Arbeitsbereich DBIS
Fachbereich Informatik
Universitat Hamburg
Vogt-Kolln Strafie 30
D-2000 Hamburg 54

Germany

Title:

Author:

Identification:

Status:

Date:

Description:

Related Documents:

Tycoon

Using the Tycoon Compiler
Toolkit

Gerald Schroder, Florian Matthes

DBIS Tycoon Report 061-92
Initial Version
June 1992

This document explains the structure and the use of the Tycoon
compiler toolkit, a library of generic modules in the Tycoon sys-
tem library implemented in P-Quest.

P-Quest Installation and User Manual [Mat91]
P-Quest User Manual [NMM92] (in German)
The Quest Language and System (Tracking Draft) [Car90]

Contents

Introduction
Logical compiler structure
Compiler toolkits

The structure of the Tycoon Compiler Toolkit

4.1 Interfaces
4.2 Scanner generator oL s
4.3 Parser generatoro
4.4 Summary

Example: Construction of an expression interpreter

5.1 Overview
5.2 The grammar L L
5.3 Scanner definitono
54 Keywords
5.5 Parser definition
5.6 Action definition
5.7 Generating the scanner and the parser
5.8 Running thedemo oL

L BN e S o N =

o oo =~

1 Introduction

The motivation for the Tycoon Compiler Toolkit comes from our experience in
building and maintaining compilers and language-sensitive tools for Pascal/R,
Modula-2, Modula/R, DBPL on various software platforms (e.g. see [MSS91,
Nie91, SM91, Sch91]). Although the possible approaches to compiler construction
and compiler modularization are well-explored and widely accepted, many algo-
rithms have to be programmed from scratch for every new compiler. In particular,
a substantial effort in the development of tools for database environments (schema
design tools, transaction specification tools, proof assistants, or ad-hoc query in-
terfaces) is devoted to the clerical tasks of scanning, parsing, unparsing and the
recovery from erroneous user-input with precise error messages.

The Tycoon Compiler Toolkit supplies tools to construct and change these “simple”
parts of compilers in a structured and standardized way within a strongly-typed
polymorphic programming language. It does not rely on ad-hoc interfaces to ex-
ternal tools (like yacc, lex, bison, rex, ell) that do not allow to exploit the full
power of persistent higher-order languages. It also provides a modular frame-
work to reuse and exchange parts of existing compilers developed with the Tycoon
Compiler Toolkit exploiting the module mechanisms of P-Quest. A standardized
approach to the definition of new compilers is given in this text.

The toolkit is to be understood as a first step in a research programme where
we are going to explore new ways in the usage of compiler toolkits as extensible
language processor components in integrated database application systems [MS91].
This will be accomplished by using one language for the definition of all compiler
components and by exploiting the language and system support of languages like
P-Quest (like dynamic binding, persistence management, higher-order functions)
to give up the strict separation between language definition, compiler generation
and language utilization time

The toolkit has been designed by Florian Matthes who also programmed the parser
generator. Gerald Schroder programmed the scanner generator and the demo.

This guide describes the steps required to build a compiler using the initial version
of the toolkit. After a short introduction into the structure of compilers, a small
demo compiler is presented. The source text of this demo is available in the Tycoon
libraries and should be consulted for a deeper understanding of the examples.

2 Logical compiler structure

Before it can be judged what a compiler toolkit can afford, the general structure
of a compiler has to be understood first. This description follows [ASU86], further
details can be found in books on compiler construction, e.g. [WG85].

Several logical compiler passes can be distinguished. They successively transform a
given source text into a machine-dependent object code. These passes do not have
to correspond to physical passes on the source text and its internal representation.
It is possible and usual practice to fold several logical passes into one physical
pass. But for the construction of a compiler the main focus lies on logical passes.

In Figure 1 both main passes of a compiler are shown: The frontend and the
backend. The frontend transforms the source text into a compiler dependent, but
mostly machine independent, intermediate language. While this transformation
takes place the compiler checks the source text for errors and reports them. The
backend starts only when the frontend has not found any errors. It transforms the
implicitly error-free intermediate representation into a machine dependent object

Frontend —><Intermediate code>—> Backend —>

Figure 1: Overall compiler structure

code format, possibly enriched by some information for tools such as a linker,
debugger or performance analyser.

The Tycoon Compiler Toolkit concentrates mainly on building the frontend of a
compiler. So the backend is not mentioned in further detail.

In figure 2a) a model of the logical passes of the frontend is shown, while figure 2b)
contains an example of the transformation steps. In the following paragraphs, the
model of figure 2a) is explained with references to the example of figure 2b).

First, the source text, in an abstract view a character stream, is transformed by
a scanner into a symbol stream. The scanner analyses the character stream and
searches for a string, called lezem, matching some regular expression. If a lexem
was found the corresponding symbol is put to the symbol stream.

In the example the scanner first finds the lexem “x” and puts the symbol id to the
symbol stream. Then the lexemes “+” resp. “1” are found and the symbols plus
resp. num are returned.’

The symbol stream is input to the parser which is divided into two parts. The first
part checks if the symbols form a correct sentence of the language, usually called
program or module. The language is described by a grammar, normally a context
free grammar. The parser tries to match the symbol stream with the rules of the
grammar. This process yields a parse tree, sometimes called concrete syntaz tree,
which shows how the grammar rules have been applied to form the sentence. The
leaves of the parse tree are the input symbols to the parser.

In the example of figure 2b) there is a rule saying that an expression can be an
identifier followed by a plus sign followed by a numerical literal. So, the first part
of the parser builds the parse tree shown in figure 2b).?

The parse tree is input to the second part of the parser which builds an abstract
syntax tree. This tree contains only the bare syntax information, but abstracts
from superfluous symbols such as parentheses or keywords as begin. The construc-
tion of the syntax tree is performed by atiributes and actions that are attached
to the grammar rules. Therefore, the grammar is called attributed grammar. The
syntax tree is constructed while parsing a sentence.

In the example above, it is not necessary to know that the source text matches the
rule describing an expression. But the information is preserved that an operation
“plus” on two objects, namely an “id” and a “num”, is mentioned in the source
text; see figure 2b).

The syntax tree is further analysed by other passes which depend on the semantic
rules of the language. These passes could check, e.g.,

e whether all used identifiers have been declared;

1In reality the scanner would not transform the whole source text into symbols before the
next pass is started, but it would be called to return only the next symbol when this is needed.
2In reality the parse tree is never built explicitly, but exists implicitly in the parser structure.

(Character stream>

Scanner

Symbol stream

Parser (1)

Parse tree

Parser (2)

Syntax tree

Semantic Analyser

(Attributed tree >

a) Passes and data types

id plus num

exp

7N

id plus num

plus

RN

id num

int.plus

/N

1d.int num.int(1)

b) Example values

Figure 2: Components of a compiler frontend

e whether the operands of expressions have compatible types, where “compat-
ibility” has to be defined by the language, e.g. if real and integer operands
are compatible;

e whether functions are called with the correct number and type of arguments.

In the example above, it is checked if the identifier “x” has been declared and if
it is compatible to the numeric literal “1” which could be defined as an integer or
real value.

Summing up, the frontend gives answers to the following questions:
1. Is the source text a correct sentence of the language?

2. What is an (error-free) intermediate representation of the source text?

3 Compiler toolkits

In this chapter two aspects of compiler toolkits are discussed:
1. Which achievements can be expected from compiler toolkits?
2. What has to be payed for these achievements?

Normally, compilers are implemented in some programming language and the pro-
grammer is responsible for the correctness of the implementation. With a compiler
toolkit the focus lies on the specification of the language the compiler should work
on and on the semantics of this language. If the specification is correct the toolkit
generates a correct compiler. Thus the language designer has only the respon-
sibility for the correctness of the specification. The toolkit helps to prove the
correctness, e.g. by defining a language to specify the grammar rules and by some
automatic checks on the rules.

If the language is changed or extended, normally the whole implementation of the
compiler has to be reviewed. Experience teaches that errors are most likely to
happen and are hard to find. With a toolkit only the specification of the language
is changed and the toolkit guarantees that the newly generated compiler is error-
free.

Compilers that have been coded by hand often are not modularized in the same
manner. It is hard to understand which parts of two distinct compilers do the
same things, e.g. which modules form the scanner and where the interface to the
parser can be found. It is almost impossible to interchange parts of compilers. In
a compiler toolkit the interfaces between the parts are well-defined and constant
between all compilers. Therefore, it is easy to understand which part supplies
which service and it is possible to exchange or reuse a part.

It is not a trivial problem to build a compiler. Compilers are very complicated
tools where algorithms of many domains have to be used. Many problems have
to be solved by any compiler, e.g. efficient reading and analysing of the source
text, which takes most of the compiler runtime, and error recovery. Solving this
problems again and again is time consuming, tedious and error prone. A compiler
toolkit saves time and enables the language designer to concentrate on the really
difficult task of defining the language, not implementing the compiler. By the way,
hopefully the implementor of the toolkit has solved all common problems in the
most efficient way, leading to fast and small compilers without bothering about
the best algorithms for common problems.

But there are some drawbacks when using compiler toolkits:

1. Experience has shown that many hand-coded compilers are leaner and faster
than automatically generated ones, although there are also counter examples.

2. Working with a toolkit leads to dependence on the tools, that is, loss of
flexibility.

4 The structure of the Tycoon Compiler Toolkit

The toolkit can be separated into two parts:
1. Standardized interfaces between certain parts of a (generated) compiler.

2. Modules that build implementations for the specified interfaces.

4.1 Interfaces

The predefined interfaces of a compiler are:

Source: The abstraction of a character stream, giving successive access to the char-
acters of a source text.

Scanner: The abstraction of a symbol stream, delivering symbols scanned from the
source character stream.

Parser: The abstraction of a syntactic analyser that checks the symbol stream for
correctness and performs some actions, e.g. building a syntax tree.

ErrorLog: The abstraction of a log for error messages generated by the compiler.
Matching implementations for these interfaces can be implemented in two ways:
1. Using of the toolkit which automatically generates the implementations.

2. Coding the implementions by hand.

4.2 Scanner generator

To build a concrete scanner for a set of symbols, the following modules can be
used:

RegExpr: Building regular expressions.
Symbol: Representation of symbol values which can be used optionally.

Lexical Analyzer: The abstraction of a lexical analyser which is syntactically equivalent to a
scanner but has the semantic difference that no “white spaces”, i.e. blank,
tab, carriage return, comment, are skipped, and that no error recovery is
done.

RegToLex: This module takes a set of symbols and regular expressions defining the
corresponding lexems, and produces a lexical analyser from these definitions.

Note that there is currently no tool to build a scanner. One or more lexical
analysers are built automatically, but they have to be plugged together by hand
to form a scanner. This will be done automatically later on but the problem of
glueing them together has not been addressed yet. In the mean time, the module
demoReg.impl can be used as a template; see section 5.3.

4.3 Parser generator

To build a concrete parser for a specific grammar the following modules can be
used:

Grammar: Specification of the grammar rules and attached actions, and transformation
of the definitions to a parser. Currently, only LL(1)-grammars are supported.

Lexicon: Mapping of keywords to symbols and grammar rules.

4.4 Summary

In contrast to other compiler toolkits, e.g. lex / yacc,

e no meta language is used to define scanners and parsers, but all definitions
are performed in the host language P-Quest. This guarantees full type cor-
rectness already at language-definition time.

e no source code is produced which has to be compiled, but instead functions
are generated and manipulated as first class language objects (flexible nam-
ing, dynamic binding, persistent storage, ...).

Therefore, the opportunity to construct or load parts of the compiler at runtime is
gained. There is no possibility of type errors at runtime because P-Quest can per-
form all checks at compile time, especially on the actions attached to the grammar
rules.

5 Example: Construction of an expression interpreter

In this chapter an expression interpreter is constructed using the Tycoon Compiler
Toolkit. This example shows which steps you have to take on building your own
compilers or interpreters.

5.1 Overview

The result of our effort is an expression interpreter, e.g. an interpreter that reads
and parses expressions, and evaluates them instead of building a syntax tree.

The following modules are parts of the example:

demoMain: Main program that uses the generated scanner and parser to interpret simple
expressions.

demoGen: Main program that generates a scanner, a parser, and a lexicon of keywords
to save them on disk.

DemoGram, demoGram: Top level definition of the parser.
DemoExp, demoExp: Definition of expressions for the parser.
DemoReg, demoReg: Definition of the scanner and two lexical analysers.
DemoSym, demoSym: Definition of symbols and keyword lexicon.
Bindings, bindings: Representation of values and simple mapping of identifiers to values.
To run the demo, follow these steps:
1. Compile the modules bottom up, that is, start with Binding, or use make.

2. Start P-Quest, import demoGen and call demoGen.go(). Now the scanner,
parser and lexicon are generated.

5.2 The grammar

3. Import demoMain and call demoMain.go(). You can choose the input from a

file, e.g. demo.txt, or use interactive mode. In interactive mode, use Ctr1l-D

to terminate input; you may have to type Ctrl-D more than once.

The expression interpreter accepts the following syntax (see section 5.5 for exam-
ples how these rules are implemented):

top

exp

term

factor

::= { ’let’ id ’=’ exp ’in’ | exp } ’;°
At top level we can perform binding of expressions to identifiers or evaluate
expressions.

::= term { (+’[’-’) term }
An expression is a term optionally plus or minus other terms. Evaluation
order is left to right.

::= factor { (’%’|’/?) factor }
A term is a factor optionally multiplied with or divided by other terms.
Evaluation order is left to right.

::= 2 exp ’)’ | int | real | id
A factor is an expression put in parentheses or an integer literal or a real
literal or an identifier.

For example, this is a correct top level input:

let a = 2in

let b=2a*2in
let c=hbh-2in
a*(b-c+2)/8;

The result is “1”.

5.3 Scanner definiton

The scanner is defined by demoReg and it is generated by demoGen. It is composed
of two lexical analysers: The first one skips whitespaces like blanks, tabs and
carriage returns, the second one recognizes the symbols of the language. Each
symbol is accompanied with a regular expression defining the lexem. Here is a list
of symbols and regular expressions:

symbol regular expression
point)
equal =’
plus 4’
minus =’
times *
div A
leftparen &
rightparen Dk
int 0.9}
real {009 0009
id N0)2 Y N7) 00,097 7 0
wrong predefined
endOflnput predefined

The symbols wrong and endOflnput are predefined by the module Symbol. The
keywords let and in are recognized as symbol id and have to be separated from
identifiers by using the keyword lexicon defined in DemoSym.

To define a scanner, take the following steps:

1. Find the symbols and their description by regular expressions. The symbol
that matches the longest possible input is returned, i.e. “1.0” is real and
not int, point, int. Ambiguous definitions are not permitted, i.e. it is not
possible to define keywords if they are matching the regular expression defin-
ing identifiers.® It is not possible to declare a right context, i.e. that “1..”
should be treated as int and ellipsis instead of real and point.

For example, the following lines (taken from demoReg) describe the lexem
of the symbols int and real, using the previously generated object lexGen:

let lexGen =

regToLex.new(:DemoSym_T
symbol.wrong
symbol.endOfInput

)

(* get generator for lexical analyser (object)*)

let digitR = regExpr.range(’0’ °9’)

(* digit in the range from 0 to 9 *)
let digitsR = regExpr.rep(digitR)

(* repetition of digits, at least one *)

lexGen.setSymbol(digitsR demoSym.int)
(* one or more digits form an integer number *)

let realR =
regExpr.seq of
digitsR
regExpr.string(”.”)
digitsR

end

lexGen.setSymbol(realR demoSym.real)
(* a sequence of digits, dot, digits forms a real number *)

2. Find strategies for scanning the input. I.e. whether whitespaces should be
skipped; whether nested comments, which cannot be described by regular
expressions, are allowed; how the scanner recovers from errors; ...

3. Define one or more lexical analysers with the modules RegToLex and Reg-
Expr. Note that a lexical analyser does no error-reporting or error-recovery,
but delivers the symbol wrong instead. A lexical analyser is generated by
calling the method generate which raises an exception if the definition is
erroneous.

See module demoReg for the definition of two lexical analysers. One lexical
analyser skips whitespaces, the other recognizes the symbols of the language.
Note that the generation of an analyser could take place at compile-time if
it would be declared in the body of the module, i.e.

3Some lookup in a hash table might be more space and time efficient than a lexical analyser
distinguishing dozens of keywords.

let analyser = lexGenObject.generate(. ..)

In this example the analysers are generated at run-time when the function
demoReg.generator is called.

4. Plug the lexical analysers together according to your strategies. In the ex-
ample this is done in the module demoReg locally in the function generator.
The following strategies are implemented: Whitespaces are skipped, no com-
ments are allowed, errors are reported and error recovery is simply repetition
of skipping and scanning until a valid symbol or end-of-input is found. Note
that there is a problem recognizing end-of-input because the module Source
only reports once that end-of-input is reached. So only one lexical analyser
recognizes end of input but maybe delivers a valid symbol if the previous
read characters formed a correct lexem.

The full source text of the scanner generator function is listed in figure 3.

5. demoReg.generator returns a scanner function that needs a concrete source
text and a concrete error report function to become a concrete scanner ful-
filling the definition of delivering a symbol stream. In demoReg this function
is declared locally to the function generator; it is an unnamed function that
is returned as result of the function generator.

In this process there are many possibilities to save something to reuse it later on:

e Save the definition of a lexical analyser and extend it later on to recognize
more symbols:

let lexGen =
regToLex.new(:Symbol T
symbol.wrong
symbol.endOfInput

)

dynamic.extern(
writer.file(”lexGen”)
dynamic.new(lexGen)
dynamic.fast)

e Save the generated lexical analyser to use it in another scanner that needs
the same functionality:

let analyser = lexGen.generate(symbol.wrong symbol.endOfInput)
dynamic.extern(
writer.file(” analyser”)

dynamic.new(analyser)
dynamic.fast)

e Save the scanner function to use it in a compiler for arbitrary source input.
let scanner = demoReg.generator(symbol.wrong symbol.endOfInput)
dynamic.extern(

writer.file(”scanner”)

dynamic.new(scanner)
dynamic.fast)

10

let generator :Scanner_Generator(DemoSym_T) =
fun(wrong, endOfInput :DemoSym_T) :Scanner_Binder(DemoSym_T)
begin
let skipBinder :LexicalAnalyzer_Binder(DemoSym_T) =
skipGen.generate(wrong endOfInput)
let lexBinder :LexicalAnalyzer_Binder(DemoSym_T) =
lexGen.generate(wrong endOfInput)
fun(sre :Source_T err :Scanner_ErrorReport) :Scanner_T(DemoSym_T)
begin
let lex = lexBinder(src)
let skip = skipBinder(src)
let local =
tuple
let var sym = wrong
let var eof = false
end
let nextSym() :Ok =
begin
if not(local.eof) then
skip.next()
local.eof := skip.sym() is endOfInput
if not(local.eof) then
lex.next()
local.eof := lex.sym() is endOfInput
end
end
end
tuple
let sym() :DemoSym_T = local.sym
let string = lex.string
let position = lex.position
let next() :Ok =
begin
nextSym()
while not (local.eof) andif {lex.sym() is symbol.wrong} do
err(src.current() src.position())
try
src.next()
else (* source.endOfInput *)
local.eof := true
end
nextSym()
end (* while *)
local.sym := if local.eof then endOfInput else lex.sym() end
ok
end (* next *)
end (* tuple *)
end (* fun *)

end (* generator *)

Figure 3: Scanner generator function

11

5.4 Keywords

5.5 Parser definition

Keywords require a special handling because they are terminal symbols but nor-
mally also match the regular expression for identifiers. So the lexical analyser
recognizes an identifier and the scanner has to look up a keyword lexicon whether
the identifier found is a keyword.

These steps are taken to handle keywords:

1. Generate a keyword lexicon with the module Lexicon, e.g. when defining

the symbols of the language. In the example this is done in the module
demoSym by this line:

let keywordLexicon = lexicon.new(nextsym())
(* ‘nextsym()’ returns the first symbol that can be used for keywords *)

. Insert the appropriate keywords in the lexicon, e.g. while defining the gram-

mar of the language. This is done in the module demoGram:

let letKW = lexicon.insert(demoSym.keywordLexicon ”let”)
let inKW = lexicon.insert(demoSym.keywordLexicon ”in”

Save the keyword lexicon; see demoGen:

dynamic.extern(
writer.file(”lexicon”)
dynamic.new(demoSym.keywordLexicon)
dynamic.fast)

. Define a new layer between scanner and parser which looks up the keyword

lexicon if an identifier is found. Therefore the lexicon has to be loaded at
runtime, i.e. in demoMain:

let keywordLexicon =
dynamic.be(
lexicon.T
dynamic.intern(reader.file(”lexicon”) dynamic.fast))

let scanner =
tuple
let sym() :DemoSym_T =
if scanner.sym() is demoSym.id then
try
lexicon.lookupSymbol(keywordLexicon)(scanner.string())
else
demoSym.id
end
else
scanner.sym()
end
let string = scanner.string
let position = scanner.position
let next = scanner.next
end

Parsers are defined and generated by Grammar. Attributed grammars are used
to define actions that are executed while a sentence of the language is parsed for

12

correctness. Normally, these actions build an abstract syntax tree.

In the example two modules define the grammar and attached actions: DemoGram
and DemoExp. Instead of building a syntax tree the parser binds identifiers to
values and evaluates expressions. It also checks if all used identifiers have been
declared and if the types are compatible.

Follow these instructions to build a parser:

1. Define the grammar with attached actions using Grammar. Currently only
LL(1)-grammars can be used.

Figure 4 shows an example for the definition of the grammar rule factor (see
section 5.2 for the complete grammar). It is taken from demoExp. gram-
mar.alt describes alternative clauses; note that all sub-clauses of the alterna-
tive clause have to take inherited attributes und deliver derived attributes of
the same type, what is checked by the P-Quest compiler. grammar.seq de-
scribes sequence clauses, which have an attached action (see section 5.6). In
this case, the action takes an inherited attribute and the derived attributes
of the three parts, and simply hands through one derived attribute, while
the others are dismissed.

(* — factor ::=’("exp ’)’ | int | real | id *)

let factor =
grammar.alt of

grammar.seq3(leftparenS exp rightparenS
fun(:bindings. T
:Source_Position
v :Value

:Source_Position)

:Value
v)

intS

realS

idS
end

Figure 4: Grammar rule factor

2. Generate the parser by calling the method newParser. While the generation
takes place it is checked whether the grammar is of the correct (LL(1)-)form.

This is done in demoGen:
let parser = grammar.newParser(demoGram.top)

3. The result is a parser function that takes a concrete scanner as parameter
and checks the symbol stream of this scanner for correctness.

In this process there are two possibilities to save something:

13

5.6 Action definition

1. Save the definition of the grammar to extend it later on:

dynamic.extern(
writer.file(” grammar”)
dynamic.new(demoGram.top)
dynamic.fast)

2. Save the generated parser function to use it in a compiler.

dynamic.extern(
writer.file(” parser”)
dynamic.new(parser)
dynamic.fast)

Actions that for example build a syntax tree are defined along with the grammar
that describes the language. Each rule (terminal or non-terminal) takes an inher-
ited attribute, performs actions and delivers a derived attribute. Further informa-
tion about attribute grammars can be found, for example, in [WG85, RT88, RT89].

Figure 6 shows an example taken from demoExp that describes the actions that
have to be performed when an identifier is expected. See Figure 5 for a graphical
representation of the example. The type of the inherited attribute is bindings.T,
the type of the derived attribute is bindings.Value. The action has to transform
the inherited to the derived attribute. If an identifier is found the value it has been
bound to is looked up in the (inherited) bindings. If the identifier has been de-
clared, the associated value is returned. Otherwise the value unknown is returned.
If no identifier has been found also the value unknown is returned.

inherited attribute: derived attribute:

bindings value

action: find id in bindings

return value or unknown

!

id (taken from symbol stream)

Figure 5: Node of parse tree for idS

5.7 Generating the scanner and the parser

Scanner, parser, and lexicon are generated by demoGen. While the generation
process takes place status information is reported. This can be suppressed by
setting flags in grammar and regToLex.

The generated scanner, parser and lexicon are saved into the files scanner, parser
and lexicon. Strictly speaking, two functions are saved, a scanner function that,
given a source and an error report function, returns a scanner, and a parser function
that, given a scanner and a error report/recovery function, parses a symbol stream.

14

let idS =

grammar.terminal(

:bindings.T (* — type of inherited attribute *)
:bindings. Value (* — type of derived attribute *)
demoSym.id (* — symbol: ’identifier’ *)
fun(b :bindings.T (* — normal action: takes bindings *)
s :Parser_ScannerState) (* — and the scanner state *)
:Bindings_Value (* — returning a value *)
try (* — install exception handler *)
bindings.lookup(b s.string()) (* — lookup identifier in binding *)
else (* — not found *)
(* error report *)
unknown (* — value unknown *)
end
fun(b :bindings.T (* — action in error case *)
s :Parser_ScannerState) (* — (id expected, but not found) *)
:Bindings_Value
begin
(* error report *)
unknown
end

)

Figure 6: Action definition for idS

5.8 Running the demo

References

The main “compiler-interpreter” is demoMain. It defines the functions for error
reporting and recovery, asks the user for input, opens the input source, loads the

scanner

and parser functions and the lexicon, generates the concrete scanner, and

starts the parser.

[ASUS6]

[Car90]

[Mat91]

[MS91]

[MSS91]

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

L. Cardelli. The Quest Language and System (Tracking Draft). Digital
systems research center, DEC SRC Palo Alto, 1990. (shipped as part
of the Quest V.12 system distribution).

F. Matthes. P-Quest: Installation and User Manual. DBIS Tycoon Re-
port 101-91, Fachbereich Informatik, Universitat Hamburg, West Ger-
many, October 1991.

F. Matthes and J.W. Schmidt. Towards Database Application Systems:
Types, Kinds and Other Open Invitations. In Proceedings of the Kiev
FEast/West Workshop on Next Generation Datlabase Technology, volume
504 of Lecture Notes in Computer Science, April 1991.

F. Matthes, G. Schroder, and J.W. Schmidt. VAX Modula-2 User’s
Guide; VAX DBPL User’s Guide. DBPL Memo 121-91, Fachbereich
Informatik, Universitat Hamburg, West Germany, December 1991.

15

[Nie91]

[NMM92]

[RTSS]

[RT8Y]

[Sch91]

[SM91]

[WGS5]

P. Niebergall. Language-Sensitive Technology for Database Program
Development. DBPL-Memo 108-91, Fachbereich Informatik, Univer-
sitat Hamburg, West Germany, 1991.

C. Niederée, S. Muflig, and F. Matthes. P-Quest User Manual. DBIS
Tycoon Report 102-92, Fachbereich Informatik, Universitat Hamburg,
West Germany, February 1992. (in German).

T.W. Reps and T. Teitelbaum. The Synthesizer Generator: A System
For Constructing Language-Based Fditors. Texts and Monographs in
Computer Science. Springer-Verlag, 1988.

T.W. Reps and T. Teitelbaum. The Synthesizer Generator Reference
Manual. Texts and Monographs in Computer Science. Springer-Verlag,
third edition, 1989.

Gerald Schroder. Studienarbeit: Die Standardisierung von Modula-2.
Master’s thesis, Fachbereich Informatik, Universitat Hamburg, West
Germany, November 1991.

J.W. Schmidt and F. Matthes. Naming Schemes and Name Space Man-
agement in the DBPL Persistent Storage System. In Proceedings of the
Fourth International Workshop on Persistent Object Systems, Martha’s
Vineyard, Massachusetts. Morgan Kaufmann Publishers, January 1991.

W.M. Waite and G. Goos. Compiler Construction. Texts and mono-
graphs in computer science. Springer-Verlag, 1985.

16

