
TUM Department of Informatics
Technical University of Munich

Master’s Thesis in Information Systems

Identification of API Management Patterns
From an API Provider Perspective

Andre Landgraf

ii

TUM Department of Informatics
Technical University of Munich

Master’s Thesis in Information Systems

Identification of API Management Patterns
From an API Provider Perspective

Identifizierung von API Management
Patterns aus Sicht des API Anbieters

Author: Andre Landgraf
Supervisor: Prof. Dr. Florian Matthes
Advisors: Gloria Bondel, M. Sc.
Submission Date: February 15, 2021

I confirm that this master’s thesis is my own work and I have documented all
sources and material used.

Munich, February 15, 2021

ANDRE LANDGRAF

Abstract

Application Programming Interfaces (APIs) provide the means for software engi-
neers to co-create software systems. In today’s distributed software architectures,
web-based Application Programming Interfaces (web APIs) are used to enable
loose coupling of software components and services. The co-creation of software
systems demands new management responsibilities such as API management.
The corresponding literature is sparse and lacks standards. The goal of this the-
sis is to identify API management concerns and document practical solutions
from an API provider perspective. The communication between the different API
provider and API consumer entities is the focus of this thesis. The final outcome is
a pattern catalog. The pattern catalog links detected stakeholders, concerns, and
influence factors to solution approaches. Each solution approach is documented
as a pattern. Overall, four stakeholders, 32 concerns, 35 pattern candidates, and
23 validated patterns are documented in this study. To achieve described objec-
tives, this study draws from both design and behavioral science research. An
extensive knowledge base grounded in literature reviews is utilized to create the
foundations for this thesis. The study is evaluated and justified through 16 semi-
structured interviews with API provider stakeholders. The rule of three known
uses within studied cases is utilized to validate pattern candidates as patterns.

i

ii

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Outline . 4

2 Foundations 5
2.1 Platforms and Boundary Resources 5
2.2 APIs . 9
2.3 Web APIs . 10
2.4 SDKs . 12
2.5 Knowledge Transfer . 13
2.6 SOA . 15
2.7 Cloud Computing . 16
2.8 Web Service . 17
2.9 API Management . 18
2.10 API Economy . 22

3 Related Work 23

4 Research Approach 27

5 API Management Pattern Catalog 31
5.1 Data Collection . 31
5.2 Pattern Language . 34
5.3 Roles and Stakeholders . 38
5.4 Influence Factors . 42
5.5 Concerns . 48
5.6 Taxonomy . 50
5.7 API Management Patterns . 52

5.7.1 Pattern 1: Internal API registry 53
5.7.2 Pattern 2: Company-wide ticketing system 57
5.7.3 Pattern 3: API testing strategy 61
5.7.4 Pattern 4: Pilot project . 65
5.7.5 Pattern 5: Frontend venture 69
5.7.6 Pattern 6: SLAs with backend providers 73
5.7.7 Pattern 7: SLAs with API consumers 77
5.7.8 Pattern 8: Data clearance . 81

iii

5.7.9 Pattern 9: API orchestration layer 85
5.7.10 Pattern 10: Tailoring APIs to products 88
5.7.11 Pattern 11: API product validation 93
5.7.12 Pattern 12: Idea backlog . 97
5.7.13 Pattern 13: API product documentation 101
5.7.14 Pattern 14: Cookbooks . 105
5.7.15 Pattern 15: Software libraries 109
5.7.16 Pattern 16: Integration partner management 114
5.7.17 Pattern 17: Role-based marketing 119
5.7.18 Pattern 18: Newsletter . 123
5.7.19 Pattern 19: Customer success stories 126
5.7.20 Pattern 20: First-level support 130
5.7.21 Pattern 21: Service desk software 134
5.7.22 Pattern 22: Self-service . 138
5.7.23 Pattern 23: Multi-tenant management 142
5.7.24 Pattern Candidate 24: Contact form automation 145
5.7.25 Pattern Candidate 25: Smart contact form 145
5.7.26 Pattern Candidate 26: Video series 145
5.7.27 Pattern Candidate 27: Open-source SDK 145
5.7.28 Pattern Candidate 28: Service validation workshops 145
5.7.29 Pattern Candidate 29: Account management 146
5.7.30 Pattern Candidate 30: Plug-in development 146
5.7.31 Pattern Candidate 31: Data clearing office 146
5.7.32 Pattern Candidate 32: Role system in developer portal . . . 146
5.7.33 Pattern Candidate 33: Procurement integration 147
5.7.34 Pattern Candidate 34: Keyword marketing 147
5.7.35 Pattern Candidate 35: Hackathons 147
5.7.36 Pattern Candidate 36: Pilot workshops 148
5.7.37 Pattern Candidate 37: Conferences 148
5.7.38 Pattern Candidate 38: Bar camps 148
5.7.39 Pattern Candidate 39: Tech talks 148
5.7.40 Pattern Candidate 40: Intranet and social media 148
5.7.41 Pattern Candidate 41: Inner source-based platforms 149
5.7.42 Pattern Candidate 42: Declarative API platform 149
5.7.43 Pattern Candidate 43: Support community 149
5.7.44 Pattern Candidate 44: Growing FAQ 149
5.7.45 Pattern Candidate 45: API status 149
5.7.46 Pattern Candidate 46: Support hero 150
5.7.47 Pattern Candidate 47: Sample projects 150
5.7.48 Pattern Candidate 48: Internet and social media 150
5.7.49 Pattern Candidate 49: Quarterly alignment meetings 151
5.7.50 Pattern Candidate 50: Scrum master resolution 151
5.7.51 Pattern Candidate 51: Supplier onboarding 151
5.7.52 Pattern Candidate 52: Supplier monitoring 151
5.7.53 Pattern Candidate 53: API test values 152
5.7.54 Pattern Candidate 54: Penetration tests 152

Contents v

5.7.55 Pattern Candidate 55: Integration levels 152
5.7.56 Pattern Candidate 56: Blogs 152
5.7.57 Pattern Candidate 57: Changelogs 153
5.7.58 Pattern Candidate 58: Notification system 153

6 Discussion 155

7 Summary 161
7.1 Conclusion . 161
7.2 Future Work . 163

Appendix 179
1 Interview Guide . 179
2 Pattern Catalog . 180

API Application Programming Interface

B2B Business to Business

B2C Business to Consumer

B2G Business to Government

BaaS Backend as a Service

GDPR General Data Protection Regulation

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IS information system

ITIL Information Technology Infrastructure Library

KPI Key Performance Indicator

OAS OpenAPI Specification

PaaS Platform as a Service

REST Representational State Transfer

RQ research question

SaaS Software as a Service

SDK Software Development Kit

SLA service-level agreement

SOA service-oriented architecture

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

web API web-based Application Programming Interface

1 Introduction

1.1 Motivation

Digitization is changing every aspect of our lives (European Commission. JRC.,
2019). It is disrupting industries and creating both opportunities and challenges
(Yoo et al., 2010). New digital technologies and distributed system architectures
allow for a better integration of products and services (Löhe & Legner, 2010b;
Lübke et al., 2019). APIs enable software engineers to access utilities through
defined interfaces (Basole, 2016). In cloud-native applications, microservice ar-
chitectures, and the service-oriented architecture (SOA), each software service
offers remotely accessible APIs (Fehling et al., 2014; Josuttis, 2007; Lübke et al.,
2019; Papazoglou & van den Heuvel, 2007; Zimmermann, 2017). Since most are
offered over the web, they are also called web APIs (Alonso et al., 2004; Lübke
et al., 2019). Web APIs enable loose coupling and ease the integration and reuse
of services but they also create new management tasks such as service brokering
(Papazoglou & van den Heuvel, 2007).

Companies create digital platforms to manage the brokering of their services (de
Reuver et al., 2018; Lübke et al., 2019). Platforms can be used as controlled en-
vironments for co-creation (Skog et al., 2018; Yoo et al., 2010). The incumbent
technology firms take advantage of platform network effects and exercise control
over ecosystems of products, so called software ecosystems (Bianco et al., 2014;
Jansen & Cusumano, 2012; Manikas & Hansen, 2013; Skog et al., 2018). The cen-
tral hubs within those ecosystems are called industry platforms and enable new
business models as they scale among many factors (Gawer & Cusumano, 2014).
Today, the incumbent technology companies are some of the most valuable com-
panies in the world by market capitalization (Kelly, 2016). Since APIs are the in-
terfaces to the platform’s capabilities, the digital platform literature defines them
as boundary resources (de Reuver et al., 2018).

New product architectures implement network and service layers to integrate
and offer remote services (Yoo et al., 2010). Ultimately, this allows every digitized
product to act as a platform (Yoo et al., 2010). Yoo et al. (2010) define this new
product architecture as the layered modular architecture (Yoo et al., 2010). This
interconnection between digitized products and services would not be possible
without APIs, more specifically web APIs (Bonardi et al., 2016). They instigate
new service economies and enable new business models (Basole, 2016; Bondel et
al., 2020; Tan et al., 2016). The service-based digital integration between business
partners reduces interaction costs and allows new value-adding composition of
services (Löhe & Legner, 2010b; Tan et al., 2016). Today, the SOA emerges into

1

an API-based service ecosystem which is referred to as the API Economy (Basole,
2016; Bondel et al., 2020; Tan et al., 2016). In the API Economy, service providers
are also API providers (Lübke et al., 2019). Since each service in the ecosystem
might be offered by a different organization, each API provider might have dif-
ferent goals and thus, different API strategies (Lübke et al., 2019).

In the following, a robot vacuum cleaner is used as an example to emphasize the
described developments. Robot vacuum cleaners are digitized products that take
advantage of sensors and digital signals for navigation. Furthermore, the vac-
uum cleaners act as a digital platform that integrates with value-adding services
and other third-party platforms1. The vacuum cleaner can be controlled through
smart speakers and voice assistants. The user authentication happens via the
smartphone app that can be downloaded over the app store and offers additional
features. Finally, since the vacuum cleaner is connected to Wi-Fi, it is capable of
over-the-air software updates2.

This example demonstrates the level of interconnection between today’s prod-
ucts and services that is enabled by the API Economy. The end user is offered
a new level of convenience and smarter products that share data and functions
with each other (Bonardi et al., 2016). For businesses, however, the adoption of
mentioned technologies and architectures requires a high level of technological
responsiveness (Nicholls-Nixon & Woo, 2003). This is especially hard to achieve
for established firms with existing and legacy structures (Bondel et al., 2020;
Nicholls-Nixon & Woo, 2003). These organizations have to overcome legal, eco-
nomic, social, technological, and organizational barriers to utilize the API Econ-
omy (Bondel et al., 2020). APIs are software artifacts and their evolution requires
collaboration across organizational boundaries (Espinha et al., 2014; Fokaefs et
al., 2011; Koci et al., 2019; Lübke et al., 2019).

From a research perspective, the socio-technological advancements change how
organizations utilize information systems (Yoo et al., 2010). Yoo et al. (2010) ar-
gue that information system (IS) research needs to address these changing factors
(Yoo et al., 2010). They propose new research questions and emphasize the im-
portance of boundary resources for future research (Yoo et al., 2010). Henfridsson
and Bygstad (2013) stress that boundary resources should be the unit of analysis
since they facilitate the relationship between the platform’s stakeholders (Hen-
fridsson & Bygstad, 2013). De Reuver et al. (2017) argue that the effect of long-
term decisions cannot be predicted easily and state that studies on the evolution
of digital platforms and ecosystems are required (de Reuver et al., 2018; Germon-
prez & Hovorka, 2013). Koci et al. (2019) explain that the API management from
a provider perspective lacks attention (Koci et al., 2019). Mathijssen et al. (2020)
highlight that API management research is sparse and that best practices have to
be identified (Mathijssen et al., 2020). To conclude, the API Economy draws from
many different areas of research. The management of APIs is a highly requested
field of research (Mathijssen et al., 2020).

1https://www.irobot.com/roomba/s-series
2https://homesupport.irobot.com/app/answers/detail/a_id/550/~/how-do-i-get%

2Freceive-a-software-update-for-my-wi-fi-connected-robot

https://www.irobot.com/roomba/s-series
https://homesupport.irobot.com/app/answers/detail/a_id/550/~/how-do-i-get%2Freceive-a-software-update-for-my-wi-fi-connected-robot
https://homesupport.irobot.com/app/answers/detail/a_id/550/~/how-do-i-get%2Freceive-a-software-update-for-my-wi-fi-connected-robot

1.2 Objectives 3

1.2 Objectives

The goal of this thesis is to identify API management concerns and document
practical solutions from an API provider perspective. It is the API provider that
has to manage the offered APIs and services. Therefore, we approach the con-
cerns and solutions based on the view of the API provider. The API provider
consists of several roles, teams, and stakeholders that have to collaborate to ef-
ficiently and effectively manage the API provision. Additionally, collaboration
with the API consumer is required to adapt to customer needs. The communica-
tion between the different API provider and API consumer entities is set to be the
focus of this thesis.

To collect data, we conducted semi-structured interviews with API provider stake-
holders. In order to describe concerns and solutions in a standardized manner, a
pattern catalog is developed as proposed by Buckl et al. (2013) (Buckl et al., 2013).
Hereby, a pattern is a documented solution for common concerns based on a par-
ticular context (Buckl et al., 2008; Gamma et al., 1994). The pattern definition from
Buckl et al. (2013) draws a clear path to creating a catalog of patterns (Buckl et al.,
2013). As a result, we derive the following three research questions (RQs):

• RQ1: What concerns do API providers face in their daily work?

• RQ2: What influence factors impact the API management?

• RQ3: How do API providers manage concerns and what is the rationale
behind the solutions?

First, the concerns of API providers have to be discovered and documented. RQ1
focuses on the common impediments of API management. Second, the specific
context of each studied case has to be captured. To answer RQ2, this thesis aims
to categorize and understand the context that influences decision making of the
API provider stakeholders. De Reuver et al. (2018) argue for conceptual and
methodological innovation and stress the fundamental differences of digital plat-
forms to other fields of research (de Reuver et al., 2018). Since discovered patterns
cannot claim to be generally valid without evaluation and further research, RQ2
addresses the specific context in which the concerns and solutions were discov-
ered. Third, RQ3 follows up on the concerns from RQ1 and asks for solution
approaches and their rationales. Yoo et al. (2010) call for research about the
"methodological and technological principles of the design of technical bound-
ary resources that help sustain continued developments of novel components in
doubly distributed networks" (Yoo et al., 2010, p. 17). This study aims to address
this research gap by raising RQ3. The objective is to gain insights about utilized
best practices.

The outcomes from RQ1 and RQ2 create building stones that enable the creation
of a final result for RQ3. RQ1 results in a list of concerns and gives insights into
who raises those issues and what software artifacts are involved. The discovered
relationships between roles, teams, stakeholders, and software artifacts result in a
stakeholder-relationship map. RQ2 focuses on the context in which the concerns

are raised. As argued by Buckl et al. (2013), the specific context should be part of
each pattern (Buckl et al., 2013). The context aims to support the decision making
process (Uludağ et al., 2019). The goal is to assign each pattern influencing factors
by which the solution was found to be practical to solve the defined concerns.
RQ3 builds on top of RQ1 and RQ2 to develop the pattern catalog. The second
part of the interview questionnaire is used to gain insights into revised solutions
and the reasoning behind the solution approaches. The pattern catalog connects
the identified concerns, stakeholders, and context to solution approaches in form
of patterns. Ultimately, the pattern catalog consists of a list of patterns that offer
API providers solutions for recurring management concerns.

1.3 Outline

The remainder of this thesis is structured as follows. Chapter Foundations gives
an overview of related concepts and adds to the knowledge base used within this
thesis. Chapter Related Work follows with an overview of related literature from
associated areas of research and the pattern literature. The research approach
is laid out in chapter 4. The research methodologies are presented and insights
about the data collection and pattern creation process are explained. Next, in
chapter API Management Pattern Catalog, the novel artifacts are documented.
Chapter Discussion addresses the research questions and critically analyzes the
results. This leads to the final summary in chapter 7. The summary includes a
short conclusion and lists realized and open goals. The identified limitations of
this thesis are raised and an outlook for future work is given.

Chapter 5 is the main part of this thesis. It is structured in the sections Data Col-
lection, Pattern Language, Roles and Stakeholders, Influence Factors, Concerns,
Taxonomy, and API Management Patterns. First, the data collection is presented
in section 5.1. Second, the pattern language is laid out. Section 5.3 presents
the discovered roles, teams, and stakeholders and documents the stakeholder-
relationship map. Section Influence Factors illustrates the creation of context at-
tributes and describes the context distribution matrix. Next, a list of concerns is
documented in section 5.5. Section 5.6 visualizes the pattern catalog based on its
taxonomy and documents the pattern categories. The core of the pattern catalog
materializes in a list of documented patterns and pattern candidates in section
API Management Patterns.

2 Foundations

This study builds on foundations from several fields of research. In this chap-
ter, the related literature is reviewed and the most important concepts and key
terminology are laid out. First, the platform literature is reviewed. Second, the
terms API, web API, and Software Development Kit (SDK) are defined and put
into relation with each other. Third, scientific literature about knowledge transfer
is summarized. Next, the related fields SOA, cloud computing, and web services
are reviewed. An overview of the API management follows. At the end of this
chapter, the term API Economy is derived.

2.1 Platforms and Boundary Resources

In this section, foundations of the platform and boundary resources literature
are presented. Furthermore, a connection to the software ecosystem literature is
drawn. The platform literature provides important foundations for this study.
APIs are researched in the context of platforms (de Reuver et al., 2018; Yoo et
al., 2010). Moreover, API management utilizes API management platforms (De,
2017, p. 15). Understanding the interconnection between platforms, their bound-
ary resources, and the surrounding software ecosystems is required to build a
knowledge base and common vocabulary.

Platforms

In the following, a review of the platform literature is given. First, the platform
concept is introduced from a management perspective. After that, the term dig-
ital platform is defined from a IS research perspective. The characterization of
digital platforms leads to related term definitions in sections Boundary Resources
and Software Ecosystems.

Platform literature is fragmented into several streams of research (Gawer, 2009;
Skog et al., 2018; Thomas et al., 2014). One broad definition that is shared among
the streams comes from Gawer (2009) who defines a platform as "a set of stable
components that supports variety and evolvability in a system by constraining
the linkages among other components" (Gawer, 2009, p. 19). Thomas et al. (2014)
identify more than 900 papers in the management field that are related to the
keyword platform and map the following four distinct yet overlapping fields of
research:

5

• Organizational

• Product Family

• Market Intermediary

• Platform Ecosystem

The organizational stream treats organizations as platforms and analyses dy-
namic capabilities and organizational competencies (Thomas et al., 2014). The
product family stream researches platforms that enable the reuse of core compo-
nents within several products (Skog et al., 2018; Thomas et al., 2014). The mar-
ket intermediary stream of literature researches multi-sided markets (de Reuver
et al., 2018; Gawer, 2014). Multi-sided markets describe platforms where two
groups of agents engage and the benefits awarded to each group depend on the
size of the other group (Armstrong, 2006). This phenomenon is also known as
an indirect or cross-side network effect (Bianco et al., 2014; Boudreau, 2011; de
Reuver et al., 2018). In the platform ecosystem stream of research, a platform is
described as a central hub that exercises control over a technology-based ecosys-
tem (Thomas et al., 2014). In this context, Gawer and Cusumano (2014) define
products, services, or technologies as industry platforms that provide a founda-
tion for third-parties to co-create (Gawer & Cusumano, 2014).

De Reuver et al. (2018) offer an extensive analysis of the platform literature from
an IS perspective (de Reuver et al., 2018). They differentiate digital and non-
digital platforms (de Reuver et al., 2018). The non-digital platform definition
draws from the management research as presented above. The digital platforms
definition varies within the literature (de Reuver et al., 2018). Digital platforms
can be defined as "purely technical artifacts where the platform is an extensible
codebase, and the ecosystem comprises third-party modules complementing this
codebase" (de Reuver et al., 2018, p. 126). In contrast, digital platforms are also
defined as socio-technical concepts that embed technical artifacts (de Reuver et
al., 2018). Digital platforms also build upon concepts from the management re-
search, especially the product family and platform ecosystem streams (de Reuver
et al., 2018; Skog et al., 2018). Furthermore, they can produce network effects as
researched in the market intermediary stream (de Reuver et al., 2018). One key
difference to non-technical platforms is the utilization of layered architectures
that enable digital interconnection (de Reuver et al., 2018; Skog et al., 2018; Yoo
et al., 2010).

A platform can be classified by its architectural openness (de Reuver et al., 2018;
Thomas et al., 2014). Gawer and Cusumano (2014) specify internal platforms as a
set of key components that enable efficient development of products and services
(Gawer & Cusumano, 2014). Those platforms are not open to external parties
(Gawer & Cusumano, 2014). Internal platforms become industry platforms when
the network topology changes. A many-to-one topology appears when either
the supply or demand side is opened to third-parties (Thomas et al., 2014). If
both the supply and demand sides are open, the platform becomes a multi-sided
market which is distinguished by a many-to-many network topology (Thomas
et al., 2014).

2.1 Platforms and Boundary Resources 7

Yoo et al. (2010) argue that digitization instigates a new product architecture,
the layered modular architecture, effectively transforming every product into a
platform (Yoo et al., 2010). In order for a platform to be accessible, it has to imple-
ment network and service layers (Yoo et al., 2010). The components that control
the platform’s boundaries and act as interfaces to the outside are called boundary
resources (de Reuver et al., 2018; Yoo et al., 2010). Digitized products that imple-
ment layered modular architectures enable the integration with remote services
on the service layer (Yoo et al., 2010). Karhu et al. (2018) argue that boundary
resources can be used as a mean to control the openness of a digital platform
(Karhu et al., 2018). The management of boundary resources is strategically im-
portant (Yoo et al., 2010).

Boundary Resources

Ghazawneh and Henfridsson (2013) define boundary resources as "the software
tools and regulations that serve as the interface for the arm’s-length relationship
between the platform owner and the application developer" (Ghazawneh & Hen-
fridsson, 2013, p. 174). They provide capabilities to both the third-party develop-
ers and applications (Bianco et al., 2014). Thus, boundary resources are the link
that enables co-creation (Eaton et al., 2015). Two common instances of boundary
resources are APIs and SDKs (de Reuver et al., 2018; Eaton et al., 2015; Yoo et al.,
2010).

Boundary resources are commonly categorized as either technical or social re-
sources (Bianco et al., 2014; Yoo et al., 2010). Social boundary resources include
"incentives, intellectual property rights and control" (Yoo et al., 2010, p. 14).
Technical boundary resources describe software artifacts like APIs and SDKs.
Bianco et al. (2014) further break technical boundary resources up into appli-
cation boundary resources and development boundary resources (Bianco et al.,
2014). Since digital platforms provide capabilities for developers and applica-
tions, they argue for a differentiation between technical boundary resources used
by developers and by applications (Bianco et al., 2014). Application boundary
resources are consumed by the application (Bianco et al., 2014). They provide
the interface between the application architecture and the platform architecture
(Bianco et al., 2014). APIs are considered application boundary resources (Bianco
et al., 2014). Development boundary resources, like SDKs, assist the third-party
developer in the implementation and integration of the application over the soft-
ware life-cycle of both the application and platform (Bianco et al., 2014).

The tuning of boundary resources is a management task with the goal to se-
cure control over the platform ecosystem (Eaton et al., 2015). In this process,
the boundary resources evolve (Eaton et al., 2015). Eaton et al. (2015) argue that
the evolution of boundary resources results from "multilayered, overlapping, and
contradicting actions by heterogeneous actors and artifacts" (Eaton et al., 2015, p.
241). The evolution of boundary resources is influenced by non-deterministic fac-
tors from the surrounding platform ecosystem which makes boundary resources
themselves co-created (Eaton et al., 2015).

Software Ecosystems

Today’s software is no longer developed by individual organizations but co-
created by a network of different entities (Jansen et al., 2009). This instigates
the creation of software ecosystems (de Reuver et al., 2018; Jansen & Cusumano,
2012; Jansen et al., 2009). As defined in section Platforms, in the platform ecosys-
tem stream of literature, platforms exercise control over technology-based ecosys-
tems (Thomas et al., 2014). The platform leader is also referred to as keystone firm
(Bianco et al., 2014; Gawer, 2014). The control over a network of firms and indi-
vidual agents grants the keystone firm an ecosystem for innovating new products
and services (Gawer, 2014; Ghazawneh & Henfridsson, 2010). Digital innova-
tion enables extensive development possibilities (Boudreau, 2011). It is character-
ized as representational and informational (Boudreau, 2011). Thereby possessing
’generativity’, a term used to illustrate the high pace of novelty (Boudreau, 2011;
de Reuver et al., 2018; Yoo et al., 2010; Zittrain, 2006). As a result, at the heart of
digital platforms lies the rapid innovation enabled by reuse and recombination
(Boudreau, 2011; Lemley & Cohen, 2000; Yoo et al., 2010).

The term software ecosystem is researched from a business and management, a
software architecture, and a software engineering perspective (Manikas & Hansen,
2013). One common definition of the term is given by Jansen and Cusumano
(2012) (Jansen & Cusumano, 2012; Manikas & Hansen, 2013). They define: "A
software ecosystem is a set of actors functioning as a unit and interacting with a
shared market for software and services, together with the relationships among
them. These relationships are frequently underpinned by a common technolog-
ical platform or market and operate through the exchange of information, re-
sources and artifacts." (Jansen & Cusumano, 2012, p. 46). Thus, the software
ecosystem can be described as a software related subset of a business ecosystem
(Jansen & Cusumano, 2012).

Jansen and Cusumano (2012) use the term software ecosystem to highlight the co-
creation of software applications within digital ecosystems (Jansen & Cusumano,
2012). In a software ecosystem, each organization develops additional appli-
cations and services for the end users or other stakeholders in the ecosystem
(Bianco et al., 2014; Manikas & Hansen, 2013). This network of participating firms
and third-party agents effectively changes the way software systems are created
(Jansen et al., 2009). Software vendors depend on internal and external software
and service suppliers, value-adding composition, and even the customer itself to
co-create (Jansen et al., 2009). Thereafter, the network around a digital platform is
a software ecosystem (Bianco et al., 2014; Jansen & Cusumano, 2012; Jansen et al.,
2009; Manikas & Hansen, 2013).

Bianco et al. (2014) define the properties of a software ecosystem (Bianco et al.,
2014). They describe the self-regulatory characteristics of the ecosystem (Bianco
et al., 2014). The keystone firm is controlling the platform and adapts to the net-
work while the network is adapting to platform evolution (Bianco et al., 2014;
Hora et al., 2018). In this context, one important aspect of platform evolution is
the evolution of the boundary resources, especially the APIs (Hora et al., 2018).

2.2 APIs 9

Another important aspect is the shared value (Bianco et al., 2014). Each agent
in the network might have a different business model and even compete (Bianco
et al., 2014). The shared value which manifests both in software artifacts and the
business ecosystem is the motivation for each agent to co-create (Bianco et al.,
2014).

Described co-creation, adoption, and evolution demand high levels of extensi-
bility, portability, and variability (Jansen et al., 2009). The integration between
software systems requires interfaces (Jansen et al., 2009). In this context, APIs
and web APIs play an important role (de Reuver et al., 2018; Gamma et al., 1994;
Yoo et al., 2010). They are defined in the following sections.

2.2 APIs

The term API was first used in 1968 by Cotton and Greatorex (European Commis-
sion. JRC., 2019). They describe requirements for data structures and techniques
for computer graphics and define ’Application Program Interfaces’ as one build-
ing block of software development and refer to hardware abstractions as one pos-
sible use case for APIs (Cotton & Greatorex, 1968). Since the concept of APIs is so
generic, it can be applied to many different implementations. It is also evolving
over time based on technological change. Shnier (1996) refines the API defini-
tion and summarizes APIs as “the calls, subroutines, or software interrupts that
comprise a documented interface so that an application program can use the ser-
vices and functions of another application, operating system, network operating
system, driver, or other lower-level software program” (Shnier, 1996).

In conclusion, APIs enable software engineers to access utilities through defined
interfaces (Basole, 2016). This abstraction of capabilities allows module-based
separation of concerns and enables layered architectures, both of which improve
loose coupling within the system (de Reuver et al., 2018; Gamma et al., 1994;
Yoo et al., 2010). Therefore, APIs can be used as a way to improve reusability of
capabilities which leads to improved software productivity and quality (Bonardi
et al., 2016; Hou & Yao, 2011; Koci et al., 2019).

APIs have been part of software architectures for decades but new technologies
allow new applications for them (Basole, 2016; de Reuver et al., 2018). The devel-
opment of distributed networks instigate remote APIs (Lübke et al., 2019). Those
APIs allow for new integrations and motivated SOA-based, microservice, and
cloud-native applications (Lübke et al., 2019). Described developments increase
the importance of APIs in the industry but also for the IS research and platform
literature (Basole, 2016; de Reuver et al., 2018; Yoo et al., 2010).

2.3 Web APIs

Today’s cloud-native applications and microservices offer web-based remote in-
terfaces (Haupt et al., 2018; Lübke et al., 2019; Papazoglou & van den Heuvel,
2007). Those APIs are commonly referred to as web APIs (European Commis-
sion. JRC., 2019; Lübke et al., 2019; Papazoglou & van den Heuvel, 2007). The
European Commission published an extensive technical report in 2019 that aims
to suggest general purpose standards and definitions for web APIs (European
Commission. JRC., 2019). They refer to Definition.net1 to define web APIs as
follows: "A Web API is a source code interface that a computer system uses to
support requests for services to be made by a computer program. Web APIs de-
liver your request to the service provider, and then deliver the response back
to you" (European Commission. JRC., 2019). It follows that web APIs operate
on the network layer of the layered modular architecture (Yoo et al., 2010). The
literature differentiates between public, partner, and private APIs to define the
architectural openness of the API endpoints. Public or external APIs are offered
to third-parties and made available over the web (Bondel et al., 2020; European
Commission. JRC., 2019). Partner APIs are offered solely to partnering organi-
zations in a Business to Business (B2B) relationship (De, 2017, p. 6). Private or
internal APIs are consumed within the own organizational boundaries (Bondel
et al., 2020; De, 2017; European Commission. JRC., 2019).

Web APIs play a key role in the SOA and state-of-the-art product and service
architectures (Basole, 2016; de Reuver et al., 2018; Krintz & Wolski, 2013; Lübke
et al., 2019; Tan et al., 2016; Yoo et al., 2010). Since web APIs are accessed re-
motely, they enable new network-based business models (Bondel et al., 2020).
Those network-based environments are distributed systems that use web APIs as
interfaces for communication (Espinha et al., 2014; Lübke et al., 2019). As men-
tioned in section Boundary Resources, boundary resources like web APIs evolve
and adapt based on changes in the system (Espinha et al., 2014; Lübke et al., 2019).

On a technical level, those changes are the implementation of new features, the
fixing of bugs in the system, and the discontinuation of features (Lübke et al.,
2019). On a higher level, API providers have to manage web APIs based on var-
ious, competing issues (Lübke et al., 2019). Web APIs act as an abstraction layer
for the assets life-cycle and protect them from technological changes (Krintz &
Wolski, 2013). Additionally, web APIs offer scalability through the utilization of
standardization (Krintz & Wolski, 2013).

The standardization of web APIs is enabled through the usage of common web
protocols. Web APIs use public internet and web technologies like the Hypertext
Transfer Protocol (HTTP) to transport information between provider and con-
sumer (Bondel et al., 2020; European Commission. JRC., 2019; Fielding, 2000). On
top of the layered protocols of the World-Wide Web, architectural styles and pro-
tocols have been developed to standardize the communication of web APIs (Eu-
ropean Commission. JRC., 2019; Fielding, 2000). Early SOA approaches utilize

1https://www.definition.net/define/api

https://www.definition.net/define/api

2.3 Web APIs 11

the Simple Object Access Protocol (SOAP) and XML (De, 2017, p. 12). Recently,
GraphQL has gained popularity as a distributed data query language for client-
server communication2. The most popular architectural style for resource sharing
is the Representational State Transfer (REST) (European Commission. JRC., 2019).

REST

REST was developed by Fielding in 2000 and has gained popularity among soft-
ware engineers (European Commission. JRC., 2019). It utilizes HTTP and a
client-server architecture to define constraints and architectural elements (Field-
ing, 2000). APIs that follow the REST style guide are also called RESTful APIs
(European Commission. JRC., 2019; Fielding, 2000).

The client-server architecture describes an architectural approach to manage cen-
tralized capability control and accessibility (Papazoglou, 2008, p. 59). Thus,
REST offers an architecture to offer the API consumer defined endpoints to access
and manipulate resources (Fielding, 2000; Papazoglou, 2008). It operates on the
application-level of the web and utilizes native HTTP utilities like request meth-
ods, error codes, and headers (Fielding, 2000; Leach et al., 1999). Since REST uti-
lizes HTTP, it can integrate with HTTP-based specifications such as the OpenAPI
Specification (OAS)3.

Open API Specification

The OAS is a community-driven specification governed by the OpenAPI Initia-
tive4. It is a programming language-agnostic description language for APIs that
is based on HTTP (OpenAPI Initiative, 2020). The goal of OAS is to provide both
machines and humans a standardized language to explore and understand the
endpoints of an API (OpenAPI Initiative, 2020). The OpenAPI Initiative (2020)
describes use cases of OAS which include: "interactive documentation; code gen-
eration for documentation, clients, and servers; and automation of test cases"
(OpenAPI Initiative, 2020). Thus, OAS enables the automation and discoverabil-
ity of capabilities. One commonly used tool set that implements the OAS and
offers utilities to both the API provider and consumer is Swagger5. Swagger pro-
vides tools6 such as an user interface for visualizing API endpoints and tools to
create client SDKs.

2https://www.redhat.com/en/topics/api/what-is-graphql
3http://spec.openapis.org/oas/v3.0.3
4https://www.openapis.org/
5https://swagger.io
6https://swagger.io/tools/

https://www.redhat.com/en/topics/api/what-is-graphql
http://spec.openapis.org/oas/v3.0.3
https://www.openapis.org/
https://swagger.io
https://swagger.io/tools/

2.4 SDKs

The platform literature defines APIs and SDKs as boundary resources of a plat-
form (de Reuver et al., 2018). Bianco et al. (2014) further define an SDK as a de-
velopment boundary resource (Bianco et al., 2014). Thus, SDKs offer utilities to
developers to create software for a specified target platform (Bianco et al., 2014).
These can include documentation, libraries, developer environments, guidelines,
APIs, and more7. The goal of an SDK is to reduce the complexity of developing
applications for the target platform (RapidAPI, 2019). The core of an SDK is usu-
ally a set of software libraries or application frameworks (RapidAPI, 2019). Those
software artifacts are maintained by the platform or capability provider and of-
fered as software utilities to third-party developers (RapidAPI, 2019). Thereby,
SDKs increase productivity and software quality (Hou & Yao, 2011).

A framework is defined as utilities that create a reusable design for a software
architecture (Gamma et al., 1994, p. 26). The framework dictates how the ap-
plication architecture needs to look (Gamma et al., 1994, p. 26). It provides the
structure of the application and the developer needs to integrate the business
logic (Gamma et al., 1994, p. 26). On the other hand, software libraries are sets
of general-purpose utilities (Gamma et al., 1994, p. 26). They are provided as a
toolkit that can be integrated into the main body of the application (Gamma et
al., 1994, p. 26). Platform providers can offer libraries to support the integration
with their target platform (Gamma et al., 1994, p. 26). To summarize, applica-
tion frameworks and software libraries offer different approaches but share the
common goal of providing support to the developer.

The integration of web APIs requires the API consumer to implement the API
requests into the consuming application. For instance, in the case of a RESTful
API, the API consumer has to implement HTTP requests (Fielding, 2000). These
integration can get complicated and require domain knowledge of the underly-
ing platform (Mulloy, 2012, p. 31). The API provider can support third-party
developers by creating software libraries that offer client-side, platform-specific
code utilities and implement the API request into a set of function calls (Mulloy,
2012, p. 31). Those functions can be invoked within the client application to make
API requests (Mulloy, 2012, p. 31). To conclude, software libraries can be used
to supplement web APIs and API providers can offer SDKs to support the ser-
vice consumer in the implementation of web APIs (De, 2017; Islind et al., 2016;
Mulloy, 2012).

In the context of web APIs, client-side code utilities can increase the code quality
and productivity of the third-party developer (Hou & Yao, 2011). This can further
improve the speed of adoption and simplify the integration (Mulloy, 2012, p. 31).
As mentioned in section Open API Specification, standardized APIs that follow
the OAS can generate client-side code for common programming languages au-
tomatically (OpenAPI Initiative, 2020). The API provider can make use of client-
side code generation to develop software libraries. Additionally, OAS can help

7https://rapidapi.com/blog/api-vs-sdk/

https://rapidapi.com/blog/api-vs-sdk/

2.5 Knowledge Transfer 13

the API consumer to understand the web APIs through tooling and a standard-
ized description language (OpenAPI Initiative, 2020).

SDKs are used to transfer knowledge to distant third-party developers (Bianco et
al., 2014; Islind et al., 2016). The knowledge is thereby embedded within software
artifacts (Islind et al., 2016). In the following section, the topic of knowledge
transfer is reviewed.

2.5 Knowledge Transfer

The scientific literature about knowledge transfer formalizes the collaborative as-
pect of software co-creation. The platform literature emphasizes the importance
of boundary resources as the connectors between the platform owner and the
developers (Bianco et al., 2014; Islind et al., 2016; Yoo et al., 2010). Social bound-
ary resources in particular are utilized to transfer knowledge to the third-party
developers (Bianco et al., 2014; Islind et al., 2016).

Communication is studied by several fields of research that develop different
organizational and curricular models (Calhoun, 2011). The area of knowledge
transfer is researched from an IS perspective (Boland et al., 1994; Hislop, 2002).
Knowledge transfer depends on social and cultural processes of communication
(Boisot, 1986; Scarbrough, 1995). In this context, three different types of knowl-
edge communication are distinguished: professionalism, objectification, and or-
ganizational sedimentation (Scarbrough, 1995). Professionalism describes the
processes of learning and gaining experience in a practicing community (Islind
et al., 2016; Scarbrough, 1995). Objectification defines standardization which en-
ables portability of knowledge (Scarbrough, 1995). Organizational sedimentation
captures knowledge communication via rules, standards, routines, and structures
(Scarbrough, 1995).

Knowledge can also be differentiated from information. One definition from
Newman and Newman (1985) states: "Information is the answer to a question.
Knowledge is a framework that enables the question to be asked" (Newman &
Newman, 1985, p. 499). Therefore, information is easy to duplicate while the
ability to transfer knowledge depends upon the prior knowledge a person has
(Scarbrough, 1995). Knowledge transfer also does not remove knowledge from
the source but is rather shared and has to be re-created at the target (Scarbrough,
1995).

The literature differentiates between tacit and implicit knowledge (Hislop, 2002;
Nonaka & Takeuchi, 1995). Explicit knowledge can be represented in a tangible
form (Hislop, 2002; Nonaka & Takeuchi, 1995). For instance, it can be represented
and transferred through documentation and other social boundary resources.
Tacit knowledge is knowledge for physical skills (e.g. riding a bike) and cog-
nitive frameworks (e.g. value systems) (Hislop, 2002; Nonaka & Takeuchi, 1995).
Tacit knowledge is possessed by people and cannot be encoded and transferred
easily (Hislop, 2002; Nonaka & Takeuchi, 1995). Another form of knowledge that

plays an important role for software development is technical knowledge (Islind
et al., 2016). It is used to describe expert knowledge required to complete tasks
(Islind et al., 2016).

Explicit technical knowledge assets can be shared through IT systems (Boland et
al., 1994; Hislop, 2002). Thereby, information technology enables individuals to
create rich representations of their knowledge (Boland et al., 1994). The depen-
dency of people on IT system is increasing as the relationship between people and
IT systems becomes interwoven (Sørensen & Snis, 2001). However, knowledge
transfer via IT systems has limitations (Scarbrough, 1995). The intrinsic proper-
ties of knowledge make the transfer difficult (Cook & Brown, 1999; Hislop, 2002).

Tacit and distributed knowledge within software ecosystems can be shared us-
ing professionalism (Islind et al., 2016). As mentioned above, professionalism
includes the co-creation of knowledge within a practicing community (Islind et
al., 2016; Scarbrough, 1995). The knowledge is shared through dialog and inter-
action among groups of individuals (Islind et al., 2016). Professionalism enables
knowledge transfer when standardization and rules required for objectification
and organizational sedimentation have not been created (Islind et al., 2016).

Islind et al. (2016) emphasize the importance of non-technical knowledge in
smaller platforms but also confirms that the importance of commoditized knowl-
edge increases with the size of the platform (Islind et al., 2016). To transfer tech-
nical knowledge, the platform owner has to manage knowledge ’at arms length’
(Islind et al., 2016). Social boundary resources in particular enable the commu-
nication of explicit knowledge (Islind et al., 2016). Thereby, the knowledge com-
munication can be defined as an economic exchange where the knowledge is ob-
jectified in the boundary resources (Islind et al., 2016).

The collaborative aspects of software ecosystems can be connected to the pro-
cess of distributed cognition. Distributed cognition describes a process in which
autonomous individuals interact based on their own situation and react to other
individuals’ situations (Boland et al., 1994). It describes a model of organizational
learning and emphasizes the importance of knowledge for decision making and
collaboration (Boland et al., 1994). Distributed cognition can be supported and
facilitated by information systems (Boland et al., 1994). Rich representations of
knowledge codified in IT systems can be used to communicate understanding
(Boland et al., 1994).

The development of software is a social activity that requires knowledge trans-
fer (Bianco et al., 2014). Knowledge transfer is a fundamental part of co-creation
(Bianco et al., 2014; Islind et al., 2016). The platform has to implement a knowl-
edge transfer strategy (Islind et al., 2016). The distribution of knowledge requires
the support of information systems (Islind et al., 2016). This especially holds true
if knowledge has to be distributed between distant third-party developers (Islind
et al., 2016). The distribution of knowledge within a software ecosystem can be
linked to the process of distributed cognition.

2.6 SOA 15

2.6 SOA

Service-oriented concepts are intensively investigated by IS research (Demirkan
et al., 2008). Studied concepts include SOAs, service science, and service-oriented
computing (Demirkan et al., 2008; Papazoglou & Georgakopoulos, 2003). Since
SOA is a mature concept, its implementation approaches have changed over time
(Amaravadi, 2014; Tan et al., 2016; Zimmermann, 2017). Today’s definition of
SOA describe it as software architecture that isolates services into independent
and reusable remote components that are discoverable and accessible without re-
quiring knowledge of the implementation details (Amaravadi, 2014; Demirkan et
al., 2008; Löhe & Legner, 2010a; Papazoglou & van den Heuvel, 2007). It utilizes
web technologies and open standards to enable ubiquitous access within a dis-
tributed system of services (Löhe & Legner, 2010a; Papazoglou & Georgakopou-
los, 2003; Papazoglou & van den Heuvel, 2007).

Papazoglou and van den Heuvel (2007) define roles within SOA (Papazoglou &
van den Heuvel, 2007). The service provider and requester communicate through
digital service requests (Papazoglou & van den Heuvel, 2007). Additionally, they
introduce a service aggregator or broker that manages service discovery and
distribution between service providers and requesters (Papazoglou & van den
Heuvel, 2007). This new role of service brokerage adds a layer of convenience
for the service requester (Papazoglou & van den Heuvel, 2007). The Information
Technology Infrastructure Library (ITIL) (2019) emphasizes the service relation-
ship between the provider and consumer which is described as joint activities that
have to be managed by both sides (Limited & Office, 2019, p. 15). The service pro-
vision includes tasks such as the management of provided resources, access man-
agement to the resources, service fulfillment, and continual development (Lim-
ited & Office, 2019, p. 15). The quality and reliability of the service relationship
can be standardized through Service Level Agreements (SLAs) (Ranabahu et al.,
2009, p. 2). SLAs document the expected level of service that is provided by the
service provider to the service consumer (Ranabahu et al., 2009, p. 2).

The management of remote interfaces between the service provider and con-
sumer is of growing importance (de Reuver et al., 2018; Lübke et al., 2019). In
practice, many companies have successfully integrated service-oriented think-
ing (Demirkan et al., 2008). Luthria and Rabhi (2009) conclude that SOA sup-
ports the interoperability of backend services within an organization (Luthria &
Rabhi, 2009). The reuse of capabilities within SOA can reduce costs and enable
new value composition (Demirkan et al., 2008). SOA enables digital business net-
works and inter-organization integrations where each organization provides and
consumes internal and external services (Löhe & Legner, 2010a; Papazoglou &
van den Heuvel, 2007). As a result, SOA is also researched from an organiza-
tional and management point of view (Löhe & Legner, 2010a; Luthria & Rabhi,
2009).

SOA implementation approaches have changed over time (Tan et al., 2016; Zim-
mermann, 2017). This is caused by technological advancements that enable new
architecture approaches (Zimmermann, 2017). Since SOA utilizes (web) applica-

tion servers, most used remote interfaces are web APIs (Lübke et al., 2019; Papa-
zoglou & van den Heuvel, 2007). Early SOA approaches are based on SOAP and
XML (De, 2017, p. 12). Today’s SOA employs state-of-the-art technologies such
as REST to enable new service economies (Tan et al., 2016). One paradigm that
is changing SOA is cloud computing (Limited & Office, 2019; Pahl et al., 2017;
Ranabahu et al., 2009; Zimmermann, 2017, p. 29). The scientific literature about
cloud computing is reviewed in the following section.

2.7 Cloud Computing

Pallis (2010) describes cloud computing as a model that offers easy and on-demand
access to computing resources as a service (Pallis, 2010). Its utilization reduces
operation costs and allows for an economy of scale (Roberts & Chapin, 2017,
p. 2-3). Common computing resources that are offered include infrastructure,
platforms, and applications (Amaravadi, 2014; Pahl et al., 2017; Ranabahu et al.,
2009). Infrastructure as a Service (IaaS) cloud offerings consist of storage and
network services (Amaravadi, 2014; Roberts & Chapin, 2017; Tan et al., 2016).
Platform as a Service (PaaS) offers development environments for hosting appli-
cations (Amaravadi, 2014; Roberts & Chapin, 2017). It is a cheap and convenient
way for firms to deploy applications (Amaravadi, 2014; Roberts & Chapin, 2017).
Software as a Service (SaaS) provides software services on demand (Amaravadi,
2014).

Applications deployed to PaaS are called cloud-native applications (Lübke et al.,
2019). They can be used in software intensive systems and offer web APIs for data
exchange within the distributed network (European Commission. JRC., 2019;
Lübke et al., 2019). They enable decomposition and loose coupling (European
Commission. JRC., 2019; Karmel et al., 2016). In this context, the term microser-
vice describes the decoupled service component and cloud-native application
servers are used to implement microservices (Karmel et al., 2016; Papazoglou
& van den Heuvel, 2007). The National Institute of Standards and Technology
(2016) defines microservices as "[...] a basic element that results from the architec-
tural decomposition of an application’s components into loosely coupled patterns
consisting of self-contained services that communicate with each other using a
standard communications protocol and a set of well-defined APIs, independent
of any vendor, product or technology" (Karmel et al., 2016, p. 2). Microservices
are both argued to be a new architectural style and an implementation approach
to SOA (Zimmermann, 2017). From a SOA perspective, cloud computing enables
a modern SOA approach (Pahl et al., 2017; Zimmermann, 2017).

Microservices that are exposed to external parties are also called Backend as a Ser-
vice (BaaS) (European Commission. JRC., 2019; Roberts & Chapin, 2017). BaaS
is related to SaaS but focuses on the idea of breaking up applications into a com-
position of services (Roberts & Chapin, 2017, p. 6). It enables the outsourcing of
services (Roberts & Chapin, 2017, p. 6). In the following, the related term web
service is defined.

2.8 Web Service 17

2.8 Web Service

In the literature, the term web service is used in conjunction with related con-
cepts such as SOA, microservices, and web APIs (European Commission. JRC.,
2019; Fokaefs et al., 2011; Karmel et al., 2016; Löhe & Legner, 2010a). A digital
services is defined as a reusable activity that has an idempotent outcome8 (IBM
Developer Staff, 2018). However, this definition also holds true for RESTful APIs
(Fielding, 2000; IBM Developer Staff, 2018). The technical report of the European
Commission (2019) derives the following difference: "Web Services and APIs dif-
fer at the design level but not at the technological level" (European Commission.
JRC., 2019, p. 6). Thus, web services and web APIs are complementary concepts
(IBM Developer Staff, 2018). They differ at the targeted abstractions level (IBM
Developer Staff, 2018). APIs provide low-level functionalities while web services
define interfaces for higher-level capabilities (IBM Developer Staff, 2018).

Papazoglou (2008) defines a web service as a: "[...] self-describing, self-contained
software module available via a network, such as the Internet, which completes
tasks, solves problems, or conducts transactions on behalf of a user or appli-
cation" (Papazoglou, 2008, p. 5). Thereafter, a web service is a concept that
enables decomposition, loose coupling, and shares similarities with microser-
vices (Hillpot, 2020). The W3C offers a similar definition and emphasizes the
inter-operable, machine-to-machine communication via web-related standards
like HTTP9. In this context, a web service includes a web API and can be de-
scribed as a wrapper around a digital service or application to offer capabilities
over the web (Hillpot, 2020). In contrast, as described in section Cloud Com-
puting, a microservice is meant to break down a software system in indepen-
dent services accessible in a distributed system (Hillpot, 2020). Within a software
ecosystem, a web service can provide its capabilities to other web services, mi-
croservices, or to the end user directly (Hillpot, 2020).

A web service can provide one business object, a business task, a business pro-
cess, or an entire application via web APIs (Papazoglou, 2008, p. 5). Similarly,
Löhe and Legner (2010) use the term service granularity to categorize the of-
fered services within a SOA. They differentiate between business processes, ac-
tivities and tasks, and utilities and entities as three granularity levels (Löhe &
Legner, 2010a, 2010b). In this categorization, business processes are defined as
entire workflows, activities and tasks describe single process steps, and utilities
and entities equal generic infrastructure functionalities (Löhe & Legner, 2010a,
2010b). Both categorizations emphasize the multitude of applications for web-
based APIs.

8https://developer.ibm.com/devpractices/api/articles/api-vs-services-whats-the-difference/
9https://www.w3.org/TR/ws-arch/#whatis

https://developer.ibm.com/devpractices/api/articles/api-vs-services-whats-the-difference/
https://www.w3.org/TR/ws-arch/#whatis

2.9 API Management

Mathijssen et al. (2020) conduct a systematic literature review over the topic API
management (Mathijssen et al., 2020). They conclude that the scientific literature
around API management is rather sparse (Mathijssen et al., 2020). The most com-
monly cited definition of the term API management comes from De (2017) (De,
2017; Mathijssen et al., 2020). De (2017) defines API management as a platform
and states: "An API management platform helps an organization publish APIs
to internal, partner, and external developers to unlock the unique potential of
their assets. It provides the core capabilities to ensure a successful API program
through developer engagement, business insights, analytics, security, and protec-
tion." (De, 2017, p. 15). Additionally, Mathijssen et al. (2020) themselves argue
that API management is required in order to perform tasks including maintaining
documentation, controlling and monitoring access, and carrying out analytics of
the API usage (Mathijssen et al., 2020). Furthermore, API management platforms
support activities for internal, partner, and external API consumers (Mathijssen
et al., 2020).

On its website, RedHat documents goals of API management10. They describe
API management as a support function that enables the organization to create
and use APIs (Red Hat, Inc., 2021). It centralizes core capabilities to manage and
fulfill requirements of developers and applications which enables API consump-
tion in a compliant and secure manner (Red Hat, Inc., 2021). Mathijssen et al.
(2020) list the following capabilities offered by API management as mentioned in
the literature:

• API Publication & Deployment

• Analytics

• Authentication

• Catalog & Documentation

• Monetization

• Monitoring

• Security

• Version Management

New APIs have to be deployed and published before they can be provided to the
API consumer (De, 2017, p. 27). Deployment describes the process of pushing
code changes to a production environment (De, 2017, p. 27). Publication is the
process of creating and publishing marketing and documentation material about
the API offerings (De, 2017, p. 27). The API management is responsible for man-
aging both the publication and deployment of APIs (De, 2017, p. 16).

Analytics is required to answer key questions of the API management (Red Hat,
Inc., 2021). For instance, analytics provides insights about the volume of requests

10https://www.redhat.com/en/topics/api/what-is-api-management

https://www.redhat.com/en/topics/api/what-is-api-management

2.9 API Management 19

for each API (Red Hat, Inc., 2021). It is closely connected to monitoring which
collects data about Key Performance Indicators (KPIs) such as request counts, fail
rates, and reason of failure within the system (Red Hat, Inc., 2021).

APIs introduce new security threats to the providing organizations (De, 2017, p.
112). Public APIs enable access to internal capabilities to third-parties. Authen-
tication and other security related topics have to be managed (De, 2017, p. 112).
Authentication determines the identity of the API consumer and validates access
to protected source (De, 2017, p. 113).

API offerings have to be discoverable and understandable (De, 2017, p. 25). The
API management is responsible for the knowledge transfer to the developers (De,
2017, p. 59). Documentation is used to communicate the functionality and usage
of the APIs (De, 2017, p. 59). API catalogs are used to make API offerings discov-
erable (De, 2017, p. 25).

API providers directly or indirectly monetize the consumption of the resources
exposed through web APIs (Bondel et al., 2020). The monetization is based on a
business model and includes the management of the monetization strategy, us-
age contracts, pricing, billing, and related tasks (De, 2017; Red Hat, Inc., 2021).
Common monetization models include: one-time fees, pay-per-API transaction,
and tiered pricing (De, 2017, p. 146-148). Alternatively, indirect pricing strategies
can be utilized that include mutual benefits for the API provider and consumer
(De, 2017, p. 146).

Version management is an important task within the API evolution and life-
cycle management (Lübke et al., 2019; Red Hat, Inc., 2021). It implements a
change strategy and focuses on the communication and technical implementa-
tion of changing interfaces (Lübke et al., 2019).

API management utilizes state-of-the-art API management platforms to auto-
mate and centralize listed capabilities (De, 2017; Red Hat, Inc., 2021). As visible
in figure 2.1, the API management platform organizes services in a hierarchical
order (De, 2017, p. 17). The API gateway builds the core platform of the API
management (De, 2017, p. 16). It provides core utilities utilized by other platform
layers (De, 2017, p. 16). In the following, the services of the API gateway will be
described in detail.

API Gateway

The API gateway is a reverse proxy for API clients (Red Hat, Inc., 2021). Thus, it
intercepts incoming requests, retrieves the requested resources from the backend
services, and returns them to the client (Red Hat, Inc., 2021). As such, it enables
the centralization of management tasks as it is the first point-of-contact for all
clients (De, 2017; Red Hat, Inc., 2021). The management tasks achieved with an
API gateway include authentication, rate limiting, statistics and analytics, mon-
itoring, policies, alerts, and security11. De (2017) summarizes mentioned tasks

11https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do

https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do

Figure 2.1: API Management Platform Hierarchy from De (2017) (De, 2017, p. 17)

as API security, traffic management, interface translation, and orchestration and
routing (De, 2017, p. 17).

Analytics and developer services build on top of the API gateway (De, 2017, p.
16-17). Analytics services utilize the data collected by the API gateway (De, 2017,
p. 16). In order for API providers to communicate with API consumers, pub-
lish new backend services, and for the application developer to register as a con-
sumer, a developer portal is used (De, 2017, p. 25).

Developer Portal

The developer portal is the second fundamental part for API management (Red
Hat, Inc., 2021). In contrast to the API gateway, which is a infrastructure platform
and part of the API runtime, the developer portal serves as a web client for the
API gateway and is used by both API provider and API consumer (De, 2017;
Red Hat, Inc., 2021). The API provider uses the developer portal to publish and
communicate information with the API consumer (De, 2017, p. 25). Commonly,
the API documentation, terms and conditions, contact information, marketing
information, changelogs, status updates, and social content like forums or blogs
are hosted on the developer portal (De, 2017, p. 25).

The developer portal is provided to the API consumer as a tool to manage and

2.9 API Management 21

support the API integration (De, 2017, p. 26). The API consumer can access the
API documentation and follow the API client on-boarding process (De, 2017, p.
26). State-of-the-art developer portals enable self-service and transparent pricing
for the API consumer (De, 2017, p. 26). Thus, the developers are able to register
themselves as API consumers, create so-called client applications within the de-
veloper portal, and automatically generate API keys (De, 2017, p. 26). API keys
are utilized to authorize applications to use the APIs (De, 2017, p. 26). They iden-
tify and track the applications within the API gateway and allow API call-based
monetization strategies (De, 2017, p. 26). When an API key is generated through
the developer portal, the associated access rights are communicated to the API
gateway which enables the API consumption (De, 2017, p. 26).

Documentation

Bianco et al. (2014) categorize documentation as a social boundary resource since
it contains intellectual property that supports the third-party developer in the in-
tegration of the technical boundary resources (Bianco et al., 2014). As mentioned
in section SDKs, documentation can accompany or be part of an SDK and doc-
ument software artifacts provided to the developers (Mulloy, 2012; RapidAPI,
2019). In addition, a web API itself also requires specifications (De, 2017; Koci
et al., 2019). As mentioned in section Open API Specification, parts of the API
documentation can be standardized using open specifications like the OAS (De,
2017; OpenAPI Initiative, 2020).

De (2017) states that the API documentation of the developer portal should be the
single source of truth (De, 2017, p. 172). The technical specification of a web API
can be accompanied by FAQs, tutorials, code, and usage examples (De, 2017, p.
176). De (2017) stresses the importance of getting-started and how-to guides that
support the on-boarding of the API consumer (De, 2017, p. 176). Furthermore,
real-world examples help illustrating the use cases from an API consumer per-
spective (De, 2017, p. 176).

API Governance

API governance provides further capabilities to the API program (De, 2017; Krintz
& Wolski, 2013). API governance defines guidelines, policies, standards, pro-
cesses, and best practices for all API providers within the organization (De, 2017;
Krintz & Wolski, 2013). Thus, the API governance acts as a central authority and
provides quality assurance over the API life-cycle and encompasses the API run-
time (De, 2017; Krintz & Wolski, 2013). Krintz and Wolski (2013) argue that there
currently do not exist commercial software systems that cover most aspects of
API governance (Krintz & Wolski, 2013).

2.10 API Economy

The emergence of the API Economy is based on technological changes that is re-
searched in several fields of study. In the following, the term API Economy is
used to connect the foundations reviewed in this chapter. Tan et al. (2016) de-
scribe how SOA for business information systems moved APIs in the focus of IS
research and the industry (Tan et al., 2016). Section Web Service summarizes the
development of web services based on web APIs that further instantiate SOA and
service-orientation (Zimmermann, 2017). Web APIs also play an important role
in new product and service architectures (Yoo et al., 2010). The advancements
in cloud computing and the creation of microservice architectures further am-
plify the importance of APIs (Lübke et al., 2019). The possibility to easily deploy
applications to the cloud and outsource services instigates new business models
(Bondel et al., 2020; Roberts & Chapin, 2017). Combined with the rise of digital
platforms, these changes induce software ecosystems where value is co-created
in a network of firms and individual agents (Jansen & Cusumano, 2012; Jansen
et al., 2009). All those advancements combine to create the API Economy (Basole,
2016; Bondel et al., 2020; Eaton et al., 2015).

The API Economy is described as a service ecosystem and captures the growth in
the number of publicly available web APIs (Basole, 2016; Bondel et al., 2020). Pro-
grammableWeb is the most extensive public API directory (Basole, 2016; Bondel
et al., 2020). It currently registers close to 24,000 publicly available APIs12. In the
API Economy, value is co-created by a composition of different services (Eaton et
al., 2015). A provided service enables the realization of new applications and ser-
vices and thereafter new business models (Bondel et al., 2020). An application or
service that consumes a set of services to create value for end users is also called a
mashup (European Commission. JRC., 2019; Fichter, 2006; Fichter & Wisniewski,
2009; Maximilien et al., 2008).

The API Economy illustrates the rising importance of APIs for industry and re-
search. The reviewed foundations add to the knowledge base of this thesis. In
the following, the scientific literature related to this study is presented.

12https://www.programmableweb.com/apis/directory

https://www.programmableweb.com/apis/directory

3 Related Work

In the following, related literature will be summarized. This chapter emphasizes
the current research in the areas reviewed in chapter Foundations. Research gaps
and open challenges are highlighted. Additionally, the pattern literature is re-
viewed to present studies that follow similar research approaches.

Platform literature stresses the importance of boundary resources management
and calls for research around the evolution and tuning of boundary resources (de
Reuver et al., 2018; Eaton et al., 2015; Henfridsson & Bygstad, 2013; Yoo et al.,
2010).

This study follows the research agenda from Yoo et al. (2010) and de Reuver et al.
(2017). Yoo et al. (2010) develop a new product architecture, the layered modular
architecture (Yoo et al., 2010). Furthermore, they document a theoretical frame-
work and changing factors for organizations and argue that IS research needs
to address these changing factors (Yoo et al., 2010). They propose new research
questions that have to be investigated and specifically emphasize boundary re-
sources for future research (Yoo et al., 2010).

De Reuver et al. (2017) review the platform literature and analyze the rising com-
plexity within distributed digital platform architectures across different indus-
tries (de Reuver et al., 2018). They develop a research agenda for IS resarch to
address new research challenges (de Reuver et al., 2018). For instance, they ar-
gue that the effect of long term decisions cannot be predicted easily and state
that studies on the evolution of digital platforms and ecosystems are therefore
required (de Reuver et al., 2018).

In the following, further calls for research within the platform literature are listed.
Henfridsson and Bygstad (2013) highlight that boundary resources should be the
unit of the analysis since they facilitate the relationship between the platform’s
stakeholders (Henfridsson & Bygstad, 2013). Similarly, Eaton et al. (2015) argue
that the central role of boundary resources requires research about the creation,
maintenance, and evolution to research the innovation that takes place in digital
service systems (Eaton et al., 2015).

Additional work that influences this study comes from Islind et al. (2016) and
Bianco et al. (2014). Islind et al. (2016) research the creation and fine tuning of
boundary resources and knowledge communication in smaller platforms based
on action research (Islind et al., 2016). They stress the importance of knowledge
transfer and differentiate different ways of knowledge communication between
the platform owner and third-party application developers (Islind et al., 2016).
Bianco et al. (2014) categorize boundary resources and analyze how boundary
resources should be built. They identify three different types of boundary re-

23

sources by dividing technical boundary resources into developer and application
boundary resources (Bianco et al., 2014).

Software ecosystems change the way software is developed and instigate new
challenges that have to be addressed by the IS research (Jansen et al., 2009).

Jansen et al. (2009) state that co-creation changes the way software is developed.
They argue that today’s networked software ecosystems introduce new research
challenges for both technical and business areas of research (Jansen et al., 2009).
Software ecosystems introduce new challenges for business models, the manage-
ment of platform control, and others (Jansen et al., 2009). They stress that the
research community should investigate the changing factors (Jansen et al., 2009).

Service Orientation is a well-researched field that offers many similarities to API
management (De, 2017, p. 12).

This study utilizes influence factors within SOA implementations developed by
Löhe and Legner. Löhe and Legner (2010) review the current state of the SOA
literature and present a framework for the empirical analysis of influence factors
in real-world SOA (Löhe & Legner, 2010a, 2010b). For this, they analyze 33 cases
of SOA implementations and develop matrices of attributes and attribute values
which create insights about the context of the analyzed cases (Löhe & Legner,
2010a, 2010b).

API Economy is a fairly new term that aims to capture the emergence of new
service ecosystems (Tan et al., 2016).

Tan et al. (2016) describe that the SOA emerges into an API Economy (Tan et al.,
2016). They explain the emergence of the API Economy based on technological
change and case studies (Tan et al., 2016). Bondel et al. (2020) argue that there
has been no research answering the question why the API Economy is advanc-
ing with different pace in different sectors (Bondel et al., 2020). Therefore, they
research barriers preventing the advancement of the API Economy within the
automotive industry (Bondel et al., 2020).

API & API management literature focuses on an API consumer perspective and
lacks standards for API management (Koci et al., 2019; Mathijssen et al., 2020).

In the following, the related literature around APIs and API management is listed.
Sohan et al. (2015) research versioning of documentation and its communication
based on a case study of releases of popular web APIs (Sohan et al., 2015). They
identify six API change patterns. Overall, they discuss different approaches and
argue for a lack of standards (Sohan et al., 2015). Haupt et al. (2015) present tools
and processes to conduct technical API governance based on REST API designs
(Haupt et al., 2018). Hou et al. (2011) research the intent behind API change
within a software library (Hou & Yao, 2011). Similarly, Jezek and Dietrich (2017)
compare tools that aim to support software library API evolution (Jezek & Diet-
rich, 2017).

The management of APIs is a highly requested field of research (Mathijssen et
al., 2020). The literature identifies several research gaps. Koci et al. (2019) ex-
plain that the focus of research is currently on the API consumer and that the API

25

management from a provider perspective lacks attention (Koci et al., 2019). Math-
ijssen et al. (2020) state that API management research is sparse and that more
best practices have to be identified (Mathijssen et al., 2020). Similarly, Sohan et
al. (2015) stress a lack of conventions and present that most API changes are not
documented and communicated to the API consumers (Sohan et al., 2015).

To conclude, several research gaps and calls for research have been identified
within the related literature. Changing factors of digitization require new ways
for companies to collaborate and transfer knowledge. New product and service-
oriented architectures instigate new service economies. To the best knowledge,
the scientific literature of API management is lacking standardization and for-
mulation of best practices. This study aims to address the API provider per-
spective of the API provision management and collect best practices and solution
approaches to common concerns by developing a pattern catalog. In following,
relations to the pattern literature are presented.

Relations to other pattern languages are reviewed to distinguish this study from
past work but also to review the scientific foundations on which this study de-
velops its own pattern language.

The following pattern languages are foremost utilized as foundations for the de-
velopment of the pattern language. Gamma et al. (1994) first introduce design
patterns to the field of software engineering (Buckl et al., 2013; Gamma et al.,
1994). They present a list of patterns to create reusable objects in object-oriented
programming (Gamma et al., 1994). Coplien (1994) offers a pattern family of or-
ganizational development processes (Coplien, 1994). Brown et al.(1998) provide
a definition for patterns and anti-patterns and promote a set of anti-patterns for
software engineering (Brown et al., 1998).

Lübke and Zimmermann offer a series of papers about API and microservice de-
sign (Lübke et al., 2019; Pautasso et al., 2017; Zimmermann, 2017; Zimmermann
et al., 2020; Zimmermann et al., 2017). They also maintain a website1 that pro-
motes their findings and current research. Lübke et al. (2019) discuss a wide
set of concerns that the API provider has to manage and offer a pattern catalog
of technical API management patterns to address those concerns (Lübke et al.,
2019). Zimmermann et al. (2020) present further technical microservice and API
patterns targeting API endpoint design (Zimmermann et al., 2020). Zimmermann
et al. (2017) provide a pattern catalog of interface representation patterns that
document solution approaches for API design (Zimmermann et al., 2017). They
also offer an extensive overview of pattern languages that relate to the topic of
API design and pattern languages that document patterns of service-orientation
and web services (Zimmermann et al., 2017). In the following, those foundations
are reviewed.

Fowler (2002) offers a pattern catalog for enterprise applications and also denote
remote API design aspects (Fowler, 2002; Zimmermann et al., 2017). Voelter et
al. (2004) document a pattern language for middlewares in distributed systems
(Voelter et al., 2004; Zimmermann et al., 2017). Buschmann et al. (2007) com-

1https://microservice-api-patterns.org/

https://microservice-api-patterns.org/

bine several pattern languages together to provide one source for distributed sys-
tem patterns (Buschmann et al., 2007b; Zimmermann et al., 2017). Rotem-Gal-Oz
(2012) researches SOA infrastructure and platforms and provides patterns and
anti-patterns for architectural guidance of SOA (Rotem-Gal-Oz, 2012; Zimmer-
mann et al., 2017).

With regards to service-orientation, the following pattern languages are reviewed
by Zimmermann et al. (2017) (Zimmermann et al., 2017). Daigenau (2011) doc-
uments service design patterns (Daigneau, 2011; Zimmermann et al., 2017). The
patterns thereby focus on a SOAP protocol or REST paradigm level level(Daigneau,
2011; Zimmermann et al., 2017). Similarly, Pautasso et al. (2016) offer a pattern
catalog about RESTful communication patterns (Pautasso et al., 2016; Zimmer-
mann et al., 2017). On a process level of SOA, Hentrich and Zdun (2011) provide
a pattern catalog about process and workflow orchestration (Hentrich & Zdun,
2011; Zimmermann et al., 2017).

Following pattern languages focus on related fields of management and collabo-
ration. Buckl et al. (2008) present an enterprise architecture management catalog
(Buckl et al., 2008). Khosroshahi et al. (2015) re-iterate on the catalog from Buckl
et al. and publish version 2.0 in 2015 (Khosroshahi et al., 2015). Uludağ et al.
(2019) follow the pattern-based design research method by Buckl et al. (2013)
and document patterns about large-scale agile development (Buckl et al., 2013;
Uludağ et al., 2019). Furthermore, they provide an extensive overview of related
pattern languages in their field of research (Uludağ et al., 2019).

Listed pattern languages are found to be complimentary with the API provider
perspective on API management that is conducted in this study. Identified pat-
tern languages from Lübke and Zimmermann focus on technical aspects of API
management while management-oriented pattern languages such as the enter-
prise architecture management catalog from Buckl and Khosroshahi and the large-
scale agile development pattern catalog from Uludağ et al. (2019) research related
fields of management and collaboration.

The API management literature is rather spare (Mathijssen et al., 2020). De (2017)
offers a catalog of patterns for API management, security, deployment, and adop-
tion (De, 2017, p. 86). The patterns illustrate the most common practices within
the technical aspects of API management and management of API platforms (De,
2017, p. 86). This thesis focuses on the relationships between different roles,
teams, and stakeholders of API management and their communication, collabo-
ration, and knowledge transfer. One pattern documented by De (2017) overlaps
with a solution approach identified in this study. De (2017) documents API Fa-
cade Patterns such as API Composition (De, 2017, p. 86-88). The creation of an
orchestration layer is also documented in this thesis. In general, the best practices
described by De (2017) can be regarded as more general and complimentary to
this thesis.

4 Research Approach

As outlined in section Objectives, this thesis aims to create a pattern catalog to
capture best practices and solution approaches to common problems within the
API provision management. In the following, the detailed research approach is
laid out.

The IS field utilizes a multitude of paradigms, methods, and research approaches
(Buckl et al., 2013; Hevner et al., 2004; Urquhart et al., 2009). Popular approaches
come from behavioral science and design science fields (Buckl et al., 2013; Hevner
et al., 2004). This thesis follows a design science framework derived from Hevner
et al. (2004) (Hevner et al., 2004). Their method describes an approach to create
novel artifacts to solve specific problems (Buckl et al., 2013; Hevner & Chatterjee,
2010; Hevner et al., 2004). The framework is based on rigor and relevance (Buckl
et al., 2013; Hevner & Chatterjee, 2010; Hevner et al., 2004). Figure 4.1 illustrates
how the research addresses this criteria.

Figure 4.1: Research Framework following Hevner et al. (2004)

27

Rigor is achieved by using sound research methods (Buckl et al., 2013; Hevner
et al., 2004). As shown in figure 4.1, we utilize three methodologies within the
larger framework. First, a literature review is used to build upon a knowledge
base. The goal of the literature review is to describe terms and theory that will
be drawn upon (Strauss & Corbin, 1998). Furthermore, it is used to motivate the
relevancy of the study and stress the knowledge gap within the API manage-
ment field that we aim to address (Strauss & Corbin, 1998). This thesis follows
a concept-centric review approach as described by Webster et al. (2002) (Web-
ster & Watson, 2002). An initial keyword search in common databases creates a
starting point for going backwards and forwards through citations (Webster &
Watson, 2002). Since IS is an interdisciplinary field, the literature review includes
work from related fields such as software engineering and management (Webster
& Watson, 2002). The content of the literature review is laid out in the chapters
Introduction, Foundations, and Related Work. The most important concepts for
the literature review are listed in figure 4.1 and include research streams that in-
fluence the API management field.

Next, a grounded theory approach1, as first described by Glaser and Strauss
(1967), is embedded within the overall framework of this study (Glaser & Strauss,
1967; Urquhart et al., 2009). As discussed by Wiesche et al. (2017), the grounded
theory methodology can be used for more than novel theory development (Wi-
esche et al., 2017). In the IS field, it is a common behavioral science approach used
to support data collection and to create rich descriptions or models (Urquhart et
al., 2009; Wiesche et al., 2017). We conducted semi-structured interviews with
API providers to gather data about impediments, context, and best practices for
API management from an API provider perspective. The interview data is used
to justify and evaluate the novel artifacts in an iterative process (Hevner & Chat-
terjee, 2010; Hevner et al., 2004). Furthermore, Buckl et al. (2013) note that using
practitioners can achieve relevance (Buckl et al., 2013). The encoding of the in-
terviews follows guidance from Chametzky (2016) (Chametzky, 2016). The codes
were iteratively refined whenever a concept gained importance during interview
analysis (Bianco et al., 2014). Through constant comparison, the encoded inter-
view data and analysis results lead to the initial pattern candidates (Charmaz,
2014; Urquhart et al., 2009).

To craft novel artifacts, this thesis draws aspects from pattern-based research and
from the pattern-based design research method recommended by Buckl et al.
(2013) (Buckl et al., 2013; Gamma et al., 1994). They build upon design science to
balance rigor and relevance by utilizing patterns (Buckl et al., 2013). In this con-
text, a pattern is as a medium to create design science artifacts (Buckl et al., 2013).
The overall goal of these artifacts is to address organizational challenges (Hevner
et al., 2004). To accomplish this, the artifacts must be documented efficiently to
enable implementation and usage (Hevner et al., 2004). As argued by Buckl et al.
(2013), a pattern catalog can fulfill those requirements (Buckl et al., 2013).

We differentiate pattern candidates and patterns. Each pattern candidate follows
the pattern definition as defined in section Objectives. Hereby, a pattern is a doc-

1http://www.groundedtheory.com/

http://www.groundedtheory.com/

29

umented solution for common concerns based on a particular context (Buckl et
al., 2008; Gamma et al., 1994). It holds a problem description, documents the cap-
tured environment, and illustrates a solution approach as discovered in known
uses (Buckl et al., 2013; Lübke et al., 2019; Uludağ et al., 2019). Pattern candidates
are added to the list of final patterns if they fulfill the rule of three known uses as
established by Coplien (1994) (Buckl et al., 2008; Coplien, 1994). Those patterns
can be seen as design principles and thus, building blocks for a design theory
(Buckl et al., 2013). The objective of the pattern catalog is to create a knowledge
base of best practices for stakeholders of API management.

To conclude, our grounded theories approach is used to create the interview
guidelines, conduct, transcribe, and encode the interviews and conceptualize the
pattern candidates while the pattern-based research method provides a justifica-
tion to create a pattern-catalog to conduct design-science research (Buckl et al.,
2013; Uludağ et al., 2019). This thesis applies sound methodologies to achieve
rigor. Relevance is achieved by following real-world concerns as discovered in
collaboration with API provider stakeholders within the explorative interviews
and by following the research gaps as motivated in chapter Related Work.

30

5 API Management Pattern Catalog

This chapter presents a pattern catalog that is used to answer the three RQs of
this thesis. First, the data collection process is documented. Second, the pattern
language that is used to create the pattern catalog is specified. Next, each element
of the pattern language is instantiated. The identified stakeholders are described
in section Roles and Stakeholders. Section Influence Factors documents context
attributes that act as influence factors for the pattern language. All identified
concerns are categorized and listed in section Concerns. In section Taxonomy,
an overview of the pattern catalog is given that connects stakeholders, concerns,
and solution approaches. Section API Management Patterns lists all documented
patterns and pattern candidates.

5.1 Data Collection

In this section, studied cases are derived from the interview data. Additionally,
public visible cases of API platforms are introduced as further examples of known
uses of the solution approaches.

We conducted semi-structured interviews with API provider stakeholders to an-
swer the three RQs of this study. As visible in the interview guideline attached
to this thesis, the interviews consist of two parts. The first part aims to answer
general questions about the context of the API, industry, team, and broader envi-
ronment. The second part targets the current work of the API provider, current
and past issues the interviewees face, and applied solution approaches and their
outcome. In total, 15 interviewees working in the field of API management have
been questioned in 16 interviews. Table 5.1 gives a classification of the partici-
pants and their firms.

As visible in table 5.1, this study draws interview data from several different
industries including finance, automotive, industrial manufacturing, IT services,
and insurance. Furthermore, the participating companies vary in size from small
start-ups to big international corporations. The goal is to capture experience from
as many backgrounds as possible. One firm originates from the US, the others
from Europe.

In the interviews, the interviewers tried to narrow down the questions to the
most prominent project that the interviewee is currently working on. In some
cases, the interviewee offered insights into more than one project. To reflect upon
the experiences associated with each case, encodings are associated with cases
and not interviews. Table 5.2 illustrates the described development.

31

Number Classification Role Employees Duration Participants
1 Multi-banking startup Backend Developer 11-50 00:22:52 IV1
2 Industrial manufacturing Internal Consultant >100,000 00:44:09 IV2
3 Automotive Product Owner >100,000 00:48:49 IV3, IV4
4 Software & IT service provider Software Architect 1001-5000 00:42:25 IV5
5 IT service subsidiary Portfolio Manager 1001-5000 00:51:12 IV6
6 Insurance subsidiary Software Architect 51 - 250 00:59:28 IV7
7 Industrial manufacturing Technical Lead >100,000 00:46:34 IV8
8 Industrial manufacturing Software Architect >100,000 00:47:03 IV9
9 Financial services Software Developer 10,001-50,000 00:35:25 IV10
10 Software & IT service provider Internal Consultant 5001 - 10,000 00:50:49 IV11
11 Software & IT service provider Integration Architect 11-50 00:56:29 IV12
12 Automotive Product Owner >100,000 00:51:48 IV3, IV4
13 Software & IT service provider Technical Lead, Product Owner >100,000 00:55:25 IV13, IV14
14 Software & IT service provider Software Architect 1001-5000 00:50:49 IV5
15 IT service subsidiary Portfolio Manager 1001-5000 00:31:58 IV6
16 IT service subsidiary Internal Consultant 1001-5000 00:45:44 IV15

Table 5.1: Interviews

Number # Interview Architectural Openness Maturity Case
1 2 Partner Pilot C1
2 3, 12 Public & Partner Production C2
3 4, 14 Public Production C3
4 4, 14 Partner Production C4
5 5, 15, 16 Group Production C5
6 6 Group Pilot C6
7 7 Private Development C7
8 8 Public & Partner Production C8
9 9 Partner Production C9
10 9 Public & Partner Production C10
11 10 Partner Production C11
12 11 Public & Partner Production C12
13 13 Public & Partner Production C13
14 13 Private Development C14

Table 5.2: Cases

5.1 Data Collection 33

As laid out in chapter API Management, API providers utilize API management
platforms. For the companies interviewed, the API gateway is demonstrated to
be the most fundamental of the platforms. This aligns with the API platform
hierarchy from De (2017) which is shown in figure 2.1. The gateway can be reused
internally for several developer portals and thus, API management systems. The
developer portal builds on top of the API gateway (De, 2017, p. 17). Within the
studied cases, developer portals are used to offer a set of API products or services
of which each contains a set of endpoints. To capture influence factors and context
of the known usage for each pattern, interviews are split into cases on a developer
portal level. Since API gateways are infrastructure and may serve as a baseline for
several projects or initiatives, it is difficult to narrow down context. On the other
hand, interviewees are managing multiple API products that all shared general
context. The case creation on an API portal level allows for the best substantive
significance based on granularity and available sufficient information (Dube &
Pare, 2003; Löhe & Legner, 2010a). Thus, the interviews are broken down into
distinct API portals on a developer portal level. Table 5.2 links each interview to
its associated cases. The first interview is not connected to any case. It has been
foremost conducted to explore the domain of API management.

Table 5.2 hints the architectural openness and maturity of the platform in focus for
each case. The architectural openness describes the degree of visibility and access
of the supply and demand side of the API platform to third-party developers
(public), partnering organizations (partner), subsidiary firms (group), or within
the boundaries of the organization (private). It is based on the differentiation of
visibility and access from De (2017) which differentiate between public, partner,
and private APIs (De, 2017, p. 7). The maturity level documents the current stage
of the API platform. We identified three different maturity levels in the studied
cases: production, in pilot phases with internal and external partners, and in early
stages of development. These attributes further illustrate the differences between
cases derived from the same interviews. For instance, interview 13 provides data
about two API platforms that are captured in cases C13 and C14. C13 describes a
production API platform that is opened to external partners and the public while
C14 documents a private developer portal that is still under development.

In the following, interviewees are referenced to underline collected experience
and referenced by their number, e.g. IV1 to reference interviewee one. Cases are
linked to refer to known uses of solution approaches and are referenced by their
case identifier, e.g. C1 to refer to case number one.

Publicly visible API platforms are utilized as further known uses of detected so-
lution approaches. For example, Pattern 10: Tailoring APIs to products references
Twilio and Stripe as organizations that utilize the solution approach. Twilio is
also used to illustrate the example of Pattern 10: Tailoring APIs to products. Cap-
tured screenshots and references to the Twilio website illustrate the visible im-
plementation. Similar to De (2017) which list popular public APIs, this study
identified several popular API platforms (De, 2017, p. 8-10). In the following,

utilized public developer portals are listed.

• Mercedes-Benz1

• SendGrid2

• Stripe3

• Twilio4

The Mercedes-Benz developer portal is referenced as an example for good de-
sign5. Twilio and Stripe are referenced as examples for good product documenta-
tion6. SendGrid is used as an example for role management. It is also considered
a popular and well created developer portal7.

In the following section, the pattern language is presented.

5.2 Pattern Language

This chapter specifies a pattern language that is used to create the pattern catalog.
It documents all elements of the pattern language, their properties, and their re-
lationships. An overview of the pattern language is given in figure 5.1. It is built
on best practices derived from the literature. A summary of the pattern literature
is given in chapter Related Work.

As visible in figure 5.1, the pattern language consists of five different elements:
Influence Factors, Concerns, Stakeholders, Pattern Candidates, and Patterns. In
the following, each element is defined in detail.

Stakeholders apply solution approaches to solve their concerns. Uludağ et al.
(2019) define stakeholders as the persons that are involved, affected, or influ-
enced by the domain (Uludağ et al., 2019). A map of the API provider-consumer
relationship and naming conventions are introduced in section Roles and Stake-
holders.

Concerns describe the goals, responsibilities, or risks of the stakeholders (Uludağ
et al., 2019). Each concern is raised by at least one stakeholder (Uludağ et al.,
2019). Therefore, a concern can always be traced back to a stakeholder that voiced
the concern. They are phrased as questions that require an answer (Uludağ et al.,
2019).

Influence Factors are utilized to put solution patterns into perspective (Buschmann
et al., 2007a, p. 98). Sophisticated patterns might fit better to mature API plat-
forms while starter patterns fit to API platforms in development (Khosroshahi

1https://developer.mercedes-benz.com/
2https://sendgrid.com/
3https://stripe.com/
4https://twilio.com/
5https://pronovix.com/blog/best-developer-portals-2020#hook08
6https://documentor.in/2148/best-examples-product-documentation-guides/
7https://www.quora.com/Which-companies-have-the-best-developers-website-and-API-documentation

https://developer.mercedes-benz.com/
https://sendgrid.com/
https://stripe.com/
https://twilio.com/
https://pronovix.com/blog/best-developer-portals-2020#hook08
https://documentor.in/2148/best-examples-product-documentation-guides/
https://www.quora.com/Which-companies-have-the-best-developers-website-and-API-documentation

5.2 Pattern Language 35

Stakeholder

identifier
name

Concern

identifier
name

Influence Factor

identifier
name
value

Pattern

identifier
name
example
context
forces
solution
variants
consequences
implementation details
related standards

Pattern Candidates

identifier
name
solution
known uses

influences

**

addresses

has

**

*

*

related patterns

* *

Figure 5.1: Meta-Model of the Pattern Language

et al., 2015). Thus, the influence factors support the API management in their
decision making. They are derived from discovered context attributes. Context
attributes, values, and their distribution across the cases are presented in section
Influence Factors.

Pattern Candidates are solution approaches that are identified within the studied
cases. Each pattern is a pattern candidate. A pattern candidate is validated if it
fulfills the rule of three known uses as established by Coplien (1994) (Buckl et al.,
2008; Coplien, 1994). Thus, a pattern candidate is validated by its known uses.
Three known uses are required to make a pattern candidate a pattern (Buckl et al.,
2008; Coplien, 1994). The rule of three is also practiced by Uludağ et al. (2019) as
a means to confirm patterns (Uludağ et al., 2019).

Patterns are documented solutions for recurring concerns based on a particular
context (Buckl et al., 2008; Gamma et al., 1994). Patterns build the core of the
pattern language. They are linked to concerns and thereby, also to stakeholders.
Patterns are put into perspective by influence factors.

Pattern languages utilize additional elements to capture solutions such as prin-
ciples or anti-patterns. Uludağ et al. (2018) define principles as "enduring and
general guidelines that address given concerns by providing a common direction
for action" (Uludağ et al., 2019, p. 4). They are less concrete than patterns and
provide overall guidelines (Uludağ et al., 2019). Anti-patterns offer revised so-
lutions to common mistakes (Uludağ et al., 2019). The goal is to avoid typical
pitfalls and transform problems into opportunities (Brown et al., 1998; Uludağ
et al., 2019). Patterns provide a fitting framework to document the findings of
this thesis. Principles and anti-patterns are not utilized to simplify the catalog.

In the following, the forms of all elements are explained. All elements have an
identifier and a name to ease referencing (Uludağ et al., 2019). Influence factors
have a set of values. Each influence factor describes one context attribute and
captures context values within the known cases. Each pattern candidate has a
short description of its solution approach. It is used to describe the overall idea
of the candidate. Additionally, each pattern candidate has a list of known uses. It
references the studied cases that apply the solution approach.

Patterns are the most complex element within the pattern language. The pat-
tern literature provides different popular forms (Buschmann et al., 2007a; Fowler,
2006; Uludağ et al., 2019). Each form provides a different presentation to commu-
nicate patterns (Buschmann et al., 2007a, p. 92). The pattern form should be based
on the target audience and the intent of the pattern language (Buschmann et al.,
2007a; Fowler, 2006).

The form used in this study follows the guidance from the pattern literature and
uses best practices defined by Gamma et al. (1994, Coplien (1994), Brown et al.
(1998), Buschmann et al. (2007), Fowler (2006), Buckl et al (2013), Khosroshahi
et al. (2015), and Uludağ et al. (2018) (Brown et al., 1998; Buckl et al., 2013;
Buschmann et al., 2007a; Coplien, 1994; Fowler, 2006; Gamma et al., 1994; Khos-
roshahi et al., 2015; Uludağ et al., 2019). It builds on top of related API man-
agement pattern languages from Lübke et al. (2019), Zimmermann et al (2017),
and Zimmermann et al (2020) (Lübke et al., 2019; Zimmermann et al., 2020; Zim-
mermann et al., 2017). Each pattern is presented using the following sections:
Stakeholders, Concerns, Example, Context, Forces, Influence Factors, Solution,
Consequences, Implementation Details, Related Standards, Related Patterns, and
Known Uses. Additionally, the section Variants is used if necessary. Each section
is explained below.

Sections Stakeholders and Concerns reference linked stakeholders and concerns.
Each pattern provides a solution approach to one or more concerns and each
concern is raised by a set of stakeholders. The two sections give an overview of
stakeholders and concerns that are associated with the pattern. In the literature,
the section Concerns is also referred to as ’Problems’ (Gamma et al., 1994; Lübke
et al., 2019; Uludağ et al., 2019; Zimmermann et al., 2020).

Section Example is used to illustrate the solution approach based on a real-world
example (Lübke et al., 2019; Uludağ et al., 2019; Zimmermann et al., 2020). The
examples are either derived from the studied cases or publicly available devel-
oper portals as listed in section Data Collection.

Section Context briefly describes the setting in which the solution approach is uti-
lized. Lübke et al. (2019) use ’Context’ in their work to describe the point in time
in which the pattern should be applied (Lübke et al., 2019). Uludağ et al. (2018)
and Zimmermann et al. (2020) use ’Context’ to present the knowledge founda-
tions on which the concern and pattern meet (Uludağ et al., 2019; Zimmermann
et al., 2020).

Section Forces is used to specify a bulleted list of impediments and challenges of
the status-quo that are resolved and balanced by the pattern (Lübke et al., 2019;

5.2 Pattern Language 37

Uludağ et al., 2019; Zimmermann et al., 2020). It specifies the forces that play into
the concerns and provides an understanding about why the solution approach is
a solution to the concerns (Buschmann et al., 2007a, p. 37).

Section Influence Factors documents the most important context variables and
their values as identified in the known cases. The influence factors put the pat-
tern into perspective and describe the most important context variables and their
distribution (Khosroshahi et al., 2015). They support the stakeholders in the as-
sessment of the context (Buschmann et al., 2007a, p. 92).

Section Solution "describes the elements that make up the design, their rela-
tionships, responsibilities, and collaborations" (Gamma et al., 1994, p. 3). It
does not explain specific implementation details but offers an abstract description
(Gamma et al., 1994, p. 3). This ensures the reusability of the pattern (Gamma et
al., 1994, p. 3).

Section Variants is optional and documents different variants of the same so-
lution approach (Lübke et al., 2019; Uludağ et al., 2019). Variants are used to
emphasize the differences in the influence factors, stakeholders, or alternating
elements. Variants provide a way to add additional insights to a pattern by high-
lighting alternatives and variations. Alternatively to variants, the pattern can be
split up into related patterns. This decision is made for each pattern individually
based on similarities and differences between the variants.

Section Consequences lists both benefits and liabilities of a pattern (Gamma et al.,
1994, p. 3). Consequences are essential to the evaluation of a solution approach
(Gamma et al., 1994, p. 3).

Section Implementation Details provides additional guidance for the implemen-
tation of a solution approach. Lübke et al. (2019) and Zimmermann et al (2020)
utilize similar sections ’How it works’ and ’Implementation hints’ to guide the
observer through technical implementation details (Lübke et al., 2019; Zimmer-
mann et al., 2020). In this study, the section is used to document recurring imple-
mentation approaches identified in the studied cases and public visible instances.
Implementation details are used to describe common design decisions for the de-
veloper portal, document sequencing implementation steps, and mention com-
mon pitfalls.

Section Related Standards is used to refer to related and similar best practices,
standards, principles, pattern, and conventions in the literature (Lübke et al.,
2019; Uludağ et al., 2019; Zimmermann et al., 2020). They support observers
by pointing them to additional material. The ITIL (2019) offers a set of guiding
principles for service value systems (Limited & Office, 2019, p. 39). Other best
practices are derived from the related literature or common state-of-the-art soft-
ware engineering practices.

Section Related Patterns is used to describe relationships between patterns within
the pattern catalog. Patterns can work in compliment, act as alternatives, or de-
pend on each other (Buckl et al., 2013).

Section Known Uses lists the studied cases that utilize the solution approach.

It also references the publicly visible instances of the solution approach that are
defined in section Data Collection. Known uses ensure the reusability of a pattern
(Buckl et al., 2013).

Related pattern languages use additional sections such as ’Non-solution’, ’Res-
olution of forces’, ’Further discussion’, and ’General form’ (Lübke et al., 2019;
Uludağ et al., 2019; Zimmermann et al., 2020). They are left out to reduce the
complexity, because they were found to be too abstract, or not applicable to the
management patterns of this thesis.

In the following section, the identified stakeholders and their relationships are
mapped.

5.3 Roles and Stakeholders

This section presents a map of the relationships between stakeholders and soft-
ware artifacts within API management. The map is derived from the interview
data and aims to provide an overview of identified roles, their collaboration, and
their use of software artifacts. Additionally, the map is used to introduce naming
conventions for stakeholders used in the pattern catalog. As argued by Buckl et
al. (2013), synonyms and homonyms have to be identified and resolved (Buckl
et al., 2013). For this, discovered stakeholders and roles are discussed and simi-
larities and differences with the literature are outlined.

Figure 5.2 maps relationships between stakeholders and software artifacts. Most
entities are either optional or can be merged, replaced, or rearranged. The map
aims to abstract the relationships to reflect the most common constellations. The
following roles, teams, and stakeholders have been identified.

• End user

• Application provider

• Customer support

• Portal provider

• Gateway provider

• Backend provider

• API governance

• Legal

• Sales and marketing

• CIO

Software applications implement web APIs to communicate with remote services
(Tan et al., 2016). The application provider integrates the web API calls into the
application’s code base. In the application runtime, requests are sent to web APIs
to provide the end user composite services (Tan et al., 2016). The end user repre-

5.3 Roles and Stakeholders 39

develops

formulates requests
utilizes

integrates

Application Provider

consumes

ApplicationusesEnd User

Web API

shares users & access

documents

Developer Portalmanages

proxies

API Gateway

Backend

providesGateway Provider
provides

collaborates with

collaborates with

collaborates with

forwards issues

Portal ProviderprovidesBackend Provider

Legal Sales/Marketing

provides channel to

provides channel to

Communication Channel

forwards issues

Customer Support

supports

collaborates with

supports

supports
API Governance

Software Artifact

Stakeholder

Legend

appointsCIO

Figure 5.2: Relationships between Different Roles, Teams, Stakeholders, and API
Platforms of API Management

sents the customer that is using the application. Web APIs are commonly man-
aged by API platforms (De, 2017, p. 11). Figure 5.2 connects the application
provider to the developer portal and its communication channels. This illustrates
the utilization of developer and social boundary resources as described in section
Boundary Resources. The term API consumer is used to describe both the ap-
plication and application provider. Indirectly, it also refers to the end user. The
web API can be provided by the same team, the same organization, a subsidiary
firm, a partner organization, or a third-party provider. The providing entity is
called API provider for the remainder of this thesis.

The API provider is further divided into several API management platforms,
teams, and roles. Figure 5.2 defines two general paths of collaboration between
API consumer and API provider. In both paths, the collaboration happens on an
API management platform, the API gateway or the developer portal. The first
path starts from the application. The application consumes the web API. Each
web API call from the application is channeled through the API gateway. The API
gateway is provided by an infrastructure team which is called gateway provider
for the remainder of this thesis. Section API Gateway characterizes the API gate-
way as a reverse proxy. The API gateway platform fetches requested capabilities
from offered backend services and then returns the fetched data to the requester.

In the remainder of this study, the term backend is used as defined in section
Cloud Computing to reference any software component, like microservices or
web services, that provide an interface and access to capabilities through the web.
The requested capabilities are provided by backend services. The entity that pro-
vides a backend service is named backend provider. The backend provider acts
as the supply side of the API platform. The openness of the supply and demand
sides of a platform characterize it as either internal, many-to-one, or multi-sided.
If the backend provider is based in a partnering or third-party organization, it is
itself an API provider that acts as an orchestration layer for other backend ser-
vices. The developer portal becomes an API marketplace if both the supply and
demand side of the platform are open for partnering firms or the public.

The second path of collaboration is drawn between the application provider and
the developer portal. The developer portal is defined both as a web client of the
API gateway and a portal that offers documentation, specifications, and further
artifacts to guide the application provider. It is maintained by the portal provider.
The portal provider manages the API brokering. The developer portal has to mar-
ket, sell, and document the APIs, and serve as a tool for the API consumer to find
them and manage their integrations. The portal offers communication channels.
This can be as simple as an email address provided in the imprint, contact forms,
or more complex communication tools like forums. The contact inquires are for-
warded through the developer portal to either a dedicated customer support or to
the portal provider. Additionally, the customer support team or portal provider
will forward the issues to the backend provider if necessary. The portal provider
collaborates with the customer support, legal, and sales and marketing teams to
manage customer requests, contracts, marketing information, pricing, and more.
Figure 5.2 illustrates this central role of the portal provider.

Overall, three different API provider entities have been identified. The portal
provider, gateway provider, and backend provider. All three provider entities
might be the same team, one organization, subsidiary firms, partner organiza-
tions, or different third-party providers. The constellation of the different teams
and additional roles varies across organizations. It can be noted that the utiliza-
tion of API management platforms is not always the case. Web APIs can also
be provided directly by backend services. Commonly, the API gateway provider
and portal provider form the inner core of API management while the backend
providers provide interfaces to their respective services. In the remainder of this
thesis, the term API management is used to capture the portal provider, gateway
provider, and all additional management roles that are included in the provision
management. In bigger organizations, the gateway platform might be shared
across several API management initiatives. In this case, the portal provider acts
as the central API management entity of the platform in focus.

The API governance acts as a central authority of quality assurance within the
API provider organization. If utilized, it is commonly instigated by the CIO or
upper management. It supports the API management and the backend providers.
It issues policies that have to be implemented into the API gateway by the gate-
way provider.

5.3 Roles and Stakeholders 41

Overall, the API provision management includes several stakeholders and roles
possibly distributed across several organizations. Figure 5.2 aims to map the most
common relationships and flow of collaboration. Instantaneous collaborations
have been left out. For instance, the API management might reach out to the
application provider for pilot projects or for closer collaboration.

In the following, introduced naming conventions are linked to the literature. Zhu
et al. (2014) define common roles that interact with the API management software
from IBM (Zhu et al., 2014). They describe API administrators, developers, prod-
uct managers, and IT operations. Medjaoui (2018) differentiates between techni-
cal and business roles in an API team (Medjaoui et al., 2018). In this study, those
roles are shared or divided between the three providing entities. The naming
conventions of API provider and consumer are common practice and included
in the web services definition from the W3C8 (Basole, 2016; Bonardi et al., 2016;
Bondel et al., 2020; De, 2017; Krintz & Wolski, 2013; Mathijssen et al., 2020; Yu
& Woodard, 2009; Zhu et al., 2014; Zimmermann et al., 2020). The naming intro-
duced for end user, application developer, and application also follow common
practices (Brown et al., 1998; De, 2017; Zhu et al., 2014). De (2017) also utilizes
the term backend service to describe the origin of remote capabilities (De, 2017,
p. 17, 22).

De (2017) defines the API team as the provider of the API (De, 2017, p. 13). In this
study, the API provider entity is further split to better reflect the findings from
the interview data. De (2017) also defines the API product owner as the person or
organization that manages the API as a product (De, 2017, p. 175). In figure 5.2,
this responsibility is shared and divided between the backend provider and the
portal provider. In the studied cases, different constellations have been identified.
In some cases, the portal provider tailored API products. In other cases, one team
is acting as both the backend provider and portal provider and the responsibility
is shared. In all cases, a collaboration between the two entities is required to
provide API products to the API consumers.

As described in chapter Objectives, this study focuses on an API provider per-
spective. Each pattern captures applicants and potential collaborators. Appli-
cants raise concerns and implement the solution approaches. Potential collab-
orators can be engaged in the solution approach. All stakeholders that act as
applicants for patterns are listed below.

• S1: API management

• S2: Portal provider

• S3: Backend provider

• S4: API governance

As illustrated in figure 5.3, the term API management captures both the portal
provider and gateway provider responsibilities. It is used to emphasize that both
the portal and gateway provider share concerns and have to apply the solution

8https://www.w3.org/TR/ws-arch/#whatis

https://www.w3.org/TR/ws-arch/#whatis

integrates utilizes

Application ProviderApplicationEnd User

Web API

documents

shares users & access

Developer Portalmanages

API GatewayprovidesGateway Provider

provides

Portal Provider

Software Artifact

Stakeholder

Legend

API Managemnet

API Consumer

uses develops

consumes

Figure 5.3: Core API Management Responsibilities

approach in close collaboration. The portal provider manages the API brokering
and provides supporting material to the API consumer. Thus, multiple API man-
agement concerns are raised by the portal provider. Other concerns are raised
by the backend provider, mostly in addition to the API management or portal
provider. The API governance acts as a central authority. It is not providing
IT artifacts but support and guidance. To conclude, documented patterns target
stakeholders within the API provider entity. The API consumer includes the ap-
plication, the application provider, and the end user of the applications. The API
consumer is not applying the solution patterns documented in this study. Solu-
tion approaches will however affect them. Both the end user and the application
provider are treated as the customers of the web API. It is the responsibility of
the API provider roles, teams, and organizations to find adequate solutions and
implement them into their systems. In some patterns, the API consumer is listed
as a potential collaborator.

5.4 Influence Factors

Influence factors are introduced as part of the pattern language. Khosroshahi
et al. (2015) utilize them to enhance their pattern catalog and state: "Influence

5.4 Influence Factors 43

factors determine which stakeholders, concerns and patterns have to be chosen"
(Khosroshahi et al., 2015, p. 3). Thus, influence factors describe the setting of
the analyzed cases in which a pattern is applied and support organizations with
the pattern selection process (Khosroshahi et al., 2015). In this study, the term
’context’ is used to describe all detected context variables and their values. The
term influence factors is used to capture those variables and their values that
actively influence one specific solution approach and make a pattern viable to
solve the linked concerns. Each pattern can be dependent on a different set of
influence factors.

In the following, the selection process of context variables is documented and
the overall distribution of values presented. Khosroshahi et al. (2015) conducted
surveys to collect influence factors (Khosroshahi et al., 2015). This study uses
semi-structured interviews to collect data. First, the relevant literature was ana-
lyzed to derive potential influence factors that have an impact on the API man-
agement. Second, we developed additional context variables and values based
on the encodings of the interviews. Overall, 20 context variables are used. Table
5.3 presents the list of context variables and their sampling across the 14 studied
cases. The table follows the design of Löhe and Legner (2010) (Löhe & Legner,
2010a, 2010b). They document 24 context attributes that were derived from the
related literature (Löhe & Legner, 2010a, 2010b). Since SOA and API management
are related streams of research, this study utilizes attributes defined by Löhe and
Legner (2010). Six context attributes and associated values are taken over from
Löhe and Legner (2010) and five more have been adapted or merged to better fit
the API management perspective. Next, all context attributes are presented in
detail.

The attribute Architectural Openness fulfills a similar purpose to the attribute SOA
Scope from Löhe and Legner (2010) but is derived through the encodings. The
attribute values are based on the definitions from Hussain et a. (2020) (Hussain
et al., 2020). Private API platforms are only used internally (Hussain et al., 2020).
The attribute value Group is added based on the encodings and emphasizes the
usage of an API platform between subsidiaries and potentially a parent company.
This comes with additional complexity in communication, billing, and contrac-
tual work. The value Partner describes collaboration between a known set of
close partner firms e.g. based on strategic projects (Hussain et al., 2020). Public
API platforms are opened to the public (Hussain et al., 2020). They can still be
restricted through onboarding processes but generally everybody can register or
apply for it as the developer portal is visible over the web. Cases are counted
multiple times if a platform differentiates its architectural openness for different
products. Notably, most studied cases offer APIs to partner organizations or the
public at the point in time the interviews were conducted.

Maturity describes the platform’s current stage within its life-cycle. The literature
defines several possible maturity models for APIs (European Commission. JRC.,
2019). This study uses a simple model based on the study data where 71% of
the researched platforms are in production while 14% are either in development
or in a pilot phase. Number of API Consumers captures the approximate number

Attribute Attribute Values

Architectural Openness Private
[#2, 14%]*

Group
[#2, 14%]*

Partner
[#9, 64%]*

Public
[#6, 43%]*

Maturity Development
[#2, 14%]

Pilot
[#2, 14%]

Production
[#10, 71%]

Number of API Consumers <20
[#6, 43%]

>20
[#3, 21%]

>10,000
[#3, 21%]

na
[#2, 14%]

Partner Type B2B
[#12, 86%]*

Business to Consumer (B2C)
[#3, 21%]*

Business to Government (B2G)
[#1, 7%]*

none
[#2, 14%]*

Type of Platform Marketplace
[#2, 14%]

Developer Portal
[#9, 64%]

Backend APIs
[#2, 14%]

na
[#1, 7%]

Network Topology 1:1
[#0, 0%]

1:n
[#6, 43%]

m:n
[#8, 57%]

Service Granularity Business Process
[#2, 14%]*

Activity & Task
[#10, 71%]*

Utility & Entity
[#3, 21%]*

na
[#2, 14%]*

Offered API Capabilities Data
[#11, 79%]*

Function
[#14, 100%]*

API Consumer Heterogeneity Homogenous
[#4, 29%]

Heterogeneous
[#10, 71%]

Monetization Free
[#3, 21%]*

In Product
[#2, 14%]*

Contractual
[#8, 57%]*

Per API call
[#6, 43%]*

Initial Driver / Trigger Top down
[#7, 50%]*

Bottom up
[#7, 50%]*

na
[#3, 21%]*

Number of API calls Many
[#9, 64%]

Few
[#6, 43%]

Value Chain Integration Vertical
[#7, 50%]*

Horizontal
[#6, 43%]*

Internal
[#2, 14%]*

Number of API Products <20
[#7, 50%]

>20
[#2, 14%]

na
[#5, 36%]

Onboarding Process Manual onboarding
[#9, 64%]*

Self-service
[#6, 43%]*

na
[#3, 21%]*

Network Governance Focal
[#14, 100%]

Polycentric
[#0, 0%]

Networking Target Efficiency
[#5, 36%]*

Innovation
[#3, 21%]*

Channel Extension
[#6, 43%]*

Venture
[#5, 36%]*

Process Output Virtual
[#12, 86%]

Physical
[#2, 14%]

Initial Trigger Motivation Strategic Pressure
[#10, 71%]*

Process Pressure
[#0, 0%]*

IS Pressure
[#7, 50%]*

Type of Gateway Commercial
[#8, 57%]

Open source
[#2, 14%]

none
[#2, 14%]

na
[#2, 14%]

Table 5.3: Context Attributes and Values with [# of occurrence in cases, percent-
age of cases] n=14, * denotes multiple counting of cases

5.4 Influence Factors 45

of organizations that integrate with the platform’s APIs. It is derived from the
attribute Number of Partners used by Löhe and Legner (2010) (Löhe & Legner,
2010a, 2010b). The value na captures cases where no data was available. Both
attributes Maturity and Number of API Consumers are derived from the interview
encodings.

The attribute Partner Type and its values are taken over from Löhe and Legner
(2010) (Löhe & Legner, 2010a, 2010b). It describes the type of organizations that
operate on the demand side of the platform. As visible in table 5.3, one case can
be multiple counted. Most (86%) of the studied platforms operate in a B2B en-
vironment. Type of Platform is derived from the encodings and characterizes the
platform in question. The platform in focus is most commonly (64%) a developer
portal. In two cases (14%), no API management platform is utilized and the back-
end services that provide the API products and services are consumed directly.
The difference between a marketplace and developer portal is defined in section
Roles and Stakeholders and based on the architectural openness of the supply
side. Both API marketplaces and developer portals utilize API gateways. Thus,
12 out of 14 cases operate an API gateway.

The attribute Network Topology is taken over from Löhe and Legner (2010) (Löhe
& Legner, 2010a, 2010b). It is important to emphasize the difference between Net-
work Topology and Type of Platform. A platform of type Marketplace leads directly
to a m:n topology. Nevertheless, developer portal based platforms can also be
granted a m:n network topology if the backend services are provided by differ-
ent business units or subsidiaries. The reasoning behind this design decision is
to characterize the level of complexity within the platform’s API provision man-
agement. An international cooperation with more than 100,000 employees might
generate a high level of complexity even without opening the supply side to ex-
ternal parties. To conclude, m:n denotes the highest level of complexity within
the API brokering that can be both achieved by developer portal and marketplace
based platforms. As visible in table 5.3, the interview cases are spread relatively
evenly between 1:n (43%) and n:m (57%) topologies.

The attribute Service Granularity is used by Löhe and Legner (2010) to give in-
sights about the kind of services that are offered within the SOA-based business
network (Löhe & Legner, 2010a, 2010b). Similarly, this study uses the attribute to
give insights about offered API capabilities. As defined in section Web Service,
API platforms can offer capabilities of different granularities. 14% of studied
platforms offer at least one business process. 21% serve, among other things, util-
ities and entities. 71% of all platforms provide activities or tasks. This illustrates
the general idea of the API Economy where applications utilize a composition of
different APIs to create new value through mashups.

Löhe and Legner (2010) utilize Integration Approach to characterize the layer of
integration (Löhe & Legner, 2010a, 2010b). They differentiate between business
process, presentation, and data and function layer (Löhe & Legner, 2010a, 2010b).
This attribute is replaced by Offered API Capabilities to better specify the integra-
tion on an API-based level. The attribute Offered API Capabilities is based on the
interview encodings and categorizes the platforms capabilities. All studied plat-

forms provide functionality and in most cases (71%), both functionality and data,
are provided. Thus, no studied API platform offers read-only data consump-
tion exclusively. In three cases, functionality but no data is provided. For those
platforms, the API consumer is required to bring its own data to utilize the ser-
vice functions. API Consumer Heterogeneity is derived from the attribute Partner
Heterogeneity by Löhe and Legner (2010). It illustrates the composition of API
consumers with regards to their industry. The majority (71%) of cases offers a
heterogeneous set of consumers. Thus, the consumers are associated to different
industries (Löhe & Legner, 2010a).

Monetization describes how the API calls are charged. One API platform may
offer different monetization strategies for different offered products. 21% of the
platforms provided API capabilities for free, for instance, to gain more market
penetration. The attribute value In Product (14%) defines API capabilities that
are included within an overall product pricing. In those two cases, the API con-
sumer purchases a software application license which also includes access to the
API platform. 57% of the cases include contractual agreements. 43% of the inter-
viewed API providers bill some capabilities per API call.

Initial Driver / Trigger describes the initial forces at work that pushed for the API
platform. Bottom-up initiatives can be incentivised by management and top-
down programs can be supported by bottom-up forces. Therefore, the attribute
is multiple counted. In three out of the 14 cases, the data is not available. In the
remaining 11 cases, seven were triggered in a top-down and seven in a bottom-up
manner.

Number of API calls aims to categorize the traffic of the API platform. Since spe-
cific data is not available for most interviewed cases, a rough characterization of
many and few is used to give an basic idea of the traffic. Many denotes that API
call based billing might be possible while Few stresses that other ways of moneti-
zation might be more suited since the APIs are not called regularly. Furthermore,
API platforms that are in development or pilot phases might also have low traffic.
In the studied cases, 64% of the API platforms are associated to many API calls
while 43% of the platforms are associated with a low volume of API requests. The
attributes Monetization, Initial Driver / Trigger, and Number of API calls are all de-
rived from the encodings and define important influences for the API provision
management.

The attribute Value Chain Integration is obtained from Löhe and Legner (2010). It
categorizes the API consumer organizations and the platform’s position within
the value chain (Löhe & Legner, 2010a, 2010b). The cases are spread relatively
evenly between vertical integration (50%) and horizontal integration (43%). The
attribute value Internal (14%) is added to illustrate the value chain integration of
internal platforms. The attribute Number of API Products is derived from the en-
codings and characterizes the amount of API products offered through the stud-
ied platform. 50% of all platforms offer less than 20 distinct API products. Only
two platforms (14%) offer more than that. For 36%, this study lacks data for esti-
mation.

5.4 Influence Factors 47

The category Onboarding Process is developed based on the encodings. It illus-
trates how API consumer sign up and register applications. Manual onboarding
is utilized in 64% of all cases. 43% of all cases support some level of self-service
within their developer portal or marketplace.

The attribute Network Governance is inherited from Löhe and Legner (2010). Löhe
and Legner (2010) identify 21% polycentric-based network governance. In this
study, platforms are provided by one API provider. Thus, all platforms are based
on focal governance. Löhe and Legner (2010) also document Network Target and
Network Purpose (Löhe & Legner, 2010a, 2010b). This study characterizes the tar-
get of the business network via Ansoff’s two by two matrix as utilized by Kambil
(2008) (Kambil, 2008). The study cases are distributed across the targets of effi-
ciency, innovation, channel extension, and venture.

The attribute Process Output from Löhe and Legner (2010) renders the final re-
sult of the web API integration. The final result can either be a digital service
or product, thus, virtual or tied to a physical service or product (Löhe & Legner,
2010a). In 86% of the studied cases, a virtual end result is achieved while two API
platforms (14%) enable a physical outcome.

Löhe and Legner (2010) document strategic, process-related, and IS-related pres-
sure to describe different levels of influences (Löhe & Legner, 2010a, 2010b). This
study combines those three attributes into Initial Trigger Motivation and uses them
as attribute values to categorize what type of pressure is mentioned in the inter-
views. Thus, Initial Trigger Motivation describes the motivation behind the API
platform creation. Studied cases are motivated by Strategic Pressure (71%) and IS
Pressure (50%) while no case is based on process-related pressure. Strategic pres-
sure includes the factors Customer Access, Improvement, and Know-how (Löhe &
Legner, 2010a, 2010b). IS-related pressure includes, among others, the attribute
values Missing Interoperability, Heterogeneity, Redundancy, Legacy & Monolithic, and
Costs (Löhe & Legner, 2010a, 2010b). Process-related pressure lies between the
strategic and IS-related forces on a process level and includes factors such as Re-
dundancies (Löhe & Legner, 2010a, 2010b).

Type of Gateway is derived from the encodings and characterizes the underlying
API gateway. 57% of studied platforms are based on commercial API gateway
platforms. 14% utilize open source gateways. Two platforms (14%) do not utilize
an API gateway. This number matches the amount of platforms of type Backend
APIs.

Following attributes from Löhe and Legner (2010) are left out and could not be
instantiated based on the interview data: Network Stability, Cooperation Process, Co-
operation Span, SOA affected Application, Coupling Approach, SOA Implem. Strategy,
Info. Exchange Style, Coupling Intensity, and Standardiz. Scope. In this study, Cou-
pling Intensity can be derived from Onboarding Process and Monetization. Those at-
tributes illustrate how intense the coupling between API provider and consumer
are. The attribute Communic. Type is left out since it does not fit the API provision
context. APIs are consumed by applications while API platforms are utilized by
both applications and developers.

5.5 Concerns

Concerns describe the goals, responsibilities, or risks of the stakeholders (Uludağ
et al., 2019). As described in section Pattern Language, each concern can be linked
to several stakeholders and can be answered by different patterns. The patterns
can work complimentary or as alternatives to answer the concerns. Overall, 32
concerns have been discovered by analyzing the interview data. In this section,
an overview of identified concerns is presented. The concerns are categorized
in seven categories: API as a Product, API management collaboration, Support
management, Incident management, Quality management, Internal API platform
initiatives, and Venture. The categorizes capture the main focus of the concerns.

API as a Product is a common term used to promote the treatment of APIs as dig-
ital products9. Following concerns are related to API product design and man-
agement:

• Q1: Who will be using the APIs?

• Q2: Which APIs should be offered?

• Q3: How to tailor backend services to APIs that fit the API consumer’s
needs?

• Q4: How to aggregate backend services?

• Q5: How to onboard a new API product onto the platform?

• Q6: How to fit the APIs to consumers’ requirements?

• Q7: How to ensure market-fit?

• Q8: How to validate API offerings?

• Q9: How to trigger feedback from API consumers?

• Q10: How to offer a high-quality user experience for both business and
developer roles?

• Q11: How to engage business roles of the API consumer?

• Q12: How to market API offerings to non-technical roles?

• Q13: How to market API offerings to application developers?

• Q14: How to notify API consumers about new API products?

• Q15: How to onboard new API products onto the platform?

API provider collaboration includes all concerns that focus on the collaboration
between different API provider roles, teams, and stakeholders. The collaboration
can be linked to other categories such as support, incident, or quality manage-
ment but the focus is not on the API consumer. The following concerns are linked
to this category:

• Q16: How to effectively and efficiently collaborate with other API provision

9https://developers.redhat.com/blog/2019/12/02/apis-as-a-product-get-the-value-out-of-your-apis/

https://developers.redhat.com/blog/2019/12/02/apis-as-a-product-get-the-value-out-of-your-apis/

5.5 Concerns 49

teams?

• Q17: How to effectively and efficiently collaborate with first-level support?

• Q18: How to manage APIs within a group of subsidiary or partnering firms?

• Q19: How to centralize but allow distributed control of API management?

Support management captures all API management activities that aim to sup-
port the API consumer. This includes goals, responsibilities, and risks of service
request management and the management of social boundary resources. Follow-
ing concerns are categorized as support management concerns:

• Q20: How to communicate with API consumers?

• Q21: How to document API products?

• Q22: How to support developers with API integration?

• Q23: How to support potential API consumers without technical capabili-
ties?

• Q24: How to manage non-complex, routine API consumer requests?

• Q25: How to onboard API consumers efficiently?

• Q26: How to support a growing number of API consumers?

• Q27: How to provide efficient support for API consumers?

Incident management aims to reduce the impact of defects and resolve issues as
quickly as possible (Limited & Office, 2019, p. 121). It is closely related to support
management. The following concern is linked to incident management:

• Q28: How to resolve bug reports effectively and transparently?

Quality management focuses on the reduction of incidents and includes activi-
ties such as analysis and motioning. One concern is linked to this category:

• Q29: How to ensure API service quality?

Internal API platform initiatives differ from their public counterparts in their
trigger motivation, strategic goals, and other context attributes. The following
concerns are raised specifically within internal API platform initiatives:

• Q30: How to onboard APIs to a private API platform?

• Q31: What is a good first step of a private API platform initiative?

Venture opportunities are created by answering concerns outside the boundaries
of the API management. The following concern is answered in such a way that it
creates a venture opportunity:

• Q32: How to target potential API consumers without technical capabilities?

In the following section, an overview of the pattern catalog is presented. The
catalog links identified concerns to stakeholders and associated solution patterns.

5.6 Taxonomy

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32

S1
API management

P4
Pilot project

P13
API product documentation

P14
Cookbooks

P16
Integration partner mgmt.

P17
Role-based marketing

P20
First-level support

P5
Frontend venture

P21
Service desk software

P2
Company-wide ticketing sys.

P6
SLAs with backend providers

P7
SLAs with API consumers

P22
Self-service

P8
Data clearance

P9
API orchestration layer

P1
Internal API registry

P3
API test strategy

P15
Software libraries

P23
Multi-tenant mgmt.

P10
Tailoring APIs to products

P11
API product validation

P18
Newsletter

P12
Idea Backlog

P19
Customer success stories

Earliest detected maturity level within the
studied cases

Development Pilot Production P

P

P

P

P

P

Engage
Deliver and support

Obtain/Build
Design and transition

Plan
Improve

Core value chain activities

S2
Portal Provider

S3
Backend Provider

S4
API governance

Figure 5.4: Pattern Catalog Taxonomy

This section provides an overview of the pattern catalog. First, figure 5.4 is used
to present identified solution patterns. Next, the pattern sequence and categories
are explained in detail.

The pattern catalog consists of stakeholders, concerns, influence factors, pattern
candidates, and patterns. Figure 5.4 offers a taxonomy of the pattern catalog by
linking stakeholders to their concerns and concerns to their appropriate solution
patterns. It utilizes the identifiers introduced in sections Roles and Stakehold-
ers and Concerns to reference stakeholders and concerns respectively. A bigger
version of the figure is attached to the appendix of this study. In total, four stake-
holders are identified applicants for solution approaches. They are linked to 32
concerns. Each concern is linked to one or more patterns. The pattern catalog
consist of 23 solution patterns. Since the pattern language does not map pattern
candidates to concerns and stakeholders, they are not part of the taxonomy.

In figure 5.4, the patterns are sorted from left to right by the context attribute
’maturity level’. The earliest detected maturity level of the API platform within
the associated cases is used to sort the patterns across the x-axis. Patterns that
are derived from cases with API platforms in development are listed on the left,
followed by patterns linked to pilot phases, and patterns linked to API platforms
in production.

Concerns are colored based on the concern categories (from left to right): API as
a Product, API management collaboration, Support management, Incident man-
agement, Quality management, Internal API platform initiatives, and Venture.

Patterns are categorized following the service value chain activities from ITIL
(Limited & Office, 2019, p. 58). The service value chain activities are used to
map each solution approach to one main value chain service activity. Figure 5.5
provides an overview of the activities. In the following, the service value chain
categories are described.

As visible in figure 5.5, the service value chain consists of six activities.

• Plan: Planning activities establish a shared understanding across the orga-
nization (Limited & Office, 2019, p. 61).

5.6 Taxonomy 51

Figure 5.5: Pattern Categories Based on the Service Value Chain Activities from
ITIL (Limited & Office, 2019, p. 58)

• Improve: Improvement focuses activities ensure continual improvement of
services, products, and processes (Limited & Office, 2019, p. 62).

• Engage: Engagement with all stakeholder is used to maintain good rela-
tionships and identify needs (Limited & Office, 2019, p. 63).

• Design and Transition: Design and transition activities utilize identified
room for improvement to create and adapt products and services (Limited
& Office, 2019, p. 64).

• Obtain/Build: Obtain and build activities develop and maintain products
and services based on agreed specifications (Limited & Office, 2019, p. 64).

• Deliver and Support: Delivery and support activities ensure delivery of
products and services and agreed level of support for the stakeholders (Lim-
ited & Office, 2019, p. 65).

The engagement of API consumers is associated to be the main value chain activ-
ity of eight solution patterns. Delivery and support activities are linked to three
patterns. Six patterns focus on obtain and build activities. Two patterns each
center around design and transition, planning, and improvement activities.

Figure 5.4 can be used to follow concerns listed in section Concerns to associated
patterns. In the following, all patterns and pattern candidates are listed.

5.7 API Management Patterns

This chapter presents all patterns and pattern candidates. Each pattern docu-
ments the following fields. The associated stakeholders and concerns are listed.
A short example is used to illustrate the solution approach. The context and influ-
encing forces are defined. Influence factors from associated cases are used to put
the pattern into context. The solution is explained and derived consequences are
listen. Implementation details further document implementation steps and no-
table details. The pattern is put into perspective by referencing related standards,
related patterns, and the associated known uses. Next, all detected pattern candi-
dates are listed. As defined in section Pattern Language, each pattern candidate
has a name, a solution approach, and lists its known uses.

The following patterns are sorted by the earliest detected maturity level within
the associated known uses. The order is also illustrated in figure 1 of the ap-
pendix. The pattern candidates do not follow a specific order but reference re-
lated patterns and pattern candidates in the solution description.

5.7 API Management Patterns 53

5.7.1 Pattern 1: Internal API registry

Stakeholders

The following applicants are derived from the study data:

• API management

• API governance

The following potential collaborators are derived from the study data:

• Backend provider

Concerns

• How to onboard APIs to a private API platform?

• What is a good first step of a private API platform initiative?

Example

The API management of C7 develops an internal API platform. The bottom-up
initiative aims to register as many internal API offerings as possible onto one
platform. The overall goal is to improve discoverability and reusability. The on-
boarding of APIs on the developer portal and API gateway is a time consuming
effort. The API has to be created on the developer portal and its documentation
moved. API consumers have to be notified about the new developer portal. The
integration with the API gateway might also change the Uniform Resource Lo-
cator (URL) of the endpoints. This breaking change has to be communicated to
all API consumers. The API management of C7 distinguishes different levels of
integration. The first level of integration describes an internal API registry. The
internal API registry lists all internal API offerings and platforms and links to
their independent websites. This takes a fraction of time compared to the full
integration and already improves the discoverability of APIs within the organi-
zation.

Context

Internal API platforms are used to improve API discoverability and concentrate
API management tasks. An API platform initiative has to onboard API providers
and backend providers onto its API platform.

Forces

Forces that have to be resolved and balanced:

• API onboarding efforts

• Centralization efforts

Influence Factors

Table 5.4 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 1: Internal API registry.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Type of Platform Marketplace Developer Portal Backend APIs na

Networking Target Efficiency Innovation Channel Extension Venture

Table 5.4: Influence Factors for Pattern 1

As visible in table 5.4, the solution approach has been associated with private API
platforms. In the identified cases, the platform is still under development. Pattern
1: Internal API registry is associated to developer portals only. The target of the
API initiatives is documented to be efficiency and innovation. It can be noted that
C9 and C10, which have been listed as known uses, do not offer an API registry
on their platforms but utilize an internal API registry within their organization.
The influence factors for C9 and C10 have been left out of table 5.4, which aims
to describe the context of the platform that offers the private API registry.

Solution

An API registry catalogs API offerings and enables discoverability (De, 2017, p.
25-26). The API registry is part of the developer portal and lists all offered APIs
(De, 2017, p. 25-26). An internal developer portal can utilize an API registry to
maintain a list of all internal API offerings. Those API offerings do not necessarily
need to host the documentation on the developer portal. The registry can link to
the external sources instead. Additionally, the API does not need to be integrated
with the API gateway of the API platform. The creation of an API registry offers
an easy way to provide value to API consumers and proofs the usefulness of the
API initiative. The API registry can be utilized to list internal API offerings as a
first onboarding step and iteratively onboard the documentation of the internal
APIs.

5.7 API Management Patterns 55

Variants

In two cases, the API registry is maintained by the API governance and not by
an API platform initiative. In this variant, the API governance maintains a list of
all internal API platforms and offerings to ease its own governance activities but
also to support API consumers in the detection of API offerings.

Consequences

The following benefits are derived from the study data:

• Focus on value for the API consumers

• Improved visibility and discoverability of internal APIs

• Improved visibility of the API initiative

The following liabilities are derived from the study data:

• Curation efforts required

Implementation Details

The API registry should be searchable to improve discoverability (De, 2017, p.
25-26). Each API should be associated with tags and meta data (De, 2017, p. 25-
26). These should be indexed and integrated with the search feature (De, 2017, p.
25-26).

The applicant should curate registry entries and review proposed changes by the
different API providers. This ensures the quality of the entries and enforces a
common structure for each entry in the catalog. A good starting point is to set
up an initial registry with known internal API offerings to promote the general
idea. Growing popularity and usage of the registry can be used as an incentive
for other API providers to create or requests entries.

Related Standards

• Collaborate and Promote Visibility (Limited & Office, 2019, p. 39)

• Focus on Value (Limited & Office, 2019, p. 39)

Related Patterns

Pattern 1: Internal API registry documents the first step of a three-level scale which
can be utilized to manage the onboarding of API and backend providers onto an
internal API platform. The three-level scale is documented in Pattern Candidate
55: Integration levels.

The solution approach explained in Pattern Candidate 42: Declarative API platform
can be used to ease the collaboration with API and backend providers to add,
maintain, and review registry entries.

Known Uses

• C7, C9, C10, C14

5.7 API Management Patterns 57

5.7.2 Pattern 2: Company-wide ticketing system

Stakeholders

The following applicants are derived from the study data:

• API management

The following potential collaborators are derived from the study data:

• Backend provider

• CIO

Concerns

• How to support a growing number of API consumers?

• How to provide efficient support for API consumers?

• How to resolve bug reports effectively and transparently?

• How to effectively and efficiently collaborate with other API provision teams?

Example

Mercedes-Benz utilizes a custom company-wide ticketing system to manage de-
fects across enterprise boundaries10. The latest version of the tool is called STARC11.
Mercedes-Benz cooperates with third-party service providers to enable suppliers
to integrate defect management and application life-cycle management tools with
STARC. Defects are raised and forwarded to the team that has ownership over the
defect component. This enables effective quality management throughout the de-
velopment processes.

Context

API management has to effectively and efficiently integrate backend providers to
its API platform. Backend providers commonly integrate with services on their
own. Defect management within a complex distributed system requires trans-
parent issue tracking and quality management processes.

10https://agosense.com/en/solutions/data-exchange/defect-management-automotive/
11https://agosense.com/en/ressources/blog/from-dante-to-starc-the-easy-way-with-agosensesymphony/

https://agosense.com/en/solutions/data-exchange/defect-management-automotive/
https://agosense.com/en/ressources/blog/from-dante-to-starc-the-easy-way-with-agosensesymphony/

Forces

Forces that have to be resolved and balanced:

• Efficient and effective management of defects

• Responsibility and prioritization management between the API provider
teams

• Scalability of quality management activities

Influence Factors

Table 5.5 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 2: Company-wide ticketing
system.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Type of Platform Marketplace Developer Portal Backend APIs na

Partner Type B2C B2B B2G none
Monetization Free In Product Contractual Per API Call

Table 5.5: Influence Factors for Pattern 2

Table 5.5 shows that the solution approach has been applied with architectural
openness of types private, partner, and public. The platform in focus is docu-
mented to be in development or production. We think Pattern 2: Company-wide
ticketing system can be applied to any level of architectural openness and any ma-
turity level. This is a notable difference to the influence factors detected for Pat-
tern 21: Service desk software where the platform is in production only and only
applied to API platforms that are open for partnering and public API consumers.
Both marketplaces and developer portals are used in the context of Pattern 2:
Company-wide ticketing system. The pattern is not associated with a product-based
monetization strategy.

Solution

A company-wide ticket system can be used to manage defects across business
unit and subsidiary firm boundaries. It enables defect and application life-cycle
management across a complex distributed system of backend services and is used
to handle the communication and quality management in case of a defect. In con-
trast to a customer-facing service-desk system, the defects are not created by the
public API consumers but initiated by the internally affected stakeholders. All re-
quests are handled in an unified manner. Each ticket tracks the history, progress,
and relevant people. If a ticket reaches the service provider, the provider team
prioritizes the ticket within the context of their current work.

5.7 API Management Patterns 59

Consequences

The following benefits are derived from the study data:

• Focus on value creation and relevance for the customer

• Reduction and management of complexity

• Support stakeholders and strategic partners efficiently

The following liabilities are derived from the study data:

• Ticketing system integration project required

• Training required to utilize the ticketing system

Implementation Details

Company-wide ticketing systems can be implemented based on a variety of dif-
ferent software solutions. Since the integration of an universal defect manage-
ment tool requires company-wide efforts, the API management should utilize
whatever software is already available. If no such software is used, it should co-
operate with the CIO and top management to push for a company-wide solution.

Common code hosting platforms such as GitHub12 or GitLab13 offer a variety
of features for collaboration across project boundaries. Issues can be created for
a specific code repository and assigned to the associated team. In case all dis-
tributed backend services have access to the same code hosting platform, it can
be used as a company-wide ticketing system. Alternatively, custom application
life-cycle management or defect management software can be utilized. For in-
stance, service desk software can be configured for internal use.

All stakeholders of the API management have to be onboarded onto the ticketing
system. This can include training courses and workshops. Central authorities
within the organization should push for the creation of associated defect escala-
tion processes. In case of a detected defect, the affected team creates a new issue
for the team that has ownership over the defect component. This way, all defects
are documented and communicated across team boundaries. The assigned team
can convert the defect issue into sprint tickets and prioritize the work against
their current workload. The ticket is resolved when the defect has been fixed.

12https://github.com/
13https://about.gitlab.com/

https://github.com/
https://about.gitlab.com/

Related Standards

• Collaborate and Promote Visibility (Limited & Office, 2019, p. 39)

• Focus on Value (Limited & Office, 2019, p. 39)

• Optimize and Automate (Limited & Office, 2019, p. 39)

• Service Request Management (Limited & Office, 2019, p. 156)

Related Patterns

Defect management in production involves the API consumer and includes ad-
ditional activities such as support request management. A service desk software
should be utilized to communicate with the API consumer and collaborate with
first-level support teams. The onboarding of a first-level support team is de-
scribed in Pattern 20: First-level support. The integration of a service desk software
is documented in Pattern 21: Service desk software.

As described in Pattern Candidate 41: Inner source-based platforms, inner sourcing
can further increase collaboration between internal stakeholders. It can be uti-
lized to collaborate on defect resolution.

SLAs document responsibilities of service providers. Incident management es-
calation processes can be defined and agreed upon. This is further examined in
Pattern 6: SLAs with backend providers.

Known Uses

• Mercedes-Benz

• C2, C7, C8

5.7 API Management Patterns 61

5.7.3 Pattern 3: API testing strategy

Stakeholders

The following applicants are derived from the study data:

• API governance

• API management

The following potential collaborators are derived from the study data:

• Backend provider

Concerns

• How to ensure API service quality?

Example

The API management of C3 and C4 provides API platforms for external partners
and public API consumers. The API platforms are tied to software products pro-
vided to the end user. The software ecosystem includes APIs for external use
and internal backend services that connect to the software products directly. A
holistic staging and testing strategy is utilized to ensure quality and compatibility
within the distributed system. Each backend service uses unit tests in isolation.
Changes are deployed to a test environment. The deployment to the production
stage includes test pipelines that ensure the compatibility between the remote
software components. Additionally, the API management maintains API tests
that test the API platforms and connected backend services end-to-end from an
API consumer perspective.

Context

API platforms are part of a distributed system which involves several different
backend services and provision teams. Testing and staging efforts have to be
agreed upon with all stakeholders and have to be managed across team bound-
aries.

Forces

Forces that have to be resolved and balanced:

• Automation efforts

• Complexity of distributed systems

• Testing efforts

• Service quality

Influence Factors

Table 5.6 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 3: API testing strategy.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Monetization Free In Product Contractual Per API Call

Table 5.6: Influence Factors for Pattern 3

As visible in table 5.6, the solution approach has been applied with architectural
openness of types: private, partner, and public. The platform in focus is docu-
mented to be in development or production. The number of API consumers, the
type of the platform, and the monetization strategy vary across the associated
cases. We think that Pattern 3: API testing strategy should be applied to all API
platforms.

Solution

An API testing strategy specifies the testing efforts that are taken to ensure the
service quality of the API platform and all connected software artifacts. It aligns
the testing efforts of the individual teams and requires collaboration between all
stakeholders including the API gateway provider, portal provider, and backend
provider teams. The effort should be centralized and managed by either the API
management directly or a company-wide API governance authority.

5.7 API Management Patterns 63

Consequences

The following benefits are derived from the study data:

• Increased confidence through test coverage

• Increased service quality

• Reduction of manual testing efforts through automation

The following liabilities are derived from the study data:

• Collaboration efforts required

• Constant test maintenance required

• Test data management required

Implementation Details

A central API governance authority should support the definition and manage-
ment of all testing efforts (De, 2017, p. 182). If no API governance team exists, the
API management should take upon the testing responsibilities. A close collabo-
ration with all backend providers and development teams is required.

Each backend provider has to ensure service quality in isolation. Thereby, each
development team should adhere to best practices used in software development
such as test driven development or extreme programming. This includes the im-
plementation of functional tests such as unit tests, integration tests, and regres-
sion tests (Limited & Office, 2019, p. 158).

A test environment can be utilized to test the compatibility of changes on a system
level. For this, a staging strategy has to be developed and agreed upon with all
provider teams. Similarly, test automation can be utilized to automate testing
efforts. Automated tests can be integrated into deployment pipelines that are
triggered by each push of changes.

The API management should also test its software artifacts in isolation. The test
domains of API management include: API interface specifications, API documen-
tation, and API security (De, 2017, p. 154). API interface specification tests ensure
the soundness of the API endpoints (De, 2017, p. 155). API documentation test-
ing efforts are manual quality checks that ensure the actuality and completeness
of the API documentation (De, 2017, p. 156). API security tests focus on the API
gateway configuration and the validity of identity management, authorization,
and authentication processes (De, 2017, p. 156). Additionally, API management
can implement API performance tests (De, 2017, p. 158). API performance tests
monitor quality metrics such as response times and latency (De, 2017, p. 162). For
instance, API performance tests can be integrated into a testing stage to ensure
that changes to the software ecosystem do not decrease the service performance.
The API management can utilize performance test tools to follow best practices
in the measuring of quality metrics (De, 2017, p. 164).

API management should further implement system tests. System tests test the
software system as a whole (Limited & Office, 2019, p. 158). For this, special-
purpose software can be utilized that mocks API consumer requests and vali-
dates the received responses (De, 2017, p. 153). Those end-to-end tests ensure the
soundness of the platform from an API consumer perspective. For this, the tests
should call the API endpoints in a way the actual API consumer would, too (De,
2017, p. 153) . System tests require the most effort but can improve the confidence
in the service quality (De, 2017, p. 153).

Related Standards

• Collaborate and Promote Visibility (Limited & Office, 2019, p. 39)

• Extreme Programming (Beck & Andres, 2004)

• Optimize and Automate (Limited & Office, 2019, p. 39)

• Test-Driven Development (Beck, 2002)

Related Patterns

SLAs with API providers can be utilized to specify quality standards for backend
services. This is documented in Pattern 6: SLAs with backend providers.

A solution approach for API security testing is described in Pattern Candidate 54:
Penetration tests.

The API provider can also assist the API consumer in testing the API integration
by providing mock responses as further illustrated in Pattern Candidate 53: API
test values.

Known Uses

• C2, C3, C4, C11, C13, C14

5.7 API Management Patterns 65

5.7.4 Pattern 4: Pilot project

Stakeholders

The following applicants are derived from the study data:

• Backend provider

• Portal provider

The following potential collaborators are derived from the study data:

• API consumer

Concerns

• Which APIs should be offered?

• How to tailor backend services to APIs that fit the API consumer’s needs?

• How to ensure market-fit?

• How to fit the APIs to consumers’ requirements?

• How to validate API offerings?

• How to trigger feedback from API consumers?

Example

The portal provision management captured in C2 manages pilot projects with
different groups of API consumers. The portal provider utilizes pilot projects
both to trial strategic partnerships and to validate API products. The initial idea
for pilot projects comes from partners, third-party organizations, different stake-
holders within the API management, or other teams. The development phase
and intensity of collaboration is based on a multitude of factors and varies be-
tween each project. Each project is owned by a product owner within the portal
provider team. The timeline for pilot projects commonly exceeds six months.

Context

To validate API offerings, the portal provider has to receive customer feedback.
An effective and efficient collaboration with external stakeholders such as public
API consumers can be hard to achieve [IV3, IV4, IV5].

Forces

Forces that have to be resolved and balanced:

• Collaboration with external stakeholders

• Uncertain needs and problems of API consumers

• Unknown user stories of API consumer

• Required validation of API consumer needs

• Required validation of user stories

• Integration of asynchronous customer feedback into development process

Influence Factors

Table 5.7 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 4: Pilot project.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Partner Type B2B B2C B2G none
Monetization Free In Product Contractual Per API Call

Table 5.7: Influence Factors for Pattern 4

As visible in table 5.7, the solution approach is applied with architectural open-
ness of types partner and public. It can be noted that internal pilot projects within
private or group-based environments have not been detected but should also be
considered. The platform in focus is documented to be in pilot phases and pro-
duction. This is a notable difference to the documented maturity level of the
alternative Pattern 11: API product validation where the API consumer only gains
access to the APIs after the release. Additionally, Pattern 4: Pilot project is not ap-
plied with more than 10,000 API consumers. This can be interpreted in a way that
the efforts of pilot projects exceed the advantages in case API management has to
support too many API consumers. All three types of platforms have been identi-
fied in conjunction with Pattern 4: Pilot project. This is another difference to Pattern
11: API product validation which was not discovered with backend APIs. Further-
more, pilot projects are utilized together with other businesses and government
organizations in B2B and B2G relationships. The monetization is detected to be
contractual. Other monetization strategies are not associated with Pattern 4: Pilot
project.

5.7 API Management Patterns 67

Solution

Pilot projects describe the closest form of collaboration that was detected with
third-party consumers. Pilot experiments are used to test new ideas together with
a set of known public or private stakeholders (Billé, 2010). They enable guaran-
teed and direct feedback before, during, and after each product iteration. Pilot
projects follow the ITIL (2019) principles: ’progress iteratively with feedback’ and
’collaborate and promote visibility’ (Limited & Office, 2019, p. 39).

A pilot project can be initiated by both the API provider and the consumer. After
following Pattern 10: Tailoring APIs to products, a pilot phase can be started to
validate the product ideas. To initiate a pilot project, the API provider can either
reach out to potential consumers directly or collaborate with functional teams
such as account management in sales and procurement. The development phase
can be supported by agile methods that emphasize incremental improvements,
ongoing collaboration, and adaptation to an evolving environment (Limited &
Office, 2019, p. 40). The pilot project runs until the API provider is satisfied with
the state of the API product. It ends with the release of the product.

Consequences

The following benefits are derived from the study data:

• Better understanding of API consumers and their needs

• Customer engagement and buy-ins

• Focus on value creation and relevance for the customer

• Generation of trust, understanding, and greater visibility

• Product quality through continuous improvement

• Learn which use cases are needed and which endpoints are required

The following liabilities are derived from the study data:

• Asynchronous close collaboration can be difficult to manage

• Efforts of collaboration between portal provider and backend provider

• Potentially delayed publishing of APIs

• Project collaboration with third-parties comes with risks such as scope creep-
ing (Kendrick, 2015, p. 52)

• Time consuming process

Implementation Details

A pilot project aims to better understand the requirements of the API consumer.
First, the design steps of Pattern 10: Tailoring APIs to products can be followed to
identify the potential customer, their needs, and use cases. The initial product

design can help to pitch the idea to targeted API consumers. The API provider
can reach out to the API consumer directly or request support from account man-
agement or similar customer and partner facing teams. In case the API consumer
starts the initiative, the API provider has to evaluate the business case and tech-
nical requirements.

The pilot project can be started with a kick-off meeting or workshop. The collab-
orators have to get to know each other, create common goals, timelines, manage
expectations, and plan the closeness of collaboration. Based on this, the level of
collaboration has to be carefully evaluated. Agile methods can offer state-of-the-
art practices for iterative and ongoing collaboration (Limited & Office, 2019, p.
40).

Related Standards

• Collaborate and Promote Visibility (Limited & Office, 2019, p. 39)

• Domain Driven Design (Evans, 2003)

• Extreme Programming (Beck & Andres, 2004)

• Focus on Value (Limited & Office, 2019, p. 39)

• Manifesto for Agile Software Development14

• Minimal Viable Products (Ries, 2011)

• Pilot Experiment (Billé, 2010)

• Progress Iteratively with Feedback (Limited & Office, 2019, p. 39)

• Rapid Application Development (Kerr & Hunter, 1994)

• Scrum (Takeuchi & Nonaka, 1986)

Related Patterns

The solution approach Pattern 10: Tailoring APIs to products offers complementary
steps to solve prerequisites.

An alternative or parallel solution approach with loosely coupled collaboration
is presented by Pattern 11: API product validation.

Known Uses

• C1, C2, C11, C12

14http://agilemanifesto.org/

http://agilemanifesto.org/

5.7 API Management Patterns 69

5.7.5 Pattern 5: Frontend venture

Stakeholders

The following applicants are derived from the study data:

• Backend provider

• Portal provider

The following potential collaborators are derived from the study data:

• Sales and marketing

Concerns

• How to target potential API consumers without technical capabilities?

Example

The portal provision management captured in case C2 develops frontend tools for
its API consumers. Initially, prototypical frontend tools are developed to validate
the use case and receive feedback. Based on the results of those pilot phases, the
frontend development is delegated to dedicated development teams. This creates
ventures that are based on the offered API products and services.

Context

The integration of APIs into current workflows and tools can come with techni-
cal complexity and high costs for the API consumer. Alternatively, potential API
consumers might choose to implement the APIs into stand-alone frontends in-
stead. Consumers without technical expertise might request the creation of those
frontend tools from the API provider.

Forces

Forces that have to be resolved and balanced:

• Business case

• Cost-benefit ratio

• Strategic relevance of project

Influence Factors

Table 5.8 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 5: Frontend venture.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Partner Type B2B B2C B2G none
Monetization Free In Product Contractual Per API Call

Networking Target Efficiency Innovation Channel Extension Venture

Table 5.8: Influence Factors for Pattern 5

As visible in table 5.8, the solution approach is applied with architectural open-
ness of types group, partner, and public. Hence, in the documented cases, it is
found suitable to interact with external consumers. The platform in focus is doc-
umented to be in pilot phases or production. The number of API consumers does
not exceed 10,000 in the studied cases. Both backend APIs and developer por-
tals are used in the context of Pattern 5: Frontend venture. The type of partner is
found to be either B2B or B2G. Pattern 5: Frontend venture is not applied with API
consumers of type B2C. The monetization strategy is both contractual and API
call-based. The networking target varies. I It can be noted that, among others, all
known cases shared the networking target ’venture’.

Solution

The development of custom frontends for API consumers is a venture opportu-
nity for the providing organization. In case a potential service consumer requests
a custom frontend solution based on the API offerings, the API provider has to
calculate the business case of the venture. Forces that should be part of the de-
cision making are cost-benefit ratios, the strategic relevance of the project, and
internal resources and capabilities.

The API provider should utilize a pilot phase to iteratively create prototypes. The
development of the frontend can be supported by agile methods. A simple first
version could offer simple web forms to post data and utilize download buttons
to get data from the endpoints.

Continuous validation over the development phase supports the decision mak-
ing if the business model is worthwhile. In this case, the initial prototype can be
delegated to a dedicated development team. The development team then acts as
an IT provider to the API consumer while the API platform continues to provide
the consumed API services.

Variants

An alternative variant was detected in the studied cases. Early stage API plat-
forms should pivot to provide frontend tools if the target consumers prefer those
over API provision. In case that a small group of strategic partners is targeted

5.7 API Management Patterns 71

and those partners would rather be provided with frontend tools altogether, the
API provider should change its business model.

The API provider should still use API platforms internally but changes the pilot
phase provision management from API provision to frontend provision. A well
managed internal platform can later on be opened in case future partners request
API services.

Consequences

The following benefits are derived from the study data:

• Customer engagement and buy-ins

• Focus on value creation and relevance for the customer

• Lessons learned from using the own platform as a consumer

• Possibility to venture out of API provisioning

• Promotes API platform and products

• Support for key costumers and strategic partners

The following liabilities are derived from the study data:

• Asynchronous close collaboration can be difficult to manage

• Overhead for API provision management

Implementation Details

Kick-off meetings and workshops together with the requesting API consumer
should be used to learn more about the requested features. The budget, needs,
and overall workflow should be analyzed. Tools such as the Value Proposition
Canvas can support the API provider in the analysis (Osterwalder et al., 2014).
Factors like increased publicity or strategic relevance should influence the va-
lidity of the business case. In case the business case is approved, a simple first
version can be developed in hackathons. The first version should be iteratively
improved in a pilot phase. A minimal viable version of the frontend tool can
utilize the API consumer’s API key and API call-based monetization.

The frontend tool can be provided to the requesting API consumer directly or
integrated in the developer portal. If the functionality is part of the developer
portal, additional material should be created to explain the functionality to other
API consumers. A collaboration with sales and marketing can support the cre-
ation of marketing material.

It can be noted that the development of custom frontends requires additional
overhead on top of the daily API management. It should only be considered if it
does not negatively affect the quality of the API products and services.

Related Standards

• Collaborate and Promote Visibility (Limited & Office, 2019, p. 39)

• Extreme Programming (Beck & Andres, 2004)

• Focus on Value (Limited & Office, 2019, p. 39)

• Manifesto for Agile Software Development15

• Minimal Viable Products (Ries, 2011)

• Progress Iteratively with Feedback (Limited & Office, 2019, p. 39)

• Rapid Application Development (Kerr & Hunter, 1994)

• Scrum (Takeuchi & Nonaka, 1986)

Related Patterns

The development of prototypical frontends can be based on pilot projects as de-
scribed in Pattern 4: Pilot project.

Known Uses

• C2, C6, C8

15http://agilemanifesto.org/

http://agilemanifesto.org/

5.7 API Management Patterns 73

5.7.6 Pattern 6: SLAs with backend providers

Stakeholders

The following applicants are derived from the study data:

• API management

The following potential collaborators are derived from the study data:

• Backend provider

• Legal

Concerns

• How to ensure API service quality?

• How to resolve bug reports effectively and transparently?

Example

C12 documents an API marketplace with a homogeneous set of known API con-
sumers from the same industry. The backend services are provided by a set of
heterogeneous third-party API providers. Each API provider aims to provide
services for API consumers from that industry. The marketplace offers the API
providers services such as discoverability, a marketing platform, and gateway-
based utilities like monetization, monitoring, analytics, security, and others. The
marketplace provider further ensures the quality of service provided by the back-
end providers. For this, continuous quality management is required. New API
providers are guided through a strict onboarding process. During the onboard-
ing, the API providers create the pricing model for their API offerings. For its
services, the marketplace provider is granted a percentage of the price of each
API call. The contract between the API provider and marketplace provider in-
cludes SLAs that specify the quality of services provided by each party based on
a set of defined parameters. The SLAs define the time of availability, the mini-
mum success rate, and incident resolution times. Contractual punishments and
escalation levels are documented in case the services do not meet the KPIs.

Context

API management has to ensure that the offered API services adhere to the quality
guarantees given to the API consumers. The API management has to collaborate
with the different backend providers to agree upon service levels and quality
standards for the API offerings. Quality KPIs can include high availability and
low latency for the API consumers.

Forces

Forces that have to be resolved and balanced:

• Business and operational metrics

• Collaboration with third-party providers

• Efficient and effective management of customer requests

• Scalability of support activities

• Service management

Influence Factors

Table 5.9 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 6: SLAs with backend providers.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Partner Type B2B B2C B2G none
Monetization Free In Product Contractual Per API Call

Table 5.9: Influence Factors for Pattern 6

Table 5.9 shows that the solution approach is applied with architectural openness
of types group, partner, and public. The platform in focus is documented to be in
pilot phases and production. The number of API consumers, the type of platform,
and the monetization strategy vary across the studied cases. The type of partner
is found to be B2B only.

Solution

A SLA identifies all services provided to the service consumer and documents
the level of service which is agreed on (Limited & Office, 2019, p. 152). SLAs
specify performance parameters from a customer perspective (Limited & Office,
2019, p. 152). API providers can utilize SLAs to define quality standards for the
different backend services and thereby hold backend providers accountable for
their service provisions. SLAs can also be embedded in contracts that specify
further components such as monetization.

The overall goal of SLAs with backend providers is the efficient and effective
provision for the API consumer. They document important aspects of the incident
management and draw a clear path for error resolution and incident escalation.

5.7 API Management Patterns 75

Variants

In the studied cases, two different kinds of SLAs between backend providers and
the API management providers are documented. The more common one de-
scribes the service level that the backend providers agree upon to provide their
services for the API platform. A different variant implements the SLA in a way
that guarantees the service level upon which the API management provides the
infrastructure services for a backend provider. This way around, the API man-
agement provider guarantees the service level of the API platform to the backend
providers. The two variants are based on different monetization strategies of the
API management and API platform. Both can be used together.

Consequences

The following benefits are derived from the study data:

• Efficient and effective management of customer requests

• Focus on value creation for the customer

• Increased transparency for the customer

• Support costumers and strategic partners efficiently

The following liabilities are derived from the study data:

• SLA negotiation efforts

Implementation Details

If the backend services are provided by different teams, subsidiary firms, partner-
ing organizations, or third-party providers, SLAs can be utilized to agree upon a
set of quality principles. They can be embedded within a contract. SLAs docu-
ment the quality parameters of the provided services. Further components, such
as monetization, can build upon the SLAs. API management should collaborate
with legal to create a reusable framework for service contracts and agreements.

The SLA is negotiated in collaboration by all relevant stakeholders (Limited & Of-
fice, 2019, p. 152). A scale of service levels can be utilized to standardize the SLA.
API management should investigate if service level management is standardized
within its organization.

One important aspect of the SLA is incident management. The agreement should
document incident resolution metrics, a clear path for issue escalation, and poten-
tial contractual punishment in case quality metrics are not met. All metrics have
to be based on measurement standards. The API gateway serves as a single point
of truth for monitoring. The formulas and underlying measurements should be
part of the SLA to prevent any room for interpretation.

Related Standards

• Collaborate and Promote Visibility (Limited & Office, 2019, p. 39)

• Focus on Value (Limited & Office, 2019, p. 39)

• Incident Management (Limited & Office, 2019, p. 121)

• Optimize and Automate (Limited & Office, 2019, p. 39)

• Service Request Management (Limited & Office, 2019, p. 156)

Related Patterns

A notification system can be utilized to automate reports in case quality param-
eters are not met. The solution approach is documented in Pattern Candidate 58:
Notification system.

SLAs can also be singed with the API consumer as described in Pattern 7: SLAs
with API consumers.

Known Uses

• C4, C5, C6, C8, C9, C11, C12, C13

5.7 API Management Patterns 77

5.7.7 Pattern 7: SLAs with API consumers

Stakeholders

The following applicants are derived from the study data:

• API management

The following potential collaborators are derived from the study data:

• API consumer

• Legal

Concerns

• How to ensure API service quality?

Example

The API management of C5 operates an API platform as a service for a set of sub-
sidiary companies. Each subsidiary can both be backend provider and API con-
sumer. The API management utilizes different SLAs based on the requirements of
the subsidiary firm. In some cases, the backend provider pays for the services of
the API management. More commonly, the API consumer has to pay for both the
backend services and the API management. In latter case, SLAs are used to de-
fine the service level that the API consumer is willing to pay for. A higher service
level provides faster incident resolution times for the API consumer. Most API
consumers negotiate a resolution time that lays within standard business hours.
Mission critical API offerings and infrastructure services can utilize a seven days
a week, 24 hours a day, service level agreement.

Context

The API provision management has to ensure that the offered API services adhere
to the quality guarantees given to the API consumers. Those quality guarantees
have to be agreed upon with the API consumers.

Forces

Forces that have to be resolved and balanced:

• Business and operational metrics

• Collaboration with third-party providers

• Efficient and effective management of customer requests

• Scalability of support activities

• Service management

Influence Factors

Table 5.10 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 7: SLAs with API consumers.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Partner Type B2B B2C B2G none
Monetization Free In Product Contractual Per API Call

Table 5.10: Influence Factors for Pattern 7

Table 5.10 shows that the solution approach has been applied with architectural
openness of types group, partner, and public. The platform in focus is docu-
mented to be in pilot phases and production. The number of API consumers and
the type of platform vary across the studied cases. In contrast to Pattern 6: SLAs
with backend providers, the partner type is not limited to businesses. All three part-
ner types have been identified. The monetization strategy has been documented
as product-based, contractual, and API call-based. The API is not offered for free
in the associated cases. This is another difference to Pattern 6: SLAs with backend
providers.

Solution

SLAs document the services offered to the consumers and specify the level of
service which is agreed on (Limited & Office, 2019, p. 152). They describe perfor-
mance parameters from a customer perspective (Limited & Office, 2019, p. 152).
SLAs between the API provider and API consumers document the responsibili-
ties of the API management and act as quality guarantees of the API provision.

API providers can utilize SLAs to define quality standards for the customer sup-
port and infrastructure provision. The SLA documents important aspects of the

5.7 API Management Patterns 79

incident management and thus, draws a clear path for error handling and inci-
dent escalation. SLAs are one component of a contract. Other components can
specify the price model of offered services. The overall goal of SLAs is trans-
parency and a measurable agreement about the service quality.

Consequences

The following benefits are derived from the study data:

• Efficient and effective management of customer requests

• Focus on value creation for the customer

• Increased transparency for the customer

• Support costumers and strategic partners efficiently

The following liabilities are derived from the study data:

• SLA negotiation efforts

Implementation Details

The API management provides a set of services around the offered API products.
Those services include: customer support, infrastructure maintenance (e.g. API
gateway provision), API brokering (e.g. portal provision), and others. The gate-
way is the core infrastructure platform of the API management. Thus, the gate-
way provider team provides mission critical services for the API management
and plays a key role in the SLA definition.

The SLA is negotiated in collaboration by all relevant stakeholders (Limited & Of-
fice, 2019, p. 152). A scale of service levels can be utilized to standardize the SLA.
The API management should investigate if service level management is standard-
ized within its organization. Additionally, API management should collaborate
with legal to create a reusable framework for service contracts and agreements.
The API consumer and API provider have to agree on the terms and conditions
of the API provision contract. The SLA defines the responsibilities of the API
provider. For this, the service level has to be agreed on. A higher service level
is connected to more costs for the API management but might allow for higher
charges towards the API consumer.

One important aspect of the SLA,! (SLA,!) is incident management. The agree-
ment should document incident resolution metrics, a clear path for issue escala-
tion, and potential contractual punishment in case quality metrics are not met. All
metrics have to be based on measurement standards. The API gateway serves as a
single point of truth for monitoring. The formulas and underlying measurements
should be part of the SLA to prevent any room for interpretation. If one API con-
sumer demands to have a high service level, all other API consumer will profit
from the higher quality agreement. This is the case because if the API gateway

has an outage, it has an outage for all services. One high service level agreement
translates to quicker resolution times for all API consumers.

Related Standards

• Collaborate and Promote Visibility (Limited & Office, 2019, p. 39)

• Focus on Value (Limited & Office, 2019, p. 39)

• Incident Management (Limited & Office, 2019, p. 121)

• Optimize and Automate (Limited & Office, 2019, p. 39)

• Service Request Management (Limited & Office, 2019, p. 156)

Related Patterns

A notification system can be utilized to automate reports in case quality param-
eters are not met. The solution approach is documented in Pattern Candidate 58:
Notification system.

SLAs can also be singed with backend providers as described in Pattern 6: SLAs
with backend providers.

Known Uses

• C1, C2, C3, C5, C6, C8, C10, C12, C13

5.7 API Management Patterns 81

5.7.8 Pattern 8: Data clearance

Stakeholders

The following applicants are derived from the study data:

• API management

The following potential collaborators are derived from the study data:

• API governance

• Backend provider

• Legal

Concerns

• How to onboard a new API product onto the platform?

• How to tailor backend services to APIs that fit the API consumer’s needs?

Example

The portal provision management captured in C2 collaborates with a central data
clearing office. Each data point that is meant to be published to third-party API
consumers has to go through a data clearance process. The data clearing ensures
that all API endpoints follow compliance and privacy regulations.

Context

Offering an internal API for external use comes with legal, compliance, strategic,
and other requirements. API management has to ensure that all data that is made
accessible for third-parties is cleared.

Forces

Forces that have to be resolved and balanced:

• Data clearance and compliance

• Ease of integration

• Separation of concerns

• Service orchestration

• User experience

Influence Factors

Table 5.11 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 8: Data clearance.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Monetization Free In Product Contractual Per API Call

Table 5.11: Influence Factors for Pattern 8

As visible in table 5.11, the pattern is identified for APIs offered to group, public
and partnering API consumers. The solution approach is documented in produc-
tion only. The number of API consumers varies across the associated cases. It is
applied to developer portals only. All variants of monetization were identified in
the context of this solution approach. It is notable that the influence factors of this
solution approach are shared with Pattern 9: API orchestration layer.

Solution

Internal backend services can be reused for external API offerings. The publica-
tion of internal capabilities requires a data clearing process. Data clearance en-
sures that new offered endpoints comply with legal, strategic, and other require-
ments. Additionally, the process can be used to tailor new offered capabilities
towards customer needs.

Before backend services can be published, each new data points that is made
public has to be analyzed and cleared. Each data point has to follow privacy
regulations. A close collaboration with legal and data privacy teams is required
to clear the data.

Some data points might have strategic value or are part of an internal business
model. The publication of the backend services requires a close collaboration
with API governance, backend provider, and eventual additional data owners.
For instance, if the backend service aggregates data from several other internal
backend services, those backend providers should be consulted as well.

Additionally, public API endpoints have to be aligned to the needs of the API
consumers. Public API consumers have a different perspective than internal API
consumers. They may lack domain knowledge or company-specific jargon. The
alignment can be improved by filtering, renaming, aggregating, and adjusting the
response data.

5.7 API Management Patterns 83

Consequences

The following benefits are derived from the study data:

• Focus on value and relevance for the customer

• Improves developer experience

• Reduces integration effort

The following liabilities are derived from the study data:

• Compliance and data clearing efforts

Implementation Details

Data clearance is required to comply with privacy regulations such as the General
Data Protection Regulation (GDPR). A close collaboration with privacy experts
and legal teams is recommended to avoid pitfalls and potential costly privacy
breaches. If backend services provide user specific data or protected resources,
authorization frameworks are required to grant the end user the ability to autho-
rize third-party applications access to their data. Frameworks, such as OAuth
2.016, serve as authorization layers that provide state-of-the-art authorization and
authentication processes. Required authorization layers should be implemented
on an API gateway level to reuse and centralize security and authentication.

Further strategic alignment with the backend provider and data owner teams
is necessary to estimate the strategic value of the data. The estimated business
model of the new API products has to be compared to the value of offered data
sets. If possible, strategic data points can be filtered from the external API end-
points.

Further filtering is required to reduce unnecessary complexity for the API con-
sumer. Data points not relevant to the public API consumers’ needs should be
deleted from the API responses. Next, the data keys used to name each data point
should be evaluated. Internal jargon should be renamed to make the data under-
standable for external API consumers. Each data key should follow a consistent
naming convention that is used across all public API products. Subsequently,
API consumers might lack further contextual knowledge. Data points can be ag-
gregated or derived from several different sources to create new data points that
might be redundant but reduce the complexity for the API consumer. The ease of
integration and reduction of complexity for the API consumer should be seen as
the main goals.

16https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749

Related Standards

• API Facade Pattern (De, 2017, p. 86)

• Domain Driven Design (Evans, 2003)

• Extreme Programming (Beck & Andres, 2004)

• Focus on Value (Limited & Office, 2019, p. 39)

• Manifesto for Agile Software Development17

• Minimal Viable Products (Ries, 2011)

• Progress Iteratively with Feedback (Limited & Office, 2019, p. 39)

• Rapid Application Development (Kerr & Hunter, 1994)

Related Patterns

Pattern Candidate 31: Data clearing office documents a centralization effort for the
collaboration required for data clearance.

Pattern 8: Data clearance should be integrated in an early stage within the API
product development. Pattern 10: Tailoring APIs to products offers an overall prod-
uct design process that can be followed.

Pattern 9: API orchestration layer describes an abstraction layer that orchestrates
internal backend services before it returns an aggregated response to external
API consumers. The orchestration layer can be utilized to fulfill data clearing
requirements such as data filtering.

Known Uses

• C2, C3, C4, C5, C8, C9, C10

17http://agilemanifesto.org/

http://agilemanifesto.org/

5.7 API Management Patterns 85

5.7.9 Pattern 9: API orchestration layer

Stakeholders

The following applicants are derived from the study data:

• API management

Concerns

• How to onboard new API products onto the platform?

• How to tailor backend services to APIs that fit the API consumer’s needs?

• How to aggregate backend services?

Example

The API management documented in C9 implements an API orchestration layer
to invoke several internal backend services. The API orchestration layer is man-
aged and maintained by its own API provider team. It utilizes GraphQL as a
technology to aggregate data from different sources and provides a GraphQL
endpoint for the API consumer-facing API platform.

Context

API providers utilize a set of backend services to interact with the requested ca-
pabilities (De, 2017, p. 23). Usually, endpoints are not mapped in a one-to-one
relationship to the API consumer. Instead, an API consumer invokes an abstract
API that reflects the user’s point of view. Internally, the API call invokes several
backend services to collect data or execute functions (De, 2017, p. 23). The API
consumer then receives an aggregated response from the API platform (De, 2017,
p. 23).

Forces

Forces that have to be resolved and balanced:

• Data clearance and compliance

• Ease of integration

• Separation of concerns

• Service orchestration

• User experience

Influence Factors

Table 5.12 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 9: API orchestration layer.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Monetization Free In Product Contractual Per API Call

Table 5.12: Influence Factors for Pattern 9

As visible in table 5.12, the pattern is identified for APIs offered to group, public
and partnering API consumers. We think that Pattern 9: API orchestration layer can
also be applied to private APIs. This solution approach is documented in produc-
tion only. The number of API consumers varies across the associated cases. The
pattern is applied to developer portals only. All variants of monetization were
identified in the context of this solution approach. It is notable that the influence
factors of this solution approach are shared with Pattern 8: Data clearance.

Solution

An API orchestration layer enables the aggregation of several internal backend
services to one API call for the API consumer (De, 2017, p. 23). It can be used to
collect and augment the capabilities of different internal backend services to fit
the API consumer’s needs (De, 2017, p. 23). The API orchestration layer thereby
supports the tailoring of API products that fit the user stories of the API con-
sumers.

Furthermore, it can be used to filter data from internal backend services that is
not meant to be accessible for external API consumers. The API orchestration
layer can be utilized to support data clearing processes.

Consequences

The following benefits are derived from the study data:

• Focus on value and relevance for the customer

• Improved developer experience

• Improved performance for API consumers

• Reduced latency for API consumers

• Reduced integration effort

The following liabilities are derived from the study data:

• Additional effort for the creation and maintenance of federation layer

5.7 API Management Patterns 87

Implementation Details

An API orchestration layer can be implemented in various ways. It can be imple-
mented within the API gateway directly (De, 2017, p. 87). Alternatively, a proxy
backend service can be created that is invoked by the API gateway and used as
an orchestration layer.

Furthermore, the orchestration layer can utilize several different technologies. De
(2017) emphasizes that the API gateway and orchestration layer should be kept
light-weight and stateless (De, 2017, p. 23). To achieve this, the orchestration
layer should utilize state-of-the-art technologies such as REST or GraphQL to ag-
gregate data, call backend services, and return the responses. Thus, the orchestra-
tion layer should be built following best practices in the development of backend
services to avoid common pitfalls such as stateful service provision.

Related Standards

• API Facade Pattern (De, 2017, p. 86)

• Design Thinking (Plattner et al., 2010)

• Domain Driven Design (Evans, 2003)

• Extreme Programming (Beck & Andres, 2004)

• Focus on Value (Limited & Office, 2019, p. 39)

• Minimal Viable Products (Ries, 2011)

• Rapid Application Development (Kerr & Hunter, 1994)

Related Patterns

An API orchestration layer supports the creation of tailored endpoints based on
the API consumers’ needs. The tailoring of API products is described in Pattern
10: Tailoring APIs to products.

Software libraries can be used to wrap API calls on the API consumer side into
function calls. This further improves the API consumer experience. The creation
of software libraries is documented in Pattern 15: Software libraries.

Known Uses

• C2, C3, C4, C5, C9, C10

5.7.10 Pattern 10: Tailoring APIs to products

Stakeholders

The following applicants are derived from the study data:

• Backend provider

• Portal provider

Concerns

• Which APIs should be offered?

• How to tailor backend services to APIs that fit the API consumer’s needs?

• How to ensure market-fit?

• Who will be using the APIs?

• How to fit the APIs to consumers’ requirements?

Example

Figure 5.6: Twilio Product Overview Page

5.7 API Management Patterns 89

The following example illustrates the end result of this solution approach. Twilio18

offers web APIs for API consumers to develop customer experience solutions.
Figure 5.6 shows the product overview page19 of the Twilio website. The user is
given an overview of available products and included user stories. Thus, the web
APIs are tailored into several independent products. Each product contains a set
of specified user stories and is easily differentiable from the other products. For
instance, the product ’Programmable SMS’ captures the two user stories ’Send
text messages’ and ’Receive text messages’.

Context

The portal provider and backend provider have to decide what services should
be offered through the developer portal.

Forces

Forces that have to be resolved and balanced:

• Uncertain needs and problems of API consumers

• Unknown API consumers

• Unknown user stories of API consumer

Influence Factors

Table 5.13 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 10: Tailoring APIs to prod-
ucts.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
API Consumer Heterogeneity Homogeneous Heterogeneity

Monetization Free In Product Contractual Per API Call

Table 5.13: Influence Factors for Pattern 10

As visible in table 5.13, the management of API products is identified for APIs of-
fered to public and partnering third-party consumers. We think that the product
approach and user-centric design can also be applied to internal APIs. This so-
lution approach is documented in production only. Further, the tailoring of API
products is observed in organizations with varying numbers of API consumers.

18https://www.twilio.com
19https://www.twilio.com/products

https://www.twilio.com
https://www.twilio.com/products

Both marketplaces and developer portals are found to market APIs as products.
Backend APIs without a developer portal were not discovered to offer API prod-
ucts. All variants of monetization were identified in the context of this solution
approach. In the studied cases, product APIs are not offered for free.

Solution

Related APIs should be bundled to API products (De, 2017, p. 149). Each API
product fulfills specific business needs and is purchased independently by the
API consumers (De, 2017, p. 149). Thus, price models are created on a product
level.

Treating web API offerings as products enables the usage of product design pro-
cesses. They support the creation of offerings that are designed towards identi-
fied customer needs (Medjaoui et al., 2018). Each product is specifically tailored
to provide the most value for a group of target customers (Limited & Office, 2019,
p. 12). The focus on value includes the design of user experience for the cus-
tomers (Limited & Office, 2019, p. 39). Thus, ease of use, quality, effectiveness,
and further factors are part of the API product design (Limited & Office, 2019, p.
148). All those factors should be considered in order to tailor API products that
fit customer needs and provide value.

Product design processes are based on agile methods and dedicated tooling. First,
the API provider has to identify potential consumers and develop hypotheses
about how the products can fit their needs (Limited & Office, 2019, p. 12). Fol-
lowing an agile approach, identified problems and needs can then be translated
to user stories20. Each user story provides specific value to a customer. Next,
related user stories are bundled into a product.

Consequences

The following benefits are derived from the study data:

• Better understanding of API consumers and their needs

• Focus on value creation for API consumers

• Learn which use cases are needed and thus, which endpoints are required

• Provides a clear path to API marketing and user story-based documentation

• Identification of potential API consumers

The following liabilities are derived from the study data:

• Additional documentation and marketing information required to commu-
nicate product approach to the consumer (Weir & Nemec, 2019).

• Additional effort of product management and ownership for API provider
(Weir & Nemec, 2019)

20http://www.agilemodeling.com/artifacts/userStory.htm

http://www.agilemodeling.com/artifacts/userStory.htm

5.7 API Management Patterns 91

Implementation Details

API providers should follow product design processes to create their products.
First, the target consumer has to be identified (Limited & Office, 2019, p. 41).
Next, the needs and problems of the consumer have to be uncovered (Medjaoui
et al., 2018). Finally, user stories have to be created to reflect the use cases that
the consumer is tying to achieve. Use cases and user stories can further be de-
rived and combined into products. One product can be used by several groups
of consumers if it covers the use cases of each group (Limited & Office, 2019, p.
12).

To support the tailoring of API products, best practices and standard tools can be
utilized such as the Business Model Canvas or Value Proposition Canvas (Barquet
et al., 2011; Osterwalder et al., 2014). In relation to agile methods, the tailoring of
API products can be understood as a design sprint, followed by rapid prototyp-
ing.

Products and user stories are based on web APIs and service offerings. Several
products and user stories might use the same web APIs. Unused web APIs can
be removed from the developer portal. Each product has to be designed with
a corresponding price model in mind. The business model of an API product
should be based on the associated business goals of the API platform and product
(De, 2017, p. 14).

Like every software product, the responsibility of an API product should be as-
signed to a product owner. The API product owner is responsible for the quality
and delivery of the bundled APIs (De, 2017, p. 184).

Related Standards

• Business Model Canvas (Barquet et al., 2011)

• Design Thinking (Plattner et al., 2010)

• Domain Driven Design (Evans, 2003)

• Domain Story Telling 21

• Extreme Programming (Beck & Andres, 2004)

• Focus on Value (Limited & Office, 2019, p. 39)

• Minimal Viable Products (Ries, 2011)

• Rapid Application Development (Kerr & Hunter, 1994)

• User Stories

• Value Proposition Design (Osterwalder et al., 2014)

21https://domainstorytelling.org/

https://domainstorytelling.org/

Related Patterns

Pattern 9: API orchestration layer illustrates how multiple backend services can
be aggregated and altered. An orchestration layer enables adjustments to inter-
nal backend services to fit the needs of the API consumers and thus, serves as a
perquisite to tailor API products.

Pattern 8: Data clearance documents requirements and best practices that should
be followed when an internal backend service is exposed to external API con-
sumers.

Pattern 11: API product validation describes the validation of products both before
and after they are published on the API platform. In this context, Pattern 10:
Tailoring APIs to products should also be utilized in conjunction with Pattern 12:
Idea backlog.

After products have been created successfully and validated in collaboration with
API consumers, the marketing and documentation of API user stories and prod-
ucts should be approached. They are part of the user experience of the product
and have to be tailored to provide the most value towards the customer. This is
covered in Pattern 13: API product documentation, Pattern 14: Cookbooks, and Pattern
17: Role-based marketing.

Next to the product dimension, the API management also provides services around
the API product provision. The service dimension includes centralized manage-
ment, brokering, and provision services. Those services can be part of the product
pricing or treated separately. Pattern 6: SLAs with backend providers and Pattern 7:
SLAs with API consumers document how the quality of those services can be stan-
dardized.

Known Uses

• Twilio, Stripe

• C2, C10, C12, C13

5.7 API Management Patterns 93

5.7.11 Pattern 11: API product validation

Stakeholders

The following applicants are derived from the study data:

• Portal provider

Concerns

• How to validate API offerings?

Example

C3 describes an API platform targeting public API consumers while C4 docu-
ments API services provided to partner organizations. Both platforms are man-
aged by the same API provider team. In both cases, a similar process is used to
initiate collaboration and trigger customer feedback.

The public API is tied to a software product. Each user of the software prod-
uct has free access to the public API. Hence, the list of all possible customers is
known to the API provider. Each feature request or contact inquiry that reaches
the API provider through contact forms, customer support, or other channels,
is documented and references the requesting entity. This way, the API provider
knows which (potential) public API consumer or partner organization is inter-
ested in which topics and contact can be initiated. Additionally, product ideas
can be validated against the list of requested features.

When a new API product is published to one of the developer portals, the API
management notifies interested consumers via newsletter. To issue follow-up re-
quests or report problems, the API consumer can again utilized the contact forms,
customer support, or other channels. This way, potential customers are informed
of the API development and are motivated to give feedback.

Context

An effective and efficient collaboration with external stakeholders such as public
API consumers can be hard to achieve [IV3, IV4, IV5]. Validation aims to ensure
the offerings fit the costumers’ needs (Limited & Office, 2019, p. 158).

Forces

Forces that have to be resolved and balanced:

• Required validation of API consumer needs

• Required validation of user stories

• Communication with external stakeholders

• Integration of asynchronous customer feedback into development process

Influence Factors

Table 5.14 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 11: API product validation.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >1000 na

Type of Platform Marketplace Developer Portal Backend APIs na
API Consumer Heterogeneity Homogeneous Heterogeneous

Partner Type B2B B2C B2G none
Monetization Free In Product Contractual Per API Call

Table 5.14: Influence Factors for Pattern 11

As visible in table 5.14, the solution approach has been applied with architectural
openness of types: group, partner, and public. Thus, in the documented cases, it
is found suitable to interact with external consumers. In all cases, the platform
has been in production. The number of API consumers, partner type, heterogene-
ity, and monetization strategy varies across documented cases. This is a notable
difference to the alternative solution approach documented in Pattern 3: API test-
ing strategy. Both marketplaces and developer-based API management utilize the
described product validation approach.

Solution

The portal provider can utilize customer feedback to validate API products. The
ITIL (2019) stresses the importance of customer feedback and illustrates the per-
ception of products or services from a customer’s point of view (Limited & Office,
2019, p. 47). The developer portal provides communication channels to the API
consumers. For instance, a developer portal can include a contact form which al-
lows the consumer to issue different kinds of contact inquiries. Each inquiry con-
tains information about potential or current API consumers and their concerns.
Feature requests or business inquiries can be used to either initiate or validate
user stories and tailored API products.

5.7 API Management Patterns 95

After a new API product or service has been launched, incoming feedback re-
flects the customers’ opinions and needs. It can be used to incrementally im-
prove the offerings. This constant validation and iterative development follows
agile methodologies (Limited & Office, 2019, p. 40).

Variants

Pattern 11: API product validation can be achieved by utilizing different commu-
nication channels and approaches. In the following, identified variants will be
listed. Feedback can be communicated through contact forms, service desk soft-
ware, or other channels such as email or phone to a customer support team. If the
number of API consumers is low and can be managed efficiently, e-mail or chat-
based communication can be sufficient. In cooperation with internal API con-
sumers or strategic partners, meetings and workshops can be utilized to achieve
validation.

Consequences

The following benefits are derived from the study data:

• Better understanding of API consumers and their needs

• Focus on value creation for the customer

• Improved product quality through continuous improvement

• Learn which use cases are needed and thus, which endpoints are required

• Potential customer engagement

The following liabilities are derived from the study data:

• Close collaboration between portal provider and backend provider required

• Efforts of managing customer requests required

Implementation Details

Each incoming customer request has to be categorized and managed in an effi-
cient and effective manner. The feedback can be used to create or validate product
ideas. A product idea or the result of a product design process can be validated
against the list of requested features. A product idea that is not reflected in any
current requests can still be valid. Potentially, the list of requests is small or from
a different group of customers than targeted by the new product. The chance of
market-fit, however, is higher if the product is pre-validated.

After a product launch, new incoming requests such as bug reports and related
feature requests can be used for the next iteration of validation. An agile devel-
opment process can be used to iteratively improve the published product.

Related Standards

• Manifesto for Agile Software Development22

• Extreme Programming (Beck & Andres, 2004)

• Rapid Application Development (Kerr & Hunter, 1994)

• Focus on Value (Limited & Office, 2019, p. 39)

• Progress Iteratively with Feedback (Limited & Office, 2019, p. 39)

• Minimal Viable Products (Ries, 2011)

Related Patterns

In conjunction with Pattern 11: API product validation, Pattern 18: Newsletter de-
scribes how to notify potentially interested consumers about new product launches.
This can trigger additional feedback. To manage incoming feature requests effi-
ciently and effectively, Pattern 12: Idea backlog can be utilized.

An alternative or parallel solution approach with closer collaboration is presented
by Pattern 4: Pilot project.

Portal providers can take advantage of Pattern Candidate 28: Service validation
workshops, Pattern Candidate 35: Hackathons, and Pattern Candidate 36: Pilot work-
shops to validate API product and service ideas. Especially within organization
boundaries direct communication can be easier to achieve and enhance the col-
laboration between the participants.

Known Uses

• C2, C3, C4, C5, C12, C13

22http://agilemanifesto.org/

http://agilemanifesto.org/

5.7 API Management Patterns 97

5.7.12 Pattern 12: Idea backlog

Stakeholders

The following potential collaborators are derived from the study data:

• Portal provider

Concerns

• Which APIs should be offered?

• How to tailor backend services to APIs that fit the API consumer’s needs?

• How to ensure market-fit?

• Who will be using the APIs?

• How to fit the APIs to consumers’ requirements?

• How to validate API offerings?

Example

As laid out in the example of Pattern 11: API product validation, the API manage-
ment of C3 and C4 utilizes incoming customer requests to initiate and validate
new API offerings. An idea backlog is used to store all new feature ideas and
change requests derived from customer requests. Each incoming request is en-
tered into the idea backlog. The idea backlog enables the API management to
cluster customer requests, count how many times a features is requested, and
what variants of the same request might exist. New offerings can either be created
based on ideas out of the idea backlog or validated against the list of requested
features.

Context

The portal provider and backend provider have to decide what services should
be offered through the developer portal.

Forces

Forces that have to be resolved and balanced:

• Communication with external stakeholders

• Integration of asynchronous customer feedback into development process

• Mixing different groups of consumers

• Uncertain needs and problems of API consumers

• Unknown API consumers

• Unknown user stories of API consumer

• Required validation of API consumer needs

• Required validation of user stories

Influence Factors

Table 5.15 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 12: Idea backlog.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Monetization Free In Product Contractual Per API Call

Table 5.15: Influence Factors for Pattern 12

As visible in table 5.15, the management of API products is identified for APIs
offered to public and partnering third-party consumers. The solution approach
is documented in production only. The number of API consumers is above 20 in
the related cases. Additionally, the solution approach is only applied within the
management of developer portals. All variants of monetization were identified
in the context of this solution approach.

Solution

An idea backlog offers a simple and intuitive way to manage incoming feature
and change requests. Each request is translated into a ticket within the backlog.
It contains information about the requesting (potential) API consumer and a de-
scription. Additional fields within the ticket software can be utilized to further
enhance the information. Each ticket also provides meta data such as the time
and date of the ticket creation that can aid in the analysis of requests. The re-
quest can be treated as customer feedback. Thus, the idea backlog can be used to
initiate new product ideas or to validate planned or current offerings.

5.7 API Management Patterns 99

Consequences

The following benefits are derived from the study data:

• Better understanding of API consumers and their needs

• Focus on value creation for the customer

• Identification of consumers opens opportunities to collaboration

• Identification of potential API consumers

• Learn which use cases are needed and thus, which endpoints are required

The following liabilities are derived from the study data:

• Additional effort of request management for portal provider

• Close collaboration between portal provider and backend provider required

• Divided ownership between backend provider and portal provider

Implementation Details

The idea backlog is a dynamic list of tickets similar to the product backlog in
Scrum. Common ticket-based project management software offers all tools re-
quired to create an idea backlog. If an agile development approach is utilized,
the same software can be utilized which is already in use to manage tickets. The
idea backlog can be created as an additional backlog within the team space.

Each incoming request should be checked for novelty and then entered into the
idea backlog. This requires the creation of a new ticket. It is important that no
contextual data and information is lost during ticket creation. Requests can fur-
thermore be translated into one or more user stories. Each user story can be added
to the idea backlog separately. In case the requested changes are already reflected
within a ticket, a counter within the ticket can be incremented. Different variants
of the same request should either be merged to one ticket or saved separately.
This ensures that no information is lost.

Tags and categories can be utilized to cluster incoming requests. Possible cate-
gories could include ’new API’, ’new endpoint’, and ’change request’. Additional
product or service-based tags can link tickets to a specific product or service. This
way, the idea backlog can be sorted in several ways and better utilized to gain an
overview of the distribution of requests. Prioritized tickets can then be taken over
into the product backlog or directly into the current scope of work. If not done
before, the request ticket should be translated into a task or user story based on
the best-practices utilized in the team.

Related Standards

• Design Thinking (Plattner et al., 2010)

• Extreme Programming (Beck & Andres, 2004)

• Focus on Value (Limited & Office, 2019, p. 39)

• Manifesto for Agile Software Development23

• Minimal Viable Products (Ries, 2011)

• Progress Iteratively with Feedback (Limited & Office, 2019, p. 39)

• Rapid Application Development (Kerr & Hunter, 1994)

• Scrum (Takeuchi & Nonaka, 1986)

Related Patterns

The idea backlog can be utilized to validate new product ideas as described in
Pattern 11: API product validation.

Known Uses

• C2, C3, C4

23http://agilemanifesto.org/

http://agilemanifesto.org/

5.7 API Management Patterns 101

5.7.13 Pattern 13: API product documentation

Stakeholders

The following applicants are derived from the study data:

• Portal provider

Concerns

• How to document API products?

• How to support developers with API integration?

• How to communicate with API consumers?

Example

Figure 5.7: Stripe’s API Integration Guides for its Payments Product

Stripe24 develops a suite of payment products. The documentation structures
products as top level navigation entries25. Each product documentation offers

24https://stripe.com/en-de
25https://stripe.com/docs

https://stripe.com/en-de
https://stripe.com/docs

its own landing page with an overview of user story-based integration guides.
These guides act as second level navigation entries and lead the user to story-
based API documentations. Figure 5.7 illustrates how the documentation for the
payments product is split into user stories26.

Context

As described in sections API Management and Roles and Stakeholders, the por-
tal provider has to effectively support the application developers with social and
developer boundary resources. In the context of Pattern 10: Tailoring APIs to prod-
ucts, the developer portal has to be adjusted to present and document tailored
API products.

Forces

Forces that have to be resolved and balanced:

• Domain knowledge transfer

• Ease of integration

• User experience

• User friendly technical documentation

Influence Factors

Table 5.16 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 13: API product documenta-
tion.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
API Consumer Heterogeneity Homogeneous Heterogeneity

Monetization Free In Product Contractual Per API Call

Table 5.16: Influence Factors for Pattern 13

Both Pattern 10: Tailoring APIs to products and Pattern 13: API product documen-
tation are used in conjunction and share the same influence factors. As visible
in table 5.16, the documentation of API products is identified for APIs offered
to public and partnering third-party consumers. This solution approach is doc-
umented in production only. Further, the documentation of API products is ob-
served in organizations with varying numbers of API consumers. Both market-
places and developer portals are found to document APIs as products. Backend
26https://stripe.com/docs/payments

https://stripe.com/docs/payments

5.7 API Management Patterns 103

APIs without a developer portal were not discovered to offer API products. All
variants of monetization are identified in the context of this solution approach. In
the studied cases, product APIs are not offered for free.

Solution

The API documentation should follow a user-centric structure. This improves
the user experience and thus, increases the value of the developer portal (Lim-
ited & Office, 2019, p. 39, 43). As defined in Pattern 10: Tailoring APIs to products,
APIs are tailored into products. Each product thereby consists of one or more
user stories. Products and user stories provide a clear structure for a consumer-
centric API documentation (Medjaoui et al., 2018). Each product is documented
separately. This ensures transparency about the offerings of each product. The
landing page of the documentation is used to provide an overview of all prod-
ucts and serves the product discovery. A user friendly grid representation of
the products improves the visibility. This can be further supported by a search
function. Each product entry references a product-specific documentation. These
product-specific pages are used to list all user stories of the product and are struc-
tured similarly to the main landing page. The user can view product-related in-
formation and select between user stories. Each user story provides APIs with
documentation based on the requirements of the user story. This ensures focus
on the developer’s needs and removes unrelated complexity.

Consequences

The following benefits are derived from the study data:

• Focus on value and relevance for the customer

• Reduction and management of complexity

• Promote visibility and discovery of products and user stories

• Improve developer experience

• Improve orientation throughout the API documentation

The following liabilities are derived from the study data:

• Curating efforts for high quality documentation

• Continuous maintenance of documentation required

Implementation Details

First, the list of products has to be created. The search bar has to be placed visibly.
A grid-based list can be used, supported by illustrations and icons. If the set of
products exceeds a simple list representation, e.g. the user has to scroll to look
through all products, filters and sub-menus can be utilized to improve visibility.
Each product-specific page should provide a list of user stories. Additionally, a
sticky navigation menu shows the current position within the documentation and
provides quick links to other products. This supports quick pathways between
products and also improves orientation. Each user story documents all required
steps from a consumer-perspective.

Related Standards

• Focus on Value (Limited & Office, 2019, p. 39)

Related Patterns

The solution approach Pattern 10: Tailoring APIs to products serves as a prerequi-
site for Pattern 13: API product documentation. The documentation of user stories
is further described in Pattern 14: Cookbooks.

Known Uses

• Stripe, Twilio

• C2, C10, C12, C13

5.7 API Management Patterns 105

5.7.14 Pattern 14: Cookbooks

Stakeholders

The following applicants are derived from the study data:

• Portal provider

Concerns

• How to document API products?

• How to support developers with API integration?

• How to communicate with API consumers?

Example

Figure 5.8: Stripe’s ’Accept Payment’ Integration Guide

Following the example described in Pattern 13: API product documentation, each
product within Stripe’s documentation offers a set of integration guides. Figure
5.8 captures the guide for the user story ’accept a payment’. Framed sections of
the figure illustrate different parts of the step-by-step documentation of the user

story. Section one serves as an instance for additional information provided in
each step. Section two presents the user with client-side code snippets. Each
code snippet is offered in seven different programming languages. It illustrates
how to utilize the offered APIs for a specific use case. A navigation menu on
the right-hand side provides the user an overview of the steps of the integration
guide. It can be noted that Stripe also offers a raw API specification27. It provides
a holistic documentation for each endpoint that can be used for further reference.

Context

API documentations support the application developer with the integration of
the offered APIs. Raw API specifications offer a raw technical view of the end-
points. Additional resources can provide user-centric approaches.

Forces

Forces that have to be resolved and balanced:

• Domain knowledge transfer

• Ease of integration

• User experience

• User friendly technical documentation

Influence Factors

Table 5.17 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 14: Cookbooks.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
API Consumer Heterogeneity Homogeneous Heterogeneous

Monetization Free In Product Contractual Per API Call

Table 5.17: Influence Factors for Pattern 14

As visible in table 5.17, the solution approach has been applied with architectural
openness of types group, partner, and public. in In all associated cases, the plat-
form has been in production. The number of API consumers varies across docu-
mented cases. It is notable that this approach has been followed for consumers
of type partner and public only for a number of API consumers greater than 20.
The consumer heterogeneity is captured as solely heterogeneous. Product-based,

27https://stripe.com/docs/api

https://stripe.com/docs/api

5.7 API Management Patterns 107

contractual, and API call-based monetization are associated with Pattern 14: Cook-
books.

Solution

Cookbooks are recipe-like, step-by-step integration guides. They describe the
API integration from a consumer perspective. As documented in the solution
approach Pattern 13: API product documentation, this improves the user experi-
ence. Each cookbook should fit into the overall structure of the documentation.
For this, a product and user story approach can be used. Furthermore, each user
story is documented separately and can be followed in isolation. This supports
the developers in the implementation of their targeted use cases. Cookbooks
can include references to related user stories, prerequisites, or complementary re-
sources. The overall goal, however, is to guide the user from start to end without
the need to follow additional documentation. Each step within the user story pro-
vides context, reasoning, and implementation details. Code examples are used to
provide consumer-side code snippets that the developer can copy paste (Mulloy,
2012, p. 31). After the completion of all steps, the integration into the application
should be accomplished.

Consequences

The following benefits are derived from the study data:

• Focus on value and relevance for the customer

• Improved developer experience

• Reduction and management of complexity

The following liabilities are derived from the study data:

• Continuous maintenance of documentation required

• Curating efforts for high-quality documentation

Implementation Details

Each user story is translated into a cookbook. The recipe-like integration guide
splits the user story into distinct activities that the user has to complete. Each
step should be designed with the overall cookbook in mind. A sticky naviga-
tion menu can be utilized that shows the current position within the cookbook
and offers quick links to the other steps. Each recipe step contains all required
information and code snippets to complete the specific integration activity. For
this, the required domain knowledge has to be communicated in an approach-
able way. A good balance of complexity reduction and completeness has to be
found. Client-side code examples and user-friendly representations of different
information improves the experience. For instance, reoccurring icons, colors, and

borders can be used to communicate different types of information such as warn-
ings, security information, or pitfalls.

Related Standards

• Focus on Value (Limited & Office, 2019, p. 39)

Related Patterns

The solution approach Pattern 13: API product documentation offers an overall
structure in which cookbook-based integration guides can be embedded. Both
patterns work in complement.

Cookbooks can be further enhanced with library-based code examples. The cre-
ation of such libraries is documented in Pattern 15: Software libraries.

Known Uses

• Stripe, Twilio

• C2, C3, C10

5.7 API Management Patterns 109

5.7.15 Pattern 15: Software libraries

Stakeholders

The following applicants are derived from the study data:

• Backend provider

• Portal provider

Concerns

• How to support a growing number of API consumers?

• How to communicate with API consumers?

• How to document API products?

• How to support developers with API integration?

Example

Stripe offers its API consumers software libraries in commonly used program-
ming languages. Each library is open sourced and published on GitHub28. The
libraries implement REST API calls to Stripe’s REST API and can be integrated di-
rectly into the API consumers’ applications . Thus, the application provider does
not interact with the API calls directly but indirectly through the library func-
tions. The libraries are accessible through commonly used package managers.
Figure 5.9 shows the Stripe JavaScript library on npm, a commonly used package
manager for JavaScript packages. On npm, the library is averaging more than
500,000 weekly downloads29.

Stripe’s product-based documentation, which is described in the examples of Pat-
tern 13: API product documentation and Pattern 14: Cookbooks, illustrates the library
code in its code examples. For instance, the code snippet given in figure 5.8 shows
the ’redirect your customer to Stripe Checkout’ integration step written with the
stripe-node library. Figure 5.8 also illustrates that the same code example is avail-
able in all common programming languages.

Context

API providers aim to reduce the complexity and ease the integration of their of-
ferings (Boudreau, 2011). The API provider can provide API consumers code
utilities to support the API integration.

28https://github.com/stripe
29https://www.npmjs.com/package/stripe

https://github.com/stripe
https://www.npmjs.com/package/stripe

Figure 5.9: Stripe’s JavaScript Library on npm

Forces

Forces that have to be resolved and balanced:

• Domain knowledge transfer

• Ease of integration

• User experience

• User friendly technical documentation

Influence Factors

Table 5.18 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 15: Software libraries.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na

Table 5.18: Influence Factors for Pattern 15

5.7 API Management Patterns 111

Table 5.18 shows that the solution approach has been applied with architectural
openness of types partner and public. The platform in focus is documented to be
in production only. The studied cases show a number of API consumers greater
than 10,000. Developer portals are used in the context of Pattern 15: Software
libraries. It can be noted that the pattern is not applied by European API provider
organizations.

Solution

Software libraries provide utilities to ease the integration of APIs. As described in
section SDKs, software libraries enable re-use, separation of concerns, and allow
the integration of shared code within different application architectures. Overall,
they improve the software quality of the API consumer application and reduce
complexity by simplifying the application source code (Hou & Yao, 2011). API
providers can offer software libraries in common programming languages. They
are used as wrappers around the APIs and allow the API consumer to invoke
them (De, 2017). They can be provided together with the API documentation.
A well managed developer portal can tailor the documentation and libraries in
a way that they work together and create a user-centric view of the integration
process.

Consequences

The following benefits are derived from the study data:

• Focus on value and relevance for the customer

• Improves developer experience

• Improves speed of adoption (Mulloy, 2012, p. 31)

• Promotes API products (Mulloy, 2012, p. 31)

• Reduces integration effort (Mulloy, 2012, p. 31)

The following liabilities are derived from the study data:

• Additional documentation required based on library code examples

• Severely additional effort for the creation and maintenance of libraries

Implementation Details

The development of software libraries requires additional capabilities and adds
more complexity to the API provision management. It is a decision that should
be evaluated carefully based on a set of influence factors. To avoid additional
overhead in the development phase of the API platform, the software library de-
velopment can be initiated after the platform has been validated in production
and accumulated a high number of API consumers. Furthermore, the complexity
of the API endpoints should be evaluated. If the APIs is well-documented, fol-
lows best-practices, and the volume of support requests is low, software libraries
are potentially not required (Mulloy, 2012, p. 31). A high number of support
requests however is a good indicator that the integration complexity has to be
reduced.

If the decision is made to create complementary software libraries for the API of-
ferings, the API provider has to decide if the libraries should be auto-generated
or created manually. Section Open API Specification describes how documenta-
tion and consumer-side code can be generated automatically based on the OAS.
Tools such as Swagger Codegen30 enable the generation of SDKs based for APIs
defined with the OAS. If the API in question already follows the OAS (OpenAPI
Initiative, 2020), auto-generating library code might be a good first step. The
auto-generated code can be enhanced further. Custom-made libraries enable the
API provider to implement domain knowledge and domain dependent utilities
into the libraries.

Next, the documentation has be updated to reflect the library code. The installa-
tion process of the libraries has to be documented for each supported program-
ming language. Code snippets should be adapted to illustrate library code di-
rectly. Additionally, the library code can be published on common code hosting
platforms to enable collaboration with the API consumers [IV10]. This can further
improve the discoverability of the libraries and promote the API offerings.

Related Standards

• Business Model Canvas (Barquet et al., 2011)

• Design Thinking (Plattner et al., 2010)

• Focus on Value (Limited & Office, 2019, p. 39)

• Value Proposition Design (Osterwalder et al., 2014)

30https://swagger.io/tools/swagger-codegen/

https://swagger.io/tools/swagger-codegen/

5.7 API Management Patterns 113

Related Patterns

Libraries can implement tailored API products. The tailoring of API products is
described in Pattern 10: Tailoring APIs to products. The product-based documenta-
tion described in Pattern 13: API product documentation and Pattern 14: Cookbooks
can be used complementary to Pattern 15: Software libraries.

As described in the implementation details, the library code can be published on
common repository management site. The open sourcing of SDKs is described in
Pattern Candidate 27: Open-source SDK.

Sample projects can provide API consumers guidance in the implementation of
client-side libraries. This is further detailed in Pattern Candidate 47: Sample projects.

Known Uses

• Stripe, Twilio

• C10

5.7.16 Pattern 16: Integration partner management

Stakeholders

The following applicants are derived from the study data:

• Portal provider

The following potential collaborators are derived from the study data:

• API consumer

• Integration partner

Concerns

• How to support potential API consumers without technical capabilities?

• How to engage business roles of the API consumer?

• How to market API offerings to non-technical roles?

• How to communicate with API consumers?

Example

Twilio maintains a list of partners that are promoted on the website’s showcase
page31. Under the tab ’consultants’, API consumers can view a list of curated
integration partners. These firms offer the implementation and resale of Twilio
services32. On the showcase page, the API consumer can filter the list of curated
consultants by certification, industry, and geographic area. Thus, API consumers
without technical capabilities can select an IT consulting firm or agency that is
preselected by Twilio.

Context

Potential API consumers without technical expertise have to hire external de-
velopers or agencies to integrate the APIs into their workflows. The potential
customer might be interested in the offered services but does not have the capa-
bilities to integrate the APIs on their own.

31https://showcase.twilio.com/s/
32https://www.twilio.com/partner-solutions/become-a-partner

https://showcase.twilio.com/s/
https://www.twilio.com/partner-solutions/become-a-partner

5.7 API Management Patterns 115

Figure 5.10: Twilio Integration Partners

Forces

Forces that have to be resolved and balanced:

• Support for API consumers

• Quality requirements for integration partners

• Efforts of curating list of high quality integration partners

Influence Factors

Table 5.19 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 16: Integration partner man-
agement.

As visible in table 5.19, the solution approach has been applied with architectural
openness of types partner and public. In all cases, the platform has been in pro-
duction. It can be noted that this approach has been followed only for a number
of API consumers greater than 10,000. It is applied solely to developer portals.
The consumer heterogeneity is heterogeneous in the identified cases. Product-
based, contractual, and API call-based monetization strategies are in use.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
API Consumer Heterogeneity Homogeneous Heterogeneous

Monetization Free In Product Contractual Per API Call

Table 5.19: Influence Factors for Pattern 16

Solution

API consumers without technical capabilities can be supported with a list of cu-
rated integration partners. The creation of a partnership model improves stabil-
ity within the API ecosystem and enables third-parties to create value (Jansen &
Cusumano, 2012). The partner management consists of several continuous ac-
tivities. Potential integration partners have to be validated and added to the list
of offered partners. The API consumer can further provide feedback about the
experience with the partners. This adds additional validation. The curated list of
partners has to be marketed towards the API consumer.

The developer portal is utilized to support partner management. It is used both
to invite potential partners and to market qualified integration partners to the
API consumers. A dedicated page for integration partners can be used to explain
the concepts to both potential partners and API consumers. It should contain
links to a web form for partner applications and to the actual list of curated in-
tegration partners. To improve discoverability, the list view of integration part-
ners should be supported by geographical and industry filter options. Each entry
within the list view contains a short description that briefly introduces the IT ser-
vice provider and boasts the firm’s experience. Each entry links to the external
web page of the integration partner.

Variants

The validation process of potential integration partners can be extended by of-
fering or requiring certifications. Willing integration partners are trained and
certified by the API provider. The certification ensures the competencies of the
integration partner.

5.7 API Management Patterns 117

Consequences

The following benefits are derived from the study data:

• Customer engagement and buy-ins

• Enhanced customer experience

• Focus on value creation and relevance for the customer

• Increased robustness of ecosystem

• Promote API platform and products

• Stimulate activity in the ecosystem

• Support costumers and strategic partners

The following liabilities are derived from the study data:

• Additional content to be maintained on the developer portal

• Additional partner management tasks

Implementation Details

The curated list of integration partners has to be marketed on the developer por-
tal. For improved visibility, it can be mentioned on the landing page. Here, a
short chapter about integration partners can inform both potential partners and
interested API consumers. The portal provider can cooperate with sales and mar-
keting to incorporate the information into the developer portal.

To streamline the application process for potential integration partners, the de-
veloper portal can further offer dedicated contact information or a contact form.
An application form can include the following fields:

• Contact information

• Company-related information, e.g. name, size, country, legal entity

• The regions in which services are provided

• Specifications about the offerings, e.g. monetization

• Number of successful integrations

• Target customers, e.g. company size

The API provider can also identify potential integration partners by asking exist-
ing API consumers how they integrated the APIs into their systems. If the API
consumer used externals to integrate the APIs, the provider should ask about the
consumer’s experience. If it is positive, the provider can reach out to the inte-
grating entity. This process can be done iteratively to validate offered integration
partners and to find new ones. For this, the API provider can utilize surveys
(Limited & Office, 2019, p. 154).

Related Standards

• Focus on Value (Limited & Office, 2019, p. 39)

Related Patterns

The marketing material on the developer portal can further be enhanced by the
solution approach described in Pattern 17: Role-based marketing.

Known Uses

• Twilio

• C3, C8, C10, C13

5.7 API Management Patterns 119

5.7.17 Pattern 17: Role-based marketing

Stakeholders

The following applicants are derived from the study data:

• Portal provider

The following potential collaborators are derived from the study data:

• Sales and marketing

Concerns

• How to offer a high-quality user experience for both business and developer
roles?

• How to engage business roles of the API consumer?

• How to market API offerings to non-technical roles?

• How to market API offerings to application developers?

• How to communicate with API consumers?

Example

Mercedes-Benz offers API products and services to partner and third-party de-
velopers on its developer portal33. Figure 5.11 shows the landing page. The users
are immediately asked to select a role, either developer or enterprise/business.
Thereby, the portal provider assures that both user types are only one click away
from customized marketing material. If the user decides to navigate to ’read
more’ on the enterprise/business entry, business-related marketing material is
presented. The dedicated business page34 introduces the platform and lists use
cases and success stories. Each use case is motivated by a short description and
links to a use case details page that further describes the specific product.

Context

The API consumer organization consists of different teams, roles, and stakehold-
ers. The API documentation targets primary the application developer but other
stakeholders are also involved in the buy-decision that has to be made before inte-
grating third-party APIs. Procurement, product owners, and other management
and business roles should also be provided with a high-quality user experience.

33https://developer.mercedes-benz.com/
34https://developer.mercedes-benz.com/home/business

https://developer.mercedes-benz.com/
https://developer.mercedes-benz.com/home/business

Figure 5.11: Role Selection on Mercedes Developers

Forces

Forces that have to be resolved and balanced:

• Different roles require additional user stories for their user experience

• API marketing material for non-technical stakeholders

Influence Factors

Table 5.20 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 17: Role-based marketing.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Monetization Free In Product Contractual Per API Call

Table 5.20: Influence Factors for Pattern 17

As visible in table 5.20, the pattern is applied for APIs offered to public and part-
nering third-party consumers and is documented in production only. Pattern

5.7 API Management Patterns 121

17: Role-based marketing has not been identified with more than 10,000 API con-
sumers. Both marketplaces and developer portals are found to apply the solution
approach. In the context of this pattern, both contractual and API call-based mon-
etization strategies are found. It can be concluded that the additional efforts of
curating additional marketing material might only make sense if the number of
API consumers is high and a direct monetization strategy is used.

Solution

Role-based marketing divides marketing material in the developer portal to tar-
get different roles of users. To improve the user experience of non-technical stake-
holders, the portal provider has to describe the APIs as products and define mar-
keting material for non-developers. Furthermore, the portal provider needs to
ensure that the additional information does not hinder the user journey of devel-
opers that try to visit the documentation or technical specifications of the API. For
that, the portal provider has to develop clear user stories for the different types of
users of the portal. The provider has to identify the needs of those stakeholders
and define user stories that account for their activities. Each user story has to be
implemented into the developer portal.

Consequences

The following benefits are derived from the study data:

• Enhance customer experience

• Focus on value creation and relevance for the customer

• Promote API platform and products

• Promote visibility and discovery of products and use cases

• Reduction and management of complexity

• Support costumers and strategic partners

The following liabilities are derived from the study data:

• Increased complexity of developer portal

Implementation Details

The identification of related stakeholders and their pain points can be accom-
plished by utilizing standard tools such as the Value Proposition Canvas (Oster-
walder et al., 2014). Personas can be used to illustrate the different user roles.
To design an accessible and informative user experience for both technical and
non-technical users, user stories can be utilized. Each user story should be de-
fined towards a specific user role and describe their goals and activities on the
developer portal.

The landing page can be used to provide the user a list of possible roles. Each role
should carry a short description about the kind of information that it is associated
with. A first step can be to distinguish the two roles developer and business.

The portal provider should collaborate with sales and marketing teams to create
the marketing material for non-technical stakeholder. These can include use case-
based product descriptions, success stories, listings of partners, and listings of
API consumer firms that use the products and services.

Related Standards

• Business Model Canvas (Barquet et al., 2011)

• Design Thinking (Plattner et al., 2010)

• Focus on Value (Limited & Office, 2019, p. 39)

• Value Proposition Design (Osterwalder et al., 2014)

Related Patterns

Pattern 10: Tailoring APIs to products draws a clear path for the creation of market-
ing material and can be used as a base line for Pattern 17: Role-based marketing.

API consumers without technical capabilities can further be supported by Pattern
16: Integration partner management. A common type of marketing material is the
success story. Success stories are covered in Pattern 19: Customer success stories.

Known Uses

• Mercedes-Benz

• C2, C8, C12

5.7 API Management Patterns 123

5.7.18 Pattern 18: Newsletter

Stakeholders

The following applicants are derived from the study data:

• Portal provider

The following potential collaborators are derived from the study data:

• Sales and marketing

Concerns

• How to engage business roles of the API consumer?

• How to market API offerings to non-technical roles?

• How to market API offerings to application developers?

• How to notify API consumers about new API products?

• How to communicate with API consumers?

Example

As laid out in the example of Pattern 11: API product validation, C3 describes an
API platform targeting public API consumers while C4 documents API services
provided to partner organizations. Both platforms are managed by the same API
provider team. In both cases, newsletters are utilized to promote new API offer-
ings to current and potential API consumers.

The public API is tied to a software product. Each user of the software product
has free access to the public API. Additionally, as documented in the examples of
Pattern 11: API product validation and Pattern 12: Idea backlog, the API management
keeps track of incoming feature requests and their requesters. Hence, the list of
all possible customers and potentially interested partners is known to the API
provider. The API management includes a marketing role that curates content
for both public and partnering API consumers. New API offerings and status
updates are promoted through in-product and conventional newsletters.

Context

API providers have to promote and sell API products and services to current and
potential API consumers. Marketing efforts have to target different roles within
the API consumer organisation. New product offerings have to be promoted.

Forces

Forces that have to be resolved and balanced:

• API marketing material for non-technical stakeholders

• Different roles require additional user stories for their user experience

• Visibility of API changes

Influence Factors

Table 5.21 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 18: Newsletter.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Monetization Free In Product Contractual Per API Call

Table 5.21: Influence Factors for Pattern 18

As visible in table 5.21, the pattern is applied to API platforms that offer APIs to
public and partnering third-party consumers. In the studied cases, the solution
approach is documented in production only. The number of API consumers is
above 20 in the related cases. Additionally, it is only applied within the man-
agement of developer portals. All variants of monetization are identified in the
context of this solution approach.

Solution

Newsletters can be utilized to promote changes to the API offerings. Different
newsletters can be tailored for different groups of API consumers. Continuous
collection contact information in combination with feature requests and inquiries
enables further individualization of newsletters.

Consequences

The following benefits are derived from the study data:

• Promote visibility and discovery of products and use cases

• Enhance customer experience

• Promote API platform and products

• Focus on value creation and relevance for the customer

5.7 API Management Patterns 125

The following liabilities are derived from the study data:

• Overhead for the portal provider

• Requirement of a marketing role or close collaboration with sales and mar-
keting

Implementation Details

Common sales and marketing tools can be utilized to manage contact informa-
tion, costumer lists, and newsletter management. A marketing role can be created
within the portal provider teams. Additionally, a close collaboration with sales
and marketing teams can support the tailoring of marketing content and newslet-
ter creation.

Related Standards

• Design Thinking (Plattner et al., 2010)

• Focus on Value (Limited & Office, 2019, p. 39)

Related Patterns

API products and user stories provide a clear path to marketing. The creation of
API products is documented in Pattern 10: Tailoring APIs to products. Pattern 11:
API product validation and Pattern 12: Idea backlog document complimentary solu-
tion approaches that support the collection of API consumer contact information
and related contextual data.

Changelogs, as documented in Pattern Candidate 57: Changelogs, can be used in
addition to newsletter. For instance, a newsletter can link to the changelog to
provide a more technical view of the promoted changes.

Known Uses

• C2, C3, C4

5.7.19 Pattern 19: Customer success stories

Stakeholders

The following applicants are derived from the study data:

• Portal provider

The following potential collaborators are derived from the study data:

• API consumer

• Sales and marketing

Concerns

• How to engage business roles of the API consumer?

• How to market API offerings to non-technical roles?

• How to communicate with API consumers?

Example

Figure 5.12: Daimler Developer Portal - Success Story

5.7 API Management Patterns 127

As described in the example of Pattern 17: Role-based marketing, Mercedes-Benz
utilizes role-based marketing on its developer portal. Figure 5.12 illustrates a
part of the business and enterprise marketing material. The user is presented a
success story35. The success story describes one successful API integration. The
name of the API consumer is presented with a short description about the inte-
grated API product and the achievements of the integration. Furthermore, the
success story quotes a sales and marketing manager from the API consumer in
focus. The quotes underlines the ease, success, and outcome of the integration.
Interested readers can click on ’more’ to get redirected to the full case of the suc-
cessful integration36.

Context

The API consumer organization consists of different teams, roles, and stakehold-
ers. The API documentation targets primary the application developer but other
stakeholders are also involved in the buy-decision that has to be made before inte-
grating third-party APIs. Procurement, product owners, and other management
and business roles should also be provided with a high-quality user experience.

Forces

Forces that have to be resolved and balanced:

• Different roles require additional user stories for their user experience

• API marketing material for non-technical stakeholders

Influence Factors

Table 5.22 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 19: Customer success stories.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Partner Type B2B B2C B2G none
Monetization Free In Product Contractual Per API Call

Table 5.22: Influence Factors for Pattern 19

As visible in table 5.22, this pattern is identified for APIs offered to public and
partnering third-party consumers. The solution approach is documented in pro-
duction only. In the studied cases, the number of API consumers is above 20. In

35https://developer.mercedes-benz.com/home/business
36https://developer.mercedes-benz.com/inspire/starmark

https://developer.mercedes-benz.com/home/business
https://developer.mercedes-benz.com/inspire/starmark

all cases, the platform is identified to be a developer portal. The APIs are found
to be offered to businesses, consumers, and government organizations. All vari-
ants of monetization are identified in the context of this solution approach. In the
studied cases, product APIs are not offered for free.

Solution

Success stories illustrate the purpose and return of investment of the API inte-
gration from an API consumer perspective. They are a commonly used tool to
market products and services. Each success story documents a use case of of-
fered API products and services based on a real-world example. The reference
to real-world API consumers increases trust in the platform. Success stories can
be used to promote API products to business and enterprise roles within the API
consumer organizations. The creation of success stories requires the identification
of potential success stories and collaboration with the API consumer in focus.

Consequences

The following benefits are derived from the study data:

• Enhance customer experience

• Engage costumers and strategic partners

• Focus on value creation and relevance for the customer

• Promote API platform and products

The following liabilities are derived from the study data:

• Additional effort of collaboration with API consumers

Implementation Details

The success story should promote one API product or user story. The story will
illustrate the value behind the API platform and products. The portal provider
should reach out to sales and marketing teams to collaborate on the creation of the
success story. First, the API products and user stories that should be promoted
have to be selected. Second, potential API consumers have to be identified. Well-
known firms can be used to market the prestige of the platform. As an alternative,
strategic partners or partnering API consumers can be chosen to take advantage
of existing communication channels. Next, the portal provider should reach out
to the potential API consumers. The success story idea is presented to the API
consumer. Both parties can iterate and enhance the user story in collaboration.
The API consumer can be asked to give some quotable recommendations about
the integration. The success story can also be used to promote the business of
the API consumer. This can be used as an incentive to convince the consumer to
collaborate.

5.7 API Management Patterns 129

Each success story can be added to a catalog of success stories hosted on the de-
veloper portal. The best success stories can further be referenced on the landing
page or within the marketing material for business and enterprise stakeholders.
Here, the success story is briefly summarized to describe the value of the inte-
gration. The brief summary also links to the full success story within the success
story catalog.

Related Standards

• Business Model Canvas (Barquet et al., 2011)

• Design Thinking (Plattner et al., 2010)

• Focus on Value (Limited & Office, 2019, p. 39)

• Value Proposition Design (Osterwalder et al., 2014)

Related Patterns

Pattern 10: Tailoring APIs to products draws a clear path for the creation of market-
ing material and can be used as a base line to identify success stories on a product
and user story level.

Marketing material for business and enterprise roles can be integrated using a
role-based marketing approach as described in Pattern 17: Role-based marketing.
API consumers without technical capabilities can further be supported by Pattern
16: Integration partner management.

Known Uses

• Mercedes-Benz

• C2, C3, C8

5.7.20 Pattern 20: First-level support

Stakeholders

The following applicants are derived from the study data:

• API management

The following potential collaborators are derived from the study data:

• Customer support

Concerns

• How to support a growing number of API consumers?

• How to communicate with API consumers?

• How to provide efficient support for API consumers?

• How to manage non-complex, routine API consumer requests?

Example

The API management of C13 collaborates with the in-house first-level customer
support to manage API consumer inquiries. The first-level support is installed as
the first point of contact for external API consumers. Each customer request ar-
rives at the support team, which then provides assistant for the different kind of
inquires, e.g. feature requests, bug reports, or business inquiries. Non-complex
and routine requests are answered directly by the first-level support. If needed,
the first-level support forwards and escalates issues to second-level support teams
for more advanced technical support. The second-level support consists of a team
of IT technicians. In case specialized support is required, the request is forwarded
to the third-level support which is provided by the backend and portal provider
teams.

Context

API providers have to effectively and efficiently support API consumers. One
important aspect of customer support is the management of incoming requests
(Limited & Office, 2019, p. 156). The first point of contact plays a key role in the
management tasks and dictates the flow of information and support. The portal
provider usually acts as a natural first point of contact for the API consumers. A
second-level of support is provided by the backend providers and the gateway
provider.

5.7 API Management Patterns 131

Forces

Forces that have to be resolved and balanced:

• Efficient and effective management of customer requests

• Scalability of support activities

• Transparency

• User experience

Influence Factors

Table 5.23 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 20: First-level support.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Monetization Free In Product Contractual Per API Call

Table 5.23: Influence Factors for Pattern 20

As visible in table 5.23, the pattern is applied for APIs offered to public and
partnering third-party consumers and is documented in production only. Pat-
tern 20: First-level support has not been identified in cases with less than 20 API
consumers. Both marketplaces and developer portals are found to apply the so-
lution approach. In the context of this pattern, the monetization strategy varies
across the cases.

Solution

The onboarding of a dedicated first-level customer support is a decision that has
to be made. Outsourcing support activities to a support team shields the portal
provider from non-complex and routine requests. Thus, it should be considered
if the number of those requests occupies a large percentage of the overall incom-
ing requests (Walker, 2001, p. 25). A second influence factor is the request vol-
ume (Walker, 2001, p. 27-28). If it exceeds a manageable amount for the portal
provider, a first-level support can be utilized (Walker, 2001, p. 27-28).

If the API provider organization operates a first-level support for other prod-
ucts and services, the API provider should approach the responsible stakehold-
ers and discuss the onboarding. The onboarding requires close collaboration and
thought-out processes to provide an effective customer support. Especially, the
exchange of information and requests between the first-level support and portal
provider team have to be designed.

When the dedicated first-level support is installed as the new first point of con-
tact, the portal provider becomes the second tier of support. Backend provider
and gateway provider teams can further provide a third tier of support for their
provided services. This three-tier chain of support follows state-of-the-art ap-
proaches (Walker, 2001, p. 28). The first-level support provides routine help desk
assistant. The second-level support provides overall technical support. The third-
level support is provided by experts of specific services.

Consequences

The following benefits are derived from the study data:

• Reduction and management of complexity

• Reduction of overhead for the portal provider

• Support costumers and strategic partners efficiently

The following liabilities are derived from the study data:

• Close collaboration between first-level support, portal provider, and back-
end provider required

• Technical and complex requests will not be answered immediately

Implementation Details

The goal should be to enable the customer support to solve as many requests
independently as possible. This saves time and frustration for the customer and
saves capabilities of the API provider teams.

First, the first-level support has to be onboarded. The onboarding includes knowl-
edge sharing about the API offerings. The portal documentation can be a good
starting point. Additional resources that can be provided to the customer support
team are FAQs, internal wikis, and others. This ensures that the costumer sup-
port can handle routine and non-complex inquires directly. The customer sup-
port should maintain and expand given documents whenever a non-technical or
non-complex inquiry could not been answered directly. Overtime, given the right
feedback, the costumer support can expand its area of assistance.

In case of bug reports, feature requests, or specific technical support requests, the
customer support has to forward the request to the API provider. Inter-team com-
munication has to be managed in an efficient manner to avoid loss of contextual
information and reduce the overhead of managing those requests.

Whenever a new API service, user story, or product is added to the API platform,
the portal provider has to notify the customer support about the changes. The
same goes for other life-cycle changes within the offerings.

In case the customer support is managed by a third-party organization, the API
provider can aim for a collaboration based on SLAs (Walker, 2001, p. 28).

5.7 API Management Patterns 133

Related Standards

• Focus on Value (Limited & Office, 2019, p. 39)

Related Patterns

Documentation and related artifacts are used to guide the user through the API
integration. Pattern 13: API product documentation and Pattern 14: Cookbooks can
be utilized to improve the quality of the API documentation which can lead to
fewer support requests.

Pattern 10: Tailoring APIs to products improves pricing transparency and service
discoverability by bundling API offerings into API products based on API con-
sumer needs.

To manage incoming feature requests efficiently and effectively, Pattern 21: Ser-
vice desk software can be utilized. The first level support can be supported by
maintaining a growing FAQ as described in Pattern Candidate 44: Growing FAQ.

Pattern Candidate 24: Contact form automation and Pattern Candidate 25: Smart con-
tact form can be used to improve the capabilities of the contact form of the devel-
oper portal.

Known Uses

• C3, C4, C8, C10, C13

5.7.21 Pattern 21: Service desk software

Stakeholders

The following applicants are derived from the study data:

• Backend provider

• Portal provider

The following potential collaborators are derived from the study data:

• CIO

• Customer support

Concerns

• How to support a growing number of API consumers?

• How to communicate with API consumers?

• How to provide efficient support for API consumers?

• How to manage non-complex, routine API consumer requests?

• How to resolve bug reports effectively and transparently?

• How to effectively and efficiently collaborate with first-level support?

• How to effectively and efficiently collaborate with other API provision teams?

Example

The portal provider of C2 utilizes an automated contact form on its developer
portal. The contact form follows the best practices described in Pattern Candi-
date 24: Contact form automation and Pattern Candidate 25: Smart contact form. In
a next step, the portal provider aims to integrate service desk software into the
current workflow. This enables the automatic generation of support tickets based
on inquiries formulated through the smart contact form. For each inquiry, the
API consumer receives an email with a link to a created support ticket within the
service desk software. The ticket is used internally to manage the request and to
communicate progress and support to the API consumer. Both internal commu-
nication hidden from the consumer and direct responses are possible. The goal
is to increase transparency and improve collaboration between the supporting
parties.

Context

API providers have to effectively and efficiently support API consumers. This
includes the management of incoming requests (Limited & Office, 2019, p. 156).

5.7 API Management Patterns 135

Two important aspects that have to be considered are transparency for the API
consumer and efficient collaboration between the supporting parties.

Forces

Forces that have to be resolved and balanced:

• Efficient and effective management of customer requests

• Scalability of support activities

• Transparency

• User experience

Influence Factors

Table 5.24 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 21: Service desk software.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Partner Type B2B B2C B2G none
Monetization Free In Product Contractual Per API Call

Table 5.24: Influence Factors for Pattern 21

Table 5.24 shows that the solution approach has been applied with architectural
openness of types partner and public. The platform in focus is documented to be
in production only. The number of API consumers varies across the studied cases.
This is a notable difference to the influence factors detected for Pattern 8: Data
clearance, where the number of API consumers is above 20. Both marketplaces
and developer portals are used in the context of Pattern 21: Service desk software.
The type of partner is found to be both B2B and B2C. The monetization strategy
varies across the documented cases.

Solution

Service desk software supports the service provider through automation (Lim-
ited & Office, 2019, p. 150). It follows the ITIL (2019) principle ’optimize and au-
tomate’ which states: "Human intervention should only happen where it really
contributes value" (Limited & Office, 2019, p. 39). A service desks is designed to
be a single point of contact between the service provider and consumer (Limited
& Office, 2019, p. 149-150). Each support ticket that is created through the ser-
vice desk software captures all relevant information for the individual support

case. The integration of service desk software should be considered a project that
requires planning, integration, and management capabilities.

Consequences

The following benefits are derived from the study data:

• Focus on value creation and relevance for the customer

• Increased transparency for the customer

• Reduction and management of complexity through automation

• Reduction of overhead for the portal provider

• Support costumers and strategic partners efficiently

The following liabilities are derived from the study data:

• Close collaboration between first-level support, portal provider, and back-
end provider required

• Service desk software integration project required

• Training required to utilize the service desk software

Implementation Details

First, the API provider should investigate if service desk software is utilized by
other teams within the organization. If the organization includes customer sup-
port, IT support, or similar teams, they likely utilize a dedicated service desk soft-
ware. If the API provider already collaborates with a first-level support, the inte-
gration of service desk software should come hand in hand with the onboarding
of the first-level support. Otherwise, the API provider can request the onboard-
ing onto the utilized service desk software from the support team. In case the
organization does not utilize a service desk software yet, a collaboration with top
management and procurement can be initialized to request the purchase of such
software tools for the API service management.

Second, the API provider has to integrate the service desk software into current
workflows. For instance, if a contact form is utilized, it can be used to automat-
ically create support tickets for each submitted inquiry. Service desk software
might also offer dedicated portals that can be integrated into the developer portal.
If the developer portal is publicly accessible, the portal provider should collab-
orate with legal to investigate any legal requirements for support channels and
contact information.

Third, the service desk software has to be adapted to the possible intents of the
API consumers. This ensures that no contextual information is lost. Each contact
inquiry contains information that has to be captured to effectively and efficiently
manage and fulfill the request. This is especially important if the first point of

5.7 API Management Patterns 137

contact cannot fulfill the inquiry directly. Furthermore, contact inquiries can have
very different intents that require different data to be captured. To conclude,
the support tickets should contain all required fields and be adapted to fit both
technical and non-technical support use cases.

All supporting parties have to be convinced and onboarded onto the service desk
software. This includes the backend providers. Backend providers have to sup-
port customers in case of dedicated requests regarding their offered services. The
service desk software enables efficient forwarding of service requests between the
different support tiers. Each supporting party has to be onboarded and taught
how to use the software to support the API consumer. The individual responsi-
bilities and utilization of the software has to be agreed on between all supporting
parties.

Related Standards

• Collaborate and Promote Visibility (Limited & Office, 2019, p. 39)

• Focus on Value (Limited & Office, 2019, p. 39)

• Optimize and Automate (Limited & Office, 2019, p. 39)

• Service Request Management (Limited & Office, 2019, p. 156)

Related Patterns

A service desk software can also be managed by a dedicated first-level support.
The onboarding of a first-level support team is described in Pattern 20: First-level
support.

Additionally, Pattern Candidate 24: Contact form automation and Pattern Candidate
25: Smart contact form can be utilized to connect the developer portal’s contact
form to the service desk software.

Pattern 2: Company-wide ticketing system can be utilized to manage the collabora-
tion between API provider teams.

Known Uses

• C3, C4, C8, C10, C12, C13

5.7.22 Pattern 22: Self-service

Stakeholders

The following applicants are derived from the study data:

• API management

Concerns

• How to support a growing number of API consumers?

• How to manage non-complex, routine API consumer requests?

• How to onboard API consumers efficiently?

Example

Figure 5.13: SendGrid Self-Service

SendGrid37 offers web APIs for application developers to integrate e-mail and
marketing solutions. Figure 5.13 shows the API key creation modal within the

37https://sendgrid.com/

https://sendgrid.com/

5.7 API Management Patterns 139

SendGrid API consumer dashboard38. The user can give its new API key a name
and select the permissions that should be granted. Giving the API key full access
allows the associated application to utilize all API capabilities. Billing and e-mail
address validation is excluded even with full access permissions. For this, the
user can select billing access for advanced account management. This is a security
mechanism that ensures that even with full access, regular API keys cannot access
sensible account information. Additionally, users can click on ’restricted access’
to specify fine-grained access levels for each API product. The ’create and view’
button unveils the new API key. The API consumer has to copy the key into
its application. After that, the key will never be shown again. This is another
security mechanism. The API consumer can now proceed and integrate the API
calls using the new key.

Context

API providers have to effectively and efficiently support API consumers. This
includes the onboarding of new application developers (De, 2017, p. 25-26). API
consumers have to register each application that integrates with the API platform
(De, 2017, p. 25-26).

Forces

Forces that have to be resolved and balanced:

• Efficient and effective management of API consumer onboarding

• Scalability of support activities

• User experience

Influence Factors

Table 5.25 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 22: Self-service.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Monetization Free In Product Contractual Per API Call

Table 5.25: Influence Factors for Pattern 22

Table 5.25 illustrates that the solution approach has been applied with architec-
tural openness of types partner and public. In all cases, the platform has been in

38https://app.sendgrid.com/

https://app.sendgrid.com/

production. The studied cases show a varying number of API consumers. Mar-
ketplaces and developer portals are used in the context of Pattern 22: Self-service.
Product-based, contractual, and API call-based monetization strategies are in use.

Solution

Self-service automates parts of the API integration process. Full self-service al-
lows the API consumers to register themselves and their applications to the API
platform without the need to interact with the API management altogether. The
developer portal can provide all the required automation to make a full self-
service work. This includes configuration control over billing and the developer
onboarding process (De, 2017, p. 25-26).

To enable self-service, the developer portal needs to offer the API consumers ca-
pabilities to add billing information, to accept terms of use, and other contract
related components. Furthermore, the API consumers require a mean to create
API keys. The API gateway uses API keys to identify, authorize, and authenti-
cate applications. Full self-service cannot be enabled if custom contracts or SLAs
are necessary. Nevertheless, at least parts of the process can be automated even in
case partnering API consumers require prerequisites before they can get started.

Consequences

The following benefits are derived from the study data:

• Focus on value creation and relevance for the customer

• Increased transparency for the customer

• Reduction and management of complexity through automation

• Reduction of overhead for the portal provider

• Support costumers and strategic partners efficiently

The following liabilities are derived from the study data:

• Automation project required to implement the self-service

Implementation Details

First, the monetization strategy has to be known. In case custom contracts and
SLAs have to be negotiated with new API consumers, the self-service has to be-
gin after the contractual part has been agreed upon by the API consumer and
provider. In case, the monetization strategy does not require custom contracts,
the terms of use and transparent pricing can be documented within the devel-
oper portal. This allows the API consumer to agree to named terms without the
need to interact with the API provider. The API management can collaborate
with legal to create legal material and design the required API consumer actions.

5.7 API Management Patterns 141

After the API consumers have agreed to the terms of use, they can register them-
selves on the developer portal. Two-factor authorization is commonly used by
public developer portals to secure the API consumer information. For instance,
both Twilio39 and SendGrid40 made two-factor authentication mandatory for all
API consumers.

The registration on the developer portal provides the API consumers access to a
dashboard. The consumer dashboard should provide further self-service func-
tionality. Here, the API consumer can select or upgrade plans, insert billing in-
formation, and generate API keys for its applications. To improve security, gen-
erated API keys should be shown to the user only once. The API consumer has
to ensure that the credentials are stored safe. The dashboard provides utilities to
deactivate API keys and create new ones.

Related Standards

• Focus on Value (Limited & Office, 2019, p. 39)

• Optimize and Automate (Limited & Office, 2019, p. 39)

• Service Request Management (Limited & Office, 2019, p. 156)

Related Patterns

Pattern Candidate 32: Role system in developer portal can reduce the complexity
within the developer portal. The role system within the API consumer dashboard
can be used to break down self-service functionalities into a set of user stories for
each role. This can improve the user experience of different stakeholders of the
API consumer.

Known Uses

• SendGrid, Stripe, Twilio

• C2, C3, C8, C10, C12, C13

39https://www.twilio.com/blog/mandatory-2fa-account-login
40https://sendgrid.com/docs/ui/account-and-settings/two-factor-authentication/

https://www.twilio.com/blog/mandatory-2fa-account-login
https://sendgrid.com/docs/ui/account-and-settings/two-factor-authentication/

5.7.23 Pattern 23: Multi-tenant management

Stakeholders

The following applicants are derived from the study data:

• API management

The following potential collaborators are derived from the study data:

• API consumer

• Backend provider

Concerns

• How to manage APIs within a group of subsidiary or partnering firms?

• How to centralize but allow distributed control of API management?

Example

The API management documented in C5 provides a multi-tenant API manage-
ment platform. The API management operates as an IT service supplier for a set
of subsidiary companies. Each firm within the group acts both as an API con-
sumer and an API provider. Thus, each subsidiary can provide API services that
are published through a central portal and consume other services. Some sub-
sidiary firms have special requirements and are treated as separate tenants. This
is enabled through the multi-tenant management capabilities of the API gateway
software. Each tenant is granted an own instance of the portal on which the
tenant can publish private APIs and configure its portal API management in iso-
lation. Since all portal instances are operated through a centralized API gateway,
the interoperability between APIs is still given.

Context

Within the context of a corporation with several subsidiaries and partnering firms,
a central API platform can be utilized to share API products and services across
the ecosystem. Subsidiary firms or partners might want to publish their own
private APIs and request more control over their platforms.

Forces

Forces that have to be resolved and balanced:

• Centralization efforts

• Distributed control requested

5.7 API Management Patterns 143

Influence Factors

Table 5.26 marks selected influence factors from the context of the detected cases
that utilize the solution approach described in Pattern 23: Multi-tenant manage-
ment.

Attribute Attribute Values
Architectural Openness Private Group Partner Public

Maturity Development Pilot Production
Number of API Consumers <20 >20 >10,000 na

Type of Platform Marketplace Developer Portal Backend APIs na
Partner Type B2B B2C B2G none
Monetization Free In Product Contractual Per API Call

Table 5.26: Influence Factors for Pattern 23

As visible in table 5.26, the solution approach has been applied with architectural
openness of types: group, partner, and public. Thus, in the documented cases, it
is found suitable to interact with external consumers. In all cases, the platform
has been in production. The number of API consumers is identified not to exceed
20. Both marketplace and developer portal based API management are docu-
mented in the context of Pattern 23: Multi-tenant management. In all cases, the
API offerings are directed towards other businesses and a monetization strategy
based on volume and contracts is utilized.

Solution

Multi-tenant management enables both centralized infrastructure and distributed
control. The API gateway can be configured to treat each partnering or sub-
sidiary company as a different tenant. The tenants are granted different views
of the same API ecosystem. The infrastructure of an internal API platform can be
maintained by one central gateway team and utilized within several subsidiary
or partnering companies. Thus, the API management acts as an IT service and in-
frastructure provider for each tenant. A tenant utilizes the services of the central
API management but can also utilize own configurations and hence, API manage-
ment tasks on its own portal. This enables the centralization of capabilities and
control for each tenant. Since all APIs share the same API gateway, API interop-
erability between tenants is enabled. Additionally, a central developer portal can
be provided for subsidiaries that do not see the need to be treated as a separate
tenant. Each tenant can select which offered APIs should be visible. Furthermore,
tenants can publish their own private APIs that are only visible to them.

Consequences

The following benefits are derived from the study data:

• Centralized API management for all tenants

• Custom configuration options for each tenant

The following liabilities are derived from the study data:

• Additional requirement of multi-tenant management for gateway software

• Increased complexity for API management

Implementation Details

Multi-tenant management should be avoided to reduce complexity and overhead
for the central API management [IV6]. In case the API management initiative
aims to provide API management services for a set of subsidiary or partner-
ing firms, tenant separation might be a requirement from the API consumers.
The switch between different API gateway software systems is a complex pro-
cess [IV3, IV4, IV6]. Since only a few API gateway software systems support
multi-tenant management, the requirement for multi-tenant support should be
analyzed as soon as possible to avoid the need to migrate API gateways later
on. Multi-tenant provision gives each tenant control over their API provision
management. Each tenant can decide how to manage its APIs for its API con-
sumers separately. This includes monetization strategies. The goal should be to
centralize API management as much as possible. If subsidiaries or partner firms
demand more independence or ownership, a multi-tenant system can provide a
good compromise.

Related Standards

• Collaborate and Promote Visibility (Limited & Office, 2019, p. 39)

• Focus on Value (Limited & Office, 2019, p. 39)

• Optimize and Automate (Limited & Office, 2019, p. 39)

• Service Request Management (Limited & Office, 2019, p. 156)

Related Patterns

Since each tenant is both API consumer and API provider, both Pattern 6: SLAs
with backend providers and Pattern 7: SLAs with API consumers can be utilized.

Known Uses

• C5, C8, C12

5.7 API Management Patterns 145

5.7.24 Pattern Candidate 24: Contact form automation

Customer inquires can have different intents (Limited & Office, 2019, p. 156).
Contact inquiry forwarding should be automated. A custom contact form should
allow the API consumer the selection of the inquiry type. Each inquiry should
then be processed automatically based on its type and forwarded to either a first-
level support, sales, or directly to the portal provider team. Contact form automa-
tion can be integrated with Pattern 21: Service desk software and Pattern Candidate
25: Smart contact form.

Known Uses: C2

5.7.25 Pattern Candidate 25: Smart contact form

A smart contact form can be utilized to gather specific information based on the
type of inquiry. Based on the inquiry type, different form content should be of-
fered to the user. For instance, an inquiry of type technical or bug report changes
the contact form to include input fields for log files and a selection menu of the
endpoint connected to the defect. Furthermore, it could require the user to log in
to link the inquiry to the user’s API keys and other related information.

Known Uses: C2

5.7.26 Pattern Candidate 26: Video series

The documentation can be enhanced with a video series of integration examples.
Video series document the API implementation form an API consumer perspec-
tive and can be used to illustrate common use cases or explain domain knowl-
edge.

Known Uses: C10

5.7.27 Pattern Candidate 27: Open-source SDK

Software libraries and the documentation material can be open sourced. This
invites API consumers to collaborate on the material. Public repositories can be
used to manage API consumer requests and collaboration.

Known Uses: C10

5.7.28 Pattern Candidate 28: Service validation workshops

Workshops can be used to validate service ideas across silo boundaries. Formats
like event storming41 are utilized to enable close collaboration between API man-

41http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html

http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html

agement and backend provider teams. In collaboration, the parties can evaluate
the feasibility of new services. Workshops can increase trust and improve per-
sonal relationships between the participants.

Known Uses: C5

5.7.29 Pattern Candidate 29: Account management

API providers should offer dedicated support for strategic partners. This can
include technical and non-technical support staff and integration developers that
are assigned to different API consumer accounts. The account management can
be part of the SLA between the API provider and API consumer.

Known Uses: C6, C9

5.7.30 Pattern Candidate 30: Plug-in development

The API provider can implement own API offerings into consumer-side plug-ins
for popular software ecosystems. API consumers of the ecosystem can install the
plug-in that will manage the communication with the APIs. Open-source integra-
tions promote own products within the target software ecosystem and ease the
onboarding of new API consumers. For instance, WordPress plug-ins42 enable
quick integrations of third-party services into WordPress sites. API providers can
provide custom plug-ins that ease the integration of their services.

Known Uses: C3

5.7.31 Pattern Candidate 31: Data clearing office

The exposure of new API endpoints to partner and public API consumers re-
quires collaboration with legal and other functional teams. Data can be confiden-
tial, sensible, strategic, or have other properties that require clearance. Each data
point exposed to external API consumers has to be approved by all stakeholders.
This effort can be centralized by introducing a data clearing office. A data clear-
ing office is an interdisciplinary committee which has to be contacted whenever
data is offered to external API consumers.

Known Uses: C2

5.7.32 Pattern Candidate 32: Role system in developer portal

The developer portal is a single point of information for the API consumer (De,
2017, p. 172). The API consumer utilizes the developer portal to manage its
integrations. Since the API consumer itself consists of different roles, teams,

42https://wordpress.org/plugins/

https://wordpress.org/plugins/

5.7 API Management Patterns 147

and stakeholders that collaborate to integrate APIs, the developer portal should
provide functionality tailored for each identified persona. A role-based system
enables role-based authorization strategies, and offers a better user experience
through reduced complexity.

Known Uses: C12

5.7.33 Pattern Candidate 33: Procurement integration

The API consumer organization includes different roles, teams, and stakehold-
ers that collaborate to integrate APIs. The API provider might need to convince
non-technical stakeholders of the API consumer about the value of their offer-
ings. The developer portal should provide functionality tailored for each identi-
fied persona. The API consumer’s procurement could potentially influence the
buy-decision of the API [IV12]. Traditionally, procurement teams handle the pur-
chases and require strict processes to be able to fulfill a purchase. Procurement
in traditional companies and especially in big enterprises follow strict compli-
ance guidelines. The API provider has to enable transparent pricing models and
contracts to ensure that the procurement is able to process the purchase. Further-
more, billing per API call might be difficult to integrate into traditional procure-
ment tools. As a solution, the API provider can proactively integrate procurement
functionality, e.g. SAP tooling, within the developer portal to allow automated
billing and other advantages.

Known Uses: C12

5.7.34 Pattern Candidate 34: Keyword marketing

Google Ads43 and other keyword-based marketing approaches can be utilized to
promote and sell API products. Advertisement improves visibility and discover-
ability of the offered API products and services.

Known Uses: C3

5.7.35 Pattern Candidate 35: Hackathons

Hackathons can be used to explore different solution approaches or try out inno-
vative ideas. In the context of API management, they can be used to trigger new
initiatives.

Known Uses: C7

43https://ads.google.com/intl/en_en/getstarted/

https://ads.google.com/intl/en_en/getstarted/

5.7.36 Pattern Candidate 36: Pilot workshops

Workshops can be utilized to enable close collaboration between API consumer
and API provider teams. For instance, workshops can be used to kick-off pilot
projects or to collect feedback from stakeholders. They increase trust and improve
personal relationships between the participants.

Known Uses: C5, C11

5.7.37 Pattern Candidate 37: Conferences

Conferences can be utilized to promote public or partner API products and ser-
vices. Advertisement improves visibility and discoverability of the offered API
products and services.

Known Uses: C3

5.7.38 Pattern Candidate 38: Bar camps

A bar camp creates a similar atmosphere as a conferences but does not organize
talks. Instead it is used to bring the API provider and consumer together in one
room. An organization can organize a bar camp and invite all interested parties.
It enables direct feedback and networking.

Known Uses: C11

5.7.39 Pattern Candidate 39: Tech talks

Self-marketing can be utilized to promote the API platform internally and con-
vince other teams and top management of the importance and validity of the
business case. Tech talks, road-map presentations, or similar internal conferences
can provide a stage to promote the API platforms and products.

Known Uses: C3, C4

5.7.40 Pattern Candidate 40: Intranet and social media

Similar to the solution approach described in Pattern Candidate 39: Tech talks, the
intranet and additional internal social media platforms can be used to promote
the API platform and its products. For private and group-based API platforms,
this can increase discoverability for potential API consumers.

Known Uses: C5, C7

5.7 API Management Patterns 149

5.7.41 Pattern Candidate 41: Inner source-based platforms

An API initiative can decide to inner source API platform projects. This increases
visibility, transparency, and discoverability. The internal version control code
hosting platform can be utilized to manage issues and requests of collaborators
and API consumers.

Known Uses: C7

5.7.42 Pattern Candidate 42: Declarative API platform

If API platform projects are inner-sourced, a declarative approach can be used to
add new APIs to the offering. In a declarative contribution approach, backend
providers have to commit potential configuration and documentation changes
for their API offerings directly within the code repositories of the API platform.
This code-first approach can increase the transparency of changes within the API
platform. Inner-sourcing is documented in Pattern Candidate 41: Inner source-based
platforms.

Known Uses: C7

5.7.43 Pattern Candidate 43: Support community

A forum-based support community can be integrated into the developer portal
to allow exchange between API consumers (De, 2017, p. 26). This creates a new
support channel where API consumers can collaborate and support each other
(De, 2017, p. 26).

Known Uses: C2

5.7.44 Pattern Candidate 44: Growing FAQ

An FAQ page can help to answer common questions of API consumers. It can
further be used to onboard a first level support as described in Pattern 20: First-
level support. A growing FAQ is maintained over time and updated whenever a
new common question is identified. It can consist of a public part and a private
part. The private part can be used to quickly reuse support responses while the
public part can be integrated into the developer portal directly.

Known Uses: C3

5.7.45 Pattern Candidate 45: API status

An API status page can be used to automatically report issues and defects of back-
end services and API platforms. It can be integrated into the developer portal to

automatically inform API consumers of current downtimes and issues. This can
reduce the volume of incoming redundant bug reports.

Known Uses: C2, C12

5.7.46 Pattern Candidate 46: Support hero

Incoming customer support requests can be disruptive to the current work. One
way to handle support requests in an agile way is to create a support hero role.
The role assignment rotates every sprint, every week, or bi-weekly between the
team members. The support hero has the responsibility to work on all incom-
ing requests. In a Scrum-based environment, the estimated support effort should
be considered during sprint planning meetings. Each team of the API provision
management should have its own support hero, e.g. each backend provider, por-
tal provider, and gateway provider team. This ensures that every team within
the support chain stays responsive and works on forwarded tickets. Service desk
software can ease the communication between the support heroes. Pattern 21:
Service desk software documents the implementation of such software.

Known Uses: C3, C4

5.7.47 Pattern Candidate 47: Sample projects

Sample projects are open source integration examples that utilize API products
and illustrate specific user stories. They should be published on commonly used
repository management sites such as GitHub and can be referenced by the docu-
mentation. Sample projects should be simple but working API consumer appli-
cations. They can be used as starters or references to ease the API integration. A
short documentation should be provided for how to setup the project and get it
running locally on the application developer’s machine. They can also be used to
illustrate library-based integrations as described in Pattern 15: Software libraries.

Known Uses: C10

5.7.48 Pattern Candidate 48: Internet and social media

Social media platforms allow the promotion of a public and partner-based API
platform and its products. Additionally, social media platforms can act as a place
for the community to exchange knowledge. For private and group-based API
platforms, intranet-based social media platforms can be used as described in Pat-
tern Candidate 40: Intranet and social media. To offer a dedicated forum for com-
munity support and collaboration, Pattern Candidate 43: Support community can
be utilized.

Known Uses: C2

5.7 API Management Patterns 151

5.7.49 Pattern Candidate 49: Quarterly alignment meetings

Quarterly alignment meetings between all backend providers, the gateway provider,
and the portal provider teams can strengthen the commitment and align goals.
The portal provider team can use those alignment meetings to report new API
consumer requests. Thus, alignment meetings can be used as a platform to con-
vince backend providers to implement required services for new API products.

Known Uses: C3, C4

5.7.50 Pattern Candidate 50: Scrum master resolution

In case of outage or defects of backend services, an efficient and effective collab-
oration between all provider teams is required. In most scenarios, the defect is
detected by an API consumer or through monitoring on the API gateway. The
defect has to be reported to the backend provider. In case, agile methods such
as Scrum are utilized, the prioritization and resolution of the issue can be man-
aged by the Scrum masters of each team. This improves personal relationships
between the teams and has a positive impact on the defect resolution time.

Known Uses: C11

5.7.51 Pattern Candidate 51: Supplier onboarding

Marketplaces are characterized by their architectural openness on both the de-
mand and supply side of the platform. Thus, the supply-side of the marketplace
is opened for third-party API providers. A marketplace provider has to ensure
that the API offerings are aligned and adhere to the quality standards of the plat-
form. For this, the marketplace provider should curate possible API providers
based on a defined application and onboarding process. The quality standards
should be integrated into SLAs. The utilization of SLAs is further documented in
Pattern 6: SLAs with backend providers.

Known Uses: C12

5.7.52 Pattern Candidate 52: Supplier monitoring

A marketplace provider has to ensure that the API offerings follow the qual-
ity standards of the marketplace. For this, continuous analytics and monitoring
should be integrated into the API gateway. If an API provider does not meet cer-
tain KPIs, automated notifications can be sent by the API gateway. This is further
documented in Pattern Candidate 58: Notification system.

Known Uses: C12

5.7.53 Pattern Candidate 53: API test values

API providers can offer a set of defined test values and corresponding test re-
sponses. They support the API consumer to integrate error cases and test the API
implementation in a sandbox environment. The test responses can be triggered
by defined test values within the API request. For instance, a payment provider
can provide a set of fake credit cards that each will lead to a defined error or suc-
cess API response. API consumers can utilize the fake credit cards to test different
scenarios within their applications. The API test values have to be documented
thoroughly. Pattern 14: Cookbooks provides a good starting point to abstract use
stories into documentation. In this context, the API test values can be added to
the cookbooks.

Known Uses: C9, C10

5.7.54 Pattern Candidate 54: Penetration tests

API providers have to ensure the security of their API platforms. The gateway
provider can utilize penetration tests to proof the ability of the gateway to endure
potential attack vectors. Penetration tests are usually provided by third-party
security firms that offer audits of the security of IT systems.

Known Uses: C5

5.7.55 Pattern Candidate 55: Integration levels

Internal API platforms are used to improve API discoverability and concentrate
API management tasks. An API platform initiative has to onboard API providers
and backend providers onto its API platform. A three-level scale can be utilized
to manage the integration of APIs. First, other API platforms and offerings can
be linked within an API registry. This is documented in Pattern 1: Internal API
registry. Second, the API documentation can be moved to the developer portal.
Third, the API is integrated with the API gateway of the API platform. The three-
level integration approach provides a clear integration path for internal APIs onto
an API platform and enables value-creation for the API consumer from the begin-
ning.

Known Uses: C7, C14

5.7.56 Pattern Candidate 56: Blogs

API providers can offer blogs that promote, illustrate, and document different
aspects of the integration experience, technical deep-dives, customer success sto-
ries, and others. Each blog post focuses on one topic. Thereby, blog posts do not
need to have a strong coupling with each other or to other materials. They can be
utilized to offer additional information that would not fit into other categories.

5.7 API Management Patterns 153

Newest blog posts can be linked in a weekly, monthly, or quarterly newsletter.
The utilization of newsletter is further documented in Pattern 18: Newsletter. The
creation of customer success stories is explained in Pattern 19: Customer success
stories.

Known Uses: C2, C10

5.7.57 Pattern Candidate 57: Changelogs

Changelogs can be utilized to document continuous improvements and additions
to the API offerings. Each change to an API or its endpoints is summarized within
the changelog. It provides a temporal sorted overview of the progress of the
API platform. It is generally tailored towards application developers and other
technical stakeholders.

Known Uses: C3

5.7.58 Pattern Candidate 58: Notification system

The API gateway should implement a notification system that alerts stakeholders
when backend services time out or do not meet quality parameters. Automated
e-mails and other types of notifications can be sent directly to the contact persons
of each backend service. The notification can include contextual information such
as logs, missed KPIs, and identifiers of affected clients and endpoints. Since the
API gateway is the single source of truth within the API management, it can be
utilized to automate those status messages. A notification system can increase the
reaction time. Further, the automation of those messages can ease the personal
relationship between API management and backend providers since the call to
work comes from the API gateway directly. Notification systems can support the
quality management defined in Pattern 6: SLAs with backend providers and Pattern
7: SLAs with API consumers.

Known Uses: C2, C12

154

6 Discussion

In this chapter, the three RQs are answered. The results of the study are explained
and interpreted. Further, the results are evaluated and the research approach
justified.

As specified in section Objectives, this thesis aims to identify API management
concerns and document solution patterns from an API provider perspective. To
accomplish this, we conducted 16 semi-structured interviews with API provider
stakeholders. The encoding and evaluation of the interviews lead to the creation
of 14 cases of different API platforms. The case data was used to create three
research artifacts.

• A stakeholder-relationship map details relationships between different roles,
teams, stakeholders, and software artifacts of API management. The out-
come is further compared to the literature and lays out naming conventions
for the pattern language.

• A context distribution matrix illustrates the distribution of the studied cases
across derived context attributes and values. The matrix is used to put the
studied cases into perspective.

• A pattern catalog links stakeholders and identified concerns to documented
patterns. It provides insights about API management challenges and solu-
tion approaches.

In the following, the results of this study will be discussed in more detail.

The stakeholder-relationship map illustrates that most communication between
the API provider and API consumer happens through software artifacts such as
the developer portal. The communication between the two parties is thereby
dependent on social boundary resources managed by the portal provider. This
emphasizes the importance of effective and efficient portal provision manage-
ment but it also underlines the provider-consumer relationship where the API
consumer accesses resources supplied by the API provider. Thus, the API man-
agement has to lead the initiative. The relationships between the different API
provider roles, teams, and stakeholders draw a different picture. It can be noted
that the collaboration within the API provision management lacks standard soft-
ware artifacts that support the communication. In the studied cases, most com-
munication between API provider roles, teams, and stakeholders is based on
ad hoc channels such as emails. Pattern 2: Company-wide ticketing system , Pat-
tern 6: SLAs with backend providers , and Pattern 21: Service desk software illustrate
that solution approaches exist to standardize the collaboration but feedback re-
ceived during the interviews stresses challenges of collaboration between API

155

provider entities. Examples include collaboration for quality, defect, and incident
management across team, business unit, or company boundaries. Further, the
stakeholder-relationship map emphasizes the special role of the portal provider
and API governance authority. Both have to collaborate with almost all other API
provider entities.

Next, the cases derived from the interviews where analyzed and compared based
on 20 context attributes. The attributes are derived from the literature or iden-
tified through the interview encoding. Section Influence Factors describes the
origin of every context attribute and documents occurrences and percentages of
cases for each attribute value. The attributes provide context and show the dis-
tribution of the cases. 64% of the studied cases offer APIs to partnering organi-
zations while only 43% offer API products to the public. 71% of all cases main-
tain API platforms in production. 86% of platforms offer API products among
others to businesses. 64% of the identified platforms are categorized as devel-
oper portals while 14% are either characterized as marketplaces or pure backend
APIs. The monetization strategy varied between the studied cases. Most (57%)
API provider-consumer relationships are based on a contract while 21% of the
platforms offer free API access. 43% of studied cases use a volume-based mon-
etization strategy. Described attributes directly influence the decision making of
the API management in focus and thus, lead to the identified solution patterns.
The context distribution matrix puts the results of this work in perspective and
allows a critical evaluation of the results.

To support the evaluation of the context in which each pattern has been derived,
the most important context variables of the known uses are denoted in each pat-
tern individually. We call those context attributes the influence factors that lead
to the development of the solution approach. The influence factors aim to put the
pattern into perspective and draw potential limitations to the generality of the
solution approach. For instance Pattern 15: Software libraries potentially requires
the most expenditure to implement. The solution approach is put into perspec-
tive since its influence factors illustrate that it is only applied when the number of
API consumers is above 10,000. Pattern 13: API product documentation and Pattern
14: Cookbooks detail solution approaches to improve the documentation on the de-
veloper portal. Both solution approaches are linked to cases with API platforms
in production only. The implementation of those solution approaches could still
make sense in development or pilot phases of the platform. For instance, the por-
tal provider could decide to create the first iteration of the API documentation
following the patterns. Still, the patterns are put into perspective as this has not
been the case in the studied cases.

The main outcome of this study is the pattern catalog. It follows the pattern
language developed in section Pattern Language and includes 35 pattern can-
didates and 23 patterns. As described in section Pattern Language, the rule of
three known uses is utilized to validate pattern candidates. Each validated pat-
tern appeared to have more than three known uses within the studied cases. The
documentation of the patterns follows best practices identified in the pattern lit-
erature. Each pattern includes linked stakeholders that act as applicants, linked

157

concerns, an example, context, identified influence factors, the solution descrip-
tion, consequences, implementation details, related standards, related patterns,
and a list of known uses. The interviews are predominately based on an API
management and portal provider perspective. The provision of the API platform
has been the focus of most interviews. Thereafter, the pattern catalog focuses on
the effective and efficient provision of social and technical boundary resources
to the API consumer. In this context, the communication between API provider
entities and with the API consumer is identified as the main effort of the API
management.

The three research questions of this study can be answered based on the three
developed research artifacts.

RQ1: What concerns do API providers face in their daily work?

The pattern catalog taxonomy, which can be found in figure 1 of the appendix,
links identified stakeholders to raised concerns and detected concerns to docu-
mented solution patterns. In total, 32 concerns have been derived from the inter-
view data. The concerns are categorized using seven common concepts. 15 con-
cerns are associated with the creation of API offerings. This emphasizes the focus
on the requirements and needs of the API consumer. Four concerns target the
collaboration within the API provision management. Seven concerns are linked
to support management. One concern is associated to incident management and
quality management respectively. Two concerns are raised in the context of inter-
nal API platform initiatives and one concern is raised in the context of a venture
opportunity. The categories are derived based on common concepts of the litera-
ture such as API management concepts from De (2017) and ITIL (2019) (De, 2017;
Limited & Office, 2019). They illustrate general directions of the raised concerns.

The stakeholder-relationship map, visualized in figure 5.2, provides the naming
conventions for the API provider roles, teams, and stakeholders that are linked
to the concerns. Four API provider entities have been linked to concerns: API
management, portal provider, gateway provider, and backend provider. The API
management is used to capture all roles and teams that build the core of the API
provision management. The API management includes the portal provider and
gateway provider. One concern can be raised by several stakeholders. Concerns
raised by the API management are not linked to the portal provider and gateway
provider again. Since interviews are conducted from a portal provider or API
management perspective, no concerns are identified that link solely to the gate-
way provider. Overall, API management is associated to 16 concerns. The portal
provider is linked to 20 concerns independently. 17 concerns are raised by the
backend provider and three concerns by the API governance authority.

It can be noted that the emphasis on the daily work sets the focus on the API
provision management and less on the overall API strategy. Thus, key strategy
decisions are defined as the context for the daily work and mostly unquestioned
within the pattern catalog. For instance, the monetization strategy of the platform
is used as an influence factor and not as a solution approach to strategy concerns.
On the other hand, Pattern 3: API testing strategy documents the creation of a

testing strategy. In this case, the overall strategy and the daily work are deeply
interconnected and the strategy is a necessary solution approach. The distinction
between management and strategy and context and solution approach is made
for every context attribute and pattern individually.

RQ2: What influence factors impact the API management?

The context distribution within the studied cases is laid out in section Influence
Factors. Each pattern is linked to a set of context attributes that are identified as
key influence factors. The most important influence factors are strategic decisions
such as monetization strategies and the architectural openness of the platform.
Additionally, the maturity of the platform and the number of current API con-
sumers play an important role in the daily provision management. Other context
attributes that provide interesting insights are the initial trigger or driver and the
type of the utilized gateway. In the studied cases, 50% of API initiatives follow a
top down driver while 50% are initiated by bottom up initiatives. Multiple cases
follow both a bottom up and top down trigger, thus, the multiple counting of
cases. The gateway is found to be a commercial product in 57% of the cases while
14% of the cases utilized an open source or no gateway.

The context attributes utilized in this thesis are drawn from the SOA literature.
This emphasizes the similarity between SOAs and API platforms. Both describe
software ecosystems that may include several subsidiaries, partnering, or third-
party organizations (De, 2017, p. 12). Both are influenced by the partner type,
network topology, service granularity, the heterogeneity of the partners, value
chain integration, network governance, networking target, process output, the
trigger motivation, and more. One identified difference is the governance type.
In the studied cases, the API platform is always governance focally (100%) while
Löhe and Legner (2010) also discover polycentric approaches (21%) in studied
SOA cases (Löhe & Legner, 2010a, 2010b).

RQ3: How do API providers manage concerns and what is the rationale behind
the solutions?

The pattern catalog documents the identified solution approaches. Each pattern
is linked to targeted concerns and explains the rationale behind the solution. The
fields Forces, Context, Consequences, Solution, and Implementation Details ex-
plain different aspects of the rationale and offer a blueprint for the decision mak-
ing of the API management stakeholders.

Overall, 23 patterns are documented. The API management is linked as an appli-
cant to 10 patterns. The portal provider is identified as the applicant in 13 addi-
tional patterns. This underlines the central role of the portal management within
the provision management but can also be explained by the portal provider per-
spective of the interview data. Five patterns link the backend provider as an ap-
plicant. Two patterns are linked to the API governance. Additionally, the back-
end provider is mentioned six times as a potential collaboration partner, more
than any other potential collaborator. This emphasizes the importance of the col-
laboration between the individual backend providers and the portal provider and
overall API management. Quality management, incident management, and sup-

159

port management activities are shared across the provider entities and require
effective and efficient collaboration and communication. Sales and marketing are
linked as potential collaborators in four patterns while legal stakeholders are as-
sociated to three patterns. Customer support is mentioned in two patterns. The
three patterns Pattern 4: Pilot project, Pattern 7: SLAs with API consumers, and Pat-
tern 19: Customer success stories require active collaboration with API consumers.
Overall, eight different potential collaborators are listed in different solution ap-
proaches. Hence, API management has to collaborate and communicate with
several different roles, teams, and stakeholder across team, business unit, and
organizational boundaries.

Identified patterns such as Pattern 20: First-level support and Pattern 21: Service desk
software, and Pattern 22: Self-service stress the importance of scale within the API
management. The standardization of communication channels drives solution
approaches such as Pattern 2: Company-wide ticketing system and Pattern 21: Service
desk software. The commodification of knowledge transfer can be interpreted as
the underlying goal of Pattern 13: API product documentation, Pattern 14: Cookbooks,
and Pattern 15: Software libraries. It can be noted that the role of commoditized
knowledge embedded in software artifacts increases with the size of the platform.
This matches the conclusion drawn by Islind et al. (2016) (Islind et al., 2016).

The pattern catalog is balancing rigor and relevance by embedding sound re-
search methodologies, addressing research gaps, and following challenges from
the industry. It is meant to offer patterns and supporting information for the de-
cision making of API management. Related concerns, forces, consequences, and
influence factors are meant to support API management stakeholders in the eval-
uation of documented solution approaches. However, patterns are only meant
to sketch the solution approaches (Zimmermann et al., 2020). They provide the
overall blueprint based on the findings of expert interviews and are iteratively
improved based on peer feedback. They should not be followed blindly but uti-
lized as starting points to solve common impediments (Zimmermann et al., 2020).

The catalog offers insights and value for both research and industry. For future
research, the pattern catalog forms a domain vocabulary (Evans, 2003; Zimmer-
mann et al., 2020). Zimmerman et al. (2020) argue that a ’lingua franca’ of API
design is missing to date (Zimmermann et al., 2020). Similarly, to the best knowl-
edge, the context, concerns, and solution approaches of API management from an
API provider perspective have not been documented within the scientific litera-
ture. However, it should be noted that a wide set of handbooks and guidelines for
API management from an API provider perspective exists. Most notable for this
study, De (2017), which covers a wide set of best practices and documents state-
of-the-art solution approaches for API management and governance (De, 2017).
This thesis draws best practices from different sources also outside the scientific
literature such as standards, management books, websites, and documentations
but aims to embed the findings in a rigor research approach.

The results will be concluded in the next chapter. Additionally, an outlook for
future research is given.

160

7 Summary

In the following chapter, the status of this thesis is summarized. First, this thesis
is concluded. Both achieved and open goals will be presented. Next, identified
limitations of this thesis are discussed. Finally, an outlook for future work is
given.

7.1 Conclusion

This study offers applications for future research and API management stake-
holders from the industry. 32 API management concerns are identified and linked
to four API provider entities. 23 patterns and 35 pattern candidates are for-
mulated to document detected solution approaches. A stakeholder-relationship
map, a context matrix, and a pattern catalog answer the three RQs and provide
insights about concerns, influence factors, solution approaches, and their reason-
ing. The three research artifacts are based on 14 studied cases derived from 16
semi-structured interviews. In the following, the realized and open goals of this
thesis are presented. Next, identified limitations are discussed.

Realized Goals

The main objective of this thesis is to identify API management concerns and
document solution patterns from an API provider perspective. For this, three
RQs have been developed. The RQs are answered through the creation of three
research artifacts. First, real-world concerns of API providers are identified. Sec-
ond, influence factors for the API management are derived. Third, recurring so-
lution approaches and their reasoning are documented.

The knowledge base of this study is based on extensive literature reviews. It
builds upon research agendas from Yoo et al. (2010) and de Reuver et al. (2017)
(de Reuver et al., 2018; Yoo et al., 2010). Related areas of research have been iden-
tified iteratively by going forward and backward through citations. The literature
reviews enable the identification of further research gaps and challenges, applica-
ble research methodologies and frameworks, scientific foundations, and related
studies. Several research gaps and challenges have been found that motivate this
study (Eaton et al., 2015; Henfridsson & Bygstad, 2013; Jansen et al., 2009; Koci
et al., 2019; Mathijssen et al., 2020; Sohan et al., 2015). The development of the
research approach and sound methodologies is based on literature reviews of re-
lated work and the scientific literature of IS research. The scientific foundations

161

are used to build a common vocabulary and understanding of the socio-technical
environment in which this study is embedded. The pattern literature has been
reviewed to collect best practices for the development of a pattern language.

The research is following an iterative design science framework. Iteratively and
through continuous improvement, we developed three research artifacts. To col-
lect data, we conducted semi-structured interviews with API management stake-
holders. Each interview has been transcribed, encoded, and analyzed to evaluate
the research artifacts. New insights from the interview data triggered changes
to the research artifacts and led to new directions for additional and follow-up
interviews. Overall, 16 interviews with API provider stakeholders from different
backgrounds and industries have been conducted. More than 12 hours of inter-
view material have been transcribed and encoded to collect data for this study.
The encodings are validated through intercoder reliability. All derived pattern
candidates utilize the rule of three known uses as established by Coplien (1994)
(Buckl et al., 2008; Coplien, 1994).

To create an understanding of the relationships between different roles, teams,
and stakeholders of API management, a stakeholder-relationship map is created.
For this, the API provider entity is split into manageable entities and compared
with one another and with API consumer entities. The developed stakeholder-
relationship map provides naming conventions and insights about commonly
used collaboration that was observed within the studied cases. A context-matrix
is built to gather context attributes and values from the literature and studied
cases to identify potential influence factors and put the solution approaches into
perspective. In order to document stakeholders, concerns, and solutions in a stan-
dardized manner, a pattern catalog is utilized (Buckl et al., 2013).

Open Goals

The following open goals have been identified. First, more follow-up interviews
would allow for more status updates about the evolution and outcome of solu-
tion approaches over time (Buckl et al., 2013). Multiple interviews with the same
interview partners enable the collection of longitudinal data. De Reuver et al.
(2017) argue that longitudinal data about API management evolution is lacking
(de Reuver et al., 2018). Furthermore, follow-up questions enable iterative as-
sessment and refinement. Additional follow-up interviews with the interview
partners were not conducted due to time constraints of this thesis.

Second, documented patterns are validated using the rule of three known uses.
There are additional opportunities for further evaluation of the final pattern cat-
alog. For instance, API providers could be guided through the application of the
pattern catalog based on pattern workshops (Buckl et al., 2013). This could trig-
ger further iterations of improvement. Successful implementation of the solution
approaches would further justify the research artifacts.

Third, the identified concerns have not been reviewed in the context of the related
literature. Similar to the derivation of influence factors from the literature and

7.2 Future Work 163

the comparison of identified stakeholders with the literature, detected concerns
could be investigated based on the literature. This study lacks insights about the
novelty of the raised concerns and the similarity between concerns within similar
fields of research such as service-orientation.

Limitations

The open goals lead to limitations of this study. Identified limitations include the
lack of evaluation steps of the pattern catalog. The pattern-based design research
methodology developed by Buckl et al. (20013) describes further evaluation and
learning steps that are not applied in this thesis (Buckl et al., 2013). Instead, this
study uses the pattern-based methodology as a justification to combine behav-
ioral science and design science methodologies together but does not implement
all proposed steps of the research approach (Buckl et al., 2013).

Further limitations are in regard to the potentially lacking generality of the iden-
tified pattern catalog. All but two studied cases are based on European organiza-
tions. The offered pattern catalog is based on API management platforms from
several industries and different context and influence factors. The generality is
limited however by the lack of interviews with international API provider stake-
holders.

Additionally, only 43% of the studied platforms offered API platforms to public
third-party developers and only 21% of the studied cases interacted with more
than 10,000 API consumers. Islind et al. (2016) stresses the importance of research
about smaller API platforms but the lack of scale does affect the generality of the
pattern catalog nonetheless (Islind et al., 2016).

7.2 Future Work

In the following, the open goals and limitations are connected to an outlook for
future research. In the previous section, the lack of generality of the pattern cat-
alog is addressed. However, the focus on mostly established firms from Europe
can be used in the future as a foundation to identify differences to solution ap-
proaches utilized by incumbent technology firms. The detection of differences
could lead to identification of further legal, economic, social, technological, and
organizational barriers as described by Bondel et al. (2020) (Bondel et al., 2020).
Islind et al. (2016) calls for further research about the fine-tuning of platform
boundary resources in small-scale contexts. The lack of scale within the studied
API platforms can be utilized to better understand the first steps within the cre-
ation of API platforms. For this, further iterations of the pattern catalog could
focus on API platforms in early stages of development and pilot phases.

Future work should further emphasize longitudinal data (de Reuver et al., 2018;
Eaton et al., 2015). The collection of longitudinal data requires long-term research

but is identified as a critical research gap within the platform and boundary re-
sources literature (de Reuver et al., 2018; Eaton et al., 2015).

Finally, this thesis identified the similarities between API management and service-
orientation. Similar to Zimmermann’s (2017) discussion of the similarities be-
tween microservices and service-orientation, the interconnection of API manage-
ment and service-orientation should be investigated (Zimmermann, 2017). Cur-
rent literature understands API management and service-orientation as related
but distinct fields of research (De, 2017, p. 12). Future research should investigate
if the instigation of the API Economy and advancements of cloud computing and
remote service communication lead to an advancement of the understanding of
SOA. With the focus on service-orientation within API management and the uti-
lization of new standards and technologies within SOA, the merging of the two
fields of study should be researched.

List of Figures

2.1 API Management Platform Hierarchy from De (2017) 20

4.1 Research Framework following Hevner et al. (2004) 27

5.1 Meta-Model of the Pattern Language 35
5.2 Stakeholder-Relationship Map . 39
5.3 API Management Responsibilities 42
5.4 Pattern Catalog Taxonomy . 50
5.5 Service Value Chain Activities from ITIL 51
5.6 Twilio Product Overview Page . 88
5.7 Stripe Integration Guides . 101
5.8 Stripe Integration Guide . 105
5.9 Stripe’s JavaScript Library on npm 110
5.10 Twilio Integration Partners . 115
5.11 Role Selection on Mercedes Developers 120
5.12 Daimler Developer Portal - Success Story 126
5.13 SendGrid Self-Service . 138

1 Pattern Catalog Taxonomy - Appendix Version 181

165

166

List of Tables

5.1 Interviews . 32
5.2 Cases . 32
5.3 Context Distribution Matrix . 44
5.4 Influence Factors for Pattern 1 . 54
5.5 Influence Factors for Pattern 2 . 58
5.6 Influence Factors for Pattern 3 . 62
5.7 Influence Factors for Pattern 4 . 66
5.8 Influence Factors for Pattern 5 . 70
5.9 Influence Factors for Pattern 6 . 74
5.10 Influence Factors for Pattern 7 . 78
5.11 Influence Factors for Pattern 8 . 82
5.12 Influence Factors for Pattern 9 . 86
5.13 Influence Factors for Pattern 10 . 89
5.14 Influence Factors for Pattern 11 . 94
5.15 Influence Factors for Pattern 12 . 98
5.16 Influence Factors for Pattern 13 . 102
5.17 Influence Factors for Pattern 14 . 106
5.18 Influence Factors for Pattern 15 . 110
5.19 Influence Factors for Pattern 16 . 116
5.20 Influence Factors for Pattern 17 . 120
5.21 Influence Factors for Pattern 18 . 124
5.22 Influence Factors for Pattern 19 . 127
5.23 Influence Factors for Pattern 20 . 131
5.24 Influence Factors for Pattern 21 . 135
5.25 Influence Factors for Pattern 22 . 139
5.26 Influence Factors for Pattern 23 . 143

167

168

Bibliography

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web Services: Concepts,
Architectures and Applications (2004. Edition). Berlin ; New York, Springer.

Amaravadi, C. S. (2014). Office Information Systems: A Retrospective and a Call
to Arms. Journal of Software Engineering and Applications, 07(08), 700–712.
https://doi.org/10.4236/jsea.2014.78065

Armstrong, M. (2006). Competition in Two-Sided Markets. The RAND Journal of
Economics, 37(3), 668–691.

Barquet, A., Cunha, V., Oliveira, M., & Rozenfeld, H. (2011). Business Model Ele-
ments for Product-Service System. In Functional Thinking for Value Creation
(pp. 332–337). https://doi.org/10.1007/978-3-642-19689-8_58

Basole, R. C. (2016). Accelerating Digital Transformation: Visual Insights from
the API Ecosystem. IT Professional, 18(6), 20–25. https://doi.org/10.1109/
MITP.2016.105

Beck, K. (2002). Test Driven Development: By Example (1. Edition). Boston, Addison-
Wesley Professional.

Beck, K., & Andres, C. (2004). Extreme Programming Explained: Embrace Change
(2nd edition). Boston, MA, Addison-Wesley Professional.

Bianco, V. D., Myllarniemi, V., Komssi, M., & Raatikainen, M. (2014). The Role of
Platform Boundary Resources in Software Ecosystems: A Case Study, In
2014 IEEE/IFIP Conference on Software Architecture, Sydney, Australia, IEEE.
https://doi.org/10.1109/WICSA.2014.41

Billé, R. (2010). Action without change? On the use and usefulness of pilot exper-
iments in environmental management. S.A.P.I.EN.S. Surveys and Perspec-
tives Integrating Environment and Society, (3.1).

Boisot, M. H. (1986). Markets and Hierarchies in a Cultural Perspective. Organiza-
tion Studies, 7(2), 135–158. https://doi.org/10.1177/017084068600700204

Boland, R., Tenkasi, R., & Te’eni, D. (1994). Designing Information Technology
to Support Distributed Cognition. Organization Science, 5, 456–475. https:
//doi.org/10.1287/orsc.5.3.456

Bonardi, M., Brioschi, M., Fuggetta, A., Verga, E. S., & Zuccalà, M. (2016). Fos-
tering collaboration through API economy: The E015 digital ecosystem,
In Proceedings of the 3rd International Workshop on Software Engineering Re-
search and Industrial Practice - SER&IP ’16, Austin, Texas, ACM Press. https:
//doi.org/10.1145/2897022.2897026

Bondel, G., Nägele, S., Koch, F., & Matthes, F. (2020). Barriers for the Advance-
ment of an API Economy in the German Automotive Industry and Poten-
tial Measures to Overcome these Barriers: In Proceedings of the 22nd Interna-
tional Conference on Enterprise Information Systems, Prague, Czech Republic,

169

https://doi.org/10.4236/jsea.2014.78065
https://doi.org/10.1007/978-3-642-19689-8_58
https://doi.org/10.1109/MITP.2016.105
https://doi.org/10.1109/MITP.2016.105
https://doi.org/10.1109/WICSA.2014.41
https://doi.org/10.1177/017084068600700204
https://doi.org/10.1287/orsc.5.3.456
https://doi.org/10.1287/orsc.5.3.456
https://doi.org/10.1145/2897022.2897026
https://doi.org/10.1145/2897022.2897026

SCITEPRESS - Science and Technology Publications. https://doi.org/10.
5220/0009353407270734

Boudreau, K. (2011). Let a Thousand Flowers Bloom? An Early Look at Large
Numbers of Software App Developers and Patterns of Innovation. Orga-
nization Science, 23. https://doi.org/10.2139/ssrn.1826702

Brown, W. J., Malveau, R. C., Iii, H. W. M., & Mowbray, T. J. (1998). Refactoring
Software, Architectures, and Projects in Crisis. Canada, John Wiley & Sons,
Inc.

Buckl, S., Ernst, A. M., Lankes, J., & Matthes, F. (2008). Enterprise Architecture
Management Pattern Catalog, 322.

Buckl, S., Matthes, F., Schneider, A. W., & Schweda, C. M. (2013). Pattern-Based
Design Research – An Iterative Research Method Balancing Rigor and Rel-
evance. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M.
Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, J. vom Brocke,
R. Hekkala, S. Ram, & M. Rossi (Eds.), Design Science at the Intersection of
Physical and Virtual Design (pp. 73–87). Berlin, Heidelberg, Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-38827-9_6

Buschmann, F., Henney, K., & Schmidt, D. C. (2007a). Pattern Oriented Software
Architecture: On Patterns and Pattern Languages. Chichester, John Wiley &
Sons.

Buschmann, F., Henney, K., & Schmidt, D. C. (2007b). Pattern-Oriented Software
Architecture: A Pattern Language for Distributed Computing, Volume 4 (1. Edi-
tion). Chichester, Wiley.

Calhoun, C. (2011). Communication as Social Science (and More). International
Journal of Communication, 5, 1479–1496. https://doi.org/10.1590/S1809-
58442012000100014

Chametzky, B. (2016). Coding in Classic Grounded Theory: I’ve Done an Inter-
view; Now What? Sociology Mind, 06(04), 163–172. https://doi.org/10.
4236/sm.2016.64014

Charmaz, K. (2014). Constructing Grounded Theory (2. Edition). London ; Thousand
Oaks, Calif, SAGE Publications Ltd.

Cook, S. D. N., & Brown, J. (1999). Bridging Epistemologies: The Generative Dance
Between Organizational Knowledge and Organizational Knowing. Orga-
nization Science, 10, 381–400. https://doi.org/10.1287/orsc.10.4.381

Coplien, J. O. (1994). A Development Process Generative Pattern Language, 34.
Cotton, I. W., & Greatorex, F. S. (1968). Data structures and techniques for remote

computer graphics, In Proceedings of the December 9-11, 1968, fall joint com-
puter conference, part I on - AFIPS ’68 (Fall, part I), San Francisco, California,
ACM Press. https://doi.org/10.1145/1476589.1476661

Daigneau, R. (2011). Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL
and RESTful Web Services (Illustrated Edition). Upper Saddle River, NJ, Ad-
dison Wesley.

De, B. (2017). API Management. In B. De (Ed.), API Management: An Architect’s
Guide to Developing and Managing APIs for Your Organization (pp. 15–28).
Berkeley, CA, Apress. https://doi.org/10.1007/978-1-4842-1305-6_2

https://doi.org/10.5220/0009353407270734
https://doi.org/10.5220/0009353407270734
https://doi.org/10.2139/ssrn.1826702
https://doi.org/10.1007/978-3-642-38827-9_6
https://doi.org/10.1590/S1809-58442012000100014
https://doi.org/10.1590/S1809-58442012000100014
https://doi.org/10.4236/sm.2016.64014
https://doi.org/10.4236/sm.2016.64014
https://doi.org/10.1287/orsc.10.4.381
https://doi.org/10.1145/1476589.1476661
https://doi.org/10.1007/978-1-4842-1305-6_2

Bibliography 171

de Reuver, M., Sørensen, C., & Basole, R. C. (2018). The Digital Platform: A Re-
search Agenda. Journal of Information Technology, 33(2), 124–135. https://
doi.org/10.1057/s41265-016-0033-3

Demirkan, H., Kauffman, R. J., Vayghan, J. A., Fill, H.-G., Karagiannis, D., &
Maglio, P. P. (2008). Service-oriented technology and management: Per-
spectives on research and practice for the coming decade. Electronic Com-
merce Research and Applications, 7(4), 356–376. https://doi.org/10.1016/j.
elerap.2008.07.002

Dube, L., & Pare, G. (2003). Rigor In Information Systems Positivist Case Re-
search: Current Practices, Trends, and Recommendations. MIS Quarterly,
27, 597–635. https://doi.org/10.2307/30036550

Eaton, B., Elaluf-Calderwood, S., Sørensen, C., & Yoo, Y. (2015). Distributed Tun-
ing of Boundary Resources: The Case of Apple’s iOS Service System. MIS
Quarterly, 39(1), 217–243. https://doi.org/10.25300/MISQ/2015/39.1.10

Espinha, T., Zaidman, A., & Gross, H. (2014). Web API growing pains: Stories
from client developers and their code, In 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engi-
neering (CSMR-WCRE). https://doi .org/10.1109/CSMR- WCRE.2014.
6747228

European Commission. JRC. (2019). Web Application Programming Interfaces (APIs):
General purpose standards, terms and European Commission initiatives. (tech.
rep.). Publications Office. LU.

Evans. (2003). Domain-Driven Design: Tacking Complexity In the Heart of Software.
USA, Addison-Wesley Longman Publishing Co., Inc.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., & Arbitter, P. (2014). Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud Ap-
plications (2014. Edition). Wien, Springer.

Fichter, D. (2006). Doing the monster mashup. Online, 30, 48–50.
Fichter, D., & Wisniewski, J. (2009). They Grow Up So Fast: Mashups in the En-

terprise. Online, 33, 54–57.
Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures (Doctoral dissertation).
Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., & Lau, A. (2011). An Empirical

Study on Web Service Evolution, In 2011 IEEE International Conference on
Web Services. https://doi.org/10.1109/ICWS.2011.114

Fowler, M. (2002). Patterns of Enterprise Application Architecture (1. Edition). Boston,
Addison Wesley.

Fowler, M. (2006). Writing Software Patterns. https://martinfowler.com/articles/
writingPatterns.html

Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J. (1994). Design Patterns. Ele-
ments of Reusable Object-Oriented Software. Reading, Mass, Prentice Hall.

Gawer, A. (2009). Platforms, Markets and Innovation. Platforms, Markets and Inno-
vation. https://doi.org/10.4337/9781849803311

Gawer, A. (2014). Bridging differing perspectives on technological platforms: To-
ward an integrative framework. Research Policy, 43(7), 1239–1249. https :
//doi.org/10.1016/j.respol.2014.03.006

https://doi.org/10.1057/s41265-016-0033-3
https://doi.org/10.1057/s41265-016-0033-3
https://doi.org/10.1016/j.elerap.2008.07.002
https://doi.org/10.1016/j.elerap.2008.07.002
https://doi.org/10.2307/30036550
https://doi.org/10.25300/MISQ/2015/39.1.10
https://doi.org/10.1109/CSMR-WCRE.2014.6747228
https://doi.org/10.1109/CSMR-WCRE.2014.6747228
https://doi.org/10.1109/ICWS.2011.114
https://martinfowler.com/articles/writingPatterns.html
https://martinfowler.com/articles/writingPatterns.html
https://doi.org/10.4337/9781849803311
https://doi.org/10.1016/j.respol.2014.03.006
https://doi.org/10.1016/j.respol.2014.03.006

Gawer, A., & Cusumano, M. (2014). Industry Platforms and Ecosystem Innova-
tion. Journal of Product Innovation Management, 31. https ://doi .org/10 .
1111/jpim.12105

Germonprez, M., & Hovorka, D. (2013). Member engagement within digitally en-
abled social network communities: New methodological considerations.
Information Systems Journal, 23. https://doi.org/10.1111/isj.12021

Ghazawneh, A., & Henfridsson, O. (2010). GOVERNING THIRD-PARTY DE-
VELOPMENT THROUGH PLATFORM BOUNDARY RESOURCES, 18.

Ghazawneh, A., & Henfridsson, O. (2013). Balancing platform control and ex-
ternal contribution in third-party development: The boundary resources
model. Information Systems Journal, 23. https://doi.org/10.1111/j.1365-
2575.2012.00406.x

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for
qualitative research (4. paperback printing). New Brunswick, Aldine Pub-
lishing Company
OCLC: 553535517.

Haupt, F., Leymann, F., & Vukojevic-Haupt, K. (2018). API governance support
through the structural analysis of REST APIs. Computer Science - Research
and Development, 33(3-4), 291–303. https://doi.org/10.1007/s00450-017-
0384-1

Henfridsson, O., & Bygstad, B. (2013). The Generative Mechanisms of Digital
Infrastructure Evolution. Management Information Systems Quarterly, 37(3),
896–931.

Hentrich, C., & Zdun, U. (2011). Process-Driven Soa: Patterns for Aligning Business
and It (New Edition). Boca Raton, FL, AUERBACH PUBN.

Hevner, A., & Chatterjee, S. (2010). Design Research in Information Systems (Vol. 22).
Boston, MA, Springer US. https://doi.org/10.1007/978-1-4419-5653-8

Hevner, A., R, A., March, S., T, S., Park, Park, J., Ram, & Sudha. (2004). Design
Science in Information Systems Research. Management Information Systems
Quarterly, 28, 75.

Hillpot, J. (2020). Microservices vs Web Services. https://blog.dreamfactory.com/
microservices-vs-web-services/

Hislop, D. (2002). Mission Impossible? Communicating and Sharing Knowledge
via Information Technology. Journal of Information Technology, 17(3), 165–
177. https://doi.org/10.1080/02683960210161230

Hora, A., Robbes, R., Valente, M. T., Anquetil, N., Etien, A., & Ducasse, S. (2018).
How do developers react to API evolution? A large-scale empirical study.
Software Quality Journal, 26(1), 161–191. https://doi.org/10.1007/s11219-
016-9344-4

Hou, D., & Yao, X. (2011). Exploring the Intent behind API Evolution: A Case
Study, In 2011 18th Working Conference on Reverse Engineering, Limerick,
Ireland, IEEE. https://doi.org/10.1109/WCRE.2011.24

Hussain, F., Hussain, R., Noye, B., & Sharieh, S. (2020). Enterprise API Security
and GDPR Compliance: Design and Implementation Perspective. IT Pro-
fessional, 22(5), 81–89. https://doi.org/10.1109/MITP.2020.2973852

https://doi.org/10.1111/jpim.12105
https://doi.org/10.1111/jpim.12105
https://doi.org/10.1111/isj.12021
https://doi.org/10.1111/j.1365-2575.2012.00406.x
https://doi.org/10.1111/j.1365-2575.2012.00406.x
https://doi.org/10.1007/s00450-017-0384-1
https://doi.org/10.1007/s00450-017-0384-1
https://doi.org/10.1007/978-1-4419-5653-8
https://blog.dreamfactory.com/microservices-vs-web-services/
https://blog.dreamfactory.com/microservices-vs-web-services/
https://doi.org/10.1080/02683960210161230
https://doi.org/10.1007/s11219-016-9344-4
https://doi.org/10.1007/s11219-016-9344-4
https://doi.org/10.1109/WCRE.2011.24
https://doi.org/10.1109/MITP.2020.2973852

Bibliography 173

IBM Developer Staff. (2018). APIs versus Services. https://developer.ibm.com/
devpractices/api/articles/api-vs-services-whats-the-difference/

Islind, A. S., Lindroth, T., Snis, U. L., & Sørensen, C. (2016). Co-creation and
Fine-Tuning of Boundary Resources in Small-Scale Platformization. In U.
Lundh Snis (Ed.), Nordic Contributions in IS Research (pp. 149–162). Cham,
Springer International Publishing. https://doi.org/10.1007/978-3-319-
43597-8_11

Jansen, S., & Cusumano, M. (2012). Defining software ecosystems: A survey of
software platforms and business network governance, In Software Ecosys-
tems, Edward Elgar Publishing. https://doi.org/10.4337/9781781955635.
00008

Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A Sense of Community: A
Research Agenda for Software Ecosystems, In 2009 31st International Con-
ference on Software Engineering - Companion Volume, ICSE 2009. https://doi.
org/10.1109/ICSE-COMPANION.2009.5070978

Jezek, K., & Dietrich, J. (2017). API Evolution and Compatibility: A Data Corpus
and Tool Evaluation. The Journal of Object Technology, 16(4), 2:1. https://
doi.org/10.5381/jot.2017.16.4.a2

Josuttis, N. M. (2007). SOA in Practice: The Art of Distributed System Design (1.
Edition). Beijing ; Sebastopol, O’Reilly and Associates.

Kambil, A. (2008). Purposeful abstractions: Thoughts on creating business net-
work models. Journal of Business Strategy, 29(1), 52–54. https://doi.org/10.
1108/02756660810845723

Karhu, K., Gustafsson, R., & Lyytinen, K. (2018). Exploiting and Defending Open
Digital Platforms with Boundary Resources: Android’s Five Platform Forks.
Information Systems Research, 29(2), 479–497. https://doi.org/10.1287/isre.
2018.0786

Karmel, A., Chandramouli, R., & Iorga, M. (2016). NIST Definition of Microservices,
Application Containers and System Virtual Machines (tech. rep. NIST Special
Publication (SP) 800-180 (Draft)). National Institute of Standards and Tech-
nology.

Kelly, K. (2016). The Inevitable: Understanding the 12 Technological Forces that Will
Shape Our Future. Viking.

Kendrick, T. (2015). Identifying and Managing Project Risk: Essential Tools for Failure-
Proofing Your Project (Third Edition). New York, AMACOM.

Kerr, J., & Hunter, R. (1994). Inside RAD: How to build fully functional computer
systems in 90 days or less. USA, McGraw-Hill, Inc.

Khosroshahi, P. A., Hauder, M., Schneider, A. W., & Florian, D. (2015). Enterprise
Architecture Management Pattern Catalog, 140.

Koci, R., Franch, X., Jovanovic, P., & Abello, A. (2019). Classification of Changes in
API Evolution, In 2019 IEEE 23rd International Enterprise Distributed Object
Computing Conference (EDOC), Paris, France, IEEE. https://doi.org/10.
1109/EDOC.2019.00037

Krintz, C., & Wolski, R. (2013). Unified API Governance in the New API Economy,
5.

https://developer.ibm.com/devpractices/api/articles/api-vs-services-whats-the-difference/
https://developer.ibm.com/devpractices/api/articles/api-vs-services-whats-the-difference/
https://doi.org/10.1007/978-3-319-43597-8_11
https://doi.org/10.1007/978-3-319-43597-8_11
https://doi.org/10.4337/9781781955635.00008
https://doi.org/10.4337/9781781955635.00008
https://doi.org/10.1109/ICSE-COMPANION.2009.5070978
https://doi.org/10.1109/ICSE-COMPANION.2009.5070978
https://doi.org/10.5381/jot.2017.16.4.a2
https://doi.org/10.5381/jot.2017.16.4.a2
https://doi.org/10.1108/02756660810845723
https://doi.org/10.1108/02756660810845723
https://doi.org/10.1287/isre.2018.0786
https://doi.org/10.1287/isre.2018.0786
https://doi.org/10.1109/EDOC.2019.00037
https://doi.org/10.1109/EDOC.2019.00037

Leach, P. J., Berners-Lee, T., Mogul, J. C., Masinter, L., Fielding, R. T., & Gettys, J.
(1999). Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.org/html/
rfc2616

Lemley, M. A., & Cohen, J. E. (2000). Patent Scope and Innovation in the Software
Industry. California Law Review, 89(1). https : / / doi . org / 10 . 2139 / ssrn .
209668

Limited, A., & Office, T. S. (2019). ITIL Foundation: ITIL 4 Edition (4th Edition).
TSO.

Löhe, J., & Legner, C. (2010a). SOA adoption in business networks: Do service-
oriented architectures really advance inter-organizational integration?, 16.

Löhe, J., & Legner, C. (2010b). SOA Adoption in Business Networks: Does SOA
live up to High Expectations?, 15.

Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., & Stocker, M. (2019). Inter-
face evolution patterns: Balancing compatibility and extensibility across
service life cycles, In Proceedings of the 24th European Conference on Pattern
Languages of Programs - EuroPLop ’19, Irsee, Germany, ACM Press. https:
//doi.org/10.1145/3361149.3361164

Luthria, H., & Rabhi, F. (2009). Using Service Oriented Computing for Competi-
tive Advantage, 10.

Manikas, K., & Hansen, K. M. (2013). Software ecosystems – A systematic litera-
ture review. Journal of Systems and Software, 86(5), 1294–1306. https://doi.
org/10.1016/j.jss.2012.12.026

Mathijssen, M., Overeem, M., & Jansen, S. (2020). Identification of Practices and
Capabilities in API Management: A Systematic Literature Review. arXiv:2006.10481
[cs]arxiv 2006.10481.

Maximilien, E. M., Ranabahu, A., & Gomadam, K. (2008). An Online Platform
for Web APIs and Service Mashups. IEEE Internet Computing, 12(5), 32–43.
https://doi.org/10.1109/MIC.2008.92

Medjaoui, M., Wilde, E., Mitra, R., & Amundsen, M. (2018). Continuous API Man-
agement: Making the Right Decisions in an Evolving Landscape. Sebastopol,
CA, O’Reilly UK Ltd.

Mulloy, B. (2012). Web API Design - Crafting Interfaces that Developers Love.
Newman, R., & Newman, J. (1985). Information Work: The New Divorce? The

British Journal of Sociology, 36(4), 497–515. https://doi.org/10.2307/590328
Nicholls-Nixon, C. L., & Woo, C. Y. (2003). Technology Sourcing and Output of

Established Firms in a Regime of Encompassing Technological Change.
Strategic Management Journal, 24(7), 651–666.

Nonaka, I., & Takeuchi, H. (1995). The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation (Illustrated Edition). New York,
Oxford University Press.

OpenAPI Initiative. (2020). OpenAPI Specification Repository. https://github.com/
OAI/OpenAPI-Specification

Osterwalder, A., Pigneur, Y., Bernarda, G., & Smith, A. (2014). Value Proposition
Design: How to Create Products and Services Customers Want (1. Edition).
Hoboken, Wiley.

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://doi.org/10.2139/ssrn.209668
https://doi.org/10.2139/ssrn.209668
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1016/j.jss.2012.12.026
https://doi.org/10.1016/j.jss.2012.12.026
https://doi.org/10.1109/MIC.2008.92
https://doi.org/10.2307/590328
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification

Bibliography 175

Pahl, C., Jamshidi, P., & Zimmermann, O. (2017). Architectural Principles for
Cloud Software. ACM Transactions on Internet Technology, 18. https://doi.
org/10.1145/3104028

Pallis, G. (2010). Cloud Computing: The New Frontier of Internet Computing.
IEEE Internet Computing, 14(5), 70–73. https://doi.org/10.1109/MIC.2010.
113

Papazoglou, M. P., & Georgakopoulos, D. (2003). Introduction: Service-oriented
computing. Communications of the ACM, 46(10), 24–28. https://doi.org/10.
1145/944217.944233

Papazoglou, M. P. (2008). Web services: Principles and technology. Harlow, Pearson-
/Prentice Hall
OCLC: 255863191.

Papazoglou, M. P., & van den Heuvel, W.-J. (2007). Service oriented architectures:
Approaches, technologies and research issues. The VLDB Journal, 16(3),
389–415. https://doi.org/10.1007/s00778-007-0044-3

Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., & Josuttis, N. (2017).
Microservices in Practice, Part 1: Reality Check and Service Design. IEEE
Software, 34(1), 91–98. https://doi.org/10.1109/MS.2017.24

Pautasso, C., Ivanchikj, A., & Schreier, S. (2016). A pattern language for REST-
ful conversations, In Proceedings of the 21st European Conference on Pattern
Languages of Programs, New York, NY, USA, Association for Computing
Machinery. https://doi.org/10.1145/3011784.3011788

Plattner, H., Meinel, C., & Leifer, L. (2010). Design Thinking: Understand – Improve
– Apply (2011. Edition). Berlin, Springer.

Ranabahu, A., Patel, P., & Sheth, A. (2009). Service Level Agreement in Cloud Com-
puting.

RapidAPI. (2019). API vs SDK. https://rapidapi.com/blog/api-vs-sdk/
Red Hat, Inc. (2021). What is API management? https://www.redhat.com/en/

topics/api/what-is-api-management
Ries, E. (2011). The Lean Startup: How Constant Innovation Creates Radically Success-

ful Businesses (Trade Paperback Edition). London, Portfolio Penguin.
Roberts, M., & Chapin, J. (2017). What is Serverless? O’Reilly Media, Inc.
Rotem-Gal-Oz, A. (2012). SOA Patterns (1st Edition). Shelter Island, NY, Manning

Publications.
Scarbrough, H. (1995). Blackboxes, Hostages and Prisoners. Organization Studies -

ORGAN STUD, 16, 991–1019. https://doi.org/10.1177/017084069501600604
Shnier, M. (1996). Dictionary of PC hardware and data communications terms.
Skog, D. A., Wimelius, H., & Sandberg, J. (2018). Digital Service Platform Evo-

lution: How Spotify Leveraged Boundary Resources to Become a Global
Leader in Music Streaming, In 51.

Sohan, S., Anslow, C., & Maurer, F. (2015). A Case Study of Web API Evolution,
In 2015 IEEE World Congress on Services, New York City, NY, USA, IEEE.
https://doi.org/10.1109/SERVICES.2015.43

Sørensen, C., & Snis, U. (2001). Innovation through Knowledge Codification. Jour-
nal of Information Technology, 16, 83–97. https://doi.org/10.1080/026839600110054771

https://doi.org/10.1145/3104028
https://doi.org/10.1145/3104028
https://doi.org/10.1109/MIC.2010.113
https://doi.org/10.1109/MIC.2010.113
https://doi.org/10.1145/944217.944233
https://doi.org/10.1145/944217.944233
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1145/3011784.3011788
https://rapidapi.com/blog/api-vs-sdk/
https://www.redhat.com/en/topics/api/what-is-api-management
https://www.redhat.com/en/topics/api/what-is-api-management
https://doi.org/10.1177/017084069501600604
https://doi.org/10.1109/SERVICES.2015.43
https://doi.org/10.1080/026839600110054771

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and proce-
dures for developing grounded theory, 2nd ed. Thousand Oaks, CA, US, Sage
Publications, Inc.

Takeuchi, H., & Nonaka, I. (1986). The New New Product Development Game.
Harvard Business Review.

Tan, W., Fan, Y., Ghoneim, A., Hossain, M. A., & Dustdar, S. (2016). From the
Service-Oriented Architecture to the Web API Economy. IEEE Internet Com-
puting, 20(4), 64–68. https://doi.org/10.1109/MIC.2016.74

Thomas, L., Autio, E., & Gann, D. (2014). Architectural Leverage: Putting Plat-
forms in Context. Academy of Management Executive, 28, 198–219. https :
//doi.org/10.5465/amp.2011.0105

Uludağ, Ö., Harders, N.-M., & Matthes, F. (2019). Documenting recurring con-
cerns and patterns in large-scale agile development, In Proceedings of the
24th European Conference on Pattern Languages of Programs - EuroPLop ’19,
Irsee, Germany, ACM Press. https://doi.org/10.1145/3361149.3361176

Urquhart, C., Lehmann, H., & Myers, M. D. (2009). Putting the ‘theory’ back into
grounded theory: Guidelines for grounded theory studies in information
systems: Guidelines for grounded theory studies in information systems.
Information Systems Journal, 20(4), 357–381. https ://doi .org/10.1111/j .
1365-2575.2009.00328.x

Voelter, M., Kircher, M., & Zdun, U. (2004). Remoting Patterns: Foundations of Enter-
prise, Internet and Realtime Distributed Object Middleware. Chichester, West
Sussex, England ; Hoboken, NJ, John Wiley & Sons Ltd.

Walker, G. (2001). IT Problem Management (1. Edition). Upper Saddle River, NJ,
Prentice Hall.

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future:
Writing a Literature Review. MIS Quarterly, 26(2), xiii–xxiii.

Weir, L., & Nemec, Z. ". (2019). Enterprise API Management: Design and deliver valu-
able business APIs. Packt Publishing.

Wiesche, M., Jurisch, M. C., City of Munich, Yetton, P. W., Deaken University,
Krcmar, H., & Technische Universität München. (2017). Grounded Theory
Methodology in Information Systems Research. MIS Quarterly, 41(3), 685–
701. https://doi.org/10.25300/MISQ/2017/41.3.02

Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). Research Commentary —The
New Organizing Logic of Digital Innovation: An Agenda for Information
Systems Research. Information Systems Research, 21(4), 724–735. https ://
doi.org/10.1287/isre.1100.0322

Yu, S., & Woodard, C. J. (2009). Innovation in the Programmable Web: Character-
izing the Mashup Ecosystem. In D. Hutchison, T. Kanade, J. Kittler, J. M.
Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu
Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G.
Weikum, B. J. Krämer, K.-J. Lin, & P. Narasimhan (Eds.), Service-Oriented
Computing – ICSOC 2007 (pp. 136–147). Berlin, Heidelberg, Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-01247-1_13

https://doi.org/10.1109/MIC.2016.74
https://doi.org/10.5465/amp.2011.0105
https://doi.org/10.5465/amp.2011.0105
https://doi.org/10.1145/3361149.3361176
https://doi.org/10.1111/j.1365-2575.2009.00328.x
https://doi.org/10.1111/j.1365-2575.2009.00328.x
https://doi.org/10.25300/MISQ/2017/41.3.02
https://doi.org/10.1287/isre.1100.0322
https://doi.org/10.1287/isre.1100.0322
https://doi.org/10.1007/978-3-642-01247-1_13

Bibliography 177

Zhu, W.-D., Andrew J, D., Andrew A, D., Dickerson, S., Falkl, J., Sanders, K.,
Shetty, D. G., & Wood, C. (2014). Exposing and Managing Enterprise Services
With IBM API Management. Poughkeepsie, N.Y., Redbooks.

Zimmermann, O. (2017). Microservices tenets. Computer Science - Research and De-
velopment, 32(3-4), 301–310. https://doi.org/10.1007/s00450-016-0337-0

Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., & Zdun, U. (2020). Intro-
duction to Microservice API Patterns (MAP), 17 pages. https://doi.org/
10.4230/OASICS.MICROSERVICES.2017-2019.4

Zimmermann, O., Stocker, M., Lübke, D., & Zdun, U. (2017). Interface Repre-
sentation Patterns: Crafting and Consuming Message-Based Remote APIs.
https://doi.org/10.1145/3147704.3147734

Zittrain, J. (2006). The Generative Internet. Harvard Law Review. https://doi.org/
10.1145/1435417.1435426

https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.4230/OASICS.MICROSERVICES.2017-2019.4
https://doi.org/10.4230/OASICS.MICROSERVICES.2017-2019.4
https://doi.org/10.1145/3147704.3147734
https://doi.org/10.1145/1435417.1435426
https://doi.org/10.1145/1435417.1435426

178

Appendix

1 Interview Guide

Introduction

A growing number of companies offer resources through web APIs instigating
the API Economy. Web APIs enable value-adding composition of services that al-
low new business models. API providers have to manage web APIs carefully to
incorporate changes in the ecosystems while securing internal interests. Key pa-
pers have identified a lack of research about web APIs and stress the importance
of longitudinal data. This thesis aims to identify day-to-day issues and actions
of API providers through a longitudinal study. The findings will be used to de-
velop pattern candidates that have been discussed with industry experts and API
providers.

Terminology

• API provider, the entity that provides an API

• API consumer, the costumer that accesses the capabilities of the API

• Web API, APIs that are accessible over the web

• Public API, APIs that are accessible to third-party developers outside the
organization

• Private API, APIs that are accessible inside the organization

Motivation and Format

The purpose of this interview is to identify common tasks and challenges of API
management and corresponding solution approaches. The interview is planned
to be 30 minutes. The interviewee can agree to a set of follow-up interviews to
discuss issues, solutions, and activities that emerged since the last meeting. The
follow-up interview is meant to be 15-30 minutes.

179

Terms of Confidentiality

The study data will be completely anonymized. We will only connect the follow-
ing information to the results:

• A short classification of your company

• Your role(s)

This interview will be recorded to be transcribed right after the interview. We
will delete the audio/video recording afterwards. Do you agree to recording of
this interview? (Yes / No)

Do you have any questions before we start the interview?

Kick-off Questions

• How long have you been working in IT?

• How old is the API you are working on? Is it released yet?

• Who is involved in the maintenance and development of the API?

• What processes are used for change requests and where do the requirements
come from?

• Who is using the API that you are developing?

• How does the communication and collaboration with the API consumers
look like?

Current Work

• What are you and your team currently working on?

Follow-up Questions

• Did you resolve the issue?

• Did it take more or less time than expected? Why do you think that hap-
pened?

• Did you communicate the updates with your API consumers? How?

• Were any lessons learned from fixing those issues?

2 Pattern Catalog

2 Pattern Catalog 181

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Q
23

Q
24

Q
25

Q
26

Q
27

Q
28

Q
29

Q
30

Q
31

Q
32

S1
API m

anagem
ent

P4
Pilot project

P13
API product docum

entation

P14
C

ookbooks

P16
Integration partner m

gm
t.

P17
R

ole-based m
arketing

P20
First-level support

P5
Frontend venture

P21
Service desk softw

are

P2
C

om
pany-w

ide ticketing sys.

P6
SLAs w

ith backend providers

P7
SLAs w

ith API consum
ers

P22
Self-service

P8
D

ata clearance

P9
API orchestration layer

P1
Internal API registry

P3
API test strategy

P15
Softw

are libraries

P23
M

ulti-tenant m
gm

t.

P10
Tailoring APIs to products

P11
API product validation

P18
N

ew
sletter

P12
Idea Backlog

P19
C

ustom
er success stories

Earliest detected m
aturity level w

ithin the
studied cases

D
evelopm

ent
Pilot

Production
PP

PP

PP

Engage
D

eliver and support
O

btain/Build
D

esign and transition
Plan
Im

prove
C

ore value chain activities

S2
Portal Provider

S3
Backend Provider

S4
API governance

Figure 1: Pattern Catalog Taxonomy - Appendix Version

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline

	2 Foundations
	2.1 Platforms and Boundary Resources
	2.2 APIs
	2.3 Web APIs
	2.4 SDKs
	2.5 Knowledge Transfer
	2.6 SOA
	2.7 Cloud Computing
	2.8 Web Service
	2.9 API Management
	2.10 API Economy

	3 Related Work
	4 Research Approach
	5 API Management Pattern Catalog
	5.1 Data Collection
	5.2 Pattern Language
	5.3 Roles and Stakeholders
	5.4 Influence Factors
	5.5 Concerns
	5.6 Taxonomy
	5.7 API Management Patterns
	5.7.1 Pattern 1: Internal API registry
	5.7.2 Pattern 2: Company-wide ticketing system
	5.7.3 Pattern 3: API testing strategy
	5.7.4 Pattern 4: Pilot project
	5.7.5 Pattern 5: Frontend venture
	5.7.6 Pattern 6: SLAs with backend providers
	5.7.7 Pattern 7: SLAs with API consumers
	5.7.8 Pattern 8: Data clearance
	5.7.9 Pattern 9: API orchestration layer
	5.7.10 Pattern 10: Tailoring APIs to products
	5.7.11 Pattern 11: API product validation
	5.7.12 Pattern 12: Idea backlog
	5.7.13 Pattern 13: API product documentation
	5.7.14 Pattern 14: Cookbooks
	5.7.15 Pattern 15: Software libraries
	5.7.16 Pattern 16: Integration partner management
	5.7.17 Pattern 17: Role-based marketing
	5.7.18 Pattern 18: Newsletter
	5.7.19 Pattern 19: Customer success stories
	5.7.20 Pattern 20: First-level support
	5.7.21 Pattern 21: Service desk software
	5.7.22 Pattern 22: Self-service
	5.7.23 Pattern 23: Multi-tenant management
	5.7.24 Pattern Candidate 24: Contact form automation
	5.7.25 Pattern Candidate 25: Smart contact form
	5.7.26 Pattern Candidate 26: Video series
	5.7.27 Pattern Candidate 27: Open-source SDK
	5.7.28 Pattern Candidate 28: Service validation workshops
	5.7.29 Pattern Candidate 29: Account management
	5.7.30 Pattern Candidate 30: Plug-in development
	5.7.31 Pattern Candidate 31: Data clearing office
	5.7.32 Pattern Candidate 32: Role system in developer portal
	5.7.33 Pattern Candidate 33: Procurement integration
	5.7.34 Pattern Candidate 34: Keyword marketing
	5.7.35 Pattern Candidate 35: Hackathons
	5.7.36 Pattern Candidate 36: Pilot workshops
	5.7.37 Pattern Candidate 37: Conferences
	5.7.38 Pattern Candidate 38: Bar camps
	5.7.39 Pattern Candidate 39: Tech talks
	5.7.40 Pattern Candidate 40: Intranet and social media
	5.7.41 Pattern Candidate 41: Inner source-based platforms
	5.7.42 Pattern Candidate 42: Declarative API platform
	5.7.43 Pattern Candidate 43: Support community
	5.7.44 Pattern Candidate 44: Growing FAQ
	5.7.45 Pattern Candidate 45: API status
	5.7.46 Pattern Candidate 46: Support hero
	5.7.47 Pattern Candidate 47: Sample projects
	5.7.48 Pattern Candidate 48: Internet and social media
	5.7.49 Pattern Candidate 49: Quarterly alignment meetings
	5.7.50 Pattern Candidate 50: Scrum master resolution
	5.7.51 Pattern Candidate 51: Supplier onboarding
	5.7.52 Pattern Candidate 52: Supplier monitoring
	5.7.53 Pattern Candidate 53: API test values
	5.7.54 Pattern Candidate 54: Penetration tests
	5.7.55 Pattern Candidate 55: Integration levels
	5.7.56 Pattern Candidate 56: Blogs
	5.7.57 Pattern Candidate 57: Changelogs
	5.7.58 Pattern Candidate 58: Notification system

	6 Discussion
	7 Summary
	7.1 Conclusion
	7.2 Future Work

	Appendix
	1 Interview Guide
	2 Pattern Catalog

