Department of Informatics

Bachelor's Thesis in Informatics

Analyzing State-of-the-art Self-Service BI Tools

Valérianne Walter
Department of Informatics

Bachelor's Thesis in Informatics

Analyzing State-of-the-art Self-Service BI Tools

Analyse aktueller Self-Service BI Werkzeuge

Valérianne Walter

Supervisor: Prof. Dr. Florian Matthes

Advisor: M.Sc. Thomas Reschenhofer

Submission date: 15. August 2015
I confirm that this bachelor's thesis is my own work and I have documented all sources and material used.

Munich, 23. July 2015

Valérianne Walter
Abstract

While the data flows generated within a company grow more torrid and complex by the day, the structures to contain this information adapt by becoming both more elaborated and complicated to see through. In daily life business life on the other hand it has become of vital importance for the average non-IT user to access and use this information to take business relevant decisions.

This growing discrepancy between IT side and the needs of the average user is met by the concept of self-service business intelligence. It can be understood as a layer hiding the complexities of the IT structures below and enabling intuitive and simple handling of data.

There has been a growing amount of self-service BI solutions both by speciality vendors and global IT players. Based on surveys conducted to work out the state-of-the art products in the field, the goal of this thesis is to analyse the leading self-service business intelligence front-end tools.

To do so, we elaborated seven steps in the making of reports as well as a concrete business scenario to test the tools. This allowed us to make a structured review of each tool and work out their common points and differences.
Contents

1. Motivation ... 7
2. Scope ... 9
 2.1. Relevant users .. 9
2.2. Relevant sections of the BI data flow .. 9
2.3. Relevant self-service BI-tools ... 10
2.4. Selection of tools ... 11
3. Literature review .. 13
4. Method .. 14
5. Steps ... 15
 5.1. Overview ... 15
5.2. Data access ... 15
5.3. Data modelling .. 16
5.4. Analysis ... 17
5.5. Testing ... 19
5.6. Presenting .. 20
5.7. Collaboration .. 21
6. Scenario ... 23
 6.1. Setting ... 23
6.2. Content and structure of the report .. 24
7. Tool analysis .. 25
 7.1. Microsoft Excel ... 25
 7.1.1. General information ... 25
 7.1.2. Data Access .. 26
 7.1.3. Data Modelling ... 27
 7.1.4. Data set analysis .. 30
 7.1.5. Aggregate-level Analysis .. 31
 7.1.6. Presenting .. 33
 7.1.7. Testing ... 34
 7.2. Excel with Power BI add-ins .. 35
 7.2.1. General aspects .. 35
 7.2.2. Data access .. 35
 7.2.3. Data modelling .. 38
 7.2.4. Data set Analysis .. 41
 7.2.5. Aggregate-level Analysis .. 41
7.2.6. Testing .. 43
7.2.7. Presenting ... 43

7.3. Tableau Desktop .. 44
 7.3.1. General information ... 44
 7.3.2. Data access .. 45
 7.3.3. Data modelling ... 47
 7.3.4. Analysis .. 49
 7.3.5. Testing .. 51
 7.3.6. Presenting .. 52

7.4. Qlik Sense Desktop ... 54
 7.4.1. General information .. 54
 7.4.2. Data Access .. 55
 7.4.3. Data modelling .. 57
 7.4.4. Analysis ... 59
 7.4.5. Testing .. 61
 7.4.6. Presenting .. 62

7.5. SAS Visual Analytics .. 64
 7.5.1. General aspects ... 64
 7.5.2. Data access .. 65
 7.5.3. Data modelling ... 65
 7.5.4. Analysis ... 67
 7.5.5. Testing .. 69
 7.5.6. Presenting .. 69

7.6. SAP Lumira .. 70
 7.6.1. General aspects ... 70
 7.6.2. Data access .. 71
 7.6.3. Data modelling ... 72
 7.6.4. Analysis ... 73
 7.6.5. Testing .. 75
 7.6.6. Presenting .. 76

7.7. IBM Watson Analytics .. 77
 7.7.1. General aspects ... 77
 7.7.2. Data Access .. 78
 7.7.3. Data modelling ... 79
 7.7.4. Analysis ... 80
 7.7.5. Testing .. 83
 7.7.6. Presenting .. 83
8. Concluding thoughts .. 84
8.1. Common features and differences between the tools... 84
 8.1.1. General aspects... 84
 8.1.2. Data access ... 85
 8.1.3. Data modelling .. 86
 8.1.4. Analysis ... 86
 8.1.5. Testing ... 87
 8.1.6. Presenting .. 88
8.2. Trends in self-service BI .. 88
8.3. Regarding the Gartner survey .. 89
9. Appendix.. 90
 9.1. Figures and Tables ... 90
 9.2. Excel Classic .. 93
 9.3. PowerPivot Add-ins .. 101
 9.4. Tableau .. 106
 9.5. Qlik Sense ... 113
 9.6. SAS Visual Analytics .. 116
 9.7. SAP Lumira .. 121
 9.8. IBM Watson Analytics ... 125
10. References ... 127
1. Motivation

With the digitalization of processes, the emergence of new technologies, the networking of the world, businesses have now an ever-growing amount of data at their hand. The companies have long noticed the potential that lies in the data that flows through and in and out of their systems and the pricelessness of the knowledge it holds.

Raw data however is one thing, transforming it into usable knowledge quite another. The process from one to the other is the core of the business intelligence concept. Indeed according to Gartner’s definition:

“Business intelligence (BI) is an umbrella term that includes the applications, infrastructure and tools, and best practices that enable access to and analysis of information to improve and optimize decisions and performance.”[1]

It can therefore be summarized as the process of collecting, transforming, evaluating data and taking decisions accordingly.

Decision making is the daily work of a large part of employees, in nearly every department be it in human resources, controlling or marketing. The company employees need to assert risks, increase sales and benefits, lower costs, on daily basis, in the most sensible way possible and they need information for that. Up until recently there has been a gap in the process with the very complex BI systems on one hand and the average non IT-user needing the information in those BI systems to do his work on the other but who cannot possibly be expected to see through the layers and technical details a business intelligence set up implies. Indeed the focus of the BI development lay on the IT department and certain experts, expected to fill this gap by providing the business with the information it requires through standard queries and reports.

This concept entails two main issues. For one the IT department does not necessarily have the manpower to meet the ever rising demand for information, develop an endless number of queries and sustain the linked maintenance work. Another bottleneck is the communication between the IT department and the data users. Both have to work closely together to understand the needs on one side and the possibilities there are on the other. This may be a time-consuming procedure bond to misunderstandings and frustration.
One way to solve this dilemma is to make the process of handling data manageable for the mass enabling them to act more independently. In that sense we define self-service business intelligence tools as software designed for the intuitive completion of analysis and reporting tasks so as to make better business decisions.

According to the recent surveys of the leading technology and market research companies, be it Gartner, Forrester or Barc, self-service BI is one of the most if not the most promising trend in the business intelligence field. [2][3][4].
2. Scope

2.1. Relevant users

As in any IT-setting, the needs and skills vary from user to user. There are power users and experts on one hand and there are not so IT-affine users appealed by possibly less powerful but more intuitive tools.

We define business users as users with a deep understanding and expertise of their business area. They are no IT experts however, usually lacking in-depth knowledge about the functioning of databases. They are used to the handling of spreadsheets and operative systems. They are generally not disinclined to the learning of new tools if helpful to answer their specific questions and able to spare them the constant back and forth with the IT-department.

2.2. Relevant sections of the BI data flow

To understand what part of the BI processes we are about to discuss, we will take a look at the overall BI data flow.

Although the concrete technical implementation may differ from business to business, the basic organisation of a BI set-up remains the same in general. The classical BI data flow is described in the diagram below. [5] [6]
At the very beginning of the process, the data is collected from various sources. This data is still raw. Clean and structured data however is a vital requirement for knowledge acquisition. The insights we get can only be as good as the data we put in. Through ETL-processes the data is cleaned, structured and loaded into the data warehouse, a data basis especially designed for analysis and decision support. The steps up to the storage of data have to be guaranteed by the IT department. We will therefore presume that these steps are already fulfilled in the context of our survey.

What we will focus on instead are the tools used to access, analyse and report on the structured data deposited in the data storage.

2.3. Relevant self-service BI-tools

The idea of stuffing the gap between IT department and the business can be traced back to the nineties already, when the BI vendors have started to develop so-called business query tools [5]. In the initial setting-up of such a tool, the IT has to define business view metadata layers for the tool to access. Afterwards power-users will be able to define queries on behalf of the corresponding business users. Though they have been a start towards the independence from the IT department, their focus has not been the business user as we defined him above. There is still in intermediary in the form of power users acting as an interface between business and IT and in virtually constant interaction with both to set-up the queries and maintain them up-to-date.

The tools we will analyse belong to a new generation of self-service BI, the visual data discovery tools. Their target being the business-user, their goal consists in meeting the
interest of latest for intuitive, performing tools with an emphasis on analysis functions and above all data visualization.

2.4. Selection of tools

Since a complete evaluation of all the self-service BI tools on the market would go beyond the constraints of a bachelor thesis, we have decided to focus on the self-service solutions of the most important vendors in the BI market.

In a yearly survey, Gartner, a world leading IT research and advisory company, ranks BI businesses through the so-called „Magic Quadrant for Business Intelligence and Analytics Platforms“ [4]. Based on this Quadrant, we picked the following vendors to have a closer look at their self-service BI-tools.

- Tableau, Qlik, Microsoft as the top-three regarding their “Ability to execute”. This category of criteria focusses mainly on the ability of the company to sell their products.

- SAS, SAP, IBM as the top-three regarding their “Completeness of Vision”. This category on the other hand mainly contains criteria to evaluate the assets of the sold tools.

Tools from both sets of criteria are interesting to consider. Through the first set we can draw conclusions on what tools are most widely used whereas the second set gives us a hint on the products that are best at meeting the old and especially the new trends of the market.
<table>
<thead>
<tr>
<th>Vendor</th>
<th>Product</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tableau</td>
<td>Tableau Desktop</td>
<td>9.0</td>
</tr>
<tr>
<td>Qlik</td>
<td>Qlik Sense</td>
<td>1.01</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Excel (with Power BI Addins)</td>
<td>Office 2013</td>
</tr>
<tr>
<td>SAP</td>
<td>Lumira</td>
<td>1.25</td>
</tr>
<tr>
<td>IBM</td>
<td>Watson Analytics</td>
<td>Beta</td>
</tr>
</tbody>
</table>

Table 2-2 Selected Vendors and tools

Figure 2-2 Gartner "Magic Quadrant for Business Intelligence and Analytics Platforms [4]
3. Literature review

The work is primarily based on Gartner’s report on BI and analytical platforms mentioned in the section 2.4. This report takes into account various stakeholders and factors such as pricing and deployment. It is based on 13 use cases, covering all the relevant work- and data flows regarding BI.

<table>
<thead>
<tr>
<th>Centralized BI provisionning</th>
<th>Evaluates the platform’s capacity for the creation and distribution of IT authored reports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decentralized analytics</td>
<td>Evaluates the platform’s suitability for analysis and reporting tasks as far as the business user is concerned.</td>
</tr>
<tr>
<td>Governed Data Discovery</td>
<td>Evaluates whether the platform offers the means to govern the data flow as a whole, meaning the IT can control the data the users access as well as the reports shared across the company.</td>
</tr>
<tr>
<td>OEM/Embedded BI</td>
<td>Evaluates whether the platform supports integration into business processes and other applications.</td>
</tr>
</tbody>
</table>

Table 3-1 Gartner’s use cases

While Gartner evaluates the products on an overall business scale, the emphasis of this thesis lies on the business user solely. In regard to Gartner’s structuring, this thesis can be regarded as an in-depth analysis of the use case category 2. We started from different taxonomies developed in the nineties on functionalities a visualization tool has to provide.

Wehrend and Lewis [7]
Identify, Locate, Distinguish, Categorize, Cluster, Distribution, Rank, Compare between relations, Associate, Correlate

Amar, Eagan and Stasko [8]
Retrieve value, Filter, Compute derivate values, Extremum, Sort, Determine range, Characterize distribution, Find anomalies, Correlate

Yi, Kang and Stasko [9]
Select, Explore, Reconfigure, Abstract/Elaborate, Filter, Connect

Table 3-2 Sets of basic functionalities for Visualization tools
The relevant functionalities of the selected tools were mainly determined through the instructions and user guides provided by the according vendors and with the help of teaching books when needed. A complete list can be found in the references part.

4. Method

This analysis has three points of departure. To evaluate each tool in a structured way, we related to the taxonomies for visualization tools described above. To concretize or complement these taxonomies, we set up a list of questions that may be of interest for the user.

The taxonomy elements and the questions were associated to the different steps in the creation of a query, ranging from accessing the data to testing the developed applications.

To complement the analysis and provide further insights on aspects that are possibly not covered by either the taxonomies or the questions, we developed a concrete business scenario to re-enact with each of the tools.

The concrete implementation of the functionalities described in the taxonomy, the questions and the implementation of the scenario were analysed/answered/performed with the actual tools.
5. Steps

5.1. Overview

In the context of self-service business intelligence we identified 6 typical steps in the making of queries. They sum up the typical needs and actions of the business users and the ensuing interactions between user and tool.

<table>
<thead>
<tr>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

Table 5-1 Steps in the creation of reports

5.2. Data access

Before starting to analyse and report, the user first needs to access the data to work on. The first step will therefore be to establish a connection to the according data sources.

The user may need to access a variety of different sources, some internal sources such as relational databases and multidimensional cubes as well as sources from the outside possibly unstructured data, such as tweets or newsfeed. He may also want to integrate files of his own to have a wider set of data at hand.

Questions here are:

- What are the interfaces to other tools/systems?
- What database vendors are supported?
- Can the user combine data sources?
- **Can the user import files of his own? What possibilities does he have to integrate them in his analysis? What type of files can the user import?**
- **Has the user the possibility to make changes to the data set upon importing?**

5.3. Data modelling

Once imported, the data needs to be presented in a structured way. We call this structure the data model and the elements within data objects.

<table>
<thead>
<tr>
<th>Functionalities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distinguish</td>
<td>Make data object recognizable as such through clear definitions and labelling</td>
</tr>
<tr>
<td>Categorize</td>
<td>Class data objects into certain categories</td>
</tr>
<tr>
<td>Associate</td>
<td>Establish relations between data objects</td>
</tr>
<tr>
<td>Compute derived values</td>
<td>Develop formulas to derive new data objects from the attributes of the initial ones</td>
</tr>
</tbody>
</table>

Table 5-2 Functionalities related to Data Modelling [7] [8]

Questions here are:

- **What data objects are there? How are they defined?**
- **What data types are there?**
- **What types of association are there?**
- **Can the user extend the data model with objects of his own?**
- **What type of calculations can be performed?**
- **What kind of out-of-box functions are there?**
5.4. Analysis

a) Basic analysis

The next steps are about the actual data analysis. The first move hereby will be to extract the main characteristics of a given data set.

<table>
<thead>
<tr>
<th>Functionalities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate</td>
<td>Find a specific data object with corresponding attributes</td>
</tr>
<tr>
<td>Filter</td>
<td>Find data objects with corresponding attributes</td>
</tr>
<tr>
<td>Sort</td>
<td>Arrange data objects according to specific attribute such as amount, size or alphabetically</td>
</tr>
<tr>
<td>Rank</td>
<td>Select a certain amount of data objects that stand out regarding a specific criteria such as amount, size, percentage</td>
</tr>
<tr>
<td>Determine Range</td>
<td>Find the span of values regarding a certain attribute of a data object</td>
</tr>
<tr>
<td>Find extremums</td>
<td>Find the data object that has the maximum or minimum regarding a certain attribute</td>
</tr>
</tbody>
</table>

Table 5-3 Basic functionalities related to analysis [7][8]

b) Visualization

Another important aspect as far as analysis is concerned, is the visualization of data. Important taxonomy elements related to this are described in *Table 5-4*.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Find out categories of objects that share common points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterize Distribution</td>
<td>Find out how data objects are distributed in regard to a certain attribute</td>
</tr>
<tr>
<td>Correlate</td>
<td>Find (causal) connections between data objects</td>
</tr>
</tbody>
</table>
There has been a lot of research on the optimal methods to visualize large amount data. In line with the taxonomies in Table 5-4, Stephen Few, an imminent authority in the field of data visualization defined seven types of analysis and suited visualizations.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Description</th>
<th>Classical Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal comparison</td>
<td>Compare objects according to one or more attributes</td>
<td>Bars, Pie charts</td>
</tr>
<tr>
<td>Time-series</td>
<td>Show development of an attribute over time</td>
<td>Line charts, bar charts, Trend Lines</td>
</tr>
<tr>
<td>Ranking</td>
<td>Compare only a certain amounts of objects according to one or more attributes</td>
<td>Bar charts</td>
</tr>
<tr>
<td>Part-to-whole</td>
<td>Determine the share of certain data objects or groups of data objects to an aggregated value</td>
<td>Pie charts, bar charts, heat charts, tree maps, maps</td>
</tr>
<tr>
<td>Deviation</td>
<td>Visualize how much a data object deviates from a certain value</td>
<td>Box plots, bar charts</td>
</tr>
<tr>
<td>Distribution</td>
<td>Determine the distribution of values across the full quantitative range</td>
<td>Box plots, histograms</td>
</tr>
<tr>
<td>Correlation</td>
<td>Identify potential relationships among attributes</td>
<td>Scatter plots, line/bar charts</td>
</tr>
</tbody>
</table>

Table 5-5 Visual analysis types and their charts [10]

Another important aspect as suggested by the taxonomy proposed by Stasko at. al [9] is the possibility for interactive analysis.
<table>
<thead>
<tr>
<th>Select</th>
<th>Highlight a special point of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explore</td>
<td>Show me something</td>
</tr>
<tr>
<td>Reconfigure</td>
<td>Show data objects in a different arrangement</td>
</tr>
<tr>
<td>Connect</td>
<td>Show connected data objects</td>
</tr>
<tr>
<td>Encode</td>
<td>Arrange the data objects in a different way</td>
</tr>
<tr>
<td>Abstract/ Elaborate</td>
<td>Show more details, less details</td>
</tr>
<tr>
<td>Filter</td>
<td>Find data objects with corresponding attributes</td>
</tr>
</tbody>
</table>

Table 5-6 Examples of visual operations [9]

Questions here are:
- What is the underlying concept for analysis?
- Are there out of the box solutions? Or does the implementation require scripting?
- What type of functions does the tool provide?
- How can the user create charts?
- What types of chart are supported?
- On what level do we analyse our data?
- What operations are there on charts?

5.5. Testing

After finishing with his analysis, the user will have to test, whether the results are actually correct. There are various types of error sources mostly in the very first steps. In order to avoid propagation through the analysis the user has to keep an eye on those error sources, while checking the results.

<table>
<thead>
<tr>
<th>Error sources</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data quality</td>
<td>The data source might already contain errors, missing values, inconsistencies.</td>
</tr>
</tbody>
</table>
Another error source is the usage of self-written queries, where it is all too easy make mistakes especially when not fully understanding the underlying data structure.

The user will need to associate his data objects in a sensible way connecting the right tables with the proper keys. Then when extending his data model, the user will need to make sure of the correctness of the formulas he used.

Questions here are:

- Are there specific error sources for that tool?
- What is the strategy as far as errors are concerned?
- How does the tool tackle the error-sources named above?

5.6. Presenting

Eventually the user may want to organize his visualizations so as to present them to a wider range of persons. The formats may vary depending on the required aggregation level.

<table>
<thead>
<tr>
<th>Functionalities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Report</td>
<td>Design a systematic document to relay information about e.g. figures, developments</td>
</tr>
<tr>
<td>Design Dashboard</td>
<td>Special type of report, summarizing the most important information about a subject on a single page</td>
</tr>
<tr>
<td>Design Story</td>
<td>Special type of report in the form of a slide-show, using visualizations to describe developments and connections</td>
</tr>
<tr>
<td>Export</td>
<td>Export of visual objects to other tools suited for presenting (e.g. PowerPoint)</td>
</tr>
</tbody>
</table>

Table 5-7 Options to make visualizations presentable
Questions here are:

- What type of files can the user export?
- Does the tool provide integrated presenting functionalities?
- Can the user integrate files (images, videos …) into his report?
- Does the tool give the possibility to create interactive dashboards/stories?

5.7. Collaboration

As a final step the user may want to share the results of his work with his team for changes and improvements or make the results available to others for viewing. The tools should therefore support collaborative work.

<table>
<thead>
<tr>
<th>Functionalities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharing</td>
<td>Make the report available to several (chosen) users for reading/ writing operations</td>
</tr>
<tr>
<td>Discussing/Commenting</td>
<td>Allow the users to add comments, discuss the report, without changing its functionality</td>
</tr>
<tr>
<td>User access synchronisation</td>
<td>Synchronized access to the report: possibility to work on the same report at the same time or if consistency is not guaranteed, mechanism to prevent parallel access</td>
</tr>
<tr>
<td>Filtering</td>
<td>Only show data objects of interest for specific users</td>
</tr>
<tr>
<td>Extend report</td>
<td>Add tables, diagrams, measures, objects</td>
</tr>
</tbody>
</table>

Table 5-8 Ideas for collaboration and sharing

Questions here are:

- What possibilities does the user have to share his reports? Are there special platforms linked to the self-service tool?
- Are there versions that support multiple user access?
- What options are there to design the data access?
Since an in-depth analysis of this step would require the set-up of a whole platform, we deliberately decided against evaluating this step. This however would be an exciting continuation of this survey.
6. Scenario

6.1. Setting

The scenario described here deals with a controller team for a large producer of sweets. Each month, the team has to compile reports giving an overview and an analysis over the sales achieved this month (this is only one of many reports of course). Up to now they have relied on standard reports designed for them by the IT, that they would then revise using spreadsheets.

But the market, the requirements, the questions keep on changing. For that reason the IT department and the controller team have decided to work on a self-service BI solution so as to enable the controller team to design and change their reports when they need.

In the context of this work we will accompany the controller team in the making process of new reports using the different self-service tools we have picked above. The following figure gives a short overview of the sales structures of the company.

![Diagram](image_url)

Figure 6-1 Geo-structure and product-structure for the scenario
6.2. Content and structure of the report

The reports are dashboards containing both tables and charts. The team compiled a list of questions they would like the dashboards to answer:

- How are the overall sales compared to the overall target?
- How does the YTD sales figure evolve compared to the set YTD target?
- How are the sales by product?
- How are the sales by product and by region?
- What is the contribution of the sublines to the YTD?
- What are the top 3 selling districts?
- How do the sales correlate with the average temperature (An important factor for selling sweets, ice cream doesn't sell so when it's cold, chocolate not so well when it's warm outside)

The sales and the information on the weather situation of the corresponding months are saved in separated Excel-sheets that will have to be combined in the course of the creation process.
7. Tool analysis

7.1. Microsoft Excel

7.1.1. General information

Microsoft Excel has been the prevailing tool regarding data organization, analysis and reporting for decades now.

Excel is a spreadsheet tool. A spreadsheet is a set of cells containing formulas and is organized into columns and rows. Over the years, through its intuitive usage and constant extensions, Excel has become an all-rounder, its fields of application ranging from actual application development to data maintenance work to data analysis and reporting.

This thesis will focus on latest, emphasizing on Excel’s functionalities related to classical self-service BI tool tasks.

The basic program structure can be found in Figure 7-1. Most functionalities are grouped into ribbons and most steps are performed within the workspace. The user can create several of these sheets within a workbook so as to structure his work.

![Figure 7-1 Excel Classic - Overall Interface](image)
7.1.2. Data Access

a) Interface description

Figure 7-2 Excel Classic - Relevant interface element for Data Access

b) How to import data

The user can copy/paste his data into the workspace. The data cannot be refreshed then. To make the data flexible to change, the user can create a data connection instead. Depending on the data source there are different types of wizards to guide the user through the creation process. The user may then refresh his data set when needed. Normally Excel only creates a connection to the data source. To actually work on and with the data the user needs to import the data into a worksheet as a table for instance.

Additionally there are several add-ins by different vendors, such as Live Office for SAP Business Objects or Oracle Business Intelligence Spreadsheet add-in. With these add-ins the user can import data from these sources too.

c) Supported data sources

- SQL Server tables
- SQL Server Analysis Services cubes
- Azure Marketplace data
- OData data
- XML data
- Access data
- Text file data
- Copy/Paste
For further sources:

- OLEDB (through Data Connection Wizard)
- ODCB (through Microsoft Query)

d) Operations on data set

The user is provided with a wide range of data transformation and manipulation possibilities. He can change the content of virtually every cell within the workbook.

7.1.3. Data Modelling

a) Interface description

![Excel Classic – Workspace](image)

Figure 7-3 Excel Classic – Workspace

Figure 7-4 Excel Classic – Grouping within the Data ribbon

Figure 7-5 Excel Classic – Extending the data model with formulas

1. Rows
2. Columns
3. Cells

1. Grouping
2. Relationship

1. Functions
2. Formula auditing
b) **Data objects**

Cells are the smallest data entity. They can contain virtually anything from images to figures to dates to simple strings. Modelling of complex data objects and relations using cells only however is difficult and error-prone.

![Figure 7-6 Loose Cells within Excel](image)

A series of rows and columns of cells that contain related data can be linked through a table. The data object table includes functions such as filtering or sorting for organization and analysis purposes.

![Figure 7-7 Table within Excel](image)

c) **Data types**

Number (Decimal), Number (Whole), Date & Time, Date, String, Boolean, Currency

d) **Modelling relations**

Create tables for relations between cells. To create a link between loose cells, the user has the possibility to create a table connecting these cells.
<table>
<thead>
<tr>
<th>Formulas</th>
<th>The user can connect cells and table columns through formulas (see e))</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLOOKUP,INDEX</td>
<td>Vlookup is a special function that performs a vertical lookup by searching a certain value in a column and returns a value at the according row. Index() (in combination with the match function) is a matrix calculation with a similar purpose.</td>
</tr>
<tr>
<td>Relation between tables</td>
<td>The user is able to create relationships between tables using one column in each table as key. Multiple columns cannot be used as key. Inelegant workarounds for joining over multiple keys include creating new helper columns, where the values of the different columns are concatenated.</td>
</tr>
<tr>
<td>Grouping</td>
<td>Grouping can be used to organize selected columns and rows into categories.</td>
</tr>
</tbody>
</table>

e) Extending the data model

On cell level
On cell level the data model can be extended by filling a new cell with a formula, a picture, a value etc.

On table level
On table level the model can be extended by adding a new column. Formulas in a table are automatically completed/adjusted within a column.

There is a variety of function categories in Excel including text functions, logical functions, look-up and reference functions and advanced statistical functions. A complete list can be found at http://www.excelfunctions.net/ExcelFunctions.html.
7.1.4. Data set analysis

Analysis can be performed on two levels. One option is to analyse the non-aggregated data.

a) Interface description

![Figure 7-8 Excel Classic - Relevant interface elements for data set analysis]

1. Conditional Formatting
2. Sort & Filter
3. Find & Select

![Figure 7-9 Excel Classic - Ribbon for inserting visualizations]

1. Tables
2. Charts
3. PivotChart

b) Functionalities

Excel offers a wide range of functions for analysis on data level. This includes extended find/replace possibilities. He can limit his search to a certain set of cells or extend it to the whole workbook and he can also set preferences regarding the format of the cells to look for.

Functions like sorting and filtering can be performed on cell level and table level and can be performed on multiple columns at once. For advanced sorting on multiple columns, the user can define more complex sorting logics under Data.

So as to find cells with certain attributes, the tool provides a set of formatting rules as well as the options to create rules of his own. Other functionalities like ranking or finding of extremums require the use of formulas. To do so however, we need to use new cells or a new column (see above) unless we stick to table calculations.

In addition to that, the user can create a visualization of his data set by merely selecting the section of the worksheets he wants to visualize, select a chart type and Excel automatically creates the according graph.
<table>
<thead>
<tr>
<th>Category</th>
<th>Example of charts that can be build</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column/Bar</td>
<td>Clustered Column, Stacked Column, 100%-Stacked Column, Clustered Bar, Stacked Bar, 100%-stacked Column</td>
</tr>
<tr>
<td>Line</td>
<td>Line, Stacked Line, 100%-Stacked Line, Line with markers</td>
</tr>
<tr>
<td>Area</td>
<td>Area, Stacked Area, 100%-Stacked Area</td>
</tr>
<tr>
<td>XY (Scatter)</td>
<td>Scatter with markers, no markers, smooth lines, straight lines Bubble charts</td>
</tr>
<tr>
<td>Stock</td>
<td>Open-high-low-Close, High-low-close, Volume-Open-High-low-Close</td>
</tr>
<tr>
<td>Surface</td>
<td>3-D surface, Wireframe 3D-surface, Contour, Wireframe Contour</td>
</tr>
<tr>
<td>Radar</td>
<td>Radar, Radar with markers, Filled Radar</td>
</tr>
</tbody>
</table>

Table 7-1 - Excel Classic - Visualization possibilities for classical charts

Additionally Excel provides some statistical elements to add to the chart such as box plots and trend lines.

7.1.5. Aggregate-level Analysis

The other possibility is to evaluate the data on an aggregated level. Options for that are pivot tables and pivot charts. The user can easily explore his data set through easy operations and the fact that the visualizations are updated on the fly with each operation.

a) Interface description

![Excel Classic - Pivot table tools](image)

Figure 7-10 Excel Classic - Pivot table tools
b) How to create a visual data object

For a pivot table To create a pivot table, the user should first select the according columns in his workspace, he can then create the according pivot table. So as to see data he then has to choose some fields and add these to the different sections in the “PivotTable Fields” panel.

For a pivot chart The procedure to create a pivot chart is similar to the one described above. The user can create a pivot chart from a table or an existing pivot table. He can then add fields to the different sections in the “PivotChart Fields” panel.

c) Visualization possibilities

<table>
<thead>
<tr>
<th>Category</th>
<th>Example of charts that can be build</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivot table</td>
<td>-</td>
</tr>
<tr>
<td>Column/Bar</td>
<td>Clustered Column, Stacked Column, 100%-Stacked Column, Clustered Bar, Stacked Bar, 100%-stacked Column</td>
</tr>
<tr>
<td>Line</td>
<td>Line, Stacked Line, 100%-Stacked Line, Line with markers</td>
</tr>
<tr>
<td>Area</td>
<td>Area, Stacked Area, 100%-Stacked Area</td>
</tr>
</tbody>
</table>

Table 7-2 Excel Classic - Visualization options for pivot charts
d) **Multidimensional analysis**

Depending on which parts of the PivotChart/PivotTable panel the fields are put, they can take up different roles within the visualization. Fields used as Value are aggregated according to the distinct values of fields used as row and/or as column in a pivot table ad

Drill down/Roll up The user can add or remove more fields to use as a row or as a column. If the data source contains hierarchies he can move up and down the levels of these hierarchies (the user cannot define hierarchies of his own with classical Excel however). In a pivot chart, the user can choose a field to use as Legend to differentiate between dimensions. The tool automatically creates a colour gradient for the distinct values of the dimension.

Slice/Dice The user can add the according fields on which to filter to the Filter section of the panel or create a slicer for more interactive filtering.

Pivot The user can simply change the roles of the fields (switch Region and Line for example)

e) **Further analytical functionalities**

Pivot tables and pivot charts offer about the same functionalities as for the non-aggregated data analysis. There is the possibility to extend the Data Model with calculated fields and calculated items with the functions described in the Data Modelling part.

7.1.6. Presenting

Figure 7-12 - Excel Classic - Relevant interface elements for layout
The user can create an Excel-report by re-arranging the visual objects and layout the worksheets. There is no explicit functionality to create dashboards or slide-shows. The focus of Excel lies on analysis mainly.

As far as interaction is concerned, the viewer can initially change any cell. To avoid too much damage when sharing the workbook with others, the user should lock important cells.

For more sophisticated presenting, the data and visual objects should be exported, either through copy/paste or saved as a stand-alone image file. Microsoft’s prevailing tool for presenting purposes is PowerPoint.

7.1.7. Testing

Spreadsheets are known as very error-prone applications. The errors mostly arise from the flexibility Excel offers when it comes to modelling formulas. The user can build very complicated interdependencies between cells and tables that are hard to monitor. Other problems arise from the possibility Excel offers regarding data transformation. The user is able to change virtually any cell within his sheets. This may lead to accidental changes but it also increases the viability for fraud. To address these problems, Microsoft implemented a Formula Auditing function so as to trace dependencies between cells.
7.2. Excel with Power BI add-ins

7.2.1. General aspects

In the process of enlarging their Power BI suite, Microsoft has introduced a series of new add-ins for Excel to further support BI tasks.

<table>
<thead>
<tr>
<th>Excel Add-in</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerQuery for Excel</td>
<td>For data integration and transformation operations</td>
</tr>
<tr>
<td>PowerPivot for Excel</td>
<td>For relational data modelling within Excel</td>
</tr>
<tr>
<td>PowerView for Excel</td>
<td>For the creation of interactive reports, especially designed for drill-down and roll-up operations</td>
</tr>
<tr>
<td>PowerMap for Excel</td>
<td>Location intelligence</td>
</tr>
</tbody>
</table>

Figure 7-13 Excel Power BI Add-ins

7.2.2. Data access

a) Interface description

Figure 7-14 Excel Power BI Add-Ins - Power Query Ribbon
b) **How to import data**

Power Query

To import data through PowerQuery the user should first select the according data source. He then has to fill out the information required by the wizard (the wizard may change from data source to data source). After selecting the according tables, a query-object is created for each selected table.

Power Pivot

To import data through PowerPivot the user should first select the according data source. He then has to fill out the information required by the wizard (the wizard may change from data source to data source). After selecting tables, the according tables are set up in the PowerPivot Data Model.
c) Supported data sources

Power Query
- Single files
- Relational sources
- Hadoop sources
- Data feeds
- Multidimensional sources
- ODBC sources

Power Pivot
- Single files
- Relational sources
- Data feeds
- Multidimensional sources
- other OLEDB/ODBC sources

d) Operations on data set

PowerQuery provides the possibility for extensive data manipulation, including replacing values, removing of columns and rows, as well as out-the-box functions for numerical operations such as rounding and trimming. When filtering the data set, the filtered entries do not show when the query is loaded into the data model or into a worksheet.

PowerPivot does not offer such a wide range of data transformation. It offers the possibility to filter and make changes to the data format and data types.
7.2.3. Data modelling

a) Interface description

Figure 7-16 Excel Power BI Add-ins - Relevant interface elements within the PowerQuery ribbon

Figure 7-17 Excel Power BI Add-ins - Relevant interface elements within the PowerQuery Editor

Figure 7-18 Excel Power BI Add-ins - Relevant interface elements within the Power Pivot ribbon

Figure 7-19 Excel Power BI Add-ins - Relevant interface elements within the Data Model

b) Data objects

Queries Each table imported with PowerQuery corresponds to a data object query. These queries are similar to classical Excel tables but are managed/edited outside the worksheets. After editing, the queries can be imported into a
specific worksheet for further analysis.

![PowerPivot Data Model Diagram](image)

Figure 7-20 Excel Power BI Add-ins - Query Panel

Tables in PowerPivot

Tables in the PowerPivot Data Model are similar to classical Excel tables too. Like queries, they are managed/edited outside the worksheets and can be imported into a worksheet whenever necessary.

![PowerPivot Data Model Diagram](image)

Figure 7-21 Excel Power BI Add-ins - Diagram view of tables within Data Model

c) **Data types**

Power Query
Number (Decimal), Number (Whole), Date & Time & Time Zone, Date & Time, Date, String, Boolean, Currency, Binaries, Duration
Power Pivot

Number (Decimal), Number (Whole), Date & Time, Date, String, Boolean, Currency

d) **Modelling relations**

- **PowerQuery**

Merge

Creates a new query where the columns of the second query are joined to the columns of the first, using one or more columns as key.

Append

Creates a new query where the rows from the second query are attached to the rows of the first query.

Group by

To create groups of table entries

- **PowerPivot**

Create relationship

The user can create relationships between the tables within Data model. He cannot use multiple keys for joining however.

Create hierarchies

The user can create hierarchies so as to drilldown/rollup the levels of the hierarchy when analysing. These hierarchies can only contain fields from the same table.

e) **Extending the data model**

In PowerQuery, the user can add so-called custom columns. He defines a new formula which is then applied to every row of the query. The results then form a new column.

PowerPivot has a similar concept, the calculated column. When pivoting, these calculated columns are treated as fields and can be added to any of the Pivot-panels. Additionally the
user can create a calculated field which is similar to a calculated column. The main difference however is that a calculated field can only be used as a “Value” when pivoting.

For PowerPivot, Microsoft developed a new formula language, the DAX. This formula language is similar to the one the standard Excel formula but especially designed for tables with special functions to work with relational data and perform dynamic aggregation. [11]

7.2.4. Data set Analysis

In the Data Model, PowerPivot offers a slightly less powerful set of functionalities for analysis on data level than classical Excel does. The user can look-up values, sort and filter.

For further analysis he may extend the data model by adding a new column or a new measure using formulas [11].

7.2.5. Aggregate-level Analysis

For aggregate-level analysis the user can either use pivot tables or pivot charts as described in section 7.1.5 or the PowerView add-in as described below. The user can easily explore his data set through easy operations and the fact that the visualizations are updated on the fly with each operation.

a) Interface description

![Figure 7-22 Power BI Add-ins – PowerView](image_url)

1. Workspace
2. Fields
3. Filter
4. Visualization
b) How to create a Visualization

The user first has to create a PowerView. He can then select the fields to be included in the visualization. The tool automatically creates an according table in the workspace. The user can then select one of the available chart type.

c) Visualization possibilities

<table>
<thead>
<tr>
<th>Table</th>
<th>Table, Matrix, Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Chart</td>
<td>Stacked, Clustered, 100% Stacked</td>
</tr>
<tr>
<td>Bar Chart</td>
<td>Stacked, Clustered, 100% Stacked</td>
</tr>
<tr>
<td>Other Charts</td>
<td>Pie, Line, Scatter</td>
</tr>
<tr>
<td>Map</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 7-24 - Excel Power BI Add-ins - Visualization possibilities

d) Multidimensional analysis

Drill down/Roll up The user can add or remove more fields as a row or as a column or move up and down the levels of hierarchies.

To differentiate between the dimensions the user can choose a field as Legend to differentiate between dimensions. The tool automatically creates a colour gradient for the distinct values of the dimension.

Additionally the user can choose to create a set of multiple smaller charts for the distinct values of a dimension.
Slice/Dice
The user can add the according fields on which to filter to the Filter section on the workspace to create a slicer.

Pivot
The user can simply change the roles of the fields (switch Region and Line for example)

e) **Further analytical functionalities on Visualization objects**

There are not as many possibilities as in a PivotChart. The user can merely sort the visualization by dimensions or select some data points of interest. For further analysis the user can create new columns within PowerPivot.

7.2.6. Testing

Power Query and Power Pivot add two additional layers of data in Excel, so that tasks such as transforming data and data modelling can be performed outside the actual worksheets. The goal is to keep these processes apart so as to keep a clear structure, instead of mixing everything up into some worksheets and overloading them with data and complicated index functions. Another helpful way of keeping an eye on the overall data model is the diagram view in the Power Pivot Data Model that visualizes the tables and the relationships between them.

Other than that, the add-ins do not add any testing relevant functionalities to Excel.

7.2.7. Presenting

The user can add several charts to the PowerView workspace as well as images from external sources, so that he can design dashboards on the fly. Apart from that the options are the same as for the classical Excel.
7.3. Tableau Desktop

7.3.1. General information

Tableau developed out of a project at Stanford University at the end of the 90’s with the aim to facilitate data access [12]. The making of user-friendly front-end solutions for data visualization remains Tableau Software’s main target [12]. As such, Tableau Desktop, a classical desktop application to create data visualizations, forms the core of the product portfolio. Next to that, Tableau offers solutions for sharing and hosting visualizations and dashboards created with Tableau Desktop, such as Tableau Server and Tableau Online.

Visual objects are created within a workbook.

![Figure 7-25 Tableau - General structure](image)

The data source tab is for managing the data on which the rest of the workbook will be built upon. A sheet on the other hand contains a single visualization. Sheets can then be assembled to dashboards or stories for presenting purposes.
7.3.2. Data access

a) Interface description

![Figure 7-26 Tableau – Relevant interface elements for data access within the Data source section](image)

b) How to import data

To access the data, the user first has to pick a data source type. He should then fill-in the required authentication information (if required). After that he can select the tables through double-click or drag-and-drop onto the data model.

c) Data sources available

The user can import data from various sources at once. To do so, Tableau offers a variety of native data connectors for:

- Relational data source
- Multidimensional data sources
- Hadoop sources
- Single files (e.g. Excel file)

For data sources that are not covered by native connectors, the user can connect through the ODCB interface. He also has the possibility to copy/paste data into Tableau.
d) **Operations on data sources**

- **Data source filters**

Before working on the data, the user can filter the fields of the selected tables beforehand. To set up a filter, the user first has to select the attribute he wants to filter on. He can then define the constraints through a filter wizard. The filter wizard varies with the data types.

- **Excel add-in**

There is a Tableau Excel add-in designed for data transformation purposes. According to the website however, this add-in is neither supported nor documented by Tableau [13]. It will therefore not be taken into consideration for this survey.

- **Tableau Data Interpreter**

The Data interpreter is a tool to look for, analyse and correct errors in Excel sheets.
7.3.3. Data modelling

a) Interface description

Figure 7-27 Tableau – Relevant interface elements for data modelling within the Data Source section

Figure 7-28 Tableau – Relevant interface elements for data modelling within a sheet
b) **Data objects**

On data source level, the data is imported in the form of tables. These tables consist of fields with different data types. On sheet level, the user does not interact with tables but with dimensions and measures. Each dimension or measure corresponds to one of the fields in a table. Tableau automatically recognizes whether a field should be used as a dimension or as a measure.

c) **Data types**

Number (Decimal), Number (Whole), Date & Time, Date, String, Boolean Geographical Role (Country/Region Zip Code/Postcode, City…)

d) **Modelling relations**

On data source level, the user can join related tables using a key or multiple keys. He can do so for relations across data sources too, by defining the fields on which to join with the option “Edit Relationships” in the drop-down menu “Data”. On dimension/measure level, the user can define hierarchies, sets (subset of field entries) and groups.

e) **Extending the data model**

- **Calculated fields**
 The user can create new dimensions and measures. He can either perform row-level calculations or aggregate-level calculations.

- **Parameters**
 A parameter is a global variable that serves as placeholder and can be shown as controls on dashboards.

- **Table calculation**
 A table calculation does not extend the data model as such because it does not require the creation of another field. It only takes into account the actual values within the current table and changes the original values in the visualization for the computed ones.
Tableau offers a wide range of functions like number functions, date functions, aggregation functions or table calculation functions (for table calculations see above) to name a few. [14]

7.3.4. Analysis

The analysis is performed on aggregated level. It is based on visualization mainly. Next to visualizations, exploring the data set is also encouraged through easy operations and the fact that the visualizations are updated on the fly with each operation.

a) Interface description

![Figure 7-29 Tableau – Structure of a sheet](image)

b) How to create a visualization

To create a visualization the user has to drag and drop all desired dimensions and measures onto the “Columns” and “Rows” fields (rows correspond to x-axis, columns correspond to y-axis). Tableau automatically creates and adequate visualization from this, aggregating the measures depending on the used dimensions. The user can customize the visualization through the drop-down menu in the “Marks” card.
For unexperienced users, Tableau implemented the Show me"-Table for suggestions on possibly adequate visualization.

c) **Visualization possibilities**

<table>
<thead>
<tr>
<th>Mark</th>
<th>Example of charts that can be created</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar</td>
<td>Classical bar charts, Stacked bar charts, Side-by-side bars, horizontal bars, histograms</td>
</tr>
<tr>
<td>Line</td>
<td>Line chart, Dual lines chart</td>
</tr>
<tr>
<td>Area</td>
<td>Area chart</td>
</tr>
<tr>
<td>Square</td>
<td>Tree map, Heat map</td>
</tr>
<tr>
<td>Circle</td>
<td>Circle Views, Side-by-side chart</td>
</tr>
<tr>
<td>Shape</td>
<td>Scatter plot</td>
</tr>
<tr>
<td>Text</td>
<td>Table, Highlight table</td>
</tr>
<tr>
<td>Filled Map</td>
<td>Geographical Map</td>
</tr>
<tr>
<td>Pie</td>
<td>Pie charts</td>
</tr>
<tr>
<td>Gant Bar</td>
<td>Gantt view</td>
</tr>
<tr>
<td>Polygon</td>
<td></td>
</tr>
</tbody>
</table>

Table 7.3 Tableau - Visualization options

d) **Multidimensional analysis**

Drill down/Roll up
The user can add or remove more fields as a row or as a column or move up and down the levels of hierarchies. To analyse over more than one dimension, the tool offers the possibility to create multi-
panel charts or the possibility to create a color-gradient changing with
the values of the dimension.

Slice/Dice
The user can add the according fields on which to filter to the Filter
card or create a quick filter for more interactive filtering.

Pivot
The user can simply change the roles of the fields (switch Region and
Line for example)

e) **Other analytical functionalities on visualization objects**

Tableau offers out-of-the box solutions for all of the basic analysis functionalities. Next to that
Tableau provides some statistical elements to add to the chart such as box plots and trend
lines and a wide set of functions (see part Extending the Data Model).

7.3.5. Testing

Errors sources are kept as small as possible. The processes require hardly any scripting.
Instead the user is guided through the creation process by wizards and intuitive operations.
Additionally small warning signs draw the user’s attention to incorrectly joined tables or
syntactically wrong formulas. The analysis is kept visual mainly, so that there too the user is
immediately aware of marking anomalies. To further analysis of these errors, he can take
look at the underlying data and export it for further examination.

For possible errors in spreadsheets, Tableau implemented an option called the Data
Interpreter which analyses the data for errors and makes according changes.
7.3.6. Presenting

a) Design a dashboard

To fill the dashboard, the user simply has to drag and drop the according sheets onto the workspace. He can add images and websites to complete his dashboard. Next to this, the user can create actions such as filtering and highlighting.

b) Design a story

Figure 7-30 Tableau – Structure of dashboard

Figure 7-31 Tableau – Structure of a story
To fill the story, the user simply has to drag and drop the according sheets and dashboards onto the workspace. He can add images and websites to complete his work.

c) **Exporting options**

The user can either copy an image or export it as Bitmap, JPEG or PNG. For further analysis he may export the underlying data as a crosstab or as a mere list of data points.
7.4. Qlik Sense Desktop

7.4.1. General information

For years now, Qlik pursued a single-product-strategy based on Qlik View. Qlik View is a tool designed for IT users and power users so as to build interactive data visualization applications for business users.

With its new product Qlik Sense, Qlik has shifted towards a two-product strategy. Just like Qlik View, Qlik Sense is an entire BI platform designed to cover all of the workflows described in section 3. Unlike for Qlik View however, the front-end solution for analysis and reporting tasks is specifically designed to integrate the business users in the development of Qlik Sense apps.

For the analysis of the front-end, we used Qlik Sense Desktop, a desktop version of Qlik Sense’s front-end solution that Qlik offers for free.

When opening Qlik Sense, the user first gets to the Qlik-Sense Desktop Hub where apps can be created and managed. An app is a compilation of different objects on a same topic.

![Figure 7-32 Qlik Sense – View of an app](image)

1. Sheets
2. Bookmarks
3. Stories
An app can contain three object types. The starting point for the user’s analysis are sheets. This is where the user can create visualizations of his data. If the user wants to capture a precise moment in the making of his sheet he can create a bookmark, similar to a screenshot of the sheet. To organize his sheets in slide-shows, he can then create a story containing pictures, texts and snapshots of his visualization.

7.4.2. Data Access

a) Interface Description

Figure 7-33 Qlik Sense – Data Editor

Figure 7-34 Qlik Sense – Importing wizard for relational source (Access)
b) How to import data

For spreadsheets and text files Qlik Sense offers the option Quick Data Load. The data source can either be dragged and dropped onto the workspace or selected through the data path.

To connect to other sources the user has to create a connection through the connection manager first. The wizards differ depending on the data source type (see above). The user can select the table he wants to load, Qlik Sense then generates a script that is inserted in the editor. Instead of using the connection manager, there is the possibility to write the script freehand using the Qlik Sense scripting language. To finally import the data, the user has to run the generated script through clicking on the “Load”-button.

c) Supported data sources

Standard connectors:

- ODBC database connections
- OLE DB database connections
- Folder connections that define a path for local or network file folders
- Web file connections
d) Operations on data set

The Qlik Sense scripting language is a very powerful data transformation tool similar to the one in Qlik View. It offers the possibility to augment, manipulate, and transform data [15]. Unlike in Qlik View however there are scarcely any wizards or other elements other than the ones to create the actual connections to facilitate the process.

7.4.3. Data modelling

a) Interface description

![Figure 7-36 Qlik Sense – Data model](image-url)
b) **Data objects**

Data is imported in the form of tables. These tables have fields with which the user interacts when creating a visualization. The field have different data types and can either be used as dimensions or as measures depending on the user’s needs.

c) **Data types**

Text string, Date, Time, Timestamps, Currency

d) **Modelling relations**

On table level Qlik Sense automatically associates tables that have a field with the same name or automatically appends tables with exact same field names. The tables are not directly joined, they are still independent tables [11]. This can be customized in the Script Editor through the join-prefix for instance used to actually join tables.

On dimension level, the user can create drilldown groups which corresponds to creating a hierarchy in other tools. There are no further out of the box modelling options but the user can create new dimensions using according formulas. When wanting to group certain fields for example, the user can define a new field with if-conditions.
e) **Extending the data model**

The user can extend the data model through calculated fields. The functions that Qlik Sense offers cover row-level calculations as well as aggregate-level calculation.

7.4.4. **Analysis**

The analysis in Qlik Sense is performed on aggregated level only and mainly builds on visualization. There are two modes for a worksheet. In the Edit mode the user can create visualizations and make changes. In the View mode, the user can look at the visualizations and perform some analytical operations like drill-down and roll-up or filtering.

a) **Interface description**

![Qlik Sense - Structure of a sheet](image)

Figure 7-38 Qlik Sense – Structure of a sheet
b) How to create a visual data object

The user has to drag and drop the required chart type onto workspace then drag and drop fields onto chart. After having dropped a specific field onto the visualization the user should choose whether the field should be used as dimension or measure. The tool then automatically creates the according chart. The chart can customized through the menu on the left.

c) Visualization possibilities

<table>
<thead>
<tr>
<th>Basic chart type</th>
<th>Chart options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar chart</td>
<td>Grouped, Vertical, Horizontal,</td>
</tr>
<tr>
<td>Tree map</td>
<td>Tree map</td>
</tr>
<tr>
<td>Pie</td>
<td>Pie Chart, Donut chart</td>
</tr>
<tr>
<td>Linechart</td>
<td>Line, Area</td>
</tr>
<tr>
<td>Map</td>
<td>Map</td>
</tr>
<tr>
<td>KPI</td>
<td>KPI</td>
</tr>
<tr>
<td>Gauge</td>
<td>Circle, Column</td>
</tr>
<tr>
<td>XY Scatter Plot</td>
<td>XY Scatter Plot</td>
</tr>
<tr>
<td>Pivot table</td>
<td>Pivot table</td>
</tr>
<tr>
<td>Table</td>
<td>Table</td>
</tr>
</tbody>
</table>

Table 7-4 Qlik Sense - Visualization options

The basic chart type can be accustomed through the menu options on the left side.
d) Multidimensional analysis

Drill down/Roll up

The user can add or remove fields as a row or as a column or move up and down the levels of hierarchies. To analyse over more than one dimension, the tool offers the possibility to create multi-panel charts or the possibility to create a colour-gradient changing with the values of the dimension. The amount of dimensions that can be added is limited to two however for most visualization options.

Slice/Dice

The user can add the according fields on which to filter through adding a slicer to the sheet or setting constraints on the used dimensions and measures.

Pivot

The user can simply change the order of the fields (switch Region and Line for example).

e) Other analytical functionalities on graphs

The user can sort the visualization or highlight some data points of interest. For further analysis the user should extend the data model with according measures and formulas. In view mode there is the possibility for so the so called Global Smart Search where the user can simply analyse his visualizations by typing in keywords as search terms.

7.4.5. Testing

Qlik Sense is very scripting intensive. The first steps Data Access and Data Modelling mainly rely on scripting. Although there is a debugger it is still a source for errors. For possible data source errors, the tool provides an evaluation of each field informing the user on duplicated values and the density of the field entries. Null-values in the data source are automatically recognized. The scripting language allows for data shaping so as to correct errors in the data source.

A great part of the analysis is visual so that the user is immediately aware of anomalies. There is no out-of-the box solution for numerous operations such as ranking or trend lines. Here too the user can needs to set up new dimensions and measures with possibly complicated formulas and therefore increases the possibilities for errors.
7.4.6. Presenting

a) **Designing a dashboard**

![Designing a dashboard diagram](image1)

Figure 7-39 Qlik Sense – Sheets as dashboards

A worksheet can contain multiple visualizations. The user can create a dashboard by simply adding more visualizations to sheet he is working on. A user can also add texts and images from external sources. A worksheet allows for extensive interaction, especially filtering with slicers and search-based data discovery.

b) **Designing a story**

![Designing a story diagram](image2)

Figure 7-40 Qlik Sense – Structure of a story
The user can integrate various object types in his slide-show. He can insert snapshots of his visualizations as well as images from external sources. Stories do not provide the possibility for interactions.

c) Export

Currently Qlik Sense Desktop does not provide the possibility to export images or data.

Update on 24. June 2015: With Qlik Sense Enterprise 2.0, the user has the possibility to export visualizations as pdf or image file.
7.5. SAS Visual Analytics

7.5.1. General aspects

Starting as a project for analysis in agriculture research, SAS Institute is now a leading vendor for analytics software. With SAS Visual Analytics, SAS has launched a platform-based BI solution to enable enterprise-wide deployment and administration.

The user accesses the BI platform through a multiple of browser based modules. SAS does not provide a standalone desktop application with the different functionalities of the modules, but only sales the platform as a whole. Since the deployment of a whole platform would be far beyond the scope of this work, we decided to use the browser-based modules provided by SAS through the Tera Data University Network. This version however is for demonstration purposes only and only provides access to the modules Hub, Explorer, Designer. The module Data Builder meant for data management and data designing purposes is not available. This rendered impossible the evaluation of step one and a complete evaluation of step 2 and 5. Moreover, it is not possible to upload one’s Excel files and we were therefore forced to use predefined examples.

![Figure 7-41: SAS VA - View on the Hub](image)

The tool as we see it has three modules. The hub to organize and access the explorations and reports. The Data Explorer is for discovering and “playing” with data to gain new insights. The Report Designer as the name already reveals is for designing reports. Both modules have many common features. Features that are specific for one of the modules will be marked accordingly.
7.5.2. Data access

Not evaluated

7.5.3. Data modelling

Could not be fully evaluated, since we have no access to the Data Builder module.

a) Interface description

![Interface description image]

Figure 7-42 SAS VA - Relevant interface elements for Data Modelling

b) Data objects

There are three types of data objects: categories, measures, geography objects. Categories are the same as dimensions in the other tools. The categories’ distinct values are used to aggregate measures. Geography objects are special categories containing geospatial information.
c) **Data types**

<table>
<thead>
<tr>
<th>Category</th>
<th>String, Date, Date time, Time, Numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures</td>
<td>Numeric</td>
</tr>
<tr>
<td>Geography</td>
<td></td>
</tr>
</tbody>
</table>

d) **Modelling data**

(In Data explorer only)

The user can create hierarchies and custom categories which corresponds to grouping in other tools.

e) **Extending the data model**

| Calculated fields | The user can create new measures. The calculation is performed on row-level. Functions categories here include numerical functions, text functions, comparison functions etc. |
|---|
| Aggregated measures | This kind of measure is to create aggregate-level calculations. The user can choose the dimensions on which he wants to aggregate his data. |
| Parameters | A parameter is a global variable that serves as placeholder. The user can decide what value the parameter should take and analyse his data set when the parameter takes up different values. |
| Table calculation | Visual Analytics provides a set of predefined table calculations. A table calculation does extend the data model as such because it does not require the creation of another |
field. It only takes into account the actual values within the current table and changes the original values in the visualization for the computed ones.

7.5.4. Analysis

The analysis in Visual analytics is performed on aggregated level only and mainly builds on visualization.

a) Interface description

Figure 7-43 SAS VA – Analysis within the Data Explorer

Figure 7-44 SAS VA – Analysis within the Report Designer
b) **How to create a visualization**

Data Explorer
The user can either start by picking one of the available visualization options or the required dimension and measures. In the latter case, the tool automatically creates an adequate graph.

Report Designer
The user can either start by picking one of the available visualization options and the required dimension and measures.

c) **Visualization possibilities**

<table>
<thead>
<tr>
<th>In Data Explorer</th>
<th>Table, Crosstab, Bar Chart, Line Chart, Scatter Plot, Bubble Plot, Network Diagram, Histogram, Box Plot, Heat Map, Geo Map, Tree Map, Correlation Matrix, Decision Tree, Word Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Report Designer</td>
<td>List Table, Crosstab, Bar Chart, Targeted Bar Chart, Waterfall Chart, Line Chart, Pie Chart Scatter Plot, Time Series Plot, Bubble Plot, Treemap, Dual Axis Bar Chart, Dual Axis Bar-Line Chart, Dual Axis Time Series Plot, Gauge, Word cloud</td>
</tr>
</tbody>
</table>

Table 7-5 SAS Visual Analytics - Visualization options

d) **Multidimensional Analysis**

Drill down/Roll up
The user can add or remove more fields as a row or as a column or move up and down the levels of hierarchies.

Slice/Dice
The user can add the according fields on which to filter to the Filter panel of the panel or create a quick filter for more interactive filtering.

Pivot
The user can simply change the roles of the fields (switch Region and Line for example)
e) **Further analytical functionalities on visualization objects**

Further analytical functionalities are Data Brushing for example as well as ranking and sorting.

7.5.5. Testing

This step could not be evaluated since the most error-prone processes could not be tested due to the reasons named above. As in the other tools however a great part of the analysis is visual so that the user is immediately aware of anomalies.

7.5.6. Presenting

The version we used did not provide any further layouting options for designing dashboard and reports. The visualizations however can be exported as .png and the underlying data as .cvs files. In the Report Designer, it is possible to create interaction elements on a visualization such as controls or sliders.
7.6. SAP Lumira

7.6.1. General aspects

SAP is one of the world’s leading vendors for enterprise software. The company has a long-standing experience in the BI field especially with the SAP BusinessObjects BI-Suite, a suite offering various front-end solutions for data analysis such as Crystal Reports or Webi. These tools however are used by power users mainly.

SAP Lumira is a new attempt towards a new generation of BI tools. Lumira is a desktop application to create visualizations and dashboards. It can be acquired with the Lumira Server for sharing visualizations and reports with others.

The tool contains four sections.

![Figure 7-45 SAP Lumira – General structure](image)

The first section is for data access and data modelling purposes. In the Visualization part, the user creates his visualizations for either data discovery purposes or reporting tasks or both. The third section is designed to bring together the visualisations and images from external sources so as to create reports, dashboards and story. The last section finally is for sharing purposes, which we will not cover here however.
7.6.2. Data access

a) Interface description

![SAP Lumira Interface for data shaping and data modelling](image)

Figure 7-46 SAP Lumira – Interface for data shaping and data modelling

b) How to import data

Access to files and SAP products is rather well supported. The user can simply import data files or create a connection to the SAP BO universe or SAP HANA. He can then pick the tables to import. Other relational sources are accessible but require expertise at writing SQL, there are no wizards or other elements supporting the process. In both cases the user can import data from various sources at once.

c) Supported data sources

- Microsoft Excel sheets
- Text files (.cvs or .txt)
- Query with SQL
- SAP BW
- SAP Hana
- SAP BusinessObjects universe
d) **Operations on data set**

SAP Lumira offers some data shaping options especially for strings such as replace, split and fill. The user can change the data types for instance. Each operation however creates a new column. The initial column remains visible.

7.6.3. **Data modelling**

a) **Interface description**

![Figure 7-47 SAP Lumira - Relevant interface elements for Data Modelling](image)

b) **Data objects**

The data is imported as a data set, a table with various fields of different data types. These fields are interpreted as either dimensions or measures. As in the tools described above, dimensions determine the level of aggregation whereas measures represent the figures to aggregate.
c) **Data types**

Integer, Biginteger, Double, String, Date, Boolean

d) **Modelling data**

The data of each source is imported as data sets. These data sets can either be appended or merged (just as in PowerPivot). To support the user when merging two columns, Lumira offers the option to suggest on which columns joining would make sense. The user can group values in the Prepare section. Other than that the user can create hierarchies between dimensions.

e) **Extending the data model**

The user can create calculated dimensions and measures. The formula language does not seem to support aggregate-level calculations. The calculations are performed on row-level only. Lumira however offers some table calculations such as running sums and counts. More complicated table calculations are not allowed for.

7.6.4. **Analysis**

The analysis in Lumira is performed on aggregated level only and mainly builds on visualization. Next to visualizations, exploring the data set is also encouraged through easy operations and the fact that the visualizations are updated on the fly with each operation.

a) **Interface description**
b) How to create a visualization

To create visualization, the user first has to pick a type of visualization then drag and drop all desired dimensions onto the “Dimensions” and all desired measures onto the “Measures” field in the “Visualization Tools” panel. The tool then automatically creates the according chart, aggregating the measures depending on the used dimensions.

c) Visualization options

<table>
<thead>
<tr>
<th>Options</th>
<th>Example of charts that can be build</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar chart</td>
<td>Bar Chart, Column Chart, Column Chart with 2 Y-Axes, 3D Column Chart Marimekko Chart</td>
</tr>
<tr>
<td>Line chart</td>
<td>Line Chart, Area Chart Line Chart with 2 Y-Axes, Combined Column Line Chart, Combined Column Line Chart with 2 Y-Axes</td>
</tr>
<tr>
<td>Pie chart</td>
<td>Pie Chart, Donut Chart, Pie with Depth Chart</td>
</tr>
<tr>
<td>Geo Chart</td>
<td>Geo Bubble Chart, Geo Choropleth Chart, Geo Pie Chart, Geo Map</td>
</tr>
<tr>
<td>Scatter plots</td>
<td>Scatter Plot Scatter Matrix Chart, Bubble chart</td>
</tr>
<tr>
<td>Maps</td>
<td>Heat map, Tree map</td>
</tr>
<tr>
<td>Table</td>
<td>Table, Crosstab</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Numeric Point</td>
<td>Numeric Point</td>
</tr>
<tr>
<td>Other charts</td>
<td>Tree, Funnel Chart, Network Chart, Waterfall Chart, Box Plot, Parallel Coordinates Chart, Tag Cloud, Radar Chart</td>
</tr>
</tbody>
</table>

Table 7.6 SAP Lumira - Visualization Options

d) Multidimensional analysis

Drill down/Roll up
The user can add or remove more fields as a row or as a column or move up and down the levels of hierarchies. To analyse over more than one dimension, the tool offers the possibility to create multi-panel charts or the possibility to create a colour-gradient changing with the values of the dimension. Additionally the user can choose to create a set of multiple smaller charts for the distinct values of a dimension.

Slice/Dice
The user can add the according fields on which to filter to the Filter section of the panel or create a slicer for more interactive filtering.

Pivot
The user can simply change the roles of the fields (switch Region and Line for example)

e) Further analytical functionalities

There are not so many out-of-box solutions here. The user can merely sort, rank and highlight some data points.

7.6.5. Testing

As for Tableau, the user is guided through the creation process by wizards and intuitive operations. The operation set is limited in comparison to other tools but keeps the whole handling manageable.
Here too, the processes are eased by constant visual feedback on possible errors. Small attention warning signs draw the user’s attention to incorrectly joined tables or syntactically wrong formulas. The analysis is kept visual mainly, so that there too the user is immediately aware of marking anomalies.

7.6.6. Presenting

There are three options to organize visualizations.

- **Infographics**
 - Visualization without interactions
 - Possibility to integrate further pictograms and forms

- **Storyboards**
 - Interactive diagrams through entry filters
 - To create interactive dashboards and slide-shows

- **Reports**
 - Interactive diagrams through entry filters
 - To create interactive reports

All options offer the possibility to integrate pictures from the outside.

![Visualization Interface](image)

Figure 7-49 SAP Lumira – Presenting

To make the integrate visualization into the report, the user can simply drag and drop the according visualization onto the workspace.

f) **Export**

The user has the possibility to copy/paste single visualizations, to export the entire file as a .pdf or to export the underlying data to either a .csv file or an Excel file.
7.7. IBM Watson Analytics

7.7.1. General aspects

IBM is one of the world leading software and hardware vendor as well as one the world leading consulting firms for IT subjects.

Just as SAP, IBM has a long standing tradition in business analytics with different product lines such as IBM Cognos products for classical BI questions and the IBM SPSS products for advanced analytics including forecasting and data mining tasks.

Recently IBM has started a cloud-service called Watson Analytics. The tool’s purpose is to ease advanced analytics tasks as much as possible for business users. There are three purchasing options. First there is the free version, it comes with a limited connectivity and storage capacity, the personal edition and the professional edition come with more data sources and a higher storage capacity [16]. We will keep to the free version in this thesis.

The tool contains four modules. The Refine module is for data transformation and modelling. The Explore module is designed for data exploration to gain new insights on the data whereas the Assemble module allows the user to create visualizations and arrange them in dashboards and stories. The Predict module finally is for forecasting purposes.

![Figure 7-50 Watson Analytics – Overall structure](image)
7.7.2. Data Access

a) Interface description

![Figure 7-51 Watson Analytics – Import menu](image1)

![Figure 7-52 Watson Analytics – Refinement](image2)

b) How to import data

- Drag and drop file onto menu
- Browse for files
c) **Data sources**

- Microsoft Excel 97 – 2003 spreadsheet files (.xls)
- Microsoft Excel 2007 and later spreadsheet files (.xlsx)
- Comma-separated values files (.csv).

The personalized version as well as the professional version enable the user to import data from feeds and IBM environments [16].

d) **Operations on data**

There are data source filters but no other data transformation operation.

7.7.3. Data modelling

a) **Interface description**

![Interface elements for Data Modelling](image)

1. Columns
2. New Column
3. Hierarchies
4. Groups

Figure 7-53 Watson Analytics – Relevant interface elements for Data Modelling
b) **Data objects and Data types**

The user interacts with the columns of the table. Each column has a specific data type. The data types currently available are: text, numeric and date. The tools detect the data types automatically but the user cannot change the field type afterwards.

c) **Modelling data and extending the data model**

The user cannot work with several tables at the same time. On column level he can create new hierarchies (those are even recognized automatically by the tool) and groups as well as new columns. The possibilities here are rather restrained here. It’s only possible to perform simple numerical calculations (plus, minus…) between columns. There are no operations for aggregate level calculations.

7.7.4. **Analysis**

The analysis in Watson Analytics is performed on aggregated level only and mainly builds on visualization.

a) **Interface description**

Figure 7-54 Watson Analytics – Explorer automatically deduces questions regarding the data set
b) How to create a visualization

In Explore module Based on the field types of the table used as data source, the tool automatically creates questions that could be of interest for the user. The user has to choose one of the generated. He may also ask a question of this own. The tool then automatically generates according visualizations representing potentially important information to answer the question.
In Assemble module The user has to pick one of the visualization types, then drag and drop according measures onto the different roles. The tool then automatically creates the according chart.

c) Visualization options

In the Explorer module Line, Area, Grid, Bubble, Tree map, Categorical

In the Assemble module Area, Bubble, Bar, Column, Line, Heat, Hierarchy, Line + Column, Map, Packed Bubble, Pie, Point, Radial, Radial Bar, Scatter Plot, Stack Bar, Stack Column, Summary, Tree map, Word cloud

d) Multidimensional analysis

Drill down/Roll up The user can add or remove more fields as a row or as a column or move up and down the levels of hierarchies.

Slice/Dice The user can add the filters to the according fields.

Pivot The user can simply change the roles of the fields (switch Region and Line for example)

e) Other analytical functionalities

The user can select single points of interest and sort by one field. There are no further out of the box functionalities for analysis.
7.7.5. Testing

Watson Analytics offers an evaluation of the data source based on missing values and errors. Aside from that, the user has little opportunity to make any errors since the tool does not allow for complicated operations and most of processes are automatized.

The tool however still makes errors in the interpretation of data as far as data types are concerned for example. The tool however does not allow for further interaction nor modification options yet.

7.7.6. Presenting

a) Dashboard

![Dashboard elements]

Figure 7-57 IBM Watson analytics – Dashboard elements

A view can hold several visualizations so that they can immediately be organized in a dashboardlike way.
b) **Story**

![IBM Watson Analytics – Interface for creating a story](image)

The user can augment both his dashboards and stories with images, webpages, videos, texts and figures.

c) **Exporting**

There no exporting options for visual objects yet.

8. **Concluding thoughts**

8.1. **Common features and differences between the tools**

8.1.1. **General aspects**

Apart from Excel, the tools all have a similar basic structure. They usually have three to four distinct sections with a main purpose each. The first section is to organize data access and data modelling. The second and third are for analysis and visualization purposes. Some tools introduced separate modules for data discovery purposes and the creation of visualizations for reporting (e.g. in Visual Analytics, IBM Watson Analytics), others (e.g. Tableau, Qlik Sense, Lumira) kept the visualization part in one section. Finally, the last section is about assembling these visualizations to dashboards or stories and integrating images and texts so as to put the information in a context.
The limits between the sections are not completely set. Indeed some elements of data modelling appear in the visualization part (hierarchies, groups). In some tools (Qlik Sense, IBM Watson Analytics) the user can create multiple visualizations in one working sheet so as to create dashboards on the fly. But the idea of introducing modules especially designed for certain steps remains all the same.

In Excel all steps are mashed-up in worksheets. To separate the steps, Microsoft introduced the Power BI add-ins. PowerQuery is for data access and data shaping purposes, PowerPivot for data modelling and PowerView for visualization purposes.

As far as the concrete implementation of the single steps is concerned, the tools share a lot of common features, they differ on some other points though, especially as far as the range of possibilities are concerned.

8.1.2. Data access

There are two main aspects to consider for data access, the data sources that are supported and the possibilities for data transformation.

The products of big players (Lumira and Watson Analytics) integrate best with these vendors’ product lines. Lumira can work with data from SAP HANA and BO universes, Watson Analytics can connect to the IBM TM1 environment (in the professional version at least). The user can import files of his own like spreadsheets and text files but others sources are scarcely supported.

Excel of course is an exception here. It allows the user to import data from a very wide range of sources. This is certainly also due (and probably also contributed) to Excel's long-standing and still dominant position as analysis tool.

Tableau and Qlik Sense too, both specialty vendors, offer a wide range of supported data sources, Tableau through native connectors and an ODBC interface, Qlik Sense through OLE DB and ODCB connectors.

As for data transformation, Excel (both the classical version and the Power BI add-ins) and Qlik Sense offer the widest range of possibilities. Data transformation in Qlik Sense however still requires thorough scripting skills that business users do not necessarily have. Other tools such as Lumira already implemented first attempts for data shaping, but the options remain somewhat limited.
8.1.3. Data modelling

Although the terms used may differ from tool to tool, the concepts of data modelling are widely the same and based on some typical OLAP terminology. Data is imported in the form of tables. The fields of these tables can either be dimensions or measures. Dimensions are used to categorize data and determine the level of aggregation. Typical dimensions are products, customers, regions. Measures on the other hand are the aggregation of figures. Typical measures are sales figures, amounts, sizes.

The relations between data objects that can be modelled are more or less the same for each tool. Through joining (-like) operations the tables can be associated. The data points within a dimension can be grouped, dimensions can be hierarchized. There are limits there however, usually the hierarchies cannot be created with dimensions from different tables (Excel) or not created with dimensions from different data sources (Tableau).

The data model can be extended through adding of both new measures and new dimensions. There are different types of calculation though. Row-level calculation and aggregate-level calculation are usually implemented in all tools. Only some tools (Tableau, Visual analytics, Excel) however offer table calculations that are quite useful for keeping the amounts of measures small and manageable.

8.1.4. Analysis

Apart from Excel, the tools do not provide analysis functionality on data point level. The data is presented in aggregated manner through visualizations.

The visualization section is the most important part in all tools. Creating a chart is similar in every tool. The user creates a chart by dragging and dropping the required measures and dimensions onto the workspace. They can be assigned to different parts of the visualization like to the columns or to the rows (y-axis and x-axis respectively) as well as to the legend. In the latter case, the tool creates a color gradient for the different values of the data object.

The tools offer a similar set of visualizations to choose from, covering all types of visual analysis (contribution, distribution, trend-series etc…).

While the user drags and drops the data objects onto the workspace, the tool automatically creates the according chart by using the distinct values of the used dimensions and
aggregating the measures accordingly. Some tools offer a wider set of aggregation functions (Excel, Tableau) but the typical ones are sum, average, minimum, maximum, count.

To analyze the data, the tools all offer the possibility for basic OLAP operations. The user can drill-down and roll-up his visualization. This means he is able to view the data on a smaller or higher aggregation level depending on the information he needs. To drill-down, he can either add further dimensions so as to split down the data set or create hierarchies of dimensions and move down the levels of the hierarchy when needed. To roll-up, he can then remove dimensions so as to aggregate the data on the remaining dimensions only or move up the levels of the hierarchy.

As for slicing and dicing operations the tools provide filter options. The user can filter on dimensions picking some data points with distinct values in this dimension as well design more sophisticated ones with the help of formulas (latter usually works with measures too). There can be multiple filters on a visualization enabling to extract more precise information when needed.

Some tools (Qlik Sense, Tableau and Excel) also provide the possibilities to make slicers for more interactive filtering.

To pivot the data the user can easily switch the arrangement of the dimensions he uses and the tool will automatically generate a new chart.

The tools differ most in the variety of out of the box analysis functionalities they provide. Some tools (Tableau, classical Excel) offer a wide range of functionalities including statistical elements like trendlines and error bars.

The other tools (Visual Analytics, Qlik Sense and Lumira) confine themselves to functionalities like sorting, ranking and highlighting.

8.1.5. Testing

The main strategy of the tools for this step is to avoid errors in the first place. For one the main focus lays on visualization. The user receives constant feedback on the progress of his work and on possible errors. Some tools start with the feedback at the very beginning of the process. Watson Analytics, the Power BI Add-ins, Qlik Sense offer an evaluation on the quality of the data source by looking for missing fields or fields that contain errors. Tableau offers the possibility to analyse and correct errors in spreadsheets. In the data modelling part, it is useful to know whether the tables the user is about to join actually match and if there are
data points about to drop out when joining. There are some tools that (Power BI Add-ins, Lumira, and Tableau) give a feedback on whether a join actually makes sense at this point. Another important visual feedback is a visualization of the actual data model (like in Tableau, in Qlik Sense or in the Power BI add-ins). As far as formulas are concerned, the user is usually immediately informed if his formula contains syntactical errors. Semantical errors however go unverified. When creating visualizations and interacting with them, the user may immediately see marking errors in his data set.

Another main strategy to reduce errors, is to keep the variability of possibilities (and therefore the danger of errors) to a minimum by guiding the user through wizards and by keeping scripting optional.

In general there are scarcely any options for actual debugging. In that context for example it would be of use to have an overview on how the calculated fields are actually linked to one another.

8.1.6. Presenting

The presenting options are largely the same. There is the option to integrate the created visualizations into either a dashboard or a story. The reports can be augmented with pictures, texts, possibly websites or videos. The possibility for the creation of basic interaction (e.g. filtering) is implemented in all tools, Qlik Sense (Golbal Smart Search) and Tableau (implementation of specific interactions) however offer more sophisticated options here.

8.2. Trends in self-service BI

Though only in its beta version, IBM Watson Analytics is a good example of how self-service BI tools could look like in a couple of years. Although the tools are still in different stages of development, they seem to converge towards a same standard as far as organization, structure and functionality are concerned.

But as Gartner says [4], the buzzword here is “smart data discovery”. This is what will make the difference between the tools. Through algorithms, heuristics, data mining techniques, tools will have to make data analysis accessible to the most unexperienced users by automating processes and providing clever support.
Watson Analytics generates possible questions on the data set that the user may want to have answered and creates according visualizations to answer the question. The user may also ask a question of his own and the tool generates the according visualizations (given it actually understands the question).

First attempts in Tableau at automated support are the Tableau Data Interpreter looking for errors in spreadsheets before actual analysis or automatically deciding whether a field of a table should be treated as a dimension or as a measure.

Another crucial point will be to make advanced analytics like predictive analytics accessible to the crowd. Again Watson Analytics offers an outlook of how self-service predictive analytics could look like. Most of the tools already offer a first attempt at this by implementing forecasting and what-if analysis options. This will have to be fully developed in the future.

8.3. Regarding the Gartner survey

This thesis started from taxonomies, questions and a concrete business scenario and looked how they were implemented in the front-ends of Gartner’s leading BI platform vendors, independently from the criteria set by Gartner.

As could have been expected, the tools keep to the criteria and concepts Gartner’s described in the parts “Business User Data Mashup”, “Free Form Interactive Exploration”, “Analytical Dashboards & Content” and “Traditional Styles of Analysis”.

As such most of the overall results we describe here are close to Gartner’s criteria. Gartner however evaluates more criteria still that are not covered by the taxonomies and questions we used.

It would have been conceivable that a tool stands out somehow with a different concept, solution or approach not covered by Gartner’s criteria set and that the results would differ more crassly. This is not the case. A possibility to find different approaches and concepts would be to look at a wider range of tools, possibly not placed in the Leader segment of the Quadrant or open source solutions for data visualization which are not covered by Gartner.

The main benefit of our survey is that it relates the different aspects in more detail and provides a thorough description of the actual tools.
9. Appendix

9.1. Figures and Tables

Figure 2-1 Schema of BI work flow ... 9
Figure 2-2 Gartner „Magic Quadrant for Business Intelligence and Analytics Platforms [4] 12
Figure 6-1 Geo-structure and product-structure for the scenario ... 23
Figure 7-1 Excel Classic - Overall Interface .. 25
Figure 7-2 Excel Classic - Relevant interface element for Data Access .. 26
Figure 7-3 Excel Classic – Workspace .. 27
Figure 7-4 Excel Classic – Grouping within the Data ribbon ... 27
Figure 7-5 Excel Classic – Extending the data model with formulas .. 27
Figure 7-6 Loose Cells within Excel .. 28
Figure 7-7 Table within Excel ... 28
Figure 7-8 Excel Classic - Relevant interface elements for data set analysis 30
Figure 7-9 Excel Classic - Ribbon for inserting visualizations ... 30
Figure 7-10 Excel Classic - Pivot table tools .. 31
Figure 7-11 Excel Classic – Pivot chart tools ... 32
Figure 7-12 Excel Classic - Relevant interface elements for layout .. 33
Figure 7-13 Excel Power BI Add-ins.. 35
Figure 7-14 Excel Power BI Add-Ins - Power Query Ribbon ... 35
Figure 7-15 Excel Power BI Add-Ins – Relevant interface element within the Power Query 36
Figure 7-16 Excel Power BI Add-ins - Relevant interface elements within the PowerQuery ribbon ... 38
Figure 7-17 Excel Power BI Add-ins - Relevant interface elements within the PowerQuery Editor ... 38
Figure 7-18 Excel Power BI Add-ins - Relevant interface elements within the Power Pivot ribbon ... 38
Figure 7-19 Excel Power BI Add-ins - Relevant interface elements within the Data Model 38
Figure 7-20 Excel Power BI Add-ins - Query Panel ... 39
Figure 7-21 Excel Power BI Add-ins - Diagram view of tables within Data Model 39
Figure 7-22 Power BI Add-ins – PowerView ... 41
Figure 7-23 Power BI Add-ins – PowerView ribbon .. 42
Figure 7-24 - Excel Power BI Add-ins - Visualization possibilities .. 42
Figure 7-25 Tableau - General structure .. 44
Figure 7-26 Tableau – Relevant interface elements for data access within the Data source section ... 45
Figure 7-27 Tableau – Relevant interface elements for data modelling within the Data Source section ... 47
Figure 7-28 Tableau – Relevant interface elements for data modelling within a sheet 47
Figure 7-29 Tableau – Structure of a sheet ... 49
Figure 7-30 Tableau – Structure of dashboard ... 52
Figure 7-31 Tableau – Structure of a story ... 52
Figure 7-32 Qlik Sense – View of an app ... 54
Figure 7-33 Qlik Sense – Data Editor ... 55
Figure 7-34 Qlik Sense – Importing wizard for relational source (Access) .. 55
Figure 7-35 Qlik Sense – Importing wizard for single files (Excel sheet) .. 56
9.2. Excel Classic

Create tables for relations between cells
VLOOKUP, INDEX functions

Functions that perform a vertical lookup by searching a certain value in a column and returns the value at the given

Relation between tables through data relations

Grouping

Figure 9-1 Excel Classic - Table from loose cells

Figure 9-2 Excel Classic – VLOOKUP

Figure 9-3 Excel Classic - Manage Relationships-Wizard

Figure 9-4 Excel Classic – Grouping
On cell level

![Figure 9-5 Excel Classic – Filling new cell](image)

On table level

![Figure 9-6 Excel Classic - Inserting a new column](image)

Table calculation in pivot table

![Figure 9-7 Excel Classic - Table calculation in pivot table](image)

Sorting/Filtering

![Figure 9-8 Excel Classic - Sorting and Filtering within a table](image)
Rank

Ranking of cells can be achieved through the function

\[\text{RANK}(\text{number}, \text{ref}, [\text{order}]) \].

Conditional formatting

![Conditional formatting options](image)

Filter

![Filtering of classical chart](image)

Sorting

Sort through sorting underlying cells

Ranking

Rank through sorting underlying cells
Highlight

Figure 9-12 Excel Classic - Highlighting in classical chart

Trendlines

Figure 9-13 Excel Classic - Trendlines in classical charts

PivotChart and PivotTable panel

Figure 9-14 Excel Classic – Pivot chart and Pivot table panels
Drilldown/ Rollup

Figure 9-15 Excel Classic – Drill down in pivot chart

Slice/Dice

Figure 9-16 Excel Classic – Slice Dice in pivot chart

Pivot

Figure 9-17 Excel Classic – Pivoting in pivot chart
Sorting/Filtering

Figure 9-18 Excel Classic – Filtering/sorting of PivotChart

Ranking

Through ranking the underlying cells

Highlight

Figure 9-19 Excel Classic - Highlight with pivot chart

Trendlines

Figure 9-20 Excel Classic - Trendlines in pivot chart

Conditional formatting

Figure 9-21 Excel Classic - Conditional formatting within pivot table
Sorting

![Sorting in Excel Classic](image)

Figure 9-22 Excel Classic - Sorting and Filtering in pivot table

Ranking

![Ranking in Excel Classic](image)

Figure 9-23 Excel Classic - Rank with pivot table

Highlight

![Highlight in Excel Classic](image)

Figure 9-24 Excel Classic - Highlight with pivot table
9.3. PowerPivot Add-ins

Merge (PowerQuery)

![Merge wizard](image)

Figure 9-25 Excel Power BI Add-ins - Merge wizard

Group by (PowerQuery)

![Group by wizard](image)

Figure 9-26 Excel Power BI Add-ins - Group by wizard

Add custom column (PowerQuery)

![Custom Column Wizard](image)

Figure 9-27 Excel Power Add-ins - Custom Column Wizard
Create relationship
(PowerPivot)

![Diagram View](image)

Figure 9-28 Excel Power BI Add-ins - Diagram View

Create hierarchies
(PowerPivot)

![Diagram View Hierarchies](image)

Figure 9-29 Excel Power BI Add-ins - Diagram View Hierarchies

Calculated Columns

![New Calculated Column in Data Model](image)

Figure 9-30 Excel Power BI Add-ins – New Calculated Column in Data Model
Calculated Field

Figure 9-31 Excel Power BI Add-ins - Calculation Area for creating measures

Data set operations
(PowerPivot)

Figure 9-32 Excel Power BI Add-ins - Analysis options

Drilldown/ Rollup
Slice/Dice

Figure 9-33 Excel Power BI Add-ins – Drill down through adding of dimensions

Slice/Dice

Figure 9-34 Excel Power BI Add-ins – Filters
Pivot

Figure 9-35 Excel Power BI Add-ins – Pivoting

Sort (PowerView)

Figure 9-36 Excel Power BI - Sorting in PowerView
9.4. Tableau

Across data sources

Hierarchies
Group

Figure 9-40 Tableau - Wizard for creating groups

Sets

Figure 9-41 Tableau - Wizard for creating sets

Create calculated field

Figure 9-42 Tableau - Wizard for creating sets
Table calculation

Figure 9-43 Tableau - Wizard for creating sets

Parameters

Figure 9-44 Tableau - Wizard for parameters

Drilldown/ Rollup
Slice/Dice
Figure 9-47 Tableau - Filters

Figure 9-48 Tableau – Quick filters

Pivot

Figure 9-49 Tableau – Pivoting

Conditional formatting (through highlight table)
Figure 9-50 Tableau – Highlight table

Sorting

Figure 9-51 Tableau – Sorting on visualization

Ranking

Figure 9-52 Tableau – Ranking on visualization
Highlight

Figure 9-53 Tableau – Highlight on visualization

Trend lines

Figure 9-54 Tableau – Trend lines

Wizard to create interaction for dashboard (Filtering)

Figure 9-54 Tableau – Wizard to create interaction for dashboard (Filtering)
9.5. Qlik Sense

Create a drilldown dimension

Figure 9-55 Qlik Sense – Hierarchy

Formula editor

Figure 9-56 Qlik Sense – Formula editor
Drilldown/ Rollup

Figure 9-57 Qlik Sense – Drill down through hierarchy

Slice/Dice

Figure 9-58 Qlik Sense – Quick filters

Figure 9-59 Qlik Sense – Filter on dimensions and measures
Pivot

Figure 9-60 Qlik Sense – Pivoting

Sort

Figure 9-61 Qlik Sense – Sorting on visualization
9.6. SAS Visual Analytics

Hierarchies

Figure 9-63 SAS Visual Analytics – Wizard for creating hierarchies

Custom Category

Figure 9-62 Qlik Sense – Ranking on visualization
Calculated Item

Figure 9-64 SAS Visual Analytics – Wizard for custom categories

Aggregated Measure

Figure 9-65 SAS Visual Analytics – Wizard for creating calculated items

Table Calculation

Figure 9-66 SAS Visual Analytics – Wizard for aggregated measures

Figure 9-67 SAS Visual Analytics – Options for table calculations
Parameter (in Reporter)

![Create Parameter dialog box](image)

Figure 9-68 SAS Visual Analytics – Wizard for creating a parameter

Drilldown/Rollup

![Drilldown/Rollup interface](image)

Figure 9-69 SAS Visual Analytics – Wizard for creating filters
Slice/Dice

Figure 9-70 SAS Visual Analytics – Wizard for creating filters

Pivot

Figure 9-71 SAS Visual Analytics – Pivoting
Ranking

Figure 9-72 SAS Visual Analytics – Wizard for creating hierarchies

Conditional formatting

Figure 9-73 SAS Visual Analytics – Wizard for display rules

Data Brush

Figure 9-74 SAS Visual Analytics – Data Brush
9.7. SAP Lumira

Merge

Append
Hierarchies

Add calculated dimension (row-level-calculation)

Add calculated measure (row-level-calculation)
Table calculations

Figure 9-81 - SAP Lumira - Table calculations

Drilldown/Rollup

Figure 9-82 - SAP Lumira – Drilldown through adding of dimensions

Slice/Dice
Figure 9-83 - SAP Lumira – Filters on visualizations

Pivot

SAP Lumira – Pivoting

Sort

Figure 9-84 SAP Lumira – How to sort on a measure or a dimension
9.8. IBM Watson Analytics

Figure 9-85 SAP Lumira – How to rank

Figure 9-86 IBM Watson Analytics – Grouping

Figure 9-87 IBM Watson Analytics – Wizard for hierarchies
Calculation

![IBM Watson Analytics - Wizard for calculations](image)

Figure 9-88 IBM Watson Analytics – Wizard for calculations

Drilldown/Rollup

![IBM Watson Analytics - Drilldown/Rollup](image)

Figure 9-89 IBM Watson Analytics – Drilldown/Rollup

Slice/Dice

![IBM Watson Analytics - Slice/Dice](image)

Figure 9-90 IBM Watson Analytics – Slice/Dice
10. References

128