sebis TUT

Contracts

Thomas Hain, 20/05/2019, Master Thesis Kick-Off
/ e —— § R, e —— | e,

\

Chair of Software Engineering for Business Information Systems (sebis)
Faculty of Informatics

Technische Universitat Miinchen

wwwmatthes.in.tum.de

Outline Tum

1. Motivation

2. Applied Access Control
3. Research Questions
4. Approach

5. Timeline

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 2

Motivation T|.|T|

There are varying definitions of Access Control (AC)

Thesis understanding:
"Access Control is regarded as limiting a user’s access to a resource within a system”

=>» Enterprise structures often have complex hierarchies

=» Current business software based on languages like Java follow Access Control Patterns
=» Underestimating importance of Access Restrictions leads to security breaches
Companies have to follow security standards (see certifications = I1SO, EU-GDPR*, etc...)
=» How common is Access Control adaptation in Ethereum Smart Contracts?

=>» Which Types and Software Patterns of Access Control exist?

*Source:

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis

https://eugdpr.org/

Applied Access Control TUT

Mandatory Access Control (MAC)!:3

« Subject and object have a security level

« Levels can only be changed by the security officer

 If subject’s level is sufficient read and/or write access is granted

Discretionary Access Control (DAC) 13
« Object owner decides about other users’ access rights
« Control access based on the identity of the requestor

Role-Based Access Control (RBAC) 3

« Users are grouped by their roles (e.g. accounting, controlling)

« A users permissions are defined by the roles he holds

« Each role has permissions and / or restrictions

« Permissions can be inherited via the establishment of role hierarchies

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis

Applied Access Control

A smart contract’s methods are called via transactions
=» Sender’s address is included in transaction
=» Can either be user or another contract

Common Access Control Patterns in Ethereum include:

RBACS

« Map roles to addresses

* Introduce conditional statements, whether user is member of role
 Annotate methods with defined conditional checks

=>» Implemented in OpenZeppelin framework (widely used)

Ownership-Pattern’

« During contract deployment sender’s address is stored as owner
 Introduce modifier onlyOwner, similar to MAC

« onlyOwner checks: transaction sender’s address == owner address
« Annotate methods with modifier to introduce AC checks

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

© sebis

Research Questions TUTI

How commonly are Access Control frameworks used within Ethereum?

Which Source Code patterns are frequently used for Access Control?

How to measure similarity of AC mechanisms of multiple contracts?

How to recognize high-level Access Control on byte-level?

Is it possible to find a metric, which indicates AC usage in a contract?

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis

Approach

Design Patterns are usually given as UML diagrams*

User

o + MemberOf

Role

-name

-id
-name

= Authorization rule

ProtectionObject

|
1
|
1
|
1

« |-id

-name

Right

-access_type
-predicate
-copy_flag

+cheackRights()

=» They are easily implemented as source code

smart contracts are deployed publicly on the blockchain, but
=» compiled (therefore only known as binary representation)

Important question:

How can we reconstruct information about applied Access Control?

*UML Source: https://www.researchgate.net/figure/Structure-of-RBAC-Figures-2-shows-structure-of-Role-Based-Access-Control-RBAC-as fig4 274720701

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

© sebis

https://www.researchgate.net/figure/Structure-of-RBAC-Figures-2-shows-structure-of-Role-Based-Access-Control-RBAC-as_fig4_274720701

Approach

Gather data of different contracts’ source-codes

Look for common AC patterns
(e.g. based on syntax)

Group Contracts by their AC similarity
(e.g. RBAC)

Compile similar contracts

Generate Byte Signature

Visualize Results

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

© sebis

Approach TUN

Step: Gather data of different contracts’ source-codes

Website Etherscan* allows programmers to publish source-codes
Motivation: Companies prove, that a contract is doing what it's intended to do

By using web scraping, a MySQL database of contracts was generated

About 150k contracts, including:
e Source code

« Name

« Address

=» Serves as testing ground for pattern identification

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis

https://etherscan.io/contractsVerified

Approach TUN

Step: Look for common AC patterns (e.g. based on syntax)
As already mentioned, two* prominent patterns emerge:
Ownership and RBAC

Both require little implementation effort
=» few syntactic elements
=» serve as good starting point for further analysis

*based on literature research (e.g. sources 6,7,8) and own analysis

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 10

Approach TUN

Step: Group Contracts by their AC similarity (e.g. RBAC contracts)
Reference Literature*> compare their Abstract Syntax Trees (AST).
ASTs are based on a language’s Grammar.

Most common compiler Solidity can generate ASTs from source-code

Shortened excerpt from Ethereum’s Official Grammar Definition*

PrimaryExpression = BooleanLiteral
| NumberLiteral
| StringL.iteral
| Identifier

BooleanLiteral = 'true' | 'false’

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 11

https://github.com/ethereum/solidity/blob/develop/docs/grammar.txt

Approach Tum

1~ {

2 "type": "IfStatement",

3~ "condition": { .-

4 "type": "BinaryOperation", condition
5 "operator": "==",

6~ "left": {

7 "type": "Identifier",

8 "name": "a"

0 5 operator
10 - "right": { P i

11 "type": "Numberliteral", ==

12 "number": "0",

}i } subdenomination”: null Expresses the condition: a ==
15}

Excerpt of Etherscan Contract AST Corresponding Sub-AST

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 12

Approach TUN

Step: Group Contracts by their AC similarity (e.g. RBAC contracts)

Problem: How do we compare the similarity of multiple given source codes / programs?
Reference Literature*> compare their Abstract Syntax Trees (AST).

How are ASTs compared?

Bottom-up Maximum Common Subtree Isomorphism#
=» Find the largest (most nodes) subtree within two syntax trees, which are equal

Tree Edit Distance*
=» how many trivial (insertion, deletion, ...) steps does it take to transform one tree into another tree

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 13

Approach TUT

Step: Group Contracts by their AC usage similarity (e.g. RBAC contracts)

ASTs can differ while expressing the same AC patterns,
e.g. same semantics < different syntactic order

Tree a) Tree b)

=» Algorithms need to accommodate this behavior to a certain extent
=>» But: Not a perfect (i.e. 100%) match is required
=» Goal I: Implement an AST parser, which measures the AC usage similarity of contracts

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 14

Approach TUN

Step: Compile similar contracts

After grouping contracts by their AC type, they are compiled
Source-Code:

2 import "remix_ tests.sol"; // this import is automatically injected by Remix.

3 import "./ballot.scol"”;

4

L+ contract testd {

6

7 Ballot ballotToTest,

8- function beforeAll () public {

9 ballotToTest = new Ballot(2);

19 }

11

12 - function checkWinningProposal () public {

13 ballotToTest.vote(l);

14 Assert.equal(ballotToTest.winningProposal(), uint(l), "1 should be the winning proposal");
15 }
16
17 - function checkWinninProposalWithReturnValue () public view returns (bool) {
18 return ballotToTest.winningProposal() == 1;
19 }

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

© sebis 15

Approach TUN

Step: Compile similar contracts

After grouping contracts by their AC type, they are compiled
Binary representation as HEX:

608060405234801561001057600080F D5B506040516020806108668339810180604052602081101561003057600080FD5B8101908080519060200190929190505050336000806101
000A81548173FF021916908373FF160217905550600180600080600090549
06101000A900473FF1673FF1673FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFF168152602001908152602001600020600001819055508060FF166002816100FA9190610101565B50506101545658815481835581811115610128578183600052602060
00209182019101610127919061012D565B5B50505056586101519190588082111561014D5760008082016000905550600101610133565B5090565B90565B610703806101636000
396000F 3FE608060405234801561001057600080FD5B506004361061004C5760003560E01C80635C19A95C14610051578063609FF1BD 1461009557806 39E7B8D611461008957
8063B3F98ADC 146100FD575B600080FD5B6100936004803603602081101561006757600080F D5B81019080803573FF169060
20019092919050505061012E565B005B61009D610481565B604051808260FF1660FF16815260200191505060405180910390F 35B6100FB600480360360208110156100CF576000
80FD5B81019080803573FF1690602001909291905050506104F 9565B005861012C6004803603602081101561011357600080F
D5B81019080803560FF1690602001909291905050506105F 65658005B6000600160003373FF1673FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF16815260200190815260200160002090508060010160009054906101000A900460FF161561018E575061047E56585B600073FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF16600160008473FF1673FF16815260200190815
260200160002060010160029054906101000A90047 3FF1673FF1614158015
6102BC57503373FF16600160008473FF1673FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFF16815260200190815260200160002060010160029054906101000A90047 3FF1673FFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFF1614155B1561032B57600160008373FF1673FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFF16815260200190815260200160002060010160029054906101000A90047 3FF16915061018F565B3373FFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFF168273FF161415610365575061047E565B860018160010160006101000A81548160FF0219
16908315150217905550818160010160026101000A81548173FF021916908373FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFF1602179055506000600160008473FF1673FF16815260200190815260
2001600020905080600101

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 16

Approach TUN

Step: Compile similar contracts

After categorizing contracts by their AC type, they are compiled
Binary Representation encodes OP-Codes, e.g.:
PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO...

OP-Codes are commands, which instruct a stack-based virtual machine
=» Ethereum Virtual Machine (EVM)

This way contracts are executed!

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 17

Approach

Step: Generate Byte Signature

Binary Code

04E86B70 6A 01
04E86B72 =5 C95C1200
04E86B77 83 C4 04

Generated Signature:
6A 01 E8 7?7 7?7?27 7?7 83 C4 04

OP-Code Representation

push 01
call 04FACB840
add esp,04

=» Important: Signature needs to be robust

Balance between:

=» too short / too much wildcarding =» false positives
=>» too long / too few wildcarding =» false negatives

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

© sebis

18

Approach TUN

Goal I: Implement an AST parser, which measures the AC usage similarity of contracts

Goal II: Generate stable AC byte signatures for contracts with non-public source code

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 19

Conclusion

If the stated approach succeeds, it will then be possible to answer:

How commonly are Access Control frameworks used within Ethereum?
E.g. OpenZeppelin RBAC signature

Which Source Code patterns are frequently used for Access Control?
RBAC, Ownership, and possibly more?

How to measure similarity of AC mechanisms of multiple contracts?
ASTs + ByteCode, possibly assisted by analysing ControlFlowGraphs?

How to recognize high-level Access Control on byte-level?
By inferring byte-level patterns from source-code patterns

Is it possible to find a metric, which indicates AC usage in a contract?
Matching Ratio to Byte Signature and / or subtrees of ASTs

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

© sebis

20

Timeline T|.|T|

Literature /

Research

Prototype
Concept

Prototype
Implementation

Thesis

Writing

Review / Print

‘ Conceptualizing Final Tests ‘
| AC Detection | |

Thesis Kickoff

(Today)

¢ Registration Date: 15.03.2019 ¢ Submission Date: 15.09.2019

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 21

Literature T|.|T|

1. Osborn, Sylvia, Ravi Sandhu, and Qamar Munawer. "Configuring role-based access control to enforce mandatory and
discretionary access control policies." ACM Transactions on Information and System Security (TISSEC) 3.2 (2000): 85-106.

2. Samarati, Pierangela, and Sabrina Capitani de Vimercati. "Access control: Policies, models, and mechanisms." International
School on Foundations of Security Analysis and Design. Springer, Berlin, Heidelberg, 2000.

3. Osborn, Sylvia. "Mandatory access control and role-based access control revisited.”" IN PROCEEDINGS OF THE 2ND ACM
WORKSHOP ON ROLE-BASED ACCESS CONTROL. 1997.

4. Sager, Tobias, et al. "Detecting similar Java classes using tree algorithms." Proceedings of the 2006 international workshop on
Mining software repositories. ACM, 2006.

5. Chilowicz, Michel, Etienne Duris, and Gilles Roussel. "Syntax tree fingerprinting for source code similarity detection." 2009 IEEE
17th International Conference on Program Comprehension. IEEE, 2009

6. Cruz, Jason Paul, Yuichi Kaji, and Naoto Yanai. "RBAC-SC: Role-based access control using smart contract." IEEE Access 6
(2018): 12240-12251.

7. Wohrer, Maximilian, and Uwe Zdun. "Design patterns for smart contracts in the ethereum ecosystem.” (2018).
, Accessed 05/02/2019

9. Ferraiolo, David F., John F. Barkley, and D. Richard Kuhn. "A role-based access control model and reference implementation
within a corporate intranet.” ACM Transactions on Information and System Security (TISSEC) 2.1 (1999): 34-64.

10. Klarl, Heiko, et al. "Extending Role-based Access Control for Business Usage." 2009 Third International Conference on Emerging
Security Information, Systems and Technologies. IEEE, 2009.

11. KOCH, Manuel; MANCINI, Luigi V.; PARISI-PRESICCE, Francesco. Graph-based specification of access control policies. Journal
of Computer and System Sciences, 2005, 71. Jg., Nr. 1, S. 1-33.

o

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 22

https://docs.openzeppelin.org/docs/ownership_rbac_rbac

B. Sc.
Thomas Hain

Technische Universitat Minchen

Faculty of Informatics

Chair of Software Engineering for Business
Information Systems

Boltzmannstral3e 3
85748 Garching bei Mlinchen

Tel +49.89.289. 17132
Fax +49.89.289.17136

matthes@in.tum.de

http://wwwmatthes.in.tum.de/

Backup TUT

Symbolic Execution: Find necessary inputs to cover all unique paths
Example from Wikipedia: Program fails when y = 6

; int £() { Two Paths: If (Line 5) and else (Line 7)

3y = read(); 3)sety =A

A z =y * 2; 4)Set2=2*)\

5 if (z == 12) { 5) Fork

E Fillﬂi 5-True) fail() = constraint 2*A =12 > A =6

; b oelse S 5-False) “OK” =» constraint 2*A 1= 12 > A!1=6 = A=1
printf("0K");

o }

10 }

Governance scenario: changing ownership is access restricted
Generate different userlevel inputs:

if userlevel == admin =» success
else = fail

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 24

Backup

https://github.com/trailofbits/manticore/

Manticore

build 'passing | pypi package 0.2.4] slack 40/1928 ~& maintainability FATE A~ test coverage

Manticore is a symbolic execution tool for analysis of smart contracts and binaries.

Note: Beginning with version 0.2.0, Python 3.6+ is required.

Features

¢ Input Generation: Manticore automatically generates inputs that trigger unique code paths

¢ Error Discovery: Manticore discovers bugs and produces inputs required to trigger them

¢ Execution Tracing: Manticore records an instruction-level trace of execution for each generated input

. rogrammatic Interface: Vianticore exposes programmatic access 10 115 analysis engine Via a an

Manticore can analyze the following types of programs:

e Ethereum smart contracts (EVM bytecode)

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

© sebis

25

Backup

Zooming out // Post-Processing:

|ldea: Labelling clustered contracts and applying distance measures
Data

« Contracts grouped in sets based on their AC similarity

« Labels from scraping + fall-back manual labelling

Additional information (e.g. from internet research):

* Their institutional models (e.g. GmbH, ...)

« Known important stakeholders, CTOs, etc...

=>» Further assessment of the power a respective role holds

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

© sebis

26

Backup

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

1) Ownership:

OWNERSHIP PATTERN

Problem By default any party can call a contract method, but it must
be ensured that sensitive contract methods can only be executed by the
owner of a contract.

Solution Store the contract creator’s address as owner of a contract and

restrict method execution dependent on the callers address.

It is very common that only the owner of a contract should
be eligible to call functions, which are sensitive and crucial
for the correct operation of the contract. This pattern limits
access to certain functions to only the owner of the contract,
an example is shown in Listing 7. A typical application of this
pattern is demonstrated in the Mortal pattern.

pragma solidity “0.4.17;
contract Owned {
address public owner;

event LogOwnershipTransferred({address indexed
previousOwner, address indexed newOwner);

modifier onlyOwner() {
require (msg.sender == owner);

—

1

function Owned(}) public {
owner = msg.sender;

1

function transferOwnership(address newOwner) public
onlyOwner {

require (newOwner != address(0));
LogOwnershipTransferred (owner, newOwner);
owner = newOwner;

© sebis

27

Backup

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

1) Ownership:

OWNERSHIP PATTERN

Problem By default any party can call a contract method, but it must
be ensured that sensitive contract methods can only be executed by the
owner of a contract.

Solution Store the contract creator’s address as owner of a contract and

restrict method execution dependent on the callers address.

It is very common that only the owner of a contract should
be eligible to call functions, which are sensitive and crucial
for the correct operation of the contract. This pattern limits
access to certain functions to only the owner of the contract,
an example is shown in Listing 7. A typical application of this
pattern is demonstrated in the Mortal pattern.

pragma solidity “0.4.17;
contract Owned {
address public owner;

event LogOwnershipTransferred({address indexed
previousOwner, address indexed newOwner);

modifier onlyOwner() {
require (msg.sender == owner);

—

1

function Owned(}) public {
owner = msg.sender;

1

function transferOwnership(address newOwner) public
onlyOwner {

require (newOwner != address(0));
LogOwnershipTransferred (owner, newOwner);
owner = newOwner;

© sebis

28

Backup TUT

https://docs.openzeppelin.org/docs/ownership rbac rbac

Modifiers

onlyRole

modifier onlyRole(string _role)

Modifier to scope access to a single role (uses msg.sender as addr).

Parameters:

_role -the name of the role // reverts

Functions
addRole

function addrRole(address operator, string role) internal

Add a role to an address.

Parameters:
_operator - address

_role -the name of the role

190520 Thomas Hain - Master's Thesis Kick-Off Presentation © sebis 29

https://docs.openzeppelin.org/docs/ownership_rbac_rbac

Backup

https://etherscan.io/address/Oxd1faa35d9ffda86f9804dc764d02256919cch8f9#code

® Contract Source Code Verified (Exact Match) H
Contract Name: RTDAIrDrop Optimization Enabled: Yes with 200 runs
Compiler Version vi.4.25+commit.59dbfaf Evm Version: default

[Contract Source Code (Solidity) E H

1~ l(:nt -
2 * Source Code first verified at https:/setherscan.ic on Monday, May 28, 2919
3 {urc) =/

4

S pragma solidity ~@.4.16;

[

7~ contract owned {

8 address public owner;

9

18~ constructor() public {

11 oWner = msg.sender;

12 }

13

14~ modifier onlyOwner {

15 require{msg.sender == owner);

15 _8

17 }

18

19~ functicn transferownership{address newlwner) onlyOwner public {

e CWNEr = Newowner;

2 }

22|}

23

24

iz v

190520 Thomas Hain - Master's Thesis Kick-Off Presentation

© sebis

30

https://etherscan.io/address/0xd1faa35d9ffda86f9804dc764d02256919ccb8f9#code

