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Abstract

As the popularity of blockchain systems is continuously growing and advantages of block-
chain technology is common knowledge, organizations and users with new business ideas
explor blockchain systems for their use-cases. However, many of these use-cases require
authentication and access control of real-world entities, as only a limited group of people
from a certain organization or with specific attributes should be able to use the functionality
of a smart contract. Opposed to traditional systems, authentication and access control on
the public blockchain still is in an early stage with few mechanisms and research available.
Hence, with this work complement this research by proposing an authentication and access
control mechanism at smart contracts for real-world entities.

During our research we define potential use-cases and survey existing research of traditional
access control systems. Furthermore, we explore related work of authentication and access
control at smart contracts. Considering the insights we design and implement an authentica-
tion and attribute based access control (ABAC) system that allows owners of smart contracts
to restrict access to trusted accounts of real-world entities that hold certain attributes. As
the smart contract that evaluates the access request from a real-world entity needs to trust
the authenticity of attributes, we bootstrap the SSL/TLS certificate public key infrastructure
to associate attributes and endow trust to accounts of real-world entities. To create this
link between SSL/TLS certificates and the accounts of real-world entities we leverage the
SSL/TLS-based identity assertion and verification system On-Chain AuthSC and create a
sub-endorsement framework. Subsequently, we design the ABAC framework such that it
can be implemented in any smart contract to protect its functionality. The interview-based
evaluation of the system design unveils strong interest in our approach. Thus we implement
and integrate the different components into a prototype for the Ethereum blockchain and
conduct an analysis to evaluate its performance.
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1 Introduction

In our everyday life, some resources are not intended to-be-accessed and used by everyone,
hence access and further permissions sometimes need to be limited to a certain group of
entities. This applies to resources in the real-world (e.g. building, substance) and to digital
resources (e.g. document, application). To enforce the protection of a resource against unau-
thorized access and interaction, mechanisms are needed to determine and check the identity,
as well as the permissions of an entity. Meaning, the owner of a to-be-protected resource
needs to be able to authenticate and check the authorization (i.e. access control) of an access
requesting entity.
Research is extensive for authentication and access control of digital resources in general
and multiple mechanisms are available for used, however few research is concerned with
protecting digital resources residing on a public blockchain system. As blockchain systems
are increasingly popular among end-consumers and business organizations, we want to com-
plement the existing research with a system that allows authentication and access control of
real-world entities at digital resources on the public blockchain. More precisely, we elaborate
the design and implementation of a system, that is intended for owners of digital resources on
public blockchains, that want to authenticate and control access of real-world entities. In order
to limit the scope, but also maximize the impact of our contribution and reach the largest
possible base of potential users, we design and develop for the popular Ethereum blockchain.
The to-be-protected digital resources are the applications on the Ethereum blockchain, called
smart contracts.

Authentication and access control is based on the evaluation of characteristics. Hence, an
access requesting real-world entity needs to show desired characteristics and provide a proof
to the entity that evaluates an access request. In the real-world a common proof is a photo ID
that specifies characteristics as name and age, while in digital systems often certificates are
used. The trust in the authenticity of a proof is crucial, as otherwise no trust is endowed in the
characteristics of a real-world entity. Therefore, such proofs are issued by generally trusted,
central entities as a government or a certificate authority. However, as a public blockchain is a
decentralized system, central trust providing entities are not available. Furthermore, although
recent research is actively elaborating a decentralized trust providing infrastructure, no such
system has been successfully established yet. Therefore, to enable authentication and access
control at smart contracts on the public blockchain, we first need to create an endorsement
framework that endows accounts of real-world entities with trust.

Opposed to most existing research for public blockchain systems we decide against creating
a new trust infrastructure on the blockchain, but to bootstrap an existing one. This allows
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1 Introduction

us to facilitate fast adaption of our system, as we may leverage a large and proven trust
infrastructure. However, as no such infrastructure exists on the Ethereum blockchain, we
bootstrap the blockchain external SSL/TLS certificate public key infrastructure.
It comprises multiple tree-like hierarchies of SSL/TLS certificates, that are linked with public
key cryptography. The certificates at the root of each hierarchy act as trust anchors issued by
trusted central certificate authorities, while the certificates at the leaves of the hierarchy each
link a public key to the Fully Qualified Domain Name (FQDN) of a website. Furthermore,
SSL/TLS certificates usually contain further characteristics (i.e. attributes) that describe the
organization that operates the website.
Our research leverages the SSL/TLS public key infrastructure to endow trust and associate
these attributes to accounts of real-world entities on the blockchain for access control at
smart contracts. To do so, we use On-Chain AuthSC, a SSL/TLS-based identity assertion
and verification system for the Ethereum blockchain developed by Groschupp et al. in
[33]. However, as On-Chain AuthSC only supports the endorsement of real-world entities
that are owners of SSL/TLS certificates, we complement the system with a sub-endorsement
framework that allows to associate the trust and attributes to every real-world entity that owns
an account on the blockchain. More specifically, we introduce the concept of decentralized
Registries that are endorsed with their owners SSL/TLS certificate by On-Chain AuthSC. At
these Registries the owner of the endorsing SSL/TLS certificates can create sub-endorsements
for accounts of real-world entities. These accounts can then leverage the attributes and the
endowed trust of the SSL/TLS certificate for authentication and access request evaluation at
a smart contract that uses the access control framework. As we bootstrap the attributes of
SSL/TLS, our access control needs to evaluate access requests based on attributes. Hence,
after careful evaluation we design and develop an Attribute-Based Access Control (ABAC)
mechanism. An ABAC framework, that decides whether a sub-endorsed account of a real-
world entity may access the functionality of a smart contract, based on the evaluation of trust
and attributes of the endorsing SSL/TLS certificate.

1.1 Problem Statement

The general goal of our research is to create a system that enables authentication and access
control at smart contracts. We want to allow owners of smart contracts to restrict access to
a selected number of accounts from real-world entities, that are indirectly endorsed by a
SSL/TLS certificate with specific attributes. To achieve our goal we have to overcome the
following problems:

• No source of trust for real-world entities:
Currently there is no widely trusted entity or a comparable solution that vouches for
the authenticity of attributes associated to a real-world entities on a public blockchain.
In order to enable authentication and access control at smart contracts we need to create
trust.

• Exclusion of real-world entities without a SSL/TLS certificate:
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1 Introduction

On-Chain AuthSC only supports the endorsement of real-world entities that are owners
of SSL/TLS certificates. To increase participation in our system, we need to extend the
endorsement framework to also support endorsements for real-world entities that do
not own a SSL/TLS certificate.

• Integration of On-Chain AuthSC:
As we use the standalone system On-Chain AuthSC within our system, we have to find
a way to overcome potential integration challenges.

• Attributes of SSL/TLS certificates are not designed for authentication and access
control on the blockchain:
SSL/TLS certificate are not designed as a trust source and an attribute repository for
real-world entities on the blockchain. We have to explore how to best access and retrieve
attributes from the certificates, link them to real-world entities and evaluate them in the
access control mechanism.

1.2 Research Questions

To provide guidance for our research, we define the following research questions (RQ) which
we intend to answer during this work:

RQ1: Which are the major access control practices and technologies?

For a successful design and the development of a system that enforces access control at smart
contracts on the blockchain the comprehension of fundamental access control mechanisms is
needed. It is important to identify the most prominent mechanisms and determine if and
how these can be applied on the blockchain. Especially, in due consideration of SSL/TLS
certificates, as trust providing entities for the real-world entities. Furthermore, in order for our
contribution to be relevant for research in blockchain, we also need to identify related work
that already applies access control on the public blockchain. Hence, we pose the following
two sub-questions:

1.1 Which access control practices and technologies are predominant in the literature?

1.2 Which access control practices and technologies are relevant in blockchain?

RQ2: How can a SSL/TLS-based identity assertion and verification system contribute trust to
authentication and access control on the blockchain?

In our research we leverage On-Chain AuthSC, a SSL/TLS-based identity assertion and
verification system, to expand trust to accounts of real-world entities on the blockchain. Given
an endowment of trust from such a SSL/TLS certificate, accounts shall be authenticated and
authorized to use services at smart contracts. In order to successfully expand trust and endow
accounts, we need to understand SSL/TLS certificates and SSL/TLS-based identity assertion
and verification systems. Hence, we pose the following two sub-questions:
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2.1 Which of its properties endow a SSL/TLS certificate with an increased level of trust?

2.2 What are challenges of bootstrapping a SSL/TLS-based identity assertion and verifica-
tion system?

RQ3: How can we achieve on-chain authentication and access control of real-world identities
at smart contracts considering the constraints of blockchain?

The final goal of our work is to elaborate a system design and prototype implementation of
a blockchain-based authentication and access control solution for smart contracts. In order
to create a valuable design, we need to discuss and evaluate possible design choices and
consider limitations of blockchain. Moreover, we need to define an application life-cycle, as
well as discuss and evaluate possible choices during its implementation. Hence, we pose the
following five sub-questions:

3.1 Which are the constraints of blockchain that affect the development of our solution?

3.2 What are potential system designs for a blockchain-based authentication and access
control solution for smart contracts?

3.3 What are the advantages and disadvantages of the different system designs?

3.4 What is the application life-cycle of a blockchain-based authentication and access control
solution for smart contracts?

3.5 How can a blockchain-based authentication and access control solution for smart
contracts be implemented?

1.3 Research Methodology

To successfully design a system that meets the specific (business) needs of potential users,
our research adheres to the Design Science Research methodology, a well established "[...]
problem solving process" [36, pg.82] in Information Systems.
The design science research methodology aims to create an artifact, in our case an instanti-
ation, i.e. a software implementation. It is created in a cycle of development and evaluation
considering and contributing to the current knowledge base to solve a complex problem
related to a business need. Since the introduction of the first specific design science research
model by [36], multiple models have been discussed by researchers.

We conduct our research according to the design science research model proposed by [53]
depicted in Figure 1.1. The model is structured as a six step sequential process, but does
not require researchers to walk through the whole process in that specific order. Different
possible entry points allow researchers to start at the process step which matches the origin
that triggered their research. This could be either an identified problem, an objective, an
already existing object or already a solution. Furthermore, the process is not necessarily linear.
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It may contain multiple cycles that allow to repeat activities to revise the work based on
input received during the Evaluation and Communication steps. In the following we traverse
through the model from the entry point induced by our research origin and describe the
different process steps, i.e. activities in the context of our work.

Figure 1.1: Design Science Research Process from [53, pg.93]

In their research Gallersdörfer [32] and Groschupp [33] designed the SSL/TLS-based on-
chain identity assertion system On-Chain AuthSC and suggested future research to explore
opportunities in the context of authentication and access control based on SSL/TLS certificate
attributes. Since our research aims to explore these opportunities and tries to find a solution
for the limited availability of access control mechanism in blockchain, we pursue the problem
centered approach.

The first activity is the Problem Identification & Motivation, where the research problem
has to be defined, the motivation be depicted and the contributions value to be justified [53].
We elaborate this step extensively in previous sections.
In the next step Objective of a Solution we determine the objectives of our solution, by first
investigating the problem statement and conducting an analysis of On-Chain AuthSC and the
related work in authentication and access control mechanisms for blockchain. The literature
review revealed a research gap in on-chain access control mechanisms for smart contracts and
on-chain identity federation. These insights allow us to define our solutions objectives among
others as development of a system for ABAC at smart contracts for real-world identities,
which bootstraps trust from an established trust infrastructure and is consistent with existing
Ethereum authentication, access control and identity management design patterns.
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Next in the the Design & Development step of the model the artifact is created by defining
the requirements and architecture as groundwork for its development [53]. In the first itera-
tion of the process we want to only define the requirements and a preliminary architecture of
the system to evaluate it before implementation.
Therefore, in the Demonstration step, where "[...] the efficacy of the artifact to solve the
problem" [53, pg.90] is tested, we create and conduct interviews with experts to determine
how to improve the preliminary design that it can be a better foundation for the development
of our artifact.
In the first iteration of the process during the Evaluation we only evaluate the design of our
solution based on the expert interviews, since we do not have a prototype implementation
yet. The insights from the interviews provide valuable feedback for our solution design.

Therefore, we iterate back to the Design & Development step to adjust the design accordingly
and subsequently implement the artifact based on the revised requirements and architecture.
This time during the Demonstration step of the process we deploy our prototype on the
Truffle test network to see how well the access control performs under different conditions.
Next in the Evaluation step the goal is to determine the degree to which the artifact solves
the research problem [53]. Hence, we conduct a functional and a performance analysis [36],
evaluating among others the cost-efficiency of our artifact, based on data collected from the
previously described deployment on the Truffle test network. Furthermore, we evaluate if
the requirements which we defined in the Design & Development step are satisfied by our
implementation.

The final step of the Design Science Research Model is the Communication, including the
appropriate communication of the research problem, its solution, and the value of the
contribution. Communication can be either in the context of a professional or scholarly
publication [53].The communication of our work is provided through this master’s thesis, the
final result of the design science research for the development of a blockchain access control
mechanism.

1.4 Contribution

The primary contribution of our research is a system design and a prototype implementation
of a blockchain-based authentication and access control system for smart contracts that
leverages trust from SSL/TLS certificates in order to authenticate and authorize blockchain
accounts of real-world entities. More specifically, the accounts of real-world entities are linked
to SSL/TLS certificates so that they can leverage trust and attributes of the SSL/TLS certificate
to authenticate and authorize at smart contracts. In the prototype implementation of the
system we provide a library, as well as reference smart contracts developed in Solidity for an
easy application of our ABAC system on the Ethereum blockchain.
By developing such a novel type of ABAC system we contribute to the still relatively young
blockchain authentication and access control research landscape. Opposed to existing work,

6



1 Introduction

which either creates a new or does not use any source of trust, we explore trust endowment by
an existing trust infrastructure from outside the blockchain. Furthermore, our system is one of
the first implementations of ABAC on the Ethereum blockchain and the first implementation
that leverages the On-Chain AuthSC identity assertion and verification system proposed by
[33].

1.5 Outline

Subsequent to the Introduction we explain the theory that is fundamental for this research in
chapter (2) Fundamentals. We first introduce identity management, blockchain technology
and Ethereum, before we provide an overview of Public Key Infrastructure and On-Chain
AuthSC. In chapter (3) System Design we present use-cases, define system requirements and
conduct a survey of access control mechanisms. Furthermore, we design the architecture of
our system, as well as specify its application lifecycle. The prototype implementation of our
system in Solidity is specified in chapter (4) System Implementation. Here we explain the
key components, the architecture and discuss implementation choices. In chapter (5) System
Evaluation we assess our system based on expert interviews and a performance analysis,
before we present related work for blockchain-based authentication and access control in
chapter (6) Related Work. Finally, in chapter (7) Discussion we discuss our research and
provide suggestions for future work.
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2 Fundamentals

In this chapter we introduce the foundational concepts and theories that readers need to
understand to follow our research and the development of our system. Our goal is to improve
access control at smart contracts of the Ethereum blockchain, by developping an authentication
and access control system for real-world entities that leverages SSL/TLS certificates attributes.
Since our research is about authentication and access control of digital identities, we start
with shortly describing the fundamentals of identity and the identity lifecycle in section 2.1.
Moreover in this section we also provides the groundwork for the deeper analysis of access
control in section 3.4. Next, we briefly introduce the concept of blockchain in section 2.2,
before we explain the Ethereum blockchain and its central components as smart contracts
and Externally Owned Accounts (EOAs) in more detail. Subsequently in section 2.3, we
explain centralized and decentralized Public Key Infrastructure (PKI), a central component
of the certificate based identity assertion system On-Chain AuthSC, which is the basis of our
development and hence the topic of section 2.4.

2.1 Identity Management and the Identity Lifecycle

Every person is endowed with multiple characteristics, attributes and a specific personality.
The identity is a representation of that person "[...] in a particular context and consists of
identifiers and credentials [...]" [16, pg.287]. An identifier is a collection of one or more
attributes and/or characteristics that uniquely identify that single entity [10]. This could be
the first name, last name and birth date if this combination would uniquely identify every
person. Credentials are used to show proof that one is allowed to use that identity. A popular
example for a credential is a passport or a birth certificate. In some cases it is also possible
that identifier and credential are the same item, as for example in the case of biometric
characteristics.
A digital identity is a specific type of identity, representing an entity (e.g. person, IoT decive) in
a communication or computer system to allow virtual interaction with other entities. Possible
identifiers are an IP address or an account address in the context of blockchain. Credentials
are username and password or the private key to an account address. As communication
technology adds another layer of abstraction, a system and framework is needed to manage
digital identity [16]. This framework is called identity management and includes lifecycle
management, authentication and authorization of digital identities [16].
The identity lifecycle describes the different actions taken during the digital identities existence.
At first the digital identity is created by an entity or provisioned by a system administrator
for the entity. It is continuously managed and maintained either by a central entity or by the
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2 Fundamentals

entity itself. The extent of how free the entity is in managing its identity depends on the type
and implementation of the system. One aspect of identity management is the authorization of
identities. To limit access, owner of resources as documents or services can implement access
control mechanisms, which require an identity to be authorized before using it. To access a
resource, identities then first have to be authenticated. This process can be defined as "[...] the
act of a system establishing confidence in an identity through the checking of credentials [...]"
[10, pg.28]. In the access control step the mechanism then decides whether to grant or deny
access to the resource based on an evaluation of the identities authorization [41]. We elaborate
access control and authorization in a much deeper analysis later in a survey of access control
in chapter 3.
The final step of the identity lifecycle is the de-provisioning or destruction of an identity. It is
executed if the entity represented by the identity or the central authority which provisioned
the identity decides that it should no longer be an active representation of the entity in the
computer or communication system [16].

2.2 Blockchain Technology and Ethereum

The term blockchain is coined by Satoshi Nakamotos in his well known paper "Bitcoin:
A Peer-To-Peer Electronic Cash System" [50]. Although he did not specifically define the
term blockchain, he did describe the concept which has become increasingly popular under
the term blockchain: a cryptographically-secured, immutable, append-only chain of blocks
distributed in and maintained by a peer-to-peer network [50]. While with Bitcoin the scope of
blockchain is mainly limited to financial transactions, other projects amplified the scope of
blockchain to leverage its potential beyond financial applications. The most popular one is
the Ethereum project proposed in 2013 by Vitalik Buterin in the Ethereum Whitepaper [13].
In contrast to Bitcoin, which satisfies the very specific use-case of exchanging coins among
participants, Ethereum aims to be the generic blockchain platform on which an application
for any use-case can be deployed.
During our research we develop our prototype on the Ethereum platform and thus focus
on the illustration of Ethereum in section 2.2.2 to 2.2.5. Nevertheless, to be comprehensive
and comprehensible, we also provide a short introduction of the fundamental concepts of
blockchain and distributed ledger technology in section 2.2.1.

2.2.1 Blockchain: A Peer-To-Peer Distributed Ledger

A blockchain is a distributed system, consisting of an append-only, immutable ledger which
is distributed among participants of a peer-to-peer network [7]. Members of the network
are identified by a unique account address and can read, update and add to the state of
the ledger by submitting transactions. The information stored in a transaction is depending
on the blockchain system. For example, while the content of a Bitcoin transaction is nearly
only limited to information regarding ownership and transfer of tokens, transactions in
Ethereum may contain the code of a complete distributed application, i.e. smart contract. In a
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blockchain, as depicted in Figure 2.1, multiple transactions are bundled in the body of a block.
The header of the block contains further data which is needed for the administration of the
ledger. Given a successful selection and verification of a block in accordance with a consensus
mechanism defined by the community, each new block is chained to the previously added
block of the chain, by adding a hash from the header of the previously appended block (n+1)
to the header of the new block (n+2).
Due to the chaining of blocks, a blockchain is immutable and append-only [7]. No data
previously added can be modified or reordered without invalidating the blockchain from the
modified block until the most recent one. If the data of a transaction in block n is changed,
the hash of the transactions in the header of block n changes and hence its header changes.
Since the hash of the header of block n is included in the header of block n+1, a change of
block n also changes block n+1 and every succeeding one.
Another central characteristic of a blockchain is the transparency of information stored on the
ledger [7]. Every data stored on the blockchain is available to any interested party, because
before new transactions are bundled and appended, each transaction first needs to be verified
by the community. Thus due to the high availability of the data, transparently stored on
the distributed ledger, the privacy and secrecy of information is not ensured. However,
due its transparency, the communities trust in the consensus protocol and the blockchain’s
cryptographic properties, trustless interaction between participants is enabled [7]. Hence, no
intermediary, as a bank or payment service provider, is required when two participants are
exchanging funds. Given they have already created an account and a cryptographic key pair,
users only need to create and sign a transaction and subsequently send it to the peer-to-peer
network. Then Miners validate the transaction, include it in a block and append it to the
blockchain. Once the block with the transaction is appended and accepted by the community,
the state is changed, e.g. the funds are exchanged.

Figure 2.1: Structure of a blockchain

A variety of blockchain systems is available, because different requirements demand different
manifestations of blockchain characteristics. Most systems differ in ownership and accessibil-
ity. While in permission-less and public blockchains as Bitcoin anybody can participate and
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no central entity is the owner of the blockchain, private permissioned blockchains as Hyper-
ledger are owned by a central organization and can only be accessed by already registered
entities. Another frequent difference is the choice of the consensus mechanism - the policy of
how the community agrees on the state of the ledger [7].
In the following, we introduce the specific characteristics of Ethereum, as it is the system of
choice for our development and thus highly relevant for our readers.

2.2.2 Introduction to Ethereum

In an abstract way, Ethereum can be summarized "[...] as a transaction-based state machine
[...]" [68, pg.2]. Peers can modify a homogeneous, distributed state tracked by the Ethereum
blockchain by creating and submitting transactions to a peer-to-peer network. Executing the
transactions requires the use of distributed computation resources. Miners are incentivized
by the submitter of the transaction to provide these resources for executing and mining
transactions into a new block, by receiving a fee paid in Ether, the currency of the Ethereum
network. The payload of the transaction is code, that might invoke state transitions. It
is executed by the miner on a local instance of the Ethereum Virtual Machine (EVM), an
abstraction layer that " [...] defines the rules for computing a new valid state from block to
block" [27].
The goal of Ethereum is to leverage its described technical characteristics and architecture
to create a shared world computer with a shared state, shared computation resources and
shared memory, that stores data and runs Distributed Application (DApps) for any use-case.
Opposed to regular applications, which run on single devices, DApps are stored and executed
on multiple devices of a distributed system simultaneously. Therefore, availability of the
DApp is not dependent on a single entity. The logic of DApps is implemented in one or
multiple smart contracts in the Turing-complete, object-oriented programming language
Solidity [26]. Once deployed via a transaction, smart contracts implement the services and
rules of DApps and are at the same time an interface through which users can access the
application. DApps, respectively smart contracts often can also be accessed via a web-app, in
order to increase the user-experience and reduce barriers of entry for users not familiar with
blockchain technology.

2.2.3 Ethereum Accounts

In Ethereum, an account is an object that is part of the blockchain’s state [26]. Each account is
able to send, receive and store Ether, the currency of Ethereum. Accounts are associated to a
20-byte address for identification and accessibility. Thus, the interaction with other accounts,
as for transferring Ether from one to another is possible. An account comprises a tuple of
four fields [26]. The nonce, an integer value which is increased for each transaction sent from
the account, in order to ensure that it can only be sent once. The balance field, which specifies
the Ether the account currently stores, an optional field for storing contract code and a field
for storage. Ethereum knows two different types of accounts: Externally Owned Accounts
(EOAs) and Smart Contracts (SCs).

12



2 Fundamentals

Externally Owned Accounts are associated to a public, private key pair. The private key
consists of 32 bytes, which need to be randomly generated. By applying a cryptographic
algorithm, the Elliptic Curve Digital Signature Algorithm (ECDSA), multiple 64-bytes public
keys can be derived from one private key. However, only one public key is linked to an EOA,
as the unique address of an EOA is the last 20 bytes of the public keys Keccak-256 hash [68].
The individual who possesses the private key is able to control any EOA, which public key is
derived from the respective private key. Hence, the possessor is also able to control any Ether
stored at the private keys accounts. As a transaction is signed data that comprises a message
[26], the EOA can create and sign message with its private key to create a transaction. The
implications are discussed in more detail in section 2.2.4.

A smart contract account is an account which comprises persistent storage and a program, i.e.
smart contract, that resides on the blockchain and can be executed by EOAs or other smart
contract accounts. Opposed to EOAs, smart contract accounts store the smart contract code
in the respective contract code field in the account tuple. As a smart contract account does
not have a private key, it only is controlled by its bytecode [26]. Furthermore, it can not sign
messages and thus is not able to submit transactions. Nevertheless, it can emit events and
execute other smart contracts functions and transfer Ether by sending messages. However,
smart contract communication is limited to the Ethereum network, as Ethereum requires
full determinism. Consequently, each and every execution on the blockchain needs to be
repeatable at any given point in time. As the behaviour of off-chain data is unpredictable and
might change over time, smart contracts are depending on Oracle services to access external
data [31].
The smart contract code is deployed on the blockchain as bytecode, but usually is developed
in Solidity, a Turing-complete, but higher-level programming language. Influenced by
major programming languages as C++ and JavaScript it supports concepts as libraries and
inheritance and allows developers to build complex applications comprising of multiple
smart contracts in a user-friendly programming environment [62]. When the development in
Solidity has finished, a smart contract account can be created by an EOA by deploying the
code of the contract via a transaction to the Ethereum network. The address of a smart contract
account consists of the last 20 bytes of the Keccak-256 hash of a value that is deterministically
generated from the address and nonce of the creating EOA [68].
As smart contracts are immutable once deployed on the blockchain, neither its creator nor
other entities can change the contract code [26]. Changes to the code require redeployment of
the contract code to a different contract account address. Since deployment is associated with
a fee and all Ether stored in the smart contract account could be lost in case of bugs, sufficient
adherence to design patterns and testing (e.g. in a test network) is highly recommended
before deploying the smart contract code on the blockchain. Once successfully deployed,
any account can execute the smart contracts public functions. Nonetheless, developers can
use concepts and rely on design patterns to restrict access to a smart contracts functions.
However, it is not possible to keep the smart contract code or its storage secret, since both can
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be retrieved by analyzing the blockchain with Blockchain Explorers as Etherscan1.

2.2.4 Ethereum Virtual Machine (EVM)

The Ethereum blockchain is continuously transitioning from one state to another as the
participants of the peer-to-peer network interact with its ledger. The Ethereum Virtual Ma-
chine (EVM) ensures the success of each state transition by providing peers with a model
for the execution of code to guarantee identical output among all peers in the network -
a prerequisite to achieve consensus among all peers on the next state of the blockchain [26, 68].

The Ethereum world state consists of all EOAs and smart contract accounts with their
respective storage, as well as the blocks from the initial to the most current one [31]. The
state is changed when a transaction is successfully created, signed, submitted and mined in a
block. As previously described in section 2.2.3 only EOAs are controlled by a private key and
hence are able to sign a message and submit transactions.
A transaction can either be created to transfer Ether to another EOA, deploy a smart contract
on the blockchain or execute a function on an already deployed smart contract [26]. It consists
of the receivers address, the signature of the sender, the value of the to be transferred Ether, a
data field, a value that limits the maximum computational steps supported and the price the
sender is willing to pay for each computational step (i.e. Gas price) [26]. Depending on the
target of the transaction its payload differs. While the data field is empty when transferring
Ether to another EOA, it is populated with the smart contracts bytecode when deploying a
new smart contract on the blockchain. The bytecode of a transaction consists of EVM Opcodes.
For the execution of each Opcode by the EVM a certain computational effort measured in
Gas is needed. The Gas needed for each Opcode is defined as specified in the Ethereum
Yellowpaper [68]. The total price the submitter has to pay, can be calculated by multiplying
the Gas price the submitter is willing to pay with the amount of Gas required for executing
all EVM Opcodes for executing a transaction. Hence, depending on the computational
steps required for the execution, the submitter must store a sufficient amount of Gas in the
transaction. If the transaction runs out of Gas before the execution has finished, it fails and
the Gas is not refunded to its submitter. If the transaction succeeds, it is included in a block
and sooner or later be appended to the blockchain, changing its state.
As smart contracts can not submit transactions, they communicate by sending messages
which are not signed, as to execute a function on another smart contract or to transfer Ether.
Messages are very similar to transactions, but always need to be triggered by a transaction.
Consequently they do not need to be directly stored on the blockchain, as they can be
reproduced when redeploying the respective transaction [26].

2.2.5 Asymmetric Cryptography, Authentication, Authorization in Ethereum

The state of a blockchain can be changed, when an EOA signs and submits a transaction
to the Ethereum network. The EVM, Ethereums execution model for state changes, needs

1www.Etherscan.io, visited 13/12/2020
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to ensure, that changes to the blockchains state can only be executed after authentication
and in respective cases with sufficient authorization. Otherwise, anybody could access all
Ether stored on any EOA and transfer it to any other account. Consequently, Ether would
loose most of its value and Miners would not be incentivized to provide their computational
resources for changing the blockchains state anymore, as they receive a reward in Ether for
including transactions in a block and appending it to the blockchain. Furthermore, the system
also needs to guarantee that a transaction can not be intercepted and modified after it was
submitted. Else malicious entities could change the receiver of an Ether transfer, the code of a
to be deployed smart contract or a function call.
To prevent these unauthenticated and unauthorized changes, Ethereum uses asymmetric
cryptography. EOAs are required to sign any transaction before it is submitted with the
private key of an asymmetric key pair. Asymmetric cryptography, or also called public key
cryptography, leverages characteristics of mathematical functions to encrypt or sign data
packages [4]. Such a function, also called a trap-door function, can very easy be calculated,
however it is not possible to compute its inverse in reasonable time, unless a secret code is
available that allows to take a shortcut for inversing the function [4].

As every information stored on the blockchain needs to be verifiable by anybody, encryption
is not used in Ethereum. Nevertheless, Ethereum leverages asymmetric cryptography, more
specifically the Elliptic Curve Digital Signature Algorithm (ECDSA) to create public, private
key pairs for digital signing. While the private key is used for signing transactions, i.e creating
a digital signature, the public key is used for validation. In order to create the digital signature
for a transaction, the private key of an account is combined with the transactions content
(i.e. message) by the ECDSA algorithm. Due to the specific characteristics of elliptic curve
arithmetics, which we discussed earlier, only a person in possession of the signers private
key can reproduce the signature [4]. However, for verification of the digital signature, only
the public key is needed. Therefore, the EVM can use the EOAs public key to verify that the
transaction was sent only by the owner of the EOA (i.e. owner of the private key) and was
not modified during transfer. Moreover, the verification of the signature by the EVM is at the
same time an authentication, as the EVM is provided with a very strong proof that the sender
of the transaction is the owner of the EOA, thus the owner of all funds and smart contracts
related to the account. It also is an indirect authorization, as if authenticated, the submitter of
the transaction can use the stored Ether as desired. Furthermore, smart contracts in Ethereum
might implement additional layers of access control. EOAs might be required to first become
authorized by the respective or another smart contract before they are granted with access to
the smart contracts services. One possible and simple solution is whitelisting of accounts, by
adding addresses of approved accounts to a list stored in a smart contract. The address of an
account that sends a transaction or message to invoke a function, is first checked against the
members of the whitelist. Only if its address is listed, the invoking gets executed. However,
these access control solutions have to be implemented by the developers of smart contracts
and are not part of the out of the box Ethereum (cf. chapter 6).
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2.3 Public Key Infrastructure (PKI)

A Public Key Infrastructure (PKI) enables the secure communication between users of a
computer network. It is a framework that defines rules, policies, standards and programs
that specify how to identify and register new users and provide them with means to establish
a secure connection for communication in the network [6]. Moreover, PKI creates a trust
infrastructure, that endows entities (e.g. servers) with proof that they are actually the identity
they claim to be. Hence, it is much harder for a malicious entity to deceive users into
communication and interaction with a fake identity which claims to be someone else in order
to manipulate or steal.

In PKI public, private key pairs are usually created with asymmetric cryptography (cf. section
2.2.5) and are associated to participants of the network. The (hashed) public key is openly
available and depending on the type of PKI represented in a different manner. The private
key for signing messages in order to establish a secure connection by proofing ownership of
the public key is kept secret by the owner of the respective public key [6].
The detailed specification of PKI varies depending on type and use-case. Hierarchical or
traditional PKI is based on trust in central entities, i.e. roots which act as trust anchors. They
endow entities with trust by issuing certificates, a specific representation of the public key.
The secret private key can then be used by an entity to proof ownership of the certificate,
hence proof trust endowment from a globally trusted central entity [6]. The most popular
application of hierarchical PKI is to establish secure communication over the internet, as
without PKI malicious entities could deceive users by faking the look of a trusted website to
steal users credentials as username and passwords. Therefore, Certificate Authorities (CA)
being trust anchors, issue SSL/TLS certificates to web-servers and website owners respectively
[6]. At the end-user, browser verify the certificate and establish a secure connection before
opening a website, given its SSL/TLS Root certificate is trusted.
Another approach to PKI is to create trust in a distributed network without relying on central
authorities as trust anchors [1]. In such a system each user receives a public, private key
pair. A Web-of-Trust is created among participants by signing claims of other users, given the
signing party is confident that the claim reflects the truth. Before interacting with another
user, users first have to check the claims and signatures of the respective signees. Based on
the success of the signature verification and their general trust in the signees they can decide
whether they do trust the other party. A prominent project by the W3C that is facilitating
decentralized PKI and leverages blockchain are Decentralized Identifiers (DID) [55].
In section 2.3.1 we first introduce the traditional PKI that leverages SSL/TLS certificates,
before we briefly introduce the concepts of DID in section 2.3.2.

2.3.1 Hierarchical PKI

The authentication of websites and web servers as well as the establishment of a secure
communication connection between client and server on the internet today is conducted
by executing the Transport Layer Security (TLS) protocol. The protocol leverages so-called
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SSL/TLS certificates of the X.509 standard, structured in a hierarchical PKI [6]. In general it is
a tree of certificates, linked by public key cryptography in a chain of trust from the top to
bottom. For each SSL/TLS certificate a public, private key pair is created. The public key is
stored in the SSL/TLS certificates document, while the private key is kept secret by the owner.
Depending on the SSL/TLS certificates type and its level in the hierarchy the private key can
be used to sign and endorse another certificate from an equal or lower level. As depicted
in Figure 2.2 the different levels comprise three different types of SSL/TLS certificates. As
SSL/TLS certificates are the primary type of certificate used in our work, we may refer to a
SSL/TLS certificate only as a certificate for the remainder of this research.

Figure 2.2: Exemplary SSL/TLS certificate PKI hierarchy

On the top level, a very limited number of Root certificates are acting as trust anchors, publicly
stored for validation of lower-level certificates in root store of browsers, operating systems and
other applications [6]. Root certificates are self-signed with their respective private key and
are issued and owned by about 15 trusted central Certificate Authorities (CAs). These CAs are
usually companies or consortia of large and trusted corporations, that are endowed with trust
by its customers and partners to only issue and sign secure certificates to legitimate entities.
However, as there have been controversies and compromises at CAs, questions whether such
a strong centralization is desirable have been raised [38]. Nonetheless, as the system proofed
to be working over the last 30 years and no sophisticated decentralized solution has been
built and established yet, certification is still issued by central entities.
The second level in the chain of trust consists of one or multiple layers of Intermediate certific-
ates, issued by Subordinate CAs [6]. In order to endow certificates with trust, they request a
signature from the private key of a CAs Root certificate. However, Intermediate certificates
can also be signed by the private key of another Intermediate certificate from a chain of
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trust, which includes one Intermediate certificate signed by a Root certificate. Intermediate
certificates are important, as they minimize the risk that a Root certificate needs to be revoked
and a new one needs to be issued and added in a resource intensive process to the root stores
in browsers, operating systems and multiple other applications.
The final level of the SSL/TLS certificate hierarchy comprises so-called Domain or Server
certificates, that are issued by Subordinate CAs to the operators of servers or websites, given a
successful identity verification at a Registration Authority (RA) [6]. To complement the chain
of trust, these certificates are signed with the private key of an Intermediate certificate. As
leaves of the tree-like structure, these certificates are not entitled to sign other certificates.
However, the private key is still required in the server or website validation process, which
we describe in more detail in the Validation subsection.

Although practically a signature in public key cryptography can not be forged, as no known
computer system is capable to compute the private key of a respective public key in reasonable
time, certificates can still be compromised as the private key can be stolen. This is especially
problematic when an Intermediate or a Root certificate is compromised and used to issue
certificates to malicious websites which aim to deceive users in order to steal their data. Hence,
specific blacklists are maintained, which list all certificates which have been revoked by its
issuer. Validating entities as browsers or operating systems check these Certificate Revocation
lists in the validation process before establishing a secure connection with a website or server
[6].

SSL/TLS Certificates

SSL/TLS certificates are specific digital certificates. The validity of a SSL/TLS certificate
is evaluated by the client during the TLS handshake protocol, the sub-protocol of the TLS
protocol which specifies how to authenticate a website or server and establish a secure connec-
tion [25]. In general digital certificates store a digital signature and assign a public and secret
private key to an identity in a computer network, with which the identity can authenticate
itself by following a specific protocol. Depending on the protocol certificates are defined by
different standards, hence might comprise different data fields stored in a different format.
In the TLS protocol for website and web server authentication digital certificates are encoded
with the ASN.1 Distinguised Encoding Rules (DER) and are specified by the X.509 standard
from the X.500 Authentication framework. The third version of the standard, which is still
used for SSL/TLS certificates, was defined in the RFC5280 in 2008 [17]. In addition to the
definition of structure and content of the X.509 v3 certificate, the RFC5280 provides an over-
view of the general approach of the previously described PKI for the World Wide Web and
defines the validation process, as well as the standard for the Certificate Revocation List v2
[17].

In the following we provide an overview of the structure and the content of a X.509 certificate
as specified by chapter four of the RFC5280 [17] and depicted by Figure 2.3. Since some
components are more relevant than others for the development of an access control mechanism
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Figure 2.3: Structure of a X.509 certificate [17]

for real-world entities, we set the focus as required to best understand our research.
The certificate comprises three elements in a sequence:

• The tbsCertificate field, that stores among others information related to the issuer,
subject and status of the certificate.

• The signatureAlgorithm field, that specifies the cryptographic algorithm that was
applied by the CA to create the signature for the certificate.

• The signatureValue field, that stores the CA’s digital signature of the tbsCertifcate.

The tbsCertificate basically is the body of a certificate, as it stores most information for the
validation of the certificate. It consists of ten fields which can store data in different attribute
types. Each attribute type (e.g. organizationName), stored in a certificate field, is associated
to an unique Object Identifier (OID) (e.g. 2.5.4.10) to enable improved information retrieval.
In the following we describe the fields as depicted in Figure 2.3, in the order they are stored
in a X.509 certificate [17].

The version field specifies the version of a certificate. It is needed to determine which type
of fields are supported by a certificate. While the most current version 3 supports all fields
including extensions, a version 1 certificate only supports basic fields. Field serialNumber
contains the serial number of the certificate - an unsigned integer assigned to each certificate,
which is unique among all certificates issued by a CA. In combination with the issuer’s
name (i.e. CA’s name) each certificate can be unambiguously identified. In field three
- signature, the cryptographic algorithm that is used to create the signature is specified
together with some additional parameters. The algorithm identifier must match the one in the
signatureAlgorithm field in the parents sequence. The issuer field can store multiply attribute
types and corresponding values that describe the issuer and signer of the certificate in the
X.501 name type format. The attribute types are identical to the ones in the subject field and
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OID Attribute Type OID Attribute Type

2.5.4.3 commonName 2.5.4.11 organizationUnitName
2.5.4.4 surname 2.5.4.12 title
2.5.4.5 serialNumber 2.5.4.42 givenName
2.5.4.6 countryName 2.5.4.43 initials
2.5.4.7 localityName 2.5.4.44 generationQualifier
2.5.4.8 stateOrProvinceName 2.5.4.49 distinguishedName
2.5.4.10 organizationName 2.5.4.65 pseudonym

Table 2.1: Attribute types of subject and issuer fields [17] with respective OIDs [37]

are provided in Table 2.1. The fifth field - validity specifies the start and end time, within the
CA is willing to endow the subject with trust and guarantee for the validity of the information
stored in the certificate. The subject field stores relevant information of the entity to whom the
certificate is issued. As in the issuer field, data is stored in the X.501 name type format. The
supported attribute types of a X.509 certificate as specified in [17] and their respective OID
defined in [37] are displayed in Table 2.1. In field seven - subjectPublicKeyInfo, the subject’s
public key, which is needed for the TLS Validation process is stored. The issuerUniqueID and
subjectUniqueID fields were added in X.509 v2, but are not relevant for SSL/TLS certificates
and thus not for our work.
In addition to the nine preceding certificate fields, a tenth extensions field was added in
X.509 v3 to store further information in order to link additional attributes to subjects or to
improve and control inter CA relationships [17]. Three very relevant extensions for SSL/TLS
certificates are the Basic Constraints, Key Usage and Extended Key Usage extensions, as they
specify whether the certificate is owned by a CA and in which extend it is allowed to sign
other certificates [14]. Furthermore, the Subject Alternative Name can be used to assign identity
related information as additional domain names and email addresses. Further extensions
specified in [17] are not relevant for our research.

The structure of SSL/TLS certificates is specified by the X.509 certificate standard, however as
some certificates are just used for the basic TLS domain authentication, not all the described
fields are always required. Therefore, the CA/Browser Forum, a joint organization of CAs
and browser software organizations defined different types of certificates [14]. The certificate
types differ in terms of which X.509 fields are required and supported and how the stored
information is verified. Subjects can decide which attributes and thus which level of trust
endowment from a CA is needed. As some certificate types include more than others, a
different extent of validation of the subjects information is required before certification. Hence,
the duration and price of certification differ.
The three different types issued by CAs are Domain-validated (DV) Certificates, Organization-
validated (OV) certificates and Extended-validation (EV) certificates [48]. DV certificates can be
automatically created and are cheap. They only store the domain name and verify if the
subject who is requesting the certificate is in control of the to be certified domain. OV
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certificates require a more sophisticated validation process which requires human involvement,
as organizations need to provide company records. Attribute types and values included
in the subject field in addition to the domain name, are the official organization name, as
well as the business unit, country name, state or province and locality. EV certificates endow
subjects with the highest level of trust, as CAs request a review of legal records of a company.
Attribute types require in addition to the ones in OV certificates are: full company address,
registration number, business category and the subjects place of jurisdiction, incorporation or
registration [15].

2.3.2 Decentralized PKI

A first approach to establish a trust infrastructure without central, trusted entities was
proposed by Phil Zimmerman in 1991 with Pretty Good Privacy (PGP) [70]. PGP does not rely
on central institutions to verify its participating users, but rather leverages a decentralized
Web-of-Trust, where users verify themselves by providing a collection of certifying signatures
from other users. The idea of such a Web-of-Trust faced multiple challenges, hence it never
really was established. Advancements of research in decentralized technologies as blockchain
and the need to increase trust beyond websites and servers has facilitated the development of
new concept by the W3C [55] - Decentralized Identifiers.

Decentralized Identifiers (DIDs)

The goal of the Decentralized Identifier (DID) community is to create a decentralized structure,
where the trust endowment of a Web-of-Trust is sufficient to enable secure authentication
of identities and linked attributes without centralized CAs. In such a system, DID are a
digital representation of an entity - a digital identity, that can be associated to any desired
subject living offline (e.g. human, machine) or online (e.g. application). The W3C defined the
core concepts of DID, central design goals (i.e. decentralization, control, privacy, extensible)
and high-level technical specifications in [55]. However, it is not the W3C controlling the
development. Each of the different DID implementations, called methods, are defined and
built decentralized by individual contributors.

A DID is generate by its DID method and stored on a data structure defined by its method.
Data structures differ, but usually are distributed ledgers as in Bitcoin or Ethereum. During
the DID’s generation it gets linked to a public key of an account on the blockchain. After
successful deployment the account and its owner are represented by a digital, distinct identity
which can be controlled with the account’s private key.
While DID methods differ, the structure of every DID is similar: A DID is a string, that consists
of the keyword "did", the name of the respective DID method and an unique method-specific
identifier [55]. The method-specific ID is a string that is unique for each method and subject
and ultimately resolves to a DID document. An exemplary DID generated by the BTCR DID
method, a method which creates DIDs on the Bitcoin blockchain, is "did:btcr:8ght-qzaq-3pwq-
lksc-8t". Here the method specific ID is the encoded transaction id of a Bitcoin transaction, in
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which a link references to the location of the DID document [2]. The link to the document, as
well as its location differs depending on the method. The DID document contains attributes
describing the subject. Besides the subjects public key, personal information called a "claim"
can be added to the document and linked to the identity. Trust in the correctness of a claim
is endowed by a Web-of-Trust in which other identities confirm the validity of a claim with
their signatures [55].
As a DID is a digital identity that supports attributes, is uniquely associated to an entity and
is only controllable via a private key, it also can be used for authentication and authorization
of real-world entities. Therefore, we provide a short literature review of research that applies
the concept of DID in the context of authentication and access control in chapter 6.

2.4 On-Chain AuthSC

In Ethereum, in order to transfer funds from one account to another, a user needs to acquire
the account address of the receiving EOA or smart contract. As an account address in
Ethereum is about 42 hexadecimal characters long, it is not easy to be read and remembered.
Furthermore, just from reading the hexadecimal address it is not possible for a human to
distinctly associate an account address to an user or organization. Especially in cases, where
an account address is published online to allow any user to access and pay for services
of a DApp or to acquire tokens in an Initial Coin Offering (ICO), criminals have managed
to deceive users into transferring money to wrong and malicious accounts. In most cases,
websites were hacked and the account address to which users were asked to deposit funds
to was exchanged. To overcome this challenge and to increase usability, solutions as the
Ethereum Name Service (ENS) have been proposed. The idea of a name service is to link
account addresses to easy-to-read and -remember, web like domains (e.g. blockchainuni-
versity.eth). Given the wallets support for ENS, the user can easily send money to an account
by specifying the ENS domain address. However, adoption still is limited and the link
between the account and the business is weak, as a judiciary system for controlling the
assignments and reassignments of account addresses and ENS domains is as good as not
existing. Moreover, criminals can easily create very similar domains, which might still deceive
the user. Therefore, Gallersdörfer et al. propose AuthSC in [32], a SSL/TLS-based identity
assertion and verification system. More specifically, an endorsement framework for smart
contracts that leverages SSL/TLS certificates for trust endowment.

The general idea of AuthSC is that an organization or person, who owns a website and
an Ethereum account, can link a smart contract or/and an EOA to the websites SSL/TLS
certificate in order to bootstrap trust from its hierarchical PKI, respectively the CAs Root
certificates (cf. section 2.3.1). Given a users trust in the Root certificates, trust is passed to
the account by linking it to the PKI’s chain of trust. The link, i.e. endorsement between the
account and the certificate is created by signing a message that contains the accounts address
with the private key of the websites SSL/TLS certificate. Given a successful validation of
the endorsement and its signature, users can be sure that the account really is owned by the
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person or business they want to interact with, as only the owner of the certificate’s private
key is able to create one. Furthermore, as the users need to verify the certificate’s chain of
trust during the validation process, they can decide for themselves, which Root certificates
and hence Ethereum accounts to trust.
AuthSC overcomes the challenge to create a missing, trusted link between accounts and
websites. However, the concept of AuthSC as proposed by Gallersdörfer in [32] still relies
on manual off-chain endorsement validation and off-chain resources, as certificates and
endorsements are still stored on central web-servers. In [33], Groschupp and Gallersdörfer
refine and enhance AuthSC. They design On-Chain AuthSC and propose a first prototype that
supports full on-chain authentication of accounts by storing and validating endorsements and
signatures on the Ethereum blockchain. Moreover, account endorsements can now not only
be created during smart contract deployment, but also in retrospective for already created
accounts.

In the following we provide an overview of the systems architecture in section 2.4.1. Then
we describe the endorsement framework in more detail in section 2.4.2, before we explain
the certificate framework in section 2.4.3. For simplification, we may use the term AuthSC in
order to refer to On-Chain AuthSC or any other version of the system.

Figure 2.4: Simplified architecture of On-Chain AuthSC adapted from [33, pg.56]

2.4.1 Architecture Overview

On-Chain AuthSC is developed in Solidity for Ethereum. A simplified overview of On-Chain
AuthSC is depicted in Figure 2.4. Its major components are the endorsement and the certificate
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framework.
The Endorsement Framework comprises the Endorsed Account inclusive of the internal en-
dorsement specification, as well as the Endorsement Database, including the external endorse-
ment specification and the Root Store. Endorsements link a to-be-endorsed account to
SSL/TLS server certificates. Depending on the account owners preferences endorsements
can either be directly stored in the endorsed smart contract (internal endorsements) or in a
central Endorsement Database (external endorsements). Each account, that wants to validate
an endorsement, needs to create and maintain a Root Store. It contains the Root certificates
trusted by the user. During validation the Root certificates trusted by the user are compared
to the Root certificate of the endorsed account. Validation, but also creation of endorsements
requires a Certificate Framework. It comprises the Certificate Database, including a certificate
parser and the endorsing SSL/TLS certificates with their chain of trust (Intermediate certi-
ficates and Root certificate). To create and validate endorsements, information stored in the
certificate chain is required. Hence, first the relevant information of all certificates in the chain
is retrieved with a certificate Parser and then stored in the central Certificate Database.
On-Chain AuthSC requires all relevant data that is needed for account authentication and
endorsement validation to be stored on the blockchain, as external data can not be retrieved
very easily due to a blockchains need for determinism (cf. section 2.2.3). Consequently, beside
the endorsed account, the Endorsement Database and Certificate Database, each verifier’s
Root Store is stored and maintained on the blockchain. In the following we introduce each of
the components in more detail.

2.4.2 Endorsement Framework

The purpose of an endorsement is to be a distinct, verifiable proof that an account is endowed
with trust from a SSL/TLS Server certificate of a specific website. Therefore, an endorsement
E contains a verifiable signature S, that is a hashed message signed with the private key of
that certificate. The content of that message is a claim C, which contains the account address
of the endorsed account, the Fully Qualified Domain Name (FQDN), the ID of the endorsing
certificate and the desired expiry date of the endorsement. As the claims content is also
needed for the validation of E, C also is included as tuple in E:

E = {S, C}, with

S = {sign(hash(C), keypriv)} and C = {addressaccount, FQDN, IDcert, dateexp}
On-Chain AuthSC supports the endorsement of EOAs and smart contracts. Since the different
accounts have different specifications and requirements, On-Chain AuthSC distinguishes
between two different types of endorsements: Internal and External endorsements [33].
Internal endorsements are directly stored in an account. However, since internal endorse-
ments require the implementation of specific functions and EOAs can not store executable
code, it is not possible to internally endorse EOAs. Furthermore, it is not possible to add an
internal endorsement in retrospective to an already deployed smart contract. Only smart con-
tracts that are deployed with a specific internal endorsement specification may be internally
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endorsed. The specification includes functions to add, update and revoke endorsements, as
well as variables to store the current and past endorsements, and the endorsing certificates ID.
While internal endorsements are very easy to access, the validation needs to be conducted
by each user individually. As a consequence, total Gas costs are higher than for external
endorsements.
External endorsements are stored in a central, on-chain2 Endorsement Database. Any smart
contract or EOA can be endorsed by an external endorsement, as external endorsements do
not require any modifications as functionality and storage is provided by the Endorsement
Database. Supported functions are submitEndorsement(), validateEndorsement()
and revokeEndorsement(). The Gas cost intensive signature validation, which needs to
be conducted by each validator for an internal endorsements, is only conducted once after the
submission and before adding it as an Endorsement struct to a mapping in the Endorsement
Database. Hence, the validation of an external endorsement is less Gas cost intensive, as for
internal endorsements. However, users that want to verify an external endorsement, can not
retrieve the endorsement directly at the account. They first have to initialize a Root Store at
the Endorsement Database and add trusted SSL/TLS Root certificates (if not already done
during a previous validation). The Root Store in the Endorsement Database is similar to
the Root Store of browser or operating system vendors. It allows validators to store the
SSL/TLS Root certificates of trusted CAs. Only endorsements, that are linked to SSL/TLS
Server certificates in a chain of trust with a Root certificate from the validators Root Store can
be validated successfully.

The process of creating an endorsement differs depending on the type of account and its
deployment status. As for the development of our system, only external endorsements are
needed, we only explain the respective process. Readers interested in the creation of internal
endorsements are referred to [33].
There are two prerequisites a user needs to satisfy to create an external endorsement: Being
the owner of an Ethereum account and possessing a SSL/TLS certificate and its private
key. Given these requirements are satisfied, the user can leverage the functionality of the
Endorsement Database to create and then add an external endorsement for an EOA or smart
contract. To create the endorsement, the user first needs to submit the certificate chain
to the Certificate Database as described in section 2.4.3. Next, the attributes of the claim
(addressaccount, FQDN, IDcert, dateexp) need to be acquired. The IDcert is the fingerprint of
the certificate and is emitted in an Event after successful submission of the certificate to the
Certificate Database. The attributes are then passed to the getPreEndorsement() function
of the Endorsement Database. It returns the hashed claim, that then needs to be signed with
the private key of the certificate. Once the signature is created, it is passed together with the
claims attributes to the submitEndorsement() function. Given a successful validation, the
endorsement is added to a struct which stores the account address, the FQDN, the IDcert, the

2Groschupp also proposes an off-chain Endorsement Database and external off-chain endorsements (cf. [33]).
However, as the prototype of On-Chain AuthSC uses an on-chain Endorsement Database, we only describe the
on-chain version.
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ID of the respective Root certificate, the dateexp of the endorsement, a timestamp of when the
endorsement was added and a variable that specifies the revocation status of the endorse-
ment. The Endorsement struct is then stored in the EndorsementStore mapping for the
respective account (an account can have multiple endorsements from multiple certificates), as
well as in the endorsements mapping, where all endorsements are stored.

A concept which has not yet been implemented in the On-Chain AuthSC prototype, but was
proposed by Gallersdörfer in [32] are flags. The idea is to include a tuple of parameters in the
claim of an endorsement. These flags allow to restrict or extend the usability of endorsements
in On-Chain AuthSC. Flags proposed by Gallersdörfer in [32] are:

• DOMAIN_HASHED: Specifies that the FQDN of an account is hahsed. Increases privacy
as it is much harder to associate an account directly to a website for a stranger.

• ALLOW_SUBENDORSEMENT: Determines whether an account can create a sub-
endorsement for another account.

• EXCLUSIVE: Limits the number of accounts endorsed by one domain to one.

• TRUST_AFTER_EXPIRY: Specifies if data included in the endorsed account should still
stay valid even though the endorsement is expired.

2.4.3 Certificate Framework

Endorsement creation and validation requires the signature and the public key of a SSL/TLS
Server certificate. The certificate framework provides the means for storing, maintaining,
validating and revoking certificates. However, as the signature algorithms of X.509 certificates
differ, not all certificates are supported. Currently On-Chain AuthSC only accepts X.509
version 3 certificates, with RSA-SHA1 and RSA-SHA256 signatures. Therefore, only websites
and servers with such a SSL/TLS certificate can endorse an account with On-Chain AuthSC.

In On-Chain AuthSC the endorsing SSL/TLS certificate and every certificate in its chain of
trust is stored in the Certificate Database. In order to successfully add a certificate, the user
needs to submit the certificates DER-encoded data. However, the user needs to abide to the
hierarchical order of the certificate PKI, when adding a chain of certificates to the database:
First one Root certificate, second one or multiple Intermediate certificates and third one
Server certificate. Furthermore, as Root certificates are self-signed and Intermediate and
Server certificates require a signature from a higher-level certificate, users need to invoke
different functions with different payloads. Root certificates are added by passing its DER-
encoded data to the addSelfSignedCert() function. Intermediate and Server certificates,
by passing the certificates DER-encoded data, as well as the unique SHA-256 fingerprint of
the signing preceding certificate to the addCert() function. Once the data is received by the
Certificate Database, certificates are parsed and relevant attributes are stored in a certificate
struct. Certificates are not stored in their original DER formatting as a whole document, since
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attribute retrieval from a large file requires computation and thus Gas cost intensive parsing.
Therefore, when a new certificate is submitted to the Certificate Database, the Parser extracts
most attributes already. However, some attributes are still stored together as a DER-encoded
ASN.1 hexadecimal bytes variable. An overview of the certificate structs attributes, which are
relevant to our work, is depicted in Figure 2.5.
Before the certificate struct is finally stored in the certificate mapping, a validation function
checks the validity of the submitted certificate by verifying the extracted signature with the
public key of the signing preceding certificate, the expiration date and the content. If any
of these validations fail, the process is aborted and the certificate not added. Once all the
certificates in a chain of trust are successfully stored, an endorsement can be created.
As SSL/TLS certificates expire, the Certificate Database needs to support the revocation of
certificates. A certificate is considered revoked, if the expiry date is larger than the current date.
When the endorsing certificate of an endorsement is revoked, the validation of it fails. While
it is not possible to delete a revoked certificate, as other certificates or endorsements might
still rely on it, a certificate can still be reactivated by invoking the refreshRevocation()
function. However, since the revocation does not affect the development of our system, we do
not provide a detailed description here and refer the interested reader to [33].
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Figure 2.5: Selected attributes of certificates stored on the Certificate Database from [33, pg.63]
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The goal of this research is to design and implement an authentication and access control
system for smart contracts, that evaluates access requests of blockchain accounts from real-
world entities, based on their endowment with trust from SSL/TLS certificates. To link
real-world entities blockchain accounts to SSL/TLS certificates, we bootstrap the identity
assertion and verification system On-Chain AuthSC by Groschupp and Gallersdörfer [33][32]
and create an endorsement framework. Subsequently we design an access control framework,
in which we leverage the trust and attributes of the SSL/TLS certificates for access control
at smart contracts. To reduce complexity in this and the following chapters we may refer to
real-world entities as user and to their account as user account.
In section 3.1 we introduce a reference and multiple exemplary use-cases to introduce the
concept of our system and to demonstrate its need and applicability. Subsequently in section
3.2 we describe the functional and non-functional requirements. In section 3.3 we introduce
the endorsement framework of our system, before we conduct a survey of access control
mechanisms in section 3.4 to identify a matching foundational theory for the design of our
access control system in section 3.5.

3.1 Use-Cases

Access control of real-world entities at smart contracts enables a differentiated degree of user
interaction at a protected resource. Together with a SSL/TLS-based identity assertion and
verification system it allows service providers to restrict access to their smart contracts based
on the requester’s SSL/TLS certificate attributes. In this section we would like to demonstrate
some use-cases for such a system. First we illustrate a reference use-case, before we introduce
three more complex exemplary ones.

3.1.1 Reference Use-Case

The goal of the reference use-case for an authentication and access control system at smart
contracts is to introduce the general concept of the system we aim to develop in this research.
It provides guidance for the definition of the requirements, the system design and prototype
implementation.

Automated Authentication and Access Control at Smart Contracts for Higher Education

Authentication and access control usually require to first register and authorize a user at
a trusted entity of the requested service or to rely on identity federation protocols, which
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are neither defined nor established for smart contract access control yet. Nevertheless,
authenticating and authorizing at a smart contract without a previous registration is feasible
on blockchain when leveraging On-Chain AuthSC in combination with an access control
system which evaluates the attributes of a SSL/TLS certificate that endorses the access
requesting user account. This enables the automated authentication and authorization of a
whole group of accounts that is endorsed by SSL/TLS certificates that have common attribute
types and values.
In our use-case we assume that On-Chain AuthSC is deployed on the Ethereum blockchain
and an Application A, i.e. a smart contract is protected by an access control mechanism. It
ensures that A’s functionality can only be executed by a limited group of entities, endorsed
by a SSL/TLS certificate of an ".edu" Top-Level-Domain (TLD). Furthermore, let us assume,
that a university with a ".edu" TLD is the issuer of a smart contract B, which is endorsed by
the universities SSL/TLS certificate. If B wants to use Application A, B is first authenticated
and its authorization checked by the access control mechanism at A. To do so, it looks up the
endorsement and the attribute type "domain" of B and compares it with the required attribute
value ".edu". In the case that both attribute values match, A checks B’s endorsement by look-
ing up and checking the relevant certificate chain. Given that the certificate of B is included,
not revoked, still valid and the Root certificate trusted by the Application, A grants access to B.

The use-case can be elaborated even further to enable automated access control for EOAs.
Since most individuals and owners of EOAs are not owner of a website and thus not a
SSL/TLS certificate, these entities need to be first linked to, i.e. sub-endorsed by a smart
contract that acts as a Registry. The Registry is endorsed by a SSL/TLS certificate and its
owner may create sub-endorsements for a users EOA. When the sub-endorsed EOA then
requests access to Application A, the access control mechanism checks B’s authorization by
validating the endorsement of the Registry, the sub-endorsement of the EOA and evaluating
the attributes of the endorsing SSL/TLS certificate.
Given the system as described above, Bob is a student at the previously described university
and has an EOA on the blockchain. Given that his university links his account to their Registry
B, Bob should be able to access the functionality of Application A. That means, when Bob
wants to request access to the service of an Application A, instead of previously registering at
A, he or she provides B’s address to A. Subsequently, the Application checks if Bob’s EOA is
sub-endorsed by the universities Registry B. That being the case, A validates the endorsement
of Registry B and evaluates the "domain" attribute type of B’s endorsing SSL/TLS certificate.
Given success, Bob can use Application A.

3.1.2 Exemplary Use-Cases

We introduce three exemplary use-cases to demonstrate the potential of our system beyond
the reference use-case. At first we outline a modified concept, which describes an improved
admission process of new members in consortia blockchains. Next we show how our system
can be used to improve the process of online identification at Identification Verification
Providers. Finally, we illustrate the system in the context of managing a fleet of vehicles.
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Member admission at Consortia Blockchains

Consortia blockchains are created and maintained by a group of organizations to jointly
pursue a common interest. Very often a common business or research environment requires
high standards in data privacy, scalability and governance [24]. Therefore consortia deploy
persmissioned blockchains, where participation is limited to admitted members. An example
for a research oriented consortia blockchain is Bloxberg, which was initiated by major research
institutions as the Max-Planck-Institute in order to facilitate the development of distributed
research services [30]. Admission to the blockchain can be requested online, while admission
is only provided to organizations with focus on research. Each application is manually
reviewed by each consortia member, which then can casts a vote for or against admitting
the requester. This process requires extensive manual effort, particularly if the consortia is
receiving a large amount of applications. Depending on the requirements for the reviewing
process, an automated access control based on certificate attributes can eliminate the need
for any manual work or at least create a first quality gate which reduces the manual workload.

Let us consider the example of a permissioned blockchain from a research consortia C,
where admission of new members is reviewed manually by each active member. Assuming
each member is casting the vote only based on the fact that the requester R is a research
organisation, then we can automate the process by comparing the domain of R with a list of
acknowledged research organizations (e.g. list of recognized research entities published by
the European Statistical Office [28]).
To start the process, R first has to request access by calling a function at the admission
smart contract of C. The admission smart contract can either be deployed on the consortia
blockchain, if some interaction with the network is available for external parties and the
blockchain already supports On-Chain AuthSC, or on a public blockchain as Ethereum. In both
cases, R needs to interact with C using a smart contract or EOA endowed with an endorsement
of R’s SSL/TLS certificate, because the certificate is providing the prove that R is a research
organization. The admission contract then checks the endorsement of R, by retrieving the
certificate chain from the Certificate Database. If C’s smart contract decides to trust the Root
certificate, i.e. endorsement, it retrieves the attribute "domain" from the SSL/TLS certificate
and compares the value with a list of domains from acknowledged research institutes. If
R’s domain is included on the list, R is admitted to the consortia blockchain immediately. If
that is not the case, R’s request has to be reviewed manually or depending on the policy the
request gets rejected immediately.

Blockchain Enabled Identity Verification Provider for DApps

Financial Services as stock trading applications require the user to first provide proof of
identity to comply with legal requirements which prevent tax evasion and fraud. Currently,
the verification of a users identity online is enabled by third party-services as POSTIDENT1

1https://www.deutschepost.de/en/p/postident.html, visited 13/12/2020
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or WebID Solutions2. During that process the user has to participate in a video call, to answer
some questions and present an official government issued ID. Moreover, usually a phone
number has to be provided to receive a TAN which needs to be entered to finalize the process.
Online verification saves time and efforts by eliminating the need to engage in a lengthy
real-world face to face verification. Nevertheless, instead of linking the verified user to a
personal online identity, which he or she can present to the next service where verification is
required, the user needs to run each time through the same verification process.

Leveraging our access control mechanism with On-Chain AuthSC, parts of the process can be
transferred to the blockchain. It allows to create a link between an account and a real-world
identity, as the account can be added to a Registry of the Identity Verification Provider on the
blockchain once the verification process was successfully conducted. Consequently the users
only need to participate once in the verification process, since their identity is immutably
linked to the EOA or smart contract on the blockchain via the Registry. Subsequently, the
EOA or smart contract can act on behalf of the linked real-world identity and interact with
any other smart contract.

Considering an example where the company C plans an ICO and the user Bob wants to
acquire some of the companies tokens. Due to security concerns the company requires Bob
first to verify through a trusted Identity Verification Provider V. At first Bob participates in
a video call with V, where Bob provides the address of his EOA, provides a government
issued ID and answers some questions. Still during the call V asks Bob to sign a specific piece
of data with his EOA’s private key and send it back to V. After successfully checking the
signed data with the EOA’s public key, V ends the video call and adds the EOA’s address
and some of the information from Bob as his full name to V’s Registry. The EOA is now
trusted by V to be acting only on behalf of Bob, i.e. Bob is sub-endorsed by V. In order for
Bob to be trusted by C, C still needs to trust the Registry of V. Therefore the Registry needs
to be endowed with trust from the endorsement created from the SSL/TLS certificate of V.
When Bob now wants to acquire tokens at C, Bob calls the respective function of C’s smart
contract and provides V’s Registry address in addition to the input required by the function
to acquire the tokens. Before executing the acquisition of the tokens, two conditions are
checked by C’s smart contract. At first, if Bob’s address and name match the entry in the
Registry of V. Second, if the Registry can be trusted, i.e. if the Registry is endorsed by the
certificate of a trusted identity provider of C. If both are met, Bob is identified and authorized
to acquire tokens of C’s smart contract. The next time Bob is asked to verify his identity on
the blockchain to acquire tokens or use a smart contract, he can directly interact with the
smart contract and does not need to verify again at an Identity Verification Provider, as long
as V is trusted by the service provider and included in its Registry.

2https://www.webid-solutions.de/en/, visited 13/12/2020
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Automated Authentication and Access Control System for a Fleet of Vehicles at Smart
Contracts

Fleet management and leasing companies as well as car manufacturers are exploring the
blockchain to track vehicles transactions by linking the Vehicle Identification Number to
entities in the blockchain. Leveraging our access control system together with On-Chain
AuthSC, we enable vehicles to authenticate and authorize at, as well as interact with other
entities on the blockchain. More specifically, the owner of the vehicle can use the EOA of the
vehicle, i.e. the identity of the vehicle on the blockchain, to use and/or acquire services only
available to a certain vehicle or user group.

At first the vehicle needs to be registered at a Registry smart contract of the fleet management
company C, which is stored on the blockchain and endorsed by C’s SSL/TLS certificate. Then,
the driver of the vehicle can use multiple services, as refueling at a gas station or visiting
a workshop at a service provider P who maintains a smart contract. When requesting a
service, the vehicles EOA calls the function of the respective service at P’s smart contract and
provides the address of C’s Registry contract. Before approving a service for the vehicle, the
smart contract of P authenticates the vehicle and check its authorization at C’s Registry smart
contract, by first evaluating if the EOA of the vehicle is included in the list of sub-endorsed
vehicles. Then it looks up C’s contracts endorsement and retrieves the "domain" attribute
type from the certificate to check if C is a known business partner. Furthermore, it checks
that the certificate is not revoked and still valid. At last it retrieves the whole certificate chain
from the Certificate Database to check if the certificate claiming that C is the actual business
partner can be trusted. If the Root certificate is trusted by P, the service can be provided to
the vehicle and the fleet management company can be billed.

3.2 Requirements

The next step in our system design process is the definition of the requirements, conducted in
a requirement analysis. Our goal is not only to cover the requirements for the features of our
system (Functional Requirements (FR)), but also requirements as in the context of usability,
cost and blockchain technology (Non-Functional Requirements (NFR)).
The initial goal of the analysis is to first derive basic functional and non-functional require-
ments from the reference use-case introduced in the previous chapter and our research. In a
second step we test and refine the requirements by conducting expert interviews in section
5.3.2.

3.2.1 Functional Requirements

Based on the reference use-case of an automated authentication and access control system for
smart contracts, we determined the functional requirements for our systems key components,
the endorsement framework with a Registry and the access control framework at an Applic-
ation. Our system should be able to allow users to act on behalf of a SSL/TLS certificate
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endorsed Registry. Hence, this Registry needs to conduct user sub-endorsement management.
The owner (e.g. individual or organization) of the Registry needs to be able to sub-endorse a
user account, given it is trusted (FR1). Being sub-endorsed the user is endowed with trust
and may leverage the attributes of the SSL/TLS certificate which endorses the Registry for
authentication and access control at an Application. In case the owner of the Registry does
not want to endow the user with trust anymore, the endorsement of the user needs to be able
to be revoked (FR2). The user should then not be able to leverage trust and attributes for
authentication and access control at an Application anymore. Furthermore, the owner needs
to be able to update an existing sub-endorsement (FR3).

The access control mechanism at the Application should only allow a user to access the
protected resource if the user is trusted by a Registry, that is endorsed by a SSL/TLS
certificate with desired attributes. Hence, a user first needs to be able to check if a sub-
endorsement is already created for his or her account (FR4). If that is the case, the user should
be able to request access to the protected resource of the Application (FR5) and should then
be automatically authenticated (FR6). The central functional requirement is the ability of
the access control mechanism to check the authorization the user account (FR7). At first
the mechanism needs to be able to check the endorsement of the user, i.e. if the user is
sub-endorsed by an organizations Registry (FR7.1). Secondly, it needs to be able to validate
the Registry’s endorsement from the SSL/TLS certificate, to determine if the Registry and
consequently the user can be trusted (FR7.2). Finally, the mechanism needs to retrieve and
check the attribute values of the endorsing SSL/TLS certificate against the attribute values
required by the Application (FR7.3), to certainly determine if the user is authorized to use the
functionality the Application is offering.

3.2.2 Non-Functional Requirements

The goal of our research is to develop a system which leverages SSL/TLS certificates to enable
access control at smart contracts. Access control requires authorization of entities based
on characteristics and policies. As described in the reference use-case we propose to use
the attributes in X.509 TLS certificates as characteristics for authorization of entities (NFR1).
This enables our system to control access at smart contract Applications without the need
for active management of the characteristics, since the SSL/TLS certificates are part of an
externally managed infrastructure. Moreover, the SSL/TLS certificate PKI is an existing trust
layer, that guarantees the correctness and immutability of characteristics. To expand the trust
and associate attributes to Registry smart contracts on the blockchain, we need to leverage the
previously described system On-Chain AuthSC (NFR2), by creating an immutable connection
between the Registry and a SSL/TLS certificate through an endorsement. Determinism is a
requirement for blockchain systems, since all nodes of the system need to compute the same
outcome independently. To guarantee deterministic behavior, although user endorsements
change over time and hence access control decisions are time dependent, the policies, char-
acteristics and access control decisions need to be on-chain (NFR3). As soon as the owner
of the Registry is endorsed by the SSL/TLS certificate, he or she is then able to decide for
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Figure 3.1: Functional requirements

which entity a sub-endorsement should be added. In order to prevent centralization and
increase flexibility and participation, it should be the independent decision of the Registry’s
owner and not the one of a central authority whom to endow with trust and the linked
certificates attributes (NFR4). Another non-functional requirement of our system is that access
control decision should be independent of the Application’s direct trust in the Registry, but
only rely on the trust endowed by the certificates through an endorsement (NFR5). This
enables easy addition and removal of Registries or Applications without the need to maintain
trust relationships between both components. Furthermore, to allow any user to attempt
authentication and access control at any smart contract independently of its association, an
access request at an Application which uses our access control mechanism should not require
any kind of pre-provisioning of the user account at the Application (NFR6). This kind of
federation increases flexibility, decrease barriers of entry and increases the user-friendliness of
our system. Finally, we also need to consider the costs related to the on-chain computations
required for managing access rights and securing access control. More specifically we need to
design a system where the cost for registration, authentication and authorization is minimal
and thus competitive (NFR7).

The requirements can be summarized as followed:
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Functional Requirements

FR1: Add sub-endorsement at Registry
FR2: Revoke sub-endorsement at Registry
FR3: Update sub-endorsement at Registry
FR4: User account may check status of sub-endorsement at Registry
FR5: Request access to Application
FR6: Authenticate user account at Application
FR7: Check authorization of user account at Application

FR7.1: Check sub-endorsement of user account at Registry
FR7.2: Check endorsement of Registry
FR7.3: Check attributes of endorsing SSL/TLS certificate

Non-functional Requirements

NFR1: Leverage attributes of SSL/TLS certificates
NFR2: Use On-Chain AuthSC
NFR3: On-Chain access control decisions
NFR4: Decentralized sub-endorsement allocation
NFR5: Access control without a direct trust relationship with the Registry
NFR6: Access control without pre-provisioning of the subject at the Application
NFR7: Minimal costs of user management, authentication and authorization

3.3 Endorsement Framework of the Smart Contract Access Control
System

In this section we elaborate the endorsement framework for the authentication and access
control system for smart contracts, that evaluates access requests of blockchain accounts from
real-world entities, based on their endowment with trust from SSL/TLS certificates.

An authentication and access control mechanism needs to evaluate an access request based
on characteristics specified by a trusted entity. Yet, endowment of trust and association of
trusted characteristics is especially challenging in public blockchain systems, as the users
real-world identity and its level of trust is not distinctly determinable. Furthermore, as a
public blockchain is a decentralized system, central trust providing entities are not available.
Although recent research is actively elaborating a decentralized trust providing infrastructure,
no such system has been successfully established yet. Therefore, we are facing the decision
to either contribute to the creation of a decentralized trust infrastructure as DID on the
blockchain or to leverage an existing, fully functional system from outside the blockchain.

DIDs might be the most advanced decentralized trust infrastructure on the blockchain, as they
are already relatively functional and accepted by the community. Furthermore, DIDs already
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supports the association of characteristics via attributes in claims. However, the endowed
trust is still very limited since no Web-of-Trust has been successfully established yet. Hence,
as we want to bootstrap trust, DIDs and decentralized trust infrastructures are not a solution
to our problem yet.
Our second option is to leverage trust from a blockchain external trust infrastructure. By
bootstrapping an existing trust infrastructure we can rely on a proven infrastructure that
already inheres high levels of trust. Furthermore, users of the existing infrastructure have
limited on-boarding costs. However, all the trust infrastructures we identified are centralized
and the trust still has to be expanded to the blockchain. Nevertheless, we are certain that by
picking a large, widely supported and established PKI that already has a long and relatively
successful track record, trust endowment is sufficient.

We bootstrap the SSL/TLS certificate PKI, as it meets the just described criteria and with On-
Chain AuthSC a system to expand the PKI to the blockchain is already available. Furthermore,
SSL/TLS certificates also provide a source of trusted attributes that describe the certified
entity. However, On-Chain AuthSC only supports direct trust endowment of user accounts
that own a SSL/TLS certificate. This limits the applicability of our system as SSL/TLS
certificates are only available to entities that own a website. Therefore, in our endorsement
framework we need to separate the trust link between SSL/TLS certificates and the user
accounts and implement a trust interface in between: The Registry, a smart contract which
allows certificate owners to act as attribute provider and manager for user accounts. The
first link is an endorsement that expands the trust endowment of a SSL/TLS certificate to
a Registry on the blockchain. The second one is a sub-endorsement, that can be created by
owners of a Registry in order to link a user account who does not own a SSL/TLS certificate
to the owners certificate. Consequently, user accounts are then indirectly endowed with
trust from the Registry’s SSL/TLS certificate and may leverage its attributes for authentic-
ation and access control. An overview of the endorsement framework is depicted in Figure 3.2.

In the following we describe the two components of our endorsement framework: The
endorsement for the Registry in section 3.3.1 and the sub-endorsement for the users account
in section 3.3.2. Moreover, we revisit flags (cf. section 2.4.2) for endorsements and discuss
how this concept proposed by Gallersdörfer in [32] might be beneficial to our research.

3.3.1 Endorsement - Endorsing the Registry

In our research an endorsement is a verifiable link between a Registry and a SSL/TLS cer-
tificate PKI that can be created by the owner of the SSL/TLS certificate’s private key. The
endorsement creates credibility in sub-endorsed user accounts and attributes, as it is proof
that the owner of a trusted SSL/TLS certificate approves sub-endorsements of the respective
user accounts. Hence, it allows an entity to expand its public confidence to the blockchain
and endorse other accounts. To enable the creation of such a link, we draw from existing
research of Groschupp [33] and Gallersdörfer [32] and leverage the SSL/TLS-based identity
assertion and verification system On-Chain AuthSC.
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Figure 3.2: Endorsement framework

On-Chain AuthSC is the only system, that can create such verifiable links, i.e. endorsements
between SSL/TLS certificates and blockchain accounts. Moreover, it supports on-chain valida-
tion and revocation of an endorsement and already provides a database to store and manage
SSL/TLS certificates on the blockchain. Implemented in Solidity for the Ethereum blockchain
we can easily integrate it in our developments. Furthermore, as we explain in section 3.5
it already provides an on-chain Certificate Database from which we can easily access the
SSL/TLS certificate data our system requires to conduct smart contract authentication and
access control of real-world entities.

In On-Chain AuthSC an endorsement is specified as a tuple that contains a verifiable signature
and a claim, which comprises the account address of the Registry smart contract, the FQDN,
the ID of the endorsing SSL/TLS certificate and the desired expiry date of the endorsement
(cf. section 2.4.2) [33]. Furthermore, On-Chain AuthSC supports two types of endorsements:
external and internal endorsements. While the specification of the endorsement remains
similar among both types, they differ in how they are associated to an account (cf. section
2.4.2).
For the development of our endorsement framework we are now facing the decision of how
to adopt On-Chain AuthSC. With regards to the endorsement type, we only use external
endorsements to link SSL/TLS certificates and the Registry, as external endorsements can
be validated more efficiently than internal endorsements, can easily be accessed via an
Endorsement Database and do not require a specific structure of the Registry. The decision of
how to adopt the endorsement specification is a more complex one. We may either adopt
the specification of the endorsement from Groschupp in [33] or change and improve the
design if needed. In order to determine whether changes are needed, we evaluate two
additional design choices in the following. An Endorsement with Flags and the Nesting of
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Sub-Endorsements in Endorsements.

Endorsement with Flags

One possible design choice is to add flags as proposed by Gallersdörfer in [32]. These flags are
a configuration for the Registry, defined and approved by the owner of the signing SSL/TLS
certificates private key. In our case they could allow to limit the scope of sub-endorsements,
more specifically the scope of how users are sub-endorsed and how and where they can use
the sub-endorsement. As an example, the flag ALLOW_SUBENDORSEMENT may indicate
whether sub-endorsements are allowed by the Registry. The Registry might still have the
functionality to endorse accounts or even maintain a list of sub-endorsements, but once the
flag is changed to FALSE, access requests are rejected and no new sub-endorsements can be
created.
In general we think that flags add value to endorsements, as they increase trust in the
functionality of the endorsed smart contracts. Especially in cases where the owner of the
endorsing SSL/TLS certificate and the Registry differ, it increase the control of the trust
provider. However, in our use-cases we presume that the Registry and the SSL/TLS certificate
have a similar owner. Furthermore, as for any changes to the claim the whole endorsement
needs to be recreated, validated by and added to the Endorsement Database, changes to flags
that are directly stored in the endorsement are very computation and Gas cost intensive. This
especially becomes a problem if the authentication and access control system is deployed
on a public blockchain. Moreover, changing the design of the endorsement also requires to
change a large component of On-Chain AuthSC, thus add significant complexity. Hence, in
our system design we do not add flags to the endorsement.

Nesting of Sub-Endorsements in Endorsements

A second possible design choice is to complement the initial claim of the endorsement
specified by Groschupp in [33] with a list of the sub-endorsed accounts. In this case the
sub-endorsements is not stored in the Registry but in the endorsement itself. Although this
increases the credibility of the sub-endorsed accounts, it significantly increases Gas costs
as every creation and revocation of a sub-endorsement requires a new endorsement for
the Registry. Since creation and revocation are very common operations, this design is not
economically feasible on a public blockchain.

After the evaluation of both design choices we conclude that there is no need to modify the
endorsement specification of On-Chain AuthSC. Furthermore, as On-Chain AuthSC supports
all relevant functionality to create an endorsement for the Registry, we can use the system
as described by Groschupp in [33]. Hence, we do not discuss its design and functionality in
more detail in our system design chapter. For the detailed explanation we refer to section
2.4.2 and to [33] for its specific implementation.
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3.3.2 Sub-Endorsement - Sub-Endorsing the User Account

The sub-endorsement resembles the second link in our endorsement framework. It is added
to the Registry and expands trust and associates attributes of SSL/TLS certificates to the
sub-endorsed user accounts. Hence, it allows sub-endorsed user accounts to leverage the
public confidence of the owner of the Registry to access restricted services at an Application.

Opposed to the endorsement of the Registry, the sub-endorsement of the user account
does not require a complex system that expands trust from a blockchain external SSL/TLS
certificate to a blockchain internal account. Hence, it is sufficient to store the address of
the user account at the Registry, such that other entities can check whether a user account’s
address is included in the Registry. Thus, the simplest specification of a sub-endorsement
only contains an account address of the to-be-sub-endorsed user account. However, in order
to indicate the current status of a sub-endorsement, whether it is valid or revoked, we add
a status field to its specification. From the expert interviews we learned that the owner of
the Registry might want to associate additional information as user specific attributes to the
sub-endorsement of a user account. A potential use-case is to leverage these attributes for
authentication and access control at Application smart contracts in addition to the attribute
of SSL/TLS certificates. This would allow more granular access control decisions, as the
attributes specifically describe the user. However, as data on public blockchains can be viewed
by anyone, the General Data Protection Regulation (GDPR) of the European Union would
most likely be violated. Therefore, and also since the focus of our work is to explore the use
of SSL/TLS certificates attributes for authentication and access control, we do not pursue the
suggestion for now.
Considering our just described design decisions a sub-endorsement SE comprises the address
of the to-be-sub-endorsed user account addressuser and the status of the sub-endorsement
SEstatus (valid or revoked):

SE = {addressuser, SEstatus}

In the following we describe the CRUD (Create, Read, Update and Delete) operations for the
sub-endorsement, hence the functionality that needs to be supported by the Registry.

Create: A sub-endorsement can be created by the owner of the Registry, by submitting the
account address of the to-be-sub-endorsed user account to the Registry. A sub-endorsement
that contains addressuser and the SEstatus is then created and stored. It is not possible to create
more than one sub-endorsement for a user account. However, it is important that only the
owner of the Registry is allowed to add a sub-endorsement, as otherwise any user could add
his or her account.

Read: Any user can retrieve the sub-endorsements from the Registry with the respective
getter function. As the data stored on a public blockchain can be read by any user, we do not
limit retrieval of the sub-endorsement to only the respective sub-endorsed user account.
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Update: The data stored in a sub-endorsement can only be updated by the owner by submit-
ting a new sub-endorsement for the already sub-endorsed user account to the Registry via
the Create operation. During this operation the previous content of the sub-endorsement is
overwritten by the new data.

Delete: An endorsement can not be deleted, but it can be revoked by updating the sub-
endorsement status to false (see Update). However, only the owner of the Registry is allowed
to revoke an endorsement for the same reasons described in Create.

Beyond CRUD operations for a sub-endorsements we also consider to include a configuration
for the Registry, where the owner can configure if and how sub-endorsements can be used.
Such a configuration is especially relevant if rules that affect the functionality of the entire
Registry, hence every sub-endorsement, need to be specified. For example, if the private
key of the endorsing SSL/TLS certificate of a Registry was stolen, the owner of the Registry
might want to immediately deactivate every sub-endorsement. Hence, it should be possible
to add and update a ALLOW_SUBENDORSEMENTS rule, that specifies whether the sub-
endorsements of the Registry are currently active. Without a configuration in the previously
described example the owner would need to revoke each sub-endorsement independently
via the Update operation. In use-cases where the status of every user account needs to be
frequently updated, costs and effort would accumulate quickly. From the expert interviews
we also learned that rules should not only be defined by us, but should be up to the owner of
each Registry. Therefore, we design a configuration for the Registry, which can be extended
with individual rules. Hence, the configuration C at a Registry comprises tuples CT, that
contain a configuration type ruletype and a configuration value rulevalue:

C = {CT1, ..., CTn}, with CT = {ruletype, rulevalue}

In order to manage the configuration, the Registry needs to support all CRUD operations.
However, the functionality that enforces a desired rule needs to be implemented by the
rule creator. Nevertheless, to provide an example we include the previously described AL-
LOW_SUBENDORSEMENTS rule, that specifies whether sub-endorsements are currently act-
ive at a Registry. The respective functionality, that enforces the ALLOW_SUBENDORSEMENTS
rule is describe at the access control framework, as it affects the access request evaluation.

3.4 Survey of Access Control Mechanisms

Since the goal of our research is to design authentication and access control at smart contracts,
we first explore current standards by conducting an analysis of established access control
mechanisms. Although these access control mechanisms are not tailored to blockchain yet,
we are still certain to draw insights from established systems for the design of our access
control framework.
The goal of access control is to restrict the access to a resource and only grant access as
defined by policies to a limited number of users. The term access control is used as a
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synonym for authorization and vice versa by [41]. We stick to this convention in our research
and consequently define both terms as "[...] the decision to permit or deny a subject access
to system objects (network, data, application, service, etc.)" [41, pg.2]. Policies are defined
by the resource owner or an appointed administrator and are enforced by the access control
mechanism. A policy can be defined as " [...] the logical component that serves to receive
the access request from the subject, to decide, and to enforce the access decision" [41, pg.4].
Depending on the manifestation of the mechanism the evaluation of the access control is
handled differently. Nevertheless, in all systems a subject is requesting access to a protected
object. The subject can either be human or a Non-Person Entity (NPE) as a smart contract.
The object is the resource protected by the access control mechanism, to which the subject
requests access for [41].
In the following we introduce the four most common access control mechanisms and some of
their manifestations. Moreover, we also conduct an analysis of each of the four, to identify
the mechanisms to build our system design on. We can not cover all mechanisms and
manifestations due to the extensive research which was conducted since the 1960s. This also
limits us to only focus on the independent mechanisms and not cover potential combinations
of the different mechanisms. Nevertheless, we are confident that this survey and the analysis
help to develop the design of our smart contract access control system.

3.4.1 Mandatory Access Control (MAC)

In Mandatory Access Control (MAC) a central authority defines and imposes the regulations
which enforce the access control to objects [57]. Users can not acquire the ownership of the
object, only the security clearance to interact with it [8]. Subjects that request access to objects
are not only users, but also other active entities as processes [46] through which the user
interacts with the objects. In order to evaluate access requests, MAC requires that access
classes, which are in a partial order, are assigned to all subjects and objects. Each access class
is a tuple (SL, C) of a Security Level (SL), as Confidential, Secret or Top-Secret (hierarchically
ordered) and a category C which describes the functionality as Development, Finance or
Marketing [57]. The access class tuples stand in a relationship to each other, in which one
can dominate the other if a certain condition is met. More particularly, access class AC1 is
dominated by access class AC2 if and only if AC2’s security level is on an equal or higher
level in the hierarchical order than the one of AC1 and if and only if AC2’s categories includes
the ones of AC1 [57]. Access classes can also be incomparable if neither of them dominate
the other. The meaning of the classification and hence the outcome of the evaluation, i.e. the
process of comparing subjects and objects access classes in order to make an access control
decision is depending on which policy the MAC system is implementing. Most common
are the secrecy-based and the integrity-based mandatory policies [57]. If confidentiality and
integrity is required, it is also possible to combine both policies by assigning one secrecy and
one integrity access class tuple to each user, subject and object.
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Secrecy-Based Mandatory Policy

The goal of the secrecy policy is to prevent that classified information is leaked to a lower
security level, by only providing the user with information that he or she currently needs
to get his or her job done. Users can access the system using different subjects, i.e sessions
or processes with different access classes, but the subject’s security level with which an user
interacts in the system always needs to be at an equal or lower level than the user’s security
level. Here the security level describes the trust needed to access an object, consequently the
trust of the system in the subject, i.e. user not to release confidential information. Potential
security levels are Unclassified, Confidential, Secret or Top-Secret [57].

Integrity-Based Mandatory Policy

The goal of the integrity policy is to prevent indirect modification of objects by subjects with
no write access due to a lower security level. Hence, the system assures the integrity of an
object, but not the confidentiality. In this policy the security level describes the trust in the
user to interact with objects of different security levels. At objects the security level describes
the required trust-level to interact with the object without adding wrong or removing relevant
information. Potential security levels are Critical, Important or Low [57]. A user which wants
to read in a document, i.e. object which has a low security level, needs to request access to
the system via a subject with that low security level. Using that lower level he or she is not
able to write objects which have a higher security level. Restricting the subject’s capabilities
to write to an object with a higher security level, i.e. integrity-level, when reading objects
with a lower-integrity level prevents the flow of less assured information form objects with
less integrity to objects with high integrity [57].

MAC is a very centralized approach to access control, because only a central entity is allowed
to assign security levels and categories. Furthermore, individual resource ownership and
role management is not supported [40]. These measures ensure high confidentiality and
strong integrity of the protected objects, but also lead to inflexibility and dependency on one
authority. Therefore, MAC is often applied by government agencies or the military, where
confidentiality and integrity is more important than flexibility and decentralization. Our
system however requires that the allocation of access rights are determined in a decentralized
manner independently by each owner of the Registry (NFR4). Furthermore, the use of
SSL/TLS certificate attributes in the access control process (NFR1) is not natively supported.
Enabling access control based on attributes in MAC creates significant overhead only to
use a mechanism which is specialized on assuring high confidentiality and integrity - both
requirements not prioritized in our research .
Since NFR1 and NFR4 are violated and our use-case does not require such as strong measures
to protect the confidentiality and integrity of smart contracts, we do not consider MAC as the
preferred access control mechanism for our system.
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3.4.2 Discretionary Access Control (DAC)

The central paradigm of Discretionary Access Control (DAC) is that the decision of who
can access the resource is at the discretion of the resource owner [64]. Furthermore, its also
possible that a subject is endowed by the resource owner with the right to transfer access to
other subjects. DAC is often also called an Identity based Access control system, since access
control decisions are based on the subjects identity and policies which define the subjects
scope of action [57].

Multiple implementations of the DAC were elaborated, sometimes in combination with other
access control mechanisms. Access Control Lists (ACL) are one of the most widely used DAC
implementations. As well as Authorization Tables and Capabilities, ACL is an implementation
of the access matrix model which basically "[...] gives an abstract representation of protection
systems" [57, pg.140]. In ACL the objects to-be-protected are assigned each to a column of
the matrix, while the subjects which want to access the objects are each assigned to a row.
The respective record in a cell of the matrix is the privilege of the subject with regards to the
object. An example is shown in Figure 3.3. The entries of the matrix can be modified by the
access control administration and the respective resource owners by basic commands [57].

Figure 3.3: Exemplary Access Matrix Figure 3.4: Exemplary Access Control List

In ACL a linked list which contains an element for each subject is assigned to each object.
The subject’s list element contains the respective privileges granted [57]. As an example, in
Figure 3.4 the list is assigned to document Doc1 and contains an element e1 associated with
the subject Alice, as well as an element e2 associated with the subject Bob. Potential privileges
are for example owner, read, write or delete.
In Capability based mechanisms it is the opposite to ACLs. A list which contains elements
with the privileges for each object is assigned to each subject. In contrast to the two list based
approaches, the Authorization Table stores subjects, privileges and objects in a column each,
consequently each row is one authorization [57].

DAC, especially access control lists are used by multiple Windows and UNIX operation
systems to manage file access [40]. In general, DAC is a rather flexible access control
mechanism, among others because it allows other trusted subjects, which are not the owner of
a file, to manage the files access rights. As a consequence the system is weaker in security and
therefore less suitable for use-cases which require strong access control [64]. Since our system
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does not require extremely strong security measures, we could consider DAC for our system.
Furthermore, since ACL are not centrally managed and access rights are at the discretion of
the resource owner DAC could work well in a decentralized system as a blockchain.
Nevertheless, DAC is not the mechanism of choice as it is in some cases very performance
intensive. When we consider ACL, subjects and privileges are assigned via a list to each
object. Therefore, it is easy to determine which subject has access to which object. However, it
is difficult to determine all the privileges of the user, since they are spread in many different
lists [40]. The same issue applies when it is required to determine every user which has access
to an object in the Capability based model. Especially for large and/or distributed systems,
such a search requires a large amount of performance and data traffic [40]. Hence, the goal to
minimize the cost of user management, authentication and authorization (NFR7) is violated.
In the case of a blockchain the request could additionally be very slow, since it would require
to scan the whole chain to retrieve the desired information. Consequently the revocation of
subjects access rights (FR2) might not be feasible in a reasonable timeframe. Furthermore,
another requirement, the use of attributes in the access control process (NFR1), is not natively
supported and would require a lot of overhead to be included in DAC.

3.4.3 Role-Based Access Control (RBAC)

The central elements of the basic Role-Based Access Control (RBAC) mechanism are the
subjects, also called users who want to access a resource, the roles to which users are assigned
to and the object, a resource protected by the access control mechanism [44]. Each role
resembles a set of assigned permissions, which determine the operations that can be executed
on the object by the subject who is a member of that certain role. Common operations are
read, write, delete and update. The assignment of a user to a role, as well as the assignment
of permissions to roles are managed by the resource owner or a assigned delegate. The
assignments are many-to-many relationships to achieve maximum flexibility. A session is
created by each user who activates the relevant roles to access a respective protected object.
While each user can have an arbitrary number of sessions, each session only has one user.
There is a large number of different RBAC mechanisms and implementations which extend
the described basic mechanism illustrated in Figure 3.5.

One common approach is a hierarchical RBAC mechanism [44] [59] [58], in which roles are
structured in a hierarchical manner as functions in a company. Consequently more general
roles, which are on a higher-level in the hierarchy, inherit the permissions from the lower-level
ones. For example, the specific roles of a data science analyst are inherited by the more
general ones of the respective data science manager.
Another relevant element, which can be added to RBAC, are constraints [58]. As RBAC
systems grow larger and/or become decentralized, a central management of role distribu-
tion is not possible or desired anymore. To still guarantee that compliance is enforced and
individuals can not be assigned to conflicting roles, constraints are introduced. Potential
constraints are the mutual exclusivity of roles, limitation of users per role and the requirement
of prerequisite roles before assigning a related role [58].
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Figure 3.5: Schematic of Role-Based Access Control from [44, pg.4]

The trans-organization RBAC mechanism enables role base access control among users and
objects of different organizations [19]. Users and objects are assigned to their respective
organization, while the set of rules is split into multiple subset which are each assigned
to elements of the different organizations. The role of the subset is managed only by the
organization the subset is assigned to, but any user in the system can be assigned to that
specific role. Therefore, user access to objects from different organizations are possible, given
the user is assigned to the required role [19].

A role-based system enables fast and flexible assignment of subjects to access rights, which
can easily be revoked or transferred. The system can be maintained and administered easily,
as long as the access control does not get too granular [64]. If granular access control is
required, it becomes challenging to manage an increasing number of roles, because for each
added permission a verity of new roles with different combinations of the permissions can
be created. This might lead to the undesired case where each user has a separate role. For
our system this should not be an issue, since the permissions would be based on the limited
number of attributes of the SSL/TLS certificate. However, since a requirement is to use
the certificates attributes for access control (NFR1), the required multiple layer structure
with attributes, permissions and roles would create a significant amount of overhead. This
might lead to significant decrease of performance and an increase in cost, thus violate the
requirement to minimize cost and impact on performance (NFR7).
Another challenge of RBAC is that managing roles and permissions normally requires a
central access control administration which defines and manages roles, i.e. the access control
is not defined and executed by the resource owner. A potential solution could be a consensus
mechanism, in which a decentralized community could define and link permission and roles.
Furthermore, a central role registry could be created where roles are managed. Nevertheless,
both solutions would create a significant amount of modification and again require a lot of
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overhead, which increases the required performance and cost of our system [40]. Since NFR1
and NFR7 are violated and significant modifications are needed to achieve descentralized
sub-endorsement allocation (NFR4), we do not consider RBAC as the preferred access control
mechanism for our system.

3.4.4 Attribute-Based Access Control (ABAC)

Attribute-Based Access Control (ABAC), sometimes also referred to as policy based access
control, is a more recently developed access control mechanism, which evaluates access
requests based on attributes [41]. Attributes describe the characteristics of entities, which are
relevant for access control decisions. More precisely, ABAC relies on subject attributes and
object attributes, which are together with environmental conditions, evaluated under access
control policies in order to determine the outcome of an access control decision. Exemplary,
attributes of a document object are file name, owner, edit date and confidentiality. For a
subject exemplary attributes are ID, Name and Clearance level [41].
Policies define the logic that determine which combinations of subject and object attribute
characteristics are required considering the current environment conditions to be granted
with access to the requested object. A policy or a combination of policies, which all are
targeted towards the access control of a single object are called access rules. For each object
protected by the ABAC at least one policy needs to be defined [41].

If a user submits the access request to the access control mechanism, it needs to decide
which policies and whose attributes to retrieve from which source to evaluate the request [41].
Depending on the complexity of the infrastructure this can be managed by a single entity
(server) or a system of functional entities. The example depicted in Figure 3.6 by [41] includes
the most common entities and describes their interactions within the system.
In order to access an object protected by ABAC a user, i.e. subject has to submit a request to
the authorization services. The authorization service consists of the Policy Enforcement Point
(PEP) and the Policy Decision Point (PDP), which functionality can be either combined on a
central server, or be distributed on multiple ones. The PEP receives the access request from
the subject and forwards it for evaluation to the PDP, based on which decision it enforces the
access to the resource. In order to determine the access control decision, the PDP retrieves the
appropriate policies from the Policy Repository and the subject’s and object’s attributes from
the Policy Information Point (PIP). To increase the efficiency and performance of retrieval, a
Context Handler can also be implemented in the mechanism. It creates an order of retrieval,
considering constraints as the urgency of a request to already preload required attributes.
The policies retrieved from the Policy Repository are created, tested, deployed and admin-
istered via the Policy Administration Point (PAP). The PIP stores information about the subjects
and objects attributes, as their association and the location on one or multiple different
Attribute Repositories. Furthermore, it is also able to retrieve the relevant environment condi-
tions, which might be required to evaluate a certain policy. An example for an environment
condition is "the current Manager on Duty", if a policy only allows a subject to access a
resource, when his or her manager is on duty.
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Figure 3.6: Schematic of functional entities of Attribute-Based Access Control from [41, pg.15]

Finally, when the PDP receives the appropriate policy, the subject’s and object’s attributes as
well as the environment conditions, it can assess the subject’s request, determine an access
decision and respond back to the PEP. Subsequently, the PEP either grants access to the
resource or rejects the subject’s request.

ABAC can be implemented by multiple programming languages and is used in access control
frameworks as the Extensible Access Control Markup Language (XACML) model and the
Next Generation Access Control Standard [41]. It is increasingly used in the enterprise context
because a large pool of attributes can flexibly describe access rights at any level of granularity
[39], while it is less complex and time-consuming to manage than complex permission and
role relationships or ACLs [41]. Moreover, it works particularly well with distributed systems
[39] - especially due to its support for federation among multiple organization networks
without the need for pre-provisioning. The authorization services of the organization net-
works do not need to locally register the requester individually, but only need to check the
attributes of the external requester (i.e. subject) against the attributes required for accessing
the object. As long as the separate authorization service trusts the authenticity of the subject’s
attributes, each can individually evaluate the access request [41].
The strong compatibility of ABAC with distributed systems makes it a good choice for the
underlying access control mechanism of our access control framework, as we want to design
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an access control mechanism for objects (i.e. smart contracts) in a distributed system (i.e.
blockchain). The previously discussed inherent support of federation aligns very well with
our requirement to design a system where the access control decision should be evaluated
independently of the previous relationship of the subject to the Application (NFR6). Fur-
thermore, our goal to leverage SSL/TLS certificates’ attributes for access decisions (NFR1)
obviously favors the choice of an attribute-based mechanism. Moreover, there are no apparent
incompatibilities of desired functionalities with the ABAC mechanism and opposed to other
mechanisms, no increased cost of user management, authentication and authorization (NFR7)
that can be directly associated to a system design with ABAC.

Hence, as we want to develop an access control mechanism for objects in a distributed
system, which evaluates access requests based on attributes of SSL/TLS certificates, and our
analysis of ABAC suggest that the concept helps to meet many of our requirements while
it does not violate any, we design our access control framework based on this mechanism.
Nevertheless, as for all the other mechanisms evaluated in this chapter, modifications are
still necessary to meet all requirements. However, in contrast to the other mechanisms the
required modifications are minor and mainly limited to the implementation of ABAC in the
context of blockchain, On-Chain AuthSC and SSL/TLS certificates. If we design our system
based on RBAC, MAC or DAC and still plan to meet all requirements, additional extensive
modifications to the general concept of each of the mechanisms would be necessary.

3.5 Creating an ABAC System for Smart Contract Access Control

In this section we elaborate the access control framework for the authentication and access
control for smart contracts, that evaluates access requests of blockchain accounts from real-
world entities, based on their endowment with trust from SSL/TLS certificates. Furthermore,
we integrate the access control framework together with the endorsement framework and
On-Chain AuthSC into a holistic system design. As we are using ABAC, we may also refer to
the access control framework as ABAC framework and the complete access control system as
ABAC system.

Attribute-based access control decisions are based on how specific characteristics of the entity,
that requests access to the protected resource, evaluate under a certain policy. The policy is
defined by the owner of the resource and specifies which attributes are required in which
manifestation. In some cases the attributes are very specific to the individual user, however in
other cases attributes depend on an affiliation to an organization. As our research leverages
attributes of SSL/TLS certificates, which are usually issued for the website of an organization,
user accounts are sub-endorsed in the context of their organization. Hence, the system allows
to limit access to functionality in an Application for user accounts that share similar attributes
of an organization.

In the context of our work an Application is a smart contract that offers a function that is

49



3 System Design

protected by our ABAC system. Any user, that wants to access such a protected function of
an Application, needs to be authenticated before the access request is evaluated by the access
control mechanism. However, authentication is inherent in blockchain systems. When a user
submits a transaction to invoke the function of a smart contract, the transaction needs to be
signed with the user accounts private key. During the validation process of the transaction
the blockchain network verifies with the public key that the transaction was sent only by
the owner of the user account (i.e. owner of the private key) and was not modified during
transfer. The verification of the signature is at the same time an authentication, as it is a
very strong proof that the sender of the transaction is the owner of the user account. Hence,
authentication of the user account is conducted by the blockchain network and thus does not
need to be conducted by our access control framework.
Given a successful authentication by the blockchain, the authorization of the user account still
needs to be checked. Therefore, the user needs to proof a link between his or her account and
attributes of a SSL/TLS certificate, that is trusted by the respective Application. Furthermore,
the value of the attributes of the linked SSL/TLS certificate must additionally match the
requirements defined by the owner of the Application in a policy. The link between a SSL/TLS
certificate’s attributes and the account of a user is indirectly established via the endorsement
framework we introduced in section 3.3.1. As the endorsement links the certificate to the
Registry and via the sub-endorsement the Registry to the user account, the user account is
not only sub-endorsed by the certificate itself, but also by its attributes. Hence, if the SSL/TLS
Root certificate of the Registry’s endorsing certificate is trusted by an Application and its
attribute matches the requirements of the policy, then accounts sub-endorsed by the Registry
can execute the protected function of an Application.

In this section we explain the previously described concept of our ABAC framework, as well
as its functionality and implications in more detail. Therefore, we first discuss the relevant
SSL/TLS certificate attributes and introduce the policy framework for the Application in
section 3.5.1. The complete architecture of the ABAC framework, as well as its functionality
and the interaction of components during access control evaluation are discussed afterwards
in section 3.5.2. Finally, in 3.5.3 we walk the reader through the application lifecycle of our
system design.

3.5.1 Attributes and Policies in the ABAC System for Smart Contracts

Attributes of SSL/TLS certificates are stored in the X.509 certificate file, that is signed by
the private key of a certificate that is higher up in the hierarchy of the PKI (cf. section
2.3.1). Consequently once signed, attributes of a certificate are immutable and endowed with
trust. Entities, that successfully validate the SSL/TLS certificate and trust the respective Root
certificate, can be certain that the attribute values of the certificate are correct. Furthermore,
as the structure of SSL/TLS certificates are standardized, the policy creators at an Application
know with which attributes user accounts may be sub-endorsed with. Hence, a second
advantage of using attributes of SSL/TLS certificates is that it is possible to conduct access
control, independently from a previous relationship between the endorsing certificate and
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the Application. However, we are also aware of the downsides of leveraging attributes of
SSL/TLS certificates, including decreased flexibility and higher costs because of attribute
immutability. Furthermore, the attributes of the certificate primarily describe the subject it is
issued for, and not each sub-endorsed user account individually.

Instead of bootstrapping attributes of SSL/TLS certificates we can also leverage a different
attribute infrastructure or even create a new one. However, as we previously discussed in
section 3.3 we did not identify a different trust infrastructure (centralized or decentralized) for
the public blockchain, that provides a sufficient level of trust for attributes. Even DIDs, which
support the association of attributes to identities via claims, are not a solution to our problem,
as trust endowment still is limited since no Web-of-Trust has been successfully established
yet.
If we create a new attribute infrastructure, we can design the structure as desired, hence
maximize the flexibility and performance of our system. However, creating a new attribute
infrastructure once again requires to endow attributes with trust. A possible solution can be
to use SSL/TLS certificates to endorse attributes stored on the blockchain. For example, as
we previously described in section 3.3.1 and as one interviewee suggested, attributes can be
directly added to the sub-endorsement of the user account. This increases the flexibility of our
system, as now every owner of an endorsed Registry can define and assign attributes to users.
Hence, this approach allows granular access control decisions, as the attributes specifically
describe the user. However, trust in such attributes is much lower than in attributes stored in
a SSL/TLS certificate, because these attributes are not verified by the CA. Moreover, there
is no standard defined that specifies which attributes are supported by which Registry and
Application. Furthermore, attributes describe the user in detail and data on public blockchains
can be viewed by anyone, the GDPR of the European Union would be violated.

Considering the advantages and disadvantages of any of the three solutions we conclude that
bootstrapping attributes of SSL/TLS certificates is the most feasible and promising solution.
Although some disadvantages persist, we are certain that benefits outweigh the challenges
and it is therefore worth to use this attribute infrastructure in our system design. Hence,
in the following we elaborate how to best apply the attributes of SSL/TLS certificates in
our ABAC framework. Subsequently we explain the design of the policy framework for
Applications.

Attributes of SSL/TLS Certificates

The attributes, that are relevant for access control policy makers, are the ones that describe
the access requesting user. As in our ABAC system the access requesting user is indirectly
described by attributes from an organization’s SSL/TLS certificate, the attributes that describe
the organizations are relevant. These attributes are stored in the subject, a sub-field of the
tbsCertificate field. However, the supported attribute types differ depending on the type of the
endorsing certificate. As we already explained in section 2.3.1 there are three different types
of SSL/TLS certificates: Domain-validated (DV) certificates, Organization-validated (OV)

51



3 System Design

OID Attribute Type DV OV EV

2.5.4.3 commonName X X X
2.5.4.6 countryName - X X
2.5.4.7 localityName - X X
2.5.4.8 stateOrProvinceName - X X
2.5.4.10 organizationName - X X
2.5.4.11 organizationUnitName - X X

Table 3.1: Attribute types [17] supported by our ABAC system with respective OIDs [37] and
certificate types

certificates and Extended-validation (EV) certificates. Depending on the certificate type a
more sophisticated validation process is required, in order to guarantee the credibility of the
attributes. The DV certificates support the least attributes, while EV certificates support the
most. In our current system design we only support attributes that are included in the subject
field of DV and OV certificates, as these are most commonly used and already support a
variety of relevant attributes. Table 3.1 depicts the attribute types supported by our ABAC
system, as well as which attribute types are included in which type of SSL/TLS certificate.
Further attribute types included in EV certificates and other certificate fields, as certificate
extensions, are not supported to minimize complexity of our first prototype and as we did
not identify a use-case in which these attributes are relevant for access control. However, if
future work identifies such use-cases, our system can easily be extended to support more
attribute types.
In the following we provide a brief overview of the supported attributes types, specify their
OIDs and provide a fictional example:

• commonName (2.5.4.3) - e.g. www.blockchainuniversity.edu: The FQDN of the organiza-
tion.
Can be used to only limit access to users, that are sub-endorsed by a specific organization
domain or top-level-domain.

• countryName (2.5.4.6) - e.g. DE: The country the organization is located in.
Can be used to only limit access to users, that are sub-endorsed by an organization from
a specific country.

• localityName (2.5.4.7) - e.g. Muenchen: The city the organization is located in.
Can be used to only limit access to users, that are sub-endorsed by an organization from
a specific city.

• stateOrProvinceName (2.5.4.8) - e.g. Bayern: The state or province the organization is
located in.
Can be used to only limit access to users, that are sub-endorsed by an organization from
a specific state or province.
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• organizationName (2.5.4.10) - e.g. Blockchain University: The name of the organization.
Can be used to only limit access to users, that are sub-endorsed by a specific organiza-
tion.

• organizationUnitName (2.5.4.11) - e.g. IT: The name of a business unit within the
organization.
As it is possible to have multiple certificates in an organization, the organization unit
can be specified in the certificate. The attribute can be used to only limit access to users,
that are sub-endorsed by a specific organization’s business unit.

Access control evaluation requires access to the attributes of a specific SSL/TLS certificate
that endorses a user ccount. Therefore, for each endorsing certificate the attribute values have
to be stored on the blockchain. As On-Chain AuthSC already stores most information of a
SSL/TLS Server certificate and its certificate chain of trust on a on-chain Certificate Database,
we can retrieve all attributes required for our work from the central database. However, as
the subject is stored as DER-encoded data, we have to complement the Certificate Database
with a parser, that extracts the attributes relevant for access control.

Policy Framework for an Application

Policies are the rules that specify which attribute types and values are required to access a
protected resource. In our ABAC framework they define the attribute type and the respective
value an endorsing SSL/TLS certificate of a user account must specify. Hence, when a user
invokes a function of an Application that implements the ABAC framework, the attributes of
the SSL/TLS certificate are evaluated under the respective function’s policy. As the goal of
our research is to first evaluate the feasibility of SSL/TLS certificate based ABAC for smart
contracts, our system design only supports very basic policies P, that comprise one attribute
type Atype, its value Avalue and a equality comparison operation:

P = {Atype = Avalue}

The policies supported by our framework are stored in and maintained via respective func-
tions of the Application. However, for each protected function only one policy can be defined.
Nevertheless, an Application, which implements our ABAC framework, should support the
following operations for managing policies:

Create: A policy is automatically created for every function that supports ABAC functionality
once the Application is deployed to the blockchain. However, only the attributes specified in
the previous section are supported.

Read: Any user can retrieve the current policy of a function from the Application with the
respective getter function.
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Update: A policy can be updated by the owner of the Application, by submitting a new
attribute value and/or the OID of the new attribute.

Delete: A policy can not be deleted, however it may be deactivated. In such case, any
sub-endorsed user account can access the function, as no attribute checks are conducted.

3.5.2 ABAC Framework of the ABAC System for Smart Contracts

In the previous sections we discussed design choices and elaborated the attributes and the
policy framework for the Application. In this section we want to complement both with an
ABAC mechanism to finalize the design of our ABAC framework. The ABAC mechanism
defines how an access request for invoking a protected functionality at an Application is
evaluated. To retrieve relevant data and execute required functionality for the evaluation
process it leverages the endorsement framework and On-Chain AuthSC. Hence, we need to
consider both together with the ABAC framework to design the architecture of the ABAC
mechanism. As we design an attribute-based mechanism, we stick to the established terms
and conventions used in ABAC literature (cf. section 3.4.4). However, we also introduce some
new terms and components that are specific to our system design.

The ABAC mechanism is distributed among four components on the blockchain: The Applic-
ation, Registry, Certificate and Endorsement Database. It comprises the functional entities
(e.g. Policy Enforcement Point) we described in the survey of ABAC in section 3.4.4. In the
following we explain the functionality of the ABAC mechanism, its architecture and our
design choices. An overview of the architecture is depicted in Figure 3.7.

The to-be-protected functionality (i.e. object) always resides at an Application, that can be
independently deployed from all the other components. However, each Application needs
to implement specific functional entities to support the access control mechanism: A Policy
Enforcement Point (PEP), that receives the access requests from the user account and forwards
the parameters relevant for the access decision to the Policy Decision Point (PDPapp). The
PDPapp, is the central component that evaluates user data under a policy stored in the Policy
Repository to determine an access decision the PEP can execute. Finally, a Policy Administration
Point (PAP) allows the owner of the Application to manage the policy framework.
More specifically for a request to be successfully evaluated by the PDP, the user has to provide
proof that he or she is sub-endorsed by an intact chain of trust and that the attributes of
the endorsing SSL/TLS certificate are successfully verified under the access control policy.
However, the Policy Information Point (PIP), that stores the location and procedure to retrieve
the user accounts endorsements and attributes can not be implemented in the Application.
This is due to the fact that user accounts and hence their sub-endorsing Registry and the at-
tribute providing SSL/TLS certificates are initially unknown to the Application. Furthermore,
some functionality that is required to retrieve endorsements and attributes from the Registry,
Endorsement and Certificate Database can only be accessed by internal functions. Hence, we
design our system as depicted in Figure 3.7 such that a PIP is directly located at each of the

54



3 System Design

Figure 3.7: Architecture of our blockchain-based ABAC mechanism for smart contracts

three components and the user provides the initial link to the Registry’s PIPreg via the access
request.

First in (a) Sub-Endorsement Check the PDPapp at the Application receives the user data from
the PEP and initiates contact with the PIPreg. The PIPreg checks if the requesting user account
is included in the sub-endorsement repository and returns its response to the PDPapp. If a
positive response is received, the PDPapp successfully verified the sub-endorsement of the
user account.
In (b) Endorsement Check the PDPapp checks the credibility of the Registry, i.e. if the smart
contract is endorsed by a trusted SSL/TLS certificate. Therefore, the PDPapp submits the
Registry’s address to the PIPedb of the central Endorsement Database, which checks if an
endorsement is included in the Endorsement Repository. Given success, the PIPedb checks the
Root Store of the Application to determine if the Root certificate of the endorsing certificate is
trusted by the Application. If this is the case, it returns the certificate ID to the PDPapp - the
chain of trust between the user account and the certificate PKI is successfully validated.
Finally, in (c) Attribute & Policy Check the PDP retrieves and validates the attributes under the
respective policy. However, as for the parsing of the certificate’s subject field at the Certificate
Database, the prescribed value of the attribute in the policy is already required, the evaluation
needs to be conducted at the Certificate Database. Hence, in our design the PDPapp does not
execute the evaluation but submits the policy with the ID of the certificate to the Certificate
Database. Therefore, besides the Attribute Repository a PIPcst and a PDPcst are required
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at the Certificate Database to retrieve the attributes from the Attribute Repository and to
evaluate if values match. Once evaluation is completed, the PDPcst returns the outcome to its
counterpart on the Application.

Based on the outcome of the three evaluation requests the PDPapp determines its access
control decision and forwards it to the PEP. Depending on the PDP’sapp decision the PEP
either grants or denies access to the user account.

3.5.3 Application Lifecycle of the ABAC System for Smart Contracts

In this section we summarize our authentication and access control system for smart contracts,
that evaluates access requests of blockchain accounts from real-world entities, based on their
endowment with trust from SSL/TLS certificates and describe its application lifecycle. We
first briefly recapitulate the Registry deployment and the endorsement creation process, as
well as the Application deployment. Subsequently we walk the reader through the exemplary
evaluation of an access request. For an illustration of the process we refer to Figure 3.7.

Design of the Registry and Endorsement Creation

In order to invoke a protected function of the Application (i.e. object), the user account (i.e.
subject) has to be sub-endorsed by a SSL/TLS certificate, which is linked to a Root certificate
trusted by the Application. Hence, in this section we briefly describe the endorsement creation,
including the Registry deployment. The consequent flow of trust is depicted in Figure 3.7.
The process can be described as follows:

1. Deployment of the Registry
The owner of the private key of a SSL/TLS certificate implements a Registry according
to our reference design, tests it and deploys it to the public blockchain.

2. Creation of the Endorsement Link
The Registry can be endorsed with On-Chain AuthSC, by first submitting the SSL/TLS
certificate to the Certificate Database (i.e. Attribute Repository) and second by creating,
signing and submitting an endorsement for the Registry to the On-Chain AuthSC
Endorsement Database (i.e. Endorsement Repository). After successful validation of the
signature with the SSL/TLS certificate’s public key the endorsement is added to the
Endorsement Database3.

3. Creation of the Sub-Endorsement Link
In this step the account of a user that wants to access an Application that is protected
by the ABAC mechanism can be added. In order to do so, the owner of the Registry has
to submit the address of the user account to the Registry. Once the sub-endorsement is
successfully created, it is added to the Sub-Endorsement Repository. From now on the
user account is sub-endorsed and third party entities may check its status.

3As the creation of an endorsement is part of On-Chain AuthSC, which we described in section 2.4, we only
briefly cover the process.
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Design of an Application that leverages our ABAC System

The ABAC mechanism can be used by an owner of an Application to protect the Application’s
functions. In order to add support for our system, the owner needs to comply with the
following process:

1. Deployment of Application
A person that wants to use our ABAC system needs to complement the implementation
of the Application with the functionality of our reference design. Subsequently the
Application can be tested and deployed.

2. Adding trusted Root certificates
Once deployed, the owner of the Application needs to initialize a Root Store for the
Application at the Endorsement Database, before he or she needs to decide which Root
certificates should be trusted by the Application during the access request evaluation.

3. Definition of a Policy
Finally, the owner of the Application needs to specify the policy at the PAP, hence which
attribute type and value needs to be provided by the endorsing SSL/TLS certificate of
the access requesting user account.

Evaluating an Access Request of a Real-World Entity

Given a sub-endorsement from a Registry, a request from a user account of a real world entity
to access the functionality of an Application may be granted. The evaluation of the access
request is depicted in Figure 3.7 and described in the following:

1. Access Request submission
A user account (i.e. subject) selects and invokes a function (i.e. object) of an Application.
As payload it submits the account address of its sub-endorsing Registry.

2. Access Request evaluation
The access request is received by the PEP at the Application. It forwards the user
account’s address as well as the address of the sub-endorsing Registry to the PDPapp at
the Application. The PDPapp initiates the following three step evaluation process.

(a) Sub-Endorsement Check
The PDPapp contacts the PIPreg at the Registry and requests a check whether the
user account is sub-endorsed. The PIPreg checks the Sub-Endorsement Repository
and responds whether the sub-endorsement is included.

(b) Endorsement Check
The PDPapp contacts the PIPedb at the Endorsement Database and requests a check
whether the Registry is endorsed. The PIPedb checks the Endorsement Repository
if a valid endorsement for the Registry is included. Given success, it checks in
the Root Store whether the endorsing certificate’s Root certificate is trusted by the
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Application. Finally, the PIPedb submits a response with the ID of the endorsing
SSL/TLS certificate to the PDPapp at the Application.

(c) Attribute & Policy Check
The PDPapp contacts the PDPcst at the Certificate Database and provides the to-be-
evaluated policy of the Application, as well as the ID of the endorsing SSL/TLS
certificate. The PDPcst requests the to-be-checked attribute type and its value as
specified in the policy from the PIPcst. It retrieves the attribute type and its value
from the respective certificate in the Certificate Repository. Finally, the PDPcst

checks whether the attribute type and value match and returns the outcome to its
counterpart at the Application.

If any of the three steps fail, the evaluation is aborted and a negative response returned
to the PEP. Given that all three steps evaluate successfully, a positive response is
returned.

3. Access Decision
Depending on the response of the PDPapp, the PEP either grants or rejects access to the
functionality (i.e object) of the Application.
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In this chapter we describe and explain the implementation of the prototype for blockchain-
based ABAC for smart contracts, based on the system design we introduced in the last chapter.
We use the Truffle framework to develop our prototype for the Ethereum blockchain and
use the Solidity programming language for implementation. The core component of our
prototype is the ABAC framework, that evaluates the access request of a user account at an
Application smart contract. However, as the user account needs to leverage trust from SSL/TLS
certificates, we first need to describe the implementation of the Endorsement Framework in
section 4.1 before we focus in section 4.2 on the ABAC Framework. As our system leverages
On-Chain AuthSC, we need to consider its design and architecture during implementation.
We use its existing functionality but also add some new functions to components of On-Chain
AuthSC. In this chapter we focus on explaining the functions that we added to the system.
Nevertheless, we sometimes refer to functions implemented by Groschupp and provide a brief
summary if a functionality is crucial to understand a design decision in our implementation.
However, in general we do not explain the implementation of On-Chain AuthSC, as it is not
part of our contribution. In case of questions regarding the On-Chain AuthSC implementation,
we refer to section 2.4 and [33].

4.1 Endorsement Framework

The endorsement framework of our prototype is based on our system design in section
3.3. Hence, it comprises a Registry smart contract, On-Chain AuthSC for the endorsement of
the Registry smart contract and a sub-endorsement framework for the sub-endorsement of
user accounts. It defines the functionality to create and manage a link between SSL/TLS
certificates and the Registry smart contract, as well as between the Registry smart contract and
user accounts - a trust endowment from the SSL/TLS certificate PKI to the user accounts.
As we apply On-Chain AuthSC as specified by Groschupp without any modifications, we do
not describe the implementation in this chapter and refer to [33] for a detailed elaboration.
Thus, in this section we take the endorsement of the Registry smart contract for granted and
focus on the implementation of the sub-endorsement framework and the configuration for
the Registry smart contract.

4.1.1 Sub-Endorsement Framework

The sub-endorsement framework is a set of functionalities that allows to create, obtain, update
and delete a sub-endorsement for a user account. It is the central component that allows a
user to indirectly obtain trust from SSL/TLS certificates in order to invoke functions protected
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by our ABAC mechanism at an Application smart contract. Hence, it also offers functionality
for Application smart contracts to check if a user account is sub-endorsed by the Registry smart
contract. The sub-endorsement framework is implemented in the Registry smart contract. Its
most relevant functions and definitions are specified in Figure 4.1.

Sub-endorsements are represented by a SubEndorsement struct, that contains an arbitrary
userID and a boolean endorsementStatus that specifies if the sub-endorsement is active
or revoked. Each sub-endorsement struct is stored in a central subEndorsements mapping
at each Registry smart contract. As every user account should only be sub-endorsed by
one sub-endorsement no key for the mapping, which is unique to each endorsement, is
necessary. Hence, we do not directly store the account address of the to-be-sub-endorsed user
account in the struct, but use it as the key for the subEndorsements mapping. Thus, each
sub-endorsement can easily be retrieved from the mapping and associated to the respective
user account. Furthermore, it ensures extensibility for future implementations of our system,
as other attributes can be assigned to the sub-endorsement struct of each user account.

Managing Sub-Endorsements

The owner of the Registry smart contract can create and add a sub-endorsement to the
mapping by invoking the addSubEndorsement() function. Furthermore, we implement
a function for the owner to revoke a sub-endorsement, as well as a getter function that
allows a user to retrieve his or her sub-endorsement. In order to limit the accessibility of
some functions to the contracts owner, we leverage the Owned.sol contract which is part of
On-Chain AuthSC and drawn from the Open Zeppelin Ownable contract 1. In the following
we describe the different functions in more detail:

• addSubEndorsement(address _address):
A function that can only be invoked by the owner of the Registry smart contract to add a
new sub-endorsement to the subEndorsements mapping. It requires the address of
the to-be-sub-endorsed user account to create and add a SubEndorsement struct to the
subEndorsements mapping. Once the sub-endorsement is added, the user account
is sub-endorsed and may use the Registry smart contracts trust to access a protected
function at an Application smart contract.

• revokeSubEndorsement(address _address):
Revocation of sub-endorsements is needed, as the user might loose access to its sub-
endorsed account or the trust of the sub-endorsing Registry smart contract’s owner. In
order to revoke a sub-endorsement, the function needs to retrieve the SubEndorsement
struct from the subEndorsements mapping. Hence, as sub-endorsements are mapped
to their account’s address, the Registry smart contract’s owner must pass the account
address to the revokeSubEndorsement() function. Then the sub-endorsement can be

1https://docs.openzeppelin.com/contracts/2.x/api/ownership, visited 13/12/2020
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1 pragma solidity >0.5.12;
2 import "../Owned.sol";
3

4 contract Registry is Owned{
5 mapping(address => SubEndorsement) public subEndorsements;
6 mapping(string => bool) public config;
7

8 struct SubEndorsement {bool subEndorsementStatus};
9

10 function addSubEndorsement(address _address) public onlyOwner;
11 function getSubEndorsement(address _address) public view returns(...);
12 function revokeSubEndorsement(address _address) public onlyOwner;
13 function checkSubEndorsement(address _address) public view returns(...);
14

15 function updateConfig(string memory _ruleType ,boolean _ruleValue)
public onlyOwner;

16 function getConfig(string memory _ruleType) public view returns(...);
17 }

Figure 4.1: Shortend interface of the Registry smart contract

revoked by updating the endorsementStatus in the struct of the sub-endorsements
to false.

• getSubEndorsement(address _address):
To increase the usability of the sub-endorsement framework, we also allow accounts on
the blockchain to easily check the content of sub-endorsements with a getSubEndorse-
ment() function. As the data stored on the public Ethereum blockchain can be read
by any user, we can not limit access to only the owner or the respective sub-endorsed
account. To retrieve a sub-endorsement, the invoker needs to provide the account
address of the sub-endorsed account. Subsequently, the function returns the endorse-
mentStatus of the respective SubEndorsement struct from the subEndorsements
mapping. However, this function is not invoked by the Application smart contract
to check the sub-endorsement in an access request, as the evaluation of the request
additionally requires to check the config mapping of the Registry smart contract. We
explain its functionality at the end of this section and describe the function check-
SubEndorsement() that allows Application smart contracts to check the status of a
sub-endorsement in section 4.2.
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4.1.2 Configuration of the Registry Smart Contract

Beyond CRUD operations for a sub-endorsement, we also consider a configuration for the
Registry, where the owner can configure how the Registry can be used. For example, to
configure the sub-endorsement framework.

In particular, we are facing the challenge of how the owner of the Registry smart contract
can quickly deactivate all the endorsements and prohibit access control at the Application
smart contract. A possible, but resource intensive implementation, is to revoke every single
sub-endorsement via a function call of the revokeSubEndorsement() function. However,
this is neither time nor Gas cost efficient, especially if the timeframe for the deactivation only
is intended to be limited.
Another approach is to introduce a configuration variable, that specifies whether sub-
endorsements are currently supported. If activated, sub-endorsements can be leveraged
to check access control. Once it is deactivated, each request of an Application smart contract
to check a sub-endorsement is rejected. Using this implementation, it allows the owner of
the Registry smart contract to efficiently activate and deactivate sub-endorsements without
actually revoking sub-endorsements. Therefore, we pursue the second approach. Moreover,
during our interviews to evaluate the design of our system we learned that owners would
like to have the opportunity to add other individual configuration rules to the Registry smart
contract. Hence, we implement a config mapping, that maps the type of the configuration
rule to its value. A new rule can be added and an existing one can be updated by invoking
the updateConfig() function. Furthermore, any interested account can obtain the current
configuration of the Registry smart contract with the checkConfig() function.
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Figure 4.2: Model of prototype implementation
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4.2 ABAC Framework

Our prototype implements the ABAC framework for smart contracts and leverages the sub-
endorsement framework of the Registry smart contract, we described in the previous section,
and On-Chain AuthSC by Groschupp [33]. It is based on the system design in section 3.5,
hence comprises smart contracts and libraries that implement the central components that an
ABAC architecture consists of: Policy Enforcement Point (PEP), Policy Decisions Point (PDP),
Policy Information Point (PIP), Policy Administration Point (PAP) and relevant repositories. As we
bootstrap an existing prototype and want to reduce code duplication, the components can not
always be implemented by only one smart contract or library, hence represent functionality
from multiples ones. An overview of the systems components, smart contracts and libraries,
as well as their interactions are depicted in Figure 4.2.

The PAP is implemented in the Application smart contract, the PDP is resembled by a PDP
library and the PEP is shared between both - the PEPapp and the PEPlib. The Application smart
contract uses the PDP library to check the sub-endorsement of the requesting user account
with the Registry smart contracts PIPreg and the endorsement of the Registry smart contract
with the PIPedb of the EndorsementDatabase smart contract. Furthermore, the PDP library is
used to evaluate the attributes of the endorsing SSL/TLS certificate together with a PDPcst

and PIPcst at the CertificateStore smart contract and X509Parser library. The relevant helper
functions to parse the SSL/TLS certificate data are provided by the ASN1Parser library.
In the following we discuss design decisions that affect the general architecture of our
prototype in section 4.2.1, before we discuss the implementation of its components in sections
4.2.2 to 4.2.6.

4.2.1 ABAC Prototype Architecture

In this section we explain major design decisions that affect the structure and components
of our prototype implementation. At first we discuss how and in which components to
implement the PAP, PEP and PDP. Subsequently we elaborate the implementation of the PIP.
The structure of the prototype is depicted in Figure 4.3.

Implementation of the PAP, PEP and PDP

Our ABAC mechanism is applied to restrict access to a function at a smart contract. We
specified the name of such a smart contract already in the system design as Application.
However, the Application we described in the System Design chapter in 3.5.2 differs from the
actually implemented Application smart contract in our prototype.

A question, that arises when implementing the Application in a smart contract, is how and
where to best implement the PAP, PEP and PDP. A first solution is to include all three
components in the Application smart contract - hence implement the Application smart contract
with every functionality described in the system design section. This is the most straight
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forward approach, however it creates a large amount of duplicate code that needs to be stored
on the blockchain in each deployed instance of an Application smart contract. Furthermore,
it leaves room for errors and security issues, as each owner has to implement the code
individually.
A second option is to split the functionality of the Application into an Application smart
contract and an abstract smart contract. The Application smart contract can implement
functions of the PAP and PEP, which are specific to each individual instance of the Application,
while the abstract smart contract, from which each Application smart contract inherits, defines
the common code. As the owner of the Application smart contract does not need to implement
most of the logic, security issues and errors are mitigated. Nevertheless, since Solidity copies
the code from an abstract contract into the inheriting one, duplicate code and increased Gas
costs still are an issue.
Therefore, we explore a third solution, where we apply a similar separation of functionality,
but use a library instead of an abstract contract. The library stores the common code of the
PEP and PDP and allows multiple Application smart contracts to use its functionality without
duplication of code. Yet a library can not store Ether, does not support modifiers and state
variables. Nevertheless, we still implement a library, as we can use function calls instead of
modifiers and store the state variables in the Application smart contract. Thus, we define and
store the PAP state variables and implement its functionality directly at the Application smart
contract. Furthermore, we implement some of the functionality of the PEP (PEPapp) at the
Application smart contract and the common code (PEPlib) together with the PDPlib at the PDP
library.

Implementation of the PIP and Implications for the PDP

In order to evaluate an access request, the PDP library needs to check the validity of the
sub-endorsement and endorsement, as well as the relevant attribute values from the SSL/TLS
certificates. The PDP depends on the PIP to retrieve the relevant information from the Registry,
EndorsementDatabase and CertificateStore smart contracts. Hence, in this section we elaborate
how and where to implement the PIP, in particular under consideration of its design in section
3.5.2, where we defined the PIPreg, PIPedb and PIPcst.

The PIPreg retrieves the information whether the access requesting user account is sub-
endorsed by the Registry smart contract from the subEndorsement mapping at the Registry
smart contract. First we consider an implementation of the PIP’sreg functionality at the PDP
Library. Such implementation reduces duplicate code and decreases Gas costs. However, as
we described in section 4.1.2, we want to enable the owner of a Registry smart contract to
implement an individual configuration for the Registry smart contract. Depending on the
specification of the configuration rules defined by the owner, information retrieval from the
PIP is affected. For example, if the owner adds a rule, that deactivates sub-endorsements for
a certain timeframe, the PIP needs to consider the rule and return that the user account is not
sub-endorsed. Hence, the PIP’s implementation depends on the individual configuration of
each Registry smart contract. Therefore, it needs to be implemented at the Registry contract.

65



4 System Implementation

ABAC for Smart Contracts

On-Chain AuthSC
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1
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Registry

- subEndorsement : mapping
- config : mapping

+ addSubEndorsement(...)
+ getSubEndorsement(...)
+ revokeSubEndorsement(...)
+ checkSubEndorsement(...)
+ updateConfig(...)
+ getConfig(...)

Application

- pdp : PDPLibrary
- ed : EndorsementDatabase
- cs : CertificateStore
- attributeOID : String
- attributeToBeChecked : String

+ withdrawBalance(...)
+ changeOID(...)
+ changeValueToBeChecked(...)
+ addTrustedRoots(...)
+ removeTrustedRoot(...)
/* functions to change the address of
the pdp, ed and cs */

�library�
PDP

+ checkAuthorization(...)

EndorsementDatabase

- endorsements : mapping
- endorsementsByAddress : mapping
- rootStore : mapping

+ checkIfEndorsed(...)
+ initializeRootStore(...)
+ addRootsToStore(...)

CertificateStore

- certificates : mapping

+ checkAttribute(...)
+ certExists(...)

�library�
X509Parser

+ checkIfAttributeContained(...)
+ contain(...)

�library�
ASN1Parser

+ getRootNode(...)
+ getNextNode(...)
+ getFirstChildNode(...)
+ getContentOfNode(...)
+ getOID(...)

Figure 4.3: Structure of the prototype implementation with components from [33]
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For the evaluation of the Registry smart contract’s endorsement and the SSL/TLS certificate
attributes, we bootstrap On-Chain AuthSC. Hence, we need to consider its architecture in our
implementation to ensure functionality and efficiency of the prototype. As the PDP library
relies on the Endorsement Database to check the endorsement of a Registry smart contract
and on the Certificate Database to check the attributes of the endorsing SSL/TLS certificates,
the PIPedb and PIPcst need to be developed in accordance with the implementation of these
two entities from On-Chain AuthSC.

The Endorsement Database comprises the EndorsementDatabase smart contract and a Signa-
tureValidation library. However, the SignatureValidation library is not relevant for this section,
because it provides enabling functionality which we assume as given since it does not directly
affect our implementation. The EndorsementDatabase smart contract does not implement a
function which allows to retrieve an accounts endorsement status with its address. Therefore,
we are confronted with the decision to either implement such functionality in the PDP library
or directly at the EndorsementDatabase smart contract. As the mapping, that stores the endorse-
ments is set private, it can only be accessed from a function within the EndorsementDatabase
smart contract. Hence, to check the endorsement from outside the EndorsementDatabase smart
contract, we need to change large parts of the existing implementation of On-Chain AuthSC.
This most likely leads to duplicate code, hence increases complexity and deployment costs.
Thus we do not significantly change the implementation of On-Chain AuthSC and implement
the functionality of the PIPedb directly at the EndorsementDatabase smart contract.

The Certificate Database comprises the CertificateStore smart contract, the X509Parser library
and the ASN1Parser library. Once again we are confronted with the challenge where to
implement the PIP, more specifically the PIPcst. In order to retrieve the attributes from the
SSL/TLS certificate and evaluate them under the policy of the Application smart contract, the
ABAC mechanism needs to check first whether the specified SSL/TLS certificate exists. Given
that the SSL/TLS certificate is stored in the CertificateStore smart contract, its DER-encoded
subject field needs to be parsed with the X509Parser library to extract the attribute information.
Consequently, we can either directly evaluate the policy with the X509Parser library at the
CertificateStore smart contract, hence move some of the PDP functionality away from the PDP
library, or retrieve the attribute value from the CertificateStore smart contract and evaluate
it under the policy at the PDP library. However, the decoding of the DER-encoded subject
field and the extraction of the stored data is very complex. Therefore, we do not extract and
decode the field, but only search for the attribute type and value specified in the policy to
determine if both are included in the subject field. Hence, we are forced to check the policy
requirements with the X509Parser library at the CertificateStore smart contract and not at the
PDP library. Consequently, the attribute retrieval and evaluation is implemented in a PIPcst

and a PDPcst at the CertificateStore smart contract and the X509Parser library. As for each
access request evaluation the subject field needs to be parsed, this implementation has a
negative influence on the performance and Gas costs of the prototype. Nevertheless, given
the complexity to develop a sophisticated DER-Decoder and to deploy it on the blockchain,
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we are certain that this solution is most feasible for the scope of this thesis. However, future
developments should consider to develop such decoder to extract and store each attribute
type and its value once during submission of the SSL/TLS certificate to the CertificateStore
smart contract. Thus, Gas cost can be significantly reduced for the evaluation of an access
request, as no parsing and decoding is required anymore.

4.2.2 Application Smart Contract (PEPapp, PAP)

The Application functionality is implemented by each Application owner. We only provide a
reference implementation of the ABAC mechanism, the Application owner has to complement
with desired functionality. The reference implementation for an Application smart contract
comprises functionality for the PEPapp, that manages the access request from the user account
and the PAP, that allows an owner to manage policies and the configuration of the ABAC
mechanism. In order to limit accessibility of some functions to the Application smart contract’s
owner, we once again leverage the Owned.sol smart contract.
For demonstration purposes of the ABAC mechanism in this prototype we implement and
protect a simple function withdrawBalance(), that allows an authorized user to withdraw
all Ether from the Application smart contract. An overview of the functions and variables of
our reference implementation of the Application smart contract is listed in Figure 4.4. In the
following we discuss the reference design in more detail and explain our design choices.

1 pragma solidity >0.5.12;
2 import "../Owned.sol", "../PDP.sol", "../EndorsementStore.sol", "../

CertStore.sol";
3

4 contract Application is Owned{
5 PDP pdp;
6 EndorsementDatabase es;
7 CertificateStore cs;
8 string public attributeOID;
9 string public valueToBeChecked;

10 /* Omitted variables for addresses */
11

12 function withdrawBalance(address _addressEndorser) public;
13 function changeOID(string memory _attributeOID) public onlyOwner;
14 function changeValueToBeChecked(string memory _valueToBeChecked) public

onlyOwner;
15 function addTrustedRoots(...) public onlyOwner;
16 function removeTrustedRoot(...) public onlyOwner;
17 /* Omitted functions to change addresses and enable Ether use-case */}

Figure 4.4: Shortend and simplified interface of the Application smart contract
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The PEPapp - Receiving an and Responding to an Access Request

A possible implementation of the PEPapp at the Application smart contract is to implement it in
a separate function. The user has to invoke the function that the ABAC mechanism can check
whether he or she is permissioned to access a protected function. Given success, the user is
added to a whitelist and may then invoke and access the to-be-protected function. However,
this solution requires two interactions of the user with the Application smart contract. A
second approach is to design and implement the access request evaluation in a non-interactive
way. Hence, execute it when the to-be-protected function is invoked, but before its actual
content is executed. The function head is part of the PEPapp, as by invoking the function and
providing the address of the user’s sub-endorsing Registry smart contract, the user account
indirectly submits an access request. Therefore, the only extra effort that the user needs to
make is to provide the address of the sub-endorsing Registry smart contract. Furthermore, this
also allows the Application smart contract to use our ABAC mechanism for multiple functions,
which apply different policies, as each request is individually managed at the respective
function. After considering the benefits and challenges we implement the second approach in
our prototype at the withdrawBalance() function.

The evaluation of the access request is conducted at the PDP library and not directly at
the Application smart contract. Hence, the PEPapp forwards an access request, including the
address of the user account and its sub-endorsing Registry smart contract, to the PDP library.
Once the PDP library evaluated the access request, it returns a boolean, that specifies whether
access to the functionality is granted or denied. The PEPapp then either approves or aborts
the execution of the protected functionality by the user.

The PAP - Policy, Root Store and Update Management

In this section we describe the functionality supported by the PAP at the Application smart
contract: Administration of the policies for access request evaluation and management of
trusted SSL/TLS Root certificates.

In our prototype the currently applied policy for the Application smart contract is specifed by
an attributeOID and a valueToBeChecked variable stored in the state of the Application
smart contract. As this is a first prototype, it is only possible to define one policy for all
functions of an Application smart contract.
Given a policy is defined, the ABAC mechanism checks at the PDP library, whether the
attribute type (i.e. attributeOID) specified by the owner of the Application smart contract
matches the attribute type in the endorsing SSL/TLS certificate and if the value (i.e valueTo-
BeChecked) assigned to both attribute types is equal. However, an owner of an Application
smart contract might want to change the policy that specifies the access requirements for
a to-be-protected function. Hence, we implement a changeOID() function to change the
attribute type (i.e. attributeOID) and a changeValueToBeChecked() function that
allows to change the attribute value (i.e valueToBeChecked).
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Beyond policy management, we are confronted with the question, whether it is beneficial to
add functionality to the Application smart contracts PAP, that allows the initialization and
management of its Root Store. The Root Store is a component of On-Chain AuthSC that stores
the SSL/TLS Root certificates that are trusted by the Application smart contract. Only if the
SSL/TLS Root certificate of the user account endorsing SSL/TLS certificate is included in the
Application smart contracts rootStore mapping at the EndorsementDatabase smart contract,
the attribute and policy evaluation is conducted.
On-Chain AuthSC already provides functions at the EndorsementDatabase smart contract with
which a Root Store of an account can be created and managed. Nevertheless, to improve
usability, we initialize a Root Store through a function call in the constructor of the Application
smart contract. Furthermore, we implement the two helper functions addTrustedRoots()
and removeTrustedRoot(), that allow the owner to add and remove trusted SSL/TLS
Root certificates without the need to manually execute functions at the EndorsementDatabase
smart contract.

During the implementation of our prototype we also elaborate how to deal best with updates
to and the replacement of smart contracts that are used by our ABAC mechanism. Smart
contracts are immutable, therefore in case of an update a new smart contract with a new
address has to be deployed on the blockchain. To ensure that smart contracts in our system
can be updated, we need to make sure that the variable that store the addresses of the to-be
updated contract can be updated.
As the PDPlib is implemented in a library, it can not store any state variables. Hence,
the addresses of the EndorsementDatabase smart contract and the CertificateStore smart con-
tract - both are needed for access request evaluation - have to be passed as payload of
the checkAuthorization() function to the PDP library. As we do not want the user
to provide those addresses to the Application smart contract, due to usability and security
reasons, the two addresses have to be stored together with the address of the PDP library
in the state of each Application smart contract. In order to ensure that the Application smart
contract still works in case any of the three smart contracts is replaced by a new one, we
implement the changeLibraryAddress(), changeEndorsementDatabaseAddress()
and changeCertificateStoreAddress() functions with which the owner can update
the addresses of the respective smart contracts.

4.2.3 PDP Library (PDPlib, PEPlib)

The PDP library only defines a single function that implements the functionality of the PDPlib:
The checkAccess() function, that retrieves and evaluates information from other smart
contracts PIPs. More specifically, in our system it checks the three requirements that a user
account needs to satisfy in order to be granted access to the protected function: A valid
sub-endorsement at the Registry smart contract, a valid endorsement of the Registry smart
contract stored in the EndorsementDatabase smart contract and attributes of the endorsing
SSL/TLS certificate that successfully evaluate under the policy defined by the owner of the
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Application smart contract.

A potential implementation of the checkAccess() function that executes the described
functionality first retrieves the information from each of the three smart contracts, before
jointly evaluating it. However, if the check of the first of the three conditions turns out
to be negative, resources are wasted retrieving data that is no longer needed. Therefore,
we propose a sequential structure as depicted in Figure 4.5, in which the retrieved data is
immediately evaluated. Furthermore, we suggest to start with the validation of the user
accounts sub-endorsement, or the Registry smart contracts endorsement, as the parsing of the
SSL/TLS certificate is much more computation intensive than the other two functionalities.

Validation of the Sub-Endorsement

As we previously explained, in the checkAccess() function we first implement the func-
tionality that checks whether the access requesting user account is sub-endorsed by the
specified Registry smart contract. To do so, the PDPlib invokes the checkIfEndorsed()
function at the respective Registry smart contract and provides the address of the access
requesting user account to the Registry smart contract. After evaluation the function returns a
boolean value, that specifies if a sub-endorsement is valid and if the user account is allowed
to use it for access control purposes. Next the PDPlib immediately evaluates the value. If
it returns true, the endorsement of the Registry smart contract is evaluated in the next step.
However, if it returns false the evaluation is aborted and the user account informed via an
error message that his or her request is rejected. As the error message is directly submitted
from the PDP library, the PEP is shared between the Application smart contract and the PDP
library.

Validation of the Endorsement

The evaluation process of the Registry smart contracts endorsement at the PDP library is
very similar to the one of the sub-endorsment. However, this time the checkIfEndorsed()
function at the EndorsementDatabase smart contract is invoked. In case of success the endorsing
SSL/TLS certificate’s ID is returned instead of a boolean value. It is required to identify the
endorsing certificate of the user account for the policy evaluation in the next step.

Attribute and Policy Evaluation

The attribute and policy evaluation is the most complex step of our ABAC mechanism, as
we need to parse the SSL/TLS certificate’s subject field for the to-be-evaluated attribute type
and the attribute value. Furthermore, we need to implement the evaluation in compliance
with the structure of On-Chain AuthSC. Hence, as we already explained in section 4.2.1,
we can not conduct the evaluation at the PDP library and therefore have to implement a
PDPcst at the CertificateStore smart contract and the X509Parser library. Nevertheless, the
PDP library already checks if the attribute type’s OID, specified by the Application smart
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1 pragma solidity >0.5.12;
2 import "../Registry.sol", "../EndorsementStore.sol", "../CertStore.sol";
3

4 library PDP {
5

6 function checkAuthorization(address _addressRequester, address
_addressEndorser, address _addressEndorsementStore, address
_addressCertificateStore, uint256 _rootStoreIndex, string memory
_attributeOID, string memory _valueToBeChecked) public view returns(
bool){

7

8 Registry reg = Registry(_addressEndorser);
9 EndorsementDatabase ed = EndorsementDatabase(_addressEndorsementStore);

10 CertificateStore cs = CertificateStore(_addressCertificateStore);
11 bytes32 certID;
12

13 /* Sub-endorsement validation */
14 require(
15 reg.checkSubEndorsement(_addressRequester),
16 "Access Denied: You are not endorsed by the contract you specified!"
17 );
18

19 /* Endorsement validation */
20 certID = ed.checkIfEndorsed(_addressEndorser, _rootStoreIndex);
21 require(
22 certID != 0x00,
23 "Access Denied: The endorsement of your endorsing contract is not

valid!"
24 );
25

26 /* Attribute and policy evaluation, this example checks "commonName" */
27 if(_attributeOID == "2.5.4.3"){
28 require(
29 cs.checkAttribute(certID, _valueToBeChecked, _attributeOID),
30 "Access Denied: The commonName of your endorsing contract’s

certificate does not authorize you to use this Application!"
31 );
32 return true;
33 }
34 /* Omitted else if cases, that check the other supported OIDs */
35 }
36 }

Figure 4.5: Shortend and simplified implementation of the PDP library
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contract, is supported by the ABAC system. We consider the following design choices for our
implementation.
A first possible implementation is to store a mapping of supported attribute types at the PDP
library. For each access request the PDP library checks whether the attribute type, desired
by the Application smart contract’s policy and passed as parameter of the checkAccess()
function to the PDP library, is included in the mapping. This approach is cost-efficient,
however as libraries can not store state variables we are not able to store the mapping of the
supported attribute types at the PDP library. Hence, we compare each supported attribute
type with the requested one in a separate if-block. We are aware that this creates duplicate
code and hence increases cost for the deployment of the PDP library. However, as only one
instance of the PDP library is deployed, the costs are limited.
If in any of the cases a supported attribute type matches the requested one, the OID and
the desired value of the attribute type are submitted as payload of the checkAttribute()
function to the PDPcst at the CertificateStore smart contract. After the evaluation is finalized,
the function once again returns a boolean variable. Given a successful evaluation, the PEPapp

at the Application smart contract is ordered to grant access. In case of failure an error message
is submitted to the user account.

4.2.4 Registry Smart Contract (PIPreg)

In section 4.1 we already discussed the sub-endorsement framework and the Registry smart
contract. Yet, we did not describe the implementation of the PIPreg in the Registry smart
contract, as it is a component of the ABAC framework. The PIPreg at the Registry smart
contract allows the PDPlib at the PDP library to retrieve the status of a sub-endorsement from
the subEndorsement mapping at the Registry smart contract. As the subEndorsement
mapping’s visibility is not set to private, in theory the implementation of the PIPreg can reside
at the PDP library. Thus, the amount of duplicate code at the multiple instances of Registry
smart contracts can be decreased. However, as we described in section 4.1.2 and 4.2.1, we want
to enable the owner of the Registry smart contract to implement an individual configuration
to better manage the Registry smart contract. Yet, depending on the specification of the
configuration rules defined by the owner, the information retrieval from the PIP is affected.
Hence, to consider individual implementations that enforce the configuration rules at the
Registry smart contract, the PIPreg needs to be implemented at the Registry smart contract.

The PIPreg is implemented in the checkSubEndorsementFunction() of the Registry smart
contract and comprises two components.
The first checks the requirements specified by the owner in the configuration of the Registry
smart contract, i.e config mapping. As its content differs at each Registry smart contract, the
functionality needs to be implemented by the owner of the Registry smart contract. However,
we provide a reference implementation in our prototype, that allows the owner to activate
or deactivate all sub-endorsements, i.e. approve or disapproves access control checks for
sub-endorsed user accounts.
In the second component of the function the ABAC mechanism checks whether an active sub-
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endorsement is stored in the subEndorsement mapping (i.e. Sub-Endorsement Repository).
In order to conduct the check, the PDP library needs to pass the address of the to-be-checked
user account to the checkSubEndorsementFunction() at the Registry smart contract.
If any of the checks at the two components fail, a negative response is returned to the PDP
library. In case of success, a positive response is submitted.

4.2.5 EndorsementDatabase Smart Contract (PIPedb)

The EndorsementDatabase smart contract is the central component of On-Chain AuthSC, where
external endorsements are stored and managed. It implements functionality, that allows to
add an endorsement for an account on the blockchain, as well as functions for updates and
revocation. Hence, as we leverage On-Chain AuthSC to create a trust-link between a SSL/TLS
certificate and the Registry smart contract, the endorsement of the Registry smart contract is
created with and stored at the EndorsementDatabase smart contract.
The validity of the Registry smart contracts endorsement is one of the three conditions that
need to be checked by the ABAC mechanism during the evaluation of a user accounts access
request. Thus, we need to implement a PIPedb at the EndorsementDatabase smart contract
that checks whether the endorsement of the Registry smart contract is stored at the Endorse-
mentDatabase smart contract and is valid. Furthermore, it needs to check if the SSL/TLS
Root certificate of the endorsing SSL/TLS certificate is included in the respective rootStore
mapping of the Application smart contract, i.e if it is trusted by the Application smart contracts
owner.

As the EndorsementDatabase smart contract does not offer a function, that allows to check
every described condition, we complement it with the PIPedb implemented in a checkIfEn-
dorsed() function. The design of the function is predefined by the structure and components
of the EndorsementDatabase smart contract. Furthermore, as we previously discussed in section
4.2.1, the mapping that stores the endorsements is set private, hence we need to implement
the function at the EndorsementDatabase smart contract.
At first we retrieve every endorsement of the respective Registry smart contract from the
endorsementsByAddress mapping (i.e Endorsement Repository). The key of the mapping
is the account address, that maps to the accounts respective EndorsementStore struct.
Hence, we need to pass the Registry smart contract’s account address as payload of the
checkIfEndorsed() function from the PDP library to the EndorsementDatabase smart con-
tract to retrieve the required EndorsementStore struct. The EndorsementStore struct
stores each endorsement of the respective Registry smart contract, no matter if it is still valid or
already revoked or expired. Therefore, we only retrieve the most recently added endorsement,
that is neither revoked nor expired, and check if its SSL/TLS Root certificate is included in the
Application smart contract’s rootStore mapping. Given the checkIfEndorsed() function
identified a matching endorsement, it returns the endorsing certificates ID to the PDP library.
In case of failure, it returns an ID that only contains zeros.
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4.2.6 CertificateStore Smart Contract and X509Parser Library (PDPcst, PIPcst)

On-Chain AuthSC stores SSL/TLS certificates in a central CertificateStore smart contract. How-
ever, the SSL/TLS certificates are not stored as a single file. Once submitted, the most relevant
information is extracted by the X509Parser library with support of the ASN1Parser library.
Unfortunately, the attributes in the subject field of the SSL/TLS certificate, which our PDP
library aims to retrieve from the CertificateStore smart contract, are not parsed yet and are still
DER-encoded. As we previously explained in section 4.2.1, as the certificates mapping as
well as other functions in the CertificateStore smart contract and X509Parser library are not
accessible from an external smart contract, we have to complement both with functionality to
retrieve and parse the subject field data. Fortunately, we can leverage many functions, that
are already part of On-Chain AuthSC.
Moreover, as we explained in section 4.2.1, we do not extract and store each attribute type and
its value in the CertificateStore smart contract during submission of the certificate, but instead
search if the to-be-checked attribute type and its value are included in the DER-encoded
subject field during each evaluation of an access request. Therefore, as we implement the
policy evaluation at the X509Parser library, we thus not only implement the PIPcst at the
CertificateStore smart contract, but also a PIPcst and PDPcst at the X509Parser library.

Given the design decisions we previously discussed and the predefined structure of the Certi-
ficateStore smart contract and the X509Parser library, the design of our functions is predefined.
However, as we face implementation decisions we discuss them in the description of the
implemented functionality below.

To retrieve the relevant attribute for the evaluation under the policy, we have to retrieve first
the SSL/TLS certificate at the checkAttribute() function, before we can parse its subject
field and check whether the SSL/TLS certificates attribute successfully evaluates under the
policy.
We implement the checkAttribute() function at the CertificateStore smart contract as
the first touchpoint for the PDP library. Given the PDP library passed a valid certID (i.e.
certificate ID), the function retrieves the respective X509certificate struct and passes
it together with the OID of the to-be-checked attribute type and its desired value to the
checkIfAttributeContained() function of the X509Parser library. At this point we are
facing the decision to either use and complement the already implemented checkNameCon-
tained() function or to implement a new checkIfAttributeContained() function.

The checkNameContained() function already searches the subject field for the domain
name. However, the function checks for wildcard domains, hence does not allow to limit
the search to a specific attribute type. Moreover, its search is not only limited to the subject
field as it also includes the subject alternative name field of the certificate. Therefore, it is
necessary to rewrite the whole function and add multiple checks to cover each case. As this
also adds significant amount of code, we do not modify it but implement a new checkIfAt-
tributeContained() function.
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In the checkIfAttributeContained() function we iterate over the subject field using
the ASN1Parser library. It partitions the DER-encoded data in nodes, according to the nested
tree-like structure of the data. Hence, the subject field itself is the root node, that contains
nested child nodes. The direct child nodes are the sequence nodes, that each store a object
identifier node (i.e. OID attribute type) and a string node (i.e. attribute value). In order to
determine whether an attribute type is included in the subject field, the function retrieves for
each sequence node the respective object identifier node and checks whether it is equal to the
attribute types OID from the policy. Furthermore, it checks whether the string nodes value
matches the attribute type value of the policy. We implement the contain() function that
leverages the BytesUtils library2 for the comparison of byte values.

If a matching attribute is identified by the checkIfAttributeContained() function or
if the last node was parsed without success, it notifies the PDPlib at the PDP library via the
PIPcst at the checkAttribute() function.

2https://github.com/ensdomains/dnssec-oracle/blob/master/contracts/BytesUtils.sol, visited 13/12/2020
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The objective of this chapter is to evaluate our system design and prototype implementation.
To conduct a sophisticated evaluation and identify an appropriate strategy we select a scientific
research methodology, the Framework for Evaluation in Design Science Research (FEDS)
from Venable et al. [67]. We first explain and apply the framework in section 5.1. During the
application of the framework we identify the Quick & Simple evaluation strategy as best match
for the evaluation of our system design and prototype implementation. In the following two
sections we execute the evaluation strategy in two episodes. Section 5.2 describes the ex ante
evaluation, where we conduct the system design evaluation prior prototype implementation.
The ex post evaluation, in which we conduct a requirement and a performance evaluation
after the implementation of the prototype, is presented in section 5.3.

5.1 Evaluation Approach

We conduct our evaluation in accordance with the FEDS framework for design science research
introduced by Venable et al. in [67]. Being compliant with this scientific framework specifically
developed for the evaluation of design science research, allows us to increase the reliability
and validity of our system evaluation. The framework proposes a four step process, that
helps to identify which strategy is the best match for the evaluation of a research project,
as well as which properties of the to-be-evaluated system should be evaluated in which
setting. In the first step "Explicate the Goals" the framework helps to formulate the goals
of the evaluation with respect to rigour, uncertainty & risk reduction, ethics and efficiency.
Next in "Choose a Strategy or Strategies for Evaluation", it suggests four different evaluation
strategies among which the evaluating researchers can chose from. Once a strategy is selected
the framework provides guidance to determine the to-be-evaluated properties of the research
in the "Determine the Properties to Evaluate" step. Finally, in the fourth step "Design the
Individual Evaluation Episode(s)", researchers are supported in defining the individual
evaluation episodes. Below, we briefly explain how we apply the four-step framework and
describe the resulting strategy and implications for the evaluation of our blockchain-based
ABAC system for smart contracts.

1st Step: Explicate the Goals

For each of the four key goals for evaluation from [67] - rigour, uncertainty & risk reduction,
ethics and efficiency - we choose respective objectives for the design of the evaluation of our
research. Furthermore, we evaluate how important those goals are for the evaluation of our

77



5 System Evaluation

system, to pick an appropriate strategy in the next step of the framework.

With regards to rigour, it is important for us to evaluate the effectiveness of our system,
hence the evaluation component needs to make sure that our ABAC mechanism actually is
effectively working in the context of blockchain. Another goal is to evaluate the design of
our system and prototype to identify uncertainty & risk. More particularly, to identify risks
that threaten our systems functionality (i.e. technical risk) or its acceptance among users (i.e.
human social risk). However, as we are developing a small-sized first prototype for research
purposes and not a large system for productive deployment, both risks are rather limited.
Furthermore, as we expand On-Chain AuthSC, an already existing and working system that
already expands the trust from SSL/TLS certificates to the blockchain, with generally known
technology, we believe that the technical risks are low. Yet, the human social risks that our
system is not accepted in a decentralized community due to the use of a centralized PKI, is
higher and thus should be focus of our evaluation.
An evaluation needs to adhere to ethical standards and also reveal ethical concerns, especially
if the evaluation method itself or the system might have a negative impact on people or
organizations. According to Venable et al. in [67] that is especially important in the context of
systems critical to safety. Access control is concerned with protecting resources, hence our
system might fall into that category. However, our system is a proof-of-work and not a system
that can be used without further evaluation and improvements. Hence, we estimate the
ethical implications as limited and do not include an ethical analysis. Yet we obviously adhere
to ethic standards when conducting the expert interviews and the performance analysis.
Finally, the efficiency of a system is a central goal of an evaluation component [67]. As we are
conducting a master’s thesis, our time, human and monetary resources are limited. Hence,
our goal is to create a simple evaluation component that conducts a high-level evaluation to
determine the most relevant risks and the system’s general performance, but also creates a
foundation for future research.

2nd Step: Choose a Strategy or Strategies for Evaluation

Venable et al. propose four different strategies for evaluation in [67]: Quick & Simple, Human
Risk & Effectiveness, Technical Risk & Efficacy and Purely Technical Artefact. The strategy
for the evaluation of Purely Technical Artefact does not meet our needs, as it is designed to
evaluate systems that are very technical and not used or only used by people in the far
future. Our system’s technical complexity is not extraordinary and use-cases for application
by users are set today or in the near-future. Regarding technical risk and human social risk
we already identified in step one that both are rather limited, yet human social risks prevail.
Hence, we can already eliminate the Technical Risk & Efficacy strategy, which focuses on the
evaluation of systems where technical risks are high. With regards to human social risks we
face the challenge that our ABAC system might not be adopted, as we are using centralized
technology in a decentralized community and costs for access request evaluation are high,
while execution speed is low. However, as our research project is small and development
costs are limited, risks are in general limited. Therefore, we do not conduct a Human Risk
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& Effectivenes strategy, but a Quick & Simple one. It is the strategy of our choice, as it aligns
with our efficiency goal. Furthermore, our system design and prototype implementation
are not excessively complex and rather simple. Although some human social risks prevail
they are still limited as the time and capital invested is small. Quick & Simple is the strategy
for the evaluation of such rather small projects with limited risk involvement, where only
few episodes are sufficient for evaluation. Nevertheless, although evaluation in the Quick &
Simple strategy is limited, we still aim to evaluate our system with regards to the discussed
challenges and risks we described above. However, before future deployment in large projects
a Human Risk & Effectiveness strategy is recommended.

3rd Step: Determine the Properties to Evaluate

In the third step of the framework, Venable et al. suggest to identify the use-cases, require-
ments and components of the system design and prototype implementation that shall be the
subject of evaluation [67]. During the selection process, the choice of such evaluands shall
align with the goals of the evaluation component defined in the first step and the strategy in
the second. Hence, we identify the following potential evaluands:

• Use-Cases: We include one reference use-case and three exemplary use-cases in our
work. To identify uncertainty & risk, especially human social risks we can test the
use-cases with a limited number of experts (cf. efficiency goal) and rate peoples interest
in our system.

• Functional and Non-functional system requirements: In the system design chapter 3
we defined functional and non-functional-requirements for our system development.
Evaluating and improving the requirements with experts allows to increase rigour of our
evaluation component and thus the effectivity of our system. Furthermore, it allows to
identify uncertainty & risk: Human social risks, as we can determine which requirements
are especially important to potential users and technical risks as we identify design
errors before implementation.

• System Design: Evaluation of a high-level system design architecture with experts to
increase rigour of our evaluation. Therefore, it allows us to design the architecture more
effectively and identify uncertainty & risk, i.e technical and human social risks before
prototype implementation.

• Final Prototype: The final prototype can be analyzed to determine our system’s effect-
iveness and related uncertainty & risk factors. More specifically, prototype execution cost
and time are relevant evaluands for our prototype.

4th Step: Design the Individual Evaluation Episode(s)

The final fourth step of the framework is concerned with the number of evaluation episodes,
their design and time of execution. Important during this step is to consider resource con-
straints, prioritize and focus [67].
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For the design of our evaluation component, we pick the Quick & Simple strategy from [67]
and conduct two rounds of evaluation. As we want to identify risks and design errors before
implementation, we conduct one episode ex ante prototype implementation. Furthermore,
to evaluate the efficiency and adherence to requirements we conduct another episode ex post
implementation.

The first episode of evaluation (ex ante prototype implementation) aims to evaluate the
early design of our system. Potentially relevant evaluands are the use-cases, requirements
and a high-level system design architecture, as they can be created and evaluated ex ante
prototype implementation. Furthermore, they already provide insights regarding system
effectiveness and potential human and technical risks. For the setting of the first evaluation
episode we pick Experimental, more specifically controlled experiments as defined by [36].
Among the experimental methods we considered to conduct a survey, as it allows us to reach
a large audience with maximum efficiency. However, as the combination of blockchain, access
control and SSL/TLS certificates can not easily be explained in the context of a survey, we
are concerned that this approach decreases the rigour of our evaluation component. Expert
interviews are more rigorous controlled experiments, given a successful identification of
a sufficiently large number of experts. Hence, we conduct expert interviews. However,
to overcome the challenge of identifying a sufficient number of expert participants, we
can leverage the German academic blockchain community. Furthermore, we combine the
evaluation of the three different evaluands in one interview to maximize efficiency and the
amount of feedback received from each session with an expert.
The second episode of evaluation (ex post prototype implementation) aims to evaluate
the prototype implementation of our system. Hence, the final prototype is the subject of
evaluation. On public blockchains efficiency is especially important, as inefficient applications
are much more expensive and slower to use. Hence, the execution time and costs are the
evaluands of our choice to evaluate performance and determine the level of human social
risk involved. Furthermore, regarding our efficiency goal, both can be analyzed relatively
efficiently with limited resources. A design evaluation method that allows such evaluation
is a Dynamic Analysis as defined by [36], in our case a performance analysis in the Truffle
development environment. Beyond performance, we also want to evaluate the alignment of
the prototype implementation with the requirements we tested during the first episode. This
allows us identify potential human social and technical risk for the future development of our
system. To do so, we leverage the Analytical Optimization design evaluation method, where
optimal properties (i.e. tested requirements) are compared to the actual characteristics of the
system [36].

5.2 Episode 1: Ex Ante Implementation Evaluation

During the first evaluation episode we conduct eight expert interviews with researchers
from blockchain academia and developers from the blockchain community. The interviews
comprised four sections, the first to introduce the topic, concept and background, the second
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to evaluate the system design and its high level architecture, the third to discuss the use-cases
and the fourth to evaluate the system requirements. After conducting the interviews, we
analyze the feedback and introduce some adjustments to our system. In the following we
discuss the insights from the interviews, as well as the related implications for our work
structured according to our evaluands.

System Design

In the interviews we presented a high-level architecture of our system, comprising of the sys-
tems core components: The Registry, its endorsing SSL/TLS certificate and the endorsement,
as well as the user account, the respective sub-endorsement and the Application. Furthermore,
we specified interactions between the components during an access request. Overall, we
received positive feedback for the design of our system. Mr. Knobloch and Mr. Beinke liked
the idea of leveraging an established PKI and expanding its trust infrastructure to the block-
chain for access control. Especially, as Mr Knobloch mentioned, because the effort to obtain
a certificate and hence trust has already been accrued during the certification process of a
website. Hence, it would be good to use the trust infrastructure for a different system like our
access control mechanism. However, to increase compatibility many interview candidates as
Mr. Kurrle, Mr. Buchwald and Mr. Knobloch recommended to expand our blockchain-based
ABAC system beyond SSL/TLS certificates and support other types of certificates, as well
as Decentralized Identifiers. Nevertheless, regarding the use of a centralized source of trust,
Mr. Precht agreed that using a centralized PKI is appropriate, as in order to expand trust to
the blockchain a trust anchor would always be needed. However, Mr. Paixão noted, that the
centralized approach might face some resistance from the Ethereum community. Hence, the
human social risk prevails that some users will not use the system because of its centralized
nature.

With respect to the components of our architecture we received some feedback to improve the
Registry and the Application. Mr. Paixão highlighted that it would be important to enable
individual configuration of the Registry and support functionality with which the owner of
the Registry could add additional attributes to sub-endorsements. Based on the feedback we
add the configuration mapping, that allows owners to individually configure their Registry.
Yet, we do not implement additional attributes at the sub-endorsements for the reasons we
previously described in section 3.5.1.
With regards to security, we received the feedback from Mr. Burkhardt, that although Re-
gistries are decentralized, large Registries might be subject to (Distributed-Denial-of-Service
(DDOS)) attacks. To mitigate this issue we suggest large organizations to create multiple
Registries that are endorsed by the similar SSL/TLS certificate. Hence, incentives for such
attacks can be decreased. However, to evaluate the security aspect of our system, a detailed
analysis is needed. Regarding the design of the Application, Mr. Kurrle recommended to
minimize the frequency of access request evaluations for each user account in order to reduce
Gas costs. More specifically, he recommended to add a user account for a certain timeframe to
a whitelist at the Application once the user was successfully evaluated. During that timeframe
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the user can access the service of the Application without the need for another request to
be evaluated. This especially is important for future optimization of our system, as it de-
creases the human social risk that users do not use our system due to performance restrictions.

During the evaluation of the system design we did not identify any significant lack of
effectivity or technical risks beyond the discussed security aspect. However, we were able to
identify the human social risks we discussed above. Nevertheless, in general our system design
and the architecture was well received and no significant problems were identified. Therefore,
we develop our prototype based on the presented design, considering the suggestions of our
interviewees.

Use-Cases

We presented the reference university use-case to every interviewee, and the exemplary
consortia use-case to interviewees that are members of consortia blockchain. In general the
feedback for both use-cases was positive and interviewees agreed that the general concept
bears potential. Regarding the university use-case Mr. Precht highlighted, that the approach
might be interesting to extent a blockchain system that transparently tracks the use of data
from multiple research organizations and its members on the blockchain. More specifically,
our mechanism could be used to only allow members of a certain organization or organiza-
tional unit to access a record keeping smart contract application, that tracks and provides
access to research data. With regards to the consortia use-case, Mr. Paixão confirmed the
manual work required to approve new members to the blockchain. He agreed that some
of this work could be automated with our system, as most approvals are just based on the
evaluation of some standard attributes. However, he also highlighted that this might differ
for each consortia, depending on their access requirements and the amount of blockchain
external information required to review the access request. He continued, that using external
data is possible but sometimes challenging, as it requires the use of Oracles - another entity
that members need to trust.
In general many interviewees agreed that our access control mechanism could be beneficial
for any use-case where a blockchain internal resource requires protection. Examples of
suggested application areas include Internet of Things (IoT), business applications, financial
services and health care. However, as health care systems require strong security and privacy
standards, Mr. Burkhardt highlighted that our system requires additional modification to
match theses standards.

While conducting the evaluation of use-cases and discussing other potential application areas
of our ABAC mechanism, we noticed interest in our system and its application. Although
few challenges prevail, interview candidates confirmed our use-cases, but also proposed new
ones in multiple application areas. Hence, with our evaluation we minimize uncertainty and
learn that only few human social risks with regards to the general concept of our system exist.
Nevertheless, in the next sections, we still have to evaluate whether further human social
risks arise from the system design and prototype performance issues.
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System Requirements

In the last section of the interview we presented the functional and non-functional system
requirements to the candidates. We included their feedback to revise our initial proposal
and create our final system requirements specified in section 3.2. The interviewees did not
recommend to remove any of our drafted system requirements, however they provided
feedback that helped to improve formulation. Moreover, they proposed to add the following
four requirements for our system.
Mr. Precht advised us that the user account should be able to check its sub-endorsement at the
Registry, before attempting an access request that is subject to a charge in Ether. Additionally,
Mr. Knobloch recommended to not only support adding and revocation of sub-endorsements,
but also to allow the owner of the Registry to update a sub-endorsement. As both functional
requirements include significant functionality without increasing our system’s complexity, we
add them to our system requirements.
Beyond the two functional requirements, interviewees also recommended to add two non-
functional requirements. Mr. Precht highlighted the importance of GDPR compliant pro-
gramming, hence advised to include a requirement for GDPR compliance. As our system
design does not intend to store any personal data on the blockchain that is not already
publicly available at SSL/TLS certificates, compliance with GDPR can be achieved. Another
requirement that focuses on the optimization of a system was proposed by Mr. Muth. More
specifically, he suggested a requirement that demands a specific availability and security level
from the ABAC mechanism. Although we believe that both requirements are highly relevant
for the acceptance of a system in production, we do not include them in the requirements for
our prototype. Particularly because the goal of our prototype development is to first test the
feasibility of the concept, before we conduct optimization in future research.

The evaluation helps us to improve and complement the requirements we drafted, such
that human social risks are minimized. As we only develop a prototype we do not include
requirements suggested by interviewers that demand optimization of performance and
security, however we include two suggested requirements that add functionality for users of
the system.

5.3 Episode 2: Ex Post Implementation Evaluation

In the second evaluation episode, we focus on the evaluation of our prototype, to determine
its performance and how well its implementation meets the requirements from episode one.
Hence, we first conduct a performance analysis of our prototype with regards to computation
intensiveness and speed in section 5.3.1 before we discuss its alignment with the requirements
in section 5.3.2.
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Operation
Slow execution (51 Gwei) Fast execution (84 Gwei)
ETH USD MTTC ETH USD MTTC

Deployment Registry SC 0.0559 28.86 458 0.0920 47.01 27
Deployment Cert. Chain 0.1368 69.90 1797 0.2253 115.06 1366
Creation End. 0.0214 11.05 321 0.0353 18.24 27
Creation Sub-End. 0.0033 1.71 321 0.0055 2.84 27
Revocation Sub-End. 0.0009 0.47 321 0.0016 0.83 27
Update Config 0.0007 0.36 321 0.0012 0.61 27

Table 5.1: Cost and speed of execution for operations at the Registry smart contract

5.3.1 Performance Analysis

In Ethereum the amount of computation required to execute a transaction determines the
cost of execution. Furthermore, as the creator of the transaction can specify the price he or
she is willing to pay for each computational step (i.e. Gas price), the time until execution
of a transaction, i.e. speed is depending on the price. In our performance analysis we want
to consider this trade-off between execution cots and execution time. Hence, we pick a Gas
price for evaluation that ensures cheap execution at a slow speed and another one for a fast,
but expensive execution. We display the price for the execution of a transaction in Ether and
USD, as well as its execution time in seconds.

We develop our prototype in Solidity and test it in the Truffle development environment. To
conduct a structured analysis, we create test cases that describe likely scenarios from the
perspective of the owner of a Registry smart contract, owner of an Application smart contract
and sub-endorsed user account. For each transaction submitted during the test case we
retrieve the required computational steps in Gas from Truffle. Together with the current Gas
prices for a cheap or a fast execution from "ETH Gas Station"1, we are able to determine
the cost of execution. Furthermore, as "ETH Gas Station" also provides an estimate of the
Mean Time To Confirm (MTTC) for each execution, we use the value to determine how
fast functionality in our system can be executed. For the following analysis we assume the
following market data as of 26/11/2020: A Gas price of 51 Gwei (cheap) and 84 Gwei (fast),
as well as an Ether to USD conversation ratio of 510.72 USD for 1 ETH2.

Registry Smart Contract Deployment and Management

This section describes scenarios where a new Registry smart contract is deployed and endorsed,
a sub-endorsement for a user account is created and revoked and one where the configuration
is updated. The process and the Gas used for each step is depicted in Figure 5.1. Furthermore,
the respective Gas costs in Ether and USD are listed in Table 5.1. As Groschupp created a

1https://ethgasstation.info/index.php, visited 26/11/2020
2https://coinmarketcap.com/converter/eth/usd/, visited 26/11/2020
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Figure 5.1: Scenarios at the Registry smart contract

sophisticated analysis of the required Gas for the "Deployment of a Certificate Chain" and
the "Creation of Endorsement" operations, we refer to their median values from [33]. All the
other values are based on our prototype in Truffle.

An organization that wants to allow its members to use the ABAC mechanism on the
blockchain, first needs to set-up the Registry smart contract and its endorsement. Hence,
computational costs accumulate for the deployment of the Registry smart contract (1,095,536
Gas), uploading the endorsing SSL/TLS certificate chain (2,682,392 Gas) and creating an
endorsement for the Registry smart contract (420,510 Gas). In total, this leads to 4,198,438
Gas and costs of 28.86$ + 69.90$ + 11.05$ = 109.81$ given a slow execution. We conclude
that the deployment of the Registry smart contract requires a relatively large investment for a
private person. However, in the use-cases we introduced the Registry smart contract is usually
owned by organizations with many members and larger funding. Furthermore, as these are
deployment costs, they only have to be paid once and execution time is not critical.
Regarding the sub-endorsement management, much less computational steps are required
for creating (65,566 Gas) and especially revoking (19,197 Gas) a sub-endorsement. Once again
we consider slow execution costs, as a confirmation time of 321 seconds seems reasonable in
most cases. Hence, the costs for creating (1.71$) and for revoking (0.47$) a sub-endorsement
are much lower compared to the set-up. However, the costs accumulate, if an organization
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regularly adds and removes sub-endorsements. Hence, it depends on the user behaviour and
the use-case, whether the system is profitable. Finally, we also determine the computational
efforts for updating the configuration (14,717 Gas) of the Registry smart contract. Costs are
0.36$ for a MTTC of 321 seconds and 0.61$ for a MTTC of 27 seconds. Even if changes to the
configuration are time critical, e.g. in order to prohibit every access control request for any
sub-endorsed user account when malicious behaviour is detected, speed and costs are still
reasonable.

Application Smart Contract Deployment and Management

In this section we evaluate the speed of and the cost related to the deployment and man-
agement of the Application smart contract. The scenarios are depicted in Figure 5.2 and the
related costs in Table 5.2. In order to only measure the performance of our ABAC mechanism,
we do not include any to-be-protected functionality. Hence, the Application smart contract
only includes the required functionality of our system.

At first in the set-up, the Application smart contract has to be deployed and the owner needs to
specify which SSL/TLS Root certificates he or she trusts. Thus, the set-up requires 1,578,342
Gas for deployment and 96,598 Gas to add a trusted SSL/TLS Root certificate to the Application
smart contract’s Root Store. For the set-up we assume a slow execution with a MTTC of 779
seconds. Hence, cost accumulate to 40.98$ + 2.53$ = 43.51$. However, the MTTC can also
be as low as 54 seconds, given the willingness to pay 71.8$. As in the previous case, the
set-up of the system requires up-front investment. Nevertheless, as costs for deployment
only have to be paid once, and as it is sufficient to only add 13 Root certificates to the Root
Store in order to trust 98% of the Domain certificates [33], we conclude that the costs are
acceptable and neglectable in the long-run. In a second test scenario, we update the policy of
the Application smart contract. More specifically, we change the attribute type (30,012 Gas)
and the attribute value (30,068 Gas). That results in costs between 0.77$ and 1.29$ for each
operation depending on the desired MTTC (321 seconds or 27 seconds). Finally, in the third
scenario, we also determine the cost associated to changing the address of the PDP library,
the EndorsementDatabase smart contract or the CertificateStore smart contract. Each operation
requires about the same amount of Gas, hence costs between 0.72$ and 1.24$ depending on
the MTTC. As we assume that addresses and policies are not frequently updated, costs are
relatively low. Therefore, we conclude that cost and speed in both scenarios are reasonable.

Access Request Evaluation

The goal of this last scenario is to evaluate the performance of the core functionality of our
ABAC system for smart contracts: The evaluation of an access request from a sub-endorsed
user account at an Application smart contract. In order to do so, we endorse a Registry smart
contract with a SSL/TLS certificate and create a sub-endorsement for our user account. We
furthermore use the Application smart contract we tested in the previous section. It supports
every functionality of our system, but does not include any to-be-protected functionality, as
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Figure 5.2: Scenarios at the Application smart contract

we only want to determine the performance of the ABAC system.
During the evaluation we learn that the required computational power highly depends on
the selected policy, more specifically whether a policy is tested or not. Hence, in Table 5.3, we
display the cost for an access request check with regards to the selected attribute. However,
we exclude the MTTC as it is similar for each observation: 321 seconds for the slow execution
and 27 seconds for the fast one.

The access request check comprises three core components, the check of the sub-endorsement,
the check of the Registry smart contract’s endorsement and the retrieval and evaluation of
the SSL/TLS certificate’s attributes under a policy. If we conduct a check of all the three
components, hence use the full functionality of our ABAC system, the required Gas varies
between 102,000 and 129,358. Thus, costs for a slow execution vary between 2.68$ and 3.40$
and between 4.43$ and 5.52$ for a fast one. Although the process of the access request check
is similar, no matter which attribute type is selected, the computational intensity differs
depending on the attribute type. We conclude that this is due to the fact that we iterate
from start to end through the DER-encoded subject field of the SSL/TLS certificate to search
an attribute type and its respective value. Therefore, we have to search longer for attribute
types that are stored at the end of the DER-encoded data string. As Country is stored in the
front, only 102,000 Gas is needed. The attribute types Business Unit and Domain are stored
in the very end, thus the required Gas to retrieve both is significantly higher. Consequently,
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Operation
Slow execution (51 Gwei) Fast execution (84 Gwei)

ETH USD MTTC ETH USD MTTC

Deployment Application SC 0.0805 40.98 458 0.1326 67.62 27
Add Trusted Root 0.0049 2.53 321 0.0081 4.18 27
CP Attribute Type 0.0015 0.77 321 0.0025 1.29 27
CP Attribute Value 0.0015 0.77 321 0.0025 1.29 27
Change Library Address 0.0014 0.72 321 0.0024 1.24 27
Change EDB Address 0.0014 0.72 321 0.0024 1.24 27
Change CST Address 0.0014 0.72 321 0.0024 1.24 27

Table 5.2: Cost and speed of execution for operations at the Application smart contract

we claim that the computational steps, i.e. Gas required to retrieve the respective attribute
depends on the attribute types position in the subject field.
To even better understand the magnitude of the computation intensity required for the
attribute retrieval and policy evaluation, we determine the Gas needed just for this type of
check. Hence, we compute the magnitude by subtracting the Gas required to only check
the sub-endorsement and the endorsement from the Gas required for a check of all three
components. As the Gas needed for the complete execution varies depending on the attribute
types, we use the median of the Gas consumption among all attribute types. Given a median
consumption of 115,633 Gas for the complete execution and a consumption of 56,151 Gas for
the execution of the mechanism, that checks the sub-endorsement and the endorsement only,
the difference amounts to 59,482 Gas. Hence, the attribute retrieval and policy evaluation
accounts for more than 50% of the Gas required.

We conclude that our attribute retrieval and policy evaluation mechanism still requires
major performance improvements, as the search algorithm executed for each user access
request evaluation is computation intensive. Therefore, a complete check of an access request
currently is twice as expensive as without attribute retrieval. This is especially problematic,
as in most use-cases, access requests are submitted by users very frequently. However, a
potential solution that should decrease the computation intensity was already proposed by us
in section 4.2.1 and should be implemented in the future. The idea is to retrieve and decode
the data stored in the subject field only once when a SSL/TLS certificate is added to the
CertificateStore smart contract. The attribute type and value can then be stored in variables
that can easily be accessed for the access request check. By doing so, it is no longer necessary
to always iterate through the subject field to retrieve the attributes. However, as we already
stated previously, we do not implement this mechanism as its implementation is very complex
and goes beyond the scope of this work.
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OID Attribute Type Gas
Slow execution (51 Gwei) Fast execution (84 Gwei)

ETH USD ETH USD

2.5.4.3 Domain 126,943 0.0065 3.35 0.0107 5.51
2.5.4.6 Country 102,000 0.0052 2.68 0.0086 4.43
2.5.4.7 State 112,625 0.0057 2.94 0.0095 4.90
2.5.4.8 Locality 107,998 0.0055 2.84 0.0091 4.69
2.5.4.10 Business Name 118,640 0.0061 3.15 0.0100 5.15
2.5.4.11 Business Unit 129,358 0.0066 3.40 0.0109 5.62
NULL No attribute 56,151 0.0029 1.50 0.0047 2.43

Table 5.3: Cost and speed of execution for the evaluation of an access request

Summary and Implications

During our analysis we learned, that the up-front deployment costs and the MTTC for the
deployment of our system are within a reasonable range. The set-up for the Registry smart
contract costs 109.81$ given a slow execution with a MTTC of about 43 minutes (2576 seconds).
For the deployer of the Application smart contract costs amount to 43.51$ at a MTTC of about
13 minutes (779 seconds). In general, we believe that deployment costs are neglectable in the
long-run, but operational costs and speed of execution decide whether our system works
profitable in a specific context. Hence, it is important to identify operations which are time-
sensitive and/or frequently executed in a certain use-case and thus accumulate cost over time.
In our system, there are three such operations: Adding and revoking a sub-endorsement, as
well as the check of an access request.

With regards to managing sub-endorsements, creating a sub-endorsement uses 65,566 Gas
(1.71$) and revoking 19,197 Gas (0.47$). While both operations are not especially expensive
in terms of required Gas, costs may add up if the owner of the Registry smart contract has
to frequently add or remove users. As the frequency depends on the use-case, it is hard
to determine whether costs are reasonable in general. However, we can conclude that in
use-cases, where the user base of the Registry smart contract is relatively consistent, costs
for both operations are moderate. Nevertheless, in cases where user fluctuation is high,
our system and probably other public blockchain-based system, might not be the best fit.
Regarding the speed of both operations, currently user accounts have to wait between 27 and
321 seconds, before their sub-endorsement is added to the Registry smart contract. Depending
on the use-case the waiting time might constitute a human social risks, especially as users are
used to fast registration online. Yet, blockchain users are used to a delay and the registration
at an organizations business system usually also is not instantaneous. Therefore, and as the
waiting time still is reasonable, we perceive the risk as being rather low.

The computational costs of the access request check vary between 102,000 (2,68$) and 129,358
Gas (3,40$) depending on the to-be-checked attribute. The MTTC varies between 27 and
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321 seconds. In the respective section of this chapter we already concluded that costs are
relatively high for an operation that is very frequently used. Hence, human social risks that
our system may not be adopted by users still prevail. Therefore, in future work it is significant
to improve the performance. For example, by improving the mechanism that retrieves the
attributes from the SSL/TLS certificate or by implementing a solution where granted access
requests are valid for multiple interactions during a specific time frame. With regards to the
speed of execution, we perceive the human social risk to reject our system as low. The user of
the blockchain system has to wait anyway for the execution of the protected functionality,
hence already expects a delay. Furthermore, as the access request check is executed together
with the protected functionality, the delay is not significantly increased.

We conclude that it is challenging to evaluate, whether the cost and speed of the system
is reasonable, as the long-term profitability depends on the use-case, especially on how
often it requires to add or revoke sub-endorsements and how often an access request needs
to be checked. Furthermore, it also depends on the blockchain system. With regards to
performance and costs, our system is constraint by the specifications of the public Ethereum
blockchain. Thus, a system based on a private blockchain or external ABAC systems is cheaper
and faster in most cases, but also lacks the benefits of a public blockchain. Nevertheless,
independent from the type of blockchain our implementation still is a first prototype. Hence,
the implementation is not optimal with regards to performance and should be improved in
the future.

5.3.2 Requirement Analysis

This analysis evaluates whether our prototype implementation meets the system requirements
we defined in section 3.2 and refined during the interviews. An overview of the requirements
is depicted in Table 5.4. In the following we briefly go through the functional and non-
functional requirements and discuss how and to which degree compliance is achieved.

Functional Requirements

At the Registry smart contract, our prototype supports functionality to manage sub-endorsements.
By invoking addSubEndorsement(), the owner can add a sub-endorsement for a user ac-
count to the Registry smart contract (FR1). The functions updateSubEndorsement() and
revokeSubEndorsement() enable the update (FR3) and revocation (FR2) of a respective
sub-endorsement. As the user might be interested in the current status of its sub-endorsement,
he or she can check the sub-endorsement (FR4) at the sub-endorsing Registry smart con-
tract by invoking the checkSubEndorsement() function. The sub-endorsement can be
leveraged to access a to-be-protected function of an Application smart contract, that supports
blockchain-based ABAC for smart contracts. The access request is submitted indirectly by the
user account (FR5), by invoking and passing the address of its sub-endorsing Registry smart
contract to the protected function it desires to access. The authentication of the user account is
inherent in Ethereum. Hence, during the function call the user account is authenticated (FR6),
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# Requirement Status

FR1 Add sub-endorsement at Registry D
FR2 Revoke sub-endorsement at Registry D
FR3 Update sub-endorsement at Registry D
FR4 User account may check status of sub-endorsement at Registry D
FR5 Request access to Application D
FR6 Authenticate user account at Application D
FR7 Check authorization of user account at Application D
NFR1 Leverage attributes of SSL/TLS certificates D
NFR2 Use On-Chain AuthSC D
NFR3 On-chain access control decisions D
NFR4 Decentralized sub-endorsement allocation D
NFR5 Access control without a direct trust relationship with the Registry D
NFR6 Access control without pre-provisioning of the subject at the Application D
NFR7 Minimal costs of user management, authentication and authorization X

Table 5.4: Compliance of the prototype with regards to our requirements

as the signature of its invoking transaction is validated by the EVM. Finally, the prototype
also supports the evaluation of the user account’s authorization (FR7). More specifically, it
checks the sub-endorsement (FR7.1) of the user account, the endorsement of the Registry smart
contract (FR7.2) and whether the attributes of the endorsing SSL/TLS certificate successfully
evaluate under the Application smart contract’s policy (FR7.3). As for the submission of the
access request and the authentication of the user account, the authorization evaluation is
indirectly initiated after the user account invokes the protected function at the Application
smart contract.

Non-Functional Requirements

The goal of our research is to leverage SSL/TLS certificates and a SSL/TLS-based identity
assertion and verification system to enable authentication and access control of user accounts
at smart contracts. Hence, in our prototype we use On-Chain AuthSC (NFR2) to expand trust
and create a link to the attributes of SSL/TLS certificates. More specifically, by linking a user
account with a sub-endorsement and an endorsement to a SSL/TLS certificate, we allow user
accounts to leverage the trust and attributes of SSL/TLS certificate (NFR1) for access control
at an Application smart contract. In order for our prototype to conduct access control, it needs
to access attribute data from the endorsing SSL/TLS certificates. However, as all the relevant
data in our prototype, the certificate chain is stored on-chain at the CertificateStore smart
contract of On-Chain AuthSC. Therefore, our prototype does not need to rely on blockchain
external data and can execute access control completely on-chain (NFR3).
Decentralization is a key characteristic of blockchain systems. Hence, also in our prototype
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we aim to increase decentralization. In the prototype any owner of a SSL/TLS certificate
can create a Registry smart contract and issue sub-endorsements for user accounts. Thus,
sub-endorsements are not allocated at a central entity, they can be distributed among multiple
Registry smart contracts (NFR4). Moreover, in our prototype a user account that wants to
access a function at an Application smart contract only has to provide the address of its sub-
endorsing Registry smart contract. No previous trust relationship between the Registry smart
contract and the Application smart contract is required (NFR5), as well as no pre-provisioning
of the user at the Application smart contract (NFR6). This is due to the fact that all required
trust is endowed by the SSL/TLS certificates and can be checked with the PDP library. Finally,
NFR7 is to minimize the cost of user management, authentication and authorization. While
the implementation of the attribute retrieval is not optimal, the costs of other operations are
reasonable. However, as the performance of this operation is highly significant NFR7 is the
only requirement that is not satisfied.

92



6 Related Work

The goal of this chapter is to describe research and technology that is related to our work, as
well as to structure and classify the access control research environment. Moreover, we aim to
identify and specify research gaps, which can be filled by the contributions of our work.
All in all, there is no other research which attempts the design and the development of
a prototype for an on-chain mechanism for real-world entities at smart contracts, based
on a SSL/TLS identity assertion and verification system. However, there is research that
elaborates access control and blockchain in many different settings with varying focus. Most
research or applications leverage blockchain as underlying technology for authentication
and access control. Only few research focuses on internal access control for functions of
smart contracts, hence those resources to-be-protected are usually located off-chain. The
applied access control mechanisms are usually attribute-based, only some are role-based and
discretionary. However, there is a lack of trust in attributes or roles assigned to accounts in
public blockchains, as the credibility of the attribute or role issuer usually can not be validated.
A solution to overcome this trust issue is proposed by research in self-sovereign identity,
where the requester’s attributes are endowed with trust by a decentralized Web-of-Trust.
However, research still is limited, mainly focused on Identity Management in general and still
has not identified a way to successfully build a sufficiently large and trusted decentralized
Web-of-Trust. Consequently, there is still room for other solutions as ours, which suggest new
approaches to fill the research gap.

In the following we provide examples and analyze the related research to underpin our
statements in the summary above. To conduct a clear and comprehensive analysis, we
classify the related work according to its focus: Blockchain-based authentication in section
6.1 and blockchain-based access control in section 6.2. However, sometimes the line between
systems that conduct only authentication and systems that allow authentication and access
control is blurry. Especially since some authentication systems already implement important
components of access control, but not the complete system. In such cases, we assign the work
to the category where we think it might match best. Furthermore, our goal is not to create a
sophisticated analysis of each and every blockchain-based authentication and access control
system. Such research would need the scope of a master’s thesis for itself. Hence, we mainly
focus on Ethereum-based systems and ledger-independent concepts.
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6.1 Authentication

Authentication is inherent in blockchain systems, as accounts are represented by public
private key pairs. Based on public key cryptography accounts can sign data (e.g. messages)
with their private key, which can be validated using their public key. There are multiple
unreviewed proposals of the blockchain community, that propose to leverage the blockchains
cryptographic characteristic to enable improved and more user-friendly authentication at
blockchain external resources. For instance, for authentication at web applications in [49]
Miller suggests a system which uses a wallet browser plug-in (e.g. MetaMask) that stores
the users account keys and is able to interact with the web-app with Web3 injections. To
authenticate at a web-app, the user needs to submit the account address as username and sign
an arbitrary message from the web-app with the accounts private key via the wallet plug-in.
Given a successful validation of the signature with the user’s public key, the web-app creates
an access token and sends it to the user. Multiple sources propose similar solutions: [11],
[54], [56], [60], [34]. Some of them differ slightly, as from Shumikin et al. in [60] and Gruener
et al. in [34] where the developers use a wallet app that scans QR codes which include a
to-be-signed message and a callback to communicate with the web-app. However, all of them
use public and private keys to authenticate an account in a challenge and response protocol.
Authentication at internal blockchain resources, as smart contracts is automatically conducted
when a user account invokes a function via a transaction (cf. section 2.2.5). Authereum [5] and
UniLogin [65] aim to improve the user-experience of the authentication process at blockchain
internal resources as smart contracts, i.e. DApps. Currently users often can already access
a DApp via a web-app, nevertheless are still required to use a wallet browser plug-in as
MetaMask to log-in and interact with the DApp. To decrease barriers of entry, for users which
are unfamiliar with blockchain technology, Authereum and UniLogin promise a common
authentication with username and password.

The related work either aims to leverage blockchain technology to improve authentication at
external resources or to increase the user-experience of authentication at internal resources,
i.e smart contracts. As we focus on neither of the two, no similar research which enables
on-chain authentication and authorization at smart contracts based on SSL/TLS certificates
was identified.

6.2 Blockchain Access Control Systems

As authentication is inherent in blockchain systems, most access control systems leverage the
characteristic of the blockchain, but differ in terms of mechanism type. The majority of the
proposed blockchain access control systems are attribute-based. Nevertheless, there are also
sophisticated systems which are role-based and one system which is based on discretionary
access control. As we develop an ABAC system for smart contracts, we first discuss the
respective related work in depth in section 6.2.1, before we provide a brief summary of related
discretionary and role-based blockchain access control systems in section 6.2.2.
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6.2.1 Attribute-Based Access Control on Blockchain

ABAC is among the most common access control mechanisms that are transferred to and
applied on the blockchain. Multiple private blockchains as Hyperledger offer implementa-
tions of ABAC as in [43] and [20]. However, as their architecture significantly differs from
Ethereum, we mainly focus on Ethereum-based systems and ledger-independent concepts.

Maesa et al. develop a blockchain-based ABAC based on the XACML framework in [23],
[22] and [21]. In general they elaborate how to exploit blockchain technology to develop a
decentralized ABAC. They discuss which components of an ABAC should be located and
executed on the blockchain and also propose different system architectures with different
level of blockchain involvement. In [21] they propose a system that can be easily integrated
in already existing ABAC systems. It only stores the Attribute Managers (AM), the part of
the system which stores and manages the attributes, on the blockchain. Hence, the use of
blockchain technology is very limited. Furthermore, the access control mechanism is intended
to protect blockchain external resources. In [23] Mesa et al. describe an ABAC, where the
AM, as well as the PIP and the PDP reside on a blockchain. Each policy is stored as smart
policy in a smart contract, which resembles the PIP and the PDP. As also the attributes are
stored on the blockchain, the evaluation of a policy in context of an access control request
is completely performed on-chain. A third paper by Mesa et al. [22] proposes an ABAC,
where the protected resource is a smart contract and/or its respective functions and not a
blockchain external resource as in the two papers we discussed earlier. Furthermore, the PEP
and parts of the PAP are now stored within the to-be-protected smart contract. Hence, the
user that requests access to the resource, can submit the request directly to the resource from
the users blockchain account. The smart contract ABAC in [22] shares strong commonalities
with our system. It is an on-chain attribute-based system, that protects access to blockchain
internal resources. However, a key difference is that the attributes in [22] are only endowed
with trust from AMs. Opposed to the certificates, that store attributes in our system, AMs
are not endorsed by a globally trusted PKI. Furthermore, AMs are also not endorsed by any
other source of trust as a decentralized PKI.

In [3] Almakhour et al. describe a token-based system that manages access to Ethereum
service smart contracts among members of a federation. The members of the federation
define the access control policies and attributes of services. Then each member loads all the
users of the federation on a user smart contract. To get access to services, the users first need
to obtain their token from the user smart contract on the blockchain. The contract looks up
the user and its respective attributes from a pre-loaded list and returns a unique token, with
which the user can request access to a service smart contract. Given a successful verification
of the token and its attributes, the user is granted access. As Mesa et al. in [22], Almakhour et
al. in [3] shares the same strong commonalities, but also lacks trust endowment of the central
attribute providing entities, i.e user smart contract. Hence, both systems might be sufficiently
endowed with trust in a private blockchain, but not on public blockchains where association
of accounts to real-world identities is cumbersome.
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Beyond the two papers of Mesa et al. [23][21], there is other work where the to-be-protected
resources are stored externally and only (parts of) the ABAC mechanism resides on the
blockchain: [45], [35], [61], [12]. Siris et al. in [61] and Buccafurri et al. in [12] apply ABAC to
manage access to IoT devices. In [45] Jemel et al. proposes a distributed ledger for ABAC
of blockchain external data. The blockchain manages the policies to access the external data
and evaluates the users access requests. To add a new policy, the resource owner creates a
transaction that contains the policy, a tree structure that stores the attributes required to be
granted with access. The nodes of the blockchain validate the transaction and add it to a
block. If a users wants to access an external resource, a transaction with attributes needs to be
created and submitted to the blockchain. Given successful verification of the user’s attributes
and conditional attributes, the user receives an access key of the respective resource. Another
blockchain-based ABAC that allows a data owner to share data with a user is described in
[35] by Guo et al. In order to get access to the encrypted data, the user needs to acquire an
access key from the data owner with attribute tokens. The user obtains these tokens from
pre-verified Ethereum nodes called Attribute Authorities. These nodes manage and validate
user attributes, and submit tokens to authorized requesters. If a user obtained sufficient
tokens from respective Attribute Authorities, he or she may request the access key from the
data owner to decrypt the external data. Although in [35] and [45] user attributes are critical
to protect data, none of the two papers elaborate attribute trust endowment.

Self-sovereign blockchain-based identity systems are not particularly focused on access control
systems. Nevertheless, some indirectly support limited ABAC, as Uport [66] or Sovrin [63].
For example, Uport, an identity management system on the Ethereum blockchain, allows
users to obtain a claim from another identity within the ecosystem. The claim is stored in
the users DID document and can be used to authenticate and be granted access to services
offered by other identities. A Proof-of-Concept of such a solution was conducted in Zug,
Switzerland [47]. Users can create an identity with the uPort App and assign the passport
number and date of birth to their identity. After in-person verification at the city clerk, the
city signs the claim. From then on, citizens are authorized to use city services. However,
current implementations mostly focus on authentication and blockchain external resources,
no self-sovereign blockchain-based work we identified explicitly implements ABAC. Only
Gruener et al. in [34], suggest future work to augment the current authentication system
based on DIDs with an authorization component that leverages the attributes in the DID
document.
In general we conclude that blockchain-based decentralized identity provider, based on self-
sovereign identity offer a strong foundation for the implementation of blockchain-based ABAC.
In particular, because attributes are already assigned to identities and theoretically already
are endowed with trust from a decentralized Web-of-Trust. However, we did not identify any
sufficiently large Web-of-Trust for turst endowment and furthermore no implementation that
explicitly implements a blockchain-based ABAC mechanism for smart contracts.
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6.2.2 Other Access Control on Blockchain

Blockchain-based RBAC is elaborated in research publications, but also is already applied in
explicit, widely-used implementations for different types of blockchains.
A RBAC implementation, that leverages X.509 certificates to authenticate and authorize users,
is a component of the Hyperledger Fabric blockchain [42]. As previously stated, in general
we focus on Ethereum-based or ledger-independent concepts, but as the Hyperledger RBAC
system leverages x.509 certificates, it is very similar to our ABAC implementation and related
to our work. In Fabric, to interact with restricted services in the network, users need to be
assigned to respective roles by a Membership Service Provider (MSP). Each MSP defines
a Fabric member organization and maintains a record of its approved members. To be
authenticated and authorized, a new user has to present a valid X.509 certificate from the
organization, that is linked to a Root certificate trusted by the MSP. Once validated, the user is
assigned to a role, which is specified in an attribute of the certificate. As in our system design,
X.509 certificates are used to endow entities on the blockchain with trust and the access
control id focused on blockchain internal resources. Nevertheless, the systems is different as
it is only geared towards a private blockchain and access control is based on roles and not on
the specific attributes in the SSL/TLS certificate.
OpenZeppelin provides a contract module for RBAC on the Ethereum blockchain [51].
Developers who want to implement RBAC in their smart contract can inherit from Open-
Zeppelin’s AccessControl smart contract and use pre-defined functionality. It allows to define
different types of roles and provides utility functions to manage admins, users and roles.
Thus, functions of a smart contract can be protected, such that they can only be revoked by
users assigned to a specific role.
Besides the two RBAC systems, that are geared towards access control of blockchain internal
resources, there is the RBAC-SC system from Cruz et al. [19]. First specified as RBAC for
Bitcoin in [18], later in 2018 as a RBAC for Ethereum in [19]. RBAC-SC on Ethereum leverages
smart contracts on the blockchain to manage access to blockchain external resources. Cruz
et al. describe a use-case, where a student is registered at a smart contract of the university
and assigned to a "student" role in a role contract. Based on the endorsement the student is
able to successfully request access to an external service provider (e.g. a university cafeteria),
given the provider successfully validates the students role on the blockchain. However, Cruz
et al. do not discuss in their paper how trust in the service provider is established.

There is one paper from Zheng et al. where Discretionary Access Control [69] is applied.
More specifically, Zhang et al. use smart contracts to store links to access control lists for IoT
devices. Requests to use an IoT device are evaluated based on the subject (user) object (IoT
device) relationship in the respective ACL and based on previous misbehaviour of the user
with the respective IoT device. Another IoT related paper by Ouaddah et al. [52] designs a
framework called "FairAccess", that specifies a generic system design for blockchain-based
IoT access control, but leaves the implementation of a specific access control mechanism
to other researchers. Moreover, there are two token-based approaches to blockchain-based
authorization of identities in a federated systems. One from Fotiou et al. that ports parts of
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OAuth 2.0 Authorization protocol to the blockchain [29], and another from Bendiab et al. that
enables federated access for users of multiple Cloud Service Provider [9].
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In this chapter we conclude this research. We discuss our contribution, recapitulate our
research questions and illustrate limitations of our system in section 7.1. Finally, we provide
suggestions for future work in section 7.2.

7.1 Conclusion

In this research we explore how authentication and access control at smart contracts can be
achieved for real-world entities by leveraging trust and attributes from SSL/TLS certificates.
We conduct a survey of access control models and select Attribute-Based Access Control as
fundamental concept for our work. Moreover, we choose On-Chain AuthSC, a SSL/TLS-based
identity assertion and verification system, to expand trust from the SSL/TLS certificate public
key infrastructure to the Ethereum blockchain. We complement On-Chain AuthSC with an
endorsement framework, that allows entities with a SSL/TLS certificate to create and manage
sub-endorsements for accounts of real-world entities on the blockchain, such that they can
leverage trust and attributes from the SSL/TLS certificate for authentication and access con-
trol at smart contracts. Furthermore, we transfer the concept of ABAC to the blockchain by
creating an ABAC system, that allows owners of smart contracts to evaluate access requests
of real-world entities considering their sub-endorsement, i.e association with a SSL/TLS
certificate and its attributes. To test the system design we implement a prototype, including a
library and two reference smart contracts for fast and easy adoption of our system, in Solidity
for the Ethereum blockchain.

Our research is aligned by the three overarching research questions we introduced in section
1.2. During the course of this work we provide answers for each of the questions, nevertheless
we summarize in this chapter to conclude our contribution.

RQ1: Which are the major access control practices and technologies?

We conduct a survey of the major access control models that are predominant in the literature
in section 3.4 and evaluate how well each model matches to the goals our research. Thereby
we identify four major mechanisms: Mandatory Access Control, Discretionary Access Control,
Role-Based Access Control and Attribute-Based Access Control. Among those we chose
ABAC as fundamental concept for our system, as it meets best the requirements of our
work. Furthermore, we also review related literature and unstructured work in chapter 6,
hence identify authentication systems, as well as few attribute and role-based access control
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mechanisms for the blockchain. However, there is no system that creates trust by leveraging
the SSL/TLS certificate PKI.

RQ2: How can a SSL/TLS-based identity assertion and verification system contribute trust to
authentication and access control on the blockchain?

We elaborate the contribution of the SSL/TLS certificate PKI, as well as On-Chain AuthSC, and
design an endorsement framework in section 3.3.2. SSL/TLS certificates act as trust provider
in our system. They are endowed with trust from SSL/TLS Root certificates, which are issued
by Certificate Authorities. The two key properties that create an increased level of trust, are
the trust of the society in and the wide acceptance of the endorsing Certificate Authorities and
the practically unforgeable link that distributes trust among SSL/TLS certificates. Moreover,
especially important for our system is that SSL/TLS certificates comprise confirmed and
validated attributes that describe the certified entity. However, we would not be able to
leverage the SSL/TLS certificate PKI without On-Cahin AuthSC, a SSL/TLS-based identity
assertion and verification system. It contributes to our system, as it allows to securely expand
the required trust to the blockchain and provides an on-chain Certificate Database from which
we can retrieve the attributes of SSL/TLS certificates. Yet, On-Chain AuthSC does not support
endorsements for real-world entities that do not own a SSL/TLS certificate. Hence, we expand
the endorsement framework by sub-endorsements as described in section 3.3.2 to allow the
participation of other real-world entities. Furthermore, On-Chain AuthSC is a standalone
system, consequently some changes to its Certificate and Endorsement Database are required
to enable the retrieval of attributes and the evaluation of endorsements (cf. section 3.5.2).

RQ3: How can we achieve on-chain authentication and access control of real-world identities
at smart contracts considering the constraints of blockchain?

In order to conduct authentication and access control based on attributes (i.e ABAC), trusted
attributes need to be associated to accounts of real-world entities. However, as no soph-
isticated centralized or decentralized trust infrastructure resides on the public Ethereum
blockchain, we expand trust from the SSL/TLS certificate PKI with the help of On-Chain
AuthSC. We furthermore design (cf. section 3.3.2) and implement (cf. section 4.1) a sub-
endorsement framework to expand trust and associate attributes to accounts of real-world
entities that do not own a SSL/TLS certificate. Together with On-Chain AuthSC and the sub-
endorsement framework we create an endorsement framework that provides the trust needed
for our ABAC mechanism. The ABAC mechanism allows an Application to authenticate and
control access of real-world entities, by checking their endorsement, sub-endorsement and the
attributes of the endorsing SSL/TLS certificate. Hence, we achieve on-chain authentication
and access control of real-world identities at smart contracts by combining an endorsement
framework, that comprises On-Chain AuthSC and the sub-endorsement framework, with
the ABAC mechanism we design in section 3.5 and implement in section 4.2. We explain
our design and implementation choices, their advantages and disadvantages as well as the
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application lifecycle in chapter 3 and 4.
The major constraints of the blockchain are the previously described lack of trust and the
limited access to blockchain external resources, as we need to find a way to access the attrib-
utes of SSL/TLS certificates. Furthermore, to allow updates to components of the system, we
also consider the immutability of smart contracts once they are deployed. Finally, another
constraint is the rather slow and expensive execution of access requests on a public blockchain
compared to traditional authentication and access control systems.

The key contribution of our system is, that it allows access control with attributes within the
trustless environment of the public Ethereum blockchain, by leveraging SSL/TLS certificates.
Hence, with this work we complement the still young research for authentication and access
control at digital resources that reside on public blockchain systems, but also contribute to
the advancement of authentication and access control in general. Furthermore, we help to
increase the maturity of public blockchain systems, as our research complements function-
ality that is important for consumer and business applications and widely supported by
non-blockchain systems. The evaluation of our expert interviews show that there is general
interest in authentication and access control systems on the blockchain for and beyond the
use-cases we presented. Furthermore, interviewees like the idea of using the existing SSL/TLS
certificate PKI to overcome a lack of trust on public blockchains and enable authentication and
access control, instead of creating a new one. Last but not least, with our sub-endorsement
framework we offer a solution with which On-Chain AuthSC can also be used by real-world
entities that do not own a SSL/TLS certificate.

However, we are also aware of the limitations of our system. As we bootstrap the SSL/TLS
certificate PKI, our system inherits its security issues and the trust in our system indirectly
depends on the credibility of central Certification Authorities. Yet, most authentication and ac-
cess control systems that are not located on the blockchain rely on central entities, while most
systems on the blockchain neither have a centralized nor a decentralized source of trust. Fur-
thermore, our sub-endorsement framework only allows indirect endorsements for real-world
entities without SSL/TLS certificates. Hence, an intermediary entity that owns a Registry
and is willing to sub-endorse the account of a real-world entity is needed. Consequently, the
attributes of the Registry might not always perfectly describe a sub-endorsed user account.
Moreover, the current implementation of the prototype still lacks complex access control
policy evaluation, hence currently only policies with one attribute and the equality operator
are supported. Finally, our prototype is slower and more expensive than most traditional
blockchain-external authentication and access control systems. However, speed is a general
constraint of most public blockchains, hence our system does not significantly influence it,
but yet is affected by it. Nevertheless, as the implementation of the access request evaluation
is not optimized yet with regards to speed and cost and we already propose solutions that
increase performance and reduce cost, we are confident that this and other constraints can be
mitigated and thus not hinder adoption of the system.
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7.2 Future Work

The goal of our research is to elaborate a first system design and prototype implementation
that allows to test the general concept of authentication and ABAC of real-world entities at
smart contracts. As the general concept seems promising, future research can contribute by
creating a literature review to further structure and explore the research field, or by improving
our system with regards to performance and functionality. Furthermore, new applications,
use-cases and sources of trust can be elaborated.

One major goal of future research should be to improve the performance of our system with
regards to cost, speed and security. A starting point can be the access request evaluation in
our ABAC framework, as it is frequently used and still is computation intensive. Currently
the mechanism iterates through the subject field of a SSL/TLS certificate every time an access
request is evaluated to retrieve the attributes. As the iteration is very performance intensive,
we rather recommend to retrieve and decode the data stored in the subject field only once
when a SSL/TLS certificate is added to the Certificate Database. The attribute type and value
could be stored in variables that can easily be accessed during the access request check. An
additional solution, that further reduces the required computation intensity, decreases the
frequency of access control checks. The idea is to add the account address of the requester
for a limited time to a whitelist at the Application, given its successful evaluation. Thus, the
access request of an account only needs to be evaluated once within a certain timeframe. In
this timeframe the account owner can use the Application as often as desired without any
additional costs.
Our evaluation identifies areas to improve the performance, however it does not cover an ana-
lysis of the system’s security. Therefore, after implementing the suggested improvements we
recommend future research to conduct a holistic study that covers security and performance.
Furthermore, as highlighted in chapter 5, future research should also conduct an evaluation
with a Human Risk & Effectiveness strategy, to better assess the human social risks we identify
in our evaluation.

In chapter 6 we introduce relevant structured and unstructured related work for blockchain-
based authentication and access control. However, our literature review is mainly limited to
Ethereum-based and ABAC systems, the research which is most related to our work. Future
research should conduct a literature review of blockchain-based authentication and access
control systems independent from the underlying blockchain system and the access control
mechanisms. Such analysis structures the research field, identifies research gaps and allows
researchers to identify related work which might significantly advance their research.
We also suggest future research to add further functionality to the system. Interesting for po-
tential users might be the support of complex access control policies with multiple attributes
and operators (e.g. unequal). This allows the owner of the Application to specify multiple
desired attributes and different conditions, the endorsing SSL/TLS certificate of the user
account needs to satisfy.
Currently in our system we assume that the owner of the endorsing SSL/TLS certificate and
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the owner of the to-be-endorsed Registry are the same person. However, in some cases this
is not the case. Hence, we suggest to include flags in the endorsement of the Registry with
which the owner of the SSL/TLS certificate can specify how the endorsed trust and attributes
of the SSL/TLS certificate can be used.

Finally, future research should explore support for other sources of trust than SSL/TLS
certificates. Multiple sources of trust may increase the credibility of endorsements and access
control decisions. Furthermore, it might increase the user base and improve usability, as
it allows users to pick their favourite source of trust. Potential sources of trust to start the
exploration with are certificates that are used within organizations or decentralized trust
infrastructures as Decentralized Identifiers. Furthermore, the system could be tested in
private blockchains, where trust could be provided by the owner of the blockchain.
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