LSADP
agile phases were initiated by a push to become more agile. During the end of this case
study, there were first indicators of another agile transformation phase being initiated. The
LSADP size was increased combining two LSADP into one LSADP.

4.2.2. Principles

Principles of LeSS have been adopted partially, yet the main focus of the LSADP lies on
the agile values and Scrum principles.

41

4. Case Study

’We have communicated and discussed what the values of Openness, Courage, Respect, Focus and
Commitment mean to every single team in our 2018 Kickoff.’Scrum Master (SM-2) (2019)
With the Scrum principles at their core, SM-3 mentioned that since LeSS is a scaled version
of Scrum, they also follow the LeSS principle of LeSSis Scrum. The LSADP elaborated on
these values with statements on how they understand the concepts of :

• Openness - open for feedback, change, inform your team about scope changes/ prob-
lems, etc.

• Courage - admit failure, refuse overload, question things and discuss them, etc.

• Respect - listen, don’t interrupt, respect work-life balance, etc.

• Focus - avoid topic jumps, focus on Sprint Goal, focus on customer needs, etc.

• Commitment - go the ’extra mile’ where needed, take responsibility for your deci-
sions, etc.

Internal coordination is implemented by CoP, SoS across the teams and all Scrum events
for within the teams, every other communication is conducted in form of direct communi-
cation, as it is preferred by all teams. This can be summarized by the following statement:
If you need someone’s help, whether they are on your team or not, contact them directly.
For topics affecting several teams, there are also the concept of Newsflash and the cross-
team events of LeSS(Review, overall retrospective). Communication and Coordination to
stakeholders is done either by involving a customer in the Sprint Review or through the
periodic round-tables by the Product Owners. Regarding the LeSS principles, the LSADP
focuses on Transparency, Customer-Centric and Continuous Improvement.
Transparency. Transparency is regarded as the most important principle in the LSADP
as it enables most of the other principles. The teams are informed about anything man-
agerial with a Newsflash, where they are allowed to ask questions and offer input on the
topics discussed. The Sprint Goals and progresses of all teams are accessible for all pro-
gram members in JIRA and Power BI- Microsoft Business Intelligence program, visualiz-
ing progress, detailed information on requirements and other Key Performance Indicators
(KPIs).
Every member is allowed to visit other teams’ events, to gain information about their pro-
cess. Additionally, all CoP in the LSADP are open for anybody interested in the topic.
Customer-Centric. ’Customer is King’ Product Owner (PO-4) (2019). The main goal of adopt-
ing a LSAD was to improve customer satisfaction. Technology LLC.s’ LSADP has nine key
user departments, each with several key users and different needs for different products.
The Commitment to make a customer-centric product is reflected in the Product Owner
Team. Each Product Owner has several key users and modules he supports. They focus
on creating personal relationships and regular coordination with each key user. With only
one PO this would not be possible. The POs try to improve the modules they are respon-
sible for and coordinate in doing so with their colleague POs, to minimize the effect on the

42

4.2. Large-Scale-Agile Development Program

agile team.

Principles and Values Technology LLC.s’ LSADP LeSS Spotify
Scrum values(Large-Scale Scrum is
Scrum)

x x x

Transparency x x x
More withLeSS x x
Systems Thinking x
Empirical Process Control x
Continuous Improvement Towards
Perfection

x x x

Customer-Centric x x x
Whole Product Focus x x
Queuing Theory x
Lean Thinking x x

Table 4.5.: Comparison of the Principles and Values of the Large-Scale Agile Development
Program at Technology LLC., LeSS and Spotify

Continuous Improvement. Using Retrospectives and living the values of courage and
commitment helps enable continuous improvement. The teams are autonomous and can
decide to change the Sprint process when they see fit and not when a manager or the plat-
form team says so. Waste avoidance and correct application of the agile practices can be
observed as well. During several observed meetings, we could hear a team member re-
mind his colleagues to focus on the scope of the meeting. It is interesting to note that not
always the same person, but everybody who thought the discussion or presentation is not
fitted to the event, spoke out.
Additionally, we were able to be part of the Kickoff 2020 of the LSADP, an event where
best practices in the program were presented to help all teams improve their process. Fol-
lowing the presentations each team then discussed on their own what they want to change
about their process. In conclusion, the LSADP tries to constantly remove non-value adding
events and artifacts and tailors its program towards what makes it more efficient and valu-
able to the customer.
Improvement Possibilities
Areas of improvement identified by our interview partners are Whole Product Focus and
Commitment. Currently, there is a lack in commitment, not in the program itself, but in
adhering to the use of artifacts and understanding the concept of ownership of a module.
’When we release an increment, how does the customer experience it’ Scrum Master (SM-3) 82019).
The introduction of Process Consultants slowly improves Systems Thinking, as there are
more system thinkers involved in the process. On the other hand, the same role limits the
knowledge share, as it takes over some decision making capabilities from the team and

43

4. Case Study

the teams rely too much on the expertise instead of trying to solve an issue on their own.
Table4.5 offers an overview of the Principles and Values theLSADP applies in comparison
to the two frameworks it adapted.

4.2.3. Roles

Role Responsibilities
Product Owner Responsible for managing Product Back-

log(clarifying functional requirements), cus-
tomer communication and coordination, re-
leasing increments for his module.

Scrum Master Responsible for resolving impediments and
bottlenecks and leading the Scrum events

Development Team Responsible for Increment development, de-
tailed Backlog item estimation, adhering to
module Architecture and Sprint Review

Test Team Responsible for manual testing
Process Consultant (new) Responsible for initial backlog item estima-

tion, module Architecture creation, aligning
teams with Macro-Architecture and support-
ing Purpose Team through Knowledge Shar-
ing and coaching

Chief Product Owner(CPO) Responsible for functional product develop-
ment facing customer, epic-plan fulfillment

Product Development Manager(PDM) Responsible for personnel decisions and non-
functional development of product

Agile Coach(AC) Responsible for coaching and introducing cor-
rect agile practices and supporting SM in their
role

Software-Architect Responsible for introducing new program-
ming concepts and leading the adoption –>
Angularization,..

IT-Architect Responsible for Macro-Architecture vision
and concept, aligning teams in cooperation
with PCs covering all non-functional require-
ments

Test Architect Responsible for automated testing

Table 4.6.: Roles and Responsibilities according to expert interviews and observation notes

The roles and responsibilities are elaborated in Table4.6. An agile team, the LSADP

44

4.2. Large-Scale-Agile Development Program

Roles and Team Technology LLC.s’ LSADP LeSS Spotify Remarks
Feature Teams x x x The LSADP uses

domain-feature
teams called
Purpose Teams

Product Owner x x x
Scrum Master x x
Development
Team

x x x

Test Team x x x
Process Consul-
tant

x

Chief Product
Owner

x x x LeSS uses Chief
Product Owners
in LeSS Huge

Product Develop-
ment Manager

x

Agile Coach x x x Spotify has Agile
Coaches as part
of every team
comparable to a
Scrum Master

Software-
Architect

x x x Part of feature
Team in LeSS. At
Spotify Chapter
Lead Develop-
ment

IT-Architect x x x Part of Feature
Team in LeSS.
Spotify calls
them System
Owner(technical)

Test Architect x x x Part of Feature
Team in LeSS. At
Spotify Chapter
Lead Test

Table 4.7.: Comparison of the Roles of the Large-Scale Agile Development Program at
Technology LLC., LeSS and Spotify

45

4. Case Study

calls them ’Purpose Team’, usually consist of all roles required to develop features, includ-
ing Product Owners and Process Consultants (see Figure4.1). Agile Coach, Chief Product
Owner and Product Development Manager form the project management group. They
discuss any program relevant issues, budget plans, need for developers and more. How-
ever, the project management group tries to make as few as necessary decisions affecting
the autonomous teams. Improvement opportunities lie in the area of continued owner-
ship. Currently, after releasing an Increment, the agile team loses the focus on ownership
of that module. Therefore, limiting the commitment to improve non-functional require-
ments of the module.
’If the Testers were more involved in creating automated testing, it would immensely improve the
workload of the developers and Test Architect. Scum Master (SM-3) (2019) The Test Team and
manual testing is mainly done by an external organization, who has been working for a
long time with the LSADP. Table4.7 offers an overview of the Roles the LSADP uses in
comparison to the two frameworks it adapted.

4.2.4. Artifacts

Assigning Backlog items to the purpose teams is completed via labels in the ticketing sys-
tem JIRA. Whenever a functional or non-functional requirement is created, the creator
adds a module and epic label to the requirement. The module and epic label help to assign
the requirement as all epics have been allocated to teams and the responsible PO then esti-
mates and elicits the Backlog Item and brings it into the Product Backlog Refinement (PBR)
and when finalized into the sprint.
’The Backlog is managed by the POs, they check with the epic plan when an Epic is supposed to be
implemented and then bring the items respectively in PBRs and assign them to the Sprint.’ Product
Owner (PO-4) (2019)
Through the creation of the epic plan and the teams being domain-specific experts, the
assignment of backlog items has been managed. In a final step the PO assigns an item to
a specific Sprint. The other artifacts in use at the LSADP are summarized in Table4.8. The
interview partners highlighted that there is no confusion as to who is responsible for the
artifacts and that they are overall happy with how the artifacts are used and the purpose
they serve.
’We implemented 65 Epics in 2018, 8 Epics per PO. Hence, there is only little time to try different
solutions and create Minimum Viable Products to test. ’ Scrum Master (SM-2) (2019)
SM-2 sees a need to introduce Minimum Viable Product (MVP) in the future. MVPs would
need more information in the creation process of Epics. Currently, the customer creates
very abstract epics in the planning of the next year and the team doesn’t have time to elicit
further or create solution concepts via MVPs as there are not sufficient information or re-
sources available. Hence, there is a need to make the epics more accurate in the beginning
and add more manpower to allow an easier process. Table4.9 offers an overview of the
Artifacts the LSADP uses in comparison to the two frameworks it adapted.

46

4.2. Large-Scale-Agile Development Program

Artifact Content Responsible for Artifact
Product Backlog all requirements functional

and non-functional
Product Owner Team

DoR and DoD what is required for a back-
log item to be ready for
implementation(DoR),
ready for increment
release(DoD)

Scrum Master for maintain-
ing and Agile Team for cre-
ation

Sprint Goal Main goal to be reached
through Sprint, what is the
tagline of this Sprint

Team in Sprint Planning

Sprint Backlog Items assigned from the
Backlog, to be imple-
mented during Sprint

Product Owners

Acceptance Criteria what needs to be done for a
specific item, so it complies
with the functional require-
ment

Product Owner

Epics larger requirement creat-
ing business value for cus-
tomer

PO

Increment functional requirement col-
lection, which delivers a
part of an Epic

Purpose Team

Table 4.8.: Artifacts of the Large-Scale Agile Development Program according to expert
interviews and observation notes

Artifacts Technology LLC.s’
LSADP

LeSS Spotify Remarks

Product Backlog x x x
DoR and DoD x x LeSS uses DoD
Sprint Goal x x x
Sprint Backlog x x x
Acceptance Criteria x
Epics x
Increment x x x

Table 4.9.: Comparison of the Artifacts of the Large-Scale Agile Development Program at
Technology LLC., LeSS and Spotify

47

4. Case Study

4.2.5. Events and Process

The LSADP process depicted in Figure4.4 consist of all events directly associated with the
Sprint process of Technology LLC.. The CoP event is not included in Figure4.4 as it made
the process unclear. CoP’s and their events are further discussed in Section4.2.6.
Sprint
The goal of the Sprint is to implement the Sprint Backlog and create a product Increment.
All purpose teams work in a synchronized Sprint. The Sprint occurs over a three week
period.
Sprint Planning
The goal of Sprint Planning is to elicit the Sprint Backlog in each Team, with all team mem-
bers present. It occurs once a Sprint at the beginning. The whole team is present and the
head PO presents the Sprint Backlog items, the team votes to accept or reject these items.
Daily
The goal of a Daily is getting an overview of each team members progress. All team mem-
bers are present during the Daily, which takes 15 minutes. Team members present yester-
days and today’s work and whether they have any impediments.
Scrum of Scrums The goal is an overview of all teams and to help coordinate work be-
tween the teams. All Scrum Masters and eventually representatives of a team with an
impediment are present. SoS occurs three times a week, after the dailies. The Participants
talk about the progress in teams and whether there are any impediments in a team.
Process Consultant Meeting new
The goal is to align Architecture and create new concepts. The PCs and Architects are the
participants. It occurs once a week for one hour. The Architect presents new concepts or
the progress of current adoption, followed by a discussion on how to move on and whether
there are any limitations on a module side.
Community of Practice
The goal of CoP is Knowledge Sharing and generating common practices for a specific role
or topic. Anyone interested in topics can participate. CoP occur once a sprint for one hour
and are lead by a Moderator. Discussions are in accordance with the agenda(Types ofCoP
at Technology LLC. :TestCoP, DevelopmentCoP, UI-CoP,...)
Product Backlog Refinement
The goal is to clarify Backlog Items, which are to be implemented in future sprints and es-
timating the items. All members of purpose team participate. Once a week during Sprint
or once a Sprint (Team decides). PO goes through a prepared list of items and the team
discusses the items and how to solve the item. Afterwards the team estimates the required
work.
Newsflash
The goal is to present managerial information to all teams. Therefore, all purpose team
members should be present, however it is optional. Occurs once a month. Product Devel-
opment Manager and Chief Product Owner present any managerial topic influencing all
purpose teams,making transparent the work of the project management group.

48

4.2. Large-Scale-Agile Development Program

Team Retrospective
The goal is to identify what went well during the sprint and what needs to improve, chal-
lenging the process and possibly adapting the process. All team members of purpose team
are present. Retrospectives occur after every second sprint, again the teams can decide to
do them more or less. The SM leads the discussion to create a better process in the future.
It should not take longer than three hours.
Overall Retrospective
The goal is a program-level Retrospective. The Agile Coach wants to figure out what needs
to be addressed on a program level. The Agile Coach and representatives of teams (max.
2 per team) are participating. The Overall Retrospective occurs twice a year. The Agile
Coach leads discussion on possible change opportunities in the applied agile practices.
Sprint Review
The goal is to present work done during the Sprint of each team. All purpose teams and all
team members are participating. The Review occurs after the Sprint. The Teams present
their work.

’I’d like to hold the Overall Retrospective with more participants, right now we only have the

Events Technology LLC.s’
LSADP

LeSS Spotify Remarks

Sprint x x x
Sprint Planning 1 x
Sprint Planning 2 x x x
Daily x x x
Scrum-of-Scrums x x
Process Consultant
Meeting

x

Community of Prac-
tice

x x x Spotify uses Guilds,
which are compara-
ble to CoP

Product Backlog Re-
finement

x x x

Newsflash x
Team Retrospective x x x
Overall Retrospec-
tive

x x Only very limited
use at LSADP of
Technology LLC.

Sprint Review x x x

Table 4.10.: Comparison of the Events of the Large-Scale Agile Development Program at
Technology LLC., LeSS and Spotify

Scrum Masters and there is no detailed insight into other roles’ perception of the process.’ Scrum

49

4. Case Study

Master (SM-3) (2019). For the LSADP, the PBR is a really important event as it allows de-
tailed discussions and estimations. Due to the many Epics, the PBR helps clarify the actual
Business Value, which an Epic aims to achieve. The interview partners plan to introduce
an event called Epic Preview to help clarify epics to the teams and create a little kickoff
for the epics. Overall, the major changes between the LSADP and the the two foundations
Technology LLC. chose for adopting agile, can be found in the events and process. The
LSADP removed Sprint Planning 1 and used the concept of Sprint Planning 2, as a single
Sprint Planning. The LSADP Sprint Planning is equal to Sprint Planning 2, they identified
that Sprint Planning 2 delivered the outcome they needed and the additional Sprint Plan-
ning 1 was inefficient.
Additionally the LSADP uses PBR and SoS meetings more proficiently than is promoted
by LeSS. The final differences are they had to introduce the Process Consultant Meetings
to address coordination efforts on architecture level and that they use the Newsflash to
inform all teams transparently about managerial decision processes. Table4.9 offers an
overview of the Events the LSADP uses in comparison to the two frameworks it adapted.

4.2.6. Architecture

Architecture topics are developed and envisioned by Team P with the IT-Architect taking
charge. Team P (see Table4.1) as a platform team combines several architecture roles. The
two Software Architects are responsible for pushing topics like Angularization or other
development oriented topics. The IT-Architect creates a vision for the Macro-Architecture
and develops and communicates it with the Process Consultants. Aligning the modules
to the macro-architecture is then completed by the teams with the process consultants.
The platform team creates the pipeline to enable the purpose teams in releasing their in-
crements, similar to the example shown in Spotify (see Figure2.7). Additionally, the Test
Architect leads the CoP-Test and enables the developers in creating automated tests. Ar-
chitecture development appears to be integrated in the overall process, however, the vi-
sion and most of the development associated with architecture is still developed by the
IT-Architect. ’90 % of architecture related development was handled by the IT-Architect.’Scrum
Master (SM-2) (2019)
The introduction of the Process Consultant Meeting aims at addressing that issue. In the
Process Consultant Meeting architectural concepts are created for the modules as well as
the alignment and coordination of macro-architecture topics is discussed. The Process
Consultants then coordinate in the teams the architecture topics. Another way to com-
municate architecture and communicate already available solutions are the CoPs at the
LSADP, see Figure4.6. Agile Master, (compare Figure4.6) is the internal name for Scrum
Master and the CoP are held in a larger context. However, the other platform will remain
unnamed. The CoPs address knowledge sharing and practice alignment and help mem-
bers to solve their impediments. The overall construct presented in Figure4.6 includes
practices adapted from the Spotify model (see Figure2.6). For documenting the archi-
tecture of the modules (see Figure4.3) and the platform as a whole, the LSADP uses the

50

4.2. Large-Scale-Agile Development Program

Figure 4.6.: Communities of Practice Structure, figure from Technology LLC.

arc42-template, created by Starke and Hrsuchka[52], to document the platform’s architec-
ture. The steps adopted by the LSADP from arc42[51, 52] are:

1. Introduction and goals (describe requirements, quality goals and stakeholders)

2. Constraints (any constraints)

3. Context and Scope (specify external interfaces)

4. Solution Strategy (Summarize decisions and solution strategies shaping architecture)

5. Building Block View (static decomposition of system)

6. Runtime View (behavior of building blocks in scenarios)

7. Deployment View (mapping building blocks to infrastructure elements)

8. Crosscutting Concepts (solution approaches view cross-cutting the system)

9. Architectural Decisions (decisions including rational)

51

4. Case Study

10. Quality Requirements (high-level overview of quality goals from 1.)

11. Risks and Technical Debt (known risks and technical debt)

12. Glossary (term definitions)

All interview partners described their process of dealing with technical debt worthy of
improvement. Currently, they resolve technical debts in a technical Sprint, which takes
place at the end of each year, from the middle of December to the middle of January of the
next year.
’We consciously collect our technical debt over the year. Trying to avoid as much as possible through
test automation. In the technical sprint we then prioritize and work on our collected technical debt.’
Scrum Master (SM-3)(2019)
The Goal for the next year is to take care of some technical debt during the year, improving
the Quality of the platform continuously. The overall goal for architecture related topics is
to make the progress more visual, to create a clear vision and effectively communicating
it to all program members. This will foster cooperation between architects and the teams
even further.

4.2.7. Summary Large-Scaled-Agile Development Program at Technology LLC.

In total, the LSADP was satisfied with LeSS, due to the ease of implementation and adap-
tion. However, they don’t think that the framework offers enough practices to address all
their needs, which is why they combined it with the CoP culture of the Spotify model and
introduced several changes. The complete differences between the frameworks and the
current LSADP are summarized in Tables4.5,4.7, 4.9 and 4.10. The interview partners and
the LSADP are overall satisfied with their adoption of LeSS and Spotify, nonetheless, they
are focused on improving their program by identifying best practices to apply an integra-
tion in their program.
’What really makes me worry are external processes like budget planning, because they paralyze our
functioning process. Here I’m missing the connection between theory and real-life. Product Man-
ager (PO-4)(2019) To summarize the main concern, PO-4 states from the LSADP perspective
all interfaces to non-agile processes(budgeting, traditional teams, external interfaces with
traditional teams) are difficult to manage correctly.

52

4.3. Identification of Recurring Concerns

4.3. Identification of Recurring Concerns

This section consists of the identified Recurring Concerns for the three stakeholder groups
interviewed. These have been identified and documented using the LSADPL introduced
by Uludağ et al.[55].

4.3.1. Interviews General Information

The interview partners, their role and experience in that role at the LSADP are summarized
in Table4.11.

Phase II

Introduction Identify I Describe I Identify II Describe II

Short intro about
the participants

and short
questions about

you, your
experience, and
your organization

Identification of
concerns you face

in your work as
Product

Owner/Scrum
Master/Developer

Descriptions of the
solutions you
implement to
address the

identified concerns

Identification of
additional

concerns from a
list provided by us

Description of the
solutions you

implement to deal
with the concerns
identified before

5 Minutes 50 Minutes 35 Minutes

Phase I

Figure 4.7.: Interview Process for Identifying Recurring Concerns, Good Practices and Bad
Practices by Uludağ et al.[55]

The semi-structured interviews were conducted following the approach created by Ulu-
dağ et al.[55], see Figure4.7. Each of the 11 interviews using the questionnaire provided in
A.2 consisted of two similar phases in Figure4.7. During the first phase, the interviewee

53

4. Case Study

Interview-Partner Experience
PO-1 3-6 years
SM-1 more than 6 years
PO-2 1-3 years
PO-3 1-3 years
DEV-1 3-6 years
PO-5 less than 1 year
DEV-2 3-6 years
DEV-3 1-3 years
PO-6 1-3 years
DEV-4 1-3 years
DEV-5 1-3 years

Table 4.11.: Interviews for Identifying Recurring Concerns, Good and Bad Practices

explained his role and concerns he faces working in the LSADP. Once a recurring concern
was identified, the interviewee was asked to elaborate to make sure it was a new recurring
concern he described and not an already existing recurring concern identified by Uludağ
et al.[57].
In the second phase, the interviewer presented the interviewee with a list of already iden-
tified concerns in the research project by Uludağ[57] for the stakeholder group. In both
of those phases, when identifying a concern, the interviewee was asked whether he had a
solution for the respective concern.
Solutions mentioned were documented following the LSADPL by Uludağ et al.[55] into
the categories of practices(Good or Bad Practices). The full list of newly identified con-
cerns, good and bad practices are listed in the appendicesB.1 and C. In this section we will
only introduce a few examples of concerns for each stakeholder group(PO,SM and DEV)
interviewed. Additionally, the practices identified will be introduced in Section4.4 and
the Mapping for each stakeholder of concerns and pattern candidates will be provided in
Section4.4.15.

4.3.2. Recurring Concerns

This part is separated into the three interviewed stakeholder groups. DEV, PO and SM.
For each stakeholder group the newly identified recurring concerns through the interviews
are introduced. Additionally, an overview of all identified recurring concerns of a stake-
holder group is provided. The full list of all recurring concerns- new and already existing-
identified is provided in the appendixB.

54

4.3. Identification of Recurring Concerns

Figure 4.8.: Identified recurring Concerns of Development Team at Technology LLC.

Development Team

Recurring Concerns of DEV have not been studied a lot in the larger research project this
thesis is a part of. With LSAD and Scrum trying to focus the DEV solely on development
issues, the outcome of the interviews with DEV deliver a measure on how successful this
approach is. However, as described in Section4.1 the LSADP works with external inter-
faces, geographical distribution and complex,legacy system. DEV have to navigate those
challenges, and during the interviews identified the following new recurring concerns. In
total, three new recurring concerns were identified by the interview partners DEV-1,DEV-2
and DEV-5.

• C-85 How to share domain knowledge across agile teams?DEV-1 identified, that he as a
developer has issues to gathering knowledge from other agile teams, when not hav-
ing to deal with a major bug or system failure. The sharing of domain knowledge
only occurs in teams of that domain and developers interested in the domain knowl-
edge have a higher boundary to receive that knowledge. DEV-1 himself had issues
sharing his knowledge with other agile teams in an efficient manner.

• C-86 How to involve remotely working and external colleagues?dev-2 mentioned that the
remotely working and the external colleagues had issues connecting to the video-
chats without technical issues. In case of remotely and external working colleagues
this was limited to when they were not working from the LSADP offices. This is a
concern for the Scrum Masters.

• C-87 How to clarify details outside of meetings in cross-shore agile teams? DEV-5 had the
recurring concern to get a hold of team members not co-located, which can especially
painful when trying to gather some explanation to a question, which in turn makes

55

4. Case Study

Communication &
Coordination, 20%

Knowledge
Management, 20%

Quality Assurance,
40%

Software-
Architecture, 10%

Tooling, 10%

N = 10
total concerns observed

Figure 4.9.: Occurrence Concern Categories Development Team

the developer have to change tasks until he receives the answer. While communica-
tion is usually direct, sometimes due to the time difference, developers still have to
wait a few hours to clarify an issue.

These three new concerns were checked with the identified concerns of Uludağ[57], to see
whether they were different to already observed ones . While these concerns were iden-
tified there were a lot of DEV who identified C-19 How to deal with internal silos? as a
concern. However, due to the fact it represents a concern for the SM in the literature, this
thesis omitted it in regard to the DEV. Newly identified concerns, associative to another
stakeholder’s challenge, were kept at the stakeholder group that identified the concern in
this thesis. The combination of new and existing identified concerns was then presented
to all DEV-interviewees and the final result of occurrence of each concern is presented in
Figure4.8 In literature identified concerns and the new concerns, in combination with ob-
served percentage and number of interviewees asked are summarized in Figure4.8. Main

56

4.3. Identification of Recurring Concerns

assumptions developed from analysis of the identified recurring concerns of the stake-
holder group DEV are:

• C-26 How to align and communicate architectural decisions? was identified by 80% and
has been included to the DEV as the LSADP aims at involving the DEV in the archi-
tectural decision making process, by making the Process Consultant a 50% member
of the DEV.

• C-37 How to create lightweight documentation was identified by 80 % of the DEV team
and is categorized as a Knowledge Management concern. Further highlighting the
concern in the category Knowledge Management at Technology LLC..

• C-36, C-53, C-68 and C-76 are all concerns regarding Quality Assurance, this identi-
fies Quality Assurance as a major concern category for the DEV of LSADP.

The overall occurrence of concern categories is depicted in Figure4.9. 40% of the con-
cerns identified by the DEV-interview partners were allocated to the Category of Quality
Assurance, while 20% each were from Communication & Coordination and Knowledge
Management and 10% each were from Tooling and Software-Architecture.
In total, the interviews with the stakeholder group DEV identified ten recurring concerns,
of which three were newly identified and seven existing from Uludağ et al.[57].

57

4. Case Study

Product Owner

There were already some case studies regarding recurring concerns of PO, however, so far
they were not of multiple POs as a direct part of an agile team. For the Product Owners
there were a total of 5 interviews with the A.2. In these five interviews the following new
recurring concerns were identified.

• C-79 How to balance amount and quality of delivered requirements? Even though as a
Product Owner, one’s main goal is to further deliver business value to customers,
the balance of quality and delivery has to be kept. However, how do you make
customers aware of the benefits of delivering less, but of higher quality?

• C-80 How to manage overarching backlog item prioritization with multiple product owners?
With a Scaled-Agile development Program consisting of at least Product Owners per
team, the POs have to coordinate with each other which backlog items make the cut
to be added to the Sprint Backlog. Prioritization is difficult and conflict will ensue, if
there is no clear method for dealing with this concern.

• C-81 How to understand all interfaces and dependencies of the system? Interviewee PO-
5 described the issue of understanding all dependencies between the large amount
of modules in the system. When creating user stories and requirements, it becomes
difficult to then make sure the whole system is considered with a limited view of the
system. This is a concern for the Enterprise Architect.

• C-82 How to support an On-Boarding approach for different stakeholder groups? This is a
concern for Scrum Masters, with a growing project and PO being a part of the agile
team, the On-Boarding material has to be reflecting the different viewpoints of all
stakeholders accurately. Otherwise, On-boarding is an issue.

• C-83 How to manage requirement development for multiple teams? In case of PO-6, who is
part of multiple agile teams at once, it is an issue to manage development at these dif-
ferent teams and continue having regular check-ins with customers. Keeping track
of all developments becomes more difficult, as multiple modules can be concerned
and interaction with multiple external partners might be required.

While these concerns were identified there were a lot of PO who identified C-19 How to
deal with internal silos? as a concern. Due to the fact that it represents a concern for the SM
in the literature, this thesis omitted it in regard to the PO. These new concerns were cross-
checked with the existing concerns identified by Uludağ et al.[57] to see whether any of
them already exist in some manner. However, none of the newly identified concerns were
mentioned before in literature, as the LSADP introduces multiple POs as part of one team,
the concerns are so far unique to Technology LLC.. New concerns and identified existing
concerns were then combined and presented to all POs interviewed, including PO-4, to
get a bigger picture of how present the concerns are at the LSADP. Out of the newly iden-
tified recurring concerns, two (C-81 and C-82)are categorized as Knowledge Management

58

4.3. Identification of Recurring Concerns

concerns, which even though they are associated and solved by other stakeholder groups,
were kept at the PO for this thesis as they identified the concerns. The total occurrences
of all identified recurring concerns is summarized in Figure4.10. Main assumptions de-

Figure 4.10.: Identified recurring Concerns of Product Owners at Technology LLC.

veloped from analysis of the identified recurring concerns of the stakeholder group PO
are:

• C-81 How to understand all interfaces and dependencies of the system? is a concern of all
PO interviewed. Through the domain-specific encapsulation of the teams and the
assignment to some modules per PO, the overall system is incomprehensible for the
POs.

• C-80 How to manage overarching backlog item prioritization with multiple product owners?
Was identified by 83 % of the POs to be a concern of theirs. Unique to the LSADP of
Technology LLC. so far, this concern stems from having multiple POs in one team.
The concern is categorized as Communication & Coordination and can limit the ef-
fective use of the Purpose Teams.

• C-10, C-15, C-18, C-22, C-28, C-35, C-60, C-69 and C-70 are all concerns regarding Re-
quirements Engineering, identifying Requirements Engineering as a major concern
category for the PO of LSADP.

59

4. Case Study

Communication &
Coordination, 9%

Culture & Mindset,
5%

Knowledge
Management, 14%

Project
Management, 24%Quality Assurance,

5%

Requirements
Engineering, 43%

N = 21
total concerns observed

Figure 4.11.: Occurrence Concern Categories Product Owners

The overall occurrence of concern categories is depicted in Figure4.11. With a total of
43% of the identified 21 concerns for POs categorized as Requirements Engineering, 24%
Project Management, 14% Knowledge Management, 9% Communication & Coordination
and 5% each Culture & Mindset and Quality Assurance. In total, of the 21 observed con-
cerns for the PO, 5 were newly identified by the interview partners and the remaining 16
were existing concerns identified by Uludağ et al.[57].

60

4.3. Identification of Recurring Concerns

Scrum Master

The focus on SM has been done already in this larger research project, however, with Team
P’s Agile Coach and Product Development Manager identifying as SM in the LSADP, and
the SM role being a 50% or less role for practically all SM it was interesting to see how
that would influence the concerns observed. Due to the special situation, the SM actually
identified several concerns of the already existing identified concerns by Uludağ et al.[57].
In total, the SM interviewed identified 35 concerns of which only one was newly identified
through the interview process. The full list of 35 concerns was then cross-checked with
all SM being a part of this case study interview process and the result is summarized in
Figure4.12. The newly identified concern is C-84 How to involve all team members in solution
generation? and was identified by Scrum Master SM-1 within his team. The introduction
of Process Consultants, while useful for many reasons, limited the engagement of other
developers. When only one developer actively works on solution generation and all other
team members accept his solution, the solutions are limited to one mind, instead of using
the knowledge of a whole team.
C-84 when taking a closer look, differs from C-67 How to encourage development teams to talk
about tasks and impediments? and C-74 How to empower agile teams to make decisions? both
identified by Uludağ et al.[57]. While the already discovered concerns address the com-
munication and decision making capabilities of agile teams, the newly introduced role of
Process Consultant adds a need to specify the solution generation process of the agile team.
Hence, C-84 is not already represented and added to the list. The total occurrences of all
identified recurring concern for the SM are summarized in Figure4.12 Main assumptions
developed from analysis of the identified recurring concerns of the stakeholder group SM
are:

• 12 out of 35 concerns are categorized as Culture & Mindset, the SM of the LSADP
face most of their concerns in the area of application of agile practices.

• Geographical Distribution delivers three concerns all SM interviewed face, with the
teams being distributed to at least two locations for all teams, see Figure4.2.

• C-84 How to involve all team members in solution generation? as a newly identified
concern is directly connected to the introduction of Process Consultants at LSADP.

The overall occurrence of concern categories is depicted in Figure4.13. With a total of 35
concerns identified, 34% are of the category Culture & Mindset, 17% Geographical Distri-
bution, 14% Project Management, 11% Communication & Coordination, 9% each Knowl-
edge Management and Methodology and 6% Tooling. During the interview process with
the SM a list of what used to be eleven concerns, directly connected with the stakeholder
group SM as identified by Uludağ et al.[57] grew to become 35 concerns observed. The ad-
ditional 24 concerns identified were all due to the fact that SM in the LSADP hold multiple
roles and the introduction of the purpose team, Process Consultant and the use of several
PO actually increased the workload of the SM.

61

4. Case Study

Figure 4.12.: Identified recurring Concerns of Scrum Master at Technology LLC.

62

4.3. Identification of Recurring Concerns

Communication &
Coordination, 11%

Culture & Mindset,
34%

Geographical
Distribution, 17%

Knowledge
Management, 9%

Methodology, 9%

Project
Management, 14%

Tooling, 6%

N = 35
total concerns observed

Figure 4.13.: Occurrence Concern Categories Scrum Master

Fittingly in the interview of SM-2, exactly that situation was addressed regarding the re-
sponsibilities of the agile roles. ’...apart from that, I think we need to invest more into the
development of our Scrum Masters next year.’ Scrum Master (SM-2) (2019)

63

4. Case Study

Overview

This section offers an overall overview of all occurrences of the 66 concerns (see Figure4.15)
identified and the overall category distribution at Technology LLC., see Figure4.14 . The

Communication &
Coordination, 12%

Culture & Mindset,
20%

Geographical
Distribution, 9%

Knowledge
Management, 12%Methodology, 5%

Project
Management, 15%

Quality Assurance,
8%

Requirements
Engineering, 14%

Software-
Architecture, 2%

Tooling, 5%

N = 66
total concerns observed

Figure 4.14.: Occurrence Concern Categories All

concerns with the most occurrences of each stakeholder group are of the category:

• DEV - Knowledge Management C-37 and Software-Architecture C-26

• PO - Knowledge Management C-81

• SM - Culture & Mindset C-24, Geographical Distribution C-03, C-29, C-32 and C-61,
Methodology C-59 and Project Management C-56

The category with the most concerns for each stakeholder group is:

• DEV - Quality Assurance, see Figure4.9

64

4.3. Identification of Recurring Concerns

Figure 4.15.: Identified recurring Concerns of stakeholder groups at Technology LLC.

65

4. Case Study

• PO - Requirements Engineering, see Figure4.11

• SM - Culture & Mindset, see Figure4.13

Additionally, the area of Knowledge Management and especially the concern C-19 How
to deal with internal silos?, identified by Uludağ et al.[57], was in some kind mentioned by
all stakeholder groups. In total, nine new concerns were identified, three of the category
Knowledge Management, two Communication & Coordination and one each for Culture
& Mindset, Project Management, Tooling and Quality Assurance.

66

4.4. Documenting Good Practices and Bad Practices

4.4. Documenting Good Practices and Bad Practices

This section consists of the documented Good and Bad Practices. The good and bad prac-
tices have been documented with the LSADPL introduced by Uludağ et al.[55]. The inter-
view partners and their role and experience in that role at the LSADP are summarized in
Table4.11.
We will introduce the two identified Patterns at Technology LLC. and examples of each
Pattern Candidate Type documented out of the 50 total good practices identified(see Fig-
ure4.16). During the interview process a total of 50 pattern candidates were identified and
documented.
Since this is a single organization case study, a high amount of pattern candidates and a
low number of patterns results. Therefore, if a the pattern candidate was not exactly the
same as already documented in the Pattern Catalog[61], this thesis documented a Good or
Bad Practice instead, which creates a Pattern Candidate. The Pattern Candidate Types are
distributed as follows:

• 11 Coordination Pattern Candidates.

• 18 Methodology Pattern Candidates.

• 7 Viewpoint-Pattern Candidates.

• 11 Anti-Pattern Candidates.

• and 3 Principle Candidates.

Additionally, two already observed patterns were identified at Technology LLC. CO-1
Communities of Practice and A-1 Don’t use Frameworks as a Recipe.

67

4. Case Study

An
ti-

Pa
tte

rn
C

an
di

da
te

Pr
in

ci
pl

e
C

an
di

da
te

M
et

ho
do

lo
gy

Pa

tte
rn

C

an
di

da
te

Vi
ew

po
in

t
Pa

tte
rn

C

an
di

da
te

C
oo

rd
in

at
io

n
Pa

tte
rn

C

an
di

da
te

Pa
tte

rn
ID

N
am

e
O

cc
ur

en
ce

V-
01

De
pe

nd
en

cy
 M

at
rix

*

V-
02

Bu
rn

-D
ow

n
Ch

ar
t

*

A-
11

Do
n’

t C
ap

su
la

te

Te
am

s t
oo

 m
uc

h
*

A-
1

Do
n’

t U
se

Fr

am
ew

or
ks

 a
s

Re
ci

pe
s

**
**

A-
05

Do

n’
t F

or
w

ar
d

Re
qu

ire
m

en
ts

*

A-
06

Do
n’

t O
ve

rs
ho

ot

Co
or

di
na

tio
n

M
ee

tin
gs

**

A-
07

Do
n’

t H
av

e
N

ew
 Y

ea
r

Re
so

lu
tio

n
Di

le
m

m
a

*

A-
08

Do
n’

t L
im

it
Kn

ow
le

dg
e

Tr
an

sf
er

to

 K
no

w
le

dg
e

Tr
an

sf
er

-W
or

ks
ho

ps
*

A-
09

Do
n’

t M
isu

se

Es
tim

at
io

n
Cr

ea
tio

n
*

A-
10

Do
n’

t L
im

it
Ex

te
rn

al

Co
lle

ag
ue

s
*

A-
01

Do
n’

t H
av

e
Bl

ur
re

d
Bo

un
da

rie
s

*

A-
02

Do
n’

t F
or

ce
 T

ea
m

Co

he
re

nc
e

*

A-
03

Do

n’
t A

ss
um

e
Au

to
no

m
ou

s
O

nb
oa

rd
in

g
*

A-
04

Do

n’
t A

ss
um

e
M

ut
ua

l T
er

m
in

ol
og

y
*

V-
03

JIR
A-

Bo
ar

d
*

V-
05

Po
w

er
 B

I
*

V-
04

In
te

rf
ac

e
Ar

ch
ite

ct
ur

e
*

V-
06

Ep
ic

-P
la

n
Ga

m
eb

oa
rd

*

M
-0

1
Re

se
rv

ed
 C

ap
ac

ity
*

M
-0

2
Sc

op
e

Ch
an

ge
*

M
-0

3
Bu

g
Pr

io
rit

iza
tio

n
*

M
-0

4
Ac

ce
pt

an
ce

 C
rit

er
ia

M
-0

5
De

fin
iti

on
 o

f R
ea

dy

an
d

De
fin

iti
on

 o
f

Do
ne *

M
-0

6
Fu

nc
tio

na
l S

pl
itt

in
g

+

M
-0

7
Pr

oc
es

s C
on

su
lta

nt
*

M
-0

8
Pu

rp
os

e
Te

am
s

*

M
-0

9
St

or
y

Po
in

ts
*

M
-1

0
Su

bt
as

k-
Te

st
in

g
*

M
-1

1
Pr

od
uc

t O
w

ne
r T

ea
m

*

M
-1

2
Sh

ift
in

g
Re

sp
on

sib
ili

ty
*

M
-1

3
Au

to
m

at
io

n
Le

ad
*

M
-1

4
Do

cu
pe

di
a

fo
r

Ar
ch

ite
ct

ur
e

Do
cu

m
en

ta
tio

n
*

M
-1

5
Im

pa
ct

 A
na

ly
sis

*

M
-1

6
In

cr
em

en
ta

l
O

nb
oa

rd
in

g
*

M
-1

7
Pl

an
ni

ng
 P

ok
er

 li
gh

t
*

M
-1

8
Pr

oo
f o

f C
on

ce
pt

*

CO
-1

Co
m

m
un

ity
 o

f
Pr

ac
tic

e
**

**

CO
-0

1
Pr

e-
Pl

an
ni

ng

Co
or

di
na

tio
n

*

CO
-0

2
Fa

ce
-to

-F
ac

e
Kn

ow
le

dg
e

Tr
an

sf
er

*

CO
-0

3
Ex

em
pl

ar
y

Kn
ow

le
dg

e
Tr

an
sf

er
*

CO
-0

4
Ki

ck
of

f
*

CO
-0

5
Pr

od
uc

t B
ac

kl
og

Re

fin
em

en
t

*

CO
-0

6
Di

re
ct

 C
us

to
m

er

Co
m

m
un

ic
at

io
n

*

CO
-0

7
Pe

rio
di

c R
ou

nd
-

Ta
bl

e
*

CO
-0

8
N

ew
sf

la
sh

*

CO
-0

9
Pr

oc
es

s C
on

su
lta

nt

M
ee

tin
g

*

CO
-1

0
Go

-L
iv

e
Ce

le
br

at
io

n
*

CO
-1

1
Th

ird
 P

ar
ty

 In
te

rf
ac

e
-P

la
nn

in
g

M
ee

tin
g

*

P-
01

Ge
og

ra
ph

ic
al

ly

Di
st

rib
ut

ed
 M

ee
tin

g
Ho

ur
s

*

V-
07

Ve
lo

ci
ty

 S
he

et
*

P-
02

Av
oi

d
Ex

tr
a

M
ee

tin
gs

+

P-
03

Se
m

i C
o-

Lo
ca

tio
n

*

Figure 4.16.: Patterns and Pattern Candidates documented through Interviews and Obser-
vations

68

4.4. Documenting Good Practices and Bad Practices

4.4.1. Identified Patterns

The Anti-Pattern identified at Technology LLC. was observable like a red thread through
the history of the LSADP. As the Agile Transformation was basically the exact execution
of the A-1Don’t use Frameworks As Recipes Anti-Pattern. Technology LLC.s’ LSADP imple-
mented the LeSS framework one by one in early 2017. During the Transformation Phase,
the biggest Lesson Learned was to not follow a framework one by one, but rather use the
frameworks provided to create your own LSADP, see Section4.2.
The other discovery was the use of CO-1 Community of Practice for multiple purposes at
Technology LLC. In total, there were four types of CoP active during the case study period.
The types of CoP were Development, User-Interface and User-Experience, Test Automa-
tion and Scrum Master, see Figure4.6. The scale of CoP was currently on portfolio level,
however, there was no limitation set on who could be part of aCoP. As the implementa-
tion of CoPs was not different to the already existing pattern, only limited adaption of the
Pattern observed by Uludağ[55] was required.
The two Patterns indicate the lessons learned of the Agile Transformation at Technology
LLC. creating the LSADP as a combination of individual solutions(Process Consultants,
Purpose Teams),Spotify and LeSS.

69

4. Case Study

4.4.2. Community of Practice*

As adapted from the documentation by Uludağ et al. [55] changed the summary, example, problems
and solution to represent the ones observed at Technology LLC.. Also removing the See Also section
and adding Technology LLC. to Known Uses.

CO-Pattern Overview
ID CO-1
Name COMMUNITY OF PRACTICE

Alias -
Summary To facilitate knowledge sharing, Communities of Practice can

be setup. Those communities are regular meetings, in which
participants can freely discuss practices and share their expe-
rience. Communities of Practice always focus on one domain,
for example, Leadership, Architecture or Testing.

Example
During the transformation from a traditional approach to agile development at Technology
LLC., the Agile Coach saw a need for inter-team knowledge share, as different methods
were used in the teams.

Context
Knowledge sharing is only applied within teams, but not among several teams.

Problem
Following concerns are addressed by this coordination pattern:

• C-05 How to facilitate shared context and knowledge?

• C-19 How to deal with Internal Silos?

• C-39 How to establish a Culture of Continuous Improvement?

Forces
The following forces influence Community of Practice:

• Facilitating shared context and knowledge across the organization is difficult

• Internal silos create gaps in knowledge and communication between agile teams

Solution
Set up a Community of Practice for a specific domain. A Community of Practice is a group
of people ’who share a concern, a set of problems, or a passion about a topic’[64] . Partic-
ipation is not limited to a set of people but is open to everyone in the organization, who
is interested in the topic [40]. The intention is to enable frequent knowledge and expertise

70

4.4. Documenting Good Practices and Bad Practices

sharing between the participant[64] . The focus is to talk about practices that are applied
and not to discuss theories. The participants of a Community of Practice are typically not
from the same team but from many different teams all across the organization [64] . In
the best case, many different practices can be presented and discussed, leading to a wide
knowledge base. Even though participating in a Community of Practice is voluntary, great
numbers of participation can be reached if the participants feel the benefit in their work.
Therefore, a Community of Practice should always have an interesting topic and a proper
agenda, which is to be sent out with the invitations[40]. In addition, each Community of
Practice should be lead by an expert, who is passionate to make the event a success and
keep it on a frequent level[40]. Finally, set up an intranet page, where all information re-
garding the Community (e.g., agendas, or developed artifacts) are stored. This should be
available for the whole organization [40].

Variants
A Community of Practice can be set up for a variety of domains. In practice, we identified
Communities for the following domains: Architecture, Testing, Interfaces, Deployments,
Leadership, Infrastructure.

Consequences
The following Benefits have been associated with this pattern:

• Encouraging knowledge sharing for diverse topics

• Breaking up silos

• Enabling a culture of continuous improvement

The following Liabilities have been associated with this pattern:

• Requiring an active involvement of participants

• Topics in the agenda could be too diverse and broad

• Providing right incentives to the participants is challenging

Known Uses

• Technology LLC.

• Electronic GmbH

• Global Insurance Corp

• LuxCarsCorp

• Retail Corp

• Software Inc.

71

4. Case Study

4.4.3. Don’t use frameworks as recipes*

Adapted from Uludağ et al.[55]

Anti-Pattern Overview
ID A-1
Name DON’T USE FRAMEWORKS AS RECIPES

Alias -
Summary Instead of adopting a large-scale agile framework one-to-one

and not training people in agile values and principles, the or-
ganization has to tailor a framework to their specific circum-
stances and train everyone to establish an agile mindset.

Example
Technology LLC. had decided to adopt agile practices at their purchasing platform team.
They decide to implement the LeSS framework one-to-one.

Context
In order to guide the agile transformation, the organization adopts a scaled agile frame-
work.

Problem
Following concerns are addressed by this anti-pattern:

• C-07 How to deal with incorrect practices of agile development

Forces
Following forces have been identified:

• It is easy to introduce methods, but it is hard to change people’s minds.

• Each enterprise has its own unique processes, which are not modeled in frameworks.

General Form
All methods, events and roles are clearly defined and a framework as been adopted oneto-
one. However, there is no training on agile principles and agile values as this is not part
of the framework. The new agile organization is not as efficient as expected. Many people
are unsatisfied with the situation.

Consequences
The following Benefits have been associated with this anti-pattern:

• All agile practices of a framework are adopted.

The following Liabilities have been associated with this anti-pattern:

72

4.4. Documenting Good Practices and Bad Practices

• People do not have an agile mindset.

• The organization is pseudo agile.

• The practices are not tailored to the organization’s structure, and consequently, the
organization cannot be as productive as possible.

• The organization spends a large amount of money to train people in role they do not
need.

Revised Solution
Don’t adopt an agile framework one-to-one. Always analyze which practices are relevant
to the organization and which are not. Start a small-scale pilot first, and scale it to the
whole organization after a successful pilot. Constantly inspect the organization and react
to inefficiency accordingly. Additionally, teach the organization to not only apply agile
methods but to act and work according to agile values and principles. This requires exten-
sive training and continuous review and improvement. Values and Principles are the basis
for an efficient and value creating organization. In General, the use of an agile adoption
framework is recommended , which guides an organization through adopting and imple-
menting agile practices.

73

4. Case Study

4.4.4. Good Practices

Through the interview process a total of 11 Coordination Pattern Candidates, 18 Method-
ology Pattern Candidates and 7 Viewpoint-Pattern Candidates were documented, see Ap-
pendixC. The pattern candidates were build up over the discovery in one interview and
then building on the knowledge of a pattern candidate, the first discovered pattern can-
didate was incrementally changed. This process allowed to detect duplicates earlier and
rather than documenting two similar pattern candidates, only the first discovered was
updated with the additional information and kept as pattern candidate. By identifying
so many documented Pattern Candidates, this thesis will offer an overview of all docu-
mented pattern candidates in the Appendix and only introduce a few exemplary pattern
candidates for each pattern type.

Coordination Pattern Candidates

In total there were 11 Coordination Pattern Candidates documented, of these eleven, we
will present two in detail and the others will be mentioned with the summary in the Ap-
pendixC. During the case study at Technology LLC., we had the chance to observe the
Kickoff event of the project year 2020. In Addition, the Kickoff for Epics and larger Incre-
ments was mentioned during the interview with SM-1. Both combined generated the good
coordination practice CO-04 Kickoff . Kickoffs address multiple concerns, which influence
all stakeholder groups at Technology LLC. Especially in distributed agile teams, coordina-
tion practices that bring teams together in physical spaces and help improve team coher-
ence and morale. During the Kickoff event the LSADP used the opportunity to introduce
some good practices observed in its own agile teams, to inspire other teams into adapting
more good practices from other agile teams of the LSADP at Technology LLC..
In addition to team building games, several topics regarding Quality Assurance(automated
testing and lightweight documentation) were presented and discussed. During day 2, the
teams worked together to specify not only how they want to work together, but also to
define their team vision for 2020 (see Figure4.17). Finally, the introduction of the good
viewpoint practice V-01 Dependency Matrix, addressed concerns of Knowledge Manage-
ment. Overall the Kickoff offers multiple opportunities to improve the teams’ morale,
while simultaneously addressing categories of concern.
Another coordination good practice documented through the interview with SM-2 and
PO-5 and observations is the CO-08 Newsflash. The Newsflash is a good practice used at
several programs at Technology LLC. and was adopted to fit the LSADP. As a platform
for presenting managerial decisions, it was adapted at the LSADP to inform about Epic
changes, road-map topics and anything related to the LSADP, which finds no platform in
other meetings. It offers an opportunity to present the work done by the project manage-
ment team(Chief Product Owner, Product Development Manager and Agile Coach) and
informing the teams of potential changes or just any relevant updates to the LSADP.

74

4.4. Documenting Good Practices and Bad Practices

Methodology Pattern Candidates

The LSADP works with M-08 Purpose Teams and Process Consultants (M-07 Process Consul-
tant) to manage the domain-knowledge bottlenecks more efficiently. However, it does not
mean they ignore the real threat of losing key expertise, when a PC leaves. As an attempt
to address this issue, they use the good methodology practice M-12Shifting Responsibilities
to broaden the knowledge of each stakeholder group. Instead of simply changing teams
around completely, they shift some module responsibility each year, focusing on keeping
the scope small enough to not impact the working LSADP.
Through M-12Shifting Responsibilities they manage to create several overlapping domain
experts at an attempt to move towards working feature teams. At the beginning of the
Agile Transformation, Technology LLC., tried to implement feature teams, only to realize
they had teams of domain-expertise knowledge, who where very efficient in working on
one domain, but lacked that prowess in other domains. Technology LLC. created a work-
around for internal silos, the M-07Process Consultant and M-08Purpose Teams practices and
implemented with M-12Shifting Responsibilities a good practice as counter-measure of in-
creasing the dependency on internal silos.
Supporting the Knowledge Management of the LSADP, the good practice of M-14 Docu-
pedia for Architecture Documentation was introduced. This is documented in the interview
with DEV-3. To address the complex topic of creating lightweight documentation, Tech-
nology LLC.s’ LSADP uses the arc42-template introduced by Starke and Hruschka[52].
Following the arc42-template for documenting a system architecture, the LSADP creates a
lightweight architecture documentation, including the high-level module documentation,
see Figure4.3.

Viewpoint Pattern Candidates

The LSADP of Technology LLC. uses a V-06 Epic Plan Game Board to create a visual road
map for all agile teams. This viewpoint good practice of the V-06 Epic Plan Game Board
creates a transparent overview of the progress of all agile teams and the epics they are try-
ing to deliver for the year. While the V-06 Epic Plan Game Board offers a good practice for
communicating and coordinating visually, the good viewpoint practice V-01 Dependency
Matrix helps address inter-team dependencies.
As a practice applied during CO-04 Kickoff , the V-01 Dependency Matrix addresses Knowl-
edge Management and Communication & Coordination concerns in one. Offering an
overview for bottlenecks and reliant personnel to organize knowledge sharing. In Combi-
nation with M-12 Shifting Responsibilities, the Dependency Matrix creates a clear baseline
for inter-team communication and C-85 How to share domain knowledge across agile teams?.
In Figure4.18 the Dependencies for 2020 are visualized.

75

4. Case Study

Principle Candidates

The interview process presented a total of three principle candidates, the most important
documented principle candidate of this thesis is the P-01 Geographically Distributed Meeting
Hours. As presented in Figure4.2 all agile teams work in at least two time zones. The
maximum difference of which is Germany to India, with India being four and a half hours
ahead of Germany. With a working day cut in half, it is important to create guidelines for
geographically distributed teams to work together.
The principle candidate P-01 Geographically Distributed Meeting Hours solves the issue, by
in the case of the LSADP limiting meetings with all agile team members from 8 am (Central
European Standard Time) to 12 am(Central European Standard Time). Additionally time
zones in which certain locations are not to be invited to meetings are included.

76

4.4. Documenting Good Practices and Bad Practices

4.4.5. Kickoff**

CO-Pattern Overview
ID CO-04
Name KICKOFF

Alias -
Summary Kicking off a project or year of a program. Discussing top-

ics where LSAD wants to improve and highlighting success.
Aimed at getting team motivated, informed and more com-
fortable with each other and the program.

Example
Technology LLC. uses Kickoff event to bring all personal of a project together. Kickoffs are
used for the whole year and in special cases for the kickoff of a large project itself.

Context
Geographically distributed teams can limit the feeling of team coherence at the same time
there can be several different levels of commitment to the agile process.

Problem
Following concerns are addressed by this practice:

• C-24 :How to create team spirit and trust amoung agile teams?

• C-32 :How to deal with lacking team cohesion at different locations?

• C-39 :How to create a culture of continuous improvement?

• C-43 :How to enforce customer involvement?

• C-67 :How to encourage development teams to talk about tasks and impediments?

• C-81 :How to understand all interfaces and dependencies of the system?

Forces
Following forces have been identified:

• Addressing culture and mindset problems is always difficult as it is hard to see actual
effect take place.

• Geographical Distribution is hard to overcome by phone.

Solution
Year Kickoff (2 day event):

77

4. Case Study

1. Bring all personnel to one place, whoever can’t join in person should be joining via
video-chat

a) Prepare the room show achievements last year and offer all required tools for
following event

b) Plan ahead presentations and games for team building

2. Day 1 (Presentations addressing plan and goals, as well as lessons learned)

a) Open with Management speech

b) Present project goals and project plan (first overall and then team by team)

c) Experts present best practices for topics important in the future of the program

d) Between every topic make break and or team building game

3. Day 2 (Action Plan for teams)

a) Two 90-minute sessions, first generating Working Agreements and Dependen-
cies between Teams and then how to apply them. Presentation of result at the
end of the 90 minutes.

b) In between breaks and team building games

c) End of Kickoff

Project Kickoff (1 Day): Similar to year kickoff instead of management involving customer
and only personnel involved in the project.

Figure 4.17.: Kickoff Team B-Setup, Module Responsibilities and Goals for 2020

78

4.4. Documenting Good Practices and Bad Practices

Consequences
The following Benefits have been associated with this practice:

• Creates a team spirit and coherence. Get to know everyone.

• Present best practices introduces experts and makes people want to change those
topics, too.

The following Liabilities have been associated with this practice:

• Time consuming.

• Expensive to bring everybody together.

See Also
V-01 Dependency Matrix for visualizing dependencies, which need to be addressed over the
course of the project.

79

4. Case Study

4.4.6. Newsflash

CO-Pattern Overview
ID CO-08
Name NEWSFLASH

Alias -
Summary Project Management Update regarding any information of or-

ganizational nature and long-term goals affecting the Large-
Scale Agile Development Program.

Example
The project management team at Technology LLC. informs all teams in a short 30 min re-
cap of all organizational information as well as project long-term goal situations. Recurring
event every third week of a month. They use the Newsflash to communicate architecture
concepts and also any changes to epics or major changes affecting the agile teams.

Context
The project management team has information regarding impediments and organizational
change or scope changes they want to inform the teams about. They have decisions or
budget topics which are relevant for all teams and want to support a transparent commu-
nication pipeline.

Problem
Following concerns are addressed by this practice:

• C-26 :How to align and communicate architectural decisions?

• C-73 How to deal with decreased predictability?

Forces
Following Forces have been identified:

• Platform team mainly located in one location, they want to use a transparent and fair
way of communicating any program affecting topics

• Architecture concepts from outside the project or any data security topics have to be
communicate to all agile teams

• Epics or road-map changes that affect several teams need to be aligned and the same
information needs to be reaching every team

80

4.4. Documenting Good Practices and Bad Practices

Solution
Newsflash:
Set up a Newsflash Call once a month. The meeting takes place at a time, when all project
relevant personnel has an opportunity to join or at least a representative of each team. The
time should be restricted to half an hour.

1. Project management team discusses topics of kind:

a) Organizational information to be shared.

b) Architectural alignment / Solution Concepts.

c) Changes in program road-map or epics.

2. Project management team presents agenda and includes architects and other person-
nel required for presentation.

Consequences
Following benefits have been associated with this practice:

• Increased transparency for work done by project management team.

• Platform for short description of architectural decisions or changes of any kind af-
fecting everybody.

• Opportunity to acknowledge successes.

Following Liabilities have been associated with this practice:

• Additional 30 minutes of meeting.

• Information might not be relevant for all attending personnel.

81

4. Case Study

4.4.7. Shifting Responsibilities

M-Pattern Overview
ID M-12
Name SHIFTING RESPONSIBILITIES

Alias -
Summary SADP of Technology LLC shifts purpose teams and individuals

responsibilities little by little over the years to create a broader
pool of system experts rather than domain experts only.

Example
Technology LLC. works on a combination of newly generated and legacy systems. Ac-
tively fostering knowledge transfer, module responsibility, PO and Dev, shifts in a roughly
yearly period.

Context
Complex and legacy systems are part of most development programs. Working in pur-
pose/ feature teams hinders the knowledge sharing amongst team members. Generating
internal knowledge silos.

Problem
Following concerns are addressed by this practice:

• C-19 How to deal with internal silos?

Forces
Following forces have been identified:

• Complex and legacy systems are difficult to understand, when not regularly working
with and on them.

• The amount of knowledge about these systems is sparse and focused in a single
person or a small group.

Solution
Shifting Responsibilities:
Instead of indefinitely working on the same module, shifts of responsibilities among team
members allows and automatically generates a knowledge share. Allowing for a natural
growth of knowledge as team members are working on a module for a long time, instead
of having to understand a module by working on it once every other month. After the
period - roughly one year- team members are changing module responsibility with other
team members in the same position. For the next- around a year- period, the new respon-
sibility generates a new expert, who in case of questions can ask his predecessor.

82

4.4. Documenting Good Practices and Bad Practices

Consequences
The following Benefits have been associated with this practice:

• Generates a Knowledge Transfer.

• Shift keeps work for individuals motivating.

• Dependency on single expert is reduced.

The following Liabilities have been associated with this practice:

• Takes a long time for a complex system to generate enough knowledge share.

• Short period every year where delivery is slower

See Also
IS combined with the CO-1Community of Practice , CO-02Face2Face Knowledge Transfer and
M-07Process Consultant

83

4. Case Study

4.4.8. Docupedia for Architecture Documentation

M-Pattern Overview
ID M-14
Name DOCUPEDIA FOR ARCHITECTURE DOCUMENTATION

Alias -
Summary Wiki with arc42 documentation of system architecture and mod-

ule architecture.

Example
Technology LLC. uses the Docupedia to generate a lightweight documentation with the
arc42 framework.

Context
Time constraint for documentation, as not visible business value for customers is sup-
ported.

Problem
Following concerns are addressed by this practice:

• C-37 How to create lightweight documentation

Forces
Following forces have been identified:

• Difficult to explain importance of time used for documentation.

• Delivery and business value creating tasks seen as higher priority.

Solution
Docupedia for Architecture Documentation:
Docupedia hierarchy (relevant for technical documentation): Platform Documentation -
Subpages –> anything directly connected to the architecture of the platform as well as
platform overarching information. Module Documentation - Subpages –> all technical
documentation for a specific module

Steps for documentation: Find fitting hierarchy level and create new Docupedia page.
In Case of module documentation:

• Fill in Fact Sheet (Name, Business benefit, User group, Since, Interfaces (internal),
Interfaces (external), User (worldwide), Process Support, Key User Departement,
Community)

• Provide Process Overview graph

84

4.4. Documenting Good Practices and Bad Practices

• Provide System Context View (architecture graph with interfaces)

• Optionally provide FAQ, User Manual, technical detail information and automated
tests

For platform documentation follow arc42[52]steps:

1. Introduction and goals (describe requirements, quality goals and stakeholders)

2. Constraints (any constraints)

3. Context and Scope (specify external interfaces)

4. Solution Strategy (Summarize decisions and solution strategies shaping architecture)

5. Building Block View (static decomposition of system)

6. Runtime View (behavior of building blocks in scenarios)

7. Deployment View (mapping building blocks to infrastructure elements)

8. Crosscutting Concepts (solution approaches view cross-cutting the system)

9. Architectural Decisions (decisions including rational)

10. Quality Requirements (high-level overview of quality goals from 1.)

11. Risks and Technical Debt (known risks and technical debt)

12. Glossary (term definitions)

Consequences
The following Benefits have been associated with this practice:

• Documentation created.

• Short and comprised overview.-Depending on creators commitment .

• Most important information with connection to detailed information.

The following Liabilities have been associated with this practice:

• Different degrees of documentation, dependent on creators commitment

85

4. Case Study

4.4.9. Dependency Matrix

Through growth of the LSADP(+2 teams) at the beginning of 2020, (compare Figure4.18) there are
more teams represented by columns, than were observed for this Master Thesis. The rows and final
column represent the teams observed for this Master Thesis.

V-Pattern Overview
ID V-01
Name DEPENDENCY MATRIX

Alias -
Summary During the Kickoff created, visualizing all inter-team depende-

nies, as well as dependencies to external teams not or organiza-
tions. Focus on Knowledge barriers and need for cooperation
during development process.

V-Type Board

Example
Technology LLC. uses the dependency matrix to visualize all dependencies of category
cooperation and knowledge bottlenceks, between teams.

Context
Domain-specific teams, who shift module responsibilities or the change of personnel in
teams. Creating knowledge and coordination dependencies between teams.

Problem
Following concerns are addressed by this practice:

• C-19 :How to deal with internal silos?

• C-81 :How to understand all interfaces and dependencies of the system?

Forces
Following forces have been identified:

• When working with a large project it can be hard to see all dependencies between
different teams. Dependencies are often not obvious and can get lost.

• Communicating dependencies can be one-sided and difficult to address at the right
level

Solution
Dependency Matrix:
Each team writes down dependencies to other teams on post-it notes and in the end
presents those dependencies to the whole program team. The presented dependencies are
then add to a matrix of all teams creating an overview(see Figure4.18and Figure4.19). In a

86

4.4. Documenting Good Practices and Bad Practices

second step each team takes a look at all dependencies towards themselves and addresses
how they will make personnel available or address these dependencies

Figure 4.18.: Dependency Matrix of inter-team dependencies for 2020 at Technology LLC.

87

4. Case Study

Team A Team B Team C Team D

Team A

Team B

Team C

Team D

KT

KT

Coordinate
for module x

Coordinate
for module y

Planning for
Project L

Figure 4.19.: Dependency Matrix Model of inter-team dependencies

Consequences
The following Benefits have been associated with this practice:

• Overview of all dependencies.

• Easier for planning. Makes possible bottlenecks visual.

• Common acknowledgment and cooperation plan able.

The following Liabilities have been associated with this practice:

• All personnel needs to be involved otherwise not reliable-Time consuming, when
not accurate

See Also
Gets created during the CO-04Kickoff event.

88

4.4. Documenting Good Practices and Bad Practices

4.4.10. Epic Plan Game Board

V-Pattern Overview
ID V-06
Name EPIC PLAN GAME BOARD

Alias -
Summary Creating a traceable overview for all Epics to be done during the

year by taking Epics and organizing them on a Game Board. Cre-
ating a nice visual for tracking the process and allocation of the
epics.

V-Type Board

Example
Technology LLC. works with an epic plan in a large-scale agile development program. The
epic plan is relevant for a single year and constructed at the end of a year. Presented in
the kickoff it depicts all epics planned for each team, usually depicted in a poster and up-
loaded to the wiki.

Context
Whenever working with a budget-planning horizon of a limited time. Requiring the ag-
ile program to first allocate their capacities according to the available budget, most easily
done by planning epics for the planning horizon.

Problem
Following concerns are addressed by this practice:

• C-22 :How to balance short-term and long-term goals?

• C-78 :How to synchronize sprints in the large-scale agile development program?

• C-80 :How to manage overarching backlog item prioritization with multiple product owners?

• C-83 :How to manage requirement development for multiple teams?

Forces
Following forces have been identified:

• Budget limits the capability of agile program as well as the planning horizon.

• When coordinating several customers as well as working with limit capacities, it is
impossible to work simultaneously on projects for all customers as only a certain
amount of development capacities are available.

89

4. Case Study

• Creating a quantifiable goal out of a large amount of requirements from different
customers

Solution
Epic Plan Game Board:
Each Product Owner coordinates with his customers what they want to have added and
what needs changing. The headlines of these meetings summarize an epic, the topic of
the requirements. The epic describes on a very abstract level, what all requirements rele-
vant for this topic create or change. All these Epics come with a budget, according to this
budget; the agile program can now estimate how much capacities are required. From all
capacities assigned to the epic plan, the program can now allocate epics to the teams. The
epic plan stands, when all team capacities for the planning horizon have been coordinated
and allocated to a sprint during this period.(compare Figure4.20 and Figure4.21) During
the finalization of the epic plan, eventual conflicts of personnel capacities become visual
and can be avoided or limited.

Figure 4.20.: Epic Plan Game Board for 2019 at Technology LLC.

90

4.4. Documenting Good Practices and Bad Practices

Figure 4.21.: Epic Plan Game Board Model

Consequences
The following Benefits have been associated with this practice:

• Overview of planning horizon .

• Success measure through finishing an epic.

• Team members capacities are respected.

The following Liabilities have been associated with this practice:

• Loss of flexibility

See Also
Usually used in combination with V-05 Power BI and V-07 Velocity Sheet.

91

4. Case Study

4.4.11. Geographically Distributed Meeting Hours

Principle Overview
ID P-01
Name GEOGRAPHICALLY DISTRIBUTED MEETING HOURS

Alias -
Summary Technology LLC. creates for each project a set of geographically

distributed working hours. With this method, they define the
working hours, when all locations of the project are working si-
multaneously. Hence, a time span in which meetings can be or-
ganized are set for the project or teams of the project.

Type Coordination
Binding Nature Required

Example
Technology LLC. has geographically distributed teams in different time zones, working in
a large-scale agile development program. Communication and coordination relies on us-
ing daily and weekly repeating meetings. Additionally individuals of a team have a need
to coordinate and all team members prefer direct communication.

Context
Teams coordinate in Daily’s and Product Backlog refinement meetings handle requirement
refinements. These repeating meetings during a sprint are most efficient when attended
by all team members. The team, however, is geographically distributed and has different
working hours due to different time zones.

Problem
Following concerns are addressed by this principle:

• C-03 :How to coordinate geographically distributed agile teams?

• C-29 :How to facilitate agile teams to participate at cross-shore meetings?

• C-30 :How to synchronize working hours of cross-shore agile teams?

Forces
Following forces have been identified:

• Organizational guideline to use both onshore and offshore employees in software
development for projects over a certain size.

• Employees cannot work at exactly the same time all day, when working in different
time zones.

92

4.4. Documenting Good Practices and Bad Practices

• Knowledge among employees as well as the complexity of the system block the pro-
gram from creating co-located teams.

Solution
As teams should consists of both On- and Offshore in larger projects, a guideline sup-
porting this circumstance is defined as follows: Therefore, defining limitations of possible
general working hours for each time zone involved. Communicating these limitations
by involving them in the working agreements of the large-scale development program.
Focusing on including these limitations in all individual working agreements of teams.
Forcing everyone to be mindful of the multiple time zones involved in a project. Creating
a schedule for meetings where the entire program team is required to be attending and
therefore creating a skeleton for the individual teams to coordinate their weekly and daily
repeating meetings around Known Uses
Technology LLC.

Consequences
The following Benefits have been associated with this principle:

• Clear rules for communication and coordination efforts.

The following Liabilities have been associated with this principle:

• Limit time for meetings. Depending on locations overlap can be really low

See Also
CO-04 Kickoff is used for agreeing on the distributed meeting hours.

93

4. Case Study

4.4.12. Bad Practices

The LSADP of Technology LLC. faces some bad practices, which have to be avoided. In the
interview with PO-3, we documented the bad practice A-04 Don’t assume mutual Terminol-
ogy, an anti-pattern candidate, which later was updated through the interviews with PO-5
and PO-6. When working with customers of external or internal traditional teams, the POs
faced the issue of using common terminology for the LSADP only to be misunderstood by
their counter-part. To address this misunderstanding, PO-3 started to focus on explaining
his terminology when meeting customers, who aren’t as familiar with the agile practices.
Another bad practice documented at the LSADP of Technology LLC. was A-07 Don’t Have
New Years Resolution Dilemma. While practices like M-05Definition of Ready and Definition
of Done and CO-01 Pre-Planning Coordination were introduced at the LSADP to avoid A-06
Don’t overshoot coordination meetings and A-09 Don’t misuse estimation creation.
The bad practice of teams committing to M-05Definition of Ready and Definition of Done and
not actually adhering to the practice was observed. Most of the interviewees in some kind
used the A-07 Don’t Have New Years Resolution Dilemma bad practice. Irrelevant of stake-
holder group, the agile teams tended to commit to a new way of solving an issue or docu-
menting a process, only to fall back on the old process. While the LSADP works fine, the
wish of "committing to commitments "Product Owner(PO-1) (2019) was mentioned by sev-
eral interview partners and is in direct correctional with the bad practice and anti-pattern
candidate A-07 Don’t Have New Years Resolution Dilemma.

94

4.4. Documenting Good Practices and Bad Practices

4.4.13. Don’t assume mutual Terminology Understanding

Anti-Pattern Overview
ID A-04
Name DON’T ASSUME MUTUAL TERMINOLOGY UNDERSTANDING

Alias -
Summary When coordinating with traditional teams, Product Owners

use terminology used in the agile teams and don’t explain the
terms. Leading to misunderstandings and possible misinfor-
mation being spread.

Example
Technology LLC. has a large-scale agile development program and several traditional pro-
grams, when working on a same module the communication and especially when using
terminology describing steps in the process or any LSAD-specific terminology.

Context
A Development Process involving teams working in traditional (i.e. Waterfall, V-Modell,
etc.) frameworks for software development and teams working in agile (i.e. SAFe, LeSS,
etc.) frameworks.

Problem
Following concerns are addressed by this bad practice:

• C-20 :How to facilitate communication between agile teams and other teams using traditional
practices?

Forces
Following forces have been identified:

• Terminology in traditional and agile processes is different yet often addresses similar
concepts.

• Only because people work together does not mean they have the same terminology
understanding.

General Form
Traditional and agile teams working together in large project or on large module. Addi-
tionally observable when communicating with customers. When describing an Product
Increment or talking about the development process in general and referring to terminol-
ogy used within the LSAD program. The customer or project partner does not have the
same definition for the term used and assumes a different outcome. Or just assumes a

95

4. Case Study

negative connotation for terms(i.e. MVP is seen as a low value product).

Consequences
The following Benefits have been associated with this bad practice:

• working with an agile team with terminology that appears different may leave a
positive connoted feeling towards agile team.

The following Liabilities have been associated with this bad practice:

• Misunderstanding between Teams especially focused on priorities and the therefore
described order of which features are developed. While in traditional programming
there is little to none prioritizing.

• When talking about MVP’s teams in traditional working programs assume they only
get a prototype or something of less value. While MVP is used to figure out the
minimum requirements to get a working platform or feature.

Revised Solution
Use the CO-07 Periodic Round-Table to clarify terminology and build up a common under-
standing.

96

4.4. Documenting Good Practices and Bad Practices

4.4.14. Don’t have New Year Resolution Dilemma

Anti-Pattern Overview
ID A-07
Name Don’t have New Year Resolution Dilemma
Alias -
Summary LSAD aims at introducing artifacts to address some concerns

and commits to implementing them, however, the teams
don’t go through with their commitment and the concerns re-
main.

Example
Technology LLC.’s LSADP wants to focus more on automated testing, they want improve
the overall quality as unified decision and goal.

Context
Delivery pressure and budget dependency from delivering features.

Problem
Following concerns are addressed by this bad practice:

• C-36 How to establish automated testing?

• C-79 How to balance amount and quality of delivered Requirements?

Forces
Following forces have been identified:

• Delivery-driven program, missing infrastructure in already existing unit test.

• Missing documentation on Tests limits possibility to create automated testing when
working under delivery pressure. Yearly allocated budgets, limit flexibility.

General Form
Established guidelines like Working Agreements, DoR and DoD crumble under delivery-
pressure. First the threshold for achieving these guidelines and agreements gets lowered
and maybe even completely ignored to deliver a feature on time or with as little delay as
possible. Similar to new year resolution as soon as the pressure increases, resolutions and
agreements are set aside.

Consequences
The following Benefits have been associated with this bad practice:

97

4. Case Study

• Delivery speed is increased.

The following Liabilities have been associated with this bad practice:

• Inferior quality in delivered products

• Misues of agile practices as there is no commitment to the correct application.

Revised Solution
Committing to commitments. Start distributing technical sprint topics over the whole year,
resolving them as part of sprint.

• focusing more on quality assurance within a year.

• Start distributing non-functional requirements and concept implementations into the
year.

Sprint Planning only Team no PO, the SM takes over the PO presentation to release pres-
sure on teams commitment. CO-01 Pre-Planning Coordination within Team to coordinate
the capacity limit they are willing to commit. Backlog is estimated and prioritized before
sprint planning!

See Also
Plan ahead in the units of DEV and PO with CO-01 Pre-Planning Coordination,

98

4.4. Documenting Good Practices and Bad Practices

4.4.15. Mapping of Concerns and Pattern Candidates

With the identified concerns and the documented pattern candidates and two patterns,
it is interesting to take a look at how these are connected. The figures below represent
the Mapping of recurring concerns to good or bad practices documented for the same
stakeholder group.

Mapping Development Team

Beginning with the stakeholder group of DEV (see Figure4.22) we can identify a clear in-
fluence of the newly introduced roles of M-07 Process Consultant and M-13 Automation
Lead. These two pattern candidates address concern of the category Quality Assurance
and Knowledge Management, like C-36 How to establish automated testing? and C-85 How
to share domain knowledge across agile teams?.
This thesis tried to address the concern category of Quality Assurance , as it represents
40% of all DEV concerns by instantiating a pattern observed at another organization, in
Section4.5. Additionally, the introduction of M-14 Definition of Ready and Definition of Done
aims at resolving the concern C-37 How to create lightweight documentation?, another Knowl-
edge Management concern.
The effect of A-11 Don’t encapsulate teams too much is also quite impressive, as there are four
good practices, which try to resolve the encapsulated team construct, the LSADP created
through their Agile Transformation and the introduction of M-08 Purpose Teams and M-07
Process Consultant.

99

4. Case Study

CO -0
1

P- 02

C- 26
C- 85

C- 37
C- 68

C- 36
C- 53

C- 76
C- 63

C- 86
C- 87

De
ve
lo
pm

en
tT
ea
m

A- 06
A- 11

A- 07
A- 10

M
-

14
M
-

13

M
-

15

M
-

10

M
-

18
CO -0
3

CO -0
5

V- 03
V- 04

M
-

12
CO -0
2

CO -0
9P- 03

M
-

05
CO -0
1

Figure 4.22.: Mapping Concerns and Pattern Candidates of Development Team

100

4.4. Documenting Good Practices and Bad Practices

Mapping Product Owner

The mapping for the PO stakeholder group(see Figure4.23) is revealing a lot of connections
between concerns identified and good and bad practices documented.
With C-80 How to manage overarching backlog item prioritization with multiple product owners?
being a major concern addressed by a total of six good practices. The newly observed sit-
uation of M-08 Purpose Teams in combination with M-11 Product Owner Team introduces
the concern C-80 How to manage overarching backlog item prioritization with multiple product
owners? to the LSADP.
However, the LSADP identified this concern and tried to resolve it with visualizing the
epics V-06 Epic Plan Game Board, offering additional information during the sprint for
the POs V-05 Power BI and displaying inter-team dependencies with the introduced V-
01Dependency Matrix.
Additionally, interesting to observe is the connection of the three bad practices A-01 Don’t
Have Blurred Boundaries Requirements Engineering, A-03 Don’t assume Autonomous On-Boarding
and A-05 Don’t forward Requirements to C-10 How to create precise requirement specifications
for the development team? and C-15 How to elicit and refine requirements of end users?, which
are two major Requirements Engineering concerns. These three bad practices have not be
addressed sufficiently and offered an opportunity to instantiate a pattern (see Section4.5)
at Technology LLC.

101

4. Case Study

C- 10
C- 15

C- 18
C- 20

C- 22
C- 28

C- 35
C- 41

C- 43

A- 01
A- 03

A- 04
A- 05

A- 09

V- 01

M
-

01
CO -0

1

P- 02

M
-

04
M

-
02

M
-

03 M
-

12
M

-
09

M
-

05

M
-

14

CO -0
4

CO -0
5

CO -0
6

CO -0
7

CO -1
1

V- 02
V- 03

V- 06
V- 04

V- 05

CO -1
0

V- 07

Pr
od

uc
t O

w
ne

r

C- 60
C- 69

C- 71
C- 79

C- 80
C- 82

C- 83

M
-

17
M

-
11

CO -0
2

M
-

06

M
-

16

Figure 4.23.: Mapping Concerns and Pattern Candidates of Product Owners

102

4.4. Documenting Good Practices and Bad Practices

Mapping Scrum Master

Finally, the mapping of the SM stakeholder group reveals the effect Internal Silos C-19 How
to deal with internal silos have on the LSADP of Technology LLC. By intentionally creating a
one-stop contact person for knowledge sharing in the Purpose Teams(M-08Purpose Team),
with the Process Consultant (M-07 Process Consultant) as exactly that bottleneck with a
50% role for addressing knowledge sharing, the LSADP might have resolved to some ex-
tent their knowledge management issue in the short-term horizon.
However, by introducing M-12 Shifting Responsibilities and CO-1 Community of Practice they
aim to resolve Knowledge Management concerns in a long-term horizon. The recurring
concerns of the Culture & Mindset category are with 34% the main concern category of the
SM stakeholder group at Technology LLC., however, the Mapping (see Figure4.24) reveals
that only five (C-24, C-33, C-39, C-67, C-84) of these 12 concerns are actually addressed.
Creating an opportunity for this thesis to try and address some more of the Culture &
Mindset concerns of the SM stakeholder group with instantiating patterns from other or-
ganizations as described in Section4.5.

103

4. Case Study

C- 03
C- 19

C- 05
C- 30

C- 29
C- 24

C- 07

A- 02
A- 08

V- 01

CO -0
1

P- 01

M
-

08
M

-
07 M

-
12

CO -0
3

CO -0
8

V- 02
V- 06

P- 02
P- 03

A- 01

C- 31
C- 32

C- 33
C- 39

C- 44
C- 67

C- 73
C- 84

C- 78

A- 11

CO -0
2

CO -0
5

M
-

05CO -0
4

M
-

02

C- 85

CO -0
9

M
-

11
M

-
15

C- 81

Sc
ru

m
 M

as
te

r

Figure 4.24.: Mapping Concerns and Pattern Candidates of Scrum Masters

104

4.5. Implementation of Pattern and Lessons Learned

4.5. Implementation of Pattern and Lessons Learned

As the final part of the case study at Technology LLC., we instantiated one of the Coordi-
nation Patterns documented by Uludağ et al.[55].
During the case study we identified a total of 65 concerns and documented 38 pattern can-
didates aimed at resolving these concerns together with one coordination pattern CO-1
Community of Practice and 11 anti-pattern candidates together with one anti-pattern A-
1Don’t use Frameworks as Recipe.
As summarized in Section4.4.15 each stakeholder group had a concern category indicating
potential for improvement. These concern categories are:

• Quality Assurance for concerns of DEV

• Knowledge Management and Requirements Engineering for PO

• Culture & Mindset for SM

As already mentioned, we were able to participate and observe the LSADP Kickoff event.
In the process of the Kickoff event, the presentations of good practices from the LSADP
were focused on Knowledge Management, Quality Assurance and the event itself was
aimed at C-39creating a culture of continuous improvement. Following the Pattern-based
Design Research approach by Buckl et al.[10], we then proposed six solution designs of
already observed patterns (see Section4.5.1) from the pattern catalog[61] to the LSADP of
Technology LLC.. The solution design patterns were presented to all interview partners
on two separate dates.

4.5.1. Patterns Provided

The patterns documented here were presented to the stakeholder groups at Technology
LLC. with the CO-1 Community of Practice for Product Owners-instantiated solution being in-
stantiated as a result. The patterns not documented in detail in this section are recorded in
the AppendixC.6.
Quality Assurance solutions for DEV
For the DEV stakeholder group we presented two patterns aimed at supporting the Qual-
ity Assurance concerns identified in Section4.3.2. CO-3 Communicating the Architecture,
observed by Uludağ et al.[58]. Is an approach aimed at communicating architecture and
sharing the vision for the architecture and how to achieve architectural goals. The idea
is to save time-slots in LSAD-wide events for architects to present topics or progress of
architectural alignment. Additionally, we advised to even further encourage the Process
Consultant of the Purpose Teams to address architecture topics in team events.
With this pattern we aimed at addressing the concern C-26 How to align and communicate
architectural decisions? of the DEV.
The other approach presented to address the Quality Assurance concerns of DEV, was

105

4. Case Study

M-1Quality Gates, observed in Uludağ and Matthes[60]. The concept of introducing Qual-
ity Gates is a measure introducing manual gates in the pipeline. A Gate is defined by an
architect using a tool like SonarQube in Jenkins setting conditions which are constantly
checked. When a Gate is triggered, a manual pull by a dedicated developer is required to
move the code along in the pipeline.
Knowledge Management and Requirements Engineering solutions for PO
For the LSADP at the case study partner, we used the CoP pattern documented (see Sec-
tion4.4.2) to represent the configured design aimed at the LSADP of Technology LLC. for
the instantiated solution see Section4.5.4 and the deviations from the introduced CO-1
Community of Practice by Uludağ et al.[55],see Section4.5.5. The finalized CO-1 solution
design is presented in Section4.5.4.
Additionally, we presented the CO-2 Supervision, documented by Uludağ and Matthes[59]
coordination pattern to address Knowledge Management and Requirements Engineering
concerns of the stakeholder group PO.
CO-2 Supervision is a Coordination pattern observed at several organizations. During a
Supervision a stakeholder group meets up and discusses two selected problems faced by
a participant of the CO-2 Supervision. Supervisions create an open forum in which so-
lution approaches are discussed, dedicated to real-life problem situations a participant
faced. Through the discussion, all participants see different solution approaches, which
they could apply when facing a similar problem situation.
Culture & Mindset solutions for SM
During the identification phase, we observed 34% of SM concerns to be of the Category
Culture & Mindset. As the LSADP is delivery-driven and works on multiple epics at a
time, we advised the use of the P-1 Celebrate every Success principle documented by Ulu-
dağ et al.[55]. Additionally, we presented the practice of CO-4 DDD: Event Storming Work-
shops, observed by Uludağ et al.[56], to the LSADP. In an Event Storming Workshop, the
whole development team and architect visualize all events of a module and discuss archi-
tectural solution concepts which could be applied. The goal of CO-4 DDD: Event Storming
Workshopsis to both introduce architectural considerations on the team level, while also
establishing and fostering the continuous improvement of a LSAD.

CO-1 :Community of Practice

106

4.5. Implementation of Pattern and Lessons Learned

4.5.2. Celebrate Every Success **

As adapted from the documentation by Uludağ et al. [59]

Principle Overview
ID P-1
Name CELEBRATE EVERY SUCCESS

Alias -
Summary The team or the organization should celebrate and communicate

every small and major success during the agile transformation. It
does not matter how it is celebrated. The important aspect is to
make success visible.

Type Communication
Binding Nature Recommended

Example
One year after the agile transformation of RetailCo has started, teams are wondering what
has happened since then. Current working circumstances are a bit chaotic and it seems
there has been no progress made in a while.

Context
People lack motivation to continue with the agile transformation, because they do not see
progress.

Problem
Following concerns are addressed by this principle:

• C-24 :How to create team spirit and trust among agile teams?

• C-33 :How to build trust of stakeholders in agile practices?

Forces
Following forces have been identified:

• Transforming a large organization takes a lot of time and success is not always di-
rectly observable to everyone.

• Not seeing progress can be demotivating.

Consequences
Following Benefits have been associated with this principle:

• Celebration of small successes triggers positive emotions.

• The organization is more motivated to continue with the agile transformation.

107

4. Case Study

• The organization is reminded that the agile transformation is an ongoing process that
takes time.

• The organization recognizes its progress.

• People’s work is appreciated and valued.

Following Liabilities have been associated with this principle:

• People, who are against the agile transformation, may feel annoyed by this.

See Also
This principle can be used in combination with CO-08 Newsflash.

Known Uses
This principle is used by:

• Autonomous Cars Group

• AgileConsultants GmbH

• Retail Corp

108

4.5. Implementation of Pattern and Lessons Learned

4.5.3. Presentation of Provided Patterns

On the first date, the six solution designs were presented to my advisor at Technology
LLC. and two of the three project management group members. All three attendees were
part of the interview process, namely the PO-4,PO-5 and SM-2. Again the PO-4 and SM-2
make up two thirds of the project management group (Chief Product Owner and Product
Development Manager). During this presentation the solution designs were well received
and together we decided to present the solution designs on a second date to the interview
partners and let them decide, which solution designs they would like to instantiated. On
the second date, all interview partners were invited to join the presentation of the solution
designs, as they were already familiar with the purpose of this case study.
However, three other program members joined in on the presentation. The three mem-
bers, were one PO, one dual-student working with the PO Team and the IT-Architect. The
presentation of the solution designs was provided in the following steps:

1. Summary documented pattern candidates and identified concerns

2. Focus on the identified concern categories

• Amount of identified concerns for each category and documented pattern can-
didates addressing these concerns

• Recall of some bad practices documented during the interviews (see Figure4.25)

• Short break for any Questions

3. Presentation of solution designs

• Which concerns does the solution design address?

• How often were these concerns identified during interview process?

• Which Benefits were observed at other organizations with these solution de-
signs?

• How the solution design could be implemented?

4. Discussion

Overall, the presented solution designs were once more well received and the stakehold-
ers started asking detailed questions about the solution designs, The highest interest came
from the PO group, as they have not thought about discussing their concerns in an open
forum and documenting that discussion, which was the basis of the two solution designs
presented to them. While CO-2 Supervision was well received, the length and complexity
of that practice was too much for the PO stakeholders.
However, the CO-1 Community of Practice offered similar benefits as the CO-2 Supervision,
while being less time consuming and more controllable from the perspective of the PO
stakeholders.
Interestingly, the POs were able to see the benefits of CO-1 Community of Practice in their

109

4. Case Study

Figure 4.25.: Concern Categories for Implementation Presentation with bad practices

own LSADP with the Development, Test, UI/UX and SM CoPs being already in place,
nonetheless, they never assumed a similar concept would be useful for their responsibility
area. As of now, most information about the application of CoP is focused on development
and technical background benefits.
The eight characteristics of a successful CoP introduced by Paasivara[40], never directly
connect Community of Practice to development topics. A successful CoP has interesting
topics, to whom these topics are interesting is never specified. While the CoP for SM intro-
duces the benefits of CoPs to not strictly technical stakeholders,the SMs at the LSADP are
associated and involved in the development process. By focusing on the benefits a CoP for
POs could produce and how many concerns would be addressed, the POs were convinced
to instantiated their own CoP.
After the Discussion following the presentation, the attendees of the stakeholder group
PO decided to instantiate the solution design of a CO-1 Community of Practice with our
guidance for the implementation. Additionally to instantiating the CO-1 Community of
Practice for Product Owners - instantiated Solution, the attendees of the first date committed
to implementing the P-1 Celebrate every Success principle by including it in the CO-08. Final
observation from the second date was the IT-Architects continued interest in CO-4 DDD:
Event Storming Workshop, however, by the end of this thesis, no commitment or implemen-
tation attempt was documented.

110

4.5. Implementation of Pattern and Lessons Learned

4.5.4. Implementation of Community of Practice for Product Owners

The Implementation of the the Community of Practice, was organized along the eight char-
acteristics of a successful CoP identified by Paasivaara[40] and documented in the work
of Uludağ et al[55]. At Technology LLC. we instantiated a Community of Practice and not
an Empowered Community of Practice[55]. The difference between those two types lies
in the applicability of decisions made in the Community. While the LSADP of Technol-
ogy LLC. doesn’t limit the decision making power of a CoP, there is also no mandatory
application of practices designed or decisions made of an CoP. Hence, the instantiated
CO-1-Instantiated Community of Practice for Product Owners - instantiated solution does not
apply to be an empowered CoP and was not supposed to be. In Coordination with the

Figure 4.26.: Community of Practice for Product Owners - invitation and Agenda

other documented CoPs at the LSADP, we introduced the CoP in the similar fashion by
following these steps:

• Create meaningful Agenda(see Figure4.26) and invite POs of LSADP, present at one
of the two presentation dates

• Make it accessible for everyone, who wants to join (Skype-for-Business conference
room and physical conference room)

• Create online presence for CoP

111

4. Case Study

1. OneNote Structure (see Figure4.27) and Documentation Pages

2. Open Topic Collection

• Moderate first CoP

Figure 4.27.: Community of Practice OneNote Homepage

At the event of the first CoP, we started by presenting the eight characteristics of a success-
ful CoP.
The characteristics of a successful CoP are Interesting topics, Passionate Leader, Proper
Agenda, Decision Making Authority, Open Community, Supporting tools to create
transparency, Suitable rhythm and Enabling Cross-Location participation[40].
For ease of implementation, we then used the second Agenda point to decide on the
rhythm, leader/moderator and how to assign the topics discussed (see Figure4.26).The ac-
tual documentation of the CoP is presented in the two figures, Figure4.28 and Figure4.29.

112

4.5. Implementation of Pattern and Lessons Learned

Figure 4.28.: Screenshot of instantiated Community of Practice for Product Owners - Doc-
umentation

In Adoption to the three week Sprint of the LSADP, the attendees decided to hold an
one hour long CoP every last Thursday of the month. The Attendees decided, they would
use the initial group of five POs present as a leader group for the CoP going forward.
Deciding at the end of each CoP, which topics to discuss next and who would moderate
the next CoP. The moderator of a CoP instance is responsible for creating the agenda
as was decided by the attendees. One exception of the leader group was one attendee
volunteering to maintain the recurring event in the calendar and create a mailing-list.

As final part of this agenda point, they decided to use the provided open topic collection
and as already mentioned decide in the last 5 minutes of a CoP, which topic will be dis-
cussed during the next CoP. While the CoP wanted to have a transparent documentation
of their discussion, they decided to start the CoP by only including POs, who are part of
the LSADP.
This decision was made, because they want to use the CoP in the beginning to address the
C-81 How to understand all interfaces and dependencies of the system? concern identified dur-
ing the interview process by all POs participating. To address this concern they planned
on discussing one POs module per CoP and then discuss in addition one other topic of
concern, not related to Knowledge Management. Further, we used the first CoP to discuss
C-10 How to create precise Requirement Specifications for the Development Team?. For the dis-
cussion we used an exemplary requirement provided by one PO, who was unhappy with
how long it took for the Development Team to understand his requirement and wanted to
know, how the others would have specified the requirement.

113

4. Case Study

Figure 4.29.: Screenshot of instantiated Community of Practice for Product Owners - Doc-
umentation contd.

In the End of the CoP we used the last minutes to hold a short feedback session, the results
are presented in Section4.5.7. Finally, we discussed the method, the newly instantiated
CoP should follow to evaluate their CoP, see Figure4.30.

Figure 4.30.: Process proposed for Evaluating instantiated Community of Practice at Tech-
nology LLC.

114

4.5. Implementation of Pattern and Lessons Learned

Making sure to evaluate the solution after some applications and revisit the Problem Iden-
tification and Solution Implementation and Application and if necessary changing those
instances as to improve the solution and make it more fitting to the LSADP of Technology
LLC. Overall the adoption of the CoP fulfilled seven of the characteristics of a successful
CoP and only limited the characteristic of an open community for the first phase of the
CoP.

4.5.5. Deviations configured Design and instantiated Solution

This section aims at summarizing the deviations between the pattern introduced and the
instantiated solution at Technology LLC. for CO-1-Instantiated Community of Practice for
Product Owners - instantiated Solution. Therefore, we will focus on each difference in ap-
plication. As far as the general Pattern Overview, Example, Context, Variants, Conse-
quences and See Also are concerned of the LSADPL there are no deviations between the
configured Design and instantiated Solution. Deviations can be observed in the specifi-
cations of the Problem, Forces and Solution building blocks of the LSADPL. The final
instantiated pattern is provided after discussing the deviations.

Problem

The Problem spectrum addressed by the instantiated pattern is a little larger, as the re-
curring concerns C-81How to understand all interfaces and dependencies of the system? and
C-80 How to manage overarching backlog item prioritization with multiple product owners? are
added to the list of problems addressed by the instantiated Coordination-Pattern CO-1-
Instantiated Community of Practice for Product Owners - instantiated Solution. These recur-
ring concerns where identified in the LSADP of Technology LLC. and are all connected to
to the Product Owners concerns.

Forces

In Comparison to the configured design, there is one new Force identified as to why the
LSADP hasn’t had knowledge share across the POs. The PO of the LSADP of Technology
LLC. are already stretched thin through having to have active contact with multiple key
users and customers and have to coordinate their activity in multiple agile teams. Result-
ing in: ’Product Owner are involved in multiple agile teams and have to keep contact with
several key users and do not see another meeting as solution as they already face multiple
challenges and feel they do not have enough time to address them. Limiting their possibil-
ity to openly discuss their practices applied and not theories.’(compare CO-1-Instantiated
Community of Practice for Product Owners - instantiated Solution) being added to the Forces
segment.

115

4. Case Study

Solution

As the CO-1-Instantiated Community of Practice for Product Owners - instantiated solution
wants to use the CoP to additionally share module knowledge they decided to limit the
participants to only POs from the LSADP. Creating a concept more accurately comparable
to the chapter concept of Spotify, as only one role is represented of one project team. This is
represented by the solution section not including ’the openness to anybody interested’[40]
statement. Additionally the CO-1-Instantiated Community of Practice for Product Owners -
instantiated Solution is lead by a group of leaders, therefore adding this to the Solution.

116

4.5. Implementation of Pattern and Lessons Learned

4.5.6. Community of Practice for Product Owners - Instantiated Solution **

Since it is a new application of CoP the maturity level for the newly added problems has to be
controlled.

CO-Pattern Overview
ID CO-1-Instantiated
Name COMMUNITY OF PRACTICE

Alias -
Summary To facilitate knowledge sharing, Communities of Practice can

be setup. Those communities are regular meetings, in which
participants can freely discuss practices and share their expe-
rience. Communities of Practice always focus on one domain,
for example, Leadership, Architecture or Testing.

Example
During the transformation from a traditional approach to agile development at Technology
LLC., the Agile Coach saw a need for inter-team knowledge share, as different methods
were used in the teams.

Context
Knowledge sharing is only applied within teams, but not among several teams.

Problem
Following concerns are addressed by this pattern:

• C-05 How to facilitate shared context and knowledge?

• C-19 How to deal with Internal Silos?

• C-39 How to establish a Culture of Continuous Improvement?

• C-80 How to manage overarching backlog item prioritization with multiple product owners?

• C-81How to understand all interfaces and dependencies of the system?

Forces
Following forces have been identified:

• Product Owners are involved in multiple agile teams and have to keep contact with
several key users and do not see another meeting as solution for them.As they al-
ready face multiple challenges and feel they do not have enough time to address
them all. Limiting their possibility to openly discuss their practices applied and not
theories.

• Facilitating shared context and knowledge across the organization is difficult

117

4. Case Study

• Internal silos create gaps in knowledge and communication between agile teams

Solution
Community of Practice for Product Owners:
Set up a Community of Practice for a specific domain. A Community of Practice is a
group of people ’who share a concern, a set of problems, or a passion about a topic’[64] .
Participation is for now limited to POs from the same LSADP of Technology LLC. as the
participants decided to use it to share module knowledge as well. The CoP is comparably
open to the Chapters of the Spotify model. The intention is to enable frequent knowledge
and expertise sharing between the participant[64] . The focus is to talk about practices that
are applied and not to discuss theories. The participants of a Community of Practice are
typically not from the same team but from many different teams all across the organization
[64] . In the best case, many different practices can be presented and discussed, leading to a
wide knowledge base. Even though participating in a Community of Practice is voluntary,
great numbers of participation can be reached if the participants feel the benefit in their
work. Therefore, a Community of Practice should always have an interesting topic and
a proper agenda, which is to be sent out with the invitations[40]. In addition, each Com-
munity of Practice should be lead by an expert or a group of experts, who are passionate
to make the event a success and keep it on a frequent level[40]. Finally, set up an intranet
page, where all information regarding the Community (e.g., agendas, or developed arti-
facts) are stored. This should be available for the whole organization [40].

Variants
A Community of Practice can be set up for a variety of domains. In practice, we identified
Communities for the following domains: Architecture, Testing, Interfaces, Deployments,
Leadership, Infrastructure.

Consequences
Following Benefits have been associated with this pattern:

• Encouraging knowledge sharing for diverse topics

• Breaking up silos

• Enabling a culture of continuous improvement

Following Liabilities have been associated with this pattern:

• Requiring an active involvement of participants

• Topics in the agenda could be too diverse and broad

• Providing right incentives to the participants is challenging

118

4.5. Implementation of Pattern and Lessons Learned

Known Uses

• Technology LLC.

• Electronic GmbH

• Global Insurance Corp

• LuxCarsCorp

• Retail Corp

• Software Inc.

119

4. Case Study

4.5.7. Lessons Learned from instantiated Community of Practice for Product
Owners at Technology LLC.

After the first instantiated CoP for POs was finished, we made a short feedback session
using the QuestionnaireA.3. Some key observations during the feedback session and the
process of the CoP was that the overall acceptance of the Pattern together with the charac-
teristics to make it successful was high.

Figure 4.31.: Evaluation of instantiated Community of Practice for Product Owners

For the instantiated CO-1-Instantiated Community of Practice for Product Owners - instanti-
ated Solution we had four of the six interviewed POs attending and one PO who attended
the second presentation date. In total five POs build the first implementation of the CoP.
PO-1, PO-2,PO-3,PO-5 and PO-7 (joined in after presentation of solution designs) then
answered the feedback questionnaire. The results, (see Figure4.31) indicate, that the CO-1-
Instantiated Community of Practice for Product Owners - instantiated Solution was sufficiently
explained and addressed the concerns of the POs.
Additionally, they agreed (with an average of 2,6) that they could have applied the CO-1-
Instantiated Community of Practice for Product Owners - instantiated Solution on their own.
However, they only somewhat agree, that they would be interested in applying other pat-
terns of the presented solution designs of the pattern catalog[61]. All feedback indicated
that they will be continuing the application of the CO-1-Instantiated Community of Practice
for Product Owners - instantiated Solution on their own.
’We had a good start and need to see how it develops from now on.’ Product Owner (PO-7)(2020)
Additionally, all POs would recommend the CO-1 Community of Practice to their colleagues
with one PO stating:
’Yes definitely! It’ always beneficial to have a KT.’Product Owner (PO-3)(2020)

120

4.5. Implementation of Pattern and Lessons Learned

Regarding what could be improved about the CO-1 Community of Practice one PO men-
tioned the ’Awareness and Willingness of POs’ Product Owner (PO-1)(2020) needs to be ad-
dressed. Overall, the willingness to apply this and the positive feedback in regards to the
CO-1 Community of Practice pattern indicate that the pattern language in this instance lead
to a good documented pattern in the pattern catalog. This indicates that the patterns of the
pattern catalog can achieve their purpose.

121

4. Case Study

122

5. Discussion

In this chapter we will revisit the Key Findings of the Case Study and how they answer
the Research Questions formulated in this thesis. We will compare our key findings to the
related work and see where they add or challenge existing findings from the literature. We
will finish with a look at the Limitations of our Key Findings.

5.1. Key Findings

This Thesis uncovered several interesting findings of the adoption, concerns, pattern can-
didates and the learning process of a LSADP through a case study in the technology sector.
These findings answer the research questions stated for this thesis.
RQ1. How has LeSS been adopted and applied at the case study partner?
Through the conception of the agile process4.4 based on observations and three structured
experts interviews, we identified the Adoption of two basic LSADP frameworks with LeSS
and Spotify to create a tailored LSADP framework for Technology LLC.
The learning observed from Technology LLC. identified during the expert interviews and
observations was that the mistake of adopting LeSS one to one in the beginning led to
a free process of picking fitting practices from different frameworks to generate an indi-
vidual LSADP framework. While Technology LLC. focused on creating their individual
LSADP they introduced new concepts of existing agile practices.
One major Finding in regards to the first RQ is the use of purpose teams, with domain ex-
pertise and therefore the creation of domain-specific feature teams similar to the findings of
Paasivaara et al.[39], who identified cross-site and specialized teams. Overall, the LSADP
went through two phases of agile transformation so far. Similar to the observed phases in
the works of Fuchs and Hess[25] and Paasivaara et al.[39], the LSADP agile phases were
initiated by a push to become more agile.
As this case study ended, there were first indicators of another agile transformation phase
being initiated, as the LSADP size was increased combining two LSADP into one larger
LSADP.
The purpose teams have another unique trait, as the PO are assigned to modules and
through their module assignment, become part of the purpose teams which are responsi-
ble for developing these modules. This makes POs part of one or many agile teams. In
addition to the purpose teams, the LSADP addressed their issue of working on a platform
with high degrees of domain-expertise, which was the introduction of a new role. The
Process Consultant is an admitted knowledge bottleneck, who through his special role has

123

5. Discussion

half of his working time, reserved for supporting other stakeholder groups of their team.
Overall, the LSADP went through two phases of agile transformation similar to the ob-
served phases in the works of Fuchs and Hess[25] and Paasivaara et al.[39]. Agile phases
initiated by organizational or inter-team pushes to become more agile.
RQ2. What are recurring concerns of stakeholders at the product organization of the
case study partner?
Regarding the recurring concerns, we identified a total of nine new recurring concerns
through the semi-structured interviews with the stakeholder groups DEV, PO and SM.
Additionally, we could identify and verify a total of 56 already observed recurring con-
cerns by Uludağ et al.[57] for these three stakeholder groups, however, not all of these
identified concerns were typically assigned to the stakeholder groups. We identified that
the SM ofLSADP of Technology LLC. shared many concerns originally assigned to agile
coaches, which originates in their special part-time SM role.
Additionally, many concerns related to the Test Team were identified by the DEV as they
are responsible for establishing automated testing and are supported by manual testers
from an external organization. By creating their individual LSADP practice, most of the
newly identified concerns are dealing with multiple POs in a team and sharing knowledge
across those domain-specific teams.
For the DEV stakeholders we identified their main concern category to be Quality Assur-
ance. For the POs the main concern category was Requirements Engineering, while many
of the identified Requirements Engineering concerns had their root-cause in Knowledge
Management. Finally, the SM stakeholders were concerned with Culture & Mindset prob-
lems.
RQ3. What are good practices for addressing recurring concerns of stakeholders of the
product organization of the case study partner?
In Combination with the recurring concerns, we were able to document a total of 35 good
practices (18 Methodology, 11 Coordination and seven Viewpoint) and three principle can-
didates. Additionally, discovering one Coordination-Pattern CO-1 Community of Practice,
also documented by Uludağ et al.[55], which through the combination of LeSS and Spotify
serve an important role of creating a Knowledge Share platform across the agile teams of
Technology LLC, as described by Wenger et al.[64].
Overall the pattern candidates indicated a intense focus on addressing the domain-specific
expertise concerns, which Technology LLC. created to address issues at the initial agile
transformation phase. With the goal of creating feature teams in the future, the LSADP
created multiple practices to foster the knowledge share of their LSADP, especially by in-
troducing domain experts with a 50% capability of addressing knowledge share with their
team colleagues.
RQ4. Which bad practices should be avoided in the product organization of the case
study partner?
This Thesis documented 11 anti-pattern candidates from the interviews with the stake-
holder groups. In total five Anti-Patterns were connected to Knowledge Management
concerns. Additionally we identified one anti-pattern addressing once more the initial

124

5.2. Limitations

agile transformation phase of the LSADP, the anti-pattern A-1 Don’t use Frameworks as
Recipes was also discovered by Uludağ et al.[59]. Overall, the high number of anti-pattern
candidates documented indicates that misusing agile practices or misunderstanding agile
values is a major challenge for LSADP, one that if not aware of creates a chance of becom-
ing ’pseudo agile’[59].
When combining the findings from RQ3 and RQ4 we identified three concern categories,
which were relevant for the final Research Question, where this thesis implemented a pat-
tern from the pattern catalog at Technology LLC.
RQ5. What are the lessons learned of implementing already observed best practices in
the product organization of the case study partner?
The concept of the proposed pattern allowed for an easy guided implementation of the
CO-1-Instantiated Community of Practice for Product Owners - instantiated Solution. The
content of the pattern was applicable and the new formed CoP agree the pattern addresses
their concerns and will help in addressing them in the future. Overall, the pattern language
presented only little deviations between the design and instantiated solution. With a con-
sensus, that the participants of the CO-1-Instantiated Community of Practice for Product
Owners - instantiated solution agree the current template for documenting patterns makes
them applicable without guidance needed, see Section4.5.7.

5.2. Limitations

Limitations of this thesis follow the identified threats to validity by Runeson and Höst[45].
Construct validity -To what extent does the studied object reflect what the researcher is focused
on[45].
By gathering data through observations,interviews with different stakeholder groups and
attending several meetings of the LSADP studied, the data collection followed a mixed-
methods approach.
Internal validity - Causal relations are misinterpreted by the researcher, ignoring forces out of
scope[45].
The first part of this work was a descriptive case study, hence no threat of the internal va-
lidity being challenged. The second part documented relationships between concerns and
best practices applied, to not unintentionally ignore forces on these relationships, we cross-
checked the findings with several interview partners, to gain as big a picture as possible.
The time-horizon of the deviations from the configured design and the observed instanti-
ated solution are challenged by internal validity. As the results of the Section4.5.7lessons
learned are based on a single occurrence of the implementation. While they offer insights
into the action plan and can create a degree of validity for the relationship of Context,
Problem and Solution. There might be some forces ignored, as we weren’t able to observe
the process and evolution the CO-1-Instantiated through further being applied.
External validity - Generalization and relevance for other cases[45].

125

5. Discussion

By applying the LSADPL by Uludağ et al.[55], this thesis aimed at using a construct of
documenting the findings, which allows for application at other organizations. Due to the
fact, the case study partners LSADP has been tailored to their fit, there exists the chance
for some best practices observed being unique context, problem and solution for this case.
Reliability - Dependency on Researcher[45].
While the data collection and analysis was mainly done by one researcher, the application
of the how the data was collected and which information was gathered followed the com-
bined work of the larger research project. Further, one audio recording of an interview
corrupted and we had to go through all documented findings of that interview in detail
with the interviewee to make sure, the data was correct. For example, the structured-
questionnaires was only minimally adapted to gather important information for the ob-
served case study partners’ LSADP. Additionally the application of the LSADPL allows
for a general measure for documenting best practices, which is understandable and ap-
plied by several researchers. Therefore, the here documented practices would be docu-
mented in the same fashion by different researchers.

126

6. Conclusion

This chapter summarizes the thesis and research results and offers this researchers opinion
on what future work would be interesting building on this work.

6.1. Summary

The motivation for this thesis was the ongoing application of agile practices in a large-
scale context. We first aimed at documenting and creating a individual representation of
the case study partners LSADP.
By applying the Pattern-based Design Research, we aimed at documenting and identify-
ing concerns and best practices observed at the case study partner as well as introducing
patterns from other organizations to resolve some concerns of the case study partner.
Following these approaches this thesis created a LSADP of Technology LLC. by conduct-
ing expert interviews and using observations. Observing the agile transformation phases
of Technology LLC. and documenting the current LSADP process. Then we conducted 11
more interviews with three different stakeholder groups at Technology LLC., identifying
56 concerns from the literature and nine new concerns. These concerns stemmed from
the adoptions done at Technology LLC. and their resulting unique LSADP with new team
concept and new roles.
Due to the case study being conducted at a single organization, this thesis documented 36
good and 11 bad practices, as well as three principles, which found application at Tech-
nology LLC. Together with the one pattern and one anti-pattern observed at Technology
LLC. , the overall approach of solving the concerns of the stakeholder groups can mainly
be boiled down to the implementation of the new roles. Additionally, we could verify one
Coordination pattern through applying it to address concerns of Technology LLCs’ PO
stakeholder group. By verifying the pattern, we could also provide some verification for
the LSADPL used in this thesis.

6.2. Future Work

As this thesis documented several new pattern candidates, it would be interesting to see,
whether these can be found at other organizations or even whether they could be applied
to other organizations, for which further case studies of Technology LLC. and other orga-
nizations would be useful.
Further, a case study following up this work would be interesting, as the lessons learned

127

6. Conclusion

of the introduced patterns could be observed and the agile transformation phase currently
happening could be documented. Additionally, a follow-up case study would provide in-
sights whether the introduced and instantiated patterns are applied and which deviations
exist to the documented patterns.
Finally, further work needs to be done in implementing the patterns of the pattern cat-
alog at multiple organizations. Not only to further develop the LSADPL, but also offer
more validity, by observing the deviations when applying the patterns. In total, more re-
search, applying the full Pattern-based Design Research approach, would help validate
the LSADPL and the patterns documented in the pattern catalog. Therefore, we also rec-
ommend further research in applying the full Pattern-based Design Research approach at
other organizations.

128

A. Appendix

A.1. Interview Questionnaire for Identifying the adoptions of the
Agile Program at the case study partner

General Information
Questions about the Participant

• What is your role description in your organization?

• How long have you been active in your role in the field of scaled agile software
development?

1. Introduction of LeSS

a) When was LeSS introduced and how long did the Implementation take, respec-
tively how long has the implementation been going on?

b) Why and focusing on which criteria has LeSS been implemented and which
existing concerns was the framework supposed to address?

c) Why did you choose LeSS?

d) With which agile frameworks are you combining LeSS?

e) What training did employees have concerning LeSS?

f) Which challenges and problems did you face when implementing LeSS? Were
several adaptions necessary to integrate LeSS in your agile program?

g) What are your Lessons Learned concerning the implementation of LeSS?

2. Adaption and Application of LeSS

a) General

i. Who are stakeholders in your LeSS?

ii. How has LeSS been embedded in the organization structure?

iii. Are you using LeSS or LeSS Huge?

129

A. Appendix

b) Goals

i. How are you applying which LeSS principles?

ii. How and to which degree is coordination (team intern, team extern, to other
stakeholders) regulated?

iii. Which of the LeSS guidelines regarding principals, coordination and com-
munication do you deem most useful and where would you see a general
need for improvements?

c) Roles

i. Which roles are represented in your agile program?

ii. What classifies work, responsibilities and area of duty for the respective
role (Product Owner, Scrum Master, and Development Team)?

iii. Where do you see a need for improvement concerning roles and their re-
sponsibilities and area of duty?

d) Artifacts

i. What artifacts are represented in your agile program?

ii. What denotes the content of these artifacts (Sprint Backlog, Sprint Goal,
Product Increment and Definition of Done; i.e. are there several persons
responsible or only one)?

iii. How is the Product Backlog managed and how does the assignment from
the Product Backlog to a team work?

iv. Is each artifact defined and meaningful? Where do you see a need for im-
provement?

e) Processes

i. Which processes are part of your agile program?

ii. What generally denotes your processes (Sprint, Product Backlog Refine-
ment, Sprint Planning 1 and 2, Daily Scrum, Sprint Review, Overall/Team
Sprint Retrospective, i.e. Goals, Procedure, and Participants)?

iii. How meaningful do you deem your processes and where do you think is a
need for improvement?

f) Architecture

i. Which role do architects (i.e. IT architects, EA architects) assume in your
agile program? How do you conceive your cooperation?

130

A.1. Interview Questionnaire for Identifying the adoptions of the Agile Program at the
case study partner

ii. What influence has architecture in your development process?

iii. What is your opinion regarding CoP in architecture topics? Are you partic-
ipating? Do you deem it helpful?

iv. Which tools or models do you use for visualization of the architecture?

v. How do you deal with technical debt?

vi. Where do you see a need for improvement concerning architecture topics?

3. General Retrospective of LeSS Framework

a) How satisfied are you with the framework (Scale 1-5, 1 = very unsatisfied, 5 =
very satisfied)? Please explain your answer.

b) Does LeSS live up to your expectations, where are possibilities for improvement
and where were you disappointed with the framework?

4. Discussion

a) Would you be willing, in the context of this case study, to take part in a final
questionnaire? If yes, please provide your name and e-mail.

b) Remarks and Questions

131

A. Appendix

A.2. Semi-structured Interview Questionnaire for Identifying
Concerns and Documenting Good and Bad Practices

General Information

1. General Information about the Participant

a) What is your role called at your company?

b) Which role description applies to you?

c) How many years have you been active in the field of scaled agile software de-
velopment?

d) May we contact you again in the context of the study if necessary?

2. Identification and Description of Concerns and Practices

a) What are the recurring concerns you face in your role?

b) On what level do these typically occur and how often are you confronted with
them?

c) In which category would you classify the concern?

d) Which practices do you apply to address the concern?

e) Which practices should not be applied to address the concern?

3. Identification of Recurring Concerns and Description of Practices

a) Which of the following concern did you face in your role?

b) At what level do they typically occur and how often are you confronted with
them?

c) In which category would you classify the concern?

d) Which practices do you apply to address the concern?

e) Which practices should not be applied to address the concerns?

4. Discussion

a) Do you have any comments or open points?

132

A.3. Questionnaire: Pattern Feedback

A.3. Questionnaire: Pattern Feedback

General Information

1. Questions about the Participant

a) Which role description applies to you?

b) How many years have you been active in the field of scaled agile software de-
velopment?

2. General Retrospective introduced patterns
Please answer below on a scale from 1-5 (1 = disagree, 2 = somewhat disagree, 3 = neutral, 4
= somewhat agree, 5 = agree)

a) Do the presented patterns address your recurring concerns adequately?

b) Would you be able to apply the presented patterns?

c) Do you think applying the presented patterns will help solve your recurring
concerns?

d) Are you interested in other patterns from the pattern catalogue to address some
of your other recurring concerns?

3. Feedback introduced Pattern

a) How do the introduced patterns address your recurring concerns?

b) Which of the introduced patterns will you apply and how? Will you continue
to apply the introduced pattern?

c) Would you recommend the applied pattern to your colleagues? Where do you
see a need for improvement in the applied pattern?

133

A. Appendix

134

B. Appendix

B.1. Documentation of newly identified Concerns

The following tables consist of all newly identified concerns, which were identified through
the interview process.. The concerns mentioned are categorized according to the LSADPL
by Uludağ et al.[55]. Hence, id, name, description, category, scaling level, and the source
are documented.

135

B. Appendix

ID
N

am
e

D
es

cr
ip

ti
on

C
at

eg
or

y
Sc

al
in

g
Le

ve
l

So
ur

ce

C
-7

9
H

ow
to

ba
la

nc
e

am
ou

nt
an

d
qu

al
-

ity
of

de
liv

er
ed

re
-

qu
ir

em
en

ts
?

Ev
en

th
ou

gh
as

a
Pr

od
uc

t
O

w
ne

r,
on

e’
s

m
ai

n
go

al
is

to
fu

rt
he

r
de

liv
er

bu
si

ne
ss

va
lu

e
to

cu
st

om
er

s,
th

e
ba

la
nc

e
of

qu
al

it
y

an
d

de
liv

er
y

ha
s

to
be

ke
pt

.
Bu

t
ho

w
do

yo
u

m
ak

e
cu

st
om

er
s’

aw
ar

e
of

th
e

be
ne

fit
s

of
de

liv
er

in
g

le
ss

,b
ut

of
hi

gh
er

qu
al

it
y?

Q
ua

lit
y

A
ss

ur
-

an
ce

Te
am

PO
-1

C
-8

0
H

ow
to

m
an

ag
e

ov
er

ar
ch

in
g

ba
ck

-
lo

g
ite

m
pr

io
ri

ti-
za

tio
n

w
ith

m
ul

ti-
pl

e
pr

od
uc

t
ow

n-
er

s?

W
it

h
a

Sc
al

ed
-A

gi
le

D
ev

el
op

m
en

t
Pr

og
ra

m
co

ns
is

t-
in

g
of

at
le

as
tP

ro
du

ct
O

w
ne

rs
pe

rt
ea

m
,t

he
PO

s
ha

ve
to

co
or

di
na

te
w

it
h

ea
ch

ot
he

r
w

hi
ch

ba
ck

lo
g

it
em

s
m

ak
e

th
e

cu
t

to
be

ad
de

d
to

th
e

Sp
ri

nt
Ba

ck
lo

g.
Pr

i-
or

it
iz

at
io

n
is

di
ffi

cu
lt

,a
nd

co
nfl

ic
tw

ill
en

su
e,

if
th

er
e

is
no

cl
ea

r
m

et
ho

d
fo

r
de

al
in

g
w

it
h

th
is

co
nc

er
n.

C
om

m
un

ic
at

io
n

&
C

oo
rd

in
a-

ti
on

Pr
og

ra
m

PO
-1

C
-8

1
H

ow
to

un
-

de
rs

ta
nd

al
l

in
te

rf
ac

es
an

d
de

pe
nd

en
ci

es
of

th
e

sy
st

em
?

In
te

rv
ie

w
ee

PO
-5

de
sc

ri
be

d
th

e
is

su
e

of
un

de
rs

ta
nd

-
in

g
al

l
de

pe
nd

en
ci

es
be

tw
ee

n
th

e
la

rg
e

am
ou

nt
of

m
od

ul
es

in
th

e
sy

st
em

.
W

he
n

cr
ea

ti
ng

us
er

st
or

ie
s

an
d

re
qu

ir
em

en
ts

,
it

be
co

m
es

di
ffi

cu
lt

to
th

en
m

ak
e

su
re

th
e

w
ho

le
sy

st
em

is
co

ns
id

er
ed

w
it

h
a

lim
it

vi
ew

of
th

e
sy

st
em

.T
hi

s
is

a
co

nc
er

n
fo

r
th

e
En

te
rp

ri
se

A
r-

ch
it

ec
t.

K
no

w
le

dg
e

M
an

ag
em

en
t

Pr
og

ra
m

PO
-5

136

B.1. Documentation of newly identified Concerns

ID
N

am
e

D
es

cr
ip

ti
on

C
at

eg
or

y
Sc

al
in

g
Le

ve
l

So
ur

ce

C
-8

2
H

ow
to

su
pp

or
t

an
O

n-
Bo

ar
di

ng
ap

pr
oa

ch
fo

r
di

f-
fe

re
nt

st
ak

eh
ol

de
r

gr
ou

ps
?

Th
is

is
a

co
nc

er
n

fo
r

Sc
ru

m
M

as
te

rs
,w

it
h

a
gr

ow
in

g
pr

oj
ec

t
an

d
PO

be
in

g
pa

rt
of

th
e

ag
ile

te
am

,t
he

O
n-

Bo
ar

di
ng

m
at

er
ia

l
ha

s
to

be
re

fle
ct

in
g

th
e

di
ff

er
en

t
vi

ew
po

in
ts

of
al

ls
ta

ke
ho

ld
er

s
ac

cu
ra

te
ly

.
O

th
er

w
is

e
O

n-
Bo

ar
di

ng
is

an
is

su
e.

K
no

w
le

dg
e

M
an

ag
em

en
t

Pr
og

ra
m

PO
-2

C
-8

3
H

ow
to

m
an

ag
e

re
qu

ir
em

en
t

de
-

ve
lo

pm
en

t
fo

r
m

ul
tip

le
te

am
s?

In
ca

se
of

PO
-6

,w
ho

is
pa

rt
of

m
ul

ti
pl

e
ag

ile
te

am
s

at
on

ce
,i

ti
s

an
is

su
e

to
m

an
ag

e
de

ve
lo

pm
en

ta
tt

he
se

di
ff

er
en

t
te

am
s

an
d

co
nt

in
ue

ha
vi

ng
re

gu
la

r
ch

ec
k-

in
s

w
it

h
cu

st
om

er
s.

K
ee

pi
ng

tr
ac

k
of

al
l

de
ve

lo
p-

m
en

ts
be

co
m

es
m

or
e

di
ffi

cu
lt

,
as

m
ul

ti
pl

e
m

od
ul

es
ca

n
be

co
nc

er
ne

d
an

d
in

te
ra

ct
io

n
w

it
h

m
ul

ti
pl

e
ex

-
te

rn
al

pa
rt

ne
rs

m
ig

ht
be

re
qu

ir
ed

.

Pr
oj

ec
t

M
an

-
ag

em
en

t
Te

am
PO

-
06

C
-8

4
H

ow
to

in
vo

lv
e

al
l

te
am

m
em

be
rs

in
so

lu
tio

n
ge

ne
r-

at
io

n?

Sc
ru

m
M

as
te

r
SM

-1
id

en
ti

fie
d

an
is

su
e

in
hi

s
te

am
,

th
e

in
tr

od
uc

ti
on

of
Pr

oc
es

s
C

on
su

lt
an

ts
,w

hi
le

us
ef

ul
fo

r
m

an
y

re
as

on
s,

lim
it

ed
th

e
en

ga
ge

m
en

t
of

ot
he

r
de

ve
lo

pe
rs

.W
he

n
on

ly
on

e
de

ve
lo

pe
ra

ct
iv

el
y

w
or

ks
on

so
lu

ti
on

ge
ne

ra
ti

on
an

d
al

l
ot

he
r

te
am

m
em

be
rs

ac
ce

pt
hi

s
so

lu
ti

on
,

th
e

so
lu

ti
on

s
ar

e
lim

it
ed

to
on

e
m

in
d,

in
st

ea
d

of
us

in
g

th
e

kn
ow

le
dg

e
of

a
w

ho
le

te
am

.

C
ul

tu
re

&
M

in
ds

et
Te

am
SM

-1

137

B. Appendix

ID
N

am
e

D
es

cr
ip

ti
on

C
at

eg
or

y
Sc

al
in

g
Le

ve
l

So
ur

ce

C
-8

5
H

ow
to

sh
ar

e
do

m
ai

n
kn

ow
l-

ed
ge

ac
ro

ss
ag

ile
te

am
s?

D
EV

-1
id

en
ti

fie
d,

th
at

he
as

a
de

ve
lo

pe
r

ha
s

is
su

es
to

ga
th

er
kn

ow
le

dg
e

fr
om

ot
he

r
ag

ile
te

am
s,

w
he

n
no

t
ha

vi
ng

to
de

al
w

it
h

so
m

et
hi

ng
th

at
st

op
s

hi
m

fr
om

w
or

ki
ng

.T
he

sh
ar

in
g

of
do

m
ai

n
kn

ow
le

dg
e

on
ly

oc
-

cu
rs

in
te

am
s

of
th

at
do

m
ai

n
an

d
de

ve
lo

pe
rs

in
te

r-
es

te
d

in
th

e
do

m
ai

n
kn

ow
le

dg
e

ha
ve

a
hi

gh
er

bo
un

d-
ar

y
to

re
ce

iv
e

th
at

kn
ow

le
dg

e.
D

EV
-1

hi
m

se
lf

ha
d

is
-

su
es

sh
ar

in
g

hi
s

kn
ow

le
dg

e
w

it
h

ot
he

r
ag

ile
te

am
s

in
a

ef
fic

ie
nt

m
an

ne
r.

K
no

w
le

dg
e

M
an

ag
em

en
t

Pr
og

ra
m

D
EV

-
1

C
-8

6
H

ow
to

in
vo

lv
e

re
m

ot
el

y
w

or
ki

ng
an

d
ex

te
rn

al
co

l-
le

ag
ue

s?

D
ev

-2
m

en
ti

on
ed

th
at

he
as

a
ex

te
rn

al
co

lle
ag

ue
ha

s
is

su
es

co
nn

ec
ti

ng
to

th
e

vi
de

o-
ch

at
s

w
it

ho
ut

te
ch

ni
-

ca
li

ss
ue

s,
w

he
n

no
tw

or
ki

ng
fr

om
th

e
SA

D
P

of
fic

es
.

Th
is

is
a

co
nc

er
n

fo
r

th
e

Sc
ru

m
M

as
te

rs
.

To
ol

in
g

O
rg

an
iz

at
io

n
D

EV
-

2

C
-8

7
H

ow
to

cl
ar

ify
de

ta
ils

ou
ts

id
e

of
m

ee
tin

gs
in

cr
os

s-
sh

or
e

ag
ile

te
am

s?

D
EV

-5
ha

d
th

e
re

cu
rr

in
g

co
nc

er
n

to
ge

t
a

ho
ld

of
te

am
m

em
be

rs
no

t
co

-l
oc

at
ed

,
w

hi
ch

ca
n

es
pe

ci
al

ly
pa

in
fu

lw
he

n
tr

yi
ng

to
ga

th
er

so
m

e
ex

pl
an

at
io

n
to

a
qu

es
ti

on
,w

hi
ch

in
tu

rn
m

ak
es

th
e

de
ve

lo
pe

r
ha

ve
to

ch
an

ge
ta

sk
s

un
ti

lh
e

re
ce

iv
es

th
e

an
sw

er
.W

hi
le

us
u-

al
ly

co
m

m
un

ic
at

io
n

is
di

re
ct

,
so

m
et

im
es

du
e

to
th

e
ti

m
e

di
ff

er
en

ce
,

de
ve

lo
pe

rs
st

ill
ha

ve
to

w
ai

t
a

fe
w

ho
ur

s
to

cl
ar

if
y

an
is

su
e.

C
om

m
un

ic
at

io
n

&
C

oo
rd

in
a-

ti
on

Te
am

D
EV

-
5

138

B.2. Documentation of existing identified Concerns

B.2. Documentation of existing identified Concerns

• C-03 :How to coordinate geographically distributed agile teams?[57]

• C-04 :How to deal with doubts in people about changes?[57]

• C-05 :How to facilitate shared context and knowledge?[57]

• C-07 :How to deal with incorrect agile practices?[57]

• C-10 :How to create precise requirement specifications for the development team?[57]

• C-12 :How to provide sufficient tools and infrastructure for remote communications?[57]

• C-13 :How to share common vision?[57]

• C-15 :How to elicit and refine requirements of end users?[57]

• C-16 :How to deal with increasing workload of key stakeholders?[57]

• C-18 :How to split large and complex requirements into smaller requirements?[57]

• C-19 :How to deal with internal silos?[57]

• C-20 :How to facilitate communication between agile teams and other teams using traditional
practices?[57]

• C-22 :How to balance short-term and long-term goals?[57]

• C-23 :How to establish a common scope for different stakeholder groups?[57]

• C-24 :How to create team spirit and trust amoung agile teams?[57]

• C-26 :How to align and communicate architectural decisions?[57]

• C-28 :How to communicate business requirements to development teams?[57]

• C-29 :How to facilitate agile teams to participate at cross-shore meetings?[57]

• C-30 :How to synchronize working hours of cross-shore meetings?[57]

• C-31 :How to deal with geographical distance between agile teams?[57]

• C-32 :How to deal with lacking team cohesion at different locations?[57]

• C-33 :How to build trust of stakeholders in agile practices?[57]

• C-35 :How to define clear and visible priorities?[57]

• C-36 :How to establish automated testing?[57]

139

B. Appendix

• C-37 :How to create lightweight documentation?[57]

• C-39 :How to create a culture of continuous improvement?[57]

• C-41 :How to deal with unplanned requirements and risks?[57]

• C-42 :How to rearrange physical spaces?[57]

• C-43 :How to enforce customer involvement?[57]

• C-44 :How to deal with communication gaps with stakeholders?[57]

• C-45 :How to deal with black and white mindsets?[57]

• C-46 :How to deal with closed mindedness?[57]

• C-47 :How to deal with higher-level management interferences?[57]

• C-49 :How to deal with increased efforts by establishing inter-team communication?[57]

• C-50 :How to deal with lacking sense of ownership responsibilities for developed services?[57]

• C-53 :How to ensure traceability of tests and requirements?[57]

• C-54 :How to make a cost and schedule estimation?[57]

• C-55 :How to create a teamwork centric rewarding model?[57]

• C-56 :How to define clear roles and responsibilities?[57]

• C-59 :How to establish a common understanding of agile software development?[57]

• C-60 :How to create and estimate user stories?[57]

• C-61 :How to deal with cultural differences between cross-shore agile teams?[57]

• C-62 :How to deal with fixed price contracts in agile software development?[57]

• C-63 :How to explain requirements to stakeholders?[57]

• C-65 :How to deal with office politics?[57]

• C-67 :How to encourage development teams to talk about tasks and impediments?[57]

• C-68 :How to write understandable automated tests?[57]

• C-69 :How to establish requirements verification?[57]

• C-70 :How to define high-level requirements a.k.a. epics?[57]

• C-71 :How to measure the success of the large-scale agile development program?[57]

140

B.2. Documentation of existing identified Concerns

• C-72 :How to consider required competencies when assigning teams to tasks?[57]

• C-73 :How to deal with decreased predictability?[57]

• C-74 :How to empower agile teams to make decisions?[57]

• C-75 :How to form and manage autonomous teams?[57]

• C-76 :How to coordinate test and deployment with external parties?[57]

• C-77 :How to build an effective coaching model?[57]

• C-78 :How to synchronize sprints in the large-scale agile development program?[57]

141

B. Appendix

142

C. Appendix

The Practices are documented with the maturity level as defined by Uludağ et al.[55]. The
maturity of a pattern is represented by star notation: two stars, indicating the pattern
addresses a genuine problem, one star indicates the pattern addresses a real problem, no
star means the pattern was useful for a observed problem but needs revision[55].

C.1. Documentation of Coordination Pattern and Good
Coordination Practices

The Pattern CO-1Community of Practice was already presented in Section4.4.1.
The good coordination practices CO-04 Kickoff and CO-08 Newsflash were already pre-
sented in the findings in Section4.4.4.

143

C. Appendix

C.1.1. Product Backlog Refinement**

CO-Pattern Overview **
ID CO-05
Name PRODUCT BACKLOG REFINEMENT

Alias -
Summary Product Backlog Refinement for estimating backlog items

and clarification of these Backlog items. Constant communi-
cation between PO and team to have a good understanding
of requirements

Example
Technology LLC. uses the PBR to elicit backlog items and create a common understanding
in the team. As requirements are prone to change, the PBR is used to reiterate estimates
and explain requirements from the Backlog.

Context
Backlog items need to be estimated and be commonly understood by all team members so
everyone could be able to solve them and knows what is required.

Problem
The following concerns are addressed by this practice:

• C-60 How to create and estimate user stories?

Forces
Following forces have been identified:

• Estimates can vary depending on experience of developers, therefore accurate esti-
mates have to be aligned.

• Common understanding of a task and requirements required, so the functionality
represents the business need.

Solution
Product Backlog Refinement: PO presents requirements followed by short discussion and
estimation. As the event is repeated twice a Sprint, discussions can be lengthy if required,
but don’t have to be lengthy. Focus is to get a common understanding of all backlog items,
so when they are to be implemented, everybody knows what to do. Afterwards estimation
on Story Points via M-17 Planning Poker Light

Consequences
The following Benefits have been associated with this practice:

144

C.1. Documentation of Coordination Pattern and Good Coordination Practices

• Constant knowledge share.

• Clearer and more accurate estimations.

The following Liabilities have been associated with this practice:

• Time expensive with one hour every week. –> A quarter of parallel woking hours.

See Also
The practice uses M-17 Planning Poker Light for estimating user stories.

145

C. Appendix

C.1.2. Pre-Planning Coordination

CO-Pattern Overview
ID CO-01
Name PRE-PLANNING COORDINATION

Alias -
Summary To avoid conflicts in Sprint Planning and to organize a more

efficient Sprint Planning, the Product Owners coordinate their
topics before the Sprint Planning without involving the Team.

Example
The agile program of Technology LLC. has multiple customers and modules supported.
Each module has a Product Owner (PO), each team works on multiple modules according
to their domain knowledge. Multiple PO are working in one team, to coordinate backlog
items resolved in a sprint, each team has a head PO and there is a CPO. However, to keep a
healthy balance a Pre-Planning Coordination occurs to manage overarching backlog item
prioritization.

Context
Multiple PO in one team with own interest of improving supported modules. Coordina-
tion of backlog item prioritization needs to happen.

Problem
Following concern is addressed by this practice:

• C-80:How to manage overarching backlog item prioritization with multiple product owners?

Forces
Following forces have been identified:

• Multitude of modules supported in system used by multiple customers.

• Each PO aims at improving the modules he is responsible for, with multiple POs in
a single agile team, they have to coordinate.

Solution
Pre-Planning Coordination:
Head PO of each team organizes a short meeting or asks each PO individually about their
most important requirements for the following Sprint. Overall, the V-06 Epic Plan Game
Board dictates the highest priority for the next sprint. Limiting the cause for conflict as the
epic plan has priority and should always be followed. As all PO know the overall capacity
of the team and the amount of capacity needed for their highest priority requirements, the

146

C.1. Documentation of Coordination Pattern and Good Coordination Practices

discussion usually is very short. When there is a conflict, which cannot be resolved by the
conflict parties, the head PO has final say about which requirements’ priority is higher.
This coordination happens before every team meeting, which is connected to discussion
about backlog items.

Consequences
The following Benefits have been associated with this practice:

• Common understanding in PO Team for most important topic in the following sprint.

• More efficient follow-up meetings such as sprint planning, PBR.

The following Liabilities have been associated with this practice:

• Development team is not part of the process.

• Decisions from Head PO can negatively influence morale in PO team.

See Also
This practice is applied before CO-05 Product Backlog Refinement and has an direct connec-
tion to the M-11 Product Owner Team.

147

C. Appendix

C.1.3. Face-to-Face Knowledge Transfer

CO-Pattern Overview
ID CO-02
Name FACE-TO-FACE KNOWLEDGE TRANSFER

Alias -
Summary Scheduled meetings, when impediments has been raised. Pro-

cess Consultant and respective colleague discuss impediment
and share Knowledge.

Example
Technology LLC. uses Process Consultants with expert knowledge in a specific domain.
When a requirement assigned to a developer with less experience or when discussing im-
pediments in a daily, the Process Consultant proactively offers up F2F meetings to resolve
these impediments.

Context
Complex System with migrated legacy systems, requiring in-depth domain knowledge.
On-Boarding of new employees and Impediment discovery during implementation.

Problem
Following concerns are addressed by this practice:

• C-18 :How to split large and complex requirements into smaller requirements?

• C-19 :How to deal with Internal Silos?

• C-84 :How to involve all team members in solution generation?

• C-85 How to share domain knowledge across agile teams?

Forces
Following forces have been identified:

• Legacy Code with little to none technical documentation within a complex and vast
system. Assumption developers understand specific platform part or process can
hinder a sufficient explanation.

• Domain knowledge difficult to share among all members, as well as different expe-
rience levels in developers.

Solution
Face-to-Face Knowledge Transfer:
The following application scenarios and practices exist:

148

C.1. Documentation of Coordination Pattern and Good Coordination Practices

1. On-Boarding of new employee in a team

a) PC introduces employee via F2F (remote or in-person) to domain and explains
most important functionality and architectural setup to new employee.

b) PC shows graphically within system, first from customer view then in the code
base.

c) Creating a contact point for further questions.

2. Impediment Discovery in Daily or during Implementation

a) PC blocks a time block after daily (i.e. 30 min) for explanation or discussion.

b) PC proactively invites affected developer or developer asks for PC’s help during
daily or beforehand.

c) F2F meeting (remote or in person) explaining requirement or impediment root
from GUI to code base.

d) Check PC and Developer whether Impact Analysis is required.

e) Assuming new employee with no knowledge, so visualization through GUI ex-
plains existing implementation best.

3. Product Owner requires support of Process Consultant

a) Product Owner asks for support.

b) Meeting set to discuss impediment of Product Owner (i.e. estimation of Re-
quirement, need for split).

c) PC estimates and explains needed changes eventual Proof of Concept required.

d) Next PBR discussion in whole team presented by PO.

Consequences
The following Benefits have been associated with this practice:

• Saving time of team by having separate meeting for explanations.

• Supported Knowledge Transfer with visual help as well as expert knowledge share.

• Easier process for whole team.

The following Liabilities have been associated with this practice:

• Limits experts’ development capabilities.

• When expert is not available, the Knowledge Transfer eventually has to wait

See Also
Initiated by the the expertM-07 Process Consultant and eventually connected with a M-18
Proof of Concept.

149

C. Appendix

C.1.4. Exemplary Knowledge Transfer

CO-Pattern Overview
ID CO-03
Name EXEMPLARY KNOWLEDGE TRANSFER

Alias -
Summary Scrum Master, who is Developer as well, actively instigates

knowledge transfer sessions with developers to help them be-
come more confident and showcase good ideas.

Example
Team A of a large-scale development program has a requirement creating a necessity of
an architecture decision. The assigned developer and the SM open up a meeting for dis-
cussing the solution options, as the required implementation offers a good example or is
difficult to solve.

Context
Requirement or solution finding offers a teachable moment about implementation possi-
bilities, which is beneficial for whole team.

Problem
Following concerns are addressed by this practice:

• C-33 How to build trust of stakeholders in agile practices?

• C-39 How to create a culture of continuous improvement?

Forces
The following forces have been identified:

• For people to share good solutions or practices and be put in the spotlight can be
uncomfortable.

• Geographically distributed teams with limited amount of shared working hours.

Solution
Exemplary Knowledge Transfer:
After Requirement estimation in PBR or when a Developer contacts SM about Impediment.
Spontaneous team meeting, either in blocked time right after daily or whenever possible,
but as close as possible to discovery. If not possible to meet right away, it is pushed to the
next retrospective. Goal of meeting is to communicate and discuss a major implementa-
tion issue with possible architectural implications. SM organizes and opens the meeting,
making sure to involve possibly required experts. Developer explains the issue he faces.

150

C.1. Documentation of Coordination Pattern and Good Coordination Practices

Team Discussion on possible solution.

Consequences
The following Benefits have been associated with this practice:

• Knowledge Transfer in Team. Solution generation via team decision.

• Focus on architectural discussion encourages culture of continuous improvement.

• Common understanding of solution created and eventually related architectural con-
cept.

The following Liabilities have been associated with this practice:

• Difficult to organize. Taking away time of multiple people.

• Useless when no discussion is generated, but rather everybody just listens

See Also
This practice is used on combination with the discovery in CO-05 Product Backlog Refine-
ment or Daily.

151

C. Appendix

C.1.5. Direct Customer Communication

CO-Pattern Overview
ID CO-06
Name DIRECT CUSTOMER COMMUNICATION

Alias -
Summary Product Owner use direct customer communication to involve

customers more in the Large-Scale Agile Development Pro-
gram and to create a higher customer satisfaction. They don’t
wait for customer to ask for something, rather going towards
them and present something.

Example
Technology LLC. has a project team working in a large-scale agile development program.
The customers of the team have requirement and if they are key-users, they have an in-
creased involvement in testing the delivered features as an acceptance test.

Context
Customers with little interest in being involved in the process of LSADP or working in
traditional processes, hence, not aware the amount of required involvement and impact
the involvement has on the quality of the product.

Problem
Following concerns are addressed by this practice:

• C-28 :How to communicate business requirements to development teams?

• C-43 :How to enforce Customer Involvement?

Forces
Following forces have been identified:

• Customers are not used to being part of the process outside of giving requests and
using the final product.

• Customers want to be informed about progress of their functionalities, especially in
connection with delays or issues related to the functionality.

• Customers might feel that the delivered product doesn’t represent their business
need.

152

C.1. Documentation of Coordination Pattern and Good Coordination Practices

Solution
Direct Customer Communication:
Focusing on direct communication between PO and customer, creating a personal relation-
ship and proactively requesting testing from key users and customer. Additionally asking
for a formal approval of the delivered requirement via a soft go-live. Including customer
as an informal manual tester. Actively involving customers in team events, when the sit-
uation allows for it: Involving the customer in a CO-05 Product Backlog Refinement and
Review when closely working on a complex requirement. Having the customer directly
explains to the team how he uses the system and why certain changes are important for
him.

Consequences
Following Benefits are associated with this practice:

• Additional business expertise and higher chance of correct implementation. New
connection to business needs for team, understand how the system is used by cus-
tomer.

• Better understanding of LSADP on customer side. Higher appreciation through in-
volvement.

• In some situations has lead to support for automation testing and accepting the
smaller deliveries from customers as they understand the need for it.

Following Liabilities are associated with this practice:

• Feedback may be not directed at actual problem. Wasting time and increasing irrita-
tion.

• Disapproving customer can damage the relationship and the lower morale of team.

• Misuse can lead to damages

See Also
This practice is used in combination with CO-04: Kickoff , CO-05: Product Backlog Refine-
ment and CO-07: Periodic Round-Table as events where the customer might be involved in.

153

C. Appendix

C.1.6. Periodic Round-Table

CO-Pattern Overview
ID CO-07
Name PERIODIC ROUND-TABLE

Alias -
Summary Recurring meeting of key users and Product Owners. The

PO discusses and elicits functional requirements and business
needs from the customer. Informs and updates the customer
on current status of the functionality implemented for the user.

Example
Technology LLC. has a LSADP as an internal program to implement in-house software so-
lutions. Hence, all customers of the Large-Scale Agile Development Program are internal
customers representing several different business units and business needs. For aligning
the creation process of requirements regular meetings are used between PO and customer
groups. These are called “Periodic Round-Table”.

Context
Whenever dealing with customers in software development the eliciting of the require-
ments is one of the most important steps in requirements engineering. In agile develop-
ment especially an involved customer results in more accurately representations of the
business need of a customer. However, customers have limited time and are not used to
being regularly involved in the development process.

Problem
Following concerns are addressed by this practice:

• C-15 :How to elicit and refine requirements of end users?

• C-43 : How to enforce customer involvement?

Forces
Following Forces have been identified:

• Customers usually have a limited background in software development.

• Customers often have only an concept of a business need, without clear idea how
the functionality should deliver solutions.

• Business Needs and the formed ideas for implementation need discussion as they
seldom are the same. Hence, there is a need for compromises and flexibility on the
customer-site.

154

C.1. Documentation of Coordination Pattern and Good Coordination Practices

Solution
Periodic Round-Table:
Recurring meeting every Sprint or every other Sprint depending on the amount of require-
ments a customer has. Periodic Round-Table with the respective key users and customers
from the affected business units. In a first step, the customer describes a business need
of his. In combination with the PO responsible for the module, they than collaborate to
define a clear vision of the functionality. If the requirement comes with a major change or
includes a high amount of work effort. There is a one or two day workshop between the PO
and the customers involved. Creating a common understanding of the business need and
the possibilities available to implement the requirement. After these initial discussions, in
the Periodic Round-Table the customer then presents the business needs and functionality
to the PO, to make sure they have the same understanding of what is required. The PO
then explains a possible solution to the customer. In the following or the same Periodic
Round-Table, the alignment of the requirement and the possible implementation leads to
a, from both parties, confirmed finalized requirement. Usually it takes one to two Peri-
odic Round-Table to finalize a requirement. The size and amount of people represented in
a Periodic Round-Table, usually two to ten, depends on the amount of customers involved.

Consequences
Following Benefits have been associated with this practice:

• Common understanding of scope of a requirement, elicited in close cooperation.

• Close Relationship between PO and customer/key user.

• Customer is more involved.

Following Liabilities have been associated with this practice:

• Feedback or questions might be reserved until next Periodic Round-Table.

• Issues should be discussed as soon as the become obvious, the Periodic Round-Table
hinder immediate discussions.

See Also
The Periodic Round-Table is often used to elicit M-04: Acceptance Criteria from the cus-
tomer.

155

C. Appendix

C.1.7. Process Consultant Meeting

CO-Pattern Overview
ID CO-09
Name PROCESS CONSULTANT MEETING

Alias -
Summary Weekly meeting of Process Consultant and architects aligning

architecture and designing module architecture. Further, talk-
ing about impediments in teams.

Example
Technology LLC. works with Purpose Teams and Process Consultants to align architec-
tural decisions of all teams in the Large-Scale Agile Development Program they use Pro-
cess Consultant Meetings with the IT-Architect Context
Aligning architecture over several domain-specific teams is difficult, as different impedi-
ments could arise or different mentalities need to be dealt with. Teams can have individual
solutions, which need communication, so other teams are aware of interfaces within the
system. And understand possible issues that can arise.

Problem
Following concerns are addressed by this practice:

• C-26 :How to align and communicate architectural decisions?

• C-85 :How to share domain knowledge across agile teams?

Forces
Following Forces have been identified:

• Clear Architecture strategy and situational architecture decisions have impact on the
system, however full understanding of all system parts and modules is necessary.

• Working in several geographically distributed locations in a purpose team setup, can
create communication shortages when considering architecture.

• Legacy systems with technical debts and limited to none test coverage, increase the
possibility of unexpected errors.

Solution
Process Consultant Meetings:
Parallel Meeting to Scrum of Scrums offering a platform for weekly alignment and dis-
cussion of possible solutions for Impediments. Platform for architecture discussions and
decision-making. Weekly meeting to address architecture topics. Introduced and lead by

156

C.1. Documentation of Coordination Pattern and Good Coordination Practices

IT-architect to present architectural concepts. The presented ideas are then discussed by
all Process Consultants with their respective module knowledge in mind. Afterwards, the
impediments in current sprint are addressed to discuss on a technical level a solution op-
portunity or refactoring possibilities. Update style Guide after changes decided in Process
Consultant Meeting.

Variants
An alternative variation can be a CO-1 for architectural topics. Similar discussions possi-
ble on higher level than only the Large-Scale Agile Development Program.

Consequences
Following Benefits have been associated with this practice:

• Increased knowledge pool as all domain experts are present and able to discuss ar-
chitecture.

• Architectural Alignment

• Whole Product Focus when deciding on architecture

• Knowledge share across agile teams and opportunity to address impediments with
other teams solutions

Following Liabilities have been associated with this practice:

• Excluding development team. Hence, another knowledge transfer required by Pro-
cess Consultant.

• Possibly nontransparent decision-making, excluding other program members

157

C. Appendix

C.1.8. Go-Live Celebration

CO-Pattern Overview
ID CO-10
Name GO-LIVE CELEBRATION

Alias -
Summary Celebrate Go-Lives with teams involved. Make video-call in

geographically distributed teams and block out time to ac-
knowledge achievement.

Example
Product Owner (PO-6) realized that due to the deliver-driven nature of the Large-Scale
Agile Development Program of Technology LLC. the actual successes are difficult to be
measured, because after each delivery comes the next one.

Context
When working in a delivery focused setup, you might ignore the fact something has be
delivered and just keep developing. With large goals, the focus on the achievements is
hard to keep up and the morale might be negatively influenced.

Problem
Following concerns are addressed by this practice:

• C-71 : How to measure the success of the large-scale agile development program?

Forces
Following forces have been identified:

• With geographical distribution, team coherence and team events are difficult to sched-
ule

• What defines enough progress or delivery to be celebrated. When too little deliveries
are celebrated, the outcome could be the opposite of what is the goal

Solution
Go-Live celebrations:
Focused on actual Go-Lives, no beta testing go-live or similar, as measure for large enough
requirement so the celebration is adequate. Bring together all team members at the same
location, once the go-live is done, preferably done during the time frame all teams are
at work. Acknowledge the success of delivering the requirement, optionally have a little
pizza celebration or similar. . Additionally, contact platform team to make time for short
mention of go-live in review or other LSADP wide meetings. Take extra time at the end of

158

C.1. Documentation of Coordination Pattern and Good Coordination Practices

the year Review and in Kickoff to celebrate success stories of the team.

Consequences
Following Benefits have been associated with this practice:

• Shift focus from delivery-driven and make achievements visual

• Improved team coherence both on-location and across locations

Following Liabilities have been associated with this practice:

• Difficult to correctly involve geographically distributed teams

• Teams at different locations might feel left out, when one location is overdoing the
go-live celebration

159

C. Appendix

C.1.9. Third Party Interface-Planning Meeting

CO-Pattern Overview
ID CO-11
Name THIRD PARTY INTERFACE-PLANNING MEETING

Alias
Summary Plan ahead for all interfaces with external parties, create a plan

for their developments to align own development accordingly
when required to adapt interface.

Example
Technology LLC.calls data provided by a third party system. Within their system the use
the then provided data to calculate and work with it. However, information on updates
or changes from third parties has to be elicited. Hence, the PO responsible for hird party
systems makes planning meetings with external companies.

Context
Two projects working with different methods, one uses agile methodologies and the other
works with a rigorous planning method.

Problem
The following concerns are addressed by this practice:

• C-20 How to facilitate communication between agile teams and other teams using traditional
practices?

Forces
The following forces have been identified:

• Interfaces to third parties need constant tracking, as soon as one end-point changes,
the other has to be informed and adapt accordingly.

• Different work-styles can be difficult. Especially when unplanned events happen, is
the response different, yet has to be aligned.

Solution
Third Party Interface-Planning Meeting:
Organize your interfaces and dependencies to third parties. Plan ahead in the Epic plan
and make sure they are also aware of changes you are making to your system and which
changes that might require on their side.

1. Create Epic Plan with focus on dependencies

160

C.1. Documentation of Coordination Pattern and Good Coordination Practices

2. Inform third parties or other projects as early as possible of the necessary changes
which are to be done.

3. Before the requirements are part of Sprint hold initial communication summarizing
all the important changes.

4. Stay in constant contact during the implementation phase.

Consequences
The following Benefits have been associated with this practice:

• Communication is enabled . quicker adaption and anticipation of their interface
changes.

• Implementation is less challenging when adapting partly to other method.

The following Liabilities have been associated with this practice:

• Loss of agility required -No short-term changes possible.

• Higher work and communication load during sprints with interface topics.

See Also
Planning of these meetings is enabled through V-06 Epic Plan Game Board. Be aware of
A-04 Don’t Assume mutual Terminology.

161

C. Appendix

C.2. Documentation of Good Methodology Practices

The good methodology practices M-12 Shifting Responsibilities and M-14 Docupedia for Ar-
chitectural Documentation were already presented in the findings in Section4.4.4.

162

C.2. Documentation of Good Methodology Practices

C.2.1. Definition of Ready and Definition of Done**

M-Pattern Overview
ID M-05
Name DEFINITION OF READY AND DEFINITION OF DONE

Alias -
Summary Definitions by each team, to align understanding of what work

Is required to take backlog item into development and what de-
fines a “done” requirement.

Example
Technology LLC. has each team of LSAD define DoR and DoD to define thresholds that
need to be met for requirement to be developed and then accepted as Done.

Context
Decreasing the undefined work required for a development team to be able to develop a
requirement and for a the team to define a developed requirement as ready to be delivered.

Problem
Following concerns are addressed by this practice:

• C-10 :How to create precise requirement specifications for the development team?

• C-69 :How to establish requirements verification?

Forces
Following forces have been identified:

• Developers need the correct information and to understand the actual requirement
and business need.

• Finished functionality needs to adhere to standards to improve customer satisfaction.

Solution
Definition of Ready and Definition of Done:
These are maintained by the agile teams and created during the Kickoff. DoR: Ticket has
estimation and clarified business value to development team. Ticket has images of the
screen to be changed and mock-ups. Acceptance Criteria are specified by PO,...
Any work to be done before a ticket can go into development.
DoD: Implementation is done. Functionality has been tested and peer-reviewed. test case
documentation and tests are done,...
Any work to be done before ticket is closed.

163

C. Appendix

Consequences
The following Benefits have been associated with this practice:

• clear definition and understanding for test and development of a requirement at all
different stakeholders.

• Less necessity for queries. Customer and PO know what to expect.

The following Liabilities have been associated with this practice:

• Have to be adhered by otherwise useless.

See Also
Often combine with M-04 Acceptance Criteria.

164

C.2. Documentation of Good Methodology Practices

C.2.2. Reserved Capacity

M-Pattern Overview
ID M-01
Name RESERVED CAPACITY

Alias -
Summary Calculation for each stakeholder groups capacity are done with

a reduced amount of the actual available time. Reserving time
for unplanned work and eventual bug fixes.

Example
Technology LLC. has a project team working in a LSADP. The team is delivery-driven and
as a high throughput and many different modules, they support.

Context
Whenever a customer reports Bugs, which are minor and not breaking the system. The
PO has to deal with a lower customer satisfaction. Hence, in planning a sprint he has to
decide whether to focus on improving quality or keeping up with the known feature de-
livery speed. Explaining to the customer why both at once are hard to maintain.

Problem
The following concerns are addressed by this practice:

• C-41 :How to deal with unplanned requirements and risks?

• C-79 :How to balance amount and quality of delivered requirements?

Forces
Following forces have been identified:

• Customers expect a high feature development speed. At the same time, they want
high quality products.

• When having a high throughput of features, chances are higher that Bugs appear
which are not system breaking, however, bugs reported by customers can lead to an
expectation they will be fixed right away.

Solution
Reserved Capacity:
Only calculate with 80% of the available capacity for the sprint. The other 20 % can be
applied at the discretion of the PO to address unresolved Bugs or to deal with Blockers.
Offering a degree of flexibility to enforce Quality relevant development.

165

C. Appendix

Consequences
The following Benefits have been associated with this practice:

• Important bug fixes can be resolved in a sprint. Focus on quality assurance increases.

• More flexible in case blockers appear.

No Liabilities have been associated with this practice.

166

C.2. Documentation of Good Methodology Practices

C.2.3. Scope Change

M-Pattern Overview
ID M-02
Name SCOPE CHANGE

Alias -
Summary When the Sprint Goal or overall capacity is influenced by an un-

planned risk or the loss of some development capacity, a scope
change allows to redefine the achievable scope and keeps the
team motivated.

Example
Scrum Masters at Technology LLC. have identified that changing the Scope is a appro-
priate measure when dealing with critical bug fixes or other impediments/risks during a
Sprint. Keeping the Team more motivated.

Context
Requirements changed by customer or developer realizes the complexity of a requirement
was underestimated. Or loss of development capacity leads to lower than expected deliv-
eries.

Problem
Following concerns are addressed by this practice:

• C-73 :How to deal with decreased predictability?

Forces
Following forces have been identified:

• When working with Legacy Systems and historically grown platforms predictions
can turn out to be wrong more frequently.

• Limited or missing documentation or the required expert is no longer with the team,
forces an requirement to take longer.

Solution
Scope Change:
The Team realizes a decreased predictability on a requirement or overall whether Sprint
Goal is realizable. As a result, the team reassess in a PBR and in case the requirements
become too complex, a Scope Change allows a reorganization of the current and following
sprint. Freeing up some time to decide how to approach the issue. Team then decides
together with platform team how to address issue.

167

C. Appendix

Consequences
The following Benefits have been associated with this practice:

• Allows for reassessment and dealing with loss in predictability.

• Team still reaches sprint goal, which in turn motivates the team.

The following Liabilities have been associated with this practice:

• Can be misused, when used as a golden hammer solution.

• Less commitment to trying to achieve original goal, if overused.

168

C.2. Documentation of Good Methodology Practices

C.2.4. Bug Prioritization

M-Pattern Overview
ID M-03
Name BUG PRIORITIZATION

Alias -
Summary While working with a Product Owner Team in each Team, the

PO responsible for a module with a Bug, has the Authority to
prioritize the Bug as he likes, possibily changing the Sprint ca-
pacity.

Example
Technology LLC. works in a large-scale agile program, during the sprint planning or dur-
ing a sprint one of the customers or a tester indicates a major bug. Leading to a Blocker or
escalation. PO are all authorized to decide ion priority without consulting with other PO
of team.

Context
Discovering Bugs, which can be system breaking, and deciding on the priority whether it
needs to be resolved immediately.

Problem
Following concerns are addressed by this practice:

• C-41 :How to deal with unplanned requirements and risks?

• C-80 :How to manage overarching backlog item prioritization with multiple product owners?

Forces
Following forces have been identified:

• Unpredictable whether risks like a Bug will appear during a sprint. Also not avoid-
able.

• Which PO decides in a team on what requirement to focus on, especially when one
has to deal with a unplanned risk

Solution
Bug Prioritization:
Product Owner has the authority to prioritize Bugs on their own. Unless a customer has
triggered an escalation, the PO can decide on his or her own whether to include the new
requirement in the sprint or to push it to a later sprint. When triggered by a tester unveiling
a bug, the same process applies. Additionally the team has previously agreed to include

169

C. Appendix

only Blockers in the same sprint. To address these unplanned occurrences more adequately
all PO’s have left capacity (20%) open in the team for each Sprint. The use of these 20% is
at discretion of the PO Consequences
The following Benefits have been associated with this practice:

• No unnecessary discussions and Critical bugs get resolved.

The following Liabilities have been associated with this practice:

• Other POs’ customer may be unhappy as a functionality of his won’t be resolved in
planned Sprint

See Also
This practices is used in combination with M-11 Product Owner Team and the]CO-01 Pre-
Planning Coordination.

170

C.2. Documentation of Good Methodology Practices

C.2.5. Acceptance Criteria

M-Pattern Overview
ID M-04
Name ACCEPTANCE CRITERIA

Alias -
Summary Acceptance Criteria are used to set criteria for accepting a re-

quirement. They are included with the backlog item and express
the main functionalities needed for the item.

Example
Technology LLC. works in a large-scale agile development program. The PO has to define
precise requirements specifications so the development team can implement the respective
feature. For that he uses Acceptance Criteria.

Context
When creating requirements for the development team, the PO needs to specify the busi-
ness needs of a customer on a level so the development team can create a fitting imple-
mentation. Avoiding wrong implementations as a core goal.

Problem
The following concerns are addressed by this practice:

• C-10 :How to create precise requirement specifications for the development team?

• C-69 :How to establish requirements verification?

Forces
Following forces have been identified:

• Developers need the correct information, which can be difficult to explain, to under-
stand the actual requirement and business need.

• How can a PO make sure that his requirement has been resolved correctly in a man-
ageable manor

Solution
Acceptance Criteria:
Concept for the ticket system. Each Ticket consists of detailed description what needs to be
implemented to fulfill certain criteria, called acceptance criteria. The Acceptance Criteria
define in detail what has to be resolved within the ticket.
’ Ticket x Acceptance Criteria

171

C. Appendix

• A drop-down with multiple vendor options needs to be added above button.

• The button has to deliver a Risk Analysis for the vendor selected in drop-down.

• No action on button click, when no vendor in drop-down selected.’

When all criteria are fulfilled, the Ticket is resolved

Variants
The use of M-05 Definition of Ready and Definition of Done is a possible variation, but they
can also be used together. Consequences
The following Benefits have been associated with this practice:

• Clear definition and understanding for test and development of a requirement at all
different stakeholders. - Less necessity for queries.

• Customer and PO know where to expect change.

The following Liabilities have been associated with this practice:

• More time consuming than normal ticket creation

See Also
This practice is used in combination with V-03JIRA Board and can complement the M-05
Definition of Ready and Definition of Done.

172

C.2. Documentation of Good Methodology Practices

C.2.6. Functional Splitting

M-Pattern Overview
ID M-06
Name FUNCTIONAL SPLITTING

Alias -
Summary To avoid any confusion in when to split a backlog item, PO-3

at SADP of Technology LLC. Splits backlog items in the ticket-
system according to the required function. One function = one
ticket.

Example
Technology LLC. has a large-scale agile development program. A customer triggers a
change or request for an additional feature, which comprises in a large requirement with
several functional changes and the PO has to make the requirement understandable for
the development team.

Context
Migration of legacy systems, other major change requests on existing modules or new fea-
ture development.

Problem
Following concerns are addressed by this practice:

• C-18 :How to split large and complex requirements into smaller requirements?

Forces
Following forces have been identified:

• Difficult to constitute when splitting of requirements is required. Usually a require-
ment represents the backend logic and the frontend trigger for the logic.

• For large and complex requirements it’s difficult to find a fitting split point. Which
can make a requirement hard to understand.

Solution
Functional Splitting:
Functional splitting of requirements. When creating a requirement with a customer, the
PO will note an overall required requirement, which he then will split into all required
function changes or new implementations as a single requirement, When combining all
these requirements the large and complex requirement is the result. Focus on only hav-
ing one functional change or development for each requirement. If requested by the team

173

C. Appendix

even splitting between front and backend logic. Creating a package of frontend require-
ment and backend requirement, which combined will resolve the larger requirement.

Consequences
The following Benefits have been associated with this practice:

• Smaller easier to understand requirements.

• Complexity reduction through splitting.

The following Liabilities have been associated with this practice:

• Extra effort and deep knowledge from PO required to identify all required functional
changes and splitting them accordingly

See Also
Used in combination with CO-05 Product Backlog Refinement to elicit when a split might be
required with DEV.

174

C.2. Documentation of Good Methodology Practices

C.2.7. Process Consultant

M-Pattern Overview
ID M-07
Name PROCESS CONSULTANT

Alias -
Summary Process Consultants combine responsibilities of the roles of a de-

veloper, architect and consultant. The role finds application in
LSAD with domain-specific knowledge. It can be compared to
the concept of an Lead Developer. The Process Consultant aids
in architecture decision making, knowledge sharing with less
experienced developers and Product Owners and more. The
Process Consultant is the most experienced developer of a do-
main responsible for the support in development of require-
ments as well as development itself.

Example
Technology LLC identified during the adoption process of a LSAD framework, the need
for a Process Consultant. Process Consultants (Lead Developer) are domain experts sup-
porting the development process of an system consisting of migrated legacy systems with
inexperienced developers working on it.

Context
Complex and historically grown system. Migrating several legacy systems and providing
complex functions. Project growth leads to inexperienced developers working on the sys-
tem.

Problem
Following concerns are addressed by this practice:

• C-19 :How to deal with internal silos?

• C-85 :How to share domain knowledge across teams?

Forces
Following forces have been identified:

• High pace feature-driven development with newly created teams.

• Internal Silos and other bottlenecks in respect to knowledge as the teams work on
legacy systems with complex functions and dependencies.

175

C. Appendix

Solution
Process Consultant:
Process Consultant is like a technical lead for a specific domain and product. Creating an
access point to knowledge by assigning a experienced developer, who can help less ex-
perienced developers and Product Owners understand system specifications and support
creation process of new features and feature change. The Process Consultant is a 50/50
role, half of his time is allocated in supporting other developers and the PO work with
the process. The other half is allocated for implementations and supporting architectural
conception, alignment and implementation.

Variants
The Program uses experienced developers for multiple topics(architecture and team sup-
port, coaching for specific architecture topics, like UI/UX and Testing CO-1Community of
Practice.

Consequences
The following Benefits have been associated with this practice:

• Offers solution for knowledge holes by forcefully creating internal silos.

• Clear Contact Point for developers and PO alike through technical responsible per-
son for domain.

• Accountability for product and domain from technical aspect.

• Efficiency Improvement with inexperienced developers. No stoppage during devel-
opment process .

• PC introduction reduces bottlenecks by freeing up the day of these bottleneck to play
a supportive knowledge transfer role.

The following Liabilities have been associated with this practice:

• Limits the functional knowledge and process of gaining functional knowledge of
developers.

• Internal silos.

See Also
The practices is used in combination with CO-09 Process Consultant Meeting, the M-08 Pur-
pose Teams and for clarity of dependencies V-01 Dependency Matrix.

176

C.2. Documentation of Good Methodology Practices

C.2.8. Purpose Teams

M-Pattern Overview
ID M-08
Name PURPOSE TEAMS

Alias -
Summary Technology LLC uses Purpose Teams in their SADP as a solu-

tion for the complexity of the system, Purpose teams are an evo-
lution of feature tems, including POs into the team and being
assigned domains depending on knowledge expertise of team
members.

Example
Technology LLC. introduced Purpose Teams to deal with inexperienced developers work-
ing on a complex system, regularly migrating and working on legacy systems.

Context
Complex system with complex dependencies and migrated legacy system supporting sev-
eral modules, which are critical and need regular improvement as well as maintenance.

Problem
Following concerns are addressed by this practice:

• C-19 :How to deal with internal silos?

• C-85 :How to share domain knowledge across teams?

Forces
Following forces have been identified:

• Feature-driven development with lots of external pressure on quick resolution of
requirements as well as maintenance of existing systems.

• Multiple key users and to deal with that multiple POs are introduced, PO has to be
more visual in team.

Solution
Purpose Teams:
Purpose Teams are used to address specific bottlenecks in Knowledge Transfer. The Teams
are organized with domain-specific solution and knowledge capabilities in mind. Breaking
with the idea of co-location and avoidance of internal silos. Purpose teams actively cre-
ate internal silos with knowledge transfer capabilities as a temporary solution to a larger
knowledge transfer issue. With this concept, teams consist of all personnel required to

177

C. Appendix

create a effective development team as well as customer support. A team is organized as
follows and introduces following roles:

1. Modules are clustered depending on available domain knowledge

2. According to clusters, personnel responsible assigned to team.

• Hence, a Team consists of several POs (each PO in a team has a module respon-
sibility)

• The role of Process ConsultantM-07 is introduced to address Knowledge Trans-
fer issues

3. Teams are self-sufficient in developing in a Scrum format, all scrum team respective
rules apply

4. Dependencies between teams are reduced as much as possible

Variants
A variation would be having full Feature Teams.

Consequences
The following Benefits have been associated with this practice:

• Solves short-term knowledge transfer issue.

• Allows for feature development and a incremental creation of several domain ex-
perts.

• Widens bottleneck with exact limit on affected personnel.

The following Liabilities have been associated with this practice:

• Requirements are assigned depending on supported module .

• More overhead hence single PO structure not a possibility.

See Also
This practice is used in combination with the introduction of M-07 Process Consultant and
the M-11 Product Owner Team. With the practice of M-12Shifting Responsibilities the internal
silos are tried to be reduced.

178

C.2. Documentation of Good Methodology Practices

C.2.9. Story Points

M-Pattern Overview
ID M-09
Name STORY POINTS

Alias -
Summary Story Points are used as measure to estimate User stories, where

as one Story Point represents the amount of work combined
to create a story point. Hence, User Story complex need more
Story Points than less complex User Stories. Team decides what
a story point represents in amount of work.

Example
Team D of Technology LLC. uses Story Points as a leftover from Planning Poker to have a
common metric for estimating user stories.

Context
When working agile, the importance of estimations becomes more significant as they pro-
vide a platform for discussion as well as a rough vision on the required development time.
When working in a large-scale agile setup, a common estimation metric becomes more
relevant as it provides a comparable observational metric.

Problem
Following concerns are addressed by this practice:

• C-60:How to create and estimate user stories?

Forces
Following forces have been identified:

• Reliable estimations require in-depth knowledge about the platform somebody is
working on/ the domain they are working in. Large-scale agile teams form different
conceptions of a estimation and a effort taken to fulfill a requirement.

• Person-Days still are a metric used in many IT-Organizations so LSAD have to figure
out a way to communicate the actual effort required, which often is not reasonably
quantifiable with Person-Days

Solution
Story Points:

1. Introduce Story Points as a common metric to be used in all teams.

179

C. Appendix

2. No clear-cut LSADP wide definition on what a Story Point entails, simply a quan-
tifiable method to draw relations between different requirements, hence, only used
within teams.

3. When in a PBR the PO presents the requirement and the team assigns a Story Point
value from Fibonacci formula (1, 2, 3, 5, 8, 13 . . .).

4. A Requirement might require more effort as another requirement, hence the story
point value is higher.

• Example: Requirement 1 was assigned a Story Point value of 1

• After describing Requirement 2 the team assigns a Story Point value of 2 as
roughly twice the effort is required for the implementation.

5. Revisiting changing Requirements in PBR to keep Story Point values accurate in case
an adaption is necessary.

6. Visualize Story Point Burn down to create visual of Process in several Teams for
Review

Variants
Story Points can also be estimated by Expert Judgment,

Consequences
The following Benefits have been associated with this practice:

• Allows for a quick estimation purely based on relational estimation.

• Visualization of work done and work required possible.

• Formation of common understanding of required working effort a Story Point rep-
resents within a team.

The following Liabilities have been associated with this practice:

• Working with different teams the concept of one story point may change(i.e. Agile
Coach).

• Moving requirements between teams may be an issue when using different scales for
story points.

See Also
Always applied for estimation during CO-05 Product Backlog Refinement and also docu-
mented in V-07 Velocity Sheet.

180

C.2. Documentation of Good Methodology Practices

C.2.10. Subtask-Testing

M-Pattern Overview
ID M-10
Name SUBTASK-TESTING

Alias -
Summary Using the Subtask functionality in JIRA for creating relationship

between tests and requirements.

Example
Technology LLC. uses Jira for requirement tracking. As a built in solution, of the JIRA-
Tool, subtasks allow a direct allocation of tickets/tasks to each other. Company x uses
these subtasks to indicated required test cases for a requirement and to track tests directly
with requirements.

Context
Tracking tests and requirements difficult, especially when test cases are not connected to
requirement and errors occur.

Problem
Following concerns are addressed by this practice:

• C-53:How to ensure traceability of tests and requirements?

Forces
Following forces have been identified:

• Handoff required between development and testing.

• Making sure the tests have been done.

Solution
Subtask-Testing:
Include Subtasks in Requirements to define required test cases as well as trace existing
extensions to automated test. Done by tester- to trace which tests are done and how they
look-, developers- to describe which test cases make sense- and product owners – to indi-
cate what has to be reproduced in bug fixes and what to test for. Additional creation of
test case documentation, traceability and test case definition and execution for each sprint
assigned to tester within team.

Consequences
The following Benefits have been associated with this practice:

181

C. Appendix

• Common understanding which tests are required.

• Easy traceability through build-in tool features.

No Liabilities have been associated with this practice.

See Also
In combination with a Tracking Board enabling subtasks i.e. V-03 JIRA Board.

182

C.2. Documentation of Good Methodology Practices

C.2.11. Product Owner Team

M-Pattern Overview
ID M-11
Name PRODUCT OWNER TEAM

Alias -
Summary With multiple PO in one Team at Technology LLC. , each pur-

pose team consists of a PO Team, with an Head PO for each
Team.

Example
Technology LLC. has multiple Product Owner (PO) in a large scaled agile development
program, to accommodate multiple customers. The roles of Head PO, in regards of a sin-
gle team and overarching all teams a Chief Product Owner have been introduced to avoid
any blockage.

Context
Multiple internal or external customers supported on multiple modules in an overarching
system. Working with multiple teams, so one PO can no longer accommodate all modules
and customers.

Problem
Following concerns are addressed by this practice:

• C-35 :How to define clear and visible priorities?

• C-80 :How to manage overarching backlog item prioritization with multiple product owners?

Forces
Following forces have been identified:

• A Product Owners purpose is to focus on his assigned products/modules. When
sharing the capacity of a single development team over multiple Product Owners,
the prioritization becomes important, as higher prioritized requirements get resolved
sooner.

• A behavior of POs pitching the priority levels higher than necessary, to guaranty
delivery for their modules’ requirements.

Solution
Product Owner Team:
The roles of Head Product Owner and Chief Product Owner CPO) introduced to focus on
the importance of the overarching program success. The Head Product Owner has the final

183

C. Appendix

decision power over which requirements are to be resolved during a sprint. In his role, the
Head PO coordinates with all POs involved in a team and nourishes a healthy cooperation
between them. Overarching all teams the CPO has responsibility for the whole product
supported by all teams, who are part of the large-scale agile development program. The
CPO deals with scope and release decisions Consequences
The following Benefits have been associated with this practice:

• Transparent decision and responsibility assignment.

• Coordination improvement through regulatory force within teams.

• Focus on balance, so needs and requirements of all customers get addressed.

The following Liabilities have been associated with this practice:

• Introduction of authority levels among Product Owners.

See Also
This practice is combined with M-03 Bug Prioritization and the concept of M-08 Purpose
Teams, also CO-01 Pre-Planning Meetings are used to address coordination.

Other Standards
LeSS Huge advocates for Product Owner Teams

184

C.2. Documentation of Good Methodology Practices

C.2.12. Automation Lead

MPattern Overview
ID M-13
Name AUTOMATION LEAD

Alias Test Architect
Summary A Test Architect also called Automation Lead, who focusees on

supporting all teams in creating automation tests.

Example
Technology LLC. works with and large-scale agile development program. To establish au-
tomated testing, they introduced an Automation Lead role. The Automation lead purpose
is to monitor the level of automated testing in all teams as well as support everyone having
issues with automated testing. Together with the Architects, he helps creating a vision and
architecture concepts in regards to automated testing.

Context
Whenever migrating legacy systems or creating new code, testing helps to make sure the
code works as expected. Instead of effort-high manual tests, automated testing offers a
constant monitoring of important test cases.

Problem
Following concerns are addressed by this practice:

• C-36 :How to establish automated testing?

• C-68 :How to write understandable automated tests?

Forces
Following forces have been identified:

• Knowledge on correct set up of automated tests is limited.

• Developers often are overwhelmed with delivery date pressure and testing or gath-
ering knowledge on correct automated testing falls short.

• Legacy code makes it hard to understand to purpose of some code blocks, limiting
the amount of sufficient tests.

Solution
Automation Lead:
The automation lead is responsible to foster the automated testing capabilities of the agile
program. By supporting developers and creating architecture to support the automated

185

C. Appendix

testing. Additionally his responsible in shaping a mindset of quality assurance in the ag-
ile program. Supporting all agile program employees when creating automated tests and
leading COP on testing. Finally the automation lead offers a Process Consultant aspect to
all testers in a team.

Consequences
The following Benefits have been associated with this practice:

• Single point of contact with impediment solving capabilities.

• Support for architects in vision creation and implementation.

• Transparent vision and commitment to automated testing.

The following Liabilities have been associated with this practice:

• Loss of developer capabilities.

See Also
The Automation Lead is responsible for pushing agenda on quality assurance like M-10
Subtask-Testing.

186

C.2. Documentation of Good Methodology Practices

C.2.13. Impact Analysis

M-Pattern Overview
ID M-15
Name IMPACT ANALYSIS

Alias -
Summary Performing an impact analysis to see what changes will do to

legacy code.

Example
Technology LLC. works with legacy systems and migrates older systems into a new sys-
tem. To avoid additional issues and help developers understand legacy code better, they
save some time for an impact analysis when required.

Context
When a developer wants to make changes to a legacy system, he might not understand to
a sufficient degree, how these changes might influence the working code around it.

Problem
Following concerns are addressed by this practice:

• C-40 :How to apply agile practices for developing or maintaining legacy systems?

Forces
Following forces have been identified:

• Experts on legacy system might not be available anymore.

• Knowledge about functionalities within these systems can be limited.

Solution
Impact Analysis:
When refactoring is not possible during a sprint: Impact Analysis to understand legacy
code before working on a requirement changing legacy code. Check all special cases de-
scribed in legacy code to see full impact. Work through legacy code and understand it first,
before changing any function in the legacy code. Making sure to note where the function is
used and making sure to see all uses of the function. Creating an overview where a change
in legacy code might create an impact. During the change on legacy code focus on testing
all functionalities identified during impact analysis and then include a detailed check in
the technical sprint as a new requirement.

Consequences
The following Benefits have been associated with this practice:

187

C. Appendix

• Reduces bugs in the future .

• Saves time and allows to then fix easier in the future.

The following Liabilities have been associated with this practice:

• Can damage other functions that might be overlooked in impact analysis-(especially
when working on generic module used by multiple other modules).

See Also
Often applied when doing a M-18 Proof of Concept.

188

C.2. Documentation of Good Methodology Practices

C.2.14. Incremental On-Boarding

M-Pattern Overview
ID M-16
Name INCREMENTAL ON-BOARDING

Alias -
Summary Handing over increasingly difficult tasks to developers until

On-Boarding is done.

Example
Technology LL’s PCs use incremental On-Boarding to allow new employees with less expe-
rience to first understand the system and slowly be involved in the actual implementation.

Context
Highly complex system with several different domains and special domain knowledge.
New employees have difficulty to gain enough deep knowledge from simply jumping in
and participating in implementation.

Problem
Following concerns are addressed by this practice:

• C-81 :How to understand all interfaces and dependencies of the system?

Forces
Following forces have been identified:

• On-Boarding is only limited in time frame, as new employees are needed to help
development.

• different stakeholder groups need to gather different type of knowledge from On-
Boarding.

• Complex System difficult to understand without working on it.

Solution
Incremental On-Boarding:
New developers are eased into their development role, by being mentored and only after
a period of high involvement with the PC being assigned development tasks.

1. Set-Up development environment via Docupedia how-to and learn style guide.

2. KT sessions with PC, if possible KT-Workshops.

3. Assignment to Testing capabilities, strong contact with PC to understand necessity
of tests and what should be monitored.

189

C. Appendix

4. When new developer feels confident enough and PC confirms, first Assignment to
development tasks.

Consequences
The following Benefits have been associated with this practice:

• Reduces test work of other developers in implementation phase.

• Better understanding among new developers.

• Focus on importance of testing–>Culture and mindset share.

The following Liabilities have been associated with this practice:

• Slower usability of new employees.

• Time effort of PC limited for other developers as he is required to help new employ-
ees.

See Also
Implemented to avoid A-03 Don’t assume autonomous On-Boarding, the KT is associated
with CO-02 Face to Face Knowledge Transfer, usually supported by M-07 Process Consultant.

190

C.2. Documentation of Good Methodology Practices

C.2.15. Planning Poker light

M-Pattern Overview
ID M-17
Name PLANNING POKER LIGHT

Alias -
Summary Reduced Planning Poker to estimating user stories and direct

discussions.

Example
Technology LLC. uses Planning Poker light to agree on estimating the amount of story
points required.

Context
Working on a requirement might need different amount of time by different developers,
however, when working in a large-scale agile development program, estimating these re-
quirements becomes important as it helps planning the amount of work associated with a
sprint or iteration.

Problem
Following concerns are addressed by this practice:

• C-60 :How to create and estimate user stories ?

Forces
Following forces have been identified:

• Different experiences and knowledge on a domain lead to different estimations for
requirements which are part of an iteration/sprint.

• Without reliable estimations it becomes difficult to plan a sprint as the amount of
time required for a requirement might be overestimated/underestimated and in turn
might block the development of other requirements

Solution
Planning Poker light:
Planning poker light(using video-chat tool): Golden rule: Stick to allocated time of PBR
and as soon as time has been used, push estimation to next PBR

1. PO presents to be estimated requirement in PBR.

2. Short discussion in case any questions from development team.

3. Everybody types estimated Story Points in chat.

191

C. Appendix

• Consensus done.

• Differences, short explanation by domain expert, what are the functional issues
one can face, repeat 3 until consensus.

4. Repeat 3 for as long as time is left in PBR and requirements need estimation

Variants
Planning Poker as this is only the light adaption.

Consequences
The following Benefits have been associated with this practice:

• Quicker and less complex than planning poker.

• Team has common understanding of requirement. Focus on experienced estimations.

• As several PBR are done in one sprint.

• More focus on saying the actual amount of story points than all the framework
around it.

The following Liabilities have been associated with this practice:

• Difficult to estimate in complex domain for less experienced developers.

See Also
Always applied at CO-05 Product Backlog Refinement.

192

C.2. Documentation of Good Methodology Practices

C.2.16. Proof of Concept

M-Pattern Overview
ID M-18
Name PROOF OF CONCEPT

Alias -
Summary To check whether a requirement is realizable as specified by PO,

a PC performs a Proof of Concept.

Example
Technology LLC. uses a Process Consultant and PO combination to address technical and
business expertise issues. In case of an issue a Proof of Concept will be created by the PC
to check whether the implementation of a business need is possible.

Context
Complex system with legacy code and domain specific expertise knowledge.

Problem
Following concerns are addressed by this practice:

• C-63 :How to explain requirements to different stakeholders?

Forces
Following forces have been identified:

• Large requirements affecting legacy system are difficult for a PO to estimate on his
own regarding implementation possibility

• Domain knowledge and limitations are not known by PO.

Solution
Proof of Concept:
PO adds requirement to sprint. Team and Process Consultant have concerns about possi-
bility to fulfill the requirement. Process Consultant(PC) and PO discuss requirement and
PC creates Proof of Concept(PoC). Proof of Concept:

1. PC creates a PoC for requirement which can’t be discussed during a PBR or Sprint
planning as it’s too complex.

2. Checks whether the explained requirement is possible to be implemented.

• Definition of criteria for success.

• Check system whether these can be achieved with code possible and available.

193

C. Appendix

3. Informs PO about outcome of PoC.

• If PoC fails the requirement is denied.

• Otherwise, PoC proofs possible implementation and requirement is added to a
sprint.

Consequences
The following Benefits have been associated with this practice:

• Creates an argument whether a requirement is doable.

• Helps customer to understand the complexity facing a requirement.

The following Liabilities have been associated with this practice:

• Extra effort required by domain-expert.

See Also
Usually goes hand in hand with a M-15 Impact Analysis.

194

C.3. Documentation of Good Viewpoint Practices

C.3. Documentation of Good Viewpoint Practices

The good viewpoint practices V-01 Dependency Matrix and V-06 Epic Plan Game Board were
already presented in the findings in Section4.4.4.

195

C. Appendix

C.3.1. Burn-Down Chart

V-Pattern Overview
ID V-02
Name BURN-DOWN-CHART

Alias -
Summary A Burn-Down Chart visualizes the amount of work done during

a Sprint and helps to analyze how much work is left and when
work was done. Eventually identifying tendencies of work done
during a sprint.

V-Type Report

Example
Technology LLC. works with a large-scale agile program. When describing requirements
and user stories the company uses story points to quantify the actual complexity and re-
quired effort to implement a requirement.

Context
Measuring the success of a agile team is hard, therefore different methodologies are used
to quantify the success of a sprint. To gain a level of understanding between several agile
teams, a common methodology is necessary to provide indication of the success of a large-
scale agile development program .

Problem
Following concerns are addressed by this practice:

• C-71 :How to measure the success of the large-scale agile development program?

Forces
Following forces have been identified:

• Complexity of delivered features is difficulty to quantify by simply using text de-
scriptions.

• The morale of a team is important and nurtured by visualizing the success of a team.
When looking, from the outside, on a team it is hard to estimate purely from the
requirements delivered, how successful a sprint was.

Solution
Burn-Down Chart:
Use of a quantifiable unit as Story Points to indicate the effort required. By establishing a
common understanding what one unit of story point entails, the overall output becomes

196

C.3. Documentation of Good Viewpoint Practices

visual. Then delivering this image via a burn down-chart. As well as a visualized overview
over the quantified requirements, in story points(see FigureC.1 and FigureC.2), and in turn
how many where totally estimated and resolved.

Consequences

Figure C.1.: Exemplary Burn-Down Chart at Technology LLC.

The following Benefits have been associated with this practice:

• Measure for effort.

• Identifying and analyzing work done during sprint.

• Transparent visual for the process within a sprint or of older sprints.

The following Liabilities have been associated with this practice:

• Misuse of KPIs can hinder the productivity of a LSAD.

See Also
Used through te tool V-03 JIRA Board and applying the measure of M-09 Story Points.

197

C. Appendix

Figure C.2.: Burn-Down Chart Model

198

C.3. Documentation of Good Viewpoint Practices

C.3.2. Jira Board

V-Pattern Overview
ID V-03
Name JIRA BOARD

Alias -
Summary A ticket-based tool visualizing all requirements within a project.

Allowing the tracking of statuses and the overall process of a
requirement, from initiation to fulfillment.

V-Type Board

Example
Technology LLC. works in a large-scale agile development program based on the LeSS
framework. To keep track of all requirements in the Backlog, consisting of requirements
and support tickets. Since the teams work geographically distributed, they use a JIRA
Board.

Context
Managing several requirements of multiple teams. Visualizing requirements and support
tickets in a ticket format providing additional information to each ticket as help to create
solution.

Problem
Following concerns are addressed by this practice:

• C-10 :How to create precise requirement specifications for the development team?

• C-53 :How to ensure traceability of tests and requirements?

Forces
Following forces have been identified:

• Due to working in several locations, keeping a synchronized dashboard via an non-
digital agile board is difficult.Creates a new level of responsibility, who is responsible
to keep these non-digital boards all in the same state.

• Compare progress and see state of Sprint, whether it is challenged or on track.

Solution
JIRA Board:
Using a JIRA-Board (see FigureC.3 and FigureC.4) is like keeping a digital agile board,
which is always in the same state for all users, independent of location. A digital Board
like JIRA provides a ticket-based representation of all requirements. The tickets provide

199

C. Appendix

some metadata on the requirement as well as any provided information via categories and
detail description. On top, the tickets are movable over the board into different statuses,
offering an instant overview for any team member. JIRA as a tool also provides visualiza-
tions for several views, such as burn down charts, sprint detail view etc Variants

Figure C.3.: JIRA Board at Technology LLC.

Other similar ticketing tools or with co-located teams non-digital board.

Consequences
The following Benefits have been associated with this practice:

• Traceability of all requirements. Helps managing to-do’s for all team members.

• Common comprehension for whole project. Additional analysis opportunities pro-
vided by tool.

• Clear documentation of all requirements. Transparent view on all sprints and capac-
ities for all team members.

The following Liabilities have been associated with this practice:

• Different views can irritate, as they often look similar, but have different meaning.

See Also
IS used with the methods of M-02 Scope Change in case, there are challenges and M-10
Subtask-Testing to keep track of tests and requirements.

200

C.3. Documentation of Good Viewpoint Practices

Figure C.4.: JIRA Board Model

201

C. Appendix

C.3.3. Interface Architecture

V-Pattern Overview
ID V-04
Name INTERFACE ARCHITECTURE

Alias -
Summary Documentation of all interfaces of a module.
V-Type Model

Example
Technology LLC. uses docupedia for knowledge transfer. The project team has an gliffy
uml-graph representing all modules supported and communication between these on a
macro level.

Context
When working in a complex system on a specific module, cross-functionality can be hard
to understand. Gathering knowledge on why and how modules interact cis similarly hard
to communicate/memorize especially when working with legacy systems.

Problem
Following concerns are addressed by this practice:

• C-26 :How to align and communicate architectural decisions?

• C-81:How to understand all interfaces and dependencies of the system?

Forces
Following forces have been identified:

• Legacy systems and complexity complicate cross-functionalities and the cooperation
between several modules.

• Possibly making it hard to communicate the use of data models or even where some
type of data set is used outside of one’s knowledge

Solution
Interface Architecture:
Follow these Steps:

1. Creating a wiki entry for the architectural conception of project team

2. Setting project system in relation with overarching architecture landscape

3. Listing all supported modules by project team (compare Figure4.3)

202

C.3. Documentation of Good Viewpoint Practices

4. Describing core functionality for all modules – focusing to not go into too much detail

5. Visualizing dependencies in a macro-architecture view

6. Visualizing interface, with getter/setter description, connection and synchronization
schedule

compare to Figure APN

Consequences
The following Benefits have been associated with this practice:

• Visual of architectural landscape and exemplary interface communication.

• Description for application architecture.

The following Liabilities have been associated with this practice:

• Issues if not up-to-date.

• Too detailed may lead to more confusion.

See Also
M-14 Docupedia for Architecture Documentation for method on how to generate Views.

203

C. Appendix

C.3.4. Power BI

V-Pattern Overview
ID V-05
Name POWER BI DASHBOARD

Alias -
Summary Power BI offers as a tool a more in detail overview of the cur-

rent Sprint progress. It additionally supports coordination tasks
between multiple POs.

V-Type Board

Example
Technology LLC. uses Microsoft Power BI Dashboard to offer a granular view on require-
ments, budget and capacity for all sprints. The view provided is available for all Product
Owners and allows for a transparent communication and coordination among multiple
POs.

Context
A large-scale agile program works with multiple POs in a team, who have to coordinate
the requirements added to a sprint.

Problem
Following concerns are addressed by this practice:

• C-35 :How to define clear and visible priorities?

• C-80How to manage overarching backlog item prioritization with multiple product
owners?

Forces
Following forces have been identified:

• Multiple POs with responsibility for modules and different customers.

• Tracking of development outside of status and in relation to other requirements re-
lated. .

Solution
Power BI:
Power BI dashboard offers a specification for each requirement written by the PO respon-
sible. The dashboard visualizes all specifications(see FigureC.5), sprints. modules, re-
quirements and budgets in a singular view. Allowing for a perspective for all POs with
a summarized view. Additionally calculations of developer days and supporting a team

204

C.3. Documentation of Good Viewpoint Practices

perspective is available in the Power BI Dashboard.

Figure C.5.: Power BI Model

Consequences
The following Benefits have been associated with this practice:

• Transparency for all POs and team. -Track future requirements and possibilities.

• Allows for planning and more transparent commitments to customers and POs. -
Budget and Sprints are used here.

• Overview for POs.

The following Liabilities have been associated with this practice:

• Once daily updated data, could lead to calculations with old data.

See Also
USed in combination with V-03 JIRA Board and V-06 Epic Plan Game Board to keep track of
all sprints and Budgets.

205

C. Appendix

C.3.5. Velocity Sheet

V-Pattern Overview
ID V-01
Name VELOCITY SHEET

Alias
Summary Technology LLC uses Velocity Sheets, to manage the capacity

and potential throughput of projects. The velocity sheet is man-
aged by the Product Owner and consists all team members, who
in turn manage their own entries. According to the capacity, it
calculates the velocity of a Team and allows for simpler estima-
tions and planning for the Product Owners.

V-Type Document

Example
Technology LLC has a project team working in a large-scale agile development program.
To measure the available capacity of the developers, testers and other team members, they
use a velocity excel-sheet.

Context
Capacity planning in regards to a sprint as well as costs for the customer and budget for
the agile program.

Problem
Following concerns are addressed by this practice:

• C-54 :How to make a cost and schedule estimation?

Forces
Following forces have been identified:

• Estimation on requirements have to be as accurate as possible.

• Different levels of developer skills, hence different time taken for same implementa-
tion by different developers.

• Measuring availability of team members in geographically distributed teams

Solution
Velocity Sheet:
The program approach is to calculate everything into capacity, so every requirement es-
timation delivers an amount of capacity required to resolve this requirement. Simultane-
ously each cost estimation is done via capacity estimation, so once a PO knows the capacity

206

C.3. Documentation of Good Viewpoint Practices

required for a requirement and the available capacity for a sprint they could create a plan
for the sprint and reply with an cost estimation for the customer. Hence, by managing
an open Excel(see FiguresC.6 and C.7) where all team members are maintaining their ca-
pacity during a sprint. The capacity on that excel delivers everything required to both
formulate cost and schedule estimations. Each development role has an defined amount
of maximum capacity per day, so they only have to maintain the days they are available(i.e
Developer 0.8, Process Consultant 0.5,)

1. Each team members responsibility to keep own capacity up-to-date

2. Representation of Availability of all team members

3. Representation of achieved Story Points in last Sprints

4. Moving Average of Story Points

5. Estimation of achievable Story Points for future Sprints via Velocity Sheet on basis of
1. – 3.

Figure C.6.: Velocity Sheet for exemplary Team at Technology LLC.

Consequences
The following Benefits have been associated with this practice:

• One key figure is only required and all team members help maintain it as well as
allow communication to different stakeholders outside the project.

207

C. Appendix

Figure C.7.: Velocity Sheet Model

The following Liabilities have been associated with this practice:

• If not properly maintained problems in exactly this communication.

See Also
Used to organize and support CO-05 Product Backlog Refinement.

208

C.4. Documentation of Principle Candidates

C.4. Documentation of Principle Candidates

The principle candidate P-01 Geographically Distributed Meeting Hours was already pre-
sented in the findings in Section4.4.4.

209

C. Appendix

C.4.1. Avoid extra meetings

Principle Overview
ID P-02
Name AVOID EXTRA MEETINGS

Alias -
Summary Technology LLC defines meetings that are necessary for the de-

velopment process. Outside of these meetings, direct commu-
nication is preferred and the guideline is to avoid adding extra
meetings outside of the agreed meetings within a project.

Type Communication & Coordination
Binding Nature Recommended

Example
Technology LLC. works with a large-scale agile development program and has per team
an amount of preset meetings to fulfill a successful development process. In addition, the
team members of the program agreed to don’t have meetings outside of the set of meetings
preplanned in the morning.

Context
Cross-shore working program and teams who have to communicate and coordinate de-
tails about requirements, while working.

Problem
Following concerns are addressed by this principle-candidate:

• C-87 :How to clarify details outside of meetings in cross-shore agile teams?

Forces
Following forces have been identified:

• Queries about requirements or impediments which would take too long for a daily or
similar meeting, need communication, however, with different time zones it becomes
more difficult to apply.

• Geographical Distribution makes it difficult to communicate directly, with different
working hours.

Solution
No additional meetings outside of already confirmed meetings

• Being available for the team outside of structured meetings and reserve some time
after meetings for clarification

210

C.4. Documentation of Principle Candidates

• Directly contact people when having any questions

• If absence write e-mail or comment in task(ticket in jira)

• Documentation of decisions also in tickets, making them visible to all team members

• Visualization of decisions made during development

Known Uses
Technology LLC.

Consequences
The following Benefits have been associated with this principle-candidate:

• Direct communication saves time and is more efficient

The following Liabilities have been associated with this principle-candidate:

• Work on multiple tickets waiting on busy colleagues response

See Also
In combination with P-01 Geographically Distributed Meeting Hours.

211

C. Appendix

C.4.2. Semi Co-Location

Principle Overview
ID P-03
Name SEMI CO-LOCATION

Alias -
Summary Technology LLC. has geographically distributed teams, however,

they focus on having at least two team members with the same
role at the same location. Allowing for better communication and
additional coordination when facing impediments.

Type Communication & Coordination
Binding Nature Recommended

Example
Technology LLC works with a large-scale agile development program and has per team at
least two developers at the same location to allow for semi co-located workspaces.

Context
Cross-shore working program and teams who have to communicate and coordinate. Teams
are working in different locations and each location consists of a role in the large-scale ag-
ile program.

Problem
Following concerns are addressed by this principle-candidate:

• C-19 :How to deal with internal silos?

Forces
Following forces have been identified:

• Depending on the supported modules a team setup may vary in size and distribution
according to the available budget.

• Geographical Distribution in LSADP

Solution
Semi Co-Located:
For each agile team, at least two persons of the same role are working at the same location.
When not possible, have at least two persons in the same role, but in different teams lo-
cated at same location.

212

C.4. Documentation of Principle Candidates

Known Uses
Technology LLC.

Consequences
The following Benefits have been associated with this principle-candidate:

• Direct communication for same roles, contact in person to clarify issues

The following Liabilities have been associated with this principle-candidate:

• Difficult in setting up

• Creating a location coherence instead of a team coherence

213

C. Appendix

C.5. Documentation of Anti-Pattern and Bad Practices

The Anti-Pattern A-1Don’t use Frameworks as Recipe was already presented in Section4.4.1.
The bad practices A-04 Don’t Assume mutual Terminology and A-07 Don’t Have New Years
Resolution Dilemma were already presented in the findings in Section4.4.12.

214

C.5. Documentation of Anti-Pattern and Bad Practices

C.5.1. Don’t overshoot Coordination Meetings**

Anti-Pattern Overview
ID A-06
Name DON’T OVERSHOOT COORDINATION MEETINGS

Alias -
Summary Development Team accepts not fully prepared requirements

to PBRs or Developers don’t prepare themselves for meetings.
Leading to prolonged and inefficient coordination meetings.
Possibly needing more meetings than required.

Example
Technology LLC. has delivery pressure and starts skipping recurring meetings, pushing
estimation etc back into a sprint planning meeting.

Context
Unexpected Delivery pressure or loss of labor power leading to slower delivery times.

Problem
Following concerns are addressed by this bad practice:

• C-36 :How to establish automated testing?

• C-63 :How to explain requirements to stakeholders?

Forces
Following forces have been identified:

• Due to time constraints, some tickets not prioritized before Sprint Planning.

• Cycle once behind; the team always appears to be a step behind each planned meet-
ing.

General Form
Prioritization and Estimation of Requirements not completed until Sprint Planning. Hence,
PO are part of Sprint Planning and discussion entails, resulting in a impromptu PBR in-
stead of Sprint Planning and increasing the pressure on development team.

Consequences
The following Benefits have been associated with this bad practice:

• Estimation and prioritizing gets done.

The following Liabilities have been associated with this bad practice:

215

C. Appendix

• Over commitment through pressure on development team

• Decreased Quality of delivered products

Revised Solution
Use of CO-01 Pre-Planning Coordination and M-05 Defintion of Ready and Definition of Done.

See Also
Also avoid A-07 Don’t have New Years Resolution Dilemma

216

C.5. Documentation of Anti-Pattern and Bad Practices

C.5.2. Don’t have Blurred Boundaries Requirements Engineering

Anti-Pattern Overview
ID A-01
Name DON’T HAVE BLURRED BOUNDARIES REQUIREMENTS ENGI-

NEERING

Alias -
Summary Product Owners tend to take over requirements engineering

responsibilities of their customers, if the customer has lim-
ited or no experience on how to adequately describe business
needs or even explain the required functionality efficiently.

Example
Technology LLC has multiple customers for their large-scale agile program. Some cus-
tomers do not have the required skill set to accurately describe their business need, so the
PO steps in and defines the business need for the customer.

Context
Customer without required skill set to properly define business needs.

Problem
Following concerns are addressed by this bad practice:

• C-15 :How to elicit and refine requirements of end users?

Forces
Following forces have been identified:

• Requirements need to reflect the business need of customers, however, discussions
can limit the plan of an agile program.

• In large companies there are individuals who get put on a position assuming they
have a certain skill set, without ensuring this assumption is accurate. A certain de-
gree of IT understanding is expected, but there is no clear role definition on customer
site fort he contact persons role

General Form
Customer can‘t describe his requirements and the business need they try to represent. Ad-
ditionally the customer has issues understanding technical limitations or has a grasp on
the current status of the system. To accelerate the process, the PO starts taking over the
construction on his own. Assuming the business need and requirements. Effectively blur-
ring the line between actual requirement a customer needs and pays for and the generated

217

C. Appendix

requirement of the PO. The program in turn does not know whether they are building the
right application or if the customer actually would need another application. Since the
customer was not involved in the requirements generation, the business need is poten-
tially not covered.

Consequences
The following Benefits have been associated with this bad practice:

• Requirements created and the development can begin.

The following Liabilities have been associated with this bad practice:

• No security that implementation represents the actual business need of customer.

• Wrong communication on customer side, as they might expect something different
than communicated with agile program

Revised Solution
Being patient in requirements creation and use CO-07 Periodic Round-Table for building up
skill set and explaining customer your needs.

218

C.5. Documentation of Anti-Pattern and Bad Practices

C.5.3. Don’t force Team Coherence

Anti-Pattern Overview
ID A-02
Name DON’T FORCE TEAM COHERENCE

Alias -
Summary Scrum Masters are focused on creating a working team, which

is able to deliver and has a preferably good team cohesion.
However, some team members might not get along, yet, work
well together. The Scrum Master has to notice this and not
force a team coherence too far.

Example
Technology LLC has a project team with two members, who on a business level work well
together, but they don’t get along on a human level. The Scrum Master of the team sees
this situation and tries to force a better team coherence .

Context
SM and the team notices two or more team members do not get along and often have ar-
guments. Resulting in them not discussing work relevant information.

Problem
Following concerns are addressed by this bad practice:

• C-44 :How to deal with communication gaps with stakeholders?

Forces
Following forces have been identified:

• Personalities can collide.

• Team cooperation and team coherence is important to achieve maximum efficiency

General Form
Scrum Master or any other role with focus on team coherence, tries to resolve arguments
between team members. As a goal of reaching a good team chemistry to focus shifts too
much to the personal side.

Consequences
The following Benefits have been associated with this bad practice:

• Involved parties discuss their issues and reach understanding.

219

C. Appendix

The following Liabilities have been associated with this bad practice:

• Involved parties feel attacked or micromanaged by SM or other role who tries to
resolve.

• Risk of broadening the gap between the team members.

Revised Solution
As long as the outcome is not affected and the team chemistry does not decrease, the SM
or other team members can ignore the conflict.

220

C.5. Documentation of Anti-Pattern and Bad Practices

C.5.4. Don’t assume autonomous On-Boarding

Anti-Pattern Overview
ID A-03
Name Don’t assume autonomous On-Boarding
Alias -
Summary Large-Scale Agile Development Program uses a Wiki to sup-

port their On-Boarding process for several different stake-
holder goups. However, the information provided isn’t tai-
lored to all stakeholder groups effected, rather only for a
single stakeholder group. Nonetheless, autonomous On-
Boarding is expected for all stakeholder groups.

Example
Technology LLC. has a large-scale agile program. Due to the increasing amount of work
and managed modules, the program adds new Product Owners and other team members.
To increase the time it takes for new team members to work in the project, the new em-
ployees handle the On-Boarding process on their own.

Context
When dealing with new employees in a large-scale agile program, that has been adapted
to the team’s needs. Getting employees up to speed.

Problem
Following concerns are addressed by this bad practice:

• C-10 :How to create precise requirement specifications for the development team?

• C-82 :How to support an On-Boarding approach for different stakeholders?

Forces
Following forces have been identified:

• At scale, the detailed documentation of the product and the generated and the On-
Boarding of new employees becomes more important as the product itself has out-
grown the current supporting team.

• Time for detail documentation as well as On-Boarding efforts is scarce.

• Complexity of platform and modules is high and hard to understand, because of
several mitigated legacy systems, from the provided documentation. Provided Doc-
umentation cannot describe to a detail degree necessary for On-Boarding work.

221

C. Appendix

General Form
After initial On-Boarding, administrative and meeting the colleagues. New employees
need to work through months, maybe years of development on their own. Always with
the focus on getting involved as soon as possible in the daily work of the teams. While
providing a documentation, in form of a wiki, specifying the team setup, the agreements
made by each team (DoR and DoD) and some architecture design. These information are
limited to structure and organization of the program. Yet, not providing a clear role and
stakeholder specific documentation. Omitting detail information for several processes.
Leaving the new employee to figure out details like requirements engineering via trial and
error.

Consequences
The following Benefits have been associated with this bad practice:

• already involved team member spends less time on the On-Boarding of a new em-
ployee. When described in detail the wiki can be sufficient to understand everything
necessary for future work.

The following Liabilities have been associated with this bad practice:

• first couple of meetings, the actual involvement of new employees is low. The em-
ployee might not understand in detail how to do his job, as an example when re-
quirement engineering the required information is not given and the meeting takes
longer, wasting time of all involved employees.

Revised Solution
Addressed by CO-1 Community of Practice, M-07 Process Consultant and M-12 Shifting Re-
sponsibilities

222

C.5. Documentation of Anti-Pattern and Bad Practices

C.5.5. Don’t forward Requirements

Anti-Pattern Overview
ID A-05
Name DON’T FORWARD REQUIREMENTS

Alias -
Summary Product Owner trusts a key stakeholder in specifying require-

ments on his own and forwards the requirement without fur-
ther editing and specification.

Example
Technology LLC. has a large-scale agile development program; all customers are internal
business units. The Product Owner forwards requirements created by customers without
editing them or having any discussion.

Context
Whenever dealing with customers in software development the eliciting of the require-
ments is one of the most important steps in requirements engineering, as it offers insight
on the business need as well as a platform to discuss possible implementation possibilities.

Problem
Following concerns are addressed by this bad practice:

• C-15 :How to elicit and refining requirements of end users?

Forces
Following forces have been identified:

• When dealing with multiple key users, a PO has a lot of work and when one of
these key users is trusted and experienced, a inexperienced PO might assume that
his specifications will be understandable.

• overwhelmed PO accepts the requirements send to him

General Form
Requirements are not refined with the customer, instead the customer’s initial requirement
definition is „forwarded“ to the development team. PO is inexperienced and trusts a cus-
tomer’s expertise to describe a sufficient requirement. As a result the PO does not discuss
and compromise with the customer on a doable and sufficient implementation, but instead
simply “forwards” the requirement.

223

C. Appendix

Consequences
The following Benefits have been associated with this bad practice:

• Requirement is elicited.

The following Liabilities have been associated with this bad practice:

• A insufficiently described requirement can lead to inefficient implementation and in
the worst case create chaos as possible cross-functionalities might be affected.

• There are no real advantages as the PO simply omits one of his major tasks, so the
time he saves and the customers wrong sense of completing a task and expecting a
business need being resolved, are only short-lived. Usually the customer is dissatis-
fied with the delivered feature and the development process slows down as avoid-
able problems can appear

Revised Solution
Use of CO-07 Periodic Round-Table

224

C.5. Documentation of Anti-Pattern and Bad Practices

C.5.6. Don’t limit KT to KT Workshops

Anti-Pattern Overview
ID A-08
Name DON’T LIMIT KT TO KT WORKSHOPS

Alias -
Summary LSAD started by focusing Knowledge Transfer to be explic-

itly done during Workshops to avoid time waste. However,
in a geographically distributed program, workshops were all
members get together are difficult to organize.

Example
Technology LLC. supports and implements on a platform, which migrated several legacy
systems. Developers working on the platform require in-depth domain specific knowl-
edge.

Context
To support Knowledge Transfer, specific dates for KT workshops are set during the end of
year business. Domain Experts present knowledge about domain.

Problem
Following concerns are addressed by this bad practice:

• C-19 :How to deal with internal silos?

• C-85 :How to share domain knowledge across teams?

Forces
Following forces have been identified:

• Complex Platform with vast amount of legacy code.

• Different skill-levels with developers and Process Consultants – technical lead devel-
oper for module or domain – are necessary to allow normal flow

General Form
Knowledge Transfer Workshops as a Golden Hammer solution for knowledge transfer.
Process Experts provide a workshop on the domain they are an expert in, without having
a real grasp on the knowledge level of participants. Participation is optional for all team
members and actual participants may have different levels of knowledge. One time Pro-
cess for vast knowledge transfer instead of incremental KT.

Consequences
The following Benefits have been associated with this bad practice:

225

C. Appendix

• Specific use for On-Boarding purposes providing a good introduction to the plat-
form.

The following Liabilities have been associated with this bad practice:

• Participants may need a baseline introduction and therefore feel overwhelmed.

• Presenter/Expert does not know whether there is any positive effect from his pre-
sentation.

Revised Solution
Addressed by CO-1 Community of Practice, M-07 Process Consultant and M-12 Shifting Re-
sponsibilities

226

C.5. Documentation of Anti-Pattern and Bad Practices

C.5.7. Don’t misuse Estimation Creation

Anti-Pattern Overview
ID A-09
Name DON’T MISUSE ESTIMATION CREATION

Alias -
Summary LSAD uses a methodology for estimating backlog items, how-

ever, they don’t correctly implement and act on the methodol-
ogy. Instead creating a prolonged process with limited usable
outcome.

Example
Technology LLC. previously used a methodology like “Planning Poker”, with an in length
discussion which requirements need how much time. Through adaption, this methodol-
ogy was deemed to lengthy and a reduction to estimating with story points via vote in a
video-call chat was decided on.

Context
When estimating the amount of time required resolving a requirement, a project uses parts
of methodologies to both speed up the estimation process, yet keep to a certain degree re-
liable estimations.

Problem
Following concerns are addressed by this bad practice:

• C-60 :How to create and estimating user stories?

• C-81 :How to understand all interfaces of the architecture?

Forces
Following forces have been identified:

• Adaption of a methodology, hence, there has been already a decision made to change
a methodology to profit from reduction of complexity.

• The reduction leads to increasingly inaccurate estimations as well as a loss of val-
ue/importance to the estimation process.

General Form
When estimating a requirement, the estimation often is reliant on single developer. This
single developer, from the other participants’ perspective, is apparently making an esti-
mation out of thin air. Additionally the downscaled methodology does not really offer a

227

C. Appendix

platform for discussion during estimation. By associating a Story Point with a comparison-
based methodology and then relying on a single developer’s opinion, the group-based es-
timation aspect gets lost. Especially prolific in cross-team expertise communication as the
team includes an expert from another domain with specific knowledge to help estimating
cross-module influencing code changes. When a project has been adapting and adding
different methodologies and roles to fit their way of work. The project has successfully
been creating their individually fitting framework. This success indicates to the project
team that all adaptions to a chosen framework work. Even though adaption is necessary,
it can also start to erode the core principles associated with a framework.

Consequences
The following Benefits have been associated with this bad practice:

• Increased speed in Product Backlog Refinements and meetings in general by using a
down-scaled process

The following Liabilities have been associated with this bad practice:

• Less accurate estimation leading to less throughput of the project.

• Chance of loss of customer trust or overworking employees as deliveries cannot be
upheld.

Revised Solution
USe of M-17 Planning Poker light.

228

C.5. Documentation of Anti-Pattern and Bad Practices

C.5.8. Don’t limit external colleagues access

Anti-Pattern Overview
ID A-10
Name DON’T LIMIT EXTERNAL COLLEAGUES ACCESS

Alias -
Summary External and remotely working colleagues are limited in their

capability to work, when not situated at a location.

Example
Technology LLC. has remotely working/ external colleagues involved in their large-scale
agile development program. When working from outside the companies’ network, secu-
rity measures have implications on the quality of connection and possibility of connection.

Context
Company network limits the accessibility from remotely working/external colleagues .

Problem
Following concerns are addressed by this bad practice:

• C-86 :How to involve remotely working/external colleagues?

Forces
Following forces have been identified:

• Company policy as well as laws prohibit certain forms of connection or data han-
dling

• Company policy to include external organizations at certain scale of project.

General Form
When working with Skype for Business company policy as well as country specific law
prohibits recording these calls. In addition, the connection from remote sources triggers
technical impediments, lower audio quality and prohibits screen sharing by subjects from
outside the companies’ network. As well as sharing the screen to those sources.

Consequences
The following Benefits have been associated with this bad practice:

• Secure Company network

The following Liabilities have been associated with this bad practice:

• Delay in audio; no screen-sharing

229

C. Appendix

Revised Solution
Workarounds exist, to mitigate the audio issue. Calling in by phone lowers the delay of
communication for example. All in all communication flow must be supported, hence,
having external work from in-house locations with company laptop as often as possible as
main solution

230

C.5. Documentation of Anti-Pattern and Bad Practices

C.5.9. Don’t capsulate teams too much

Anti-Pattern Overview
ID A-11
Name DON’T CAPSULATE TEAMS TOO MUCH

Alias -
Summary High demand for domain specific knowledge creates a need

for highly specialized teams. However, these limit the KT be-
tween teams.

Example
Technology LLC. has a large-scale agile development program supporting many different
modules and migrating multiple legacy systems. To keep up with delivery timelines the
program switched to purpose teams with domain and module specific expertise.

Context
Domain and module specific teams supported by domain experts. Limiting the interaction
between teams to required communication and coordination on interface level.

Problem
Following concerns are addressed by this bad practice:

• C-19 :How to deal with internal silo?

• C-85 :How to share domain knowledge across agile teams?

Forces
Following forces have been identified:

• Different domain projects and complex, hard understandable modules for each pur-
pose teams.

• Contact to different program hard as the teams are both highly involved in own
project

General Form
To keep up with delivery timelines the program switched to purpose teams with domain
and module specific expertise. Purpose teams focused on domains and assigned modules.
When a team member of one purpose team is assigned a module of another purpose team,
it is hard to find ways of communications. By creating encapsulated teams with domain
specific knowledge, the knowledge about this domain is also encapsulated in the team.

231

C. Appendix

Consequences
No Benefits have been associated with this bad practice.
The following Liabilities have been associated with this bad practice:

• Prolonged communication efforts required.

• Knowledge Transfer for domain specific issue is limited within respective team

Revised Solution
Addressed by CO-1 Community of Practice, M-07 Process Consultant and M-12 Shifting Re-
sponsibilities.

232

C.6. Documentation of Patterns for Implementation Process

C.6. Documentation of Patterns for Implementation Process

The pattern CO-1 Community of Practice and the pattern P-1 Celebrate Every Success were
already presented in the findings in Section4.5.1.

233

C. Appendix

C.6.1. Supervision**

As documented by Uludağ and Matthes[57]

CO-Pattern Overview
ID CO-2
Name SUPERVISION

Alias -
Summary A SUPERVISION offers agile teams a platform to discuss their

current problems in a small and closed circle of participants
and jointly find and evaluate solutions to these problems.

Example
A scrum master at ConglomerateCo is assigned to an agile team that has an over-cautious
product owner that delays the start time of the first sprint. The scrum master is over-
whelmed with this situation and looks for suitable solutions to deal with this problem. At
ConglomerateCo, the scrum master does not have suitable platforms to discuss his prob-
lem with other scrum master and to ask for their personal experience on similar situations.

Context
Agile teams face a variety of problems in their daily work that go beyond actual imple-
mentation challenges that are not addressed in the retrospectives for time or confiden-
tiality reasons. Furthermore, retrospectives do not provide a suitable platform to discuss
domain-specific challenges with the same agile roles.

Problem
The following concerns are addressed by this pattern:

• C-67 :How to encourage development teams to talk about tasks and impediments?

Forces
Following forces have been identified:

• Some employees do not like to talk openly about their problems in front of their
colleagues.

• Some people do not want to raise problems with their colleagues when the people
concerned are present to avoid bigger escalations.

• No suitable platforms are existing for discussing domain-specific problems with col-
leagues having equal roles.

Solution
Supervision:
Set up a SUPERVISION meeting with four to eight participants for at maximum three hours.
A typical agenda of a SUPERVISION is structured as follows:

234

C.6. Documentation of Patterns for Implementation Process

1. Casting: Every participant thinks of one to two problems he wants to discuss. Ev-
ery problem is shortly introduced by each participant. Afterwards, the participants
vote on which of the problems are going to be discussed in the current SUPERVI-
SION. The two most frequently chosen problems are discussed in the later part of
SUPERVISION.

2. Telling: The person who introduced the problem, called the storyteller, has to explain
his problem in more detail. The other participants are not allowed to talk or to ask
questions as long as the storyteller depicts his problem.

3. Asking: At this stage, participants can ask comprehension questions to better under-
stand the problem.

4. Hypothesis: During this stage, The participants state some hypothesis on the prob-
lem. Here, the storyteller should be physically away from the other participants,
e.g., by leaving the room or staying behind a flip chart, so that an intervention of
the brainstorming participants is not possible. At this stage, the creativity process
should not be disturbed by the storyteller.

5. Feedback: The storyteller evaluates the hypotheses.

6. Solution: The participants present solutions for addressing the stated problem.

7. Feedback: The storyteller evaluates the proposed solutions and explains which of
them are feasible and which are not.

Variants
A SUPERVISION can be done within an agile team or on a cross-team level with people
from the same domain. A domain-specific SUPERVISION can focus on typical problems of
agile coaches, product owners, and architects.

Consequences
The following Benefits have been associated with this pattern:

• It provides a secure environment to talk about sensitive issues.

• Based on the experiences of the collective, well-structured solutions are proposed for
the problems discussed.

• Participants can reflect on the problems and solutions addressed for their own work.

• Solutions to the problems are gathered by different people, resulting in a wider range
of possible solutions with each different benefits and drawbacks.

The following Liabilities have been associated with this pattern:

• Problems that are irrelevant to the participants can be neglected.

235

C. Appendix

• Participants might not feel valued if their problem is not discussed.

• In the case of communicating the discussed problems with other employees outside
of this circle, it can lead to a breach of trust.

Known Uses
The following uses of this pattern are known:

• ConglomerateCo

• RetailCo

• SoftwareConsultCo

236

C.6. Documentation of Patterns for Implementation Process

C.6.2. Communicate Architecture**

Adapted from Uludağ et al[58]

CO-Pattern Overview
ID CO-3
Name COMMUNICATE ARCHITECTURE

Alias -
Summary Architects of other organizations prefer direct inter- and intra-

team communication, through the introduction of the Commu-
nicate Architecture, there is a platform and measure for the ar-
chitect to communicate the architecture directly to the teams.

Example
Technology LLC.s’ platform team notices a gap between the architectural topics they are
pursuing and the actual realization within the teams. Additionally, they noticed that the
vision for the architecture and some general coding guidelines are not seen the same in all
teams.

Context
With It-Architects and EA- Architects not being part of the agile teams of a LSADP it be-
comes more difficult to correctly align architecture and communicate any decisions made
for architecture. The Architects need to find a method or platform for continued commu-
nication with single teams but also with all teams.

Problem
Following concerns are addressed with this pattern:

• C-26:How to align and communicate architectural decisions?

• C-81:How to understand all interfaces and dependencies of the system?

Forces
Following forces have been identified:

• Geographical distributed agile teams with small window of parallel working hours,
which is already reserved for LSADP meetings.

• Specialized domain teams with multiple cultural backgrounds, therefore it is difficult
to find a measure for communication with each team.

Solution
Communicate Architecture:
There are three main concepts for directly communicating architecture.

237

C. Appendix

1. Find opportunities in the LSADP existing meetings to address architectural topics to
all teams for intra-team communication.

2. Find opportunities to be involved in team specific meetings to address inter-team
communication.

3. Be available for any queries about architecture and be proactive.

In addition the use of Process Consultants allows for additional alignment and communi-
cation by efficiently using CO-09 Process Consultant Meeting to address measures of com-
munication.

Consequences
Following Benefits have been associated with this pattern:

• Increased architectural alignment.

• Common Understanding of system and architectural vision.

• Closer and more effective communication channels for architects.

Following Liabilities have been associated with this pattern:

• Avoid meetings, where too many people are not interested or the goal of the meeting
is different, as it would decrease the effect.

See Also
As already mentioned can be used by addressing architectural topics in CO-08 Newsflash
and Sprint Reviews, additionally using CO-04 Kickoff for intra-team communication. For
inter-team communication the M-07 Process Consultant and the CO-09 Process Consultant
Meeting are useful.

238

C.6. Documentation of Patterns for Implementation Process

C.6.3. DDD: Event Storming Workshops**

Adapted from Uludağ et al.[56]

C-Pattern Overview
ID CO-4
Name DDD: EVENT STORMING WORKSHOPS

Alias -
Summary Event Storming Workshops are used to evolve the domain

model, part of tactical DDD ubiquitous language to describe do-
main. Team and EA-Architect update domain model by focusing
on all events of the domain an bringing them in relation, to find
methods of updating these relationships or add new functional-
ity elegantly.

Example
The EA of InsuranceCorp saw the necessity to introduce both data modeling on domain
level and event storming to address solution and architectural alignment capabilities of
InsuranceCorp. Event Storming Workshops are held with all team members of a domain,
hence all team members are part of the solution generation.

Context Complex business domains with legacy systems are difficult to understand, but
even more so when trying to update or migrate these systems into a new platform. Figur-
ing out the business flow might help understand the systems in their entirety.

Problem
Following concerns are addressed by this pattern:

• C-81 :How to understand all interfaces and dependencies of the system?

• C-84 :How to involve all team members in the solution generation?

Forces
Following forces have been identified:

• Business logic of legacy systems without the expertise is difficult to understand.

• Finding individual architectural solutions for domain-teams and communicating them
on the right platform.

• Involving the domain experts as to not create useless architecture for a domain

Solution
DDD: Event Storming Workshop:
The architect moderates the event storming workshop, most effective before the start and

239

C. Appendix

after a epic finishes. Bringing together all domain experts and developers to work on the
domain model. As the name indicates, this pattern is focused around events: ’Then the
group adds the commands, or triggers, that cause the events, and considers all sources of
commands, including users, external systems, and even time.’[34] The group focuses on
the events associated with the domain and writes each event on a post-it, which will then
be distributed according to their dependencies over the room[56]. Build a comprehensive
business flow model with the post-its and then hold discussion about where issues are
which events need to be addressed and where to involve new events to collaboratively
design the new domain model and business flow[56]. After the event storming workshop,
make sure to document the room and the findings regarding domain model and business
flow and include it on a wiki-page[56].

Consequences
Following Benefits have been associated with this pattern:

• Common understanding of domain across whole team.

• more insight into the business flow and the Architect and his vision are clearer.

Following Liabilities have been associated with this pattern:

• Cost intensive when having to bring together geographically distributed teams.

• Good solution for remote workshops required.

240

C.6. Documentation of Patterns for Implementation Process

C.6.4. Quality Gates**

Adopted from Uludağ and Matthes[60] and Pathania[41]

M-Pattern Overview
ID M-1
Name QUALITY GATES

Alias -
Summary Addressing quality concerns by introducing Quality Gates in

Jenkins using SonarQube, measures for code quality, defined by
the Architects to be passed in the continuous delivery pipeline.

Example
Technology LLC.s’ LSADP notices their focus on being delivery-driven, as several col-
leagues point out, the quality of code and the coverage of test cases needs improving.

Context
With several teams working on migrating legacy systems and developing new functional-
ity for complex and critical systems, the quality of delivered functionality becomes more
important. If issues are not recognized there might be a negative impact on the customers’
satisfaction or even the system not behaving as it should.

Problem
Following concerns are addressed by this pattern:

• C-36 :How to establish automated testing?

• C-39:How to create a culture of continuous improvement?

Forces
Following forces have been identified:

1. With focus on delivery, the goal of creating high quality systems, is pushed back.

2. The benefit of having automated checks of quality of code in the continuous delivery
pipeline appears to be out-weight by the effort and necessity

3. With several epics per team per year, the amount of work to be done became the
main focus.

Solution
Quality Gates:
Introducing quality gates to continuous delivery pipeline. In Jenkins, tools like SonarQube
support quality gates, these can be integrated at several points of the pipeline. Each gate
can be managed with several conditions, checking for complexity of a file/class, condition

241

C. Appendix

coverage and coverage overall and many more[41]. For each condition a value can be as-
signed, which would trigger a Warning or Error. Additionally, for each condition a person
group or single person, can be assigned, who will get notified when a condition throws
an error. On notification, the code triggering th error will be stopped and needs a manual
pull by one authorized person. With this technique, the assigned person can check the
code committed and via manual pull, send it on in the pipeline.

Consequences
Following Benefits have been associated with this pattern:

• Code standard is increased as there is no code being delivered not passing a quality
gate.

• Confidence in delivery is increased.

• Non-invasive measure, increasing focus on improving code quality.

Following Liabilities have been associated with this pattern:

• Extra responsibility for person being notified by quality gate, make sure as not to
introduce unnecessary hierarchies .

• Make sure condition and value are not too high or low as it can influence the accep-
tance of the quality gate.

242

Bibliography

[1] Christopher Alexander. “The origins of pattern theory: The future of the theory, and
the generation of a living world”. In: IEEE software 16.5 (1999), pp. 71–82.

[2] Christopher Alexander. The timeless way of building. Vol. 1. New York: Oxford Uni-
versity Press, 1979.

[3] The LeSS Company B.V. Graphics from the less.works website. 2020. URL: https://less.
works/resources/graphics/site-graphics.html.

[4] The LeSS Company B.V. LeSS - More with LeSS. 2020. URL: https://less.works/.

[5] S Balaji and M Sundararajan Murugaiyan. “Waterfall vs. V-Model vs. Agile: A com-
parative study on SDLC”. In: International Journal of Information Technology and Busi-
ness Management 2.1 (2012), pp. 26–30.

[6] Julian M Bass. “Scrum master activities: process tailoring in large enterprise projects”.
In: 2014 IEEE 9th International Conference on Global Software Engineering. IEEE. 2014,
pp. 6–15.

[7] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. The agile manifesto. 2001.

[8] Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland.
“SCRUM: An extension pattern language for hyperproductive software develop-
ment”. In: Pattern languages of program design 4 (1999), pp. 637–651.

[9] Ilya Bibik et al. “How to Kill the Scrum Monster”. In: Springer Books (2018).

[10] Sabine Buckl, Florian Matthes, Alexander W Schneider, and Christian M Schweda.
“Pattern-based design research–an iterative research method balancing rigor and rel-
evance”. In: International Conference on Design Science Research in Information Systems.
Springer. 2013, pp. 73–87.

[11] Frank Buschmann, Regine Meunier, Peter Sommerlad, Michael Stal, and Hans Rohn-
ert. Pattern-oriented software architecture, Volume 1, A system of patterns. 1996.

[12] Lan Cao and Balasubramaniam Ramesh. “Agile requirements engineering practices:
An empirical study”. In: IEEE software 25.1 (2008), pp. 60–67.

[13] James O Coplien and Gertrud Bjørnvig. Lean architecture: for agile software develop-
ment. John Wiley & Sons, 2011.

243

https://less.works/resources/graphics/site-graphics.html
https://less.works/resources/graphics/site-graphics.html
https://less.works/

Bibliography

[14] James O Coplien and Neil Harrison. Organizational patterns of agile software develop-
ment. Pearson Prentice Hall Upper Saddle River, 2005.

[15] James O. Coplien and A Word On Alexander. Software Patterns. 1996.

[16] D.S. Cruzes and T. Dybøa. “Recommended Steps for Thematic Synthesis in Software
Engineering”. In: 2011 International Symposium on Empirical Software Engineering and
Measurement. 2011, pp. 275–284.

[17] Philipp Diebold, Jan-Peter Ostberg, Stefan Wagner, and Ulrich Zendler. “What do
practitioners vary in using scrum?” In: International Conference on Agile Software De-
velopment. Springer. 2015, pp. 40–51.

[18] Kim Dikert, Maria Paasivaara, and Casper Lassenius. “Challenges and success fac-
tors for large-scale agile transformations: A systematic literature review”. In: Journal
of Systems and Software 119 (2016), pp. 87–108.

[19] Torgeir Dingsøyr, Tor Erlend Fægri, and Juha Itkonen. “What is large in large-scale?
A taxonomy of scale for agile software development”. In: International Conference on
Product-Focused Software Process Improvement. Springer. 2014, pp. 273–276.

[20] Torgeir Dingsøyr and Casper Lassenius. “Emerging themes in agile software devel-
opment: Introduction to the special section on continuous value delivery”. In: Infor-
mation and Software Technology 77 (2016), pp. 56–60.

[21] Torgeir Dingsøyr and Nils Brede Moe. “Research challenges in large-scale agile soft-
ware development”. In: ACM SIGSOFT Software Engineering Notes 38.5 (2013), pp. 38–
39.

[22] Torgeir Dingsøyr and Nils Brede Moe. “Towards principles of large-scale agile de-
velopment”. In: International Conference on Agile Software Development. Springer. 2014,
pp. 1–8.

[23] Torgeir Dingsøyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Brede Moe. A
decade of agile methodologies: Towards explaining agile software development. 2012.

[24] Alexander M Ernst. “A pattern-based approach to enterprise architecture manage-
ment”. PhD thesis. Technische Universität München, 2010.

[25] Christoph Fuchs and Thomas Hess. “Becoming agile in the digital transformation:
the process of a large-scale agile transformation”. In: (2018).

[26] Satoshi Hino. Inside the mind of Toyota: Management principles for enduring growth. CRC
Press, 2005.

[27] VersionOne Inc. 13th annual state of agile development survey. 2019. URL: https://www.
stateofagile.com/#ufh-c-473508-state-of-agile-report.

[28] Henrik Kniberg and Anders Ivarsson. “Scaling agile@ spotify”. In: online], UCVOF,
ucvox. files. wordpress. com/2012/11/113617905-scaling-Agile-spotify-11. pdf (2012).

244

https://www.stateofagile.com/#ufh-c-473508-state-of-agile-report
https://www.stateofagile.com/#ufh-c-473508-state-of-agile-report

Bibliography

[29] Maarit Laanti. “Characteristics and principles of scaled agile”. In: International Con-
ference on Agile Software Development. Springer. 2014, pp. 9–20.

[30] Craig Larman. Scaling lean & agile development: thinking and organizational tools for
large-scale Scrum. Pearson Education India, 2008.

[31] Craig Larman and Bas Vodde. Large-scale scrum: More with LeSS. Addison-Wesley
Professional, 2017.

[32] Craig Larman and Bas Vodde. “Scaling lean & agile development”. In: Organization
230.11 (2009).

[33] Jeffrey Liker. The toyota way. Esensi, 2004.

[34] Steven A. Lowe. An introduction to event storming: The easy way to achieve domain-
driven design. 2020. URL: https://techbeacon.com/devops/introduction-event-
storming-easy-way-achieve-domain-driven-design.

[35] Neil Maiden and Sara Jones. “Agile Requirements Can We Have Our Cake and Eat
It Too?” In: IEEE software 27.3 (2010), pp. 87–88.

[36] Christoph Mathis. SAFe–Das Scaled Agile Framework: Lean und Agile in großen Un-
ternehmen skalieren. Mit einem Geleitwort von Dean Leffingwell. SAFe 4.5 inside. dpunkt.
verlag, 2018.

[37] Peter Measey. Agile Foundations : Principles, Practices and Frameworks. BCS, The Char-
tered Institute for IT, 2015.

[38] Ashish Mundra, Sanjay Misra, and Chitra A Dhawale. “Practical scrum-scrum team:
Way to produce successful and quality software”. In: 2013 13th International Confer-
ence on Computational Science and Its Applications. IEEE. 2013, pp. 119–123.

[39] Maria Paasivaara, Benjamin Behm, Casper Lassenius, and Minna Hallikainen. “Large-
scale agile transformation at Ericsson: a case study”. In: Empirical Software Engineer-
ing 23.5 (2018), pp. 2550–2596.

[40] Maria Paasivaara and Casper Lassenius. “Communities of practice in a large dis-
tributed agile software development organization–Case Ericsson”. In: Information
and Software Technology 56.12 (2014), pp. 1556–1577.

[41] Nikhil Pathania. Learning continuous integration with Jenkins: a beginner’s guide to im-
plementing continuous integration and continuous delivery using Jenkins 2. Packt Pub-
lishing Ltd, 2017.

[42] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile Toolkit:
An Agile Toolkit. Addison-Wesley, 2003.

[43] Ken Power. “A model for understanding when scaling agile is appropriate in large
organizations”. In: International Conference on Agile Software Development. Springer.
2014, pp. 83–92.

245

https://techbeacon.com/devops/introduction-event-storming-easy-way-achieve-domain-driven-design
https://techbeacon.com/devops/introduction-event-storming-easy-way-achieve-domain-driven-design

Bibliography

[44] Knut Rolland, Torgeir Dingsoyr, Brian Fitzgerald, and Klaas-Jan Stol. “Problematiz-
ing agile in the large: alternative assumptions for large-scale agile development”.
In: 39th International Conference on Information Systems. Association for Information
Systems (AIS). 2016.

[45] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical software engineering 14.2 (2009), p. 131.

[46] Roman Sauter, Werner Sauter, Roland Wolfig, et al. Agile Werte-und Kompetenzen-
twicklung. Springer, 2018.

[47] Alexander W Schneider and Florian Matthes. “Evolving the eam pattern language”.
In: Proceedings of the 20th European Conference on Pattern Languages of Programs. 2015,
pp. 1–11.

[48] Ken Schwaber and Jeff Sutherland. The Scrum Guide - The Definitive Guide to Scrum:
The Rules of the Game. 2017. URL: https://www.scrumguides.org/docs/scrumguide/
v2017/2017-Scrum-Guide-US.pdf.

[49] Scrum.org. What is Scrum. URL: https://scrumorg-website-prod.s3.amazonaws.
com/drupal/2016-06/ScrumFramework_17x11.pdf.

[50] ScrumPLoP. ScrumPLoP - Published Patterns. 2020. URL: https://sites.google.com/
a/scrumplop.org/published-patterns/home.

[51] Gernot Starke and Peter Hruschka. arc42-Template. 2019. URL: https://arc42.org/
overview/.

[52] Gernot Starke and Peter Hruschka. “Eine Strukturvorlage zur effektiven Dokumen-
tation von Software-und IT Architekturen”. In: Wirtschaftinformatik Proceedings 2007
(2007), p. 61.

[53] Jeff Sutherland and Ken Schwaber. “The scrum papers”. In: Nuts, Bolts and Origins
of an Agile Process (2007).

[54] Inc The Standish Group International. CHAOS Report 2015-Final. 2015. URL: https:
//www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf.

[55] Ömer Uludağ, Nina-Mareike Harders, and Florian Matthes. “Documenting recur-
ring concerns and patterns in large-scale agile development”. In: Proceedings of the
24th European Conference on Pattern Languages of Programs. ACM. 2019, p. 27.

[56] Ömer Uludağ, Matheus Hauder, Martin Kleehaus, Christina Schimpfle, and Florian
Matthes. “Supporting large-scale agile development with domain-driven design”.
In: International Conference on Agile Software Development. Springer. 2018, pp. 232–
247.

[57] Ömer Uludağ, Martin Kleehaus, Christoph Caprano, and Florian Matthes. “Identi-
fying and structuring challenges in large-scale agile development based on a struc-
tured literature review”. In: 2018 IEEE 22nd International Enterprise Distributed Object
Computing Conference (EDOC). IEEE. 2018, pp. 191–197.

246

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://scrumorg-website-prod.s3.amazonaws.com/drupal/2016-06/ScrumFramework_17x11.pdf
https://scrumorg-website-prod.s3.amazonaws.com/drupal/2016-06/ScrumFramework_17x11.pdf
https://sites.google.com/a/scrumplop.org/published-patterns/home
https://sites.google.com/a/scrumplop.org/published-patterns/home
https://arc42.org/overview/
https://arc42.org/overview/
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf

Bibliography

[58] Ömer Uludağ, Martin Kleehaus, Soner Erçelik, and Florian Matthes. “Using Social
Network Analysis to Investigate the Collaboration Between Architects and Agile
Teams: A Case Study of a Large-Scale Agile Development Program in a German
Consumer Electronics Company”. In: International Conference on Agile Software Devel-
opment. Springer. 2019, pp. 137–153.

[59] Ömer Uludağ and Florian Matthes. “Identifying and Documenting Recurring Con-
cerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile
Development”. In: (2020).

[60] Ömer Uludağ and Florian Matthes. “Identifying and Documenting Recurring Con-
cerns and Best Practices of Enterprise Architects and Solution Architects in Large-
Scale Agile Development”. In: (2020).

[61] Ömer Uludağ, Sinan Özgün, and Florian Matthes. Recommender System for Scaling
Agile Frameworks. 2019. URL: https://scaling-agile-hub.sebis.in.tum.de/#/
patterns.

[62] Vaughn Vernon. Implementing domain-driven design. Addison-Wesley, 2013.

[63] Xiaofeng Wang, Kieran Conboy, and Oisin Cawley. ““Leagile” software develop-
ment: An experience report analysis of the application of lean approaches in agile
software development”. In: Journal of Systems and Software 85.6 (2012), pp. 1287–1299.

[64] Etienne Wenger, Richard Arnold McDermott, and William Snyder. Cultivating com-
munities of practice: A guide to managing knowledge. Harvard Business Press, 2002.

[65] Laurie Williams and Alistair Cockburn. “Agile software development: it’s about
feedback and change”. In: IEEE computer 36.6 (2003), pp. 39–43.

[66] Ralf Wirdemann and Johannes Mainusch. Die Grundlagen von Scrum. Carl Hanser
Verlag GmbH Co KG, 2017.

247

https://scaling-agile-hub.sebis.in.tum.de/#/patterns
https://scaling-agile-hub.sebis.in.tum.de/#/patterns

	Abstract
	List of Abbreviations
	Outline of the Thesis
	Introduction
	Motivation
	Research Objectives
	Approach

	Foundations
	Agile Software Development
	Definitions and Values
	Lean & Agile Development
	Scrum

	Large-Scale Agile Development
	Definition
	Large Scale Scrum
	Spotify
	Overview of Further Large-Scale Agile Development Frameworks

	Pattern Language
	Definition Pattern
	Software Development Pattern Languages
	Large-Scale Agile Development Pattern Language
	Stakeholders

	Related Work
	Related Work on Large-Scale Agile Development
	Related Work on Identifying Recurring Concerns in Large-Scale Agile Development
	Related Work for identifying good practices in Large-Scale Agile Development Programs

	Case Study
	Case Study Description
	Team and Platform of Technology LLC.
	General Information Interviews and Approach

	Large-Scale-Agile Development Program
	Agile Transformation
	Principles
	Roles
	Artifacts
	Events and Process
	Architecture
	Summary Large-Scaled-Agile Development Program at Technology LLC.

	Identification of Recurring Concerns
	Interviews General Information
	Recurring Concerns

	Documenting Good Practices and Bad Practices
	Identified Patterns
	Community of Practice*
	Don’t use frameworks as recipes*
	Good Practices
	Kickoff**
	Newsflash
	Shifting Responsibilities
	Docupedia for Architecture Documentation
	Dependency Matrix
	Epic Plan Game Board
	Geographically Distributed Meeting Hours
	Bad Practices
	Don’t assume mutual Terminology Understanding
	Don’t have New Year Resolution Dilemma
	Mapping of Concerns and Pattern Candidates

	Implementation of Pattern and Lessons Learned
	Patterns Provided
	Celebrate Every Success **
	Presentation of Provided Patterns
	Implementation of Community of Practice for Product Owners
	Deviations configured Design and instantiated Solution
	Community of Practice for Product Owners - Instantiated Solution **
	Lessons Learned from instantiated Community of Practice for Product Owners at Technology LLC.

	Discussion
	Key Findings
	Limitations

	Conclusion
	Summary
	Future Work

	Appendix
	Interview Questionnaire for Identifying the adoptions of the Agile Program at the case study partner
	Semi-structured Interview Questionnaire for Identifying Concerns and Documenting Good and Bad Practices
	Questionnaire: Pattern Feedback

	Appendix
	Documentation of newly identified Concerns
	Documentation of existing identified Concerns

	Appendix
	Documentation of Coordination Pattern and Good Coordination Practices
	Product Backlog Refinement**
	Pre-Planning Coordination
	Face-to-Face Knowledge Transfer
	Exemplary Knowledge Transfer
	Direct Customer Communication
	Periodic Round-Table
	Process Consultant Meeting
	Go-Live Celebration
	Third Party Interface-Planning Meeting

	Documentation of Good Methodology Practices
	Definition of Ready and Definition of Done**
	Reserved Capacity
	Scope Change
	Bug Prioritization
	Acceptance Criteria
	Functional Splitting
	Process Consultant
	Purpose Teams
	Story Points
	Subtask-Testing
	Product Owner Team
	Automation Lead
	Impact Analysis
	Incremental On-Boarding
	Planning Poker light
	Proof of Concept

	Documentation of Good Viewpoint Practices
	Burn-Down Chart
	Jira Board
	Interface Architecture
	Power BI
	Velocity Sheet

	Documentation of Principle Candidates
	Avoid extra meetings
	Semi Co-Location

	Documentation of Anti-Pattern and Bad Practices
	Don’t overshoot Coordination Meetings**
	Don’t have Blurred Boundaries Requirements Engineering
	Don’t force Team Coherence
	Don’t assume autonomous On-Boarding
	Don’t forward Requirements
	Don’t limit KT to KT Workshops
	Don’t misuse Estimation Creation
	Don’t limit external colleagues access
	Don’t capsulate teams too much

	Documentation of Patterns for Implementation Process
	Supervision**
	Communicate Architecture**
	DDD: Event Storming Workshops**
	Quality Gates**

	Bibliography

