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Motivation

There are varying definitions of Access Control (AC)

Thesis understanding:

"Access Control is regarded as limiting a user’s access to a resource within a system”

➔ Enterprise structures often have complex hierarchies

➔ Current business software based on languages like Java follow Access Control Patterns

➔ Underestimating importance of  Access Restrictions leads to security breaches

Companies have to follow security standards (see certifications ➔ ISO, EU-GDPR*, etc…)

➔ How common is Access Control adaptation in Ethereum Smart Contracts?

➔Which Types and Software Patterns of Access Control exist?

*Source: https://eugdpr.org/
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Applied Access Control

Mandatory Access Control (MAC)1,3

• Subject and object have a security level

• Levels can only be changed by the security officer

• If subject’s level is sufficient read and/or write access is granted

Discretionary Access Control (DAC) 1,3

• Object owner decides about other users’ access rights

• Control access based on the identity of the requestor

Role-Based Access Control (RBAC) 3

• Users are grouped by their roles (e.g. accounting, controlling)

• A users permissions are defined by the roles he holds

• Each role has permissions and / or restrictions

• Permissions can be inherited via the establishment of role hierarchies
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Applied Access Control

A smart contract’s methods are called via transactions

➔Sender’s address is included in transaction

➔Can either be user or another contract

Common Access Control Patterns in Ethereum include:

RBAC6

• Map roles to addresses

• Introduce conditional statements, whether user is member of role

• Annotate methods with defined conditional checks

➔ Implemented in OpenZeppelin framework (widely used)

Ownership-Pattern7

• During contract deployment sender’s address is stored as owner

• Introduce modifier onlyOwner, similar to MAC

• onlyOwner checks: transaction sender’s address == owner address

• Annotate methods with modifier to introduce AC checks
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Research Questions

How commonly are Access Control frameworks used within Ethereum?

Which Source Code patterns are frequently used for Access Control?

How to measure similarity of AC mechanisms of multiple contracts?

How to recognize high-level Access Control on byte-level?

Is it possible to find a metric, which indicates AC usage in a contract?
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Approach

Design Patterns are usually given as UML diagrams*

➔ They are easily implemented as source code

smart contracts are deployed publicly on the blockchain, but

➔ compiled (therefore only known as binary representation)

Important question:

How can we reconstruct information about applied Access Control?

*UML Source: https://www.researchgate.net/figure/Structure-of-RBAC-Figures-2-shows-structure-of-Role-Based-Access-Control-RBAC-as_fig4_274720701
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Approach
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Approach

Step: Gather data of different contracts’ source-codes

Website Etherscan* allows programmers to publish source-codes

Motivation: Companies prove, that a contract is doing what it’s intended to do

By using web scraping, a MySQL database of contracts was generated

About 150k contracts, including:

• Source code

• Name

• Address

• …

➔Serves as testing ground for pattern identification

*Source: https://etherscan.io/contractsVerified
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Approach

Step: Look for common AC patterns (e.g. based on syntax)

As already mentioned, two* prominent patterns emerge:

Ownership and RBAC

Both require little implementation effort

➔ few syntactic elements

➔ serve as good starting point for further analysis

*based on literature research (e.g. sources 6,7,8) and own analysis
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Approach

Step: Group Contracts by their AC similarity (e.g. RBAC contracts)

Reference Literature4,5 compare their Abstract Syntax Trees (AST).

ASTs are based on a language’s Grammar.

Most common compiler Solidity can generate ASTs from source-code

Shortened excerpt from Ethereum’s Official Grammar Definition*

PrimaryExpression = BooleanLiteral

| NumberLiteral

| StringLiteral

| Identifier

BooleanLiteral = 'true' | 'false’

*Source: https://github.com/ethereum/solidity/blob/develop/docs/grammar.txt
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Approach
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Excerpt of Etherscan Contract AST Corresponding Sub-AST



Approach

Step: Group Contracts by their AC similarity (e.g. RBAC contracts)

Problem: How do we compare the similarity of multiple given source codes / programs?

Reference Literature4,5 compare their Abstract Syntax Trees (AST).

How are ASTs compared?

Bottom-up Maximum Common Subtree Isomorphism4

➔ Find the largest (most nodes) subtree within two syntax trees, which are equal

Tree Edit Distance4

➔ how many trivial (insertion, deletion, …) steps does it take to transform one tree into another tree
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Approach

Step: Group Contracts by their AC usage similarity (e.g. RBAC contracts)

ASTs can differ while expressing the same AC patterns,

e.g. same semantics  different syntactic order

➔Algorithms need to accommodate this behavior to a certain extent

➔But: Not a perfect (i.e. 100%) match is required

➔Goal I: Implement an AST parser, which measures the AC usage similarity of contracts
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Approach
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Step: Compile similar contracts

After grouping contracts by their AC type, they are compiled

Source-Code:



Approach
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Step: Compile similar contracts

After grouping contracts by their AC type, they are compiled

Binary representation as HEX:



Approach
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Step: Compile similar contracts

After categorizing contracts by their AC type, they are compiled

Binary Representation encodes OP-Codes, e.g.:

PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO…

OP-Codes are commands, which instruct a stack-based virtual machine

➔Ethereum Virtual Machine (EVM)

This way contracts are executed!



Approach
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Step: Generate Byte Signature

➔ Important: Signature needs to be robust

Balance between:

➔ too short / too much wildcarding ➔ false positives

➔ too long / too few wildcarding ➔ false negatives



Approach
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Goal I: Implement an AST parser, which measures the AC usage similarity of contracts

Goal II: Generate stable AC byte signatures for contracts with non-public source code



Conclusion
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If the stated approach succeeds, it will then be possible to answer:

How commonly are Access Control frameworks used within Ethereum?

E.g. OpenZeppelin RBAC signature

Which Source Code patterns are frequently used for Access Control?

RBAC, Ownership, and possibly more?

How to measure similarity of AC mechanisms of multiple contracts?

ASTs + ByteCode, possibly assisted by analysing ControlFlowGraphs?

How to recognize high-level Access Control on byte-level?

By inferring byte-level patterns from source-code patterns

Is it possible to find a metric, which indicates AC usage in a contract?

Matching Ratio to Byte Signature and / or subtrees of ASTs



Timeline
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Symbolic Execution: Find necessary inputs to cover all unique paths

Example from Wikipedia: Program fails when y = 6

Two Paths: If (Line 5) and else (Line 7)

3) set y  = λ

4) set z  = 2*λ

5) Fork

5-True)  fail() ➔ constraint 2*λ = 12 ➔ λ = 6

5-False) “OK” ➔ constraint 2*λ != 12 ➔ λ != 6 ➔ λ = 1

Governance scenario: changing ownership is access restricted

Generate different userlevel inputs: 

if userlevel == admin ➔ success

else ➔ fail
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https://github.com/trailofbits/manticore/
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Zooming out // Post-Processing: 

Idea: Labelling clustered contracts and applying distance measures

Data

• Contracts grouped in sets based on their AC similarity

• Labels from scraping + fall-back manual labelling

Additional information (e.g. from internet research): 

• Their institutional models (e.g. GmbH, …) 

• Known important stakeholders, CTOs, etc…

➔ Further assessment of the power a respective role holds
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