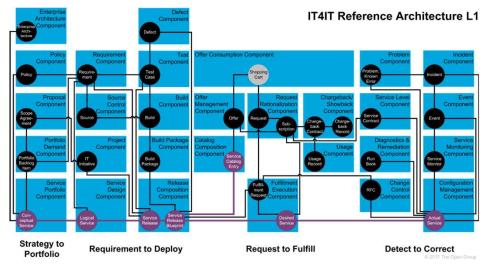


IT4IT promotes a value-chain based operating model for managing IT business TITT


Strategic IT management, planning and transition requires

- a holistic view on the business, provided / consumed services and the underlying IT landscape
- knowledge about the intra- and interdependencies of architectural elements across these layers
- → EAM aims to supports strategic planning, decision making and transformations by modelling the enterprise architecture

But: EA relevant information is generated in various tools along the value chain

→ How to bring the scattered architectural information together?

*IT Value Chain: http://pubs.opengroup.org/it4it/refarch20/chap03.html# Toc431202723

*IT4IT reference architecture: http://pubs.opengroup.org/it4it/refarch21/IT4ITv2.1.html

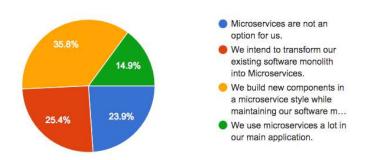
1. Motivation & problem statement

2. Solution concept

3. Thesis goals & research questions

4. Evaluation design and environment

Motivation


Enterprise Architecture Documentation (EAD) is a challenge ever since for EAM

- Relevant EA information is scattered across diverse information systems and stakeholders [5]
- Ongoing tracking of changes to keep the model up to date [1, 2]
- EAD is mostly performed manually; often there is no defined process and responsibilities [1]
- → EAD is a time-consuming, cost intensive and error-prone task [1, 2, 3]

Recent trends challenge EAD processes all the more:

- Growing adoption of agile development practices (DevOps, Scrum, CI/CD) [4]
- Growing adoption of cloud- and microservice based environments [4]

Do you use Microservices?

^{*}https://jaxenter.com/microservices-trends-2017-survey-133265.html

^{**}https://dzone.com/articles/the-top-three-benefits-of-continuous-delivery

Problem Statement

What the increasing use of cloud-/microservice environments implies:

- Artefacts change faster than ever
- The diversity of technologies used increases
- Runtime artefacts become more volatile
- → The overall architectural complexity increases [3]

Problems faced by practitioners:

- Established EA tools only provide poor support for performing EAD effectively [1]
- Automation has become a must to cope with fast-paced EA environments [1]
- → Insufficient EAD constitutes a major risk for the EAM practice as such and any derived decision

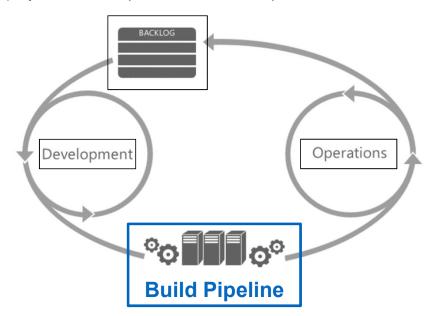
Conclusion: [6, 7]

- → There is a need for automating the EAD process considering
 - a) The scattered nature of EA relevant information
 - b) The ecosystem of agile practices
 - c) The integration of cloud-based environments

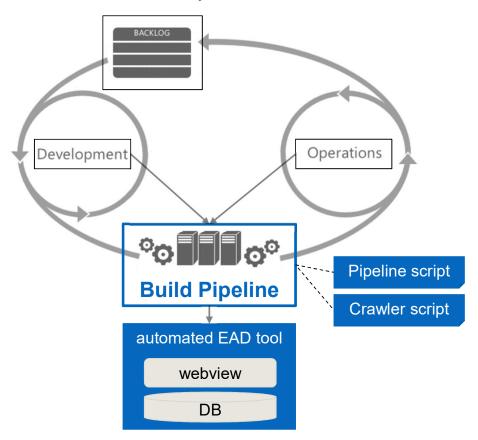
1. Motivation & problem statement

2. Solution concept

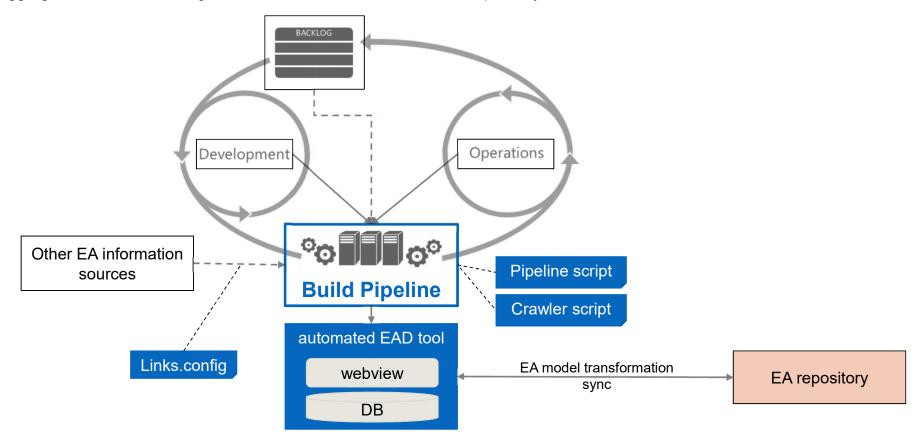
3. Thesis goals & research questions


4. Evaluation design and environment

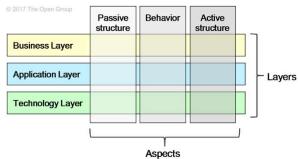
ПШ

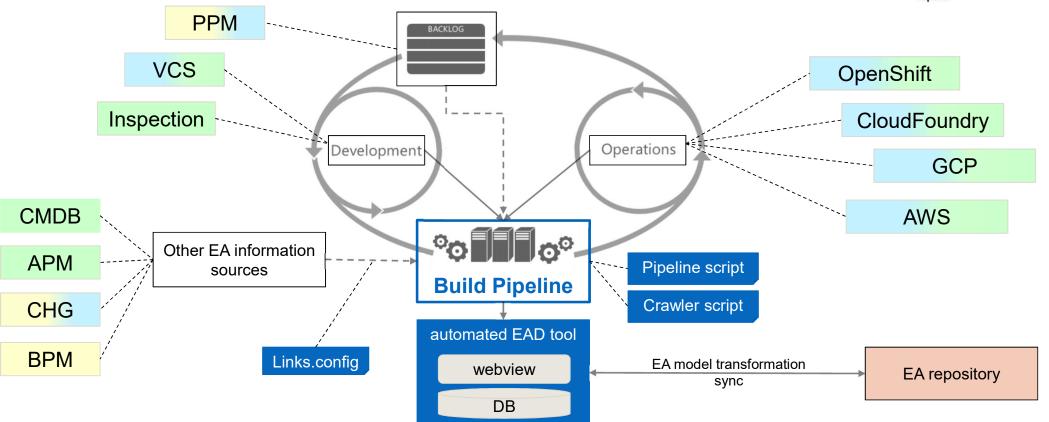

General Idea: integrate the EA discovery process into the build pipeline (CI/CD)

- 1. CI/CD tool instrumented to conduct automated EAD tasks (new or changed artefacts) with each build
- 2. Continuously monitor the state of deployed artefacts (runtime information)


ПЩ

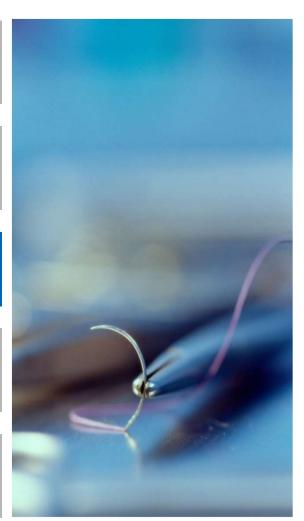
- → Add to script to the central development pipeline
 - → Pipeline script purpose: document EA with each deployment
 - → Crawler script purpose: update documented EA continuously




Ш

- → Development teams provides links to federated information sources
 - → Pipeline script poll information from federated EA information sources using their API
 - → EAD tool aggregates the information gathered and forwards to central EA Repository

→ Integrate various relevant EA information sources along the IT4IT value chain (company specific)



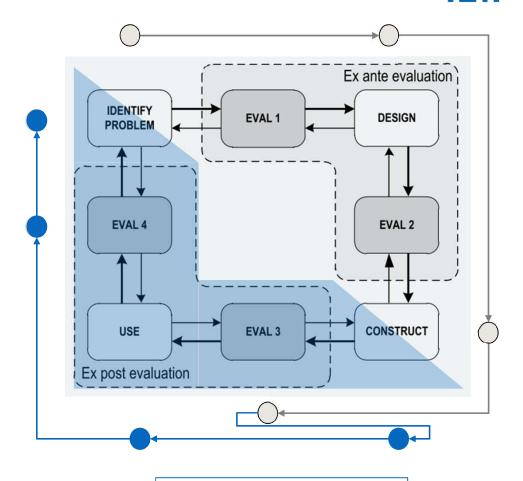
1. Motivation & problem statement

2. Solution concept

3. Thesis goals & research questions

4. Evaluation design and environment

Deliverables and contributions


ПШ

Deliverables

- Refine design / Advance the construct based on previous evaluation cycle (EVAL 3)
- 2. Integration and adoption of the construct to a real case evaluation environment (USE)
- 3. Conduction of an evaluation (EVAL 4) consisting of
 - a) case study at a industry partner
 - Examine capabilities towards specific EAM use cases
 - · Critically assess cost and benefits
 - b) a series of interviews with multiple other EA practitioners

Expected Contributions / Artefacts

- Refined concept design and construct of the EAD solution approach
- (dis-)prove of the approaches capabilities, critical assessment of cost and benefits
- 3. Inferred conclusions w.r. to the general EAM practice

=> covered by previous work

=> covered by this work

Research Questions

RQ1

What EA model elements can automatically be discovered using runtime information and federated information sources?

RQ2

What challenges/requirements have to be addressed when adopting the proposed EAD solution approach?

RQ3

What are costs* and value proposition for Enterprise Architecture Management?

RQ4

What specific EAM use cases could be enabled using this approach (e.g. cloud fit, cloud governance)?

*refers to non-financial aspects as well

1. Motivation & problem statement

2. Solution concept

3. Thesis goals & research questions

4. Evaluation design and environment

Evaluation Environment at the industry partner

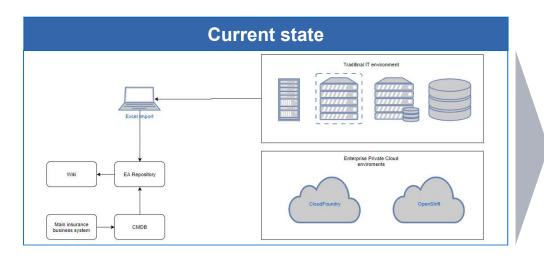
General IT Organisation:

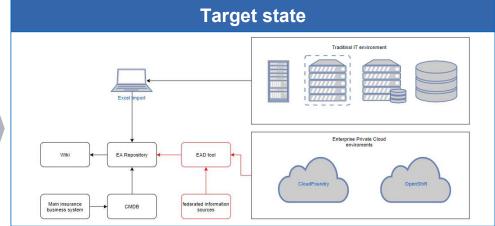
- App. 1.600 employees
- App. 1.800 applications in use

Agile Development:

- Centrally defined development process
- Centrally defined build / deployment process

Cloud PaaS Environments (on premise) in use:


- Pivotal CloudFoundry + Redhat OpenShift
- ightarrow Total of app. 400 deployed cloud services


Key drivers to adopt:

- External: GDPR, ISO 22301 (BCM), VAIT
- Internal: Cloud Migration Project, BCM, IT Governance

Current EA documentation process for cloud environments:

- Performed manually
- No formal process defined

Research Approach – Case Study at a German insurance enterprise

Main building blocks:

Requirements Analysis

- Literature review
- Semi-structured interviews with industry partner

Evaluation Design

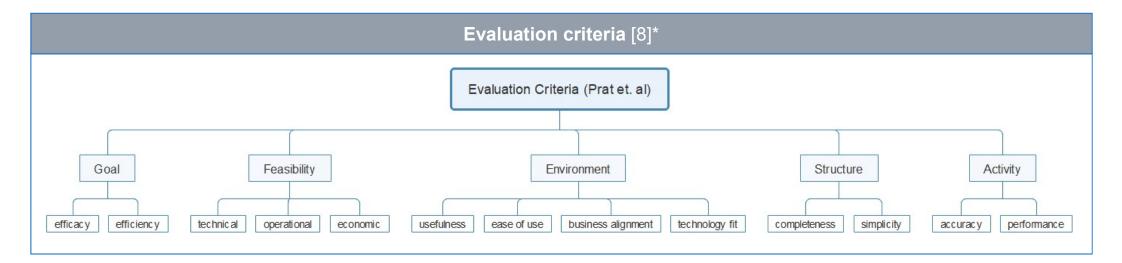
- Select & define evaluation criteria
- Determine mix of methods and measurements to be used

Evaluation

- Inside view: Semi-structured interviews / KPIs / Gap-Analysis
- Outside view: Semi-structured interviews with multiple EA practitioners

Conclusion

- Reflect the achievements against requirements and status quo
- Assess the cost / benefit ratio of adopting the solution approach
- Assess applicability with other EA practitioners


Evaluation details

		Methods used:	Desired outcome:
	identify requirements	Iiterature review semi-structured interviews / incl. questionnaire / archival data	→ what is important / what is not?→ define target meta model
	design the evaluation	 Define relevant evaluation criteria (based on Prat. et al) Define the case study (subjects, methodologies and procedures) 	→ evaluation & case study plan
	determine status quo	obtain archival data (data exports)	→ quantitative / qualitative data→ as-is meta model
	1 st iteration (EAD)	EA discovery Quantitative measurements / Gap-Analysis / Comparisons	→ descriptive stats / KPIs→ achieved meta model
	feedback	Ask feedback from key stakeholders	→ iterative feedback
	refine	Incorporation of feedback and refinement of the prototype	→ improved construct
	2 nd iteration (EAD)	EA discovery Quantitative measurements / Gap-Analysis / Comparisons	→ descriptive stats / KPIs→ achieved meta model
4	critical assessment	Critically assess the costs and benefits Conduct interview with other EA practitioners	→ answered research questions

Evaluation aspects & criteria

- Fulfillment of requirements
- Satisfaction of information demand
- Information surplus
- Data quality surplus (accuracy, completeness, consistency, ..)
- Effort reduction due to automation

Benefit aspects

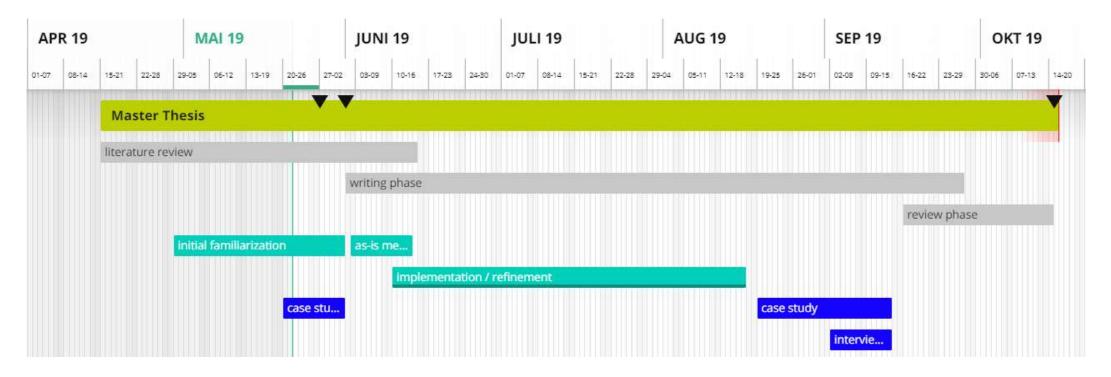
- Preconditions & barriers to adopt
- Limitations
- Side effects on
 - people,
 - processes,
 - organisation (how invasive?)

Cost aspects (also non financial)

*subset of the hierarchy of evaluation criteria acc. to Prat et al.

1. Motivation & problem statement

2. Solution concept


3. Thesis goals & research questions

4. Evaluation design and environment

Timeline & Next Steps

In progress:

- Literature review on requirements & challenges of EAD
- Case study design
- Training on the prototype

Next Steps:

- 01.06.2019: Start at the industry partner
- Analyse AS-IS situation and requirements

Backup

Ludwig Achhammer

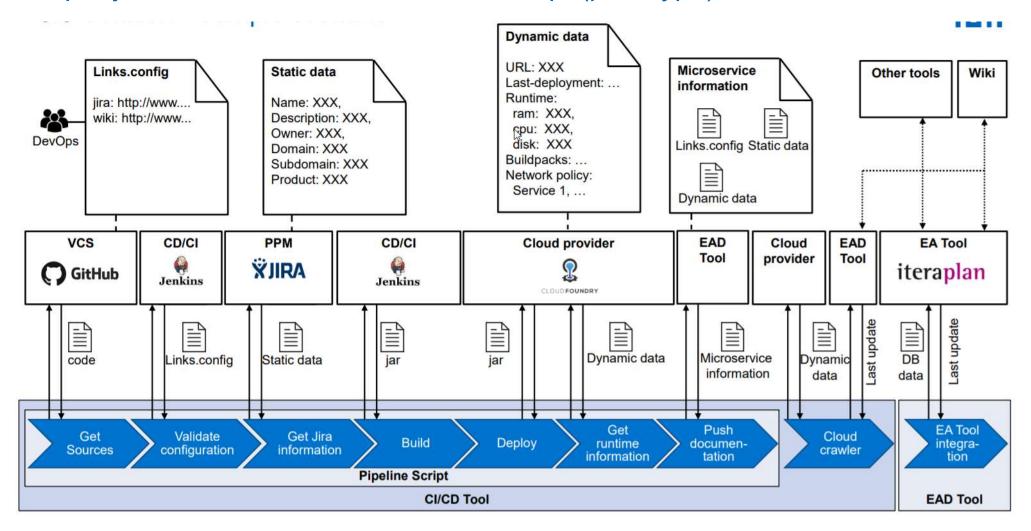
Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

Boltzmannstraße 3 85748 Garching bei München

Tel +49.89.289.

Fax +49.89.289.17136

ludwig.achhammer@tum.de wwwmatthes.in.tum.de



Backup

Exemplary instantiation of the solution concept (prototype)

References

#	Title	Authors	Year
[1]	Enterprise Architecture Documentation: Current Practices and Future Directions	Sascha Roth; Hauder, Matheus; Farwick, Matthias; Breu, Ruth; Matthes, Florian	2013
[2]	Automation Processes for Enterprise Architecture Management	Farwick, Matthias; Agreiter, Berthold; Breu, Ruth; Ryll, Steffen; Voges, Karsten; Hanschke, Inge	2011
[3]	Towards Integrating Microservices with Adaptable Enterprise Architecture	Bogner, Justus; Zimmermann, Alfred	2016
[4]	Towards Integrating Microservices with Adaptable Enterprise Architecture	Bogner, Justus; Zimmermann, Alfred	2016
[5]	Enterprise Architecture Documentation: Empirical Analysis of Information Sources for Automation	Farwick, Matthias; Breu, Ruth; Hauder, Matheus; Roth, Sascha; Matthes, Florian	2013
[6]	A Requirements Based Approach for Automating Enterprise IT Architecture Modeling Using Multiple Data Sources	Valja, Margus; Lagerstrom, Robert; Ekstedt, Mathias; Korman, Matus	2015
[7]	Towards Living Landscape Models: Automated Integration of Infrastructure Cloud in Enterprise Architecture Management	Farwick, Matthias; Agreiter, Berthold; Breu, Ruth; Häring, Matthias; Voges, Karsten; Hanschke, Inge	2010
[8]	A Taxonomy of Evaluation Methods for Information Systems Artifacts	Prat, Nicolas; Comyn-Wattiau, Isabelle; Akoka, Jacky	2015