
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Using Secure Software Engineering Metrics to
support the automated calculation and

visualization of Team Security Maturity in
Agile Development Projects

Timo Zandonella

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Using Secure Software Engineering Metrics to
support the automated calculation and

visualization of Team Security Maturity in
Agile Development Projects

Einsatz von Metriken zur sicheren
Softwareentwicklung für die Unterstützung der

automatisierten Berechnung und
Visualisierung des Team Reifegrads in agilen

Entwicklungsprojekten

Author: Timo Zandonella
Supervisor: M.Sc. Sascha Nägele
Advisor: Prof. Dr. Florian Matthes
Submission date: 15.12.2022

I confirm that this master’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, 15.12.2022 Timo Zandonella

Abstract
New secure software engineering challenges have emerged for large-scale agile development,
such as an increase in malicious attacks and subsequent data breaches. To address them, more
security measures need to be taken, many of which fall under the responsibility of a central
security governance unit. Due to the increased workload, security governance often cannot
keep up with the agile pace of the development teams, which can result in development
teams being limited in how efficiently they can develop. One way to increase efficiency
and security levels in development teams is to give security-capable teams more freedom
and autonomy in their security decisions. Measuring a team’s security capability can be
achieved using security maturity scores, which systematically assess a team and its processes
in different areas. Assessing often relies on manual self-assessments by team members or
external audits by security specialists in the form of questionnaires, which can be skewed
and time-consuming to complete.
We propose secure software engineering metrics as a complementary team security maturity
tool to address the existing issues with assessments. Secure software engineering metrics
measure team-wide or product-specific attributes, such as the number of unmitigated vulner-
abilities or the team’s knowledge of security policies. Measurement is continuous and occurs
at all stages of the software development life cycle. However, there is no recognized collection
of high-quality metrics, and those proposed to date are often described in an unstructured
way. In addition, existing security maturity models do not use secure software engineering
metrics to calculate a security maturity score.
To address this research gap, we first create a structured catalogue of security metrics. We
establish rigorous qualification criteria for the metrics and collect the information using a
standardized catalogue format for software metrics. Additionally, we research which tools
can automatically measure the catalogued secure software engineering metrics. Second, we
integrate the cataloged metrics into a maturity model to complement the (self-)assessments
and propose a procedure to calculate a maturity score from the assessments and the secure
software engineering metrics. Third, we implement a prototype web application that en-
ables a development team and decision makers to track security metrics and their maturity
throughout the software development lifecycle.
In this work, we first briefly explain previous work on security metrics. We then present the
systematic literature review we conducted and its result, our proposed metrics catalogue.
Afterwards we depict the integration of security metrics into a security maturity model for
teams and describe the implemented prototype. To validate the functionality of the prototype,
we conducted eight interviews with industry experts. Generally the prototype was evaluated
as beneficial, a major evolution to the original team security maturity model, and a helpful
guidance tool during agile development. Finally, we summarize our work and key findings
and provide starting points for future work.

iii

Contents

Abstract iii

1. Introduction 1
1.1. Motivation . 1
1.2. Research objectives . 3
1.3. Research approach . 4

2. Foundations 5
2.1. Software security in agile software development 5

2.1.1. Agile software development . 5
2.1.2. Security during the SDLC . 6

2.2. Team security maturity . 7
2.3. Secure software engineering metrics . 8

2.3.1. Qualification criteria for security metrics 9
2.3.2. Assessing metrics with quality scores . 9
2.3.3. Tools for metric measurement collection 10

3. Methodology 12
3.1. Systematic literature review . 12
3.2. Interviews . 15

4. Related Work 17
4.1. Security metrics catalogue . 17
4.2. Security metrics for team security maturity . 18

5. Security metrics 20
5.1. Catalogue structure . 20
5.2. Team security metrics . 21

5.2.1. Knowledge domain . 21
5.2.2. Effort domain . 22

5.3. Product security metrics . 23
5.3.1. Analysis Domain . 23
5.3.2. Design Domain . 23
5.3.3. Implementation Domain . 24
5.3.4. Deployment Domain . 25
5.3.5. Maintenance Domain . 25

5.4. Measuring security metrics with security tools 26

iv

Contents

6. Team security maturity trough security metrics 28
6.1. Security metrics in TSMM . 28
6.2. Calculation of the overall security maturity score 30

7. Tool-supported security maturity 33
7.1. Use cases . 33
7.2. Backend application . 34

7.2.1. Security metrics collection . 34
7.2.2. Security maturity calculation . 36

7.3. Frontend application . 39
7.4. Evaluation . 45

7.4.1. Security maturity dashboard . 45
7.4.2. TSMM data sources . 47
7.4.3. TSMM approach . 47

8. Discussion 49
8.1. Key finding and artifacts . 49
8.2. Limitations . 51

8.2.1. Validation of research methods . 51
8.2.2. Validation of proposed software prototype 52

9. Conclusion and Future Work 54
9.1. Summary . 54
9.2. Future work . 55

A. Interview Questionnaire 56

B. Complete Catalogue of Security Metrics 57
B.1. Team security metrics . 57

B.1.1. Knowledge . 57
B.1.2. Velocity . 58

B.2. Product security metrics . 61
B.2.1. Analysis . 61
B.2.2. Design . 62
B.2.3. Implementation . 65
B.2.4. Deployment . 68
B.2.5. Maintenance . 72

B.3. SMMM Calculation . 74

List of Figures 76

List of Tables 77

Bibliography 78

v

1. Introduction

In this introductory chapter, we discuss the basic motivation and relevance for creating
a catalogue of secure software engineering metrics (security metrics), the extension of a
maturity model to measure security capabilities in an agile development team, and the need
for software-based computation and visualization of a team security maturity score. From this
motivation, we derive our research goals, which are structured by three research questions.

1.1. Motivation

Rising security ownership tension in (scaled-) agile development

Within large software engineering companies many agile development teams exist across
different dimensions, e.g. across various products, business units or countries. In these orga-
nizations, the integration of secure software engineering practices is becoming increasingly
important as the number of malicious attacks and security breaches increases year over year,
as seen in Figure 1.1.
As the risk of a successful attack increases, so does the risk of large civil fines, private
litigation, loss of customer trust, and loss of enterprise value. To implement, execute and
monitor software security processes across heterogeneous teams, organizations often have
a central IT governance and security unit responsible for these tasks. Once this unit is
established, the question of process responsibility quickly arises: which processes are handled
decentrally by the teams and which belong to the central unit? One possibility is for a team
to report to the central unit every time it wants to deploy an artifact to the public domain.
This would lead to an unmanageably high workload in the central unit and long idle times in
the development teams. In contrast, a development team could also have complete freedom
to deploy artifacts, and the central unit would only periodically pull an artifact from the
team and perform a security analysis. This would solve the problem of workload in the
central unit and development teams, but on the other hand would lead to many untested and
potentially insecure artifacts in the public domain. It becomes clear that the ideal solution
must lie somewhere in the middle.

Team security maturity resolves tension in multiple ways

To resolve the described ownership issues we need to assess on the one hand what security
competencies lie within the development team and on the other hand which security processes
can’t be handled by the team and need to be executed by a central governance and security
unit. To assess this split of security responsibilities different research and literature describe a

1

1. Introduction

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
0

50

100

150

39

63

123

Cyber Incidents

Figure 1.1.: The development of cyber incidents with losses of more than a million dollars
[32]

possible solution: the introduction of team security maturity levels. The different security
maturity levels describe the capability of an agile development team to develop secure
and security-compliant software: if a team is more mature (e.g. if it has a higher maturity
level), it is more capable. For the various stakeholders, assessing your team’s security
competency can have multiple benefits in the agile development process. Firstly, according
to the assessed maturity level a team can be granted a specific level of autonomy by the
central IT governance and security unit. By assigning a team a specific set of tasks to do
themselves autonomously, the above described ownership conflict can be resolved, as it
is clear which stakeholder is responsible for which tasks. This application is described in
detail by Schenk [115]. Furthermore, assessing the maturity levels of teams that work on
a specific product, a decision maker in the organization can better understand and predict
how secure a new product release probably is. This improves the decision quality and
can reduce the risk of successful security attacks. Finally, knowledge about the security
level of the deployed applications in a potentially very large organization is essential. With
maturity levels this organizational knowledge need can be fulfilled in a standardized way
across any organizational structure. The team security maturity model (TSMM) describes
the composition of a maturity calculation, which is described in detail in Section 2, and
additionally, it describes the process of capturing the maturity within the teams, which is
trough self-assessments.

Limitations of using (self-)assessments to deduce team security maturity

However, relying on self-assessments of team security maturity has its limitations and can
fundamentally undermine the benefits described above. In practice, useful self-assessment
questionnaires require many topics and are therefore time-consuming and labor-intensive.
This can even lead to lack of acceptance by the development team and to hasty and inaccurate
responses, as research has shown [144, p.68], [24, p.349],[87, p.M203]. Second, self-assessments

2

1. Introduction

are inherently subjective and can lead to misperceptions. Two different team members might
give different answers to the same self-assessment question. Finally, self-assessments by their
nature can only capture the security status at regular intervals (i.e. once per sprint, once
per month, once per quarter). A more precise measurement within the defined time period,
e.g. immediately prior to the introduction of an artifact or shortly after the introduction of
a new security tool, is not possible. With these limitations in mind, it becomes clear that
calculating a maturity level through self-assessments can be inaccurate and thus undermines
the fundamental goals of the maturity model described above.

1.2. Research objectives

In light of the general considerations regarding the limitations of self-assessments for assessing
team security maturity, we introduce the possibility of measuring team security maturity with
security metrics. Consequently, our research hypothesis is: Using security metrics can lead to
a more accurate assessment of team security maturity. Three research questions arise from this
research hypothesis:

Research question 1 (RQ1): Which security metrics exist and how can they
automatically be captured with the support of security tools?

In order to introduce security metrics into the computation of a team’s security maturity, we
must first create a catalogue that can be used to collect structured information about each
metric. This catalogue is the first artifact of the research. To create it and subsequently answer
the first part of RQ1, a systematic literature review was conducted. To answer the second
part, we created a matrix in which the identified security metrics are assigned to different
security tools that enable their measurement.

Research question 2 (RQ2): How can security metrics be used to assess the
security maturity of an agile development team?

To answer the posed question, we introduce the defined security metrics into the TSMM by
adapting and extending its general structure and captured information. The first step is to add
the security metrics to the model. Secondly, we extend TSMM to derive an overall maturity
score from the maturity levels of each topic or security metrics and domain. Together, this
yields the second artifact of the research, namely an adapted version of the TSMM extended
by security metrics.

Research question 3 (RQ3): How can a team’s security maturity be calculated,
represented and visualized in a self-assessment tool?

With the third research question, we attempt to bring the theoretical artifacts into practice.
This is done by extending an existing self-assessment tool with the new feature of measuring
security metrics from a team’s build pipelines, calculating the team’s security maturity scores,
and visualizing the results in a data dashboard. It becomes clear that the basis for this
functionality lies in our responses to RQ1 and RQ2. Finally, we validate the value of the
prototype with industry experts through the conduction of semi-structured interviews.

3

1. Introduction

1.3. Research approach

To find an answer to our research questions defined in Section 1.2, we apply design science, in
particular the design science research process (DSPR) of Peffers et alẇhich is an appropriate
model for several reasons [99]. First, it was developed specifically for research in information
systems, our research area, and is widely used in this field [99, p.46, p.74]. Moreover, the use
of DSPR helps us to be consistent with the earlier research of Watzelt [144]. It consists of six
phases, namely:

1. Problem Identification
2. Objective
3. Design and Development
4. Demonstration
5. Evaluation
6. Communication

The communication of this research through this publication also follows this structure. First,
the initial stages of problem identification and goal setting are described in the Introduction
and Fundamentals chapters. Second, the work in the following two phases of the DSPR -
namely, design and development and demonstration - is described in detail for each proposed
answer to the research questions in three separate chapters 5, 6, and 7. Finally, the evaluation
conducted is described in these chapters as well as in 8. Phase 6 of the DSPR, communication,
is therefore completed by this publication.

4

2. Foundations

The following chapter describes the theoretical basis for the research. To set the research
space, the general concepts of agile software development and secure software engineering
are first identified. Then, in Section 2.2 the concept of maturity and specifically team security
maturity is described. Finally, security metrics and their attributes are presented at a finer
granularity.

2.1. Software security in agile software development

2.1.1. Agile software development

Agile software development is a management approach to software development, where

• small increments of software are released frequently
• any requests for change can be responded to quickly
• and the work happens in a self-organizing manner [40, p.1214], [12].

In 2021 over 94% of software engineering enterprises practice some form of agile software
development [38, p.6]. This overwhelmingly large adoption rate founds partly on the different
agile methods and frameworks that exists for all possible software engineering environments.
Introducing agile methods was found to have large benefits to the velocity and quality of
software, as visible in multiple studies (e.g. [69, p.379], [66, p.833]). For these reasons one
could draw the conclusion that they are fundamentally necessary for software enterprises to
stay in competition.
Our research focuses on a special agile environment scenario, which is a large-scale software
development enterprise. We define large as having a team size of over 50 people in at least
six teams, following the definition by Dikert [39, p. 88] and the usage of the definition by
Watzelt [144]. Because of the scale of these large software engineering environments it is
important to have standardized and reliable software production and delivery procedures
during the software development life cycle (SDLC) [39, p.101], [44, p.3]. Our definition of
a SDLC follows the version of the Unified Process Model by Jacobson [55] with five phases.
In Figure 2.1 a visualization of the SDLC and its phases is displayed. This structure will
be used throughout the research. Implementing the SDLC especially in a large enterprise
can be done by following the development operations (DevOps) philosophy and approach,
which describes how the SDLC is implemented in regard to different supporting tools or
information exchange between people and teams [107].

5

2. Foundations

Analysis

Design

Imple-
men-
tation

Deploy-
ment

Mainte-
nance

Figure 2.1.: The five phases of the SDLC

2.1.2. Security during the SDLC

The concept of software security describes the protection of information confidentiality,
integrity and availability against intentional attacks by unauthorized parties [73, p.1]. When
developing complex applications, it should not be an afterthought, but should be deeply
integrated into the agile development process and SDLC to ensure sufficient security [80,
p.1164], [108, p.2]. Early and accompanying security efforts can increase efficiency, reduce
cycle-time and reduce costs [1, p.6], [29, p.531], [94, p.5]. An increase in the security activities
implemented often leads to more secure software artifacts, which can increase customer trust
in and satisfaction with the software [33, p.23]. Better security efforts may even result in
the ability to enter new markets or gain a competitive advantage, i.e. in security-relevant
applications in the healthcare or public sectors, which are only accepted if they meet very
high regulatory security requirements. [127].
To reach a satisfying security level and practice security engineering, many activities during
the SDLC need to be executed. These activities are describes in development security
operations (DevSecOps), which as the name suggests is an extension of the traditional
DevOps approach and extends it with security topics. DevSecOps activities are deeply
integrated in the entire SDLC: At the beginning the security requirements are analyzed,
the risk and risk tolerance of the developed application is determined and afterwards in
the design and implementation phases the developed software should always adhere to
the set risk tolerance [107]. Later in the cycle in subsequent phases such as deployment
and maintenance automated tools can be used to automatically detect potential security
issues [107]. DevSecOps is an important part of the shift security left trend, which describes
that security aspects should be handled as early as possible in the SDLC, to reduce the amount
of complicated and costly security efforts that need to be taken at a later stage [74].
Different teams, business units and companies implement DevSecOps vastly differently, by
choosing different communication strategies, committing for different security processes or

6

2. Foundations

different security tools. Measuring and evaluating the various actions taken is critical, as
otherwise it is not possible to understand the success of the efforts made and improve the
security posture [26, p.265]. One possibility to evaluate the success of the taken approaches is
by calculating the team security maturity.

2.2. Team security maturity

Team security maturity describes an approach to assess the capability of an agile development
team to develop secure and security-compliant software [144, p.15]. Our research focuses on
the TSMM, which structures the development team information in a grid within different
security domains that encapsulate relevant security topics. Assessing the capability has
multiple benefits. The achieved capability can reduce the need for security governance
in a central governance unit and empower a team’s autonomy [144, p.80]. In addition, it
can guide the development teams efforts, as the maturity scores include information about
underperforming and satisfying security domains (see Section 6.2). The existing literature
identified a multitude of usages for maturity levels for the different stakeholders in an agile
development project and enterprise. Starting at the lowest aggregation in the development
team itself, a maturity ranking can be used to predict how secure a software iteration is and
with what confidence we can make this assumption [138, p.6], [106, sec. 5]. On a business unit
level the maturity level can additionally be used to award teams with high maturity a higher
degree of autonomy as extensively described by Schenk [115], which can reduce the need for
costly and inefficient outsourcing of security processes while still maintaining a high level
of security [115], [129, p.2]. And on an organizational level maturity level can additionally
be used to get a broad organizational security overview, which can be used for adoption of
the corporate security efforts or in an ideal case to exploit new security-conscious markets as
described in Section 2.1.
Information about the team’s security level is collected with three pillars: self assessments,
external assessments, and automated. The first two pillars are assessed in the form of
questionnaires, by team members or respectively by external auditors. The automated pillars
includes suggestions on how to automatically measure issues with security tools. However,
Watzelt intentionally did not include structured information to the extent of the other two
pillars to allow for more flexible selection of security tools by the organizations using the
TSMM [144, p.55].
Each topic that is described in the assessment pillars includes a short description, more
information or an example, and the four maturity levels “No”, “Partly”, “Largely” and “Fully”
on which it needs to be assessed. In Table 2.1 an exemplary topic from the self assessment
pillar is displayed.
While assessments certainly allow to collect data about all the team security efforts and
the products security level, there are also concerns about using them [65, p.272], [128, p.5].
Firstly, assessments can be time-consuming as they need to be quite extensive to give a
good picture [100, p.83], [86, p.4]. In total the TSMM includes 38 topics in seven security
domains, that need to be assessed, and each topic itself includes four different maturity

7

2. Foundations

Name Information

We peer review our security
documentation.

For example, we look at the documentation during code
review to ensure it is sufficient.

No Partly Largely Fully

We have
never
reviewed any
documenta-
tion.

For important security
documents, we
sometimes perform
reviews, but only
briefly.

We review the
documentation
together (at least 2)
but often remain
superficial.

We have ensured that at
least two people
sufficiently review the
quality documentation for
all security-related
components.

Table 2.1.: An exemplary TSMM topic [144, p.104]

level descriptions. Secondly, they allow for subconscious or malicious misjudgements by
participants [87, p.203]. Finally, because of their nature they only give periodic rather than
continuous insights and therefor adoptions by the team between assessments cannot be
measured. To mitigate these issues we integrate security metrics into team security maturity.

2.3. Secure software engineering metrics

Security metrics are quantifiable measurements used for assessing security related product
imperfections and the teams’ security efforts during the SDLC [58], [26], [57]. With security
metrics uncertain and subjective aspects of software engineering are made definite and
quantifiable [10, p.8]. They can eliminate doubt about the status-quo and the quality of
security decision-making can be improved, which qualifies them as a valuable tool for
security information collection [10, p.9], [62, p.9], [60, p.82]. Some aspects of security metrics
also indicate that they can be often more suitable than assessments. Firstly, they can be
continuously measured by security tools without much manual effort, which is described in
detail in Section 2.3.3. Secondly, they do not have any subjective component and are therefore
often a more consistent and comparable [104, p.3]. Finally, they can demonstrate the extent to
which regulatory security requirements, such as certain ISO standards, and product security
requirements, such as securing software endpoints, are met [50, p.626]. It is therefore often
beneficial to teams and enterprises to introduce and measure security metrics continuously.
In itself the concept of security metrics is not new, in fact research and application was
conducted as early as the 1980s [140, p.88]. However, as security becomes more important as
shown in Figure 1.1, the approach has become more popular again as a supporting tool for
DevSecOps.

8

2. Foundations

2.3.1. Qualification criteria for security metrics

An universally applicable selection of security metrics doesn’t exist, as there is no recognized
industry standard for describing security metrics, there is often no understanding of what
metrics can be used for and security metrics are heavily reliant on context [85, p.102], [3, p.2].
As a result, many new and specialized metrics have been developed that are often of low
quality and not transferable to other contexts [85]. For these reasons, Jaquith has established
five rules that define what characteristics a useful software metric must meet [58].

According to these rules, a metric needs to be

• consistently measured without subjectivity

• cheap to gather

• expressed as a cardinal number or percentage instead of ordinal labels on a scale

• expressed using at least one unit of measure

• contextually specific showing relevancy to decision-makers, so they can act accordingly

As presented security metrics have different levels of quality depending on different metric
attributes, but only high-quality metrics are suitable for decision-making [43, p.8], [58], [3,
p.2]. Therefore, in order to create a relevant and applicable catalogue of security metrics, a
qualification procedure must be developed and applied to candidates. The procedure used in
the research applies Jaquith’s presented criteria, and is described in detail in section 3.1.

2.3.2. Assessing metrics with quality scores

As shown in Section 2.3.1, security metrics are of different quality and relevance to decision-
makers. Therefore, different frameworks have been developed to assess the quality and
value of metrics, such as the security metrics maturity model (SMMM) by Muthukrishnan
and Palaniappan [85]. It can be used to score metrics for a total of seven quantitative and
qualitative fields. For each attribute, a metric can be assessed on an ordinal scale of 0, 0.5, or
1. The scores are then combined into a single percentage and a high percentage implies the
metric is meaningful. For illustration purposes, the calculation for an exemplary metric is
shown in Table 2.2.

Security Test Failure Rate (87.5% + 83.33%) / 2 = 85.4%

Quantitative Qualitative

Quantifiable 1.0 Measurability 1.0
Readiness 1.0 Meaningfullness 0.5
Repeatable 1.0 Correctness 1.0
Cardinal 1.0

Score 3.5/4.0 (87.5%) Score 2.5/3.0 (83.33%)

Table 2.2.: An exemplary calculation with the SMMM framework

9

2. Foundations

2.3.3. Tools for metric measurement collection

Many security metrics can be measured semi- or fully automatically during the SDLC using
security tools capable of measuring various static and dynamic aspects of the software
artifact [130, p.78]. There are four main categories of software security tools, namely static
application security testing (SAST), dynamic application security testing (DAST), interactive
application security testing (IAST), and software composition analysis (SCA), which directly
measure attributes of the software artifact [137, p.2]. In addition, security metrics can often
be measured by security tools that indirectly assess security by collecting and aggregating
metric measurements from different security tools [48, p.1]. We include two tool categories
with this functionality: security information and event management (SIEM) and vulnerability
management tool (VMT). In the following list, we explain the purpose, advantages, and
disadvantages of each tool category with respect to measuring security metrics, and provide
an example tool from each category.

• As the name suggest SAST performs static analysis of the written code without execut-
ing it [147]. It can therefore be used in early stages of the SDLC and is mainly able to
uncover security vulnerabilities and possible attack vectors such as a race condition or a
buffer overflow [23, p.91], [18, sec.5.2.1]. Generally tools are relatively easy to set up and
interpretation of the returned security metrics measurements is straightforward, but
many tools report false-positive vulnerabilities without actually requiring action [118,
p.471].
→ Example Application: SonarQube1

• DAST is an approach which involves running an application and attempting to attack
it from an attacker’s perspective [98, p.558]. It is therefore able to find problems during
runtime that cannot be detected with SAST tools, such as authentication and network
configuration errors [118, p.472]. But because of this, analysis also cannot be performed
at early stages of development, and interpretation of security metrics measurements
can generally be more complex and time-consuming [118, p.472], [135, p.25859].
→ Example Application: OWASP ZAP2

• IAST combines the ideas of SAST and DAST to analyze whether a vulnerability is a false
positive or can actually be exploited [133, p.1]. IAST tools can continuously monitor
applications without regular scans and, unlike DAST tools, can be easily integrated
into a DevSecOps pipeline [133, p.2]. However, it is a relatively new concept and
therefore not as well researched in academia or as widely used in industry as other
approaches [139].
→ Example Application: Seeker3

1https://www.sonarqube.org/, accessed August 2022
2https://www.zaproxy.org/, accessed August 2022
3https://www.synopsys.com/software-integrity/security-testing/interactive-application-securit

y-testing.html, accessed August 2022

10

https://www.sonarqube.org/
https://www.zaproxy.org/
https://www.synopsys.com/software-integrity/security-testing/interactive-application-security-testing.html
https://www.synopsys.com/software-integrity/security-testing/interactive-application-security-testing.html

2. Foundations

• SCA is used to identify the potential security vulnerabilities and risks from open-source
dependencies used in an application [126]. Open-source components can be insecure
for example because they are no longer maintained and outdated, there exists an
unintentional security-relevant bug in the open source dependency or it itself includes
an insecure dependency [67, p.92], [126].
→ Example Application: Dependency Track4

• A VMT manages the applications security vulnerabilities with the help of different
security tools. Often, VMT contain a list of unmitigated vulnerabilities, their severity,
and their origin. The source for this information are vulnerability databases such as the
“Common Vulnerabilities and Exposures” list5.
→ Example Application: Defect Dojo6

• SIEM systems are used to continuously monitor security events during production,
i.e. through log files [92, p.519]. When a SIEM detects an event and security experts
confirm that the event is malicious, a set disaster recovery plan that reduces the damage
to the compromised assets should be carried out [15, p.35].
→ Example Application: OSSIM7

Additionally some security metrics can be measured with a project management tool (PMT),
which is a tool that can track development tasks, issues, velocity and documentation during
development [93, p.19]. An example for a PMT is the proprietary software Jira8 or the open
source security requirement management tool OpenRat9. In particular, metrics that deal
with the speed of security development or the quality and compliance with defined security
requirements can often only be tracked with it. We therefor include PMTs in our research.

4https://owasp.org/www-project-dependency-check/, accessed August 2022
5https://www.cve.org/, accessed December 2022
6https://www.defectdojo.org/, accessed November 2022
7https://cybersecurity.att.com/products/ossim, accessed October 2022
8https://www.atlassian.com/jira, accessed August 2022
9https://owasp.org/www-project-securityrat/, accessed December 2022

11

https://owasp.org/www-project-dependency-check/
https://www.cve.org/
https://www.defectdojo.org/
https://cybersecurity.att.com/products/ossim
https://www.atlassian.com/jira
https://owasp.org/www-project-securityrat/

3. Methodology

In our research we use two different research methods, which we describe in the following
sections. Furthermore, we discuss the approaches and explain the theoretical background
behind the research decisions taken.

3.1. Systematic literature review

To create a catalogue of security metrics a structured and systematic literature review was
conducted. In short, the goal of the review was:

1. Identifying existing security metrics in the literature

2. Collecting structured information about the different identified security metrics

The review was conducted in a structured manner following the first two phases described
by Webster and Watson [145]. We chose this approach because it has a focus on information
systems and fits our research. Firstly, we choose a selection of literature search engines and
define the used search strings. Secondly, we conduct a semi-automated search of literature
with the defined parameters. Finally, we applied a qualification procedure to the found
metrics to filter out lower quality metrics.

Phase 1: Foundation

In total the literature review was conducted within seven search engines, as no single
source can include all relevant publications [21, p.120]. This selection of the used sources
is derived from other literature reviews on security metrics [47, p.245], [21]. Three of the
sources are direct literature publishing libraries, namely IEEE, ACM, and Science Direct
(category 1). Scopus and Google Scholar were selected as literature search engines, as they
collect publications from various sources and make them available at a central access point
(category 2). Finally, the TUM Online Publication Access Catalog1 and a normal Google
search was performed to collect non-peer reviewed publications (category 3).
For the identified publications we also define two qualification criteria, to make the research
linguistically feasible and only include up-to-date literature:

• The publication must be published in the last twenty years (2002-2022).
• The publication is written in English.

1https://www.ub.tum.de/tumopac, accessed August 2022

12

https://www.ub.tum.de/tumopac

3. Methodology

After selecting the literature sources, we proceeded to define the search terms used. We
decided on six different search terms, which were formulated based on prior experience
and other publications in the field of security metrics [47, p.145]. Some search strings are
security-specific, while others refer to general software metrics to not exclude metrics listed
in publications which describe metrics of different types. A list of the search strings can be
seen in Table 3.1.

ID String Category

SSEM Secure AND Software AND Engineering AND Metrics Security
ITSM IT AND Security AND Metrics Security
SSM Software AND Security AND Metrics Security
DSOM DevSecOps AND Metrics Security
SDM Software AND Development AND Metrics General
SQM Software AND Quality AND Metrics General

Table 3.1.: The defined search strings including their abbreviation and category

Phase 2: Synthesis and analysis

With the selected literature search engines and the defined search strings we conducted our
structured literature review. During the review it became apparent, that some used literature
search engines delivered many results and therefore a stopping criterion was required for the
feasibility of the research. For these search engines the stopping rule described by Garousi
was used to abort the search [46, p.17]. It states, that the first 100 search hits are always
examined and afterwards the search only continues, if there are relevant hits that revealed
additional search results on the last page of the search engine. Using these termination
criteria, you can see the number of relevant unique publications identified by each source
and search term in Table 3.2. In the total the research includes 77 unique publications from
the seven used databases and search engines. All search strings used provided new results.

Security General Sum

SSEM ITSM SSM DSOM SDM SQM

1

IEEE 3 6 5 2 3 19
ACM 1 1 1 3
Science Direct 1 1

2
Scopus 1 1 3 1 4 1 11
Google Scholar 1 4 5 1 3 14

3
OPAC 5 2 2 1 10
Grey Literature 3 5 11 19

Sum 5 16 20 18 10 8 77

Table 3.2.: The amount of relevant publications found in the defined literature sources

13

3. Methodology

As described in Section 2.3.1 and 2.3.2, metrics can be of variable quality. This became evident
within the described security metrics in the identified literature. We therefore carried out
a metric-specific procedure so only high-quality security metrics qualify for the catalogue.
It consists of three stages and only if a metric passes all three stages of this procedure it is
included in the catalogue.

1. Assuring that the candidate metric specifically measure security aspects

2. Applying the qualification criteria of Jaquith introduced in Section 2.3.1 to the metric [58].
To be included in the catalogue, the candidate needs to be

• consistently measured without subjectivity
• cheap to gather
• expressed as a cardinal number or percentage
• expressed using at least one unit of measure
• contextually specific

3. Calculating the SMMM score of the candidate introduced in Section 2.3.2 [85]. To be
included, the metrics needs to receive a score of at least 85%, which indicates that the
metric is of the highest maturity according to the SMMM specification.

Table 3.3 lists the candidate metrics that did not qualify for the catalogue, along with their
source and the reason for not being included. The disqualification reason is presented with
the incomplete phase of the procedure (the second as 2. and the third as 3.) and the specific
cause within the phase. In the overview we disregard all metrics found in the analyzed
literature that did not pass the first phase of the procedure, e.g. that do not measure security
aspects but other SDLC activities. In total, twelve security metrics that were proposed in the
literature did not qualify for the catalogue.

Metric Name Source Reason

Number of security requirements [11], [131], [6], [120], [56] 2. Contextually unspecific
Ratio of security requirements [131], [6], [120] 3. SMMM score of 77%
Number of threats identified [11] 2. Contextually unspecific
Number of relevant attack patterns [11] 2. Contextually unspecific
Number of high risk statements [11] 2. Contextually unspecific
Alerts created [8] 3. SMMM score of 69%
Reduction in security related tickets [142] 3. SMMM score of 58%
Total security test duration [14] 2. Contextually unspecific
Number of used security algorithms [131] 3. SMMM score of 66%
Number of security design flaws [131], [6], [120] 3. SMMM score of 64%
Stall ratio [30], [6], [120] 3. SMMM score of 77%
Security requirements stage errors [6], [56] 3. SMMM score of 75%

Table 3.3.: The list of unqualified candidate metrics

14

3. Methodology

3.2. Interviews

To evaluate the representation of a team’s security maturity in our proposed tool (see
Chapter 6), we conducted interviews with various stakeholders in the agile development
process.

Study design

The goal of the interviews was to obtain feedback and opinions specifically on the following
areas:

1. Visualization of the security maturity score and its components

2. Input of the necessary information such as assessments and security metrics

3. Comparison between the proposed security maturity approach and other security
approaches used in practice

We chose to interview software engineers and consultants who work in agile development
teams, as they make up an agile development team and have a primary interest in security
metrics. In addition, we conducted an interview with a security specialist who uses security
tools and security metrics in practice and is therefore qualified to provide his feedback on the
third objective. A semi-structured questionnaire was used for the interviews, which can be
found in the Appendix A. We chose this approach as it allows for individual adjustments
depending on the role or experience of the interviewee or the course of the interview [63, p.4].
The interviews were conducted synchronously via a videoconferencing tool and recorded
to allow for transcription, following the ACM standard for qualitative surveys [121]. Firstly,
the interviewer introduced the research space and the to be evaluated concepts. Afterwards,
the features of the prototype were discussed by presenting it asking open-ended questions
to gather information from the participants. With this structure, we achieved the evaluation
objectives and the interviews consistently adhered to the ACM standard.

Data collection

In total, we conducted eight interviews in the described format, each lasting between around
half an hour to 45 minutes. An anonymized overview over the participants, their company
role and the duration of the interviews can be found in Table 3.4. The results of the evaluation
are described in Section 7.4. After the penultimate and final interview, we received little new
information and therefore concluded the validation.

15

3. Methodology

Abbr. Role Duration (mm:ss)

P1 Software Consultant 44:21
P2 Software Engineer 40:05
P3 Software Consultant 35:40
P4 Software Engineer 42:34
P5 Software Engineer 40:46
P6 Principal Engineer 37:17
P7 Software Consultant 32:37
P8 Software Engineer 25:32

Table 3.4.: The participants of the conducted interviews

16

4. Related Work

In this chapter we discuss previous work in the area of security metrics and team security
maturity that forms the basis for the research. We also describe where the research leverages
the accomplishments of the work, extends previously proposed concepts, or departs from
the results obtained. The order of the sections follows the proposed research questions (see
Section 1.2).

4.1. Security metrics catalogue

Various research groups have made great efforts to propose and validate different collections
of software metrics of different types, such as performance, code quality, or security. Together
they form the group of publications analyzed in the literature review (see Section 3.1). Some
of these publications contain a catalogue of security metrics. Three of these publications and
their catalogs are presented in the following sections.

Catalogue of metrics

The research provides a collection of security metrics structured according to the different
phases [131]. It has been prepared in accordance with the Goal-Question-Metric approach,
which first identifies the appropriate measurable goals for achieving software security and
then selects the appropriate metrics to measure the achievement of the goals [124], [131,
p.461]. In this approach, the proposed security metrics are not the result of a structured
literature review, but are new suggestions, which introduces a validity problem. Moreover,
the catalogue does not include metrics that are not part of a single phase of SDLC, as in our
case, where some metrics also have an overarching character across all phases.

Software quality metrics

The work describes 19 quality metrics and applies them in a case study of more than 3,000
engineers on various teams, 20 percent of whom use agile methods [102]. The metrics
collection itself comes from Cisco Systems1, which has fully implemented it across its on-
premise products. The catalogue is divided into four so-called enforcement points, which
are prevention, inspection, evaluation and remediation, and are not the same as SDLC. The
results of the case study show that the introduction of the quality metrics led to, among other
things, a reduction in the time to reach software maturity and a reduction in the annual defect

1https://www.cisco.com, accessed November 2022

17

https://www.cisco.com

4. Related Work

rate. The collection includes some security-specific metrics and some general software quality
metrics, while our catalogue focuses exclusively on security issues. It also does not provide
guidance on how to measure the metrics (e.g., to what level of automation or with what tool),
and it lacks the linkage of the enforcement points to the individual phases that our catalogue
contains.

KPIs for evaluation of DevOps teams

In this paper, 14 metrics of different types are presented and described as a result of a
structured literature review. They are classified into four types: delivery, cost, defects, and
tests [47]. In addition to the types, the authors describe some suggestions on how to measure
the metrics and explain the implications of an unsatisfactory result of a metric. Similar to
the Pradhan et al. publication, this collection neglects some critical metric properties that we
include in our catalogue, such as the degree of automation or tool support of a metric. In
addition, the catalogue does not link metrics to SDLC phases and does not include reference
values.

4.2. Security metrics for team security maturity

In our literature review we were able to identify several models that use software metrics to
calculate a team maturity score, which we present in the following sections.

TSMM

The TSMM is a maturity model specifically assessing the security capabilities of a develop-
ment team during the SDLC [144]. It consists of three pillars “self-assessments”, “external
assessments” and “automated”, which represent the three different information sources
used by the model. Each pillar includes multiple security domains such as “Knowledge” or
“Culture”, which themselves consist of multiple security topics. As the name suggests the first
two pillars use assessments in the form of questionnaires, which an internal team member or
external auditor fills out to assess single topics. Each topic can be assessed in four different
maturity levels, namely “no”, “partly”, “largely” and “fully”. The third pillar “automated”
includes a preliminary suggestion on converting the results from different security tools into
the four maturity levels.
While the third pillar “automated” is a helpful starting point for organizations, it doesn’t in-
clude any KPIs or security metrics that are suitable for the maturity calculation. Additionally,
it doesn’t include any information on how to convert the results from the security KPIs to the
four maturity levels. With our approach we address both of these issues.

18

4. Related Work

SMMM

The SMMM and its five maturity levels can help an organization understand how mature its
security metrics are [85]. The maturity level of a metric can be calculated by rating different
attributes of a metric with different qualitative and quantitative properties. The maturity
value of a metric is represented as a percentage between 0 and 100 and depending on the
score has one of three maturity levels, namely infant, evolving or matured. Once each metric
is evaluated, an overall metric maturity score in the organization can be deduced.
Firstly, the SMMM assesses the maturity of security metrics, whereas we explore how to
assess the security capabilities of a development team. In addition, the model does not
include an approach to assess the current performance of the metrics, which our model
focuses on. Finally, the model yields an overall maturity score at the organizational level,
while our approach focuses on assessing development teams.

19

5. Security metrics

This chapter describes our security metric catalogue, which is the first research artifact and
answers RQ1. The catalogue consists of qualified security metrics, containing a description
of each security metric in the structure proposed by Bouwers et al. (see Section 5.1). It is
the result of an extensive systematic literature search and a rigorous qualification procedure
described in Chapter 3. In total, it contains 31 metrics which describe team and product
security attributes. The full catalogue can be found in the Appendix B.

5.1. Catalogue structure

The catalogue is structured in a two-level hierarchy. First, we divide the selection of security
metrics into two groups, team security metrics and product security metrics. This follows the
accepted definition for security metrics for our research (see Section 2.3) and the commonly
accepted property of security metrics in the literature, which states that a metric can measure
either the capabilities of a team or the properties of a developed artifact (e.g. [81, p.1]). At the
second hierarchical level, security metrics are grouped into the domains of the SDLC, again
following the structure of the accepted definition of SDLC in Chapter 2.
Each metric is described with several attributes that describe either a qualitative or a quanti-
tative property of the metric. This structure and all attributes come from a publication by
Bouwers et al. that describes a catalogue format for software metrics of all categories and
is therefor naturally also suitable for use with security metrics [20]. The format consists of
16 qualitative and quantitative attributes. The qualitative attributes describe what insights
a metric can provide, how it is measured, and what actions can be taken to improve the
measurement. On the other hand, the quantitative attributes describe the expected value of
the metric, the possible range of measurements, and whether the metric is an absolute value
or a ratio. In addition to these attributes, we introduce two additional fields that describe
the extent to which the metric can be measured automatically and the type of tool that can
be used, to answer the second part of RQ1. The automation attribute is described in three
different ordinal degrees of automation: manual, semi-automated, and automated.
We define manual metrics as metrics that cannot currently be measured automatically by any
tool or that require an individual measurement component. Measurement of semi-automated
metrics relies on one manual and one automated component, so for a ratio metric, the nu-
merator must be measured manually, but the denominator can be measured automatically.
Absolute metrics can be semi-automated if their measurement is tool-based but requires some
manual effort, such as entering a value. Automated metrics can be reliably measured without
a manual factor using existing tools. The tool property can include any security tool type,

20

5. Security metrics

such as SAST or DAST, described in Chapter 2.
In total, we propose a catalogue of 31 security metrics, divided into six team security metrics
and 25 product security metrics. 15 security metrics, or almost 50%, can currently already be
measured fully automatically, while only six metrics, or about 20%, are classified as manual.
Figure 5.1 shows this and some other insightful distributions of the metrics attributes.

Automated
15

Semi
10

Manual
6

PMT
13

SAST
10

DAST
6

SCA
6

SIEM
3

Ratio
24

Absolute
7

Figure 5.1.: Distribution of different attributes amongst the identified security metrics

We found several advantages of the chosen catalogue structure. First, the catalogue provides
a bidirectional information path: On the one hand, the group of security metrics relevant to
a particular phase in the SDLC can be easily selected. On the other hand, it is easy to trace
in which phase of the SDLC a particular security metrics is applied. Moreover, it is easy to
find out which entities are measured during the SDLC and which need to be measured in
other ways. Currently, a total of 18 different entities are measured during all phases, e.g.,
dependencies, security requirements, or security audits. Finally, the field of related metrics
makes it easy to understand possible correlations between the security metrics.

5.2. Team security metrics

In the following two sections we describe the two domains of security metrics that include
security metrics for measuring team attributes. We list the identified security metrics with
their ID, name, automation level, and tool category. In addition, the SMMM-score calculated
using the definition introduced in Section 2.3.2 is included. Listed tool categories marked with
an asterisk (*) are theoretically described by the metric validation sources, but the example
tool in the category presented in Section 2.3.3 cannot measure the metric. The full description
of the metrics can be found in the Appendix B. In Appendix B.3 the complete calculation for
all metrics is presented.

5.2.1. Knowledge domain

In a nutshell, knowledge security metrics measure how well the team is informed about
current security practices and requirements. This follows the definition of the TSMM knowl-
edge domain in the self assessment pillar [144, p.51]. Updated knowledge and high-quality

21

5. Security metrics

information in a team is critical to its security performance and therefore this domain is of
high importance [52, p.3]. Two security metrics are described in the reviewed literature.

ID Name Automation Tool Score

CSPPR Company Security Policy Review Rate Automated PMT 100%
GSRRR Governmant Security Regulation Review

Rate
Automated PMT 100%

Table 5.1.: Security metrics in the knowledge domain

The reason for the limited selection could lie in the difficulty of measuring a team’s tacit
knowledge, which is implicit knowledge held in the team member’s minds and is difficult to
transfer to another person or make explicit [113, p.1614], [114, p.229]. The collected security
metrics in this domain take account for this difficulty by acting as proxy metrics, which
substitute the direct measurement of tacit knowledge by measurements of the surrounding
properties of the team [114, p.232]. Additionally, the security metrics of the “Effort” domain
complement the selection.

5.2.2. Effort domain

Building on the first team domain “Knowledge”, metrics in the effort domain try to measure,
how much time a team collectively spends productively on security efforts during the
SDLC. Such security effort activities can include trainings or special security focused team
sessions [108, p.2]. We identified four security metrics in this domain.

ID Name Automation Tool Score

SAER Security Awareness Effort Rate Automated VMT 88%
SRER Security Remediation Effort Rate Automated SAST 88%
SMC Security Meetings Count Semi-automated PMT 85%
SAPR Security Audit Pass Rate Manual PMT* 94%

Table 5.2.: Security metrics in the effort domain

The concept of tacit knowledge introduced in Section 5.2.2 above is closely related to skill
learning and communication [114, p.230, p.238]. Therefore, we regard measuring the aware-
ness efforts and the communication in a team is highly important and relevant to a team’s
security level, which is possible with the proposed metrics in this domain.

22

5. Security metrics

5.3. Product security metrics

In the following five sections we describe the five domains of product specific security metrics.
Product specific metrics are intended to be measured for every product a team develops
individually. This way the processes for individual products can be reviewed while also being
able to get an overview of a team’s general performance in a SDLC phase across all products.
Again, we list the identified security metrics with their ID, name, level of automation and
tool category and the full description then can be found in the Appendix B. In addition,
the SMMM score calculated is included, which components can be found in Appendix B.3.
Equivalent to the security metrics team, for the tool categories marked with an asterisk (*)
our exemplary tool within that category can not measure the metric.

5.3.1. Analysis Domain

Security analysis in requirements engineering is an important activity of the first SDLC
phase. The required security level and security challenges of the developed product should
become apparent, discussed and recorded, so the team understands what lies ahead in
the development process. Without extensive analysis efforts, all subsequent phases can
be deficient. Therefore, it is important that already during this phase security metrics
are measured and reported. In total the literature includes three metrics to measure the
thoroughness of this phase.

ID Name Automation Tool Score

OSRC Omitted Security Requirements Count Manual PMT 92%
SRGAR Security Requirements General Analysis Rate Semi-automated PMT 85%
SRTMR Security Requirements Threat Modeling Rate Semi-automated PMT 100%

Table 5.3.: Security metrics in the analysis domain

The small amount of found security metrics that measure the analysis efforts can be explained
with the intangible nature of security requirements engineering. While it produces docu-
mented records, the process is carried out in heterogeneous, irreproducible steps and even
the final requirement records are written only in semi-technical, human-readable documents.
This is also reflected by the fact that all security metrics are only trackable by PMTs.

5.3.2. Design Domain

System design may be the most important SDLC phase of the shift left security trend (see
Section 2.1), as in this phase decisions can be taken to completely avoid many - some
findings show up to 50% - of the common security weaknesses [80, p.1164]. “Design” has
a proportional connection with the prior phase “analysis”, as all captured requirements
should or rather must be addressed in system design, while omitted requirements cannot
be focused on. This can lead to the conclusion that the design can only be as good as the
analysis was thoroughly. It is therefore important not only to measure the quality of the

23

5. Security metrics

proposed architecture components, but additionally measure the connection to prior SDLC
phase, e.g. with the help of the SRSACR. In total, we identified five security metrics, which
measure the activities during the design phase.

ID Name Automation Tool Score

ACASAR Architecture Component Attack
Surface Analysis Rate

Manual PMT 94%

ACARAR Architecture Component Architec-
tural Risk Analysis Rate

Manual PMT 94%

SRSACR Security Requirements Satisfying
Architecture Components Rate

Manual PMT 92%

CCR Coupling Corruption Propagation Automated SAST*, DAST* 85%
CER Critical Element Ratio Semi-automated SAST* 85%

Table 5.4.: Security metrics in the design domain

During the design phase a multitude of approaches and support tools are used to visualize
the system design. In a PMT, the information of all these sources are collected and therefore
it is the single source for the security metrics of this phase.

5.3.3. Implementation Domain

When met with a poor development process, even the best system design only increases
security marginally [80, p.1167]. Therefore, it is critical that security metrics are also measured
during implementation to verify that the system design has been implemented correctly and
all implemented components are of satisfactory security. The analysed literature included six
security metrics that measure code structure and test properties.

ID Name Automation Tool Score

STCR Security Test Coverage Rate Semi-
automated

SAST 92%

STSR Security Test Success Rate Semi-
automated

SAST 92%

STFR Security Test Failure Rate Semi-
automated

SAST 92%

DSVC Dependency Security Vulnerabilities Count Semi-
automated

IAST, SCA,
VMT

94%

DSVR Dependency Security Vulnerabilties Rate Automated SCA 94%
UER Unsecured Endpoints Rate Automated SAST, DAST,

IAST, VMT
100%

Table 5.5.: Security metrics in the implementation domain

24

5. Security metrics

The implementation phase of the SDLC is the first phase, where all metrics can be measured
at least semi-automatically with the help of security tools, as code is of tangible nature and
can be automatically analysed.

5.3.4. Deployment Domain

The deployment is the step in the SDLC where a software artifact becomes available and all
security weaknesses potentially exploitable. Therefore, it is vital to measure security metrics
at this final stage before an artifact is deployed or goes into production. This importance is
reflected in the literature, as it describes more security metrics in the deployment domain as
in any other SDLC phase.

ID Name Automation Tool Score

VSCR Vulnerability Scanning
Coverage Rate

Automated SAST*, DAST*, SCA* 100%

CSDR Code Scanning Detection Rate Automated SAST*, DAST*, SCA* 100%
OVC Open Vulnerabilities Count Automated SAST, DAST, IAST,

VMT, SIEM
92%

OVR Open Vulnerabilities Rate Semi-automated SAST*, DAST*, SCA* 94%
MVC Mitigated Vulnerabilities

Count
Automated SAST, VMT 92%

VSR Vulnerability Slippage Rate Automated SIEM* 88%
CFR Change Failure Rate Automated PMT 100%
SDC Spillover Vulnerability Count Automated PMT* 92%

Table 5.6.: Security metrics in the deployment domain

Similar to the implementation phase described in Section 5.3.3, during deployment all security
metrics can at least be measured semi-automatically - in fact all measurements expect for the
OVR can be carried out automatically. But in contrast to implementation security metrics, in
this phase a multitude of tools are required for the measurements.

5.3.5. Maintenance Domain

Even when the software is believed to be secure, it is possible that new vulnerabilities or
exploits become known. Metrics in the maintenance domain therefore measure how resilient
a product is during runtime. Furthermore, metrics in this domain measure how quickly the
team can fix a new issue. We identified three security metrics in this domain.

25

5. Security metrics

ID Name Automation Tool Score

AR Availability Rate Automated SIEM 100%
MTTR Mean Time to Resolve Semi-automated PMT 94%
MTTF Mean Time to Fail Manual SIEM* 85%

Table 5.7.: Security metrics in the maintenance domain

In practice, implementing measuring the maintenance metrics can be challenging. While
the AR is often reported by SIEM tools automatically and can be measured easily, MTTR
depends on some measurement of how long actual work was carried out [142, p.23]. Possible
units include hours, days, man-hours, or full-time equivalents and depending on the choice a
conversion may be needed and the calculation is changed. Without any SIEM tool, the total
production time needs to be tracked separately, e.g. in hours or days.

5.4. Measuring security metrics with security tools

In addition to the automation attribute in the metric catalogue we investigated which tools
are able to measure and report the identified metrics.
Firstly we selected one exemplary tool, which is either open source or well documented and
widely available, for each of the in Section 2.3.3 described tool categories. Then we analysed
each tool by reading the provided documentation, if possible installing a test instance of the
tool and running it on a project called OWASP WebGoat1, which is a deliberately insecure
web application for testing purposes. Figure 5.8 describes which of the chosen exemplary
tools can collect which of the collected metrics.
With this overview it becomes apparent that eight of the identified metrics cannot currently be
collected with any of the analysed tools, which is roughly a quarter of all proposed security
metrics. This lack of automated measurement hinders the implementation of the catalogue
and acts as an inhibitor for security metrics applications [140, p.95]. However, as these metrics
are described in the literature, a need for their implementation becomes clear. Therefore,
many opportunities for new, innovative security tools or possible extensions of existing
security tools exist. Additionally, it becomes clear from the overview, that some metrics such
as the “Open Vulnerabilities Count” or “Unsecure Endpoint Rate” are well covered and can
be collected by tools from different categories, while other metrics can only be measured by
tools of a single category.
The presented procedure could also be carried out for organizations before introducing a
security metrics program by analyzing its existing security tools. Depending on the results of
the analysis, the organization may then need to adjust its security tools.

1https://owasp.org/www-project-webgoat/, accessed September 2022

26

https://owasp.org/www-project-webgoat/

5. Security metrics

PMT SAST DAST IAST SCA VMT SIEM Sum

Ji
ra

[9
]

Se
cu

ri
ty

R
A

T
[1

16
]

So
na

rQ
ub

e
[1

25
]

O
W

A
SP

Z
A

P
[9

6]

Se
ek

er
[1

33
]

D
ep

.T
ra

ck
[3

7]

D
ef

ec
t

D
oj

o
[3

5]

O
SS

IM
[9

5]

Te
am

m
et

ri
cs

Know-
ledge

CSPPR X 1
GSRRR X 1

Effort

SAER X 1
SRER X 1
SMC X 1
SAPR 0

Pr
od

uc
t

m
et

ri
cs

Analysis
OSRC X 1
SRGAR X 1
SRTMR X 1

Design

ACASAR X 1
ACARAR X 1
SRSACR X 1
CCR 0
CER 0

Imple-
menta-
tion

STCR X 1
STSR X 1
STFR X 1
DSVC X X X 3
DSVR X 1
UER X X X X 4

Deploy-
ment

VSCR 0
CSDR 0
OVC X X X X X 5
OVR 0
MVC X X 2
VSR 0
CFR X 2
SDC 0

Mainte-
nance

AR X 1
MTTR X 1
MTTF 0

Table 5.8.: The measurement of security metrics in exemplary tools

27

6. Team security maturity trough security
metrics

In this chapter, we describe how security metrics can be used to compute a team security
maturity score. First, we integrated all security metrics presented in Chapter 5 into the
“Automated” pillar of the TSMM and set four maturity levels for each metric. Then using the
pillar we propose a way to calculate an overall security maturity score across all pillars and
dimension.

6.1. Security metrics in TSMM

To integrate the security metrics from the catalogue into the TSMM a conversion from the
catalogue structure to the TSMM structure is necessary. Firstly, we assign each metric a TSMM
specific identifier, which follows the the TSMM naming scheme. Secondly, four attributes for
each metric are selected: the name, the domain, a short description and the related metrics.
We decided for only these four attributes, to be coherent with the structure of the other
two pillars. Even though the other catalogue attributes are emitted, they can be attached to
the TSMM to be a helpful resource while evaluating the security maturity score. Especially
information about the automation level and potential tool support of the metric should be
attached, as this could support the choice of tools by a user of the TSMM.
In addition to the attributes, each metric has four value ranges for the four maturity levels of
the TSMM, which are “No”, “Partly”, “Largely” and “Fully”. A value range has an upper
and lower bound and a measurement within the bounds is assigned the matching maturity
level. The ranges and their allocation to the levels depend on the scale type, the expected
value, and the range of the metric described in the catalogue. Jointly, they must also be
complete and exclusive, so that each measurement always has exactly one maturity level. With
them any metric measurement can be converted into a maturity level: for instance a metric
measurement of 72% is sorted into the maturity level “Largely”, if it has the value range
>50%-75%. The current value ranges for metrics with a ratio scale type follow a strict scheme:
the expected range described in the catalogue is split into for value ranges of equal size. For
the other metrics the value ranges were chosen with peer-reviewed and grey literature and
only act as a broad suggestions.
The value ranges can also be adapted in an organization to be applicable to more ambitious
or lenient maturity approaches. For instance when the value ranges for the upper levels are
shrank and for the lower levels enlarged, only very good measurements can achieve a good
maturity level.
In Table 6.1 all attributes and the value ranges for an exemplary metric are described.

28

6. Team security maturity trough security metrics

ID Topic Description Related security
metrics

Metric-K-1 Company Security
Policy Review Rate

Percentage of relevant Company
Security Policies reviewed

Metric-K-2

No Partly Largely Fully

0%-25% >25%-50% >50%-75% >75%-100%

Table 6.1.: Exemplary description of a security metric in the knowledge domain

As a majority of the integrated metrics measure product specific attributes we introduced a
product specific part to the TSMM, whereas before only team specific topics were present
in the model. This means that these metrics need to be measured for each product a team
develops, and then aggregated together with the team security metrics to a single maturity
score. This step was necessary, as only the team and product metrics together can give
a holistic overview over the teams capabilities. However it also introduces a new level of
complexity, which can be addressed by using the in Chapter 7 introduced TSMM prototype.
In Figure 6.1, the new structure TSMM is visualized as a UML diagram.

Pillar

Team Self-
Assessments Pillar

Team External
Assessments Pillar

Metric Based Pillar

Domain

Topic

5

n

Domain

Topic

2

n

Team
Security Metrics

Product
Security Metrics

11

Domain

Security Metric

2

n

Product

Domain

Security Metric

5

n

TSMM

3

Figure 6.1.: A high-level overview over the adapted TSMM pillar and domains

29

6. Team security maturity trough security metrics

6.2. Calculation of the overall security maturity score

In the initial publication of the TSMM, the model is introduced without a method to calculate
an overall maturity core of the team across all pillars, domains and topics (compare [144]).
We therefore introduce a new approach to calculate an overall maturity score as a normalized
percentage score between 0% and 100% across all dimensions of the model. Such an overall
assessment is useful because, it shows at first glance whether there is room for improvement
for the team [85, p.105]. It can also act as a commonly understood and accepted language
and help communication between the different stakeholders [70, p.271].
To enable the overall maturity score we assigned each of the four maturity levels a single
percentage as the basis of all further calculations. The assignment we chose was No - 0%,
Partly - 33%, Largely - 66% and Fully - 100%, to achieve an even distribution of the four
different levels. The calculation of the overall score then requires the following steps in each
of the three TSMM pillars:

• Team Self-Assessment pillar: (analogously the Team External Assessment pillar)

1. Assign each assessed topic the maturity level value - if a topic is not assessed, it is
disregarded in the calculation

2. For each domain, calculate the arithmetic mean of all its topics maturity scores, to
receive the domain maturity scores

3. Calculate the arithmetic mean over all domain maturity scores to receive the
maturity score of the pillar

• Metric-based pillar:

1. For the two team security metrics domains, assign the matching maturity level
to the latest metric measurement value by using the introduced value levels - if a
metric has not been measured at all, it is disregarded in the calculation

2. For each of these domains, calculate the domain’s maturity score by calculating
the arithmetic mean of the topics maturity scores, to receive the team domain’s
maturity scores

3. Now for each product separately assign the latest measurements for all product
security metrics to their maturity level - again if a product metric has not been
measured yet, it is disregarded in the calculation

4. For each of the product security metrics domains, calculate the arithmetic mean of
its topics maturity scores

5. For all products calculate the arithmetic mean of both the team and product
domains to receive the products maturity scores

6. Calculate the arithmetic mean over all product maturity scores to receive the pillar
maturity score

→ Finally calculate an arithmetic mean over the security maturity scores of the pillar and
round it to the nearest whole number to receive an overall security maturity score

30

6. Team security maturity trough security metrics

Alternatively other approaches to calculate the domain maturity score in the pillars exist,
which punish or reward outlier performances of one of the topics in a domain. On the one
hand it is possible to replace the arithmetic mean with a minimum operation, where the
lowest topic score in a domain is the overall maturity score of the domain. This very strict
calculation leads to worse security maturity scores and could be applied in teams, where
security is of upmost priority. On the other hand to reward an outstanding performance in
one topic it is possible to replace the arithmetic mean with a maximum operation, where the
best topic score is used as the domain score. This approach could be taken, when security is
regarded as low priority. For both alternative approaches the calculation should be clearly
communicated and made understood in the teams. For our research we use the default
approach using the arithmetic mean.
To better visualize the approach in the following we calculate the security maturity score
with an example. The calculation starts after the security maturity levels were assigned to
the metric measurements in the metric based pillar and the domain maturity score for all
domains was calculated. In Table 6.2 all domain maturity scores are listed.

Self
Assess-
ments

Knowledge Documenta-
tion

Activities Build &
Deployment

Organization

76% 59% 72% 89% 93%

External
Assess-
ments

Audit Culture

81% 86%

Metric-
based

Prod-
uct

Knowl-
edge

Ef-
fort

Analysis De-
sign

Imple-
menta-
tion

Deploy-
ment

Mainte-
nance

A 78% 64% 77% 81% 71% 90% 76%
B 78% 64% 56% 43% 70% 85% 90%
C 78% 64% 67% 65% 74% 80% 76%

Table 6.2.: Exemplary maturity scores of the domains in the three TSMM pillars

With these exemplary values the calculation of the overall maturity score can start. First
the arithmetic mean of the maturity scores for the self- and external assessment pillars are
calculated:

Sel f Assessment Maturity Score =
76% + 59% + 72% + 89% + 93%

5
= 77.80%

31

6. Team security maturity trough security metrics

External Assessment Maturity Score =
81% + 86%

2
= 83.50%

For the metric based pillar, firstly the arithmetic mean for each product is calculated. To receive
the maturity score of the pillar the arithmetic mean over all product scores is calculated.

Product A Maturity Score =
78% + 64% + 77% + 81% + 71% + 90% + 76%

7
= 76.71%

Product B Maturity Score =
78% + 64% + 56% + 43% + 70% + 85% + 90%

7
= 69.42%

Product C Maturity Score =
78% + 64% + 67% + 65% + 74% + 80% + 76%

7
= 72.00%

Metric based Maturity Score =
76.71% + 69.42% + 72.00%

3
= 72.71%

Finally, we can calculate the overall maturity score by calculating another arithmetic mean
across all three pillars and rounding it to the nearest whole number.

Overall Maturity Score =
⌊

77.80% + 83.50% + 72.71%
3

⌉
= 78%

Based on the example calculation, it is clear that the approach provides insights that are not
visible without calculating the domain, pillar and overall maturity scores.
First, the approach allows one to see the security level of each domain in a pillar. These
maturity scores of the individual domains can be used to understand the reasons for the
overall maturity score. More importantly, they can provide an indication of satisfactory or
inadequate team security efforts in a particular domain and point directly to areas of focus.
Second, the metrics-based pillar makes it clear which products have a satisfactory or insuf-
ficient level of security. A team can use this information to focus its efforts on less secure
products. In addition, the domain maturity scores in the metrics-based column indicate how
well the team is performing in the various phases across all products.
Finally, domains from different pillars can be compared, such as the “Knowledge” domain
in the self-assessment and the metrics-based pillar. A large discrepancy between the two
maturity levels could indicate that there is a divergence in the team between the perceived
level of security and the actual level of security achieved.

32

7. Tool-supported security maturity

This chapter describes in conceptual and technical detail the response to RQ3 its reasoning.
We propose a tool that demonstrates an approach that holistically implements all aspects
of the TSMM: the assessment of the self- and external assessment pillars, the automated
collection of security metrics by tethered security tools, the calculation of a team’s overall
maturity level, and finally the visualization of the TSMM results. The tool is based on a
formerly developed application called principle self-assessment tool for agile development
teams (Prince).

7.1. Use cases

User-centric software engineering (USE) describes a collection of activities carried out during
the SDLC to enable the delivery of systems that meet the user’s needs [34, p.34]. We adhered
loosely to USE during development of the frontend of the prototype, as it often can be
advantageous to create high-quality software artifacts [34, p.35]. As the framework involves
many activities but the proposed software artifact was prototyped from the beginning, we
performed a subset of two USE activities. The first activity we performed is the identification
of user groups and the subsequent creation of typical user stories for the different groups.
We identified two potential user groups for the developed artifact with different information
requirements: the developers on the team and external security specialists.

Developers. Developers typically have a strong interest in the security level of their ap-
plications and what needs to be done to improve it [123, p.248]. To address this information
need, we created two user stories. In our prototype, developers should be able to see the
current level of various security domains, and they should be able to examine which metrics
contribute to that level. In this way, developers receive information about which measure-
ments are satisfactory and which need to be improved. They should also get guidance from
our tool on how to improve low performing domains.

Security specialists. As introduced in Section 1.1 security specialists are experts in a central
security department who oversee the company’s efforts to develop secure software. They
analyze the current security status of existing applications, help development teams resolve
security issues, and report to supervisors and managers on the company’s security posture.
We subsequently created two user stories in the context of these activities. Firstly, security
specialists should be able to see measurements of all security metrics on a team or application
and discover security domains that need improvement. Secondly, experts should be able

33

7. Tool-supported security maturity

to use the security maturity score and all measurements to report the security status of an
application or some aggregation of multiple applications to other stakeholders.

During development, we followed the four presented user stories of the two identified
user groups, and our proposed artifact includes functionality for all of them (see the 7.3
section). All other implemented and proposed features do not fulfill any information require-
ment, but serve as enablers for these main user stories and are therefore not captured with
user stories.
The second USE activity we performed was an evaluation of the developed prototype with
members of the two user groups to get feedback on the implemented features and the user
interface. The extensive results of the evaluation are presented in Section 7.4.

7.2. Backend application

The overarching goal for customizing the backend application is to introduce the maturity
calculation described in section 6.2. According to our proposed customized version of TSMM,
the maturity calculation consists of three components, namely self-assessments, external
assessments, and security metrics. Only the security metrics component and the maturity
level calculation itself needed to be implemented, as Prince already supported manual
assessments. We describe these two parts in the next two sections.

7.2.1. Security metrics collection

As described in Chapter 5, most metrics can be collected automatically or at least semi-
automatically by security tools. Therefore, to obtain security metrics in our prototype, we
decided to build several REST API connections to important existing security tools. These
connections retrieve measurements of specific security metrics from a security tool, then
the received data is parsed into metric records in our backend, and finally the records are
persistently stored in the database. Once set up, this process is triggered periodically, and at
each trigger, the connections request the latest measurement of their respective metrics and
create a new record for each measurement. The currently supported connections and their
corresponding metrics are listed in Table 7.1. In total ten metrics are currently automatically
collectable with Prince, which is just under a third of all security metrics listed in the TSMM.

Tool Category Tool Metrics

SAST SonarQube SRER, OVC, STCR, STSR, STFR
SCA Dependency Track DSVR, DSVC
VMT Defect Dojo UER

Table 7.1.: The currently supported tools in the proposed prototype

Although the choice of tools may be limited at the moment, the chosen software design

34

7. Tool-supported security maturity

makes it easy to extend the proposed prototype with different security tools. To add a new
connection to a new security tool, only two steps are required: First, the API path of the tool
for security metrics measurements must be identified, and second, the parsing of the API
response to the Prince metrics record data structure must be implemented. This simplicity
is particularly worth mentioning since many participants in the evaluation pointed out the
importance of simple and fast integrations with other security tools (see Section 7.4). Security
metrics that cannot be measured automatically can be tracked with our prototype by manual
input in the frontend application (see Section 7.3). In this way, we ensure that every type of
security metrics is supported, and in addition, teams currently using unsupported security
tools can manually track the evolution of normally automated metrics.
In Figure 7.1, the backend security metrics component is described as a UML class diagram.
The centerpiece of the component is the security metrics records class, which contains all
the information about a single measurement, such as the timestamp and the value of the
measurement. It also contains the foreign key of the measured team, and if a product security
metrics is measured, the product foreign key is also included. Each of the records is also
captured for a specific metric, which includes information about the metric and maturity
levels, and for a specific source instance, which are instances of generic security metrics
sources with a unique URL and API key. Finally, information about which generic sources
can theoretically measure which security metrics is persistently stored with a many-to-many
relationship, since some metrics can be measured by different sources (see Table 5.8).

security_metrics_records

uid

security_metric_id

security_metric_source_instance_id

product_id

team_id

value

timestamp

importance

security_metrics

uid

... metric attributes

... levels

security_metric_sources

security_metrics_sources

uid

full_name

type

description

security_metrics_sources_instances

uid

security_metric_source_id

product_id

name

url

api_token

remote_component_name

1 n

1

m

n

n

1

n

Figure 7.1.: A UML diagram visualizing the security metrics component in the proposed
prototype’s backend

35

7. Tool-supported security maturity

7.2.2. Security maturity calculation

Once at least some assessments and records have been entered into the system, the calcu-
lation of security maturity for the teams can be initialized in the system. In the current
implementation, the calculation is done daily by scheduling the execution with a special
Spring “@Scheduled” annotation, but can be easily adapted to any other frequency or even
to a manual execution. This flexibility is advantageous, as the TSMM does not include
information on the frequency of the maturity calculation. For the computation, we collect
the latest measurements of the security metrics and scores of all TSMM topics stored in the
system. In Figure 7.2, an overview of the security maturity calculation in our prototype is
visualized as a UML class diagram. With this it becomes clear that the system design follows
the three-pillar structure of TSMM.

security_maturity_records

uid

timestamp

value

complete

team_id

self_assessment_pillar

external_assessment_pillar

metric_based_pillar

external_assessment_pillar

value

complete

audit_value

culture_value

metric_based_pillar

value

complete

analysis_value

deployment_value

design_value

implementation_value

knowledge_value

maintenance_value

velocity_value

self_assessment_pillar

value

complete

activities_value

build_and_deployment_value

documentation_value

knowledge_value

organization_value

Figure 7.2.: A UML class diagram of the security maturity component in the prototype’s
backend

We implemented the calculation logic exactly as described in the theory in Section 6.2: For the
self-assessment and external-assessment pillars, domain maturity scores are calculated and
averaged to yield a single maturity score for each domain. If a topic has never been assessed
but the calculation is triggered, the topic is disregarded in the calculation, which follows the
definition of the proposed calculation of an overall maturity score (see Section 6.2). For the
metrics-based column, the calculation is again as described in 6.2: The first step is to assign
the metric measurements to their matching maturity levels. This step is done by instantiating
four maturity level objects that contain information about which values are included in their
class (e.g., all values between 0-25%), and a scale class that describes whether the levels are

36

7. Tool-supported security maturity

arranged in an ascending or descending order to enable the level assignment. If a metric has
never been measured or a topic has never been assessed, it is disregarded in the calculation,
which follows the definition of the proposed calculation of an overall maturity score (see
Section 6.2). Then, for each product, the defined team and product metrics are averaged to
obtain a product maturity score. Finally, the product maturity scores are averaged to obtain
the overall metric-based column maturity score. In the listing 7.1, the maturity calculation
in the metric-based column is shown. For reasons of conciseness the declaration of some
variables and methods is disregarded.
After calculating the maturity score for all three columns, they only need to be averaged
to obtain an overall maturity score. This overall score and additionally all other maturity
scores on each level are then stored permanently and can be retrieved when reading the
overall score, as can be seen in Figure 7.2. This enables to get detailed information about the
calculation and the components of the maturity score, which is displayed in the frontend by
the maturity dashboard (see Figure 7.7).
The implemented calculation can also easily be adapted or extended, e.g. by weighting the
factors on one of the described levels. The assignment of a maturity level to a single metric
measurement can also be easily adapted to one of the other calculation methods introduced
in Section 6.2.

37

7. Tool-supported security maturity

public class MetricBasedPillar {

public MetricBasedPillar(Team team) {
Double knowledge = getDomainMaturity(Domain.KNOWLEDGE);
Double effort = getDomainMaturity(Domain.EFFORT);
teamProducts.forEach(prod -> {
Double analysis = getDomainMaturity(Domain.ANALYSIS, prod);
Double design = getDomainMaturity(Domain.DESIGN, prod);
Double implementation = getDomainMaturity(Domain.IMPLEMENTATION, prod);
Double deployment = getDomainMaturity(Domain.DEPLOYMENT, prod);
Double maintenance = getDomainMaturity(Domain.MAINTENANCE, prod);
List<Double> productDomains = Arrays.asList(

knowledge, effort, analysis, design,
implementation, deployment, maintenance);

Double productValue = productDomains.average();
maturityValues.push(productValue);

});
maturityValue = maturityValues.average();

}

private Double getDomainMaturity(Domain domain) {
List<SecurityMetric> securityMetrics = getDomainMetrics(domain);
List<Double> maturityValues = new ArrayList<>();
securityMetrics.forEach(securityMetric -> {
SecurityMetricRecord record = findLatestRecord(team, securityMetric);
if (record != null) {
Double maturityValue = findMaturityLevel(securityMetric, record);
maturityValues.add(maturityValue); }

});
return maturityValues.average();

}

private Double getDomainMaturity(Domain domain, Product product) {
//...

}
}

Listing 7.1: Metric Based Pillar Score Calculation

38

7. Tool-supported security maturity

7.3. Frontend application

The developed frontend has two general goals: first, to allow the input of all necessary
data for maturity calculation, and second, to make all measurements and calculated scores
collected in the backend accessible. It was developed as an Angular 131 application written
in TypeScript2. To facilitate fast prototyping we additionally used Angular Material3, which
solely provides user interface components with homogenous styling, and the frontend does
not require any third-party dependencies.
To achieve the first goal, we first implemented a function to fill in team assessments for
TSMM, which is used for self- and manual assessments. This functionality was missing
because previously Prince only supported product-specific manual assessments. Secondly,
we implemented a form to set up connections to external security tools for collecting security
metrics measurements and developed a functionality to enter manual measurements of
metrics. In this way, measurements of metrics from all levels of automation can be tracked.
With the described functionality, the first goal has been achieved, as all information for all
three pillars of the TSMM can now be entered in the frontend.
To achieve the second defined goal, we then developed a security maturity dashboard as the
center of the application, following the four user stories defined in Section 7.1. It contains
information about the latest maturity calculations, the evolution of the maturity level in the
past, and indications of what steps are needed to improve the maturity level.
In Figure 7.3, the connection between the frontend components and the presented backend
components is visualized in a UML architecture diagram. In the following sections a detailed
description and a screenshot with exemplary data of the frontend features is given.

«Pillar»
Security Metrics

«Pillar»
Self Assessments

«Pillar»
External Assessments

«Service»
Security Maturity Calculation

«Feature»
Security Maturity Dashboard

«Feature»
Manual Metric

Measurements Input

«Feature»
Set up metric tools

«Feature»
Team Assessments

Backend

Frontend

External
Security Tools

Figure 7.3.: A UML architectue diagram visualizing the connection of the frontend features
to the backend components

1https://angular.io/, accessed November 2022
2https://www.typescriptlang.org/, accessed November 2022
3https://material.angular.io/, accessed December 2022

39

https://angular.io/
https://www.typescriptlang.org/
https://material.angular.io/

7. Tool-supported security maturity

Team Assessments

In Prince, the foundation for our functionality, only single products could be assessed. To
enable the TSMM, we created a new feature to also allow for assessments that evaluate
the whole team across all products. In Figure 7.4 a screenshot of a team self assessment
is presented, where a user is currently assessing the “Build & Deployment” domain. The
assessments are displayed in a tabular format, where each row represents a single assessment.
On the left side the topic’s statement is listed, while on the right side the user can assess the
topic with the help of a slider. When the user selects a maturity level for a topic with it, a
short description of the maturity level is displayed. Additional information about the topic
can be viewed by clicking on the information icon on the left, which opens a dialog with
topic information and helps the user to correctly assess a topic. The information displayed
includes a longer explanation of the topic, the descriptions of the different maturity levels
and information about the previous assessments of the topic. Finally, after assessing some or
all of the topics, the user can save the ratings persistently in the database. Then, the next time
an assessment is performed, the function is initialized with the latest assessments so that the
user can continue instead of starting over.

Figure 7.4.: Filling out team assessments in the build & deployment domain

The team assessments feature is used for both self-assessments and external assessments, as
both have the same process and the topics in the two pillars are structured in the same way.
Nevertheless, there is a difference between the two assessments, as external assessments can
only be performed by authorized security specialists according to the model specifications.
Therefore, an authorization check was required so that only authorized security specialists
can access the external assessments, while all team members are allowed to perform self-
assessments.

40

7. Tool-supported security maturity

Security metrics

We implemented two features to support security metrics in the frontend. First, it is possible
to set up a connection to a metric source instance like a SAST tool in the frontend. This setup
form can be seen in Figure 7.5. The form requires all the information required for the API
connection, such as the URL and an authentication key. In addition, a remote component
name is required, which is the project or product ID of the security tool, which may be
different from the product name in Prince. Once this connection is created in the frontend,
all inputted information is stored persistently in the database and the process of collecting
measurements from the instance can begin (see Section 7.2). In addition, with the form the
source instance can be edited or deleted by an authorized user if necessary.

Figure 7.5.: Set up of a security metrics source instance

We decided that source instances can only be created by security specialists, while the
authentication key and remote component name is maintained by team members. This
allocation of responsibilities should be adapted to the environment in which the tool is used.

41

7. Tool-supported security maturity

Secondly, measurements of security metrics that cannot be collected automatically can be
entered into a form in the frontend. Figure 7.6 shows a screenshot of this manual input. A
user can view the metric, the corresponding application, the security tool responsible, and the
old value he is updating. He can then enter new values for the metric, and once he submits
the form, new metric records are created in the backend for all edits. With these two parts,
measurements for all metrics of all types are represented in Prince.

Figure 7.6.: Manual input of product security metrics measurements

Security Maturity Dashboard

The security maturity dashboard is the centerpiece of the proposed TSMM component in
the prototype. Its purpose is to fulfill all the security information requirements for the two
defined user groups and to fulfill the four user stories. The dashboard is split into two parts,
the first being an overview over the current maturity level and the second gives detailed
information about single metrics and assessments. In the following paragraphs we present
the two parts in detail.
The first part of the dashboard consists of three cards that can be seen in Figure 7.7. On the
left in a gauge chart the current maturity score and the difference to the prior maturity score
can be seen by a user. Above it the date of the calculation and a ranking amongst all other
registered teams is visible. Below it the scores of the three pillars is visible and information
is given on when the next calculation is carried out. We chose to assign each pillar its own
color to be used in all dashboard visualizations, as color has been found to be one of the most
powerful factors influencing a user’s understanding and decision-making [132, p.18]. On
the right two information cards give the current maturity score more context. On the top all
domain maturity scores from the three pillars are visualized and the current maturity score is
displayed as a reference line, to easily spot over- and underperforming domains. For instance
in Figure 7.7 it becomes obvious, that the effort domain requires attention, as its maturity

42

7. Tool-supported security maturity

score is below average. We decided to use a bar chart to display this information because
of feedback given during the evaluation, but it is also feasible to display the information
using a polar or radar chart. On the bottom the prior development of the overall and pillars
maturity scores can be seen over the last ten calculations in a line chart. The sudden change in
maturity level at a particular point in time could indicate a new self- or external assessment,
as assessments are less frequently performed than maturity level calculations.

Figure 7.7.: The first part of the security maturity dashboard

In the second part of the dashboard the security metrics measurements and the assessments
that made up the maturity score are presented to the user. This way the dashboard enables
users to better understand what components contributed to the score.
In Figure 7.8 the overview of all the latest security metrics measurements is shown. For each
metric, the name, the corresponding product, the timestamp, the value, and an indicator
showing whether a metric has improved or worsened are given. In addition, the table is
sorted by importance and the top entries are highlighted accordingly with different symbols.
We calculate importance by normalizing the difference between the current and the previous
measurement. The higher the difference, the more important a measurement is.
More information about a single metric can be investigated by a user with the information
icon. When clicked the dialog presented in Figure 7.9 opens, which shows different insights
about the metric, such as the definition, rationale, implication and a solution strategy to
increase the metric performance. Finally past measurements of the metric are displayed in a
line chart, so a user can see the development of the metric over time. Both the overview and
the dialog were developed analogously for the other two pillars.

43

7. Tool-supported security maturity

Figure 7.8.: An overview over all metric measurements making up the metric based pillar

Figure 7.9.: A dialog to support the user to understand a metric

44

7. Tool-supported security maturity

7.4. Evaluation

In this section we describe the given feedback by the participants in three sections analogously
to the used semi-structured questionnaire (see appendix A).

7.4.1. Security maturity dashboard

Firstly feedback was given by the experts on the visualization on the overall maturity score,
the component diagram and the history chart as presented in Figure 7.7.
The experts considered the security maturity dashboard to be generally useful and a major
evolution of the original Microsoft Excel based TSMM. It was generally noted, that the
dashboard gives you good information on where the team currently stands and what potential
for improvements the team has at a glance, while still containing enough detailed information
so a user or decision maker can track down information in specific domains or topics.
One expert noted, that the dashboard could be adapted to fit the information needs of a
specific user group or security expert, as e.g. software engineers in the team require more
product-focused information and concrete action items while managers often require more
abstract security measures. He added that generally it can be assumed that these dashboards
are used by expert users with some form of prior knowledge.
The overall score was seen as useful and not as oversimplifying, especially as the possibility
of drilling down into the pillars and domains is given in the dashboard. One expert noted
a school grade system with ordinal levels could be easier to interpret than a percentage
with many small increments, as it is often used in the context of other security tools. He
reasoned that it may be unclear what the actual consequences of a few percent increase in
scale are. Another suggested solution was the introduction of a reference maturity score,
which represents the enterprise’s or business unit’s target value, so the team can understand
if their score matches the expectation or needs improvement.
Finally, feedback was given on the solution strategy to improve the maturity score. While
the dashboard gives helpful information about the past development of the maturity score
according to all experts, some noted that it would be helpful to receive more solution strategies
and suggestions for improving the score in the future.
In addition to the broader aspects direct feedback was given by the experts on the look
and feel of the first part of the dashboard and its components. Suggestions by the experts
included:

• Highlighting domains that have a high or low score or which improved the most

• Improving the interactivity of the page by enabling clicking on a domain in the compo-
nent chart and subsequently jumping to the corresponding assessments or metrics of
that domain

• Translating the assessments and security metrics into German so the often complex
assessment topics and metrics can be better understood

• Indicating maturity improvement or decreasing with corresponding colors

45

7. Tool-supported security maturity

The maturity dashboard was iteratively adapted to incorporate parts of the direct feedback.
The result of the process can be seen in Figures 7.10 and 7.11, which show the initial dashboard
and the current version.

Figure 7.10.: The first version of the maturity dashboard

Figure 7.11.: The current version of the maturity dashboard

Additionally the experts gave feedback on the second part of the dashboard, which includes
the overview over the metric measurements and carried out assessments. One expert noted
that with more than 30 metrics and assessments an aggregation or automated sorting of
the measurements would be necessary, so the team is not required to search for interesting

46

7. Tool-supported security maturity

information themselves. Another expert noted, that it is difficult to deduce if a metric was
measured with a good or insufficient value, as only the value is shown in the overview.

7.4.2. Input TSMM data sources

Feedback was also given by the experts on the collection and inputting of security data into
the prototype.
Several experts noted that having many tools and having an easy and fast set up process for
new security tools is vital for the acceptance of the tool. Two experts specifically mentioned
they use SonarQube as a security tool in practice, which Prince already supports. One expert
noted that it might be impossible to connect proprietary security software to the tool via an
API, but since such a tool is essential to his security efforts, our proposed tool could not be
adapted in its current version.
Another expert mentioned their experience with the constant change of specifications within
the metrics of security tools. He stated that in the past the definition and calculation of many
metrics changed and the measurements were not comparable any more.
For the assessments some experts mentioned the verbosity of the process. One participant
described the implemented sliders as cumbersome because not all maturity levels are visible
at the same time, and suggested a UI component such as radio buttons as a simpler solution.
Another expert mentioned, that it is unclear when, how often and from whom assessments
need to be carried out.

7.4.3. TSMM approach

The experts finally also gave feedback on the general applicability of the model and the
prototype in their work environment. Generally all experts raised concerns regarding the
assessment’s verbosity, as one assessment exists of more than 30 topics with four different
levels. To resolve this, one expert suggested the use of a small checkbox like survey, which
could be completed in a higher frequency.
Additionally, one expert noted that from his experience and research the correlation between
the answers in the self assessments and the actual quantitative measurements with metrics
is often quite low. Additionally, he stated that quantitative metrics actually provide more
reliable data. In his opinion, the introduction of security metrics for manual evaluation is
very useful and should be carried out.
One expert pointed out the correlation between high-quality code and security, since in his
experience security automatically increases when standard best practices are followed in
software development. Additionally, the expert stated that this sort of discipline often does
not introduce monetary costs or require much work time. He concluded that code quality
measurements therefore should also be included in assessing the security capabilities of a
team.
Some experts pointed out that the different topics, areas and pillars should be weighted
differently depending on the environment. On the one hand, improvements or vulnerabilities
that require a lot of work or pose a high risk of attack may have minimal impact on the

47

7. Tool-supported security maturity

maturity score, which could lead to team frustration or respectively a false sense of security.
An example of this scenario would be the discovery of the log4j vulnerability in December
20214: in the TSMM only the “Open Vulnerabilities Count” would have increased by a
single digit and subsequently the maturity level would have not noticeably worsened. On
the other hand, two experts noted that different applications may have different needs for
security, which should be taken into account when calculating the maturity of the team, i.e.
by weighting the applications’ maturity scores accordingly. Also, since a good score in some
areas might be currently undesired or unnecessary, the tool should offer the possibility to
disable some components of the calculation.
One expert noted that in his experience development teams are often resistant about quan-
titative measurements, which could pose a problem for applying TSMM. To overcome this
possible reluctance towards the approach, he suggests the development of a coaching program
in which an external security coach analyses the TSMM performance and communicates it
with developers in a non-threatening way.
Concerns were also raised by the experts that the approach presented introduces employee
surveillance. While they see the development of secure applications and an active security
monitoring tool for them as beneficial, they mentioned potential consequences of implement-
ing the approach in their organization, such as monetary or cultural repercussions for teams
with an insufficient maturity score. One expert therefore recommends thorough ethical and
legal research before the tool is introduced into organizations.
One expert mentioned that special security activities are carried out in his organization
that are currently not measured within the metric catalogue. As an example, he mentioned
compliance with naming conventions in a public cluster with nodes from different customers
and individual security certificates through on-site training.
Lastly, one expert mentioned the possibility of using the maturity score for security certifica-
tion processes. His company relies on certifications to realise certain software engineering
projects with high security needs, and the maturity score could help verify the security efforts
undertaken.

4https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228, accessed in November 2022

48

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228

8. Discussion

In this chapter, we summarize our main findings and discuss their limitations. The results
and limitations are structured analogously to the research artifacts.

8.1. Key finding and artifacts

From our research, we derived the following key findings, which we discuss in detail in the
following sections:

1. Certain security metrics are meaning- and insightful

2. The automation level of security metrics with security tools varies

3. Security metrics can be used to calculate the team security maturity

4. A overall security maturity score can be calculated and may be helpful

5. Tool-supported security maturity involves a trade-off

6. The success of (tool-supported) security maturity depends on efficient information
collection

Certain security metrics are meaning- and insightful

Measuring the team security level and the security levels of the developed artifacts is important
as a feedback loop on the security efforts undertaken and as a tool for transparency and
compliance. The security metrics we have collected in the security metrics catalogue have been
systematically identified, evaluated against rigorous quality criteria, and allow us to measure
a wide range of security areas during the SDLC. While the selection of appropriate security
metrics can be made with respect to the environment security requirements, the catalogue
provides a starting point for high quality metrics. Our evaluation showed that security metrics
has real meaning and insight for team members such as developers, and for cross-team roles
such as security specialists in a central security department. Self- or external assessments
provide insightful information, but only at regular intervals, they are often voluminous, and
they introduce a subjective component to the measurement. Measuring automated security
metrics can solve these problems: they can be tracked continuously, require little manual
effort, are objective and can be compared reliably over time.

49

8. Discussion

The automation level of security metrics with security tools varies

Although security metrics often track small aspects of an application or team, it is still
challenging to measure them with existing security tools. We found that eight metrics in our
metrics catalogue cannot currently be measured automatically by any existing security tool,
even though they provide insight into the development process. In practice, these metrics
are therefore applicable only to a certain extent, as manual measurements of metrics are
unreliable and require a lot of manual effort. On the other hand, some metrics are measurable
with many security tools, which raises another issue. The same metric can be defined and
calculated differently by different tools and subsequently the collected measurements are not
comparable.

Security metrics can be used to calculate the team security maturity

Existing maturity models such as the TSMM often use self-assessments and external assess-
ments as a source of information. Security metrics can complement this source of information
and increase the quality of the security maturity calculation, because (semi-) automated
security metrics provide relevant information, their measurements are quantifiable, and they
can be measured with a high frequency. The introduction of security metrics also allows
for a comparison between the perceived and actual security level of the developed artifacts.
Nevertheless, we cannot completely replace manual assessments with security metrics be-
cause some relevant areas of software engineering, such as team culture, are currently not
measurable with them.

A overall security maturity score can be calculated and may be helpful

In security maturity models, the focus lies often on assigning individual domains to their
corresponding maturity levels in order to reveal security domains in need of improvement.
However, the literature and our proposed calculation of a maturity score using the TSMM
also emphasize that an overall score can be calculated across all security domains. Such a
score greatly simplifies the underlying security data collected, and thus could theoretically
mislead developers or security specialists. However, we showed that if properly calculated
and presented, it can be used as a guidance tool by the team to accelerate security in agile
development. Furthermore, it can be used as a reporting tool to visualize the security level in
the developed applications to external security specialists.

Tool-supported security maturity involves a trade-off

Traditional maturity models are often still analog, meaning gathering information and
assessing maturity is done through surveys or manual audits with spreadsheets. This
includes the TSMM, which was the focus of this research. This type of information collection,
while often thorough, is less reliable, requires a lot of time and effort, and is difficult to
maintain. By implementing a dedicated security maturity measurement tool, many of these
drawbacks can be mitigated. Firstly, security metrics can be collected automatically and

50

8. Discussion

reliably without manual effort. Secondly, all maturity information, such as previous and
current assessments, metrics, or maturity scores, are persistently stored in a structured format
in a database. Finally, the collected data can be queried and visualized to gain new insights
in the various security domains. These benefits were also confirmed by the experts in the
conducted interviews. However, to achieve them, a trade-off must be made. Assessments
are still used in our prototype to calculate the maturity score, which require a lot of manual
effort because there are a large number of security topics. In addition, special security tools
must be set up, which can measure the implemented security metrics.

8.2. Limitations

8.2.1. Validation of research methods [112, p.153]

To assess the threats to the validity of the proposed security metrics catalogue we consider
the criteria of construct validity, internal validity, external validity and reliability in this
Section [112, p.153]. The four concepts were proposed for validating case studies in software
engineering research, but still relate to our research as we conducted a literature review and
interviews with the developed prototype, where the typical limitations of case studies are
also relevant.

Construct validity

Construct validity concerns a possible mismatch between the proposed artifacts and the
research questions. Our goals were first to determine which security metrics exist in the
literature, find out how they can be automatically captured by security tools, and second,
how they can be used to assess the security maturity of a development team. To achieve the
first goal, we conducted a literature review to create a structured security metrics catalogue.
As new or applied security metrics are published in the scientific literature, this research
methodology provides us with a holistic overview of existing security metrics and their level
of automation. In addition, the literature review followed a clear structure as outlined in 3.1
and is therefore objective and reproducible. Nevertheless, with our chosen methodology, it
is possible that some metrics are missing from our catalogue, as there are other sources of
security metrics, such as security tools or video presentations.
To achieve our second research goal, we introduced the metrics we found into the TSMM. With
the introduction and the calculation method presented in Section 6.2, we have demonstrated
a way to assess the security maturity of a team with security metrics and thus fully answer
our research question.

Internal validity

Internal validity must be investigated when causal relationships are studied in research, since
it is possible that a factor under study is influenced not only by an observed factor but also

51

8. Discussion

by another factor that is not monitored. Since we did not examine causal relationships, the
issue of internal validity is not of concern in this research.

External validity

The topic of external validity investigates if and to what extent it is possible to generalize
the findings from the conducted research. With intent, we proposed a general security
metrics catalogue with many possible applications. One of these applications is the presented
calculation of team security maturity, but it is very possible and encouraged, to investigate to
use the catalogue as an audit tool, in small-scale agile efforts or as an implementation support
tool. Additionally, it is possible to generalize the steps we conducted to assess the quality of
security metrics, which includes applying minimal quality criteria and afterwards assigning
metrics a score calculated from different quality aspects.

Reliability

Reliability discusses if the study results could be hypothetically reproduced by a different
researcher later on or if they are dependent on the researcher. As the catalogue is the result
of an extensive literature review, reliability is given until new metrics are proposed in the
literature in the future. The introduction of the metrics into TSMM on the other hand shows
only one way to answer the research question RQ2. It is feasible that at a later stage other
possibilities will become apparent, e.g. the maturity could be calculated solely with security
metrics without the need of any manual assessments.

8.2.2. Validation of proposed software prototype [75, p. 323]

In this section we assess the validity of the proposed prototype by using the recommendations
of Lukyanenko et al., which focus explicitly on software artifacts [75, p.323].

Artifact instantiation space

The artifact instantiation space is the set of possible variations in the design of software
features, which can pose a threat to validity because a theory can be instantiated with software
in many ways and produce different results. In our case the prototype was developed in a
large instantiation space, as became apparent during the development process and in the
conducted interviews, where a lot of different user interface components and designs were
suggested by the experts. It became apparent that our general system architecture design
choices like the server-client architecture or the choice of framework is not in question, but
the user interface design decisions in the frontend are ambiguous. In our case this large
instantiation space therefore threatens the validity, as a different user interface design could
have lead to much different interview results.

52

8. Discussion

Artifact complexity

Auxiliary Features. This topic discusses requiring auxiliary data, a database or operating
system to evaluate a software system, which can lead to a threat in instantiation validity.
In our case the tool and therefore the evaluations required auxiliary data holding amongst
others the maturity score of a team, which was chosen arbitrarily and could have an impact
on the evaluation and acceptance decision. We mitigated this by explaining the experts, that
the score is the result of an example calculation of a specific, fictional development team,
which was generally well understood.
Emergent Properties. An example for emergent properties are presentation complexity or
information overload while presenting information to the user. We believe our prototype
does not invoke these properties, as became apparent in the evaluation by explaining it and
asking specifically for unclear user interface components.

Artifact Cost
The effort to create a software artifact and consequently the difficulty of presenting multiple
software versions is discussed by this topic. As our prototype was developed over the course
of only a few months and only by one researcher, it was not possible to implement multiple
software designs. Additionally, it was not possible to implement all features suggested by the
experts and present the adapted version in a second round of interviews.

Artifact Medium and Distance
With software systems the theoretical construct and the implementation are often seperated
with a large distance e.g. in language and visualization aspects. In our case all assessments
and security metrics are adopted from the TSMM, so from theory, and additionally all other
aspects of the model such as the pillar structure was adopted and clearly visualized. Still
the original table-like structure of the TSMM differs from the web application in many
aspects, such as the visualization of the domains’ maturity scores with an interactive diagram.
Therefore, the approach with the TSMM and the web application should be to some extent
evaluated separately, which we followed in the interviews. Still it is feasible, that the given
evaluation was biased by the software design.

Technological Progress
This topic concerns the impact of a technological change on the proposed prototype. Although
our proposed software architecture is currently state of the art, there are several issues that
threaten its validity if the chosen technologies evolve. First, given the current shift to mobile,
touch-based applications, the proposed prototype may need to be adapted and reevaluated
[75, p.326]. Second, the chosen user interface structure may prove to be outdated or overly
complex in the future and will need to be redesigned and reevaluated. In addition, new
security tools may become established and some proposed security metrics may become
drastically easier to measure. In this case, our approach to connecting to security tools via a
REST API would need to be revised. We can therefore conclude that a future prototype with
the same goal as ours will be designed, implemented, and behave differently.

53

9. Conclusion and Future Work

In this chapter we summarize the research. We answer the research questions described in
Chapter 1 using the proposed artifacts and preview possible future work.

9.1. Summary

We created three artifacts, namely a security metrics catalogue, an adapted version of the
TSMM and a maturity tool, that can be used independently or combined: For example, the
security metrics catalogue can be used in an security metrics program without implementing
the TSMM, and the TSMM can be used without the maturity tool. In what follows, we attempt
to use these artifacts to provide a summary answer to each of our research questions.

RQ1: Which security metrics exist and how can they automatically be captured
with the support of security tools?

To answer the question, we used a systematic literature review to create a catalogue of
31 qualifying metrics. The metrics collected have undergone a rigorous and structured
qualification process and are therefore of high quality. In the catalogue, we described each
metric in detail so that it is clear how it is calculated, what information it requires, and what
solution strategies exist to increase its score. To analyze the automation potential of security
metrics and thus answer the second part of the question, we identified common security
tool categories and prominent examples of tools. Once identified, we connected the security
metrics to the tools in a matrix that can serve as an exemplary guide to where and how each
metric can be measured. The identified security metrics can be used to calculate security
maturity, but are also of high value for general DevSecOps or any other efforts in secure
software development.

RQ2: How can security metrics be used to assess the security maturity of an agile
development team?

We integrated the identified security metrics into the TSMM to answer this research question.
Together with the existing contents of the TSMM this yields a model that can be used to
deterministically compute security maturity scores of different security domains. Additionally,
we introduced the structured, multistep calculation of an overall maturity score across all
domains of the TSMM. As a majority of the metrics can automatically be measured with
security tools, the maturity score itself can also be calculated automatically, leading to faster
and more reliable results.

54

9. Conclusion and Future Work

RQ3: How can a team’s security maturity be calculated, represented and visual-
ized in a self-assessment tool?

We developed the functionality described in the research question into an existing self-
assessment tool and therefore show through the description and screenshots of the tool a way
to calculate, present and visualize the security maturity of a team. In addition, through the
evaluation we conducted, we were able to demonstrate that the implemented functionality
has real value and meets an information need. But the evaluation participants also provided
suggestions for improvement, which we implemented in a second iteration of the prototype.
The general concept and functionality of the tool could be used as a blueprint or kickstart for
any other security maturity tool built on TSMM or another maturity model (see Chapter 9.2).

9.2. Future work

In this section, we describe three opportunities for future research for which our work provide
a foundation.
First, empirical research and validation is needed on our adapted version of the TSMM. For
the metrics-based pillar we proposed to complement the model, research should focus on
validating the selection of security metrics and their respective maturity levels. In addition,
the weighting of individual security metrics or domains in the metrics-based column could
be investigated.
Second, the proposed security maturity tool should be researched and validated, which could
focus on applicability in different industries, usefulness to different stakeholders and their
information needs, or appropriateness at different security levels. In addition, we believe it
would be useful to explore the use of metrics in other non-functional software domains such
as quality, architecture, or user interface design. This stems from our literature review, where
it became clear that there are many metrics outside of security. Options for conducting this
research include a small workshop with synthetic security data, an industry case study with
multiple development teams, or implementing the tool for a sample of teams and comparing
their security capabilities to a control group over time.
It might also be useful to investigate the possibility of transferring our approach to other non-
functional areas of software development, such as code quality, architecture, or user interface
design. Firstly, a systematic literature review could be conducted to collect candidate metrics
from the literature, after which the introduced qualification procedure could be applied.
The qualified metrics then could be described with the same structured catalogue format.
When the metrics are collected in this way, they could be introduced into a maturity model,
similar to how we introduced security metrics into TSMM, and eventually the proposed
prototype could be used as a blueprint to collect the metrics and calculate maturity scores
automatically.

55

A. Interview Questionnaire

Interviewee Information:

Position:
Job Description/ Experience:

Question Catalogue:

1. How is the security maturity score visualized in the security maturity dashboard?

• Maturity Score: Is the meaning of the score and the difference between the different
levels clearly displayed?

• Maturity Components: Does it become clear how the maturity score is calculated?
If not, what is missing or unclear?

• What is your general, overall impression of the dashboard?

2. How is entering and querying data for TSMM performed?

• TSMM Assessments: Does it become clear, how the different topics are answered
in the system? Is the process straight-forward and engaging? If not, what is
missing or unclear?

• Security Metrics: Is it convenient and straight-forward how security metrics are
collected? Is it easy to understand what security metrics are and how to interpret
them? If not, what is missing or unclear?

• What is your general, overall impression of entering TSMM data into the system?

3. What is your general feedback regarding this team security approach?

• What advantages and benefits do you see for your team?

• What disadvantages and drawbacks of the taken approach do you see?

56

B. Complete Catalogue of Security Metrics

B.1. Team security metrics

B.1.1. Knowledge

Name Company Security Policy Review Rate Level derived
Entity Company security policies Type internal
Attribute Review Range [0,100]
Definition Security policies reviewed / Amount of

security policies
Expected
Value

100

Rationale (theoretical) Variability [-10,10]
Percentage of relevant company security policies re-
viewed

Scale type ratio

Implications (practical) Related metrics
Company security policy awareness is often low and
increasing it can lead to more informed decision in early
SDLC phases (shifts security left).

GSRRR

Applicable in context Validation
Large enterprise with a central security unit [22], [111], [62], [101]
Solution Strategies
Company security policy workshops, allow time for
review

57

B. Complete Catalogue of Security Metrics

Name Government Security Regulation Review
Rate

Level derived

Entity Government security regulations Type internal
Attribute Review Range [0,100]
Definition Government security regulations reviewed

/ Amount of government security regula-
tions

Expected
Value

100

Rationale (theoretical) Variability [-10,10]
Percentage of relevant government security regulation
reviewed

Scale type ratio

Implications (practical) Related metrics
Government security regulations need to be fulfilled to
be on legal ground and avoid fines, but awareness is
often low

CSPPR

Applicable in context Validation
Large enterprise that handles sensitive personal data
(e.g. necessary GDPR compliance)

[22], [111], [101]

Solution Strategies
Government security regulations training, allow time
for review

B.1.2. Velocity

Name Security Awareness Effort Rate Level derived
Entity Security awareness Type internal
Attribute Effort Range [0,100]
Definition Time spent on security awareness / Total

development time
Expected
Value

10

Rationale (theoretical) Variability [-5,5]
Security awareness is time spent on security training,
review and similar activities

Scale type ratio

Implications (practical) Related metrics
Time spend on awareness activities can be worth it in
terms of efficiency and quality

SRER, SAPR, OSRC, MTTF

Applicable in context Validation
Every software development context [22], [42]
Solution Strategies
Offer training possibilities, allow time for security

58

B. Complete Catalogue of Security Metrics

Name Security Remediation Effort Rate Level derived
Entity Security remediation Type internal
Attribute Effort Range [0,100]
Definition Time spent on security remediation / Total

development time
Expected
Value

10

Rationale (theoretical) Variability [-5,5]
Security remediation is time spent on implementing
security requirements or fixing open vulnerabilities

Scale type ratio

Implications (practical) Related metrics
Helps to measure if a team spends much time and if so
if its efficiently

SMC, SAER, SAPR

Applicable in context Validation
Every software development context [125]
Solution Strategies
Offer training possibilities

Name Security Meetings Count Level derived
Entity Milestone meetings Type external
Attribute Security expert participation Range [0,∞]
Definition Count meetings with security experts in

an iteration
Expected
Value

1

Rationale (theoretical) Variability [−∞,∞]
Amount of meetings with security experts participating
per iteration

Scale type absolute

Implications (practical) Related metrics
Security Experts should be involved early and often into
the SDLC to provide guidance

SRER

Applicable in context Validation
Large enterprise with a central security unit [136]
Solution Strategies
Increase security expert participation in meetings

59

B. Complete Catalogue of Security Metrics

Name Security Audit Pass Rate Level derived
Entity Security audits Type external
Attribute Pass rate Range [0,100]
Definition Passed security audits / Amount of secu-

rity audits
Expected
Value

100

Rationale (theoretical) Variability [-10,10]
Percentage of security audits successfully passed Scale type ratio
Implications (practical) Related metrics
Measure the security quality of the team’s output SAER, SRER
Applicable in context Validation
Large enterprise with a central security unit [136]
Solution Strategies
Reduce amount of security audits (treating), increase
security efforts (solving)

60

B. Complete Catalogue of Security Metrics

B.2. Product security metrics

B.2.1. Analysis

Name Omitted Security Requirements Count Level base
Entity Security requirements Type internal
Attribute Omission Range [0,∞]
Definition Count all omitted security requirements Expected

Value
0

Rationale (theoretical) Variability [−∞,∞]
Number of omitted security requirements from a stan-
dard that was fixed in advance (for instance, the Com-
mon Criteria for Information Technology Security Eval-
uation (ISO/IEC15408))

Scale type absolute

Implications (practical) Related metrics
Security Requirements that are left are a threat to the
security of the developed system

CSPPR

Applicable in context Validation
Every software development context [72], [42]
Solution Strategies
Decrease security requirements standard (treating), in-
crease security awareness (solving)

Name Security Requirements General Analysis
Rate

Level derived

Entity Security requirements Type internal
Attribute Carried out analysis Range [0,100]
Definition Analyzed security requirements /

Amount of security requirements
Expected
Value

100

Rationale (theoretical) Variability [-5,5]
Percentage of security requirements that have been sub-
ject to analysis prior to being included in the specifica-
tion

Scale type ratio

Implications (practical) Related metrics
Thorough analysis of the security requirements is bene-
ficial to the security quality

SRTMR, SRSACR

Applicable in context Validation
Every software development context [78], [11], [7], [122], [42]
Solution Strategies
Reduce amount of security requirements (treating), in-
crease security analysis time (solving)

61

B. Complete Catalogue of Security Metrics

Name Security Requirements Threat Modeling
Rate

Level derived

Entity Security requirements Type internal
Attribute Carried out threat modeling Range [0,100]
Definition Threat modeled security requirements /

Amount of security requirements
Expected
Value

100

Rationale (theoretical) Variability [-5,5]
Percentage of security requirements covered by means
of threat modeling and change impact analysis

Scale type ratio

Implications (practical) Related metrics
Threat modeling gives an insight into what potential
threats lie in the security requirements

SRGAR

Applicable in context Validation
Every software development context with special re-
quirements for system security

[78], [11], [106], [146], [111]

Solution Strategies
Reduce amount of security requirements (treating), in-
crease security analysis time (solving)

B.2.2. Design

Name Architecture Component Attack Surface
Analysis Rate

Level derived

Entity Architecture components Type internal
Attribute Carried out attack surface analysis Range [0,100]
Definition Attack surface analyzed architecture com-

ponents / Amount of architecture compo-
nents

Expected
Value

100

Rationale (theoretical) Variability [-5,5]
Percentage of proposed architecture components subject
to attack-surface analysis

Scale type ratio

Implications (practical) Related metrics
Attack Surface Analysis gives insight into which areas
have a higher exploitation risk than others

ACARAR

Applicable in context Validation
Every software development context with special re-
quirements for system security

[78], [101]

Solution Strategies
Decrease thoroughness of attack surface analysis (treat-
ing), increase security design time (solving)

62

B. Complete Catalogue of Security Metrics

Name Architecture Component Architectural
Risk Analysis Rate

Level derived

Entity Architecture components Type internal
Attribute Carried out risk analysis Range [0,100]
Definition Architectural risk analyzed architecture

components / Amount of architecture
components

Expected
Value

100

Rationale (theoretical) Variability [-5,5]
Percentage of proposed architecture components subject
to architectural risk analysis

Scale type ratio

Implications (practical) Related metrics
Architectural Risk provides a holistic view on flaws of
the proposed architecture

ACASAR

Applicable in context Validation
Every software development context with special re-
quirements for system security

[78], [11], [109], [106], [6],
[56], [101]

Solution Strategies
Decrease thoroughness of architectural risk analysis
(treating), increase security design time (solving)

Name Security Requirements Satisfying Archi-
tecture Components Rate

Level derived

Entity Architecture components Type internal
Attribute Security requirements satisfaction Range [0,100]
Definition Architecture components with security re-

quirements fulfillment / Amount of archi-
tecture components

Expected
Value

100

Rationale (theoretical) Variability [-5,5]
Percentage of software components with demonstrated
satisfaction of security requirements specifications

Scale type ratio

Implications (practical) Related metrics
Architecture Components need to be mapped to the
security requirements to have a high quality

SRGAR, UER

Applicable in context Validation
Every software development context [36], [77], [27], [101], [134]
Solution Strategies
Adhere stricter to security requirements in design phase

63

B. Complete Catalogue of Security Metrics

Name Coupling Corruption Propagation Level base
Entity Architecture components Type internal
Attribute Coupling corruption Range [0,∞]
Definition MAX (amount of methods that could

be affected by the originating unsecure
method)

Expected
Value

5

Rationale (theoretical) Variability [−∞,∞]
The total number of methods that could be affected by
an originating unsecure method

Scale type absolute

Implications (practical) Related metrics
When vulnerable a highly coupled system is more dan-
gerous

CER

Applicable in context Validation
Every software development context with special re-
quirements for system security

[30], [77], [45], [120], [68],
[5], [119], [19], [149], [41]

Solution Strategies
Follow a more island or decoupling system architecture
approach

Name Critical Element Ratio Level derived
Entity Architecture components Type internal
Attribute Critical elements Range [0,100]
Definition MAX (data elements which when cor-

rupted have security impact / amount of
data elements)

Expected
Value

25

Rationale (theoretical) Variability [-1,1]
The rate of data elements which when corrupted or
maliciously altered have security impact on the system
to the total amount of data elements

Scale type ratio

Implications (practical) Related metrics
Critical elements give an insight into the code structure CCR
Applicable in context Validation
Every software development context with special re-
quirements for system security

[30], [77], [45], [120], [68],
[19], [149], [41]

Solution Strategies
Introduce clear delimitation between critical and non-
critical data elements in design

64

B. Complete Catalogue of Security Metrics

B.2.3. Implementation

Name Security Test Coverage Rate Level derived
Entity System components Type internal
Attribute Security tests Range [0,100]
Definition Amount of system components covered

by security tests / Amount of system com-
ponents (e.g. LOC)

Expected
Value

100

Rationale (theoretical) Variability [-1,1]
Security Test Coverage Rate is a measure of how much
of a project’s codebase is analyzed in the security tests
performed

Scale type ratio

Implications (practical) Related metrics
As many system components as possible should be
tested to provide good insight into the security status of
the system

STSR, STFR

Applicable in context Validation
Every software development context [141], [16], [79], [54], [142],

[77], [76], [51], [25], [41],
[53], [14]

Solution Strategies
Cover more parts of the system with security tests

Name Security Test Success Rate Level derived
Entity Security tests Type internal
Attribute Success Range [0,100]
Definition Successful security tests / Total security

tests
Expected
Value

100

Rationale (theoretical) Variability [-1,1]
Percentage of how many security tests were successful
out of all security tests

Scale type ratio

Implications (practical) Related metrics
As many security tests as possible should pass to be
confident about the system’s security

STFR, STCR

Applicable in context Validation
Every software development context [11], [82], [141], [131], [91],

[102], [6], [56], [142], [77],
[76], [25], [41], [14]

Solution Strategies
Resolve underlying security problems

65

B. Complete Catalogue of Security Metrics

Name Security Test Failure Rate Level derived
Entity Security tests Type internal
Attribute Failure Range [0,100]
Definition Failed security tests / Total security tests Expected

Value
0

Rationale (theoretical) Variability [-1,1]
Percentage of how many security tests failed out of all
security tests

Scale type ratio

Implications (practical) Related metrics
As few security tests as possible should fail to be confi-
dent about the system’s security

STSR, STCR

Applicable in context Validation
Every software development context [11], [131], [6], [56], [47],

[77], [76], [136], [25], [41],
[14]

Solution Strategies
Resolve underlying security problems

Name Dependency Security Vulnerabilities
Count

Level base

Entity Dependencies Type internal
Attribute Security vulnerabilities Range [0,∞]
Definition Count by dependencies introduced secu-

rity vulnerabilities
Expected
Value

0

Rationale (theoretical) Variability [−∞,∞]
The amount of vulnerabilities introduced by used de-
pendencies

Scale type absolute

Implications (practical) Related metrics
Vulnerable dependencies need to be removed or miti-
gated

DSVR

Applicable in context Validation
Every software development context with introduced
dependencies that are not enterprise internal

[109], [77]

Solution Strategies
Remove unnecessary dependencies, update outdated
dependencies

66

B. Complete Catalogue of Security Metrics

Name Dependency Security Vulnerabilities Rate Level derived
Entity Dependencies Type internal
Attribute Security vulnerabilities Range [0,100]
Definition Vulnerable dependencies / Amount of de-

pendencies
Expected
Value

0

Rationale (theoretical) Variability [-1,1]
The share of dependencies which introduce possible
security vulnerabilities.

Scale type ratio

Implications (practical) Related metrics
A single vulnerable dependencies can be catastrophic,
even when the system has many

DSVC

Applicable in context Validation
Every software development context with introduced
dependencies that are not enterprise internal

[109], [77], [117]

Solution Strategies
Remove unnecessary dependencies, update outdated
dependencies

Name Unsecured Endpoints Rate Level derived
Entity Endpoints Type internal
Attribute Insecurity Range [0,100]
Definition Unsecure Endpoints / Amount of end-

points
Expected
Value

0

Rationale (theoretical) Variability [-1,1]
The rate of endpoints without authorization control or
other unsecure access possibilities

Scale type ratio

Implications (practical) Related metrics
Endpoints are the attackers entry into a system SRSACR
Applicable in context Validation
Every software development context [110], [149]
Solution Strategies
Follow stricter endpoint security practices

67

B. Complete Catalogue of Security Metrics

B.2.4. Deployment

Name Vulnerability Scanning Coverage Rate Level derived
Entity System components Type internal
Attribute Vulnerability scanning Range [0,100]
Definition Amount of system components covered

by vulnerability / Amount of system com-
ponents (e.g. LOC)

Expected
Value

100

Rationale (theoretical) Variability [-1,1]
The percentage of a software systems that have been
checked for vulnerabilities

Scale type ratio

Implications (practical) Related metrics
Only a holistically examination can give good insight CSDR, OVC, MVC, VSR, CFR
Applicable in context Validation
Every software development context [148]
Solution Strategies
Introduce vulnerability scanning to more system com-
ponents

Name Code Scanning Detection Rate Level derived
Entity System components Type internal
Attribute Vulnerable code scans Range [0,100]
Definition Amount of problematic security scans /

Total amount of security scans
Expected
Value

0

Rationale (theoretical) Variability [-5,5]
Rate of security scans which identify a problem to the
total amount of scans

Scale type ratio

Implications (practical) Related metrics
Scans can give an objective view on the system and a
good measure of the system’s security

VSCR

Applicable in context Validation
Every software development context with active periodic
security scans

[82], [141]

Solution Strategies
Decrease the amount of scans (treating), increase the
security efforts (solving)

68

B. Complete Catalogue of Security Metrics

Name Open Vulnerabilities Count Level base
Entity System components Type internal
Attribute Open vulnerabilities Range [0,∞]
Definition Count all unmitigated vulnerabilities Expected

Value
0

Rationale (theoretical) Variability [−∞,∞]
The amount of open vulnerabilities in the developed
artifact

Scale type absolute

Implications (practical) Related metrics
A single open vulnerability can be catastrophic and
mitigation should have a high priority

VSCR, OVR

Applicable in context Validation
Every software development context [22], [142], [47], [45], [84],

[83], [41], [110], [109], [64],
[79], [97], [102], [7], [120],
[71], [56], [143], [4], [103],
[77], [27], [136], [111], [51]

Solution Strategies
Weaken the vulnerability definition (treating), increase
security efforts (solving)

Name Open Vulnerabilities Rate Level derived
Entity System components Type internal
Attribute Open vulnerabilities Range [0,100]
Definition Amount of unmitigated vulnerabilities /

System components (e.g. LOC)
Expected
Value

0

Rationale (theoretical) Variability [-1,1]
The amount of open vulnerabilities of the system in
relation to the size of the system

Scale type ratio

Implications (practical) Related metrics
Vulnerabilities are more likely in complex system VSCR, OVC
Applicable in context Validation
Every software development context [11], [141], [28], [97], [103],

[36], [142], [47], [76], [72],
[84], [122], [42], [41], [117]

Solution Strategies
Weaken the vulnerability definition (treating), increase
security efforts (solving)

69

B. Complete Catalogue of Security Metrics

Name Mitigated Vulnerabilities Count Level base
Entity System components Type internal
Attribute Mitigated vulnerabilities Range [0,∞]
Definition Count all already mitigated vulnerabilities Expected

Value
0

Rationale (theoretical) Variability [−∞,∞]
The amount of vulnerabilities which have been com-
pletely mitigated

Scale type absolute

Implications (practical) Related metrics
Mitigation of vulnerabilities increases a team’s experi-
ence and efficiency

MTTR

Applicable in context Validation
Every software development context [27], [83]
Solution Strategies
Weaken mitigation requirements (treating), increase se-
curity efforts (solving)

Name Vulnerability Slippage Rate Level derived
Entity Live system components Type internal
Attribute Vulnerabilities Range [0,100]
Definition Amount of artifacts with vulnerabilities

in production / Amount of Artifacts in
production

Expected
Value

0

Rationale (theoretical) Variability [-1,1]
Rate of artifacts in production with included vulnerabil-
ities

Scale type ratio

Implications (practical) Related metrics
The presence of vulnerabilities in production indicate
that the security efforts of the team are insufficient

VSCR

Applicable in context Validation
Every software development context [97], [6], [142], [89], [68],

[83], [53], [53], [134], [2]Solution Strategies
Increase security efforts

70

B. Complete Catalogue of Security Metrics

Name Change Failure Rate Level derived
Entity Proposed change Type internal
Attribute Failure Range [0,100]
Definition Amount of proposed and failed changes /

Amount of proposed changes
Expected
Value

0

Rationale (theoretical) Variability [-5,5]
The amount of proposal artifacts which miss one or
more quality gates

Scale type ratio

Implications (practical) Related metrics
The presence of vulnerabilities in an artifact proposal
indicate that the security efforts of the team are insuffi-
cient

VSCR

Applicable in context Validation
Every software development context with active quality
gates

[17], [13], [68], [51], [105]

Solution Strategies
Weaken change rejection criteria (treating), increase se-
curity efforts (solving)

Name Spillover Vulnerability Count Level base
Entity New development iteration Type internal
Attribute Vulnerabilities Range [0,∞]
Definition Count all old and unmitigated vulnerabil-

ities
Expected
Value

0

Rationale (theoretical) Variability [−∞,∞]
Security vulnerabilities that do not get fixed during a
given iteration

Scale type absolute

Implications (practical) Related metrics
Increasing technical debt results in inefficiencies and
reduced software quality
Applicable in context Validation
Every software development context [25], [2]
Solution Strategies
Increase security remediation efforts

71

B. Complete Catalogue of Security Metrics

B.2.5. Maintenance

Name Availability Rate Level derived
Entity Production (run-time) Type internal
Attribute Availability Range [0,100]
Definition Time system was available / Total run

time
Expected
Value

100

Rationale (theoretical) Variability [-1,1]
The uptime/ downtime of the system Scale type ratio
Implications (practical) Related metrics
Availability has a direct impact on revenue, contractual
service fulfillment or customer satisfaction

MTTR, MTTF

Applicable in context Validation
Every software development context with some avail-
ability requirements

[27], [11], [8], [134], [14],
[117], [2]

Solution Strategies
Keep system with detected insecurity online (treating),
increase security efforts (solving)

Name Mean Time to Resolve Level derived
Entity Vulnerability mitigation Type internal
Attribute Velocity Range [0,∞]
Definition AVG (Time it takes from vulnerability ac-

knowledgement to mitigation)
Expected
Value

24h

Rationale (theoretical) Variability [−∞,∞]
Mean time to resolve a discovered vulnerability during
production

Scale type ratio

Implications (practical) Related metrics
The velocity of vulnerability mitigation indicate if the
team’s security work is efficient

MVC, AR

Applicable in context Validation
Every software development context [8], [28], [59], [31], [91], [90],

[64], [16], [54], [97], [102],
[7], [88], [49], [6], [22], [143],
[103], [142], [89], [76], [17],
[111], [53], [101], [117], [105]

Solution Strategies
Increase security remediation efforts

72

B. Complete Catalogue of Security Metrics

Name Mean Time to Fail Level derived
Entity Production (run-time) Type internal
Attribute Security failure frequency Range [0,∞]
Definition AVG (Time it takes for a vulnerability to

be apparent/ the system is shut down be-
cause of an open security vulnerability)

Expected
Value

∞

Rationale (theoretical) Variability [−∞,∞]
Mean time until a security failure happens in production Scale type ratio
Implications (practical) Related metrics
Vulnerabilities in production should happen as little as
possible to avoid potential catastrophic consequences

AR, SAER

Applicable in context Validation
Every software development context [61], [111]
Solution Strategies
Weaken vulnerability definition (treating) , increase se-
curity efforts (solving)

73

B. Complete Catalogue of Security Metrics

B.3. SMMM Calculation

Quantitative Qualitative

Q
ua

nt
ifi

ab
le

R
ea

di
ne

ss

R
ep

ea
ta

bl
e

C
ar

di
na

l

Sc
or

e
%

M
ea

su
ra

bi
lit

y

M
ea

ni
ng

fu
ln

es
s

C
or

re
ct

ne
ss

Sc
or

e
%

To
ta

lS
co

re

Te
am

m
et

ri
cs

Know-
ledge

CSPPR 1.0 1.0 1.0 1.0 100% 1.0 1.0 1.0 100% 100%
GSRRR 1.0 1.0 1.0 1.0 100% 1.0 1.0 1.0 100% 100%

Effort

SAER 0.5 0.5 1.0 1.0 75% 1.0 1.0 1.0 100% 88%
SRER 0.5 0.5 1.0 1.0 75% 1.0 1.0 1.0 100% 88%
SMC 1.0 0.5 1.0 1.0 88% 1.0 0.5 1.0 83% 85%
SAPR 1.0 0.5 1.0 1.0 88% 1.0 1.0 1.0 100% 94%

Pr
od

uc
t

m
et

ri
cs

Analysis
OSRC 1.0 1.0 1.0 1.0 100% 1.0 0.5 1.0 83% 92%
SRGAR 0.5 1.0 1.0 1.0 88% 0.5 1.0 1.0 83% 85%
SRTMR 1.0 1.0 1.0 1.0 100% 1.0 1.0 1.0 100% 100%

Design

ACASAR 1.0 0.5 1.0 1.0 88% 1.0 1.0 1.0 100% 94%
ACARAR 1.0 0.5 1.0 1.0 88% 1.0 1.0 1.0 100% 94%
SRSACR 1.0 1.0 1.0 1.0 100% 0.5 1 1.0 83% 92%
CCR 0.5 1.0 1.0 1.0 88% 0.5 1.0 1.0 83% 85%
CER 0.5 1.0 1.0 1.0 88% 0.5 1.0 1.0 83% 85%

Imple-
menta-
tion

STCR 1.0 1.0 1.0 1.0 100% 1.0 0.5 1.0 83% 92%
STSR 1.0 1.0 1.0 1.0 100% 1.0 0.5 1.0 83% 92%
STFR 1.0 1.0 1.0 1.0 100% 1.0 0.5 1.0 83% 92%
DSVC 1.0 0.5 1.0 1.0 88% 1.0 1.0 1.0 100% 94%
DSVR 0.5 1.0 1.0 1.0 88% 1.0 1.0 1.0 100% 94%
UER 1.0 1.0 1.0 1.0 100% 1.0 1.0 1.0 100% 100%

Deploy-
ment

VSCR 1.0 1.0 1.0 1.0 100% 1.0 1.0 1.0 100% 100%
CSDR 1.0 1.0 1.0 1.0 100% 1.0 1.0 1.0 100% 100%
OVC 1.0 1.0 1.0 1.0 100% 1.0 0.5 1.0 83% 92%
OVR 0.5 1.0 1.0 1.0 88% 1.0 1.0 1.0 100% 94%
MVC 1.0 1.0 1.0 1.0 100% 1.0 0.5 1.0 83% 92%
VSR 0.5 0.5 1.0 1.0 75% 1.0 1.0 1.0 100% 88%
CFR 1.0 1.0 1.0 1.0 100% 1.0 1.0 1.0 100% 100%
SDC 1.0 1.0 1.0 1.0 100% 1.0 0.5 1.0 83% 92%

Mainte-
nance

AR 1.0 1.0 1.0 1.0 100% 1.0 1.0 1.0 100% 100%
MTTR 1.0 0.5 1.0 1.0 88% 1.0 1.0 1.0 100% 94%
MTTF 1.0 0.5 1.0 1.0 88% 0.5 1.0 1.0 83% 85%

74

Glossary

DAST Dynamic application security testing. 10, 21, 24, 25

DevOps Development operations. 5, 6

DevSecOps Development security operations. 6, 8, 10, 54

DSPR Design science research process. 4

IAST Interactive application security testing. 10, 24, 25

PMT Project management tool. 11, 21, 22, 23, 24, 25, 26

Prince Principle self-assessment tool for agile development teams. 33, 34, 35, 39, 40, 41, 42, 47

RQ1 Research question 1. 3, 20, 54

RQ2 Research question 2. 3, 52, 54

RQ3 Research question 3. 3, 33, 55

SAST Static application security testing. 10, 21, 22, 24, 25, 34, 41

SCA Software composition analysis. 10, 11, 21, 24, 25, 34

SDLC Software development life cycle. 5, 6, 8, 10, 14, 17, 18, 20, 21, 22, 23, 24, 25, 33, 49

Security metrics Secure software engineering metrics. 1, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 39, 41, 42, 43, 45, 47, 49, 50,
51, 52, 53, 54, 55

SIEM Security information and event management. 10, 11, 21, 25, 26

SMMM Security metrics maturity model. 9, 14, 19, 21, 23

TSMM Team security maturity model. 2, 3, 7, 8, 18, 21, 28, 29, 30, 31, 33, 34, 36, 39, 40, 42,
45, 47, 48, 50, 51, 52, 53, 54, 55

USE User-centric software engineering. 33, 34

VMT Vulnerability management tool. 10, 11, 22, 24, 25

75

List of Figures

1.1. Cyber incidents in the last years . 2

2.1. The five phases of the SDLC . 6

5.1. Security metrics catalogue distributions . 21

6.1. A high-level TSMM Overview . 29

7.1. Security Metrics in the backend . 35
7.2. Maturity calculation in the backend . 36
7.3. Prototype architecture . 39
7.4. Assessments in the prototype . 40
7.5. Setup of a metric source . 41
7.6. Manual metric input in the prototype . 42
7.7. Prototype dashboard . 43
7.8. Metrics overview . 44
7.9. Metric information dialog . 44
7.10. The first version of the maturity dashboard . 46
7.11. The current version of the maturity dashboard 46

76

List of Tables

2.1. An exemplary TSMM topic . 8
2.2. An exemplary SMMM calculation . 9

3.1. Literature review search strings . 13
3.2. Publications in the literature . 13
3.3. Unqualified candidate metrics . 14
3.4. Interviewee information . 16

5.1. Knowledge metrics . 22
5.2. Effort metrics . 22
5.3. Analysis metrics . 23
5.4. Design metrics . 24
5.5. Implementation metrics . 24
5.6. Deployment metrics . 25
5.7. Maintenance metrics . 26
5.8. Measurement of security metrics with exemplary tools 27

6.1. Exemplary description of a security metric . 29
6.2. Maturity values for an exemplary maturity score calculation 31

7.1. Supported tools in the prototype . 34

77

Bibliography

[1] R. Achatz and F. Paulisch. “Industrial strength software and quality: software and
engineering at Siemens.” In: Third International Conference on Quality Software, 2003.
Proceedings. IEEE, 2003. doi: 10.1109/qsic.2003.1319117.

[2] A. Adomavicius. Go beyond velocity with advanced product metrics. DevBridge. https:
//www.devbridge.com/white-papers/advanced-product-metrics/establish-fram
ework/. July 2020.

[3] Y. Ahmed, S. Naqvi, and M. Josephs. “Aggregation of security metrics for decision
making: a reference architecture.” In: Proceedings of the 12th European Conference on
Software Architecture: Companion Proceedings. 2018, pp. 1–7.

[4] A. Al-Far, A. Qusef, and S. Almajali. “Measuring Impact Score on Confidentiality,
Integrity, and Availability Using Code Metrics.” In: 2018 International Arab Conference
on Information Technology (ACIT). 2018, pp. 1–9. doi: 10.1109/ACIT.2018.8672678.

[5] B. Alshammari, C. Fidge, and D. Corney. “Security Metrics for Java Bytecode Pro-
grams.” In: Proceedings of the International Conference on Software Engineering and Knowl-
edge Engineering, SEKE. 2013, pp. 394–399.

[6] S. A. Ansar, Alka, and R. A. Khan. “A Phase-wise Review of Software Security Metrics.”
In: Networking Communication and Data Knowledge Engineering. Springer Singapore, Nov.
2017, pp. 15–25. doi: 10.1007/978-981-10-4600-1_2.

[7] A. Arabsorkhi and F. Ghaffari. “Security Metrics: Principles and Security Assessment
Methods.” In: 2018 9th International Symposium on Telecommunications (IST). IEEE, Dec.
2018. doi: 10.1109/istel.2018.8661030.

[8] Atlassian. How to choose incident management KPIs and metrics. https://www.atlassia
n.com/incident-management/kpis.

[9] Atlassian. REST APIs. https://developer.atlassian.com/server/jira/platform
/rest-apis/.

[10] R. Barabanov, S. Kowalski, and L. Yngström. Information Security Metrics: State of the
Art. Jan. 2011.

[11] N. Bartol and B. A. Hamilton. Practical Measurement Framework for Software Assurance
and Information Security. Tech. rep. Practical Software and Systems Measurement, 2008.

[12] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.
Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor,
K. Schwaber, J. Sutherland, and D. Thomas. Manifesto for Agile Software Development.
https://agilemanifesto.org/principles.html. 2001.

78

https://doi.org/10.1109/qsic.2003.1319117
https://www.devbridge.com/white-papers/advanced-product-metrics/establish-framework/
https://www.devbridge.com/white-papers/advanced-product-metrics/establish-framework/
https://www.devbridge.com/white-papers/advanced-product-metrics/establish-framework/
https://doi.org/10.1109/ACIT.2018.8672678
https://doi.org/10.1007/978-981-10-4600-1_2
https://doi.org/10.1109/istel.2018.8661030
https://www.atlassian.com/incident-management/kpis
https://www.atlassian.com/incident-management/kpis
https://developer.atlassian.com/server/jira/platform/rest-apis/
https://developer.atlassian.com/server/jira/platform/rest-apis/
https://agilemanifesto.org/principles.html

Bibliography

[13] Y. Beres, M. C. Mont, J. Griffin, and S. Shiu. “Using security metrics coupled with
predictive modeling and simulation to assess security processes.” In: 2009 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement. IEEE, Oct. 2009.
doi: 10.1109/esem.2009.5314213.

[14] O. Beyond. How We Measure Software Quality. One Beyond. https://www.one-beyond
.com/how-we-measure-software-quality/. 2018.

[15] S. Bhatt, P. K. Manadhata, and L. Zomlot. “The Operational Role of Security Infor-
mation and Event Management Systems.” In: IEEE Security & Privacy 12.5 (2014),
pp. 35–41. doi: 10.1109/msp.2014.103.

[16] S. Bhattacharya, M. P. Singh, and L. Williams. “Software Security Readiness and
Deployment.” In: 2021 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, Oct. 2021. doi: 10.1109/issrew53611.2021.00088.

[17] S. J. Bigelow. 10 DevSecOps metrics that actually measure success. https://www.techtar
get.com/searchitoperations/tip/10-DevSecOps-metrics-that-actually-measu
re-success. Dec. 2021.

[18] R. Bongard, K. Dussa-Zieger, R. ReiSSing, and A. Schulz. Basiswissen Automotive
Softwaretest. Dpunkt.Verlag GmbH, Sept. 2020. isbn: 386490580X.

[19] L. Borodaev, A. Telea, R. Groenboom, and R. Smedinga. “Software Metrics for Policy-
Driven Software Development Life Cycle Automation.” In: 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 2018.
doi: 10.1109/icstw.2018.00047.

[20] E. Bouwers, A. v. Deursen, and J. Visser. “Towards a Catalog Format for Software
Metrics.” In: Proceedings of the 5th International Workshop on Emerging Trends in Software
Metrics. WETSoM 2014. Hyderabad, India: Association for Computing Machinery,
2014, pp. 4447. isbn: 9781450328548. doi: 10.1145/2593868.2593876.

[21] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. “Lessons from
applying the systematic literature review process within the software engineering
domain.” In: Journal of Systems and Software 80.4 (Apr. 2007), pp. 571–583. doi: 10.1016
/j.jss.2006.07.009.

[22] W. K. Brotby and G. Hinson. PRAGMATIC Security Metrics. Taylor & Francis Ltd., Apr.
2016. 512 pp. isbn: 1439881537.

[23] A. Brucker and U. Sodan. “Deploying static application security testing on a large
scale.” In: Sicherheit 2014 Sicherheit, Schutz und Zuverlässigkeit. Ed. by S. Katzenbeisser,
V. Lotz, and E. Weippl. Bonn: Gesellschaft für Informatik e.V., 2014, pp. 91–101.

[24] T. J. Carter and D. Dunning. “Faulty Self-Assessment: Why Evaluating Ones Own
Competence Is an Intrinsically Difficult Task.” In: Social and Personality Psychology
Compass 2.1 (Nov. 2007), pp. 346–360. doi: 10.1111/j.1751-9004.2007.00031.x.

79

https://doi.org/10.1109/esem.2009.5314213
https://www.one-beyond.com/how-we-measure-software-quality/
https://www.one-beyond.com/how-we-measure-software-quality/
https://doi.org/10.1109/msp.2014.103
https://doi.org/10.1109/issrew53611.2021.00088
https://www.techtarget.com/searchitoperations/tip/10-DevSecOps-metrics-that-actually-measure-success
https://www.techtarget.com/searchitoperations/tip/10-DevSecOps-metrics-that-actually-measure-success
https://www.techtarget.com/searchitoperations/tip/10-DevSecOps-metrics-that-actually-measure-success
https://doi.org/10.1109/icstw.2018.00047
https://doi.org/10.1145/2593868.2593876
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1111/j.1751-9004.2007.00031.x

Bibliography

[25] K. Chakravarty and J. Singh. “A Study of Quality Metrics in Agile Software Devel-
opment.” In: Machine Learning and Information Processing. Springer Singapore, 2021,
pp. 255–266. doi: 10.1007/978-981-33-4859-2_26.

[26] Y. Cheng, J. Deng, J. Li, S. A. DeLoach, A. Singhal, and X. Ou. “Metrics of Security.” In:
Advances in Information Security. Springer International Publishing, 2014, pp. 263–295.
doi: 10.1007/978-3-319-11391-3_13.

[27] E. Chew, M. Swanson, K. Stine, N. Bartol, A. Brown, and W. Robinson. “Performance
measurement guide for information security.” In: SP 800-55 Rev. 1 (2008).

[28] E. Chickowski. Seven Winning DevSecOps Metrics Security Should Track. https://busin
essinsights.bitdefender.com/seven-winning-devsecops-metrics-security-sh
ould-track. 2018.

[29] J. Choliz, J. Vilas, and J. Moreira. “Independent Security Testing on Agile Software
Development: A Case Study in a Software Company.” In: 2015 10th International
Conference on Availability, Reliability and Security. IEEE, 2015. doi: 10.1109/ares.2015
.79.

[30] I. Chowdhury, B. Chan, and M. Zulkernine. “Security Metrics for Source Code Struc-
tures.” In: Proceedings of the Fourth International Workshop on Software Engineering for
Secure Systems. SESS ’08. Leipzig, Germany: Association for Computing Machinery,
2008, pp. 57–64. isbn: 9781605580425. doi: 10.1145/1370905.1370913.

[31] A. Crouch. DevSecOps: Incorporate Security into DevOps to Reduce Software Risk. Tech. rep.
Agile Connection, 2017.

[32] CSIS. Significant Cyber Incidents Since 2006. Tech. rep. Center for Strategiy & Interna-
tional Studies, 2022.

[33] N. Davis, W. Humphrey, S. Redwine, G. Zibulski, and G. McGraw. “Processes for
producing secure software.” In: IEEE Security & Privacy Magazine 2.3 (2004), pp. 18–
25. doi: 10.1109/msp.2004.21.

[34] M. DeBellis and C. Haapala. “User-centric Software Engineering.” In: IEEE Expert 10.1
(1995), pp. 34–41. doi: 10.1109/64.391959.

[35] Defect Dojo Resource Center. https://www.defectdojo.com/resources.

[36] C. Dekkers, D. Zubrow, and J. McCurley. Measures and Measurement forSecure Software
Development. Tech. rep. Software Engineering Institute, Carnegie Mellon University,
2007.

[37] Dependency Track Introduction. https://docs.dependencytrack.org/.

[38] digital.ai. 15th Annual State Of Agile Report. https://digital.ai/resource-center
/analyst-reports/state-of-agile-report. 2021.

[39] K. Dikert, M. Paasivaara, and C. Lassenius. “Challenges and success factors for large-
scale agile transformations: A systematic literature review.” In: Journal of Systems and
Software 119 (Sept. 2016), pp. 87–108. doi: 10.1016/j.jss.2016.06.013.

80

https://doi.org/10.1007/978-981-33-4859-2_26
https://doi.org/10.1007/978-3-319-11391-3_13
https://businessinsights.bitdefender.com/seven-winning-devsecops-metrics-security-should-track
https://businessinsights.bitdefender.com/seven-winning-devsecops-metrics-security-should-track
https://businessinsights.bitdefender.com/seven-winning-devsecops-metrics-security-should-track
https://doi.org/10.1109/ares.2015.79
https://doi.org/10.1109/ares.2015.79
https://doi.org/10.1145/1370905.1370913
https://doi.org/10.1109/msp.2004.21
https://doi.org/10.1109/64.391959
https://www.defectdojo.com/resources
https://docs.dependencytrack.org/
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://doi.org/10.1016/j.jss.2016.06.013

Bibliography

[40] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe. “A decade of agile methodologies:
Towards explaining agile software development.” In: Journal of Systems and Software
85.6 (2012), pp. 1213–1221. doi: 10.1016/j.jss.2012.02.033.

[41] G. Dlamini, S. Ergasheva, Z. Kholmatova, A. Kruglov, A. Sadovykh, G. Succi, A.
Timchenko, X. Vasquez, and E. Zouev. “Metrics for Software Process Quality Assess-
ment in the Late Phases of SDLC.” In: Lecture Notes in Networks and Systems. Springer
International Publishing, 2022, pp. 639–655. doi: 10.1007/978-3-031-10461-9_44.

[42] S. Ergasheva and A. Kruglov. “Software Development Life Cycle early phases and
quality metrics: A Systematic Literature Review.” In: Journal of Physics: Conference Series
1694.1 (2020), p. 012007. doi: 10.1088/1742-6596/1694/1/012007.

[43] T. Fertig, A. Schütz, and K. Weber. “Current Issues Of Metrics For Information Security
Awareness.” In: Proceedings of the Twenty-Eighth European Con-ference on Information
Systems. June 2020.

[44] C. Fry and S. Greene. “Large Scale Agile Transformation in an On-Demand World.”
In: AGILE 2007 (AGILE 2007). IEEE, 2007. doi: 10.1109/agile.2007.38.

[45] S. Ganesh, T. Ohlsson, and F. Palma. “Predicting Security Vulnerabilities using Source
Code Metrics.” In: 2021 Swedish Workshop on Data Science (SweDS). IEEE, Dec. 2021.
doi: 10.1109/sweds53855.2021.9638301.

[46] V. Garousi, M. Felderer, and M. V. Mäntylä. “Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering.” In: Information
and Software Technology 106 (Feb. 2019), pp. 101–121. doi: 10.1016/j.infsof.2018.09
.006.

[47] M. Gomes, R. Pereira, M. Silva, J. B. de Vasconcelos, and Á. Rocha. “KPIs for Evaluation
of DevOps Teams.” In: World Conference on Information Systems and Technologies. Springer.
2022, pp. 142–156.

[48] G. Granadillo, S. Zarzosa, and R. Diaz. “Security Information and Event Management
(SIEM): Analysis, Trends, and Usage in Critical Infrastructures.” In: Sensors 21.14
(2021), p. 4759. doi: 10.3390/s21144759.

[49] GSA. DevSecOps Guide - Standard DevSecOps Platform Framework. https://tech.gsa.g
ov/guides/dev_sec_ops_guide/.

[50] D. Gupta and I. Khan. “Security Metrices Expectation and Reality.” In: International
Journal of Advanced Research in Computer Science and Software Engineering 5 (Mar. 2015),
pp. 625–629.

[51] P. Haindl and R. Plösch. “Value-oriented quality metrics in software development:
Practical relevance from a software engineering perspective.” In: IET Software 16.2
(2021), pp. 167–184. doi: 10.1049/sfw2.12051.

81

https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1007/978-3-031-10461-9_44
https://doi.org/10.1088/1742-6596/1694/1/012007
https://doi.org/10.1109/agile.2007.38
https://doi.org/10.1109/sweds53855.2021.9638301
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.3390/s21144759
https://tech.gsa.gov/guides/dev_sec_ops_guide/
https://tech.gsa.gov/guides/dev_sec_ops_guide/
https://doi.org/10.1049/sfw2.12051

Bibliography

[52] A. van der Heijden, C. Broasca, and A. Serebrenik. “An empirical perspective on
security challenges in large-scale agile software development.” In: Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement.
ACM, Oct. 2018. doi: 10.1145/3239235.3267426.

[53] S. S. Hossain, P. Ahmed, and Y. Arafat. “Software Process Metrics in Agile Soft-
ware Development: A Systematic Mapping Study.” In: Computational Science and Its
Applications – ICCSA 2021. Springer International Publishing, 2021, pp. 15–26. doi:
10.1007/978-3-030-87013-3_2.

[54] S. Islam and P. Falcarin. “Measuring security requirements for software security.” In:
2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS). IEEE, Sept.
2011. doi: 10.1109/cis.2011.6169137.

[55] I. Jacobson. The unified software development process. Pearson Education India, 1999.

[56] S. Jain and M. Ingle. “Security Metrics and Software Development Progression.” In:
Int. Journal of Engineering Research and Applications (2014).

[57] W. Jansen. “Directions in Security Metrics Research.” In: NISTIR 7564 (2009).

[58] A. Jaquith. Security Metrics. Replacing Fear, Uncertainty, and Doubt. Addison-Wesley
Professional, 2007, p. 336. isbn: 9780321349989.

[59] A. Jerbi. KPIs for managing and optimizing devsecops success. https://www.infoworld.c
om/article/3237046/kpis-for-managing-and-optimizing-devsecops-success.h
tml. 2017.

[60] P. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and T. Yamashita. “Improving
software development management through software project telemetry.” In: IEEE
Software 22.4 (2005), pp. 76–85. doi: 10.1109/MS.2005.95.

[61] E. Jonsson and L. Pirzadeh. “A Framework for Security Metrics Based on Operational
System Attributes.” In: 2011 Third International Workshop on Security Measurements and
Metrics. IEEE, Sept. 2011. doi: 10.1109/metrisec.2011.19.

[62] E. Kahraman. Evaluating IT security performance with quantifiable metrics. July 2008.

[63] H. Kallio, A.-M. Pietilä, M. Johnson, and M. Kangasniemi. “Systematic methodological
review: developing a framework for a qualitative semi-structured interview guide.” In:
Journal of Advanced Nursing 72.12 (2016), pp. 2954–2965. doi: 10.1111/jan.13031.

[64] S. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley Professional,
2002.

[65] T. Karvonen, P. Rodriguez, P. Kuvaja, K. Mikkonen, and M. Oivo. “Adapting the
Lean Enterprise Self-Assessment Tool for the Software Development Domain.” In:
2012 38th Euromicro Conference on Software Engineering and Advanced Applications. 2012,
pp. 266–273. doi: 10.1109/SEAA.2012.51.

[66] K. Kaur, A. Jajoo, and Manisha. “Applying Agile Methodologies in Industry Projects:
Benefits and Challenges.” In: 2015 International Conference on Computing Communication
Control and Automation. IEEE, 2015. doi: 10.1109/iccubea.2015.166.

82

https://doi.org/10.1145/3239235.3267426
https://doi.org/10.1007/978-3-030-87013-3_2
https://doi.org/10.1109/cis.2011.6169137
https://www.infoworld.com/article/3237046/kpis-for-managing-and-optimizing-devsecops-success.html
https://www.infoworld.com/article/3237046/kpis-for-managing-and-optimizing-devsecops-success.html
https://www.infoworld.com/article/3237046/kpis-for-managing-and-optimizing-devsecops-success.html
https://doi.org/10.1109/MS.2005.95
https://doi.org/10.1109/metrisec.2011.19
https://doi.org/10.1111/jan.13031
https://doi.org/10.1109/SEAA.2012.51
https://doi.org/10.1109/iccubea.2015.166

Bibliography

[67] D. Kengo Oka. “Software Composition Analysis in the Automotive Industry.” In:
Building Secure Cars: Assuring the Automotive Software Development Lifecycle. 2021, pp. 91–
110. doi: 10.1002/9781119710783.ch6.

[68] R. A. Khan, S. U. Khan, and M. Ilyas. “Exploring Security Procedures in Secure
Software Engineering: A Systematic Mapping Study.” In: The International Conference
on Evaluation and Assessment in Software Engineering 2022. ACM, June 2022. doi: 10.11
45/3530019.3531336.

[69] S. Kim, H. Lee, Y. Kwon, M. Yu, and H. Jo. “Our Journey to Becoming Agile: Experi-
ences with Agile Transformation in Samsung Electronics.” In: 2016 23rd Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2016. doi: 10.1109/apsec.2016.064.

[70] G. Klimko. “Knowledge Management and Maturity Models: Building Common Un-
derstanding.” In: Second European Conference on Knowledge Management. 2001.

[71] S. R. T. Kumar, A Sumithra, and K Alagarsamy. “The Applicability of Existing Metrics
for Software Security.” In: International Journal of Computer Applications 8.2 (Oct. 2010),
pp. 29–33. doi: 10.5120/1184-1638.

[72] M. Kundi and R. Chitchyan. “Position on metrics for security in requirements en-
gineering.” In: 2014 IEEE 1st International Workshop on Requirements Engineering and
Testing (RET). IEEE, Aug. 2014. doi: 10.1109/ret.2014.6908676.

[73] M. B. Line, O. Nordland, L. Røstad, and I. A. Tøndel. “Safety vs security?” In: PSAM
Conference, New Orleans, USA. sn. 2006.

[74] A. S. S. Ltd. Shift Left DevOps. https://www.aquasec.com/cloud-native-academy/d
evsecops/shift-left-devops/. 2022.

[75] R. Lukyanenko, J. Evermann, and J. Parsons. “Instantiation Validity in IS Design
Research.” In: Advancing the Impact of Design Science: Moving from Theory to Practice.
Springer International Publishing, 2014, pp. 321–328. doi: 10.1007/978-3-319-06701-
8_22.

[76] M. Maddox and S. Walker. “Agile Software Quality Metrics.” In: 2021 IEEE MetroCon.
IEEE, Nov. 2021. doi: 10.1109/metrocon54219.2021.9666049.

[77] W. Mallouli, A. Cavalli, A. Bagnato, and E. M. de Oca. “Metrics-driven DevSecOps.”
In: Proceedings of the 15th International Conference on Software Technologies. SCITEPRESS -
Science and Technology Publications, 2020. doi: 10.5220/0009889602280233.

[78] N. R. Mead and C. C. Woody. Cyber security engineering: a practical approach for systems
and software assurance. Addison-Wesley, 2017.

[79] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira. “Software Metrics as Indicators of Secu-
rity Vulnerabilities.” In: 2017 IEEE 28th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, Oct. 2017. doi: 10.1109/issre.2017.11.

[80] P. H. Meland and J. Jensen. “Secure Software Design in Practice.” In: 2008 Third
International Conference on Availability, Reliability and Security. IEEE, 2008. doi: 10.1109
/ares.2008.48.

83

https://doi.org/10.1002/9781119710783.ch6
https://doi.org/10.1145/3530019.3531336
https://doi.org/10.1145/3530019.3531336
https://doi.org/10.1109/apsec.2016.064
https://doi.org/10.5120/1184-1638
https://doi.org/10.1109/ret.2014.6908676
https://www.aquasec.com/cloud-native-academy/devsecops/shift-left-devops/
https://www.aquasec.com/cloud-native-academy/devsecops/shift-left-devops/
https://doi.org/10.1007/978-3-319-06701-8_22
https://doi.org/10.1007/978-3-319-06701-8_22
https://doi.org/10.1109/metrocon54219.2021.9666049
https://doi.org/10.5220/0009889602280233
https://doi.org/10.1109/issre.2017.11
https://doi.org/10.1109/ares.2008.48
https://doi.org/10.1109/ares.2008.48

Bibliography

[81] A. Meneely, B. Smith, and L. Williams. “Validating software metrics.” In: ACM Transac-
tions on Software Engineering and Methodology 21.4 (Nov. 2012), pp. 1–28. doi: 10.1145
/2377656.2377661.

[82] MicroFocus. Measuring DevOps Success. Tech. rep. MicroFocus, 2018.

[83] T. Mladenova. “Software Quality Metrics – Research, Analysis and Recommendation.”
In: 2020 International Conference Automatics and Informatics (ICAI). IEEE, Oct. 2020. doi:
10.1109/icai50593.2020.9311361.

[84] P. Morrison, D. Moye, R. Pandita, and L. Williams. “Mapping the field of software
life cycle security metrics.” In: Information and Software Technology 102 (Oct. 2018),
pp. 146–159. doi: 10.1016/j.infsof.2018.05.011.

[85] S. M. Muthukrishnan and S. Palaniappan. “Security metrics maturity model for
operational security.” In: 2016 IEEE Symposium on Computer Applications & Industrial
Electronics (ISCAIE). IEEE, May 2016. doi: 10.1109/iscaie.2016.7575045.

[86] A. M. Myers. “The clinical Swiss army knife. Empirical evidence on the validity of
IADL functional status measures.” In: Med Care 30.5 Suppl (May 1992), pp. 96–111.

[87] A. M. Myers, P. J. Holliday, K. A. Harvey, and K. S. Hutchinson. “Functional Perfor-
mance Measures: Are They Superior to Self-Assessments?” In: Journal of Gerontology
48.5 (Sept. 1993), pp. M196–M206. doi: 10.1093/geronj/48.5.m196.

[88] B. Nichols. The Current State of DevSecOps Metrics. Carnegie Mellon University’s
Software Engineering Institute Blog. http://insights.sei.cmu.edu/blog/the-curr
ent-state-of-devsecops-metrics/. Mar. 2021.

[89] W. R. Nichols, H. Yasar, L. Antunes, C. L. Miller, and R. McCarthy. Automated Data for
DevSecOps Programs. Tech. rep. Acquisition Research Program, 2022.

[90] D. Nicolette. Software Development Metrics. MANNING PUBN, Aug. 2015. 192 pp. isbn:
1617291358.

[91] J. B. Norman Fenton. Software Metrics - a rigorous and practical approach. Taylor & Francis
Ltd., Oct. 2014. 617 pp. isbn: 1439838232.

[92] E. Novikova and I. Kotenko. “Analytical Visualization Techniques for Security Informa-
tion and Event Management.” In: 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. IEEE, 2013. doi: 10.1109/pdp.2013.84.

[93] D. Oezkan and A. Mishra. “Agile Project Management Tools: A Brief Comprative
View.” In: Cybernetics and Information Technologies 19.4 (2019), pp. 17–25. doi: 10.2478
/cait-2019-0033.

[94] M. M. Olama and J. Nutaro. “Secure it now or secure it later: the benefits of addressing
cyber-security from the outset.” In: SPIE Proceedings. Ed. by I. V. Ternovskiy and P.
Chin. SPIE, 2013. doi: 10.1117/12.2015465.

[95] OSSIM Security Resources. https://cybersecurity.att.com/resource-center#prod
uct_ossim.

84

https://doi.org/10.1145/2377656.2377661
https://doi.org/10.1145/2377656.2377661
https://doi.org/10.1109/icai50593.2020.9311361
https://doi.org/10.1016/j.infsof.2018.05.011
https://doi.org/10.1109/iscaie.2016.7575045
https://doi.org/10.1093/geronj/48.5.m196
http://insights.sei.cmu.edu/blog/the-current-state-of-devsecops-metrics/
http://insights.sei.cmu.edu/blog/the-current-state-of-devsecops-metrics/
https://doi.org/10.1109/pdp.2013.84
https://doi.org/10.2478/cait-2019-0033
https://doi.org/10.2478/cait-2019-0033
https://doi.org/10.1117/12.2015465
https://cybersecurity.att.com/resource-center#product_ossim
https://cybersecurity.att.com/resource-center#product_ossim

Bibliography

[96] OWASP ZAP Documentation. https://www.zaproxy.org/docs/.

[97] K. V. J. Padmini, H. M. N. D. Bandara, and I. Perera. “Use of software metrics in agile
software development process.” In: 2015 Moratuwa Engineering Research Conference
(MERCon). IEEE, Apr. 2015. doi: 10.1109/mercon.2015.7112365.

[98] Y. Pan. “Interactive Application Security Testing.” In: 2019 International Conference
on Smart Grid and Electrical Automation (ICSGEA). 2019, pp. 558–561. doi: 10.1109
/ICSGEA.2019.00131.

[99] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. “A Design Science
Research Methodology for Information Systems Research.” In: Journal of Management
Information Systems 24.3 (Dec. 2007), pp. 45–77. doi: 10.2753/mis0742-1222240302.

[100] R. Pemberton, E. Li, W. Or, and H. Pierson. Taking Control: Autonomy in Language
Learning. Hong Kong University Press, 1996. isbn: 9789622094079.

[101] S. M. Poremba. CIS to release consensus IT security metrics. https://www.scmagazine.c
om/news/breach/cis-to-release-consensus-it-security-metrics. 2008.

[102] S. Pradhan, V. Nanniyur, P. Melanahalli, M. Palla, and S. Chulani. “Quality Metrics
for Hybrid Software Development Organizations – A Case Study.” In: 2019 IEEE 19th
International Conference on Software Quality, Reliability and Security Companion (QRS-C).
IEEE, July 2019. doi: 10.1109/qrs-c.2019.00097.

[103] L. Prates, J. Faustino, M. Silva, and R. Pereira. “DevSecOps Metrics.” In: Information Sys-
tems: Research, Development, Applications, Education. Springer International Publishing,
2019, pp. 77–90. doi: 10.1007/978-3-030-29608-7_7.

[104] S. Radack. “Security Metrics: Measurements to Support the Continued Development
of Information Security Technology.” In: ITL Bulletin (2010).

[105] N. Radzuan. DevSecOps Transformation Bucket List. medium.com. https://medium.com
/devops4me/devsecops-transformation-bucket-list-67d0873e283d. Apr. 2022.

[106] M. Rao. Building your DevSecOps pipeline: 5 essential activities. https://www.synopsys
.com/blogs/software-security/devsecops-pipeline-checklist/. 2017.

[107] RedHat. What is DevSecOps? https://www.redhat.com/en/topics/devops/what-is-
devsecops. Apr. 2018.

[108] K. Rindell, J. Ruohonen, J. Holvitie, S. Hyrynsalmi, and V. Leppänen. “Security in agile
software development: A practitioner survey.” In: Information and Software Technology
131 (Mar. 2021), p. 106488. doi: 10.1016/j.infsof.2020.106488.

[109] C. Romeo. The 3 most crucial security behaviors in DevSecOps. https://techbeacon.com
/app-dev-testing/3-most-crucial-security-behaviors-devsecops. 2019.

[110] M. Roy. 5 IT Security Metrics That Matter Across Frameworks. https://www.axonius.co
m/blog/5-it-security-metrics-that-matter-across-frameworks. Aug. 2021.

[111] M. Rudolph and R. Schwarz. “A Critical Survey of Security Indicator Approaches.” In:
2012 Seventh International Conference on Availability, Reliability and Security. IEEE, Aug.
2012. doi: 10.1109/ares.2012.10.

85

https://www.zaproxy.org/docs/
https://doi.org/10.1109/mercon.2015.7112365
https://doi.org/10.1109/ICSGEA.2019.00131
https://doi.org/10.1109/ICSGEA.2019.00131
https://doi.org/10.2753/mis0742-1222240302
https://www.scmagazine.com/news/breach/cis-to-release-consensus-it-security-metrics
https://www.scmagazine.com/news/breach/cis-to-release-consensus-it-security-metrics
https://doi.org/10.1109/qrs-c.2019.00097
https://doi.org/10.1007/978-3-030-29608-7_7
https://medium.com/devops4me/devsecops-transformation-bucket-list-67d0873e283d
https://medium.com/devops4me/devsecops-transformation-bucket-list-67d0873e283d
https://www.synopsys.com/blogs/software-security/devsecops-pipeline-checklist/
https://www.synopsys.com/blogs/software-security/devsecops-pipeline-checklist/
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://doi.org/10.1016/j.infsof.2020.106488
https://techbeacon.com/app-dev-testing/3-most-crucial-security-behaviors-devsecops
https://techbeacon.com/app-dev-testing/3-most-crucial-security-behaviors-devsecops
https://www.axonius.com/blog/5-it-security-metrics-that-matter-across-frameworks
https://www.axonius.com/blog/5-it-security-metrics-that-matter-across-frameworks
https://doi.org/10.1109/ares.2012.10

Bibliography

[112] P. Runeson and M. Höst. “Guidelines for conducting and reporting case study research
in software engineering.” In: Empirical Software Engineering 14.2 (2008), pp. 131–164.
doi: 10.1007/s10664-008-9102-8.

[113] S. Ryan and R. V. O’Connor. “Acquiring and sharing tacit knowledge in software
development teams: An empirical study.” In: Information and Software Technology 55.9
(2013), pp. 1614–1624. doi: 10.1016/j.infsof.2013.02.013.

[114] S. Ryan and R. V. O’Connor. “Development of a team measure for tacit knowledge in
software development teams.” In: Journal of Systems and Software 82.2 (2009), pp. 229–
240. doi: 10.1016/j.jss.2008.05.037.

[115] N. Schenk. “An Adaptive Approach for Security Compliance in Large-Scale Agile
Software Development.” MA thesis. Technical University Munich, 2022.

[116] SecurityRAT. https://securityrat.github.io/. Apr. 2021.

[117] S. Sengupta. Your guide to DevSecOps Automation. Crashtest Security. https://crashte
st-security.com/devsecops-automation/. July 2022.

[118] H. Setiawan, L. E. Erlangga, and I. Baskoro. “Vulnerability Analysis Using The In-
teractive Application Security Testing (IAST) Approach For Government X Website
Applications.” In: 2020 3rd International Conference on Information and Communications
Technology (ICOIACT). 2020, pp. 471–475. doi: 10.1109/ICOIACT50329.2020.9332116.

[119] M. Siavvas, D. Kehagias, D. Tzovaras, and E. Gelenbe. “A hierarchical model for
quantifying software security based on static analysis alerts and software metrics.” In:
Software Quality Journal (May 2021). doi: 10.1007/s11219-021-09555-0.

[120] S. T. Siddiqui. “Significance of Security Metrics in Secure Software Development.”
In: International Journal of Applied Information Systems 12.6 (Sept. 2017), pp. 10–15. doi:
10.5120/ijais2017451710.

[121] A. SIGSOFT. Qualitative Surveys (Interview Studies). https://github.com/acmsigsoft
/EmpiricalStandards/blob/master/docs/QualitativeSurveys.md.

[122] K. Slhoub, F. Nembhard, and M. Carvalho. “A Metrics Tracking Program for Promoting
High-Quality Software Development.” In: 2019 SoutheastCon. 2019, pp. 1–8. doi: 10.11
09/SoutheastCon42311.2019.9020395.

[123] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford. “Questions devel-
opers ask while diagnosing potential security vulnerabilities with static analysis.” In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
2015. doi: 10.1145/2786805.2786812.

[124] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach. Goal Question Metric (GQM)
Approach. 2002. doi: 10.1002/0471028959.sof142.

[125] SonarQube. Metric Definitions. https://docs.sonarqube.org/latest/user-guide/m
etric-definitions/.

[126] S. Springett. Component Analysis. OWASP. https://owasp.org/www-community/Comp
onent_Analysis. July 2022.

86

https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1016/j.infsof.2013.02.013
https://doi.org/10.1016/j.jss.2008.05.037
https://securityrat.github.io/
https://crashtest-security.com/devsecops-automation/
https://crashtest-security.com/devsecops-automation/
https://doi.org/10.1109/ICOIACT50329.2020.9332116
https://doi.org/10.1007/s11219-021-09555-0
https://doi.org/10.5120/ijais2017451710
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/QualitativeSurveys.md
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/QualitativeSurveys.md
https://doi.org/10.1109/SoutheastCon42311.2019.9020395
https://doi.org/10.1109/SoutheastCon42311.2019.9020395
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.1002/0471028959.sof142
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://owasp.org/www-community/Component_Analysis
https://owasp.org/www-community/Component_Analysis

Bibliography

[127] O. Stahl, R. Baecker, M. Bartholdt, S. Roth, and A. Sejdiu. Cybersecurity as a Matter of
Competitive Advantage. https://www.porsche-consulting.com/en/home/news/cyber
security-as-a-matter-of-competitive-advantage/. 2021.

[128] C. Steinmann and H. Stienen. “SynQuest - Tool Support for Software Self-Assessments.”
In: Software Process: Improvement and Practice 2.1 (1996), pp. 5–12. doi: 10.1002/(sici
)1099-1670(199603)2:1<5::aid-spip33>3.0.co;2-u.

[129] V. Stray, N. B. Moe, and R. Hoda. “Autonomous agile teams.” In: Proceedings of the 19th
International Conference on Agile Software Development: Companion. ACM, May 2018. doi:
10.1145/3234152.3234182.

[130] M. R. Stytz and S. B. Banks. “Dynamic software security testing.” In: IEEE Security &
Privacy 4.3 (2006), pp. 77–79. doi: 10.1109/MSP.2006.64.

[131] K. Sultan, A. En-Nouaary, and A. Hamou-Lhadj. “Catalog of Metrics for Assessing
Security Risks of Software throughout the Software Development Life Cycle.” In: 2008
International Conference on Information Security and Assurance (isa 2008). IEEE, Apr. 2008.
doi: 10.1109/isa.2008.104.

[132] W. Swasty and A. R. Adriyanto. “Does Color Matter on Web User Interface Design.”
In: CommIT (Communication and Information Technology) Journal 11.1 (2017), p. 17. doi:
10.21512/commit.v11i1.2088.

[133] Synopsys. Seeker: Interactive Application Security Testing. 2022.

[134] Synopsys. Software SecurityMetrics Development. Synopsys. 2017.

[135] =, and B. G. Kiliç. “Holistic Web Application Security Visualization for Multi-Project
and Multi-Phase Dynamic Application Security Test Results.” In: IEEE Access 9 (2021),
pp. 25858–25884. doi: 10.1109/ACCESS.2021.3057044.

[136] C. Tozzi. 6 DevSecOps Metrics for DevOps and Security Teams to Share. https://thenews
tack.io/6-devsecops-metrics-for-devops-and-security-teams-to-share/. Sept.
2020.

[137] F. M. Tudela, J.-R. B. Higuera, J. B. Higuera, J.-A. S. Montalvo, and M. I. Argyros. “On
Combining Static, Dynamic and Interactive Analysis Security Testing Tools to Improve
OWASP Top Ten Security Vulnerability Detection in Web Applications.” In: Applied
Sciences 10.24 (2020), p. 9119. doi: 10.3390/app10249119.

[138] O. Turetken, I. Stojanov, and J. J. M. Trienekens. “Assessing the adoption level of
scaled agile development: a maturity model for Scaled Agile Framework.” In: Journal
of Software: Evolution and Process 29.6 (July 2016), e1796. doi: 10.1002/smr.1796.

[139] R. Velasco. What is IAST? All About Interactive Application Security Testing. https://hd
ivsecurity.com/bornsecure/what-is-iast-interactive-application-security-
testing/. May 2020.

[140] J. Voas and R. Kuhn. “What Happened to Software Metrics?” In: Computer 50.5 (May
2017), pp. 88–98. doi: 10.1109/mc.2017.144.

87

https://www.porsche-consulting.com/en/home/news/cybersecurity-as-a-matter-of-competitive-advantage/
https://www.porsche-consulting.com/en/home/news/cybersecurity-as-a-matter-of-competitive-advantage/
https://doi.org/10.1002/(sici)1099-1670(199603)2:1<5::aid-spip33>3.0.co;2-u
https://doi.org/10.1002/(sici)1099-1670(199603)2:1<5::aid-spip33>3.0.co;2-u
https://doi.org/10.1145/3234152.3234182
https://doi.org/10.1109/MSP.2006.64
https://doi.org/10.1109/isa.2008.104
https://doi.org/10.21512/commit.v11i1.2088
https://doi.org/10.1109/ACCESS.2021.3057044
https://thenewstack.io/6-devsecops-metrics-for-devops-and-security-teams-to-share/
https://thenewstack.io/6-devsecops-metrics-for-devops-and-security-teams-to-share/
https://doi.org/10.3390/app10249119
https://doi.org/10.1002/smr.1796
https://hdivsecurity.com/bornsecure/what-is-iast-interactive-application-security-testing/
https://hdivsecurity.com/bornsecure/what-is-iast-interactive-application-security-testing/
https://hdivsecurity.com/bornsecure/what-is-iast-interactive-application-security-testing/
https://doi.org/10.1109/mc.2017.144

Bibliography

[141] T. J. Wagner and T. C. Ford. “Metrics to Meet Security - Privacy Requirements with
Agile Software Development Methods in a Regulated Environment.” In: 2020 Interna-
tional Conference on Computing, Networking and Communications (ICNC). IEEE, Feb. 2020.
doi: 10.1109/icnc47757.2020.9049681.

[142] J. Walden. Software Metrics. Northern Kentucky University.

[143] J. Walden, J. Stuckman, and R. Scandariato. “Predicting Vulnerable Components:
Software Metrics vs Text Mining.” In: 2014 IEEE 25th International Symposium on
Software Reliability Engineering. IEEE, Nov. 2014. doi: 10.1109/issre.2014.32.

[144] J.-P. Watzelt. “Design and Implementation of a Team Maturity Model Assessing Secu-
rity Compliance in Large-Scale Agile Software Development.” MA thesis. Technical
University Munich, 2022.

[145] J. Webster and R. T. Watson. “Analyzing the Past to Prepare for the Future: Writing a
Literature Review.” In: MIS Quarterly 26.2 (2002), pp. xiii–xxiii. issn: 02767783.

[146] C. Woody, R. Ellison, and W. Nichols. Predicting Software Assurance Using Quality
and Reliability Measures. Tech. rep. CMU/SEI-2014-TN-026. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2014.

[147] J. Yang, L. Tan, J. Peyton, and K. A. Duer. “Towards Better Utilizing Static Application
Security Testing.” In: 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP). IEEE, May 2019. doi: 10.1109/icse-s
eip.2019.00014.

[148] E. Yasasin and G. Schryen. Requirements for IT Security Metrics - an Argumentation Theory
Based Approach. 2015. doi: 10.18151/7217537.

[149] U. Zdun, P.-J. Queval, G. Simhandl, R. Scandariato, S. Chakravarty, M. Jelic, and
A. Jovanovic. “Microservice Security Metrics for Secure Communication, Identity
Management, and Observability.” In: ACM Transactions on Software Engineering and
Methodology (May 2022). doi: 10.1145/3532183.

88

https://doi.org/10.1109/icnc47757.2020.9049681
https://doi.org/10.1109/issre.2014.32
https://doi.org/10.1109/icse-seip.2019.00014
https://doi.org/10.1109/icse-seip.2019.00014
https://doi.org/10.18151/7217537
https://doi.org/10.1145/3532183

	Abstract
	Contents
	Introduction
	Motivation
	Research objectives
	Research approach

	Foundations
	Software security in agile software development
	Agile software development
	Security during the SDLC

	Team security maturity
	Secure software engineering metrics
	Qualification criteria for security metrics
	Assessing metrics with quality scores
	Tools for metric measurement collection

	Methodology
	Systematic literature review
	Interviews

	Related Work
	Security metrics catalogue
	Security metrics for team security maturity

	Security metrics
	Catalogue structure
	Team security metrics
	Knowledge domain
	Effort domain

	Product security metrics
	Analysis Domain
	Design Domain
	Implementation Domain
	Deployment Domain
	Maintenance Domain

	Measuring security metrics with security tools

	Team security maturity trough security metrics
	Security metrics in TSMM
	Calculation of the overall security maturity score

	Tool-supported security maturity
	Use cases
	Backend application
	Security metrics collection
	Security maturity calculation

	Frontend application
	Evaluation
	Security maturity dashboard
	TSMM data sources
	TSMM approach

	Discussion
	Key finding and artifacts
	Limitations
	Validation of research methods
	Validation of proposed software prototype

	Conclusion and Future Work
	Summary
	Future work

	Interview Questionnaire
	Complete Catalogue of Security Metrics
	Team security metrics
	Knowledge
	Velocity

	Product security metrics
	Analysis
	Design
	Implementation
	Deployment
	Maintenance

	SMMM Calculation

	List of Figures
	List of Tables
	Bibliography

