
Chair of Software Engineering for Business Information Systems (sebis)

Faculty of Informatics

Technische Universität München

wwwmatthes.in.tum.de

Analysis of Access Control Management in Ethereum Smart

Contracts
Thomas Hain, 20/05/2019, Master Thesis Kick-Off

Outline

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 2

1. Motivation

2. Applied Access Control

3. Research Questions

4. Approach

5. Timeline

Motivation

There are varying definitions of Access Control (AC)

Thesis understanding:

"Access Control is regarded as limiting a user’s access to a resource within a system”

➔ Enterprise structures often have complex hierarchies

➔ Current business software based on languages like Java follow Access Control Patterns

➔ Underestimating importance of Access Restrictions leads to security breaches

Companies have to follow security standards (see certifications ➔ ISO, EU-GDPR*, etc…)

➔ How common is Access Control adaptation in Ethereum Smart Contracts?

➔Which Types and Software Patterns of Access Control exist?

*Source: https://eugdpr.org/

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 3

https://eugdpr.org/

Applied Access Control

Mandatory Access Control (MAC)1,3

• Subject and object have a security level

• Levels can only be changed by the security officer

• If subject’s level is sufficient read and/or write access is granted

Discretionary Access Control (DAC) 1,3

• Object owner decides about other users’ access rights

• Control access based on the identity of the requestor

Role-Based Access Control (RBAC) 3

• Users are grouped by their roles (e.g. accounting, controlling)

• A users permissions are defined by the roles he holds

• Each role has permissions and / or restrictions

• Permissions can be inherited via the establishment of role hierarchies

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 4

Applied Access Control

A smart contract’s methods are called via transactions

➔Sender’s address is included in transaction

➔Can either be user or another contract

Common Access Control Patterns in Ethereum include:

RBAC6

• Map roles to addresses

• Introduce conditional statements, whether user is member of role

• Annotate methods with defined conditional checks

➔ Implemented in OpenZeppelin framework (widely used)

Ownership-Pattern7

• During contract deployment sender’s address is stored as owner

• Introduce modifier onlyOwner, similar to MAC

• onlyOwner checks: transaction sender’s address == owner address

• Annotate methods with modifier to introduce AC checks

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 5

Research Questions

How commonly are Access Control frameworks used within Ethereum?

Which Source Code patterns are frequently used for Access Control?

How to measure similarity of AC mechanisms of multiple contracts?

How to recognize high-level Access Control on byte-level?

Is it possible to find a metric, which indicates AC usage in a contract?

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 6

1

2

3

4

5

Approach

Design Patterns are usually given as UML diagrams*

➔ They are easily implemented as source code

smart contracts are deployed publicly on the blockchain, but

➔ compiled (therefore only known as binary representation)

Important question:

How can we reconstruct information about applied Access Control?

*UML Source: https://www.researchgate.net/figure/Structure-of-RBAC-Figures-2-shows-structure-of-Role-Based-Access-Control-RBAC-as_fig4_274720701

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 7

https://www.researchgate.net/figure/Structure-of-RBAC-Figures-2-shows-structure-of-Role-Based-Access-Control-RBAC-as_fig4_274720701

Approach

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 8

Gather data of different contracts’ source-codes

Look for common AC patterns

(e.g. based on syntax)

Group Contracts by their AC similarity

(e.g. RBAC)

Compile similar contracts

Generate Byte Signature

S
te

p
s

Visualize Results

Approach

Step: Gather data of different contracts’ source-codes

Website Etherscan* allows programmers to publish source-codes

Motivation: Companies prove, that a contract is doing what it’s intended to do

By using web scraping, a MySQL database of contracts was generated

About 150k contracts, including:

• Source code

• Name

• Address

• …

➔Serves as testing ground for pattern identification

*Source: https://etherscan.io/contractsVerified

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 9

https://etherscan.io/contractsVerified

Approach

Step: Look for common AC patterns (e.g. based on syntax)

As already mentioned, two* prominent patterns emerge:

Ownership and RBAC

Both require little implementation effort

➔ few syntactic elements

➔ serve as good starting point for further analysis

*based on literature research (e.g. sources 6,7,8) and own analysis

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 10

Approach

Step: Group Contracts by their AC similarity (e.g. RBAC contracts)

Reference Literature4,5 compare their Abstract Syntax Trees (AST).

ASTs are based on a language’s Grammar.

Most common compiler Solidity can generate ASTs from source-code

Shortened excerpt from Ethereum’s Official Grammar Definition*

PrimaryExpression = BooleanLiteral

| NumberLiteral

| StringLiteral

| Identifier

BooleanLiteral = 'true' | 'false’

*Source: https://github.com/ethereum/solidity/blob/develop/docs/grammar.txt

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 11

https://github.com/ethereum/solidity/blob/develop/docs/grammar.txt

Approach

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 12

Excerpt of Etherscan Contract AST Corresponding Sub-AST

Approach

Step: Group Contracts by their AC similarity (e.g. RBAC contracts)

Problem: How do we compare the similarity of multiple given source codes / programs?

Reference Literature4,5 compare their Abstract Syntax Trees (AST).

How are ASTs compared?

Bottom-up Maximum Common Subtree Isomorphism4

➔ Find the largest (most nodes) subtree within two syntax trees, which are equal

Tree Edit Distance4

➔ how many trivial (insertion, deletion, …) steps does it take to transform one tree into another tree

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 13

Approach

Step: Group Contracts by their AC usage similarity (e.g. RBAC contracts)

ASTs can differ while expressing the same AC patterns,

e.g. same semantics  different syntactic order

➔Algorithms need to accommodate this behavior to a certain extent

➔But: Not a perfect (i.e. 100%) match is required

➔Goal I: Implement an AST parser, which measures the AC usage similarity of contracts

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 14

Approach

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 15

Step: Compile similar contracts

After grouping contracts by their AC type, they are compiled

Source-Code:

Approach

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 16

Step: Compile similar contracts

After grouping contracts by their AC type, they are compiled

Binary representation as HEX:

Approach

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 17

Step: Compile similar contracts

After categorizing contracts by their AC type, they are compiled

Binary Representation encodes OP-Codes, e.g.:

PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO…

OP-Codes are commands, which instruct a stack-based virtual machine

➔Ethereum Virtual Machine (EVM)

This way contracts are executed!

Approach

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 18

Step: Generate Byte Signature

➔ Important: Signature needs to be robust

Balance between:

➔ too short / too much wildcarding ➔ false positives

➔ too long / too few wildcarding ➔ false negatives

Approach

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 19

Goal I: Implement an AST parser, which measures the AC usage similarity of contracts

Goal II: Generate stable AC byte signatures for contracts with non-public source code

Conclusion

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 20

If the stated approach succeeds, it will then be possible to answer:

How commonly are Access Control frameworks used within Ethereum?

E.g. OpenZeppelin RBAC signature

Which Source Code patterns are frequently used for Access Control?

RBAC, Ownership, and possibly more?

How to measure similarity of AC mechanisms of multiple contracts?

ASTs + ByteCode, possibly assisted by analysing ControlFlowGraphs?

How to recognize high-level Access Control on byte-level?

By inferring byte-level patterns from source-code patterns

Is it possible to find a metric, which indicates AC usage in a contract?

Matching Ratio to Byte Signature and / or subtrees of ASTs

Timeline

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 21

Registration Date: 15.03.2019 Submission Date: 15.09.2019

March April May June Juli August

Literature /

Research

Prototype

Concept

Thesis

Writing

Review / Print

Prototype

Implementation

Conceptualizing

AC Detection

Thesis Kickoff

(Today)

September

Final Tests

Literature

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 22

1. Osborn, Sylvia, Ravi Sandhu, and Qamar Munawer. "Configuring role-based access control to enforce mandatory and

discretionary access control policies." ACM Transactions on Information and System Security (TISSEC) 3.2 (2000): 85-106.

2. Samarati, Pierangela, and Sabrina Capitani de Vimercati. "Access control: Policies, models, and mechanisms." International

School on Foundations of Security Analysis and Design. Springer, Berlin, Heidelberg, 2000.

3. Osborn, Sylvia. "Mandatory access control and role-based access control revisited." IN PROCEEDINGS OF THE 2ND ACM

WORKSHOP ON ROLE-BASED ACCESS CONTROL. 1997.

4. Sager, Tobias, et al. "Detecting similar Java classes using tree algorithms." Proceedings of the 2006 international workshop on

Mining software repositories. ACM, 2006.

5. Chilowicz, Michel, Etienne Duris, and Gilles Roussel. "Syntax tree fingerprinting for source code similarity detection." 2009 IEEE

17th International Conference on Program Comprehension. IEEE, 2009

6. Cruz, Jason Paul, Yuichi Kaji, and Naoto Yanai. "RBAC-SC: Role-based access control using smart contract." IEEE Access 6

(2018): 12240-12251.

7. Wöhrer, Maximilian, and Uwe Zdun. "Design patterns for smart contracts in the ethereum ecosystem." (2018).

8. https://docs.openzeppelin.org/docs/ownership_rbac_rbac, Accessed 05/02/2019

9. Ferraiolo, David F., John F. Barkley, and D. Richard Kuhn. "A role-based access control model and reference implementation

within a corporate intranet." ACM Transactions on Information and System Security (TISSEC) 2.1 (1999): 34-64.

10. Klarl, Heiko, et al. "Extending Role-based Access Control for Business Usage." 2009 Third International Conference on Emerging

Security Information, Systems and Technologies. IEEE, 2009.

11. KOCH, Manuel; MANCINI, Luigi V.; PARISI-PRESICCE, Francesco. Graph-based specification of access control policies. Journal

of Computer and System Sciences, 2005, 71. Jg., Nr. 1, S. 1-33.

https://docs.openzeppelin.org/docs/ownership_rbac_rbac

Technische Universität München

Faculty of Informatics

Chair of Software Engineering for Business

Information Systems

Boltzmannstraße 3

85748 Garching bei München

Tel +49.89.289.

Fax +49.89.289.17136

wwwmatthes.in.tum.de

Thomas Hain

B. Sc.

17132

matthes@in.tum.de

http://wwwmatthes.in.tum.de/

Backup

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 24

Symbolic Execution: Find necessary inputs to cover all unique paths

Example from Wikipedia: Program fails when y = 6

Two Paths: If (Line 5) and else (Line 7)

3) set y = λ

4) set z = 2*λ

5) Fork

5-True) fail() ➔ constraint 2*λ = 12 ➔ λ = 6

5-False) “OK” ➔ constraint 2*λ != 12 ➔ λ != 6 ➔ λ = 1

Governance scenario: changing ownership is access restricted

Generate different userlevel inputs:

if userlevel == admin ➔ success

else ➔ fail

Backup

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 25

https://github.com/trailofbits/manticore/

Backup

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 26

Zooming out // Post-Processing:

Idea: Labelling clustered contracts and applying distance measures

Data

• Contracts grouped in sets based on their AC similarity

• Labels from scraping + fall-back manual labelling

Additional information (e.g. from internet research):

• Their institutional models (e.g. GmbH, …)

• Known important stakeholders, CTOs, etc…

➔ Further assessment of the power a respective role holds

Backup

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 27

Backup

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 28

Backup

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 29

https://docs.openzeppelin.org/docs/ownership_rbac_rbac

https://docs.openzeppelin.org/docs/ownership_rbac_rbac

Backup

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 30

https://etherscan.io/address/0xd1faa35d9ffda86f9804dc764d02256919ccb8f9#code

https://etherscan.io/address/0xd1faa35d9ffda86f9804dc764d02256919ccb8f9#code

