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A B S T R A C T

In the age of big data, very large sets of different measurable data are permanently ac-
quired. However, the development of efficient methodology to search for and identify the
actual information hidden in large data sets, and to explore relationships between sub-
datasets, is lagging behing. Data visualization is an efficient and intuitively accessible
approach to identify patterns in large and diverse data sets. State-of-the-art computing
provides the enabling technology to visualize data not only as static images but also in
interactive visualizations. But even the most efficient and powerful data visualization
tools do not satisfactorily address and exploit the possibilities of interactive data anal-
ysis. They constrain creativity and are often complex to use. In this work I propose to
use "component based visualization" for interactive data exploration. Component based
visualization derives properties such as "composability" and "information hiding" from
the concept of a software component and transfers them to the domain of data visualiza-
tion. By building a directed graph of such components, a complex set of visualizations
can be composed. The dataset of a component itself can then be used as a parameter to
define the semantics of an arc between two components (e.g. two visualizations can be
connected to show the same GPS coordinate from different data recordings, thus allow-
ing the comparison of other associated data, such as a heart rate). Additionally, users are
allowed to not only interact with the visualization but also alter data processing and vi-
sualization by a component. This approach allows simulataneous exploration of multiple
datasets applying various criteria, while comprising the relationships between the data.
This concept is showcased through a visualization system that allows the user not only
to dive into data via visualizations, but facilitates the creative freedom to build, extend
and define new visualizations and their composition. The prototype, called DAVID (dy-
namic analysis and visualization of integrated data), is a tool for interactive exploration
of linked data.
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Part I

I N T R O D U C T I O N





1
P R O B L E M S TAT E M E N T

The digital revolution, the “change from analog mechanical and electronic technology
to digital technology” [79] has led into a new age in which “an economy based on
information computerization”[79] has evolved. In this age, computation and information
itself, in all its different incarnations, play a central role in both business and science.
Information storage grew from 54.5 exabyte in the year 2000 to 295 exabyte in 2007 [82]
(world wide). Today, the amount of data available on the Internet is estimated to grow
by 4 exabyte each day [67]. Owing to the increasing affordability of memory storage and
high-power processors in the last decade [48], it is now possible for many research fields
to collect massive amounts of data. In [46], the authors state that “researchers from the
University of Berkeley estimate that, every year, about 1 Exabyte of data are generated,
of which a large portion is available in digital form”.

Additionally, the “smart home” and the “internet of things” is appearing on the hori-
zon. In the last 10 years the prices for sensors have dropped significantly as well. With
devices such as Google’s “Glass”1 or “Nest”2 and Apple’s “iPhone”3, information is
gathered all around us at any time. “Ubiquitous computing”, the idea that “computing
is made to appear everywhere and anywhere”[74], is not the distant future anymore but
has become reality.

This development comes with unique opportunities and new challenges. Data analy-
sis is often a highly complex task that cannot be streamlined, and requires significant
domain knowledge as well as technical expertise. Numerous academic fields, such as
Bio-Informatics and Geo-Informatics, have arisen out of the opportunities of “big data”
even as its challenges put pressure on more traditional fields. Though the sheer amount
of data is a challenge in itself, not only the size of the data-sets are problematic. The
structure of the data is also of high importance. Data are often linked with each other in
different ways, for example by correlation of values or similar semantics. Knowing and
understanding those links is crucial to efficient and meaningful information extraction.
In his book “The age of context”, Robert Scoble summarizes that “it’s not the big data
mountain that matters, it’s those tiny little spoonfuls we extract whenever we search. [...]
[They] enable us to keep up with, and make sense of, an accelerating world” [67].

One common way to analyze such complex data, especially data that cannot be in-
terpreted in its original encoding, is to find or develop viable visualizations to show
“information that has been abstracted in some schematic form, including attributes or
variables for the units of information” [35], thus allowing researchers and information
consumers to “gain insight into an information space”[26]. Visualizing data allows one
to access the information hidden in the data. As visualizations abstract, reduce, and com-
press data, it is crucal to choose a valuable representation in the context of a specific use
case. Thus, data analysts need powerful new tools to assist them in the task of visualiz-
ing data and the information hidden in it. Paradoxically, visualizations now often begin

1 Project website: http://www.google.de/glass/start/what-it-does/
2 Product website: https://nest.com/
3 Product website: https://www.apple.com/iphone/
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without a specificed target, since potentially relevant patterns in the data remain hidden
prior to visualization. Consequently, data visualization tools need to support the data
analyst in the creation and exploration of data, while also providing a means of creating
the final representation.

In the past decade numerous tools, frameworks and even languages have arisen that
focus on this task in one way or another. Statistical languages such as R support data
exploration on a programmatic level, whereas libraries such as D3 allow for manipulation
of the visualized elements. None of them, however, allow for an interactive exploration
of data while maintaining the degree of freedom a data analyst needs. Most systems
either focus on one specific aspect of data visualization, thus increasing the complexity
of the system and the user’s interactions with it, or the system may serve a wide variety
of use cases, resulting in a more generic tool that is incapable of producing complex
visualizations without substantial manual effort.

Here I propose a system that combines these aspects into one system by integrating
many approaches and libraries developed over the last decade.

1.1 approach

In this work I investigate the current state of interactive data visualization and its weak-
nesses when used to explore and interpret complex datasets. I present a system that
allows for dynamic explorations of data while maintaining the creative freedom needed
by data analysts. I focus on best practices not only in the field of data visualization but
also in the area of Software Engineering. The goal of this thesis is to showcase a system
that is capable of visualizing complex data in an interactive way. Such a system shall
provide ample opportunities for refinement and customization by data analysts.

This work can be divided into four areas of investigation:

1. Visualization: I explain and discuss the fundamentals of the still young field of data
visualization. In Chapters 3 and 4 I present typical workflows and visualization
tasks commonly encountered by data analysts, and I argue for the necessity of
creative freedom in this area.

2. Interactivity: As part of the area of “Visualization” (4), I investigate what “inter-
activity” in the context of data visualization means and what makes it valuable
to analysts, designers, scientists, and data explorers who search for informative
patterns in their data.

3. Constraints: In Chapter 2 the conflicts between these areas are discussed before
describing each in more detail. In this chapter I point out that even though a vast
set of powerful visualization tools, mechanisms, and frameworks exists, one must
be chosen for practical use, depending on the use case. Once a system is picked, it
becomes difficult or impossible for analysts to incorporate it into another system
(for example if the use case changes). The system described in 5 and implemented
in 6 acknowledges this problem and is based on the idea that the incorporation of
many frameworks and libraries for data visualization is a necessity. This supports
not only the freedom of choice, but most importantly, the reuse of existing visu-
alizations, code and workflows. The system also addresses the issue of usability

4



in complex visualization systems. In Chapter 2, I describe the problems with the
“state of the art” systems and their usability.

4. Exploration: Data exploration is one of the main concerns of this work. In Chapter 5

I propose “component based visualization”, which gives data analysts and design-
ers the opportunity to define and extend the creation and behavior of visualizations
without requiring deep technical expertise. This chapter builds upon the previous
ones and introduces ideas on incorporating “big data” and interactivity into such a
system. However, exploration also means giving the data analyst complete control
over how a visualization works and interacts with the user.

1.2 scope of this work

This work is written in the context of ongoing projects at the Massachusetts Institute
of Technology (MIT) AgeLab. The example data used stems from real scientific projects
conducted between 2007 and 2014, and inspiration was drawn from undocumented pro-
grams, workflows already present in this laboratory and brain storming with potential
users of the system. The context and the specific requirements of this system are de-
scribed in detail in Chapter 2. This work aims to outline a prototype rather than a fully
functional and “ready to sell” product.

Even though this work proposes a system for data visualization, it does not describe
methods of drawing and animating data in the elemental sense. In many ways it stands
on the shoulders of the developments in data visualization of the last decade. Still a
young field, a variety of libraries have been written to abstract the complexity of draw-
ing and animating elements on a screen (see Chapter 3). The mechanisms offered by
integrated and well supported libraries are used and referenced heavily. Chapter 5.2.2
describes in detail the reasons for this decision. A description of the developed proto-
type is given in Chapter 7.1 and depicts many of the concepts described throughout this
work.

1.3 conventions of this document

This document uses the following conventions to present information.

• All citations will be marked with two square brackets, linking the citation in the
index with a unique key ([key]).

• An explanation of a word will be marked by a footnote.

• An abbreviation will be written out when it appears for the first time and will be
added to the nomenclature at the end of this document.

• To present software models, the “Unified Modeling Language” (UML), version 2.4
is used. If the semantics of the UML are not required, a mix of undefined seman-
tics and representations derived from the UML are used and explained for each
representation.

• The inconsistently defined words data, information, and knowledge are used as
defined in the following table . This definition follows the understanding of data,

5



Data Computerized representations of models and
attributes of real or simulated entities

Information Data that represents the results of a
computational process, such as statistical

analysis, for assigning meanings to the data,
or the transcriptions of some meanings

assigned by human beings

Knowledge Data that represents the results of a
computer-simulated cognitive process, such as

perception, learning, association, and
reasoning, or the transcriptions of some
knowledge acquired by human beings

Table 1: Definiton of data, information, and knowledge[26]

information, knowledge and wisdom as a hierachy as proposed with the “DIKW-
Pyramid”[66].
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2
C O N T E X T

The visualization and manipulation of data are relevant to all scientific fields. As such,
the topic of “data visualization” is one without clear boundaries, and can cover:

• Information visualization

• Interaction techniques and architectures

• Modeling techniques

• Multiresolution methods

• Visualization algorithms and techniques

• Volume visualization

[78] to give just a few examples. The first major challenge when investigating this rather
broad field is to define a clear domain of interest. In this work I focus on the aspects
of interaction techniques and architectures, and build upon the results of other works
in the area of information visualization. Chapter 3 showcases several systems that are
also relevant to these fields. To get a better understanding on interaction techniques it is
helpful to look at state-of-the-art systems.

A selection of tools typically used for data analysis and visualization is shown in fig-
ures 1 and 2. The first figure shows two tools known for their strength in computation
and analysis: MATLAB and RStudio. MATLAB is a ”high-level language and interactive
environment for numerical computation, visualization, and programming. Using MAT-
LAB1, one can analyze data, develop algorithms, and create models and applications”[54].
MATLAB grew out of the discipline of engineering, and prioritizes the handling of n-
dimensional data matrices. It emphasizes computational efficiency but lags behind in

1 Product website: http://www.mathworks.com/products/matlab/index.html

Figure 1: Matlab visualization (left) [54] and creation of a plot in R (right) [13]
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Figure 2: Tableau dashboard (left) [14] and Ducksboard dashboard (right) [11]

visualization. RStudio2 is a frontend for the statistical language R3. R grew out of the dis-
cipline of statistics. It also has highly efficient data types, but is better suited to statistical
modeling, and has better visualization tools. Both however have two major problems:

• They suffer from a very steep learning curve

• Both are not built around interactive or “live” data exploration.

Both languages and environments force a complex “Domain Specific Language” (DSL)
which are hard to use without a background in computer science. Their DSL is highly
specialized for the software’s intended research field. Both languages can be used in
an iterative environment and allow reevaluation of program blocks, but they are poorly
suited for generating explorable or interactive visualizations (or more generically “en-
codings”) of data.

In addition, data can not be linked on-the-fly and must be anticipated prior to render-
ing the visualization, which requires the user to understand the nature of their data and
algorithms. This adds complexity to the task of visualization, but it of course allows the
user to execute complex tasks in those languages.

The second figure (2) shows two tools that allow the user to interactively view (and in a
limited way, even explore) data. “Tableau” (left) allows the user to build interactive “dash-
boards” in which data can be compared. However, this relies on a specific format of data.
Users do not have the ability to actively change the behavior of a visualization or connect
data freely without pre-processing. The right image shows “Ducksboard”, a system that
also allows interactive visualization and dashboard construction. Ducksboard allows for
the aggregation of multiple streams of data (such as Facebook and Twitter), and allows
visual properties such as color and shape to modified. However, as with Tableau, data
are not linked and the user’s ability to change the behavior of visualizations is limited.

None of these tools combines the aspects of interactivity, linking data together, options
to explore and script the behavior of data visualizations (and thus build complex be-
havior), and working with heterogeneous data from different sources. The system that I
propose in this work incorporates all these aspects.
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Figure 3: Scientific process to derive laws [55]

2.1 the mit agelab

The MIT AgeLab, “has assembled a multi-disciplinary team of researchers, business part-
ners, universities, and the aging community to design, develop and deploy innovations
that touch nearly all aspects of how we will live, work and play tomorrow”[1]. In this
research lab, scientists from different fields perform experiments to investigate a wide
variety of topics.

Typically, a data-analyst follows a classical investigatory approach to develop a theory
or to find a law hidden in the data. Figure 3 depicts this approach. A scientist makes an
observation during an experiment. Some of those observations might be linked by a law
that predicts these observations. Those laws are then explained by a theory. Ultimately,
scientists try to find those theories and their corresponding laws, which in turn rely on
the possibility of repeated observations of patterns. This is where recorded data from
experiments comes into play, which can be used to either confirm or falsify a theory.
However, if this data becomes too large to analyze, the information (and consequently
the knowledge) in the data may be lost.

The experiments performed at the AgeLab often produce enormous amounts of data.
Typical experiments include subjects driving in a car for long distances over multiple
hours while their physical fitness is monitored. The data generated includes physiolog-
ical measures of heart rate and skin conductance, as well as metrics of driving perfor-
mance such as lane position and GPS coordinates. Figure 6 illustrates the data-flow from
an experiment into the visualization system. The sample rate of this data may be as high
as 250hZ. Early workflows included Excel sheets and manual data inspection, but the
sheer volume of data quickly overwhelmed these rudimentary methods.

Data visualization is one method of information extraction. A typical workflow is to
integrate the raw data into a database management system (DBMS) and fetch data of
interest as needed. The computer science experts at the AgeLab have created numerous
scripts, written in the “Structured Query Language” (SQL) over the last years to fetch
data. The data is then analyzed and visualized in different ways. Typically, data are visu-
alized in R using the GGPlot4 package, which is capable of drawing static images based
on the underlying data. Other ways of visualizing the data include custom-made appli-
cations that visualize the heart rate of subjects or play the videos that were recorded
during an experiment. Unfortunately some datasets are so huge that certain algorithms
are needed which reduce the size of a dataset. Figure 4 illustrates a tool used for visual-
izing and manipulating the heat rate data of a subject. It features algorithms to extract so

2 Project website: https://www.rstudio.com/
3 Project website: http://www.r-project.org/
4 Project website: http://ggplot2.org/
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Figure 4: The heart-rate visualizer

called feature points, data-points that summarize a small dataset, thus reducing the size
of the data and easing the analysis. Figure 5 shows a system, again custom-made, fre-
quently used to extract information from the data gathered during experiments. Videos
are shown that were recorded during the experiment. The user is able to add annotations,
such as “looked at mirror” to the video and save this information into the database. As
shown, each of those applications focus on a specific task (images, video analysis etc.).

2.2 the workflow

At the AgeLab, data analysts rely on data to either confirm an existing hypothesis or
develop novel ones while looking at patterns in the data. Figure 6 illustrates how data
flows. Starting at the subject, data is sensed and written into an on-board data-acquisition
system. This data is then Pre-Processed and stored in a DBMS. Data queries are then
written in complex SQL syntax and are imported into the tools and environments already
discussed (denoted as “Pre-Processing” and “Analysis / Visualization”). Problematically,
the complexity of the queries is often far beyond what the data analysts can work with
without expert knowledge in that particular language. The proposed system tackles this
with a repository of predesigned but configurable queries. Still, bringing datasets into
new context is difficult, especially for users that do not have a strong background in
computer science.

Many of the queries, aggregations and computations performed on the data exist solely
to prepare one dataset for the context of another. The system described in this work
offers a way to link data together easily, thus bridging the domains of “programming”
and “analysis” of data.

Even if the data analyst creates a visualization that shows data in the context of other
datasets, he or she is often still limited by the static nature of the visualization. As already
stated, interactivity is a feature most publicly available visualization systems do not
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Figure 5: The annotator

address. Therefore, the proposed system offers a way to not only interactively explore
the data, but also to “play” data once it is visualized. For example, with such a system
an analyst may virtually “re-create” a subject’s driving session.

2.3 the conflicting fields

As already stated in 2, the area of data visualization has no clear boundaries. This also
implies that other fields reach into this domain, and that working on data visualization
also means taking these fields into account. Problematically, some of those fields force
constraints on the tools one can provide for the generic task of data visualization. At the
heart of this dilemma are the classical non-functional requirements (NFR) shown in table
2.

Extensibility is crucial to tools that support a creative process. A data analyst needs to
have the freedom to extend the system in the ways he or she envisions. This is supported
in different ways in typical data visualization software. For example, R provides a library
and package system that allows the user to load functionality on demand. The majority
of R’s packages are developed and maintained by its user community, thus extending R’s
analytical capabilities in ways that could not have been foreseen by its early developers.
Similarly, the system proposed in this work makes very heavy use of extensions defined
by the data analyst.

Portability is important in the special context of the workflows and environment of
the AgeLab (see 2.2). The setups and operating systems of the lab’s workstations are
heterogeneous. Therefore, to reach a high adoption rate, portability is important.

When visualizing large datasets, performance is a key consideration. The single dataset
used in this work (chosen from among hundreds available at the AgeLab) contains ap-
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Figure 6: Data flow at the AgeLab

NFR Description

Extensibility A system design principle where the implementation
takes future growth into consideration[73]

Portability The usability of the same software in different
environments[86]

Performance The amount of useful work accomplished by a computer
system or computer network compared to the time and
resources used. [85]

Scalability The ability of a system, network, or process to handle a
growing amount of work in a capable manner or its
ability to be enlarged to accommodate that growth.[19]

Table 2: Table of conflicting NFRs
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proximately 200.000.000 data points encapsulating measures along 20 dimensions and
multiple terabytes of video- and audio-data. The algorithms and mechanisms used in
the proposed system therefore have to take performance issues into account.

Scalability goes hand-in-hand with performance. Since the underlying hardware of a
machine is the ultimate constraint of the performance of a system, the application needs
to scale with the number of machines used. Scaling horizontally, or “scaling-out”[59],
is quite popular since it is far more cost-effective and requires much less knowledge
of the underlying system. Conversely, scaling upwards often requires specific operating
systems and application architectures.

These NFRs need to be balanced. Extensibility might conflict with portability and per-
formance if a developer wants to use a platform-specific extension or a low performance
algorithm. Performance, on the other hand, can have a negative impact on portability
since performance improvements might rely on platform-specific optimizations. This
work is strongly based on cutting edge web technologies and attempts to balance the
4 NFRs.

data visualization and computational analysis As noted in 2, the question
of “visualization algorithms and techniques” is naturally part of data visualization. This
field focuses on the algorithms behind a visualization and the programs that define how
data is translated into visual elements. This area focuses on analysis and computation
based on the values of the data. The NFRs of this field (such as performance and fault
tolerance) sometimes conflict with the targets of other fields. Making a complex visual-
ization interactive is problematic if the visualization itself requires computation time that
interrupts the users interaction with the visualization. This area also conflicts with the
aspects of “big data”, since a specific algorithm often requires certain data structures.

interactivity and working with big data Even though the term “Big data”
can fill multiple thesis on its own, it is of concern to the field of data visualization.
This term refers to “a collection of data sets so large and complex that it becomes diffi-
cult to process using on-hand database management tools or traditional data processing
applications”[75]. The areas of user interface and interactive exploration are most affected
here, since massive amounts of data need to be accessible via a suitable, responsive inter-
face. Making such an interface interactive so a user can explore the information hidden
in the data is particularly complex.

2.4 requirements

Paying close attention to the current workflow and the daily tasks data analysts have
allow us to formulate a set of requirements. Many parts of the system were inherently
undefined in the beginning. Together with the stakeholders at the AgeLab, a list of re-
quirements was identified. Theese requirements are listed below. Even though this list
seems small, a lot of work had to be put into envisioning how to realize those features in
a user-friendly way. It is important to note that some of these requirements are fulfilled
by some visualization system. However, they do not exist in one singular system.

010 Separation of concerns while creating a visualization
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Separation of concerns is a method often used in computer science. It describes that
“separating a computer program into distinct sections, such that each section addresses
a separate concern.”[89] In data visualization this approach is generally not used since
a visualization often forms one single unit. With complex visualizations however, this
becomes a valuable principle

020 Animations when switching between different datasets.

Animations are highly important to ease the perception of a complex visualization. It al-
lows an analyst to perceive correlations easier and track constant parts in a visualization
[animations]. This requirement is discussed in detail in chapter 3.

030 Highlighting parts of a visualization

To explore a dataset the designer needs to be able to focus on certain areas of a visualiza-
tion. Highlighting refers to this ability. This requirement is discussed in detail in chapter
3.

040 Focusing and Linking

Focusing and linking allows a user to request details on demand. Focusing a certain part
of a visualization leads to detailed information in other visualizations. This requirement
is the reason for the requirement “Linking components”. This requirement is discussed
in detail in chapter 3.

050 Linking components and data

The linking of a component referrers to the ability to connect single visualizations with
each other and enforce a logical link between them. This allows for example to sync to
visualizations on the current time they show or show the same GPS coordinate.

060 Overlaying meta-information

This concept stems from [47]. Overlays can be put on top of a visualization to add more
information or to make the perception of a visualization easier. Overlays include refer-
ence structures and summaries. This requirement is discussed in detail in chapter 3.

070 Annotating visualized data

Annotating data is crucial to enable analyst to be able to add meta-information which
can not automatically created by the system. Adding meta-information to an existing
dataset of a visualization is therefore a requirement.

080 Freedom of choice for libraries used to draw

Designers and analysts find themselves quite often in a “vendor lock-in” situation as
most libraries for visualization are not compatible. Therefore, a system should allow the
user to choose his or her preferred library for whatever task he wants to solve.

090 Creative freedom of how to draw

Additionally a analyst needs to have full control of the visualization itself. If he or she
wants to change a single line in a visualization this possibility has to exist. The only
way to allow this is to give the analyst the power over the programmatic structure of a
visualization.
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100 Sharing of workspaces

When creating complex visualizations reusability is an important issue. Other analysts
have to be able to reuse visualizations that already exist.

110 Saving of results

When data is added during an annotation session, this data has to be saved int a SQL
database.

120 Video recording of the workspace

Presenting the result of an analysis is highly important. Therefore, a modern visualiza-
tion toolkit needs to be able to record a video from the interaction and the animated
visualizations.

130 User-friendly access to the data queries

Querying data is often done in languages such as SQL. In many cases this language
is only known by experts or computer scientists. A visualization system should give a
novice user an easy entry into the system. The first barrier is to query for data. To not
use languages such as SQL a library of predefined but configurable queries has to be
created.

2.5 scenarios

To showcase a few of these requirements a set of scenarios was developed. The stake-
holders themselves were part of the creation of these visionary scenarios:

• Name: Annotate

Summary: See a set of data dimensions and annotate meta-information.

Description: Peter wants to annotate meta-information about the road to an exper-
iment. Peter opens a workspace that shows the video recording, a map with the
position of the car, and a table with the already added annotations. Peter starts to
play the video. While the video plays, the position of the car on the map updates in
real-time. Every time Peter presses a pre-defined button a new annotation is added
to the table. This annotation has the same timestamp as the video-recording.

Figure 7: Annotation session mock-up

Figure 7 shows a mock-up of how the user interface (UI) might look in such a scenario.
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• Name: Patterns

Summary: Compare two experiments and find unusual patterns.

Description: Megan looks at the plot of the heart rate recording of a subject. She
notices a peek when the subject was near an exit on the highway. Megan wants to
understand if the exit was the cause of the peek. She opens a workspace showing
the heart rate and a map with the current position of the car for two subjects. One
of them is the subject that had a peek near the exit. Megan “plays” the heart rate.
The heart rate and the corresponding position of the car on the maps update in
real-time. Megan clicks on the heart-rate peek she saw before. The maps of both
subjects jump to this position. The heart rate of the other subject is also updated
and shows the corresponding heart rate. Megan sees a peek for this subject as well.

Figure 8: Pattern searching mock-up

In figure 8 an example is given for the UI during such a search for patterns.

• Name: Customization

Summary: Create a customized graph for an annotation session.

Description: Jon is trying to understand how fast the steering wheel is moved in
certain situations. He opens a workspace that shows a map, the heart rate and the
steering wheel position. Since the steering wheel only changes very little on a high-
way, Jon wants to modify how a steering wheel is shown. He opens a programming
windows and a styling windows for the steering wheel and alters the visualization
of the steering wheel to his needs. Jon also wants to see the surroundings of the car
when the subject turned the steering wheel. Her opens the street-view in the map
visualization to get a better understanding of the context.
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Figure 9: Customized components mock-up

Figure 9 is an example for how the UI might look while the user is working on a
component.

These three scenarios show how the implementation of the given requirements can
lead to a system that allows an analyst to explore the accessable data. They will be used
to evaluate the prototype in chapter 7.
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3
R E L AT E D W O R K

Mike Bostock, inventor of the famous visualization library “D3” states that information
visualization is still a “young and evolving” field [68]. He even goes so far as to say that
we are only “scratching the surface of its potential”. Even though this statement was
written in 2008, it is still true. The last few years have been marked by several notable
accomplishments in data visualization, such as the development and maturation of D3

and GGPlot. Still, the huge scope of data visualization leads to a slowly developing and
evolving picture of this complex field. In the context of this work, several papers that
target specific aspects of data visualization have been analyzed. It is important to note
that those papers (and all papers that are cited but are not mentioned here) have had a
strong influence on this work. Only a few of them, however, describe a complete system
for data visualization.

One paper describes a system similar to the one proposed here, at least in terms of
interaction, known as “SnapTogether”[62]. The authors propose a system in which dif-
ferent visualizations can be coordinated based on their data. The system’s primary mech-
anism, called “snapping”, allows the user to connect two windows based on a selected
dimension of the data (such as time, identification number, etc.). Critically, the authors
realize that data analysts will most often be working with correlated data that should
be meaningfully connected as early in the analytical process as possible. Problematically,
they implement their valuable concept of snapping and querying at a level comparable
to visual programming and query building. The complexity and domain knowledge they
therefore require from their users is a weakness of this system.

Another system, “imMens”, described in [51], focuses on computation intensive query-
ing and visualization techniques. The authors do not focus on the visualization itself, but
present strategies to reduce and compute directly on the data that is queried. Their ap-
proach complements the “SnapTogether” system, since it acknowledges that querying
and computing big data are highly complex tasks that are best hidden from the user.
Even though this work does not focus on data reduction, [51] and their reasoning is part
of the rational of this work. Other than these two rather complex systems, most of the
papers analyzed fall into one of four categories:

systems Papers in this category propose a system, meaning a set of “interacting or
interdependent components forming an integrated whole”[21]. The two already
cited papers fall into this category.

concepts and theories Papers describing an abstract idea of how visualization works
or should be implemented.

algorithms and frameworks This category includes papers describing concrete
implementations and functions used in data visualization.

definitions Since many of the words used in the visualization field are not uniformly
defined, many papers describe definitions and conventions on the semantics of
words, such as “information” and “data”.
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3.1 analysis of the literature

In this sub-chapter, I describe the the publications that have most strongly influenced
this work, providing short summaries of their hypotheses and proposals.

concepts and theories The paper “Big data Storytelling through Interactive Maps”
[52] describes the approach Google has taken to make data visualization accessible for
non-technical users. Most importantly, the authors acknowledge the need to interact with
the visualization system without knowing specific DSLs. They also acknowledge the fact
that context-specific visualizations, such as Maps, are of high value. This paper has influ-
enced the design of a map-based view in this work, as well as an effort to abstract away
DSLs wherever possible.

In [24] the authors describe the principal of “Focusing and Linking”, which is foun-
dational to coordinated views. “Focusing” means the selection of a subset of data, and
“linking” means selecting the corresponding data in another view. This principal is the
main idea behind the “linked components” concept described in this work (see chapter
5.3.1). Even though graphical queries are not possible and “area focusing” is not imple-
mented in the prototype, the architecture supports these ideas very well.

The idea of redundant encoding using graphical overlays is described in [47]. The
authors argue that “extracting, comparing or aggregating numerical values” is a task
that not all visualizations are equally equipped for. Graphical overlays are a way to solve
this dilemma, as they allow users to extract information with higher accuracy. The idea
of context-specific and dynamically definable overlays in this work (see 17) is based on
this paper.

algorithms and frameworks Software engineers have produced a huge set of
patterns over the years. Consequently, there have also been attempts to find and abstract
recurring solutions in visualization software. The authors of [25] and [38] describe a set
of design patterns that is valuable for the construction of visualization software. Fun-
damental elements of the architecture of the present work are based on some of these
proposed patterns.

A very influential work is “Data driven documents“[20], often referred to as “D3”.
D3 provides a library for data visualization and manipulation tasks. It is very flexible
and incorporates a set of powerful and distinct technologies. The technical approach
of the present work is based on the same essential reasoning as D3. In addition to the
technical similarities of D3, [20] argues very persuasively that using complex DSLs for
data visualization creates an abstraction gap between designers and developers. It is for
this reason that the system described in this thesis does not make use of such DSLs and
proposes to use different technologies. Even though this work does use libraries for data
visualization, I am aware of the rather new and very promising concept of language-free
dynamic drawing. This concept is outlined and also implemented by the remarkable Bret
Victor 1.

The libraries used in this work often use animations in a specific visualization context.
In [42], the authors describe “design principles for creating effective transitions” and
showcase them on “common statistical data graphics such as bar charts, pie charts, and

1 Project website: http://worrydream.com/DrawingDynamicVisualizationsTalkAddendum/
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Figure 10: Information Visualization Data State Reference Model[26]

scatter plots”. Many of the libraries used in this thesis offer mechanisms described in
that paper. This work, however, does not focus on these transitions per se, though the
running prototype makes heavy use of them through those libraries.

definitions In [26], the authors state that the terms “data, information and knowl-
edge” are used “extensively, often in an interrelated context”. They define those words
clearly and propose to use this definition in data visualization in general. This document
makes use of this quite helpful definition (see 1.3).

The “information visualization data state reference model” proposed in [27] has pro-
vided a guideline throughout the design process. The model describes the different states
in which data can be visualized. Figure 10 depicts the model. The model is not directly
used in the data-flow of the proposed system, though the model certainly influenced its
design. The basic idea that data (here “value”) moves from its original state to an “ana-
lytical abstraction” and a “visual abstraction” until it is finally shown in a view. In each
of these states, operators may be applied. In the system I propose this concept is reused.
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Part II

F O U N D AT I O N S A N D D E S I G N





4
D ATA V I S U A L I Z AT I O N

As already noted, data visualization is a young field that has rapidly grown in impor-
tance over the last decade. Particularly in the last few years, this field has exploded in
popularity due to open data initiatives and powerful tools that even non-technical users
can easily use[61]. The exploding amount of available data, described in 1, is also one of
the reasons for the popularity of the field. There are many explanations of why a visual-
ization is more powerful than words, raw numbers, or tables. A very convincing one is
given by Scott Murray in his book “Interactive Data Visualization for the Web”:

“fortunately, we humans are intensely visual creatures . few of us can

detect patterns among rows of numbers , but even young children can

interpret bar charts , extracting meaning from those numbers’ visual

representations . for that reason, data visualization is a powerful ex-
ercise . visualizing data is the fastest way to communicate it to oth-
ers .” [61]

Murray describes the communication of information as the central purpose of data
visualization and acknowledges the reduction of complexity as one of the designer’s
most important obligations. The author of [44] reduces this to the even simpler formula:

“the key function of data visualization is to move information from

point a to point b” [44]

Based on this description, one needs to define what “A”, “B” and “information” are
in this context. The word information is not easily defined as its nature is quite elusive
but it most often refers to data that has been enriched with meaning [26] (as defined in
1.3). “A” and “B” refer to the roles of a human being in a communication of informa-
tion. In [44] the authors describe two different kinds of data visualization based on the
roles of points “A” and “B”: Exploratory data visualization and explanatory data visu-
alization. Exploratory data visualization refers to an instance of visualization in which
data is moved from a dataset into the designer’s own mind. The authors describe ex-
ploratory data visualization as “appropriate when you have a whole bunch of data and
you’re not sure what’s in it. When you need to get a sense of what’s inside your data set,
translating it into a visual medium can help you quickly identify its features, including
interesting curves, lines, trends, or anomalous outliers.” In contrast, explanatory data
visualization moves knowledge from the designer’s mind to a third person, or as the
authors put it: “explanatory data visualization is appropriate when you already know
what the data has to say, and you are trying to tell that story to somebody else”. Fig-
ure 11 describes “the nature of the visualization [based on] which relationship (between
two of the three components) is dominant”[44]. All three roles need to be considered
for a good data visualization. Choosing the dominant relationship defines what a data
visualization communicates and how it can be used.
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Figure 11: Relationships between the three roles[44]

A visualization is rarely purely “informative”, “persuasive”, or “visual art”, but rather,
is a mix of all these categories. Still, a designer should always ask him or herself which
relationship is dominant in his/her specific use case. The system this work describes, out-
lines, and implements focuses on exploratory data visualization and is therefore focused
on a strong relationship between the data and a reader.

4.1 the value of interactive data

Data visualizations have been static for ages. From primitive cave paintings through
today’s scatterplots and geographic maps, data is often visualized as a static image. Al-
though certain interactive visualizations have been available for centuries, truly dynamic
and widely available interactive data visualizations are the result of the software and
hardware ecosystem of our modern world. The problem with static visualization is that
“static visualizations can offer only precomposed views of data”[61], while interactive
visualizations “empower people to explore the data for themselves”[61]. Interactivity is
essential, especially the field of exploratory data visualization, which requires interactiv-
ity to identify the relationships between datasets. It allows an understanding of the data
that is otherwise hard to achieve. As the author of [61] puts it: Users and analysts now
can “overview first, zoom and filter, then [request] details-on- demand”.

Many of the best practices in data visualization describe how data should be encoded.
Chapter 4.2 describes this in more detail. Interactivity, however, is not an encoding. It is
a way of looking and understanding the relationships in the data. There is not yet a con-
clusive approach to categorizing interactivity in data visualization. I therefore propose
the following list of broad interactions:

highlights The highlight pattern is quite popular in interactive visualization. It marks,
annotates, or provides selected details for a specific subset of the visualization

26



based on the user’s behavior. Often, hovering with the mouse pointer over a certain
part of a visualization triggers such a highlight.

animation Animations are moving parts of the visualization, and are used to establish
spatial or temporal correlations or to ease the perception of the visualization itself.
For example, a line chart may animate itself as it builds over time. Another popular
example of animation is the transition between two kinds of charts. The authors of
[42] even go so far to hypothesis that animations between certain charts give users
a better understanding of both single and multiple datasets.

brushing / focusing and linking The concept of brushing and linking, first de-
scribed in [24], allows the analyst to first select a part of a visualization and propa-
gate this selection to dependent, “linked” visualizations. This allows the analyst to
view a dataset in the context of another. Linking mechanisms commonly operate
on variables shared between datasets, such as time.

zooming Zooming also refers to the selection of a subset of a visualization. The goal,
however, is to request more details for this specific area. This mechanism is not
only used to enable a better understanding of big datasets, but also as a perfor-
mance tweak, since it avoids overdrawing a visualization that may have many data
points. Interactive maps (such as those used for route planning) are an example of
a visualization that is heavily dependent on the mechanism of zooming.

annotating The ability to annotate data is a rarely used, but sometimes a necessary
pattern in interactive data visualizations. Users can add annotations to a visualiza-
tion to store knowledge in a graph. There are no constraints on the appearance of
annotations. They may appear as a pinned note, or a simple line of text describing
points of interest. This pattern is distinct from the former ones, in the sense that it
is the only one that enriches the visualization for subsequent use and is not strictly
dependent on data in the source dataset.

4.2 encoding data

Information is always encoded in one way or another. In data visualization, data (and
thus information) is encoded through a huge set of visual properties. Choosing the right
one for a specific context is one of the tasks that makes data visualization complex.
Different visual properties ("Encodings") can be used effectively to represent different
forms of data, for instance Figure 12 illustrates dimensions often considered for different
visual properties.

• Ordered: Ordering of an encoding refers to the ability of the human brain to create
a natural ordering for said instances of that encoding. With ordered encodings,
a human can decide if an instance of an encoding is smaller, bigger or equal to
another.

• Useful values: The number of possible useful values for an encoding are deter-
mined by our ability to “perceive, differentiate, and possibly remember”[44] dif-
ferent values. This property is extremely important, as it allows us to extract the
relationships between encoded data.
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Figure 12: Visual properties and their appropriate usage[44]

• Quantitative, Ordinal, Categorical, and Relational: These properties describe how
well an encoding is suited to represent a specific type of data.

This list of encodings is in no way the only possible way characterizing encoded infor-
mation, but it is one of the most well known. Visualization software typically allows the
designer to either directly use such encodings by providing a language or drawing tool
belt, or provide the user with a set of standard visualizations that can be backed by data
(such as pie-charts, line-charts and heat maps). The system this work describes chooses
to provide both to the user, as it is the only way to allow a novice user to visualize data
and yet not trap an experienced user in a system that cannot accommodate complex
visualizations.

4.3 creative freedom

For some data, a simple representation might suit the purpose of transporting its infor-
mation. A line-chart is probably sufficient to describe the revenue of a company (see
Figure 13), as it is a simple, two dimensional dataset. However, one would be foolish to
rely on standard visualizations to describe for example the complex set of intersecting
lawsuits between companies. As shown in Figure 14, the visualization must adapt to
the nature of the data. Even from these two relatively simple examples, it is easy to see
that predefined visualizations cannot be used to describe every kind of data, especially
when the data becomes more complex (for example, for the visualization of sequenced
DNA). To be applicable to different data types, a predefined visualization needs to be
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Figure 13: Line chart for product revenue[4]

very generic. This puts constraints on the information transported (such as information
reduction if the number of dimensions is too small) and raises complexity not only for
the data-analysts, but especially for the reader who cannot easily extract all the informa-
tion he or she might need. Therefore, data analysts need to have the creative freedom to
alter how data is encoded and visualized. This need for creative freedom is crucial to a
powerful and useful data visualization system.

Many proposals have been put forth for how a designer can gain this power. A typical
approach is to use DSLs that allow a user to describe a data visualization with a language
that knows about concepts such as “lines” and other visual encodings. More promising
is the recent development of libraries that do not utilize a special DSL for visualization,
thus reducing the entry barrier for novice users. Such libraries do not rely on circles and
pixels, but on a structural model that gets populated. Chapter 5 will describe in more
detail how the system described in this work utilized this approach and achieves the goal
of creative freedom.
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Figure 14: Complex visualization for lawsuits[7]
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5
C O M P O N E N T B A S E D V I S U A L I Z AT I O N

I propose to build a visualization system that uses “Components”, not only for the un-
derlying software structure, but also for of user-interaction. Those components can then
host and control content, such as visualizations. How these components are built, how
they interact with the user and each other, and how they use and process data is de-
scribed in this chapter. The system I outline in this chapter is referred to as “DAVID”, a
system for “Dynamic Analysis and Visualization of Integrated Data”.

Within the requirements that are strictly defined by the enclosing ecosystem of pro-
cesses (such as limitations of the underlying operating system), component based data
visualization leaves me with much room for creative approaches. An iterative develop-
ment process is used to conquer this challenge, which allows me to examine different
variations of the system. I build upon the idea of an evolutionary prototype [31]. This
concept “acknowledges that we do not understand all the requirements and [we build]
[...] only those that are well understood” [31]. Over the course of building the initial
prototype, the different concepts outlined in chapter 3 have grown into a system that ad-
dresses many of the concerns listed in 1 and 2. However, the complexity of the system led
to the decision to build a “horizontal” prototype. Horizontal prototypes are those that en-
able the developer to get a broad view of the complete system [87], without providing a
complete subsystem implementation. Figure 15 depicts this idea. Horizontal prototypes
provide an interface to all the system’s intended features, even though a feature may not
be fully implemented.

Though we provide a working system, it is built with the expectation that it will be
extended later on. This is also a driver of the system’s “library” based data fetching (see
5.4 for more details).

Figure 15: Horizontal prototyping
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CRITERIA RULES PRINCIPLES

Decomposability
Direct Mapping Linguistic Modular

Units

Composability
Few Interfaces Self-Documentation

Understandability
Small interfaces
(weak coupling)

Uniform Access

Continuity
Explicit

Interfaces
Open-Closed

Protection
Information

Hiding
Single Choice

Table 3: Guidelines for building a module[57]

5.1 components and modules

A component or module in software engineering is a single part of a system that may be
loosely coupled with other components or modules [76]. The idea behind this concept is
to separate program-elements from each other and therefore enable reuse. It also allows
for more robust and flexible programs. Even though the terms “component” and “mod-
ule” are often used synonymously, a module is designed based on 15 concepts, grouped
into principles, rules, and criteria as defined in [57]. The authors of [57] argue that “a
single definition of modularity would be insufficient; as with software quality, we must
look at modularity from more than one viewpoint”. The advantage of module-based
design is to “separate the functionality of a program into independent, interchangeable
modules, such that each contains everything necessary to execute only one aspect of the
desired functionality”[84]. The ultimate goal is to achieve “separation of concerns, and
improve maintainability by enforcing logical boundaries between components. Modules
are typically incorporated into the program through interfaces.” [84]. The guidelines for
building a module can be seen in table 3

Following these guidelines will ideally produce an independent module. Having an
architecture in which modules comply with these guidelines also makes adding new
modules easier.

This idea can be transferred to the domain of data visualization, in the sense that a
visualization can be viewed as a single, self-contained module (since a data visualization
is built by program code). Combined with a powerful architecture, such a construct
allows us to conceive of visualizations as independent building blocks of a visualization
dashboard for a given data set. This is the basic principle of what I call a “visualization
component”.

5.2 the visualization component

The concept of self-contained modules adds structure to the otherwise loosely defined
idea of data visualization. If a visualization is truly self contained, all its accompanying
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Figure 16: Pipes and filter[55]

parts are loosely coupled. This conception removes data fetching, data manipulation, and
the user-interface from a visualization module.A visualization component is a specific
“Viewpoint” of its backing data. Since the concept of a component is used as well, a data
visualization component has a few, explicit interfaces that hide the information about the
visualization algorithm and the internal data handling from the outside world. I define
a data visualization component as

a software component that offers an interface to all necessary meth-
ods for the manipulation, reduction, propagation and rendering of

the visualization’s underlying data .

This concept, however, requires the specification of a set of basic principles that define
how such a component might work. First, how should the data be processed? Second,
how should the interface to a visualization be designed or perceived, since, as stated in
chapter 4 the freedom of creativity is crucial to good visualizations. That means that an
interface must be visible to both programmers and end-users. This begs the question as
to how a less technically minded end-user should interact with visualizations, and how
the system can accommodate such interactions. Last but not least, component modules
should follow consistent style conventions, without the overhead of defining every single
property of an object for each part of the visualization. In the following sub-chapters we
will examine possible answers to these questions.

5.2.1 Pushing data

In order to minimize relying on external data processing, a component requires that the
outside system actively “push” data into the component. This concept is based on the
“Pipe and filter” architectural pattern, which describes data as being passed from one
filter to the next, each of which is connected by a pipe [55].

This architectural pattern also introduces the idea of an object primarily dedicated to
the task of providing data. A component can thus be seen as a “Data Sink” that passively
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receives data from a “Data Source”, without knowing anything about this source or
publishing any information (or requiring any specific interface or behavior) on the part of
the “Data Source”. In this model, a visualization component behaves much as a reactive
system does. In a reactive system, a program focuses on the data flow rather than related
control structures.

The state of the data as it moves between the different parts of the system is based
on the “Information Visualization Data State Reference Model”[27]. The raw data is al-
tered and manipulated with certain goals, such as reduction or abstraction, before it is
visualized. In chapter 6.2.2 I describe the technical aspects of the data-flow.

5.2.2 Freedom through scripting

A powerful visualization system must include standard visualization techniques that
will work with diverse datasets “out of the box”. For example, a non-technical user may
need to create a simple bar chart from an arbitrary table of data. While DAVID is able to
provide this basic functionality, it also allows users to script the behavior of a visualiza-
tion. The ability to dramatically alter the output of a visualization algorithm is a crucial
requirement for a valuable visualization system. In chapter 2 I argued that languages
typically used for data visualization (such as R or Matlab) give the user the ability to de-
fine custom behavior and manipulate the construction of visualizations. These languages
achieve their flexibility via strong user communities that have created numerous reusable
packages and modules that extend the base language’s functionality. Without this, a user
is limited to the use cases envisioned in the language’s original construction. Such a lack
of flexibility would represent an unacceptable constraint for the modern data-analyst, as
the format and intended goals associated with any given dataset may remain unknown
until analysis begins. A significant portion of data analysis is now spent on experiment-
ing with and exploring the data prior to any finalized visualizations are constructed. This
therefore necessitates an interactive interface that not only allows data exploration, but
also direct manipulation of the behavior of the system itself.

One typical approach to these needs employs interpreted languages to re-evaluate
parts of the analysis and/or visualization at system runtime. Most often, the interac-
tive shells of these languages are the entry point for programmatic manipulation of the
runtime behavior. The R statistical computing language, in concert with the well-known
GGPlot package, is one of the most popular and powerful environments used for data
visualization. This work is inspired by many of GGPlot’s foundational concepts and an-
alytical strengths, but also attempts to address its shortcomings (as it generates static
images). Rather than scripting only the visualization, another solution would allow the
user to script the running system itself. I will use the term “Scripting Language” to
describe

user manipulation of the behavior of a component at runtime . Script-
ing languages are ideally suited to a component-based system. It is not unusual for
scripting languages to provide an interaction layer between the language and its under-
lying system. This idea been used successfully in many fields (games, for example, often
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utilize the language “lua”1 to achieve this goal2). However, this still requires us to define
a suitable way of interacting with the inner parts of a component. Chapter 6 will focus
on the details of this rather complex approach.

library agnostic scripting Most languages ship with a default set of packages,
and if those are not sufficient, many languages offer the ability to download additional
packages. The implementation details of these packages systems vary, but nearly all
languages allow it in one way or another. The component-based approach proposed in
the present work allows us to choose a package based on the current needs of the data-
analyst. This freedom of choice is crucial to a designer, as he or she must be able to use
the right tool for the current problem. This is the reason for DAVID’s “library agnostic
scripting”. DAVID comes with a set of powerful and widely used libraries. However,
DAVID also allows the user to add whatever library he or she can find in its supported
languages.

5.2.3 Working with overlays

An overlay is an addition to a dynamically defined visualization that adds enriching basic
information . This allows a generic component to fulfill more specific needs, depending
on its backing data. This implementation builds on the work of [47]. The authors of that
paper argue that visualizations that are missing certain information can, through subse-
quent image analysis,be enriched with certain “overlaying” information. This concept is
also applicable to standard data visualization. The authors of [47] argue that overlays fall
into five categories. Figure 17 depicts these categories on a generic bar chart. Overlays
fall into one of five categories:

reference structures These provide guidance for the human eye and try to ad-
dress the shortcomings of some visualizations (as discussed in 4). For example, as
described in [29], size may be hard to estimate, depending on its context (for exam-
ple, in pie charts). Reference structures help the human eye to compare values.

highlights This overlay is used to focus the viewer’s attention on a specific point.
This is especially useful for interactive visualizations, since more than one aspect
of the visualization may change simultaneously.

redundant encodings Similar to reference structures, redundant encodings illus-
trate values in alternative ways so they can be perceived easily (i.e., shape and
color being used to differentiate identical categories).

summary statistics Summary statistics provide the viewer with salient metadata re-
garding aggregate or group characteristics, and are often used to illustrate patterns
in the underlying data.

annotation Annotations add information which is not present in the raw data to
the dataset. In the context of interactive visualizations, this can mean displaying
additional information and/or providing the capability to add such information to

1 Project website: http://www.lua.org/
2 World of Warcraft for example (http://www.wowwiki.com/Lua)
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a visualization. As argued in 2.2, this is also a requirement for the system proposed
in this work.

Figure 17: Overlay categories[47]

The reference implementation discussed in 7.1 shows examples of implemented over-
lays.

5.2.4 Shadowing visual styles

A basic principle in computer science is the “separation of concerns”. The principle states
that a program should be divided in such a way that each part addresses a different
concern. When transferring this principle to the domain of data visualization, one can
identify three separate concerns:

• Describing the structure of the visualization

• Describing the style / appearance of such a visualization

• Describing the logic and behavior of the visualization

This principle means that a visualization is not only a pixel-based image, but also has
a model defining its underlying structure and behaviors. In a bar chart, that structure
would be the bars itself, the labels of the bars etc. This model, however, is separated
from the visual representation. Bars can appear in different colors, or with a variety
of embellishments, such as borders and shadows. A system built on the principle of
separation of concerns should provide the ability to alter the visual properties of the
visualization without recreating or altering the model or its behavior. The goal is to
dynamically change the representation during runtime, thus giving a user the ability to
work with an iterate the aesthetics of a visualization. Such changes should only apply to
a specific visualization, and not the visualization’s general class. However, to allow the
user to work in a consistent way with all components, the interface with which a user
defines these properties should always be the same. I propose transferring the concept of
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Figure 18: Flow of events between components

Cascading Style Sheets3 to the domain of data visualization (as showcased in the popular
d3.js library4). This allows the user to work with a consistent and proven backing model
(the Document Object Model5), but at the same time allows the user to build upon the
flexibility that the separation of model and visual properties provides. Learning about
a domain-specific model is thus not required. The barrier to entry for using this styling
system is therefore quite low.

5.3 talking components

As stated in 3, one criterion of a component is its composability. In software engineering
terms, composability is defined as the ability to create “software elements which may
then be freely combined with each other to produce new systems”[57]. Transferring this
concept to the domain of data visualization means that components should be compos-
able on the code level and at the level of the user interacting with the components. To
achieve this I propose the idea of “talking components”.

Components should be able to exchange state information and notify each other based
on their internal behavior. I suggest combining the concepts of event-driven systems,
which are characterized by the fact that “execution is in response to events happening
while the program is executing”[49] and flow-based programming, in which components
“exchange data across predefined connections by message passing, where the connec-
tions are specified externally to the processes” [80]. This means that components would
not pass data between each other, but instead primarily send events between each other
based on the externally defined connections. Figure 18 illustrates this idea. The connec-
tion that describes how information flows (based on flow-based programming) is defined
at runtime. Events are then passed over this connection while the visualization is active.
This implementation differs from event-driven programing in that a component cannot
register for arbitrary events and, even more importantly, can alter the event once it ar-
rives at a component. This allows for a particularly dynamic composition of components
and ways of “talking”, as each component can add its own understanding of an event
and how to pass it. This is particularly helpful when propagating changes that happen
during interaction with a visualization. For example, if a scale changes on one visual-

3 Standard website: http://www.w3.org/Style/CSS/Overview.en.html
4 Project website: http://d3js.org/
5 Standard website: http://www.w3.org/DOM/
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Figure 19: A set of components exchanges event information based on their defined flow

ization, this change can be propagated to a set of user-defined components. Figure 19

showcases this. Notice that this concept is near to “reactive programming”, though it is
not the same, as the propagation of events and the external specification of connections
is not considered a part of the reactive paradigm.

5.3.1 Linking data

As argued in 1, multiple data streams are now often linked together. However, the links
between data sources are not always clear. Linkages may be communicated implicitly
through the dimensions of the data and their scales, or they may even be based on
secondary computations. Bearing these complexities in mind, data linkage makes com-
ponent linkage more powerful. It allows us to view data in the context or perspective of
a linked dataset (and its corresponding visualizations).

An interactive visualization allows the user to explore different attributes of the under-
lying data or the visualization by manipulating predefined interface elements, such as
hovering over a data point to reveal its associated information or zooming into a map to
reveal greater detail. The data the AgeLab uses is rather typicall for multi-sensor data in
that all AgeLab datasets share the dimension of time (in other words, every data point in
every dataset has a timestamp that allows it to be contextualized with other data points).
One of the major problems with “timed” data is that it is hard to experience such data
“live”. Seeing how values change over time is often more informative than looking at
static visualizations of discrete time periods. Therefore, DAVID introduces the ability to
“play” data. If a dataset has a time-based value, DAVID can use this value to visualize
several dimensions over time. Changing values are animated, which allows the viewer to
understand and perceive the differences, development, and overall patterns in the data
[42]. For this reason, DAVID links all datasets on the time variable by default.

Figure 20 depicts a general abstraction of the types of linking, the GPS linking and the
time linking. Both are a good example for how different kinds of data can be connected.
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Figure 20: Hierarchy of linking types

Figure 21 shows how these different kinds of linking can be used to connect two
components. Component l1 is linked to m1, showing the same time. m1 and m2 are
linked using GPS coordinates. Therefore, they link on their coordinates. m2 and l2 are
then again linked on time. This allows to see l1 and m1 in their own time context, which
does not need to be the same as for m2 and l2. To link the l1 m1 timeframe to the l2 m2

timeframe m2 needs to be able to translate the GPS coordinates it receives from m1 to its
own time-dimension.

Since time is known as a dimension, a user only needs to provide a function that is
able to translate from time to dimension x, rather than to introduce a way to understand
the dimension. The formula listed below deescribes how each component can use time
as their basic linking dimension.

f (x1)=y; x1ε Time; yεMvalueDomain︸ ︷︷ ︸; g(y)=x2; x2ε Time

an intermediate representation

A function f (x) = y where x is the time and y the data one wants to link, translates
between the data domain ( MvalueDomain) back to the domain of time. As shown in figure
20, time itself is also part of the data domain and therefore time can be linked with time
itself. In such a special case, this linkage is called “syncing”. Only these two functions are
necessary to link two datasets that share at least one dimension. It is not even necessary
for both datasets to contain a time dimension. The functions f (x) and g (y) can be used

Figure 21: Using linking types to connect different kinds of data
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for separate linking operations. But to ”play” live data both datasets must expose a time
dimension. The only exceptions are datasets where the resulting values are unique. If
that is the case, DAVID would not need the translation function g (y), since it would
know on which value to sync.

At least one of these linking functions is provided for each data call, as enforced by
the system’s underlying architecture. See chapter 6 for more details.

5.3.2 Linking components

Usability is one of DAVID’s most important non-functional requirements. When it comes
to working with data, the analyst, requires freedom of interaction with the data and an
easy way to solve recurring problems. Data linkage is one such problem. As described
previously, data can be linked via suitable functions. Such functionality should not be
restricted solely to the programmatic level. Linking visualizations must be made easy, as
it abstracts away rather complex data management operations, depending on the data.
This is why DAVID uses visual linking of components to define how the backing data are
linked. A user can simply draw a line from one component to another, thus initiating the
linking of the data. Since the system provides at least one of the two functions ( f (x) and
g (y)), such links can always be established. A user might later change the meaning of the
drawn line or remove it entirely. To some extent, this allows the user to visually program
parts of DAVID. The concept on which this idea builds is described in the beginning of
this subchapter (see 5.3).

5.3.3 Network-wide events

Since relatively lightweight “events” are used to communicate between components, it is
easy to extend this mechanism to more complex scenarios. For instance, events may be
moved between machines in addition to between components, since the amount of data
transmitted is small and the functions on which data are linked can be defined sepa-
rately for each machine. Network-wide events only assume the existence of a component
that is capable of using a socket connection, rather than a direct connection to another
component. As shown in Figure 18, a component is by definition able to alter the events
it receives. Components have a strong influence on how and which events (and data, if
needed) will be passed to another component. A component that connects to another
machine simply uses a different communication technique that is hidden from the user.

5.4 data documents

Pipes and Filters, as shown in figure 16, receive data from an object called a “data source”.
The visualization components also require such a source. This data source abstracts away
the complexity of data fetching and pushes the received data into a component. Before
we can define the system around those components, we must carefully consider how
such a data source might be structured.

Multiple papers referenced in chapter 3 investigate how working with data sources
might be implemented. A common approach is to transfer select aspects of the underly-
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ing database into the application. The authors of [62], for example, argue that a visual
interface for creating common database operations such as joins and selects is a suitable
and powerful method for this purpose. In [38], patterns are introduced that allow a map-
ping between relational database concepts and a program. While this may be a valid
approach when the concrete database system or architecture is known, the concept does
not generalize to all situations. In contrast to those concepts, I propose the idea of “data
documents” that base their content on “library based queries” which separate the data
fetching from its specific storage method.

Data documents are simple data wrappers which are backed by a powerful library of
available queries. How the data source and the visualization might interact with such a
library, and how a library can be adjusted to its context, is discussed in the following
subchapter.

5.4.1 Library based queries

Reduction of complexity is a typical goal of data visualization. In the domain of data
acquisition, this goal also applies to the retrieval of data. The importation of data into
the visualization system is one of the most complex and potentially time consuming tasks
faced by data analysis. Tools such as Matlab or R allow the user to connect to databases
and fetch data, but there is no guarantee that the analysts will possess the skills necessary
to write the queries necessary to load the desired data. Due to the sheer complexity
involved in data fetching and the accompanying DSLs (such as SQL), I propose to shift
away from a specific data fetching mechanism and instead advocate for “Library based”
queries.

Library based queries are simply a collection of predefined data fetching methods,
which is in turned made available to the user of the data visualization system. Collec-
tions of fetching methods must allow some flexibility, in the form of customizable query
parameters, but nevertheless this reduces the complexity of a query by abstracting away
the underlying DSL that is used to fulfill the request. Such queries must indicate how the
resulting data is organized. Since the user is not supposed to interact with the fetching
mechanisms directly, the library must define both how the data are obtained and prepro-
cessed. Preprocessing in this context means organizing the data in a simple, useable, and
generic format for subsequent operations. The table based “Comma Separated Values”
(CSV) format is one such organizational schema.

5.4.2 Promise based data

Data documents are not aware of the specific query actions that produce their underlying
data. This allows for a separation of visualization and data, but as a consequence, we have
no knowledge about when data is returned or updated. A query might, for example, use
a single web-request to produce data, but another query might return a stream to a file,
constantly returning updated or additional values. To tackle this awareness problem, we
may use “promises”. The concept is proposed in [17] and describes “an object that acts
as a proxy for a result that is initially unknown, usually because the computation of its
value is yet incomplete”[81]. Following this idea, the queries a library offers can return
the promise to deliver a value at some future point in time. Once this value arrives,
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regardless of how it was generated, the data document is able to store this value and
push it to the component (see 5.2.1). The concrete architecture, especially how data is
fetched and processed is described in the following chapter.
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Part III

S O F T WA R E D E S I G N A N D I M P L E M E N TAT I O N





6
S O F T WA R E D E S I G N

The concepts that lie at DAVID’s heart raise the question of how such a system would
work in reality. This chapter is the blueprint for DAVID’s prototypical implementation,
and function as a proof of concept and a way to evaluate the proposed solutions for the
common problems faced by modern visualization software and languages. This chapter
describes DAVID’s different parts from an architectural viewpoint and highlights some
specific implementation decisions that support some of DAVID’s most crucial features
(such as styling of visualizations, library based queries, and scripting).

6.1 architecture : the bigger picture

Figure 22 illustrates DAVID’s essential elements. The diagram shows the most important
components, each of which is organized under “interaction”, “logic” or “data” packages.
This distinction follows the well-known MVC (“Model, View, Controller”) pattern. A
data analyst may want to look at the same dataset in different ways. As already discussed
in 5, data should be accessible from multiple viewpoints, meaning that the same dataset
can be used in different contexts, even at the same time. The MVC architectural pattern
allows us to address this need. MVC is “useful when the same model element has to be
presented in different contexts simultaneously” [23]. MVC separates the system into 3

distinct groups of elements (taken from [23]):

model objects represent the application’s domain knowledge. All elements that are
necessary for fetching data, selecting data, or preparing data are part of the model.

view objects visually represent the model and provide an interface for interacting
with it. For example, a view object might be a control panel, spreadsheet viewer, or
a system or buttons and toggles. In DAVID, I also include interaction logic in this
group, though it does not alter any data in the models.

controller objects link model objects with their views. They provide the underly-
ing logic, checks, and safeguards that allow the model to be manipulated or data
to be edited via the views.

One unusual deviation from the MVC framework is the addition of scripts that run
only within the front end and work with data representations. However, those script
do not affect the the other packages. Any scripts that affect components outside of the
interaction package would need to do so through controllers.

The logic package groups controllers and libraries that can be used to alter or enrich
data, such as annotations and standard metrics which translate data into a predefined
format. Finally, the data package is very similar to the classical idea of a model group.
Sub-packages contain mechanisms to fetch and store data. These packages form the core
of DAVID.

Figure 23 shows which elements of DAVID’s architecture correspond to the MVC
paradigm. DataDocuments are considered to be models, since they hold and manage
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Figure 22: Main packages comprising DAVID. Dashed lines mean “usage”
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Figure 23: MVC analogies

all data that is altered, used, or shown in the system. ViewPoint Controllers are the con-
troller elements, and only appear in conjunction with a View. Views are implemented
through ViewPoints, which allow a specific view of the data. Figure 24 provides a more
detailed description of the corresponding classes. Controllers are not implemented as a
single generic class, but instead consist of a value object which is created on the fly. This
decoupling of the controller and its parameters allows the user to dynamically build their
own dashboards based on self-defined values. Controllers are also able to communicate
with each other. Such a connection is necessary because controllers might appear on the
same screen (depending on how the user chooses to build the dashboard) and they need
to share data or states (as described in 5.3). The ViewPointValues follow the interface
definitions of the “ViewPointObservable” interface, which allows classes to observe one
another. All ViewpointValues manage a collection of connectors, which in turn defines
which two Observables they connect.

Views consist of the ViewPoint, their ViewPointOverlays(which Views create and ex-
ecute based on the backing model), and a ViewPointComponent, which manages the
visual states of the ViewPoint. These states are the classic UI interactions, such as mini-
mizing the ViewPoint, or moving it in space. The ViewPointComponent does not corre-
spond to the specific data visualization. The visualization is handled by the ViewPoint
and its logic.

As shown in figure 24, all ViewPoints rely on a DataDocument. DataDocuments have
a supporting set of classes (see 6.3) that are responsible for providing interfaces for data-
calls, fetching of data, and pushing the result to the ViewPoint. DataDocuments, in turn,
rely heavily on Repositories. A Repository is a class that simply offers a collection of
data-calls to the user. In chapter 6.3, I describe in more detail how these Repositories
work.

DAVID uses the angular.dart framework1 to implement MVC concepts. Matthes [55]
defines a framework as “a set of classes that embodies an abstract design for solutions
to a family of related problems, and supports reuses at a larger granularity than classes”.
Systems that are designed to be used at this larger granularity often introduce some
kind of control flow. In this case, the “Hollywood principal” is used to define how com-

1 Project website: https://angulardart.org/
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Figure 24: Model view controller view of the system

ponents are constructed and how the control flows. The Hollywood principal “invert[s]
the control flow of the application” and brings the view into existence. Figure 25 depicts
this principal. The framework (blue) monitors the control of the flow of execution, only
sometimes calling certain components or emitting events.

In black box frameworks, the application only reacts when certain hook methods are
called. In contrast, white box interfaces provide certain classes implementing a specific
interface [55].

Angular falls into the category of white box frameworks, as it works primarily by
inheritance. Angular auto-generates the code that glues together the controller and the
view, as defined by the developer. Figure 26 depicts this complex but powerful structure.
Controllers (blue) are typical classes that expose certain methods and variables. A view
can then use those exposed elements through the automatically generated scope.

In DAVID, users are allowed to build their own dashboards consisting of many View-
Points of data. Dashboards display multiple elements on a host screen and have, for ex-
ample, been used by Apple to show independent, small widgets in OS X, and by Google
to show selections of personal data on a website. The design of a dashboard and its
components must be flexible, since the final appearance of the Dashboard is unknown at
compile time . Once a user has defined the dataset he wants to look at and the ViewPoints
he wants to visualize, a screen has to be built that is capable of displaying this selection.
In DAVID, a dashboard is called DataView. A DataView collects sets of DataDocuments,

Figure 25: Hollywood principal (based on [55])
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Figure 26: Structure view of MVC based scopes in angular[10]

which in turn know about their ViewPointValues (see figure 24). A DataView first loads
all DataDocuments that are assigned to this view and then uses the ViewPointValues to
create the corresponding ViewPointController. This creation is handled by the angular
framework.

Deployment

DAVID can be deployed in a variety of ways. The system itself and its core components
run inside the Dart virtual machine. As depicted in the deployment scenario in Figure 27,
DAVID can be deployed independently of a database location. On the right side of Figure
27, DAVID is deployed on one machine. The “native shell” provides file-system access for
DAVID, which is used by a specific mechanism in the “resources” package. This package
holds all concrete implementations of data fetching mechanisms. The distinction between
data and the mechanisms to fetch it makes it possible to deploy this part of DAVID on
other machines. The native shell allows DAVID to use OS-specific mechanisms, such as
a SQL driver. On the left side of Figure 27, DAVID is split across two machines, one
running the system and one running only the native shell. This way, DAVID can access
a central repository of files. The combination of this unusual deployment mechanism
allows DAVID to choose how and from where data is fetched. In this way, the system
achieves true location transparency.

It is important to note that this separation, and the possibility of two instances of
DAVID communicating with each other, allow the system to scale horizontally. Two in-
stances can communicate while visualizing. Theoretically this allows to visualize data in
a way that would have exceeded the capabilities of an isolated machine.

Enforcing separation of concerns

Software architectures tend to rot over time[53]. When parts of a system change, es-
pecially if such changes occur often and rapidly, this can cause problems with further
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Figure 27: Deployment of DAVID and its native shell

development. As Martin [53] puts it: “At first it isn’t so bad. An ugly wart here, a clumsy
hack there, but the beauty of the design still shows through. Yet, over time as the rotting
continues, the ugly festering sores and boils accumulate until they dominate the design
of the application”. Given the pervasiveness of the “rotting” phenomenon, software en-
gineers have come up with countless ideas and concepts to prevent it. One of these ideas
is the “separation of concerns” (SoC). SoC is “a design principle for separating a com-
puter program into distinct sections, such that each section addresses a separate concern”
[89]. Even though many architectures support and encourage such separations, this does
not necessarily mean that a developer will follow it. I enforce SoC by using two distinct
programming languages for two different concerns. This separation is analogous to sep-
arating the program architecture into distinct packages (see Figure 22). The “Interaction”
package is written in pure JavaScript, while the logic and data packages are written in
Dart. The reasoning behind this strict technical separation is to force developers to choose
either the “front end only” language of JavaScript, or the language that drives the logic of
the system. Even though the languages are compatible and theoretically could influence
packages they are not designed to influence, it is quiet difficult to mix both languages
and still follow their control flow. In essence, it forces the developer to keep parts of the
system which are responsible for the interaction in the “interaction” package. Parts that
are designed to handle logic in the corresponding logic packages are written separately
in Dart.
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Figure 28: Reference model for data visualizations from [38]

6.2 anatomy of components

The heart of DAVID is its flexible visualization components. Components consist of five
basic classes: DataSet, DataSource, Visualization, View, and Control. These basic classes
are defined in [38]s reference model of data visualizations and are shown in Figure 28.
DataSets are instances of data that are brought into existence by a DataSource: a class
that knows how to fetch data. A visualization builds a visualization based on a DataSet.
The Visualization is managed by a View that represents the general-purpose interaction
class for the user. Lastly, the Control manages the logic behind some, but not necessarily
all, of those classes. Especially the visualization itself is not managed by the controller,
but by the ViewPoint class. This is an unusual decision, especially in the context of the
MVC architectural pattern that DAVID builds on. It allows the user to actively work
with the code that is strictly responsible for the visualization of data, rather than data
processing etc. Even though the authors of [38] clarify the association between Control
and Visualization as a “potential” reference, one might expect the Control to provide the
logic for all visual elements. However, this does not need to be the case.

DAVID does not define such an association. Visualizations have their own backing
control code that can be modified during runtime. Figure 29 depicts how the reference
model is applied in DAVID. These classes were introduced during the description of the
architecture (see 6.1). Some of the associations between the classes of the reference model
are realized by association classes (such as ViewPointValues, see 24).

The “Visualization” class is the center of the reference model. However, DAVID does
not reduce the complexity of visualizing data into a single class.

Visualizations rely on three more classes (as mentioned in 6.1): ViewPoints, ViewPoint-
Values, and ViewPointOverlays, which are instantiated for every visualization. Their
concrete implementation is chosen during runtime by the “ViewPointComponent”. This
component is used by the orchestrating framework to hand over control flow to the exten-
sion points. ViewPointComponents use the factory pattern to create their corresponding
accompanying classes.

Figure 30 depicts two examples of components. The framework plays the role of the
client of the abstract factory and chooses a specific implementation of the MapView-
Component. This class then decides which implementation of ViewPoint, ViewPointVal-
ues, and ViewPointOverlay are needed. However, the ViewPointComponent is different
from the AbstractFactory pattern, as it saves those connections into the ViewPointValues,
rather than the client of the factory, since the client will not have any control over those
components after instantiation. This is a restriction originating from angular.Dart. Upon
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Figure 29: Implementation of the reference model

instantiation, the ViewPoint takes control and manages the visual representation of the
data that is pushed in by the Controller.

6.2.1 Working with pushed data

Since DAVID is designed to work with massive amounts of data, it is crucial that the
data not be duplicated (which may compromise performance), especially when two in-
dependent components visualize the same data set. This is why data passing is based
on the Pipe-and-Filter pattern (see 16). Pushing data does not mean that data is copied
and destroyed on multiple occasions, but rather, that a reference of the data is passed to
various components. Filters can be applied on multiple occasions. The first instance of a
filter is the Resource, which defines how data is fetched. After the data is returned, or
even while it returns, the Resource can alter parts of the data. Though it is possible to al-
ter data in the Resource, this should be avoided, as Resources have no knowledge of the
data’s context. A Resource merely marshals data. Marshaling means “transforming the
memory representation of an object to a data format suitable for storage or transmission,
and it is typically used when data must be moved between different parts of a computer
program”[83].

6.2.2 A data metric library

Once data arrives at a ViewPoint, it needs to be prepared for the actual visualization
(such as a line chart). Visualizations may have different requirements regarding the for-
matting or organization of data. As an example, consider a line chart and a bubble chart.
Line charts are two dimensional and therefore need to know where a value falls on two
axes. A bubble chart is three dimensional, since it encodes the size of the bubble in the
chart, which represents one more axis. These examples show that although DAVID can
have generic components, the behavior and, especially, how data is handled, need to be
extremely flexible. Depending on the visualization’s source data repository, precalcula-
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Figure 30: Abstract factory-based creation of ViewPoints

tion or aggregation might be necessary. DAVID uses libraries of metrics to address this
issue. These metrics are preselected for each dataset and will be used for

• Preparation of the complete dataset

• Selection of a single element based on a single dimension of the data

In 6.3, I describe how these metrics are selected. Metrics are supplied on the basis of two
methods of the ViewPoint class, “setData(data)” and “getDataPoint(dimension). Each of
these methods invokes a corresponding library function capable of fulfilling the request.
These metrics can also be altered during runtime, thus allowing for scripting and true
flexibility in data preparation.

Dynamic data manipulation

Figure 31 depicts the flow and calls on the data, once it has arrived in a component.
The “setData” method provides the entry method for the data. Once called, the system
checks either for a user- or system-supplied “dataManipulator”. A data manipulator
is responsible for executing lightweight computations on the whole dataset before it is
used in the visualization process. It follows the ideas proposed in [28], in which filters
are applied to data that leaves a DataSource. The data manipulator could also serve as a
sampling algorithm that selects subsets of data on the fly (see [51]). Data manipulators
are simple functions that can be overwritten by the user for each component; not only
for each DataSource, but for every ViewPoint in a DataSource. The prepared data is
then passed to a loop that looks at each of the elements (rows). For each element, the
loop applies the “dataMetric”. This function is responsible for inserting the data into a
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Figure 31: Data flow in a ViewPoint

visualization. It provides a mapping from an arbitrary input value to an arbitrary output
value, allowing the user to associate an explorable dimension, such as time, with a value,
such as heart rate (see the basic function in 5.3.1). The dataMetric function takes the
current component’s context and a value, and may be different for each dataset and
each visualization. This also means that the dataMetric function is needed to add a new
metric to each visualization (or refer to it) when extending the system. Each component
has a rendering method, and when the metric is applied, the system checks for the
custom rendering process. Listing 1 shows the interfaces available to each component.
In addition to the variables that cache the metric, each component has an “onRender”
method. If this default method is overwritten, the overwritten code is executed. This
allows the user to alter the rendering on the fly.

The data access methods can be called with the help of wrapper functions (getData-
Point as a shortcut for the metric and getTimePoint for the reverseMetric). Note that the
data metric is applied to all dataPoints. DAVID does not use an observer to watch for
changes in the data; it only redraws data when the user actively commands the system
to do so. When all elements have been rendered, the state of the overlay functions is
checked. If a function is marked as active, it is applied as well. Listing 1 describes the
variable “overlayLibrary”. This variable holds a reference to an object that manages the
defined overlays for the current component.

Listing 2 shows the functions that are available for the purpose of interacting with an
overlay. Note that the function “toggleOverlay” asks for an overlay name, which in turn
refers to the properties of the overlay library. Overlays are not stored in an array, but
instead, the properties of the library itself are the possible overlays. These properties are
objects themselves and manage their own encapsulated state. This unusual setup allows
the user to interact with the overlays directly and easily, since they can be accessed by
name during runtime.
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Listing 1: Methods essential to the display and updating of a component

/* Data functions

These variables alter and select data based on the dataset and visualization */

dataMetric

reverseDataMetric

dataManipulator

/* Lifecycle calls

These methods are used during the lifetime of a component */

manipulateData(data) // executes the dataManipulator

getDataPoint(time) // executes the dataMetric to get values

getTimePoint(data) // executes the reverseDataMetric to create

//reverse mapping between value and time

setContainer(container) // sets the DOM container of the component

setData(data) // called when data is pushed in

onRender(context) // called whenever the data functions change

onTick(type,value, meta) // when events come on the tick method is

// executed with all meta-information needed �
Listing 2: Basic overlay interface

/* Overlay functions

These functions initiate and execute the overlays on a component */

executeOverlays

loadOverlays

toggleOverlay(name)

/* Overlay behaviour objects

These objects represent a single overlay each. */

onSelectArea

onMaxMin

onAverage

... �
6.2.3 Event based communication

Chapter 5.3 described how a user links components on a visual level. Internally, linking
means that the system sets up a ViewPointConnector with a source and destination
(see figure 24). ViewPointConnectors do not pass data from one component to another
(with few exceptions), a constraint that implements the idea of the “Observer pattern”.
The purpose of this pattern is to allow program elements to register themselves for
notifications about state changes for an object [36]. Different proposals have been made
as to how such notifications should be transmitted, and if they should carry data (push)
or not (pull).

In DAVID, components rely on pushing events. These events are used for reasons be-
yond simple communication between components. The ViewPointController talks to its
corresponding ViewPoint using these events as well. This allows the view to be com-
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pletely separated and independent from the controller (and vice versa), since no direct
calls are made.

Following this logic, the specific sender of an event does not matter. This is how
DAVID achieves its modular and flexible component communication. Figure 3 shows a
list of possible events that DAVID uses to transmit information between components. The
“TICK” events notify a ViewPoint that the current time variable has changed, whereas
the “ANNOTATION” events signal that an annotation was either added or removed. The
“PAUSE/RESUME” events describe whether time is moving, and the “OVERLAY” event
signals that an overlay was added, removed, or altered. Once received, all events are
pushed to the registered observers of the ViewPoint via the ViewPointConnector.

The links between components are characterized by their type. When pushing data to
another component, the data is altered based on the type of connection (see 5.3.1 for a
detailed description of the link types).

Listing 3: DAVID’s known events

static const int TICK_TIME_EVENT = 0;

static const int TICK_TIME_MANUAL_EVENT = 1;

static const int ANNOTATION_ADD_EVENT = 2;

static const int ANNOTATION_DELETE_EVENT = 3;

static const int PAUSE_EVENT = 4;

static const int RESUME_EVENT = 5;

static const int OVERLAY_EVENT = 6;

static const int PRESENTATION_EVENT = 7; �
6.2.4 Representation

As proposed in 5.2.4, the visual representation of a component relies on cascading style
sheets (CSS). In [77] CSS is described as “a style sheet language used for describing
the look and formatting of a document written in a markup language”. CSS is a power-
ful way of describing the visual representation of elements in a DOM-based document,
though it is not without problems. CSS relies on selector descriptions in the DOM, which
have a global scope. Thus, CSS styling rulings cannot be selectively applied to a subset
of elements in the DOM, and must instead be applied to the whole DOM. The only way
to scope CSS is to use so-called “Web components”, which create a hidden DOM tree
within a DOM.

This hidden DOM is called the ShadowDOM2. The specification defines it as “a method
of establishing and maintaining functional boundaries between DOM trees and how
these trees interact with each other within a document, thus enabling better functional
encapsulation within the DOM” [71]. Scoping the DOM on a “per-component” basis has
a variety of positive aspects. As described in 6.2, it allows us to implement the compo-
nent based concept into the DOM and supports the separation of concerns. More impor-
tantly, the ShadowDOM allows the system to apply CSS and the scripting mechanisms
described in 6.2.2 and 6.4.1 on a “per-component” scope. This allows the user to use
the same selectors in different components with different semantics. This is particularly
helpful for general selectors such as:

2 Standard proposal: http://w3c.github.io/webcomponents/spec/shadow/
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.line{...} // Describes the styling of a line in a line chart

.dot{...} // The dots in the line of the line chart

.dotInfo:hover{...} // The style of the dot if hovered �
DAVID makes heavy use of the ShadowDOM and its closed scope. For example,

DAVID does not allow components to see the inner contents (the structure) of other
components without specifically establishing a connection between components. Once
established, components can influence each other programmatically. This approach is
unusual for web- and DOM-based applications since it forces developers to carefully set
up connections between certain program parts, though it is increasing in popularity.

6.3 anatomy of a data document

All data in DAVID is accessed through a DataDocument. DataDocuments are basically
self-contained MVC models. They are capable of fetching data, preselecting and filtering
data, and offering access to this data. They also manage the creation of certain context
elements, such as metrics and annotation libraries, and store meta-information during
runtime. DataDocuments are thus the central class for working with data.

The ecosystem of a DataDocument is depicted in figure 32. Each DataDocument works
with a Repository, which is a collection of data-calls. These data-calls rely on so-called
“resources”. A concrete implementation of a resource offers a mechanism to fetch data,
but it knows nothing about the data itself. A resource could also be conceptualized as
a driver. Examples of this type of resource include SQL Resources and File Resources.
When a DataDocument requests data from a Repository, the Repository creates a Repos-
itoryResult. These RepositoryResults follow the idea of a Future / Promise, as already
discussed in 5.4.2. Although the Repository directly returns this result, it does not nec-
essarily contain data. The Repository will populate the content of the Result once data
arrives from the Resource. The Promise, in turn, only “promises” the DataDocument
that at some point it will offer data. This allows the DataDocument to execute without
interruption. The DataDocument can also define operations that execute once the Reposi-
toryResult fulfills its promise (which must occur, even if no valid data are returned). The
Repository also defines a Metriclibrary that is passed to the RepositoryResult. The met-
ric library is highly context-specific. It depends on the data queried and is responsible
for providing a library of functions that can operate on the data and prepare it for the
visualization. However, this library is not actively used by any of those classes. Instead,
the ViewPointValues class takes the library and passes it to the controller. Finally, Repos-
itoryResults have a DataAnnotationLibrary that is also defined during the creation of
the result, and defines with which markers a dataset can be marked. Once the Reposito-
ryResult returns data, the user can use this library to mark certain areas of the data with
annotations (a list of DataAnnotationItems). Note that these Annotations are all added
by the ViewController.
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Figure 32: Context of a DataDocument

6.3.1 Annotation and metric libraries

A repository groups a set of related data calls and allows the user to explore this set
of data calls. A concrete example of a Repository is the AgeLabRepository, which offers
a set of calls that fetch data from the AgeLab Database server. There might also be a
different repository, such as a repository that fetches data from Twitter. Figure 33 shows
an example of such a setup. Each repository generates its own implementation of a
DataAnnotationLibrary and a MetricLibrary. A user picks a repository, selects a data call,
and the concrete Repository prepares the result for the DataDocument that will handle
the data later on. All library implementations are context specific. This means that the
libraries do not necessarily share behavior or structure, other than the calls that create
them and retrieve their basic information. Metric libraries are intended to have different
behavior and side-effects on the data for every Repository.

6.4 implementation technologies

This work builds on a large number of web-based technologies, which leaves the project
vulnerable to problems stemming from the properties of web-based programming lan-
guages and frameworks. JavaScript, for example, runs in a runtime environment in the
browser. How the language is interpreted depends on the browser that implements it (or

Figure 33: Dynamic creation of RepositoryResult
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Figure 34: Speed metrics of Dart compared to JavaScript and the cross language compiler Dart2js
(higher is better) [3]

its runtime engine). The biggest problem is that JavaScript does not have the properties
of a real object oriented language, such as inheritance or a class system. This is highly
problematic when designing larger applications, as conventional modeling techniques of-
ten fail and best practices for this language are still evolving. For this reason (and many
other smaller problems with the language), numerous packages, additions, and frame-
works for the language have evolved, aiming to fix and work around these issues. Prime
among them is the standard on which the current JavaScript implementations are built:
ECMAScript. However, the current ECMAScript version does not bring features such as
classes and inheritance to JavaScript. Those features are part of the future milestones of
ECMAScript 6 and 7, which are still far from release. This makes JavaScript a problematic
choice for large applications.

Languages such as CoffeScript, Objective-J, and Typescript, which have evolved to fill
the object orientation gap, rely on completely different paradigms. One of the newest
players in this field is Dart, which is actively supported and developed by Google. Dart’s
single (and very ambitious) purpose is to replace JavaScript. Dart brings structure into
development by introducing object-oriented techniques such as inheritance, classes, pack-
ages, and real libraries. Dart is extremely fast when it comes to certain basic operations,
which is one of the main reasons why I chose to built this work on top of it. The data
layer described in 6 may potentially work with millions of data points. In this context, the
speed of basic operations is crucial. The Dart development team at Google focuses on this
speed aspect in their runtime environment, which is included in the Chromium branch
of the Chrome browser. Figure 34 depicts the speed of the Dart language in comparison
to JavaScript (the yellow data line). Additionally, Dart provides a strong interaction layer
to JavaScript. Calls can be made between the two languages, and Dart can also compile
its own source-code on the fly to JavaScript, thus allowing it to run in a browser that does
not support it. This makes it a viable option as a “structured” language, as one can fall
back to JavaScript code if needed. this is necessary because this work builds on the ex-
tremely powerful libraries that have evolved in the ecosystem of JavaScript. Even though
most of the parts of this system are written in Dart, the user is able and encouraged to
interact with the JavaScript layer (as described in 6.1).
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Conquering type uncertainty

Some of the concepts and mechanisms that have been introduced, such as metric li-
braries (see 6.2 and 5.4), produce heterogeneous data. The types defining these data are
only known to the metrics or components which assume certain types. Therefore, the
language used for implementation must be able to conquer this type uncertainty. Dart
is a language with optional types, in that if the type is undefined it is inferred by the
runtime system. This allows DAVID to work quite efficiently with its data, since types
are not required but can be used once the knowledge about the data is obtained.

6.4.1 Data driven documents

As discussed in chapter 5.2.2, this system not only allows the user to work with the data,
but actively encourages the user through library-agnostic implementations. The ability
to choose a library that is best suited the target of a certain visualization (maybe during
a presentation) is a freedom that most tools don’t give their users. This flexibility comes
with the duty to choose wisely among the enormous ecosystem of technologies available
for visualization. Some widely used libraries are already part of DAVID. Figure 35 shows
the logos of such libraries. The system initially supports “D3” and “Highcharts”3. This
selection reflects the current most popular libraries for drawing and chart generation. D3,
the “Data Driven Documents” library, has risen in popularity as it “allows you to bind
arbitrary data to a Document Object Model (DOM), and then apply data-driven trans-
formations to the document.”[5]. D3 focuses on drawing interactive figures and giving
programmatic access to the elements on the screen. D3 has a very active community, with
7,302 questions4 on Stackoverflow5 at the time of this writing.

Highcharts offers “intuitive, interactive charts to your web site or web application.
Highcharts currently supports line, spline, area, areaspline, column, bar, pie, scatter, an-
gular gauges, arearange, areasplinerange, columnrange, bubble, box plot, error bars, fun-
nel, waterfall and polar chart types”.[6]. It provides the user with a ready-to-use set of
basic charts. Both libraries are used in the provided components (see 7.1). However, these
libraries may not always be the best choice for a given visualization problem. For exam-
ple, when drawing millions of points onto a canvas, a pure SVG library might be a better
choice. To move beyond these two libraries, I suggest two more libraries for typical data
visualization: Raphael and ProcessingJS.

processingjs
6 is based on the well-known “Processing 2.0” environment 7. It is the

corresponding library fork for the JavaScript language and features a wide set of
library functions that incorporate videos, 3D rendering, mathematical functions,
and even camera and lightning systems. This library is particularly helpful when
drawing huge interactive visualizations. Processing is a DSL, since it uses specific
terms such as “circle” and “rectangle” to hide abstractions. Raphael and D3 take a
different approach.

3 Product website: http://www.highcharts.com/
4 Question archive: http://stackoverflow.com/questions/tagged/d3.js
5 Project website: http://stackoverflow.com/
6 Project website: http://processingjs.org/
7 Project website: http://processing.org/
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Figure 35: Typical and powerful libraries and DSLs: D3[5], Raphael [12], Processing [9], High-
charts [6] (left to right)

raphael is one of the many libraries that compete with D3. Raphael focuses on direct
access to an SVG layer and allows vector based manipulation of the graphics. It
differs from D3 in that it allows free drawing of pixel-based objects, and does not
allow data binding. Because Raphael’s objects are unbound, direct manipulation of
objects on the screen is more straightforward, even though it is not as convenient
when data must be handled consistently.

Both libraries enjoy massive community support. See 6.2 for guidelines on how these li-
braries can included in DAVID.As discussed on multiple occasions, it can be problematic
to force a DSL onto the user. This is why all of libraries are imported and supported. A
user can choose freely between them. Due to the flexibility and the closed scope (see 6.2,
5.2.2 and 5.2.4) of components, they can even be used in conjunction.
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7
E VA L U AT I O N

DAVID relies not only on its visualization components. The visualization components
can only be used if there is a suitable frontend to create the dashboards in which those
visualizations live. This chapter showcases such a frontend that is part of DAVIDs refer-
ence implementation.

Figure 36 shows how a user selects a repository. On the top, all available repositories
are shown from which the user can choose. Once selected a list of dynamically loaded
data-calls is presented (the black box). Such data-calls can then be configured if needed.
The list of parameters for the data-calls is not a generic interface but created on a “per-
data-call” basis.

Figure 36: Selection of Repositories

After configuring the data-call, the user can select the ViewPoint he wants to use for
the data. Multiple ViewPoints, as described in 6 and 5 can be used for the same dataset.
Figure 37 depicts how a user proceeds after selecting a ViewPoint. Each ViewPoint can
be customized. A “Metric”, “Reverse metric” and “Manipulator” can be defined. Those
elements are the functions for translating data into a format a ViewPoint can work with
(see 5.3.1).

Figure 37: Data metrics (left) and creation of the DataDocument (right)
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Figure 38: DataView selection (left) and ordering (right)

These fields are pre populated and work in a predefined yet context specific way. If
a user wants to use and save the selection of Repositories, her or she can add it to the
DataDocument. DataDocuments are collected on a stack and saved later on. Figure 37

shows on the right side such a stack. DataDocuments consist of a Repository (red) ,
data-calls (white) and ViewPoints (indented from the data-call).When a user finished the
creation of a collection of DataDocuments they are saved and grouped into a DataView.
Those DataViews are then presented as a card to the user. Figure 38 shows such a card.
DataDocuments are again depicted as a red box and the corresponding Repository and
data call. All ViewPoints are placed beneath this. Since a user might have a variety of
DataViews he needs to be able to search and explore his library of DataViews. Selecting
one of the ordering buttons presents the user with a list that is ordered by the selector.

7.1 the viewpoint

The concepts that I described in 6 and 5 have all been implemented. Each ViewPoint has
a container that exposes some reoccurring elements. This allows the user to build and
reuse a mental model he learns when using DAVID for the first time [8]. Each ViewPoint
is surrounded by an action-bar and a controller-bar as shown in figure 39. The action-bar
(left) allows the user to select operations in the ViewPoint.

From top to bottom the buttons allow

• Opening the overlay activation menu (see figure 40)

• Showing data context (see 40)

Figure 39: A ViewPoint (left) and its backing script (right)

64



• Allowing linking (see 41)

• Exposing linkage type menu (see 41)

• Marking other ViewPoints with the same backing DataDocument

• Showing the annotation menu

• Showing of visual style definition (same as 39

• Opening the scripting menu (see 39

The controller-bar gives the user control over movement in time. There are a variety of
ways to manipulate the time once it has started ticking. One of the key aspects of DAVID
is to allow the user to interact with the ViewPoint. Figure 39 shows on the right side
the scripting window a user can access and use to alter behavior. This window does not
only allow to change runtime behavior but even the provided metrics can be access and
altered here.

Figure 40: Overlay activation menu (left) and ViewPoint data context (right)

Additionally the user might execute the provided overlays. Those context specific func-
tions are exposed in the menu, shown in figure 40 on the left side. Selecting one of those
functions executes the predefined or overwritten code. All of those overlays have access
to the main window of the ViewPoint but also to an area that shows context informa-
tion. This is particularly helpful if a visualization interpolates over values or reduces the
dimension of a dataset. Those information can then be shown there.

To link a ViewPoint to another, the user only needs to draw a line from the marked
areas of the ViewPoint to another ViewPoint. The connection automatically snaps at
its correct place once the mouse is released. Figure 41 shows on the left side such a
connection between two ViewPoints. Once connected, the type of this connection can be
altered through the connection-type menu (right).
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Figure 41: Annotation buttons (top left), linked ViewPoints (bottom left) and type of linkage
(right)

Besides the already introduced “time” (here named “absolute values”) and value based
linking (here named “data values”) the user can also select “relative” values which means
that time is ticking relative to its starting point but with synchronized speed and step-
width.

All backed data can be annotated (as designed in 6.3). The annotation-bar shows the
content of the available DataAnnotationLibrary. Figure 41 shows this bar. By clicking one
of those annotation buttons an annotation is added at the current time position to the
original dataset. User can also accelerate in their usage by using predefined shortcuts,
once they know the system . Lettings users accelerate is crucial to let them become
experts [18].

A completely opened ViewPoint (except the code windows) in its container is depicted
in figure 42 as a reference.

On multiple occasions it was stated that the real value of DAVID lies not only in its
singular components but in the possibility to connect and link data. Since DAVID is a
visual system a screenshot of a complete and running data view shall not be withheld.
Figure 43 shows a configuration that visualizes a subject that was driving in Boston, MA.

Figure 42: A complete LineChart ViewPoint
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Figure 43: Complete DataView that shows a driving subject

On the upper right the heat rate is monitored. As time moves a red line marks the
current value. A Speedometer ViewPoint and a table view is connected to this ViewPoint.
The colors on the left corner of each ViewPoint show if a ViewPoint is backed by the same
data as another (same color). The speedometer is then linked to the GPS data which is
shown on the MapView ViewPoint.

Implemented ViewPoints

To showcase the power of DAVID, a variety of ViewPoints have been implemented. Some
of which have not only visual behavior but allow to annotate and share data. Figure
44 shows the table Viewpoint and the LineChart ViewPoint. Tables simple show the
complete backing data in chunks. When “playing” the data the currently active row gets
highlighted as shown in figure 43. Additionally the user can move between pages by
hand (on the bottom left) or even execute a full text search on the data). Line charts plot
time on the x- and the corresponding value on the y axis. Those ViewPoints also allow to
select time intervals either graphically (on the bottom) or by data (top right). Line charts
also allow direct interaction such as moving the mouse over the data and seeing the exact
values in a context menu. Other manipulations offered by the overlay activation menu
(see figure 40) include changing the line to distinct points and jumping in time by click.

Figure 45 showcases the MapView and the SpeedView. The MapView relies on Google
maps and draws the complete dataset, interpreted as GPS positions on the map. A red
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Figure 44: Table ViewPoint based on data tables (left) and LineChart based on Highcharts (right)

marker marks the position of the vehicle at the current time. The complete Google maps
API can be used, thus allowing to use street view when analyzing data. This way a
data-analyst can examine the surroundings of the car. The SpeedView shows the current
speed of the car. The needle, showing the current value moves when the data is played.

Since DAVID is developed with the MIT AgeLab, some ViewPoints focus on specific
data analysis problems of this lab. One of them is the angle of the steering wheel. Since
subjects drive on the highway, the steering wheel is mostly only turned by a few angles.
Figure 46 depicts on the left side a visualization of the steering wheel. The green dot is
the center, the blue dot marks the actual position of the steering wheel. If the blue dot is
in the middle of the surrounding circle the car is driving straight. Since the angle only
changes very gradually a red dot magnifies this effect by multiplying the angle with 10.
This way even small changes in the angle can be seen. A VideoView is available to watch
the footage taken while driving. Moving quickly through the video is possible by the
timing controls. When linked to a map view a video can even be viewed on the basis of
GPS coordinates.

Classical bar-charts to compare values between different datasets can also be used to
look at data in DAVID. Bars are generated on a “per dataset” basis, in this case for each
subject. This chart proves quiet helpful when one wants to compare multiple datasets at
a given point in time, since the bars only show the value at a point x in time.

Additional to the visualizations, two components have been implemented that allow
more than just viewing data. Figure 47 shows a NetworkConnector and a Annotation-

Figure 45: MapView based on Google maps (left) and SpeedView based on Highcharts (right)
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Figure 46: SteeringWheelChart based on D3 (left) and VideoView based on popcorn.js (right)

View. The NetworkConnector can connected separate instances of the application. The
image depicts a connector that found one person in the network it can send data to.
Once connected to a visualization this visualization can send or receive events to link
and synchronize visualizations on completely separate machines. Only the selected ma-
chine (shown by a green button) receives those events. This allows a data analyst to
rapidly build horizontally distributed data visualizations if one machine is not powerful
enough. On the right side of the figure an AnnotationView shows how annotated data
looks. Once this view is connected to a ViewPoint and the corresponding annotation is
selected this table aggregates all those annotations. When the user is finished with his
annotations, he can export them into a CSV format.

7.2 repositories

To provide an effective prototype DAVID needs to be able to supply a set of repositories a
data analysts at the AgeLab can use to experience the system. To introduce DAVID slowly
into the workflow these repositories feature basic queries at the time of this writing but
are supposed to grow over time. DAVID offers three repositories to the user.

the on-road repository offers access to data collected in real cars while subjects
where driving. However, not all possible configurations one can create for the data-
calls result in meaningful data. Some of the datasets are so old that the current
queries return inconsistent data.

Figure 47: NetworkConnector (left) and AnnotationView (right)
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the simulator repository exposes data-calls to studies that have been done in
the in-house simulator. They are in most ways syntactically equal to the on-road
datasets. GPS data however is missing.

a mock repository offers a small set of sample data. This set of data was used to test
all ViewPoints and is the best possibility to play with the system without requesting
data. This repository exists only for training and demonstration. The word “mock”
in the repository name refers to the concept of a mock object which mimics other
objects.

These repositories do not all share the same data-calls. Figure 4 shows a list of possible
calls a user can access from these repositories in the user-interface shown in figure 36.

Listing 4: A selection of implemented data-calls

loadAvailableSubjects

loadHeartRate

loadSkinConductance

loadNbackResponseTimes

loadGpsPosition

loadAcceleration

loadSpeedOfCar

loadSteeringWheelAngle

loadVideo �
7.3 evaluation of visionary scenarios

In chapter 2.5, three visionary scenarios were showcased. To measure the outcome these
scenarios were used and compared to the as-is scenario. DAVID offers a UI to create the
workspaces which are referenced in the scenarios. To compare the prototype for each
scenario one workspace was created. Each workspace used real data from the AgeLab
Repository (see 7.2). The following screenshots show how the situations described in the
scenarios look in the prototype.

• Name: Annotate (see 2.5)

Summary: See a set of data dimensions and annotate meta-information.

The “annotate” scenario requires three components: a video component showing the
current video feed at point X in time, a map component showing the position of the
car, and an annotation component, aggregating the annotations of the map. Such a setup
is shown in figure 48. The video is linked to the GPS and the GPS to the annotation.
The GPS data can be annotated with meta-information about the road. Additionally, the
annotated data can be modified and exported after the session.

• Name: Patterns (see2.5)

Summary: Compare two experiments and find unusual patterns
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Figure 49: Comparing GPS coordinates in DAVID as described in the pattern scenario

In the “patterns” scenario the analyst is truly exploring the data. Figure 49 demon-
strates this scenario. Looking at two different subjects the same pattern can be seen
near an exit. The heart rate of subject 1 is connected to the GPS position. The GPS is then
linked to the GPS of subject 2. The top-left window shows that the link uses GPS-Linking
rather than Time-Linking (see 5.3.1). Therefore, both maps show the same GPS coordi-
nate. The map of subject is then linked to the corresponding heart rate which shows a
peek at the next exit.

• Name: Customization (see 2.5)

Summary: Create a customized graph for an annotation session.

At the heart of the “customization” scenario lies the requirement for creative freedom
(see FR 090 in chapter 2.4) and freedom of choice (see FR 080 in chapter 2.4). Creative
freedom refers to the ability to manipulate the inner behavior of the component and
the drawing. Figure 50 showcases this scenario. On the bottom left a custom line-chart
was modified to show points instead of using a line. Additionally, an overlay showing
the maximum and minimum value has been activated. The data of this plot is linked
to the map component in the top left showing a photo of the street rather than the 2d
map-representation. The visualization of the steering wheel is linked to this position on
the street. On the right in figure 50, the code and style window for the steering wheel
have been opened and used to create a completely new and unforeseen visualization that
magnifies the degree the steering wheel has turned (top-right).
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Figure 50: Changing the behavior of components as described in the customization scenario
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8
C O N C L U S I O N

This work takes a new approach toward data-visualization systems. After describing
common problems and challenges confronted by data-analysts, I analyzed the work al-
ready done in this field and highlighted current approaches in the field of data visual-
ization. This analysis led to the proposal of a system that is able to dynamically and
interactively visualize complex, linked data. The system is is designed with the needs
of data analysts and the latest developments in the field of data visualization in mind.
Typical problems that arise while visualizing data have been taken into account to out-
line a system that can be used by both novices and experts. In this proposal I focus on
the system’s user-friendliness, its ability to manipulate and dynamically visualize hetero-
geneous and linkable data, and on adding interactivity to such visualizations to allow
for exploratory data analysis. I describe how creative freedom can be achieved through
the use of such a system and outline strategies to reduce the complexities that big-data
queries impose on a user. After describing the system conceptually and in terms of its in-
ner software structure, I showcased my proposal by a proof-of-concept implementation.
The developed prototype is actively used in data-analysis, visualization, and annotation
at MITs AgeLab.

8.1 requirements evaluation

In chapter 2.4 a set of requirements was identified. As shown in the last chapter (7) many
of those requirements have not only been considered in the design but have also been
implemented. Table 4 shows the current status of the requirements. All important and
high priority requirements were implemented. Before a requirement was implemented
in the prototype it was analyzed and added to the broader concept of a component-based
visualization system (see 5).

Requirement 100 and 120 were not specifically mentioned in this document. They are
both not an integral part of a new concept for a data visualization system and are thus
not part of this document. But they are valuable to the stakeholders. The other two
noteworthy requirements are FR 040 and 110. They are partly implemented in DAVID.
This means for FR 040 (. . . 1) that the linking of the visual behavior is not completely
implemented. When zooming into a line chart for example, the linked components do
not reproduce this behavior. FR 110 (. . . 2) is implemented by a database friendly export.
The system exports annotations in the form of a CSV1 but does not save automatically
into a database.

8.2 future work

In 6.2.2 and 5.4.1, the concept of library based queries is introduced. This concept is
valuable, as it allows users to rapidly begin the process of data visualization. However, it

1 Comma Separated Values
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FR # Name Concept DAVID

010 Separation of concerns " "

020 Animations " "

030 Highlighting " "

040 Focusing and Linking " . . . 1

050 Linking components and data " "

060 Overlaying meta-information " "

070 Annotating visualized data " "

080 Freedom of choice " "

090 Creative freedom " "

100 Sharing of workspaces % %

110 Saving of results " . . . 2

120 Video recording of workspace % %

130 User-friendly data queries " "

Table 4: Comparison of initial and fulfilled requirements

also limits the user’s freedom, which I argue is a considerable limitation (see 5.2.2). The
current implementation uses the “dataManipulator” class to alter data on the fly once it is
received. These manipulators can be defined while configuring the data calls (see 7.1 and
31). But manipulators can only work on data that has already been received, and require
domain knowledge of the scripting language. These weaknesses need to be addressed
in the future. One solution may be to make heavier use of “flow based programming”
and introduce a pipe and filter architecture for data fetching. The altering of data needs
to be as straightforward and user friendly as the current visualization process is. I also
propose to incorporate heavy computations and data selection strategies that are run
before the visualization starts [72].

Another issue is DAVID’s way of styling visualizations. DAVID relies heavily on third
party libraries chosen by the user to visualize data. This also makes the user responsi-
ble for defining the aesthetics of a visualization. While many libraries provide ways of
generating standard charts, such as a line chart, they fail to color or label them with an
eye toward optimal legibility. This may cause problems of accessibility (for example red-
green blindness), as well as when interpreting data generally. The authors of [50] argue
that for standard visualizations, “semantically reasonable” colors can be chosen automat-
ically. Such a mechanism would enrich DAVID’s visualization process and enhance its
user-friendliness. DAVID is not currently capable of suggesting best practices to the user.

Most importantly, however, the effectiveness and efficiency of the system has not un-
dergone a larger test. Though it was used in production-like scenarios, the evaluation of
this software is a project on its own, especially due to the rich feature set DAVID sup-
plies. Even though I argue that DAVID allows data-analysts to rapidly experience and
interact with data in an efficient manner, this claim is not yet proven for a diverse or
representative set of use cases. Such an evaluation is beyond the scope of this work.
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