
TECHNICAL UNIVERSITY OF MUNICH
DEPARTMENT OF INFORMATICS

Master’s Thesis in Informatics

Exploring the Use of SSL/TLS Certificates
for Identity Assertion and Verification in

Ethereum

Friederike Groschupp

TECHNICAL UNIVERSITY OF MUNICH
DEPARTMENT OF INFORMATICS

Master’s Thesis in Informatics

Exploring the Use of SSL/TLS Certificates
for Identity Assertion and Verification in

Ethereum

Analyse der Nutzung von SSL/TLS
Zertifikaten zur Identitätsbereitstellung und

-verifikation in Ethereum

Author: Friederike Groschupp
Supervisor: Prof. Dr. rer. nat. Florian Matthes
Advisor: Ulrich Gallersdörfer, M.Sc.
Submission Date: May 15, 2020

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich,

Friederike Groschupp

Acknowledgments

I would first like to thank my thesis advisor Ulrich Gallersdörfer for his support in
the process of creating this thesis, for his valuable input, our productive conversations,
and his constant feedback on my work. Furthermore, I would like to thank Prof. Dr.
Florian Matthes for the opportunity to explore this exciting topic and the possibility
to conduct this research under his supervision at the Chair of Software Engineering
for Business Information Systems. I appreciate his contribution during the definition
of the topic of this thesis. I would also like to thank Clemens Brunner, Joachim Neu,
and Markus Sprunck for taking the time and discussing my work. Their feedback has
certainly improved the outcome of this thesis. I am very grateful that we were granted
research access to the extensive datasets provided by Censys.

Finally, I would like to extend my thanks to my family for their support throughout my
studies. I appreciate that Anne Groschupp has always taken the time to proofread my
work and that Peter Wauligmann was always there to listen when I had something to
say.

Abstract

While blockchain technology promises a new era of transparent and secure distributed
applications, there is a lack of an established identity management process. This poses a
problem for applications requiring smart contract owners to be authenticated. One issue
that previously proposed solutions face is the accumulation of a critical mass of trusted
data that makes the system usable. In this work, we propose an identity assertion
and verification framework for Ethereum that overcomes this bootstrapping problem.
It achieves this by leveraging SSL/TLS certificates, which are part of the established
infrastructure that is commonly used for authenticating internet connections.

We design and implement an SSL/TLS certificate-based authentication framework
whose key features are the smart contract-based validation and storage of certificates
and address-identity bindings. Looking at the current SSL/TLS ecosystem, we find
that a large share of all domain certificates is issued by a small number of intermediate
and root certificates. Therefore, we decide to store and maintain certificates in a central
database to minimize processing costs. The evaluation of our prototype implementation
shows that the associated cost of our system is within a feasible operating range, with
the costs of submitting a new certificate currently averaging around 2.40 $ and the cost
of creating an address-identity binding averaging around 1.30 $. The cost of verifying an
address-identity binding averages around 0.08 $ or 1.02 $ depending on the deployment
scheme. Our system is a pragmatic and, most importantly, quickly bootstrapped method
for an identity assertion and verification framework for Ethereum.

v

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 3
1.3 Methodology . 3
1.4 Contribution . 4
1.5 Structure . 5

2 Background 7
2.1 Ethereum . 7

2.1.1 Blockchain Technology . 7
2.1.2 Ethereum Fundamentals . 8
2.1.3 Ethereum Virtual Machine . 9
2.1.4 Smart Contracts . 10
2.1.5 Bridging the Gap Between Off-chain Data and On-chain Compu-

tations . 11
2.1.6 Ethereum Addresses . 12

2.2 Authentication of Web Servers and Trust Establishment on the Internet . 13
2.2.1 X.509 Certificates and Certification 13
2.2.2 Public Key Infrastructure . 17
2.2.3 CA/Browser Forum Guidelines . 20
2.2.4 Certificate Validation . 21

3 Analysis 25
3.1 Use-Case Scenarios . 25

3.1.1 Address-independent Payments . 25
3.1.2 Authenticity of Provided Information 26
3.1.3 Automated Authentication and Authorization of Accounts 26

3.2 Stakeholders . 27
3.3 Requirements Analysis . 28
3.4 Survey of the TLS Certificate Landscape . 29

3.4.1 Distribution of Certificate Types . 30
3.4.2 Cryptographic Algorithms in Use 34

vii

Contents

4 Related Work 37
4.1 Blockchain-based PKI Solutions . 37
4.2 Ethereum Name Service . 39
4.3 did:web . 40
4.4 AuthSC . 40

5 Design 43
5.1 Endorsement of Account Addresses . 43

5.1.1 Using TLS Certificates for Endorsements 43
5.1.2 Endorsement Content . 44
5.1.3 Internal and External Endorsements 45
5.1.4 Storage and Distribution of Endorsements 46

5.2 Enabling On-chain Decisions . 48
5.2.1 Using Oracle Services Versus Migrating the PKI On-chain 49
5.2.2 Central Certificate Database . 52

5.3 Evaluation of the Design . 53

6 Implementation 55
6.1 Prototype Structure . 55
6.2 Certificate Framework . 57

6.2.1 Certificate Database . 57
6.2.2 Certificate Parsing and Validation 59

6.3 Endorsement Framework . 64
6.3.1 External Endorsement Database . 64
6.3.2 Internal Endorsement Contract . 67

7 Evaluation 71
7.1 Compatibility . 71
7.2 Costs and Performance . 72
7.3 Security Considerations . 75

7.3.1 Security of the Certificate and Endorsement Frameworks 75
7.3.2 Security of the TLS Ecosystem . 76
7.3.3 Mapping Domain Names to Real-world Identities 77

7.4 Research Questions . 78

8 Conclusion 81

List of Figures 83

List of Tables 85

Bibliography 87

viii

1 Introduction

Trust is the foundation for interacting with others and being sure about the identity
of other parties is the foundation for trust. This is also true for blockchain-based
systems, where many envisioned applications require the ability to link the human-
unfriendly byte strings that are used as account addresses to real world entities and
vice versa. When sending funds to an account, you want to be sure that the receiver is
who you intend and that the funds do not get lost. When you are validating diploma
information you need to be certain that the information you are validating against is
actually provided by the respective institution. Further, to buy an airplane ticket through
a blockchain application, you want to be absolutely positive that the seller is the actual
airline.

Currently, address information is exchanged through off-chain mechanisms that do not
involve the blockchain. Most commonly, addresses are announced on websites. The user
then copies the address and uses it as the transaction receiver to perform the desired
action, for example transferring a certain amount of funds to it. The problem with this
approach is, that the user has to assert the authenticity and integrity of the address
and has to transfer it to the blockchain without errors. There are no on-chain means to
verify the correctness of the address and that it is really controlled by the designated
entity. This does not only facilitate errors made by the users when copying the address,
but also permits exploits where an attacker deludes the user into using the attacker’s
address. Additionally, this approach only allows reactive authentication: the user knows
the identity of the target account, but cannot authenticate itself actively to it.

These problems show the need for an on-chain authentication framework that enables
the assertion and verification of identities. However, many different solutions with high
entry costs and weak bootstrapping strategies have led to a slow adoption of identity
management for blockchains. We believe that for the successful adoption of a solution it
must provide effortless bootstrapping without the need of building new infrastructure
and it must not rely on networking effects, which means that it must be feasible even
with a very small number of people participating.

Therefore, we propose to leverage the infrastructure of a system that has been success-
fully in place for many years now to solve a very similar problem: the SSL/TLS public
key infrastructure. The SSL/TLS public key infrastructure is used to distribute trusted
certificates that map fully qualified domain names to public keys. Web servers can
then use these certificates to authenticate themselves to users and users can be certain

1

1 Introduction

that they are communicating with the right server. In this work, we investigate the
potential benefits of using SSL/TLS certificates for an identity assertion and verification
framework for Ethereum, the currently most widely used general-purpose blockchain.
The great strength of the approach that we propose is that it does not rely on network
effects and does not require a bootstrapping phase, making it ready-to-use for any
domain or certificate owner.

1.1 Problem Statement

With our proposed system, we aim to increase the trust in information and services pro-
vided on Ethereum by providing an on-chain authentication framework that overcomes
the bootstrapping problem of naming services. In general, it is difficult to bootstrap
such systems due to a simple reason: before a system does not comprise a critical mass
of trusted information, people are not incentivised to participate, in turn slowing the
accumulation of trusted information. By using SSL/TLS certificates, we leverage the fact
that people are used to mapping real-world identities to domain names, already know
a large number of domains that they trust, and that a well-established system for the
authentication of these domain names exists. Our approach is promising as the required
infrastructure already exists and as it allows individuals to join independently. However,
we expect some problems with using this already existing system:

• Different perceptions of truth. The decision whether a certificate or signature
is accepted as valid depends on different factors, such as the root store of the
verifying party and the point of time of validation. Routines for Ethereum, however,
must be deterministic so that all parties computing them always come to the same
result.

• New use case. The SSL/TLS certificate system was not designed with our use
case in mind and evolved according to the requirements that come with the
authentication of web domains. Therefore, we have to study the SSL/TLS certificate
ecosystem carefully to adapt it for our use case.

• Limited participation. Leveraging an already open system entails that entities
can perform exactly the actions that they already can. While anybody can act as
verifier in a SSL/TLS certificate-based identity management system, only owners of
certificates can prove their identity. In our case, this limits the set of identities that
can be linked to an Ethereum address to web domains with an existing SSL/TLS
certificate.

In this work, we focus on solving the first two problems by developing a strategy
that allows us to integrate authentication based on SSL/TLS certificates to Ethereum
applications.

2

1.2 Research Questions

1.2 Research Questions

The goal of this work is to explore the opportunities and limitations of using SSL/TLS
certificates for address identification on Ethereum. The final artifact should be an
implemented prototype that allows on-chain decisions, is open to as many entities as
possible, and does not require any actions by stakeholders other than the certificate
owner. To guide our process, we pose the following research questions:

1. How can we enable on-chain decisions on identity using SSL/TLS certificates?

The ability to verify SSL/TLS certificates and associated identities deterministically
on-chain is the fundamental building block of our proposed system. To find a
fitting solution we need to answer the following subquestions:

a) What are possibilities to provide determinism for the validity decision?

b) What are the associated costs of the approaches?

c) How can certificates be revoked on-chain?

d) What are inherent problems of the SSL/TLS public key infrastructure and
how can we mitigate them?

2. How can we use SSL/TLS certificates to endorse Ethereum addresses on-chain?

Once a certificate is considered as valid on-chain, the corresponding private key can
be used to endorse an Ethereum address and bind it to the identity described by the
certificate. We aim to provide a functional, secure, and cost-efficient endorsement
scheme. To find an answer to the question of how this is implemented best, we
need to consider the following:

a) How can already deployed contracts and externally owned accounts be
endorsed?

b) How can identity endorsements be revoked?

c) What measures can an identity owner take to increase trust in their identity
claim?

1.3 Methodology

The work presented in this thesis consists of the following phases:

1. Background and literature research. Our work is heavily involved with two
flourishing ecosystems, blockchain-based systems and the SSL/TLS public key
infrastructure. As our goal is to build a usable system, we need to understand the
theoretical foundation and current practices of both areas. Therefore, we perform

3

1 Introduction

thorough research on these topics. Additionally, we read and evaluate literature
that deals with questions similar to ours.

2. Requirements Analysis Concurrently to background and literature research, we
define the requirements for our system. Some requirements stem from the founda-
tional goal of this thesis and influence the literature search, while the literature
search leads to the definition of other requirements. We furthermore discuss and
validate the requirements with domain experts.

3. System Design. Based on the functional and nonfunctional requirements, we
develop a method that allows the on-chain binding of web domains to Ethereum
addresses. One main consideration is the validation of SSL/TLS certificates.
We propose different solutions and discuss their advantages and disadvantages.
Moreover, possible structures and policies for endorsement creation and validation
are discussed.

4. Prototype implementation. The final system design is realized in a proof-of-
concept prototype. We present and discuss technical key details, such as data
formats and performing cryptographic computations on Ethereum.

5. Evaluation. In this phase, we evaluate the advantages and disadvantages of
our system design and implementation. We examine the prototype in regards
to technical characteristics, such as the execution costs of different actions. We
discuss the implementation’s security properties. Additionally, we model the
bootstrapping of our system with certificates and show that the entry cost for
identity owners and the recurring costs for verifiers are low.

1.4 Contribution

The main contribution of this work is the design and prototype implementation of
an authentication framework for Ethereum that allows binding account addresses to
identities. These should be meaningful for human use. The key differentiator between
our and previous work is that we leverage an already fully functional authentication
system – the SSL/TLS ecosystem – with its established mapping of names to real-world
identities. This eliminates the bootstrapping problem.

Concretely, we contribute

• a cost-efficient system that enables the validation, storage, and maintenance of
SSL/TLS certificates on-chain.

• a comprehensive framework for the binding of Ethereum addresses to real-world
identities.

• a prototype library for the parsing and validation of SSL/TLS certificates in
Solidity.

4

1.5 Structure

1.5 Structure

The remainder of this thesis is structured as follows: We summarize relevant background
information about Ethereum and the SSL/TLS ecosystem in chapter 2. In chapter 3,
we motivate the need for our system with use cases, describe its stakeholders and
formulate the requirements for our system. Furthermore, we survey the state of SSL/TLS
certificates to adapt the design and implementation of our system to our findings. In
chapter 4, we present and discuss research and initiatives that combine blockchain
technology and certificates or aim to provide identity solutions for blockchains. We
discuss our design choices in chapter 5 before walking the reader through the key
elements of our implementation in chapter 6. Finally, we evaluate our system in chapter
7 in regards to cost, functionality, and security. We revise the results of our work and
give pointers for future work in chapter 8.

5

2 Background

In this work, we leverage the existing infrastructure used for identity assertion and trust
management in the internet to provide a mechanism that binds Ethereum addresses
to real-world identities. To follow this work, it is important to have a fundamental
understanding of Ethereum and blockchain-based systems in general, as well as of the
SSL/TLS public key infrastructure. This chapter introduces the most relevant concepts
of blockchain technology and Ethereum in section 2.1 and the SSL/TLS ecosystem in
section 2.2, while defining terms that we use throughout this work and emphasizing
properties that we rely on during the design and implementation of our system.

2.1 Ethereum

Ethereum1 is a public permissionless blockchain that was introduced in 2014 [47]. In
contrast to the original Bitcoin blockchain2, Ethereum does not only track the ownership
of coins, but is designed as a general-purpose blockchain. Sections 2.1.1 and 2.1.2
introduce the basic functionality of blockchain technology and Ethereum. We present
the programming environment of Ethereum, namely the Ethereum Virtual Machine
and smart contracts in sections 2.1.3 and 2.1.4. Sections 2.1.5 and 2.1.6 discuss the
difficulties with running programs on-chain that rely on real-world data and with
identity management in Ethereum, respectively.

It is important to notice that, while this work focuses on Ethereum, the concepts
described and results acquired can be transferred to every blockchain that supports
Turing-complete programs.

2.1.1 Blockchain Technology

The concept of blockchains was first introduced in 2008 by Satoshi Nakamoto with Bit-
coin, a peer-to-peer version of electronic cash [35]. The proposed blockchain technology
has three fundamental properties:

• No trust required: The participants in the network do not need to trust each
other and no intermediate trusted third party is required. Trust is solely based on
cryptographic primitives and consensus protocols.

1https://ethereum.org/, accessed 13.05.2020
2https://bitcoin.org/, accessed 13.05.2020

7

2 Background

Block n

Block n header

Timestamp

Transaction root

Block n transactions

Block n+1

Block n+1 header

Timestamp

Transaction root

Block n+1 transactions

Hash of Block n-1
header

Hash of Block n
header

Block n+2

Block n+2 header

Timestamp

Transaction root

Block n+2 transactions

Hash of Block n+1
header

Figure 2.1: The basic structure of a blockchain.

• Immutability: Once an action is recorded on the blockchain, it cannot be reversed,
reordered, or modified.

• Transparency: Every participant has access to all information stored on the chain.
While this enables them to validate all actions and the current state, it poses a
challenge to the secrecy of sensitive data and the privacy of individuals.

The properties are provided by the design of blockchain as a distributed ledger that
stores a sorted list of published transactions. In Bitcoin, transactions are used for the
transfer of ownership of coins. Transactions are accumulated and stored in blocks. These
blocks are then chained together by storing the cryptographic hash of each block header
in its succeeding block. This basic structure of a blockchain is depicted in Figure 2.1.
The attempt to modify the content in any of the blocks would lead to a different hash
value. All participants of the network agree on the most recent block, in Figure 2.1 block
n + 2, and its hash value through a consensus mechanism in certain time intervals. This
makes the blockchain immutable and tamper-proof, as the discrepancy between values
can easily be detected.

Anyone can participate in a public permissionless blockchain by creating an account.
The user creates a public key pair; the public key determines the account address.
The account can then be used to receive funds or trigger transactions. To prove that
a transaction is authorized, the user signs the transaction with the private key of
the account. The user sends the signed transaction to the peer-to-peer network, where
miners verify it and put it into a block which is appended to the blockchain. Transactions
change the of state of the blockchain.

2.1.2 Ethereum Fundamentals

Ethereum builds on blockchain technology to construct a “world computer” [6]. The
concept of a world computer implies that all users share one computer together with its
resources and memory, which holds both data and code. In contrast to usual general-

8

2.1 Ethereum

purpose computers the state of the machine is not governed by only one but many
entities and the state is distributed globally. Each participant can issue transactions that
alter the state of the computer. The Ethereum blockchain is used to track this state over
time. The part of Ethereum that handles the state, computations, and state transitions is
called "Ethereum Virtual Machine" (EVM). As all computations need to be performed
by the participants of the peer-to-peer network, issuing transactions does cost money.
Transaction costs are paid in ether, the built-in currency of Ethereum.

A world computer allows developers to implement decentralized applications, so-called
Dapps. A Dapp is an application that serves some specific purpose but does not rely on
the presence or existence of a particular party. Dapps are usually not only comprised of
smart contracts (cf. section 2.1.4) for the decentralization of the controlling logic, but
also of other aspects of the application such as storage or naming [6]. A Dapp based
on a blockchain comes with several advantages over an application that is centralized
[6]:

• Resiliency: As the code and information required to execute the Dapp is stored
on the blockchain, it is available as long as the underlying blockchain is operating.
In contrast, a centralized application usually depends on the availability of specific
servers.

• Transparency: Every participant can inspect the Dapp code to verify its purpose
and functionality and monitor all its interactions, as the Dapp is both stored and
executed on the blockchain.

• Censorship resistance: Once a Dapp is deployed on the network, its code cannot
be altered due to the immutability of the blockchain. This allows participants to
interact with the Dapp without interference by any entity, as long as they have
access to the blockchain.

2.1.3 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) handles the deployment and execution of code
on the blockchain. The EVM is a quasi-Turing complete state machine, only limited by
the amount of computational steps that are allowed. The number of allowed steps is
limited to guarantee that a program execution halts as there is no external force that
could stop a non-halting computation. The EVM state is comprised of all accounts and
the persistent storage.

Ethereum differentiates two different kind of accounts: Externally owned accounts (EOAs)
and smart contracts. An EOA is an account that is created as described in subsection 2.1.1
and therefore controlled by a private key. Any entity that knows the private key has
the ability to send ether or invoke smart contract executions from the EOA. An EOA
does not contain any code. A smart contract is a piece of immutable code that can be
executed in the context of the EVM. More detailed information on smart contracts is

9

2 Background

given in subsection 2.1.4. All accounts are identified by a unique 20-byte address. For
EOAs, the address is derived from its public key. The address of a smart contract is
computed based on the account that creates the contract and a nonce. In both cases, the
resulting address cannot be forced to take a certain value or pattern with a reasonable
amount of effort.

A transaction is a digitally signed data packet used to transfer coins to another account
or invoke smart contract execution. As creating transactions requires a private key for
the signature, transactions can only originate from EOAs. The recipient of a transaction
can either be an EOA or a contract. Each transaction holds information about the amount
of ether transferred, the maximum number of computational steps allowed, and the fee
that the sender is willing to pay for each computational step. Additionally, an optional
data field can be used to invoke smart contract functions. When a contract needs to
send funds to another account or invoke a method of another smart contract, it sends a
so-called message. While messages have a similar structure to transactions, they are not
signed and are not explicitly stored on the chain. A contract can never send a message
on its own, it can only be invoked by a transaction.

As hinted above, the issuer of a transaction or message needs to pay for every computa-
tional step that is made. This is because every step needs to be performed by verifying
parties and every transaction increases the size of the blockchain. Smart contracts are
represented in EVM byte code, which is similar to assembly. Each opcode costs a
predefined fee, measured in gas. The cost of a transaction is determined by the amount
of gas that was used multiplied by the gas price that the sender was willing to pay.
Additionally, the sender of a transaction specifies how much gas they are willing to
pay at most for a transaction. If the transaction requires less gas, the remaining gas
is refunded; if it requires more, the transaction fails and all changes made by it are
reverted. All transactions are atomic, regardless of how many messages and contract
calls they entail.

2.1.4 Smart Contracts

Smart contracts (SCs) are immutable deterministic programs - sets of variables and
functions together with persistent storage - that can be executed in the context of
the EVM. As smart contracts are accounts, they can receive, store, and send Ether.
In addition to that, any other account that knows a smart contract’s address and its
specification can call its public functions. The creator of a smart contract does not have
any privileges at the EVM protocol level. However, the application layer logic can be
implemented to support concepts like the ownership of contracts.

The EVM works with smart contracts that are represented in EVM bytecode. For more
convenient development, smart contracts are usually written in high-level languages such
as Solidity or Vyper and then compiled to EVM bytecode. To deploy a smart contract, a
transaction is sent to the special contract creation address 0x0. This transaction carries

10

2.1 Ethereum

the bytecode of the contract in its data field. Subsequently, the contract is assigned a
deterministically computed address. From this point on, all accounts can invoke the
public methods of the smart contract.

Once a smart contract is deployed on the chain, it is only controlled by its code. As
the code is stored on the chain, it is immutable – smart contracts cannot be updated
or patched, even by the contract creator. The only modification that is possible is
the removal of the contract from the chain, but only if the selfdestruct() method is
callable.

That smart contracts are accessible to anyone who knows the contract address and public
functions requires special attention on security during the development process. This is
even aggravated by the fact that even if a vulnerability is detected, it cannot be patched
due to the immutability of the smart contract. The immutability also poses another
problem: code cannot be updated to comply with new requirements. If functionality is
to be added or modifications need to be made due to external factors, a completely new
smart contract needs to be deployed. Additionally, as every computing step requires
spending some ether, it is important to avoid expensive computations and storing large
amounts of data on the chain in order to keep a Dapp attractive to the user.

2.1.5 Bridging the Gap Between Off-chain Data and On-chain Computations

One important aspect of blockchains is that in order to reach consensus about the state
of the chain, the execution of all transactions must yield the same result for every
participant. This means that all computations must be completely deterministic. To
achieve this, all computations must be conducted based only on the shared context of
the blockchain and external data can only be introduced to the chain as data payload in
transactions. Therefore, there are no mechanisms in Ethereum that allow a contract to
establish connections to the outside world to inquire about varying information such as
currency exchange rates, weather information or the validity of certificates. If a contract
relies on such external data, it must be provided by a trusted party that has access to
this information and stores it on the blockchain for the contract to use.

The parties that bridge the gap between the off-chain world and the blockchain context
are referred to as oracles. In general, an off-chain oracle service gathers information, for
example from a web service, validates, and processes it. It provides this information to
its corresponding oracle contract on the chain by issuing a transaction. When contracts
need the data for their computations, they can then read the information from the oracle
contract.

The main issue with oracles is that the on-chain contract has no means to validate the
information provided. It has to use the information trusting the authenticity and the
integrity of the oracle service. To mitigate this trust issue, several approaches have
been proposed. One of them is to provide cryptographic proofs with information. This

11

2 Background

approach is implemented by the Provable3 blockchain oracle. It relies on TLSNotary4

proofs, which attest that certain HTTPS traffic has occurred between a client a server, as
well as the content of the server response. Another approach uses decentralized oracles
to avoid having a single point of failure: information is provided by n independent
entities. The information is considered valid if at least m out of the n claims match.
This type of oracle is often used for computation oracles when expensive computations
that can theoretically performed on-chain are moved off-chain to save costs. Especially
when using computation oracles, one has to make careful considerations on the trade-off
between saving money and security.

2.1.6 Ethereum Addresses

On the Ethereum protocol level, account addresses determine identity. Ethereum
addresses are unique hexadecimal numbers with a length of 20 bytes. For EOAs, an
address comprises the last 20 bytes of the Keccak-256 hash of the account’s public
key. The properties of Keccak-256 as a cryptographic hash imply that the creator of
an account cannot influence the resulting address by other means than brute force.
The result is that Ethereum addresses appear as randomly generated and are very
human-unfriendly.

As the value of Ethereum addresses cannot be controlled, they are not bound in any
way to the real-world identity of their owner which requires that addresses need to
be distributed and exchanged off-chain. This comes with a risk as it opens the door
for man-in-the-middle attacks [22]. For example, the Coindash hack that took place
in 2017 was based on such an attack [14]. Coindash hosted an initial coin offering
(ICO), where it offered users to exchange ether against tokens for their Dapp. Coindash
announced the ICO and the account address that funds should be sent to on their website.
However, shortly after the ICO started, an attacker was able to replace Coindash’s
account address with an account address owned by themselves. Users aiming to obtain
tokens subsequently transferred the necessary funds to the attacker’s account instead of
the legitimate Coindash account.

In addition, Ethereum addresses do not, unlike Bitcoin addresses, natively contain a
checksum that protect from typing an erroneous address. EIP-55 suggests backward-
compatible checksums, but its implementation is not mandatory and might not be
supported by all wallet applications [6][8]. If ether are sent to a mistyped address,
they can usually not be recovered, as the accounts private key cannot be computed. At
the time of design, checksums for Ethereum addresses were not included, as the idea
was that address would be hidden behind abstractions at higher layers [6]. However,
the development and adoption of these higher layers have only advanced slowly in
reality.

3https://provable.xyz/, accessed 13.02.2020
4https://tlsnotary.org/, accessed 13.02.2020

12

2.2 Authentication of Web Servers and Trust Establishment on the Internet

The properties of Ethereum addresses highlighted in this section urgently demand for
mechanism that binds Ethereum addresses to real-world identities in a way that does
not require off-chain address distribution and can be bootstrapped quickly.

2.2 Authentication of Web Servers and Trust Establishment on
the Internet

Trust, which [29] defines as "ability of two entities to believe one another at some level,
so that they can interact in a secure manner", is a fundamental requirement in human
interactions while not trivial for web-based interactions where real-world identities are
easily faked. On the internet, users usually connect to web servers based on the server’s
domain name. The user associates the domain name with a real world identity, for
example their bank, which it deems the operator of the server. This association generates
the user’s trust in the services and information that the responding server provides.
However, the user must ensure that the responding web server is actually genuine and
belongs to the owner of the requested domain. The web server needs to authenticate
itself.

In today’s internet, the authentication of servers and the establishment of secure con-
nections is commonly performed with the SSL/TLS5 protocol. The authentication of
the communication partners with TLS is based on X.509 certificates and a public key
infrastructure (PKI). In this section, we address the technical and organizational aspects
of the TLS PKI that are relevant to our work. In subsection 2.2.1, we describe X.509
certificates, certificate validation, and certificate revocation. We introduce the basic
concepts, security flaws and mitigation attempts of the PKI in subsection 2.2.2. We give
an overview of the guidelines for good practice defined by the CA/Browser-forum in
subsection 2.2.3. Finally, we outline the criteria a verifier uses to decide on the validity
of certificates in subsection 2.2.4.

2.2.1 X.509 Certificates and Certification

Certification is the process in which one entity, the issuer, asserts the identity of another
entity, the subject, and endorses the assignment of a public key to the subject with
a digital signature. A subject may, for example, be a person, organization, or also a
web server. The information the issuer has gathered about the subject, the subject’s
public key, and the digital signature are compiled in a document called certificate. This
certificate is passed to the user. Subsequently, the subject can use the certificate to attest
their identity to another party, the verifier, by proofing that they own the private key that
corresponds to the subject’s public key.

5TLS (Transport Layer Security) is the successor of SSL (Secure Socket Layer). While TLS is the technically
correct term to describe the protocol currently in use, SSL is still commonly used. Henceforth, we use
the term TLS.

13

2 Background

TBSCertificate

Signature Value

Signature Algorithm

Version Serial Number

Signature
Algorithm Issuer

Not Valid Before Not Valid After

Validity

Subject Subject Public
Key

Extensions

Figure 2.2: Structure of an X.509 certificate.

The certificate format that is commonly used today is specified by the X.509 standard,
which is defined as part of the X.500 authentication framework. The current version
X.509 v3 is specified in RFC 5280 [16]. In addition to the fundamental components, X.509
certificates contain information about its validity period, the cryptographic algorithms
used, and information about the issuer.

The structure of X.509 v3 certificates is displayed schematically in Figure 2.2. A X.509
certificate consists of three main parts: The TBSCertificate (TBS is short for to-be-signed),
the signature algorithm identifier, and the signature. The TBSCertificate contains the
information associated with the subject and the certificate. Its fields are explained
below in detail. The signature algorithm field contains the object identifier (OID) of
the cryptographic algorithm that was used to create the signature. The signature field
contains the digital signature of the DER-encoded TBSCertificate that was created with
the public key of the issuer.

The fields of the TBSCertificate are, in order:

Version Format of the encoded certificate, for version 3 the value is 2.

Serial number Positive integer that is unique for every certificate issued by one issuer,
maximum size of 160 bit.

Signature algorithm The OID of the cryptographic algorithm and parameters used to

14

2.2 Authentication of Web Servers and Trust Establishment on the Internet

create the signature. Must match the signature algorithm field after the TBSCertifi-
cate.

Issuer Name of the issuer. Must be of the X.501 type Name.

Validity Time interval, specified by two dates, during which the certificate is valid.
For this time, the issuer warrants that they will maintain information about the
certificate.

Subject Uniquely identifying name of the subject. Must be of the X.501 type Name.

Subject public key Info Public key of the subject together with the cryptographic algo-
rithm the key is to be used with.

Extensions Optional fields that carry additional information about the subject, issuer,
or certificate.

The length of the validity period is a critical design parameter. A short validity time
means that a certificate needs to be replaced often, incurring higher costs. A long validity
time increases the chance that the cryptographic algorithms in use are broken or that a
certificate might be compromised, and prolongs the time during which the certificate
can be misused. Therefore, the validity period has to be defined carefully and based on
the type of certificate, its intended application, and the strength of the subject key.

Commonly used extensions are key usage and extended key usage, which define the
operations that the subject private key is allowed to be used for. The basic constraints
extension describes if and how the subject may act as an issuer for other certificates. The
subject alternative name extension allows additional identities to be bound to the subject,
such as additional domain names or an e-mail address. More extensions not relevant for
this work are defined in RFC 5280 [16].

X.509 is a specification that is application agnostic. A TLS-certificate is a X.509 certificate
where the Extended Key Usage extension field allows server authentication. With the
TLS protocol and TLS certificates, one can ensure that the genuine server responds and
create a shared secret without previous knowledge of each other over an unencrypted
channel. When authentic certificates are in use, malicious actors cannot intercept or
interfere with the messages transmitted over the network. As TLS is the most common
application of X.509 certificates, the terms TLS certificate and X.509 certificate are often
used interchangeably. In the rest of this work, we leverage the existing, commonly used
and trusted infrastructure of TLS certificates and refer to them plainly as certificates
unless a clear distinction needs to be made.

Certificate Revocation

Sometimes, it is necessary to invalidate a certificate before its validity period expires.
This can, for example, be necessary when the subject’s private key has been compromised

15

2 Background

TBSCertificate

Signature Value

Signature Algorithm

Version

Serial Number

Signature
Algorithm Issuer

This Update Next Update

Revoked Certificates

Revocation
Date

Extensions

Extensions

Figure 2.3: Structure of an X.509 certificate revocation list.

or lost. Another instance is when an issuer is discovered to have issued fraudulent
certificates, may it be due to being compromised, careless certification procedures, or
simply due to acting with a malicious intent [49]. Fraudulent or compromised certificates
can have a substantial effect on security, so it is important that trust is maintained by
invalidating such certificates [13]. As the certificate persists as valid document, the
issuer needs to announce that a certain certificate cannot be trusted anymore. This is
called certificate revocation.

Certificate Revocation Lists (CRLs) [16] are the initial approach for certificate revocation
that was introduced with the X.509 specification. With this approach, issuers maintain a
list of the certificates they issued and that needed to be revoked. The structure of X.509
CRL is displayed in Figure 2.3. Certificates contained in CRLs are identified by their
serial number. During validation, the verifier inquires the CRL from the issuer. The

16

2.2 Authentication of Web Servers and Trust Establishment on the Internet

verifier considers a certificate revoked and consequently invalid when it is contained in
the list.

The main disadvantage of CRLs is their lack of scalability. While the approach might
work well for a small number of certificates, the size of a large CRL puts strains on
the network through which the CRL file is distributed, on the validation process as the
whole list needs to be iterated, and on the memory of the verifier if they keep a copy
of the file. To reduce the load on the issuers, CRLs are often updated periodically, for
example on a weekly basis, and stored locally by verifiers for this time period. This
delays the announcement of the revocation information and opens a window during
which the issuer already knows that the certificate is revoked, but the certificate is still
evaluated as valid by verifiers.

To remedy these problems, the Online Certificate Status Protocol (OCSP) [41] was
proposed. When validating a certificate, the verifier sends an OCSP request about the
status of the certificate to the issuer. The OCSP response contains the digitally signed
status information of the certificate. The status of a certificate can be either good, revoked,
or unknown. In addition to the certificate status, the response contains information about
the point of time when the response was created, how long the OCSP response is valid,
as well as other optional information in extension fields. The authenticity and integrity
of the response is evaluated by checking the digital signature of the response with the
private key of the issuer.

While this solution is more scalable than CRLs, it poses a privacy risk as an attacker
might observe the verifier’s request and can infer that they want to interact with a
certain web server. Additionally, this approach only works when the issuer is online.
As some applications evaluate a certificate as valid when they do not receive an OCSP
response, this puts issuers under the threat of Denial-of-Service attacks. OCSP stapling
[38], a variation of OCSP where the certificate subject requests an OCSP response
for its certificate and provides it together with the certificate, tries to mitigate these
problems. However, as the OCSP response provided is valid for a period of time and
only updated on certain time intervals, the freshness of the revocation assertion is
problematic again.

2.2.2 Public Key Infrastructure

Certificates act as a recommendation made by the issuer to trust the authenticity of a
public key. Recommendations are a vital part for identity management systems as it is
impossible to know all parties one has to interact with beforehand [31]. However, these
recommendations must still be propagated and public keys must be administered and
distributed in a way that allows verifiers to rely on their authenticity. Certificate systems
rely on various organizations, policies, and processes for the vetting of identities, and
circulation of certificates [25].

17

2 Background

Root Store R1 R2 R3

I1 I2 I3 I4 I5

D1 D2 D3 D4 D5

Trusted Untrusted

Figure 2.4: Exemplary structure of a hierarchical X.509 PKI.

Public key infrastructure (PKI) is the term that describes systems for the generation,
administration, and distribution of public key certificates [18]. PKIs build on the concept
of multiple recommendations stringed together: The subject of one certificate can use its
private key to sign another certificate. A verifier can trace back the chain of signatures
until they encounter an issuer that they know and trust. This issuer acts as a trust anchor
for the recommendation chain. There exist two types of PKI: In web-of-trust-like PKIs
participants are peers and every participant may endorse certificates. This gives users
complete control over who they trust, but requires them to proactively assess whom
they trust [29]. In contrast, hierarchical PKIs rely on chains of trust. In this model, only
certificate authorities (CAs) can create and sign new certificates; each certificate can only
be signed by exactly one entity.

The X.509 PKI is a hierarchical PKI. The trust anchors are so-called root certificates. Root
certificates are usually self-signed certificates in which the subject matches the issuer.
Self-signed certificates can only be validated against themselves, therefore, verifiers store
the set of root certificates that they trust in a root store. For TLS, root stores are usually
distributed together with an operating system or browser. Root certificates are used to
sign intermediate certificates that act as issuer for other intermediate certificates or end
certificates.

Certificates that can be used to sign new certificates are called CA certificates. To create
a CA certificate, the issuer of a certificate can endorse the certificate owner as trusted
CA. In X.509, this is indicated by the presence of the basic constraints extension with the

18

2.2 Authentication of Web Servers and Trust Establishment on the Internet

CA-flag set to true and the presence of the key usage extension with the keyCertSign-bit
set. In the X.509 PKI, the set of CA certificates is comprised of root certificates and
subordinate certificates. Subordinate certificates act as delegate of a root certificate to
sign other certificates. We refer to subordinate certificates as intermediate certificates. Leaf
certificates that are not CA certificates are used for authenticating servers and domains.
We refer to them as domain or server certificate.

In Figure 2.4 an exemplary hierarchical PKI is depicted. Trusted certificates are repre-
sented by circles with drawn-through lines, untrusted certificates by dashed lines. An
arrow from a certificate A to a certificate B indicates that B was signed by A. In the
example, the verifying application’s root store does contain the root certificates R1 and
R2, but not R3. Therefore, the verifier does only accept the domain certificates D1 to D4,
but not D5. Commonly paths in the chains of trust are of length three, as they consist of
exactly one root, one intermediate, and one domain certificate. Some cases exist where
multiple intermediate certificates are part of the path. In Figure 2.4, this is the case for
domain certificate D3.

Problems of the X.509 PKI

In the model of hierarchical PKIs, the whole trust is based on the integrity and benign
nature of CAs [27]. In reality, both the quality of intra-CA validation processes and
security measures are difficult to assess from the outside [25], which shows in numerous
wrongdoings by CAs in the past, may they be either mistakenly or maliciously. As one
compromised CA can, at least for some time period, weaken system-wide security [13],
such incidents are regarded with great concern.

The compromise of the DigiNotar CA was one of the most notable incidents and had
an immense effect on measures taken to ensure integrity of the X.509 PKI [5]. In 2011,
DigiNotar issued, unauthorized by Google, a fraudulent certificate for google.com and
all of its subdomains. Subsequently, the certificate was presented to Iranian users to
perform man-in-the middle attacks on them [32]. The underlying flaw that facilitates
such an attack is simple: While a domain owner can mandate one CA to issue certificates
for their domain, they cannot keep other CAs from issuing fraudulent certificates.

To empower both domain owners and users to monitor CA behavior, different ap-
proaches have been proposed. One of them is the attribute-based detection of fraudulent
certificates, based on the assumption that certificates for the same domain are issued
with the same or similar attributes [9], [44]. For example, if a new certificate for a
domain is issued by a CA in a unrelated country, the probability that it is fraudulent
is considered higher. While some of these approaches show a good detection rate of
maliciously issued certificates, a high number of benign certificates are flagged as fraud-
ulent [3]. A different proposal is the establishment of centralized certificate databases.
When a user is presented a certificate by a server, they can ensure that this is the
same certificate other users have seen. This idea is implemented for example by the

19

2 Background

ICSI Certificate Notary [4]. Another approach is Certification Authority Authorization
(CAA) [23], where DNS records limit which CAs are allowed to issue a certificate for a
domain. These records can be checked by CAs during the issuing process and by clients
during certificate validation. A first study on CAA showed that adoption is slow and
error-prone [42].

Certificate Transparency

The most promising and now widely adopted approach is Certificate Transparency (CT)
[10]. Google proposed CT in 2013 as a reaction to the DigiNotar compromise. Since
2017, CT is mandatory for all CAs that issue certificates for web domains. The goal of
CT is to make it possible to identify mistakenly or maliciously issued certificates and
detect CAs that exhibit fraudulent behavior.

CAs conforming to CT present the content of every certificate that they are about to issue,
a so-called precertificate, to several public append-only logs. The presented information
is stored in the logs, in return, the CA receives a proof of inclusion. This proof is added
to the content of the certificate, which is then signed. When a verifier validates the
certificate, they check whether the certificate contains a proof of inclusion from a log
that they trust, indicating that the creation of the certificate has been made public. It
is important to note that precertificates are marked with a so-called CT poison. The CT
poison indicates that the precertificate must not be used for authentication purposes
[28]. Precertificates may only be used for the submission to CT logs. For authentication,
a variant of the certificate that does not contain the CT poison must be presented.

CT is a reactive approach; it does not prevent the issuance of fraudulent certificates.
Instead, it enables domain owners to monitor the public logs and detect when a
unsolicited certificate is issued. In such a case, the responsible CA and their root
certificates are considered compromised or unreliable and would be removed from root
stores.

2.2.3 CA/Browser Forum Guidelines

The CA/Browser Forum (CAB) is a coalition of CAs and browsers for a uniform
definition of technical and organizational certificate issuance standards. Their guidelines
are the de facto standard for the TLS certificate ecosystem, as it comprises the four main
root store curators - Mozilla, Apple, Google, and Microsoft.

The forum defines baseline requirements6, that CAs and certificates that they issue have to
comply with. The requirements deal with technical details, such as which cryptographic
algorithms are allowed together with the minimum key length that is to be used. For
example, new certificates with signatures based on the SHA-1 hash are no longer

6https://cabforum.org/baseline-requirements/

20

2.2 Authentication of Web Servers and Trust Establishment on the Internet

accepted. They are also concerned with certificate policies, such as the maximum
validity period. Server certificates may only be valid for up to 825 days. Additionally,
no certificates for special-use domains, such as "localhost", may be issued. Since 2017,
all certificates complying with the CAB requirements need to be included in multiple
CT logs and contain the respective proofs.

The forum’s baseline requirements demand CAs to verify all subject information con-
tained in a certificate. As certificates are used in scenarios that have varying security
requirements, CAB defines different levels of certificates. In general, when a certificate
needs to be more asserting, more information needs to be verified by the CA more
diligently, resulting in a higher price for the certificate. The different certificate types
are, from least asserting to most asserting:

Domain Validation The CA verifies that the entity requesting the certificate controls the
domain through a challenge-response protocol. The signed certificate does only
contain the domain name in the fields "commonName" and "subjectAltNames".
The certificate does not contain any further information about the subject. This
is enough for the use of TLS, as the public key can be used to secretly negotiate
connection keys, but does not provide authenticity about the real-world identity
of the domain owner. With the Automatic Certificate Management Environment
protocol, domain validation certificates can be generated automatically without
the need for validation by a human.

Organization Validation This type of certificate contains the organization name as sub-
ject information. In addition to domain validation, the existence of the organization
is verified, and that the certificate sign request originates from this organization.

Extended Validation (EV) Additional guidelines that require the validation of the legal
and physical existence of the subject. The certificate ensures the the visited website
is controlled by a specific legal entity identified by name, address, jurisdiction of
registration, and registration number. In some browsers, this certificate is displayed
as being especially trustworthy.

The distinction of different certificates made the adoption of TLS certificates thrive. Web-
sites can now offer web traffic encryption due to the low- to zero-cost of automatically
issued certificates. Applications that need a higher level of trust, such as bank web sites,
can generate it by presenting more valuable certificates.

2.2.4 Certificate Validation

So far, we have covered three aspects of trust [13]: Trust anchoring, deciding who
is trusted to act as CA; transitivity of trust through certification and the issuance of
certificates; and the maintenance of trust through the revocation of certificates. These
aspects concern CAs and the PKI. The last aspect involves the user and how they interact

21

2 Background

with certificate information. Users need to interpret this information to decide whether
(i) they accept the certificate as valid and (ii) they trust the certificate.

For certificate validation, the verifier receives the entire chain of certificates from the
domain certificate to the root certificate. The validity of the certificate depends on
formal factors that can be verified in conformance with strict rules defined by the
X.509 specification [16]. To be considered valid, a certificate has to fulfill the following
points:

• Intact chain of trust: The verifier follows the chain of trust from the server certificate
to the root certificate. Each certificate must be validated with a correct signature
produced by its predecessor. As trust anchor, the root certificate must be contained
in the verifier’s root store. Additionally, all certificates in the chain must be valid
as well, i.e. conform with the following requirements.

• Integrity: By verifying the signature with the issuers public key, the verifier can
ensure that the TBSCertificate has not been tampered with and that the information
contained is genuine.

• Expiration: The certificates validity period must include the time of validation7.

• Subject information: The information identifying the subject must match the
claimed identity. For server certificates, this is the fully qualified domain name.
For intermediate certificates, the subject must equal the issuer of its child certificate.

• Constraint processing: An issuer can impose constraints on the actions that the
subject public key might be used for. This includes the information whether the
subject is trusted to act as issuer for other certificates. The root and intermediate
certificates must be CA certificates. The verifier has to ensure that the allowed key
usage of the web server corresponds to the application scenario.

• Revocation status (optional): The certificate must not be revoked by the issuer.
This step is not mandatory, but highly recommended.

For the certificate to have an actual meaning, the subject needs to prove the possession
of the subject private key. Otherwise, anyone could claim an identity by requesting the
certificate from a server and subsequently presenting it as their own. How this prove
is performed depends on the protocol that is used. In TLS, the subject either signs a
challenge or decrypts a message provided by the verifier.

That a certificate is valid according to the X.509 specification does not necessarily
mean that the verifier trusts the certificate and accepts the subject as authenticated.
This decision depends on the implementation of the verifier application, additional

7This holds for TLS certificates and cases where certificates are used for authentication. When certificates
are used for endorsing the authenticity of a digital signature, different policies may apply. For example,
the German Digital Signature Act considers a signature valid if the signature was created while the
certificate was valid. The validity status of the certificate at the time of validation does not matter.

22

2.2 Authentication of Web Servers and Trust Establishment on the Internet

verifier-side policies and the authentication scenarios. For example, all major browsers
and operating systems reject certificates that do not comply with the CAB baseline
requirements. This means that certificates that use outdated cryptographic algorithms
and do not include certificate transparency proofs are rejected. In addition, the verifier
might decide to impose further restrictions, for example to only trust EV certificates or
chains of trust that do not exceed a certain path length.

This chapter introduces the basic terms and concepts that we rely on for the remainder of
this work. Of particular interest are the properties of Ethereum smart contracts (section
2.1.4) and Ethereum’s (lacking) identity management (section 2.1.6). For the design of
our system, we refer back to methods of certificate revocation (section 2.2). For the
implementation the properties of X.509 certificate validation are strongly relevant.

23

3 Analysis

In this chapter, we motivate the need for our system and describe and analyze the
ecosystem that we are working in. For this purpose, we describe use-case scenarios
for our system in section 3.1 before describing the involved stakeholders in section
3.2. Based on this information, we derive the requirements for our system in section
3.3.

3.1 Use-Case Scenarios

Binding Ethereum account addresses to real-world identities and offering an on-chain
identity assertion and verification system allows users to interact with other accounts
without the need that the users manually verify and maintain Ethereum addresses.
Below, we highlight in three exemplary use cases when and how users can profit of an
authentication framework for Ethereum.

3.1.1 Address-independent Payments

To transfer Ethereum funds from Alice’s to Bob’s account, Alice needs to provide Bob’s
account address as an input to the transaction. As the design of Ethereum does not
incorporate any identity management, Bob needs to communicate his address to Alice
through an off-chain channel. This could, for example, be achieved by meeting Alice
in person and physically exchanging the address, by announcing the address on a web
site, or by storing the address-identity mapping in a trusted database. In all scenarios,
Alice needs to (i) obtain the address, (ii) carefully copy the address, and (iii) provide the
address as an input to the transfer transaction.

With an identity management system incorporated in Ethereum, this process could
be made more convenient and secure by storing address-identity mappings on-chain.
Instead of obtaining the address off-chain, one could query the identity information
stored on-chain and use this address for the transaction without the need to manually
copy it. For example, when shopping at Bob’s website "www.bobs-shop.com", Alice
would instruct a designated payment smart contract to transfer 1.5 ether to the account
associated with the identity "www.bobs-shop.com". The contract searches for the correct
address and transfers the funds on behalf of Alice. During the process, Alice never
comes in contact with the Ethereum address itself.

25

3 Analysis

3.1.2 Authenticity of Provided Information

With it’s properties of being tamper-proof and being always online, blockchain technol-
ogy is a suitable and convenient option for endorsing the authenticity of information.
Consider the process of verifying the validity of university diplomas and credentials:
Alice applies for a position in Bob’s company and supplies the PDF of the university
degree that she obtained from Carol’s university. As the PDF might be manipulated,
Bob wants to ensure its integrity by inquiring about the document’s validity and status
at Carol’s university. Traditional methods, like calling or writing the document’s issuer,
are labor intensive and come with a processing delay. Additionally, they depend on the
availability and continued existence of the institution.

With a solution based on Ethereum, Carol would create a smart contract and maintain a
list that contains the cryptographic hashes of all diplomas issued by her university and
a list of revoked diplomas. Subsequently, Alice could provide the smart contract address
together with the PDF to Bob. Bob can hash the certificate, and verify that the contract
contains the document in the list of issued credentials and not in the list of revoked
credentials. However, there is still one issue: Bob needs to ensure that the information
was actually provided by Carol. Carol can give the information she provides authenticity
by signing the contract address and storing the signature in the contract, thereby binding
the contract to her identity and warranting the credibility of the information stored. Bob
can retrieve this signature and verify that it was indeed created with the private key of
the TLS certificate for "www.carols-university.edu". In case the website is offline or the
institution does no longer exist, the corresponding TLS certificate should be obtainable
on-chain.

3.1.3 Automated Authentication and Authorization of Accounts

In some cases, the operator of a smart contract might want to restrict the access to
the service they offer. The authorization could be based on different criteria such as a
client’s country, the client’s status as a registered organization or business, or a set of
specifically whitelisted entities. Without a system for identity assertion and verification
for Ethereum, approaches for general criteria would place the burden of verifying
identities on the smart contract operator, while the whitelisting approach would require
manual labor to match identities to account addresses and is infeasible for a large
amount of authorized accounts.

An automated system, where smart contracts can authenticate and authorize other
Ethereum accounts without external intervention, would work in the following way:
Contract A wants to use the service provided by contract B. The operator of contract B
wants to offer its service only to a defined set of entities, for example owners of web
domains ending on ".gov". Instead of whitelisting individual account addresses, the
owner would whitelist identities, i.e. domain names. This way, the operator does not
need to keep track of the accounts that authorized entities own. Instead, the owner

26

3.2 Stakeholders

of contract A endorses the address with its private key and stores the signature in the
contract, linking the contract to themselves. When contract A requests a service from
contract B, contract B can retrieve the identity information, verify it with the on-chain
identity assertion system, and authorize it based on policies defined by the owner of
B.

3.2 Stakeholders

In this section, we list the stakeholders of an identity management system for Ethereum,
define their roles and assign terms that we use throughout this work.

Certificate issuers are, as described in section 2.2.1, entities that are responsible for
checking identities and creating corresponding certificates. In addition, they
maintain information about the revocation status of the certificate during its
validity period. We also refer to this role as issuer.

Certificate subjects are entities whose identity is described in a certificate. In our
system, the type of an identity is a web domain name as used in TLS certificates.
The subject is the entity that owns the certificate and the private key and operates
the web domain’s server. The entity taking the role of the subject is normally also
the entity taking the role of address owner and endorsement creator.

Address owners either control the private key of an EOA or have control over a smart
contract on application level. This stakeholder is also referred to as account owner
and, when the account in question is a smart contract, smart contract operator.

Endorsement creator is the term used to describe an entity that creates a cryptographic
binding between an Ethereum address and a web domain name. In order to create
an endorsement, one should be an address owner and must be in possession of a
valid certificate and its private key. This role is also referred to as endorser.

Verifiers are parties that are interested in knowing the identity of an account owner. For
this purpose, they retrieve and validate the certificate pointed to by the endorser,
validate the endorsement, and make a decision whether they believe the identity
claim based on their policies.

Trusted third parties (TTPs) are entities that are trusted by at least one of the other
stakeholders to perform certain actions or attest certain information. For example,
a TTP can perform validation of endorsements on behalf of a verifier or attest the
point of time at which an endorsement was created.

In general, stakeholders can be divided into three categories: Certificate issuers, identity
owners, and verifiers. Identity owner comprises the roles of certificate subject, address
owner, and endorsement creator. In a benign setting, these roles are always taken by
the same entity, or at least by entities from the same organizational unit. Conceptually,

27

3 Analysis

trusted third parties are verifiers that do not validate claims for their own purpose, but
as a proxy on behalf of other verifiers.

3.3 Requirements Analysis

In this section, we derive, explain, and discuss the requirements for our targeted system.
These requirements are the foundation for the design (chapter 5) and implementation
(chapter 6) of our system. The final requirements are summarized at the end of this
section.

As pointed out in our problem statement, there is a gap between the determinism
required for routines running on Ethereum and the subjective perception of truth
concerning X.509 certificate validation. For an Ethereum authentication framework, it
is of utmost importance that it supports on-chain decisions about identities and trust
(R1). This means that our system needs to provide all information that is required
for deciding on the validity of a certificate, while the verifier needs to define policies
and make them available. Another essential property for an identity system is that an
identity can only be claimed by the real identity owner. For our system this means
that (i) an endorsement must be produced with the secret private key of a certificate
and that (ii) it must not be possible to reuse an endorsement or modify it in a way that
allows linking the identity to another address. We demand this property in requirement
R2. Furthermore, our system must enable the issuer of an endorsement to revoke the
endorsement independently from the certificate or other endorsements (R3).

Another crucial design decision when building an identity system is whether there
is one maintained state of truth or different perceptions of truth are possible. The
first scenario requires for some sort of consensus – may it be by having a designated
authority or through democratic processes – to decide on the set of trust anchors. With
the second scenario, anyone would be to add trust anchors and decide on their set
of trusted roots. As we leverage the TLS ecosystem, we want to adhere to its design
principle and require open participation (R4), i.e. enable the second scenario. The final
essential requirement for our system is availability (R5): The successful operation of our
system must not rely on infrastructure external to the Ethereum context. The system
should be self-sufficient and shall not rely on the availability and state of external servers
or information sources.

Finally, we define four additional requirements with the purpose to make the system
attractive, usable, and versatile that should be implemented in a way that does not
contradict requirements R1 to R5. Requirement R6 demands compatibility: Numerous
smart contracts have already been deployed and do not support the functionality of
our system. However, it should still be possible to endorse them on-chain. In addition,
the system that we implement should simply be an enabler for other applications.
Consequently, the design of our system should be flexible (R7), i.e. should not mandate

28

3.4 Survey of the TLS Certificate Landscape

exactly on which criteria trust decisions are made and allow constructs such as multiple
endorsements for one address. One of the driving motivations of our work is to provide
a practical identity system for Ethereum that allows fast adoption (R8). This entails two
things: Infrastructure that already exists should be used to minimize bootstrapping and
actors wishing to participate should not rely on third parties. In particular, this means
that owners of domain certificates should be able to participate without requiring action
from certificate issuers. Lastly, we have to consider the on-chain costs that are associated
with our system. Considering that the validation of endorsements in combination with
the validation of certificates are the most commonly performed actions, the system
should be cost-optimized for them (R9).

In summary, the requirements for our system are:

R1 Support of on-chain decisions

R2 Unambiguous endorsements

R3 Individual revocation of endorsements

R4 Open participation

R5 Availability

R6 Compatibility

R7 Flexible design

R8 Enable independent and fast adoption

R9 Cost-efficiency for the verification of endorsements

3.4 Survey of the TLS Certificate Landscape

With our system, we leverage the existing infrastructure of the TLS ecosystem. We
introduce the theoretical background on this topic in section 2.2. In this section, we
present numbers that describe the current state of the ecosystem in practice. This
includes the cryptographic algorithms in use and the relationships between CA and
domain certificates.

For our analysis, we use data provided by Censys [17]. Censys performs internet scans
and monitors certificate transparency logs to compile the encountered TLS certificates
in data sets. These data sets also include certificates that are invalid, expired, or not
trusted by common root stores. However, for a certificate to be relevant for our analysis,
it needs to be

• commonly trusted. For this criterion, certificates must have a valid signature and
a valid path to a root certificate part of a commonly trusted root store. We use

29

3 Analysis

the Mozilla NSS root store1 as a reference point. The information about which
certificates are in the NSS root store are provided directly by Censys.

• not expired.

• not a precertificate. Certificates that are submitted to certificate transparency logs
contain the critical "CT poison" field. This field indicates that the certificate must
not be used for authentication (cf. section 2.2.2).

In the following, we will only consider the set of certificates with these properties.
Furthermore, as the data set is dynamic with new certificates being added, we only
consider certificates added to the data set before a cut-off date and expiring after the
cut-off date. For the data sets in section 3.4.1 the cut-off date is the 21st of April 2020 at
23:59:59 GMT; for the data set in section 3.4.2 the date is 27th of April 2020 at 23:59:59
GMT.

3.4.1 Distribution of Certificate Types

In total, 204,166,070 certificates fulfill the described requirements on the 21st of April.
This includes root, intermediate, and domain certificates. We refer to this set as set 1. As
this set of certificates also contains a lot of certificates that are not intended for general
use in the world wide web but for more ubiquitous applications, we also consider a
second data set: The certificates of websites that were in the Alexa list2 of the top million
websites by visits on the 21st of April and fulfill the same requirements as above. For
this data set, we identify 418,956 unique domain certificates. This number is much
smaller than one million due to several reasons: Different (sub-)domains sharing one
certificate, web sites serving expired certificates, web sites serving certificates that are
not trusted, or web sites not serving certificates at all. We refer to this set as set 2.

Out of the 204,166,070 certificates in set 1, 3,345 are CA certificates, 204,162,724 are
domain certificates, and one certificate is of version X.509 v1 and does therefore not
include this information. We define a level-x certificate as a certificate where the shortest
trusted path to the root certificate contains x certificates. In set 1, 153 certificates are
level-1 certificates (meaning that 153 certificates are in the root store), 2,387 are level-2
certificates, 203,838,127 are level-3-certificates, 325,196 are level-4 certificates, and a
negligible number of 207 are level-5 certificates. This means that the most common
structure for chains of trust is "domain certificate – intermediate certificate – root
certificate". There are no certificates that are level 6 or higher.

The numbers above show that it can be expected that each CA certificate is responsible
for issuing and maintaining a significant amount of certificates. To find out whether there
are differences regarding the number of certificates depending on one CA certificate or

1https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/, accessed
09/05/2020

2https://www.alexa.com/topsites, accessed 09/05/2020

30

3.4 Survey of the TLS Certificate Landscape

0 10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

x: number of certificates

Sh
ar

e
co

ve
re

d

With Let’s Encrypt Intermediate
Without Let’s Encrypt Intermediate

Figure 3.1: Maximum share of certificates covered by aggregation of the top x interme-
diate certificates. Graph is truncated after x = 100.

0 10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

x: number of certificates

Sh
ar

e
co

ve
re

d

With Let’s Encrypt Certificates
Without Let’s Encrypt Certificates

Figure 3.2: Tight lower bound on achievable share of certificate domain when choosing
x CA certificates. Graph is truncated after x = 100.

31

3 Analysis

whether numbers are distributed equally, we examine set 1 in a bottom-up approach:
We group domain certificates by their issuer and count the number of certificates in each
group. It is important to note that an issuer is determined by the issuer name and the
identifier of its public key, not by its certificate fingerprint3. From the cardinality of the
groups, we can derive the number of intermediate and ultimately the number of root
certificates required to cover a certain percentage of domain certificates.

At first, we take a look at intermediate certificates that issue domain certificates and
order them by how many valid certificates they issued. The by far most prevalent issuer
of domain certificates is "Let’s Encrypt Authority X3", the currently active intermediate
for Let’s Encrypt with 123,826,849 issued certificates, a share of over 60%. The top five
intermediates together cover over 91% of domain certificates, eight intermediates are
required for 95% and 26 for 99%. These numbers are visualized in Figure 3.1. We also
consider these numbers without the Let’s Encrypt intermediate, which might be relevant
for applications in which the no-cost automated issuance of certificates provided by Let’s
Encrypt is not trustworthy enough. Then, the top issuer is "CloudFlare Inc ECC-CA-2"
with a share of over 30%. The top five intermediates cover over 83%, 16 intermediates
are required for 95% and 43 for 99%.

Of course, these numbers do not represent the total numbers of CA certificates required
to cover the domain certificates as we must take root certificates and, in case of chains
containing more than three certificates, additional intermediate certificates in account.
A first look at the data shows that root certificates do not scale quite as well as the
intermediate certificates: The top six intermediate certificates are all signed by unique
roots. This means that in total, 2× 6 = 12 CA certificates are required to cover 93%
of certificates. Calculating the total numbers of certificates to cover certain shares is
complex due to the convoluted nature of the TLS ecosystem: features like cross-signing
make the bottom-up approach infeasible and the top-down approach is obstructed by
the fact that some of the top roots maintain only one intermediate certificate, while
others maintain dozens. Therefore, the numbers presented in Figure 3.2 are a tight lower
bound. Concretely, this means that by our heuristics, we chose x CA certificates and
were able to cover the certificate chain for a certain share of domain certificates with it.
It might be possible to pick a more optimal combination of CA certificates and cover
a larger share. For example, the share of 98% of certificates can be covered by at most
37 CA certificates, divided in 24 level-2 (intermediate) certificates and 13 level-1 (root)
certificates. In a situation without Let’s Encrypt, 35 CA certificates (23 intermediate, 12
root) cover over 96% percent of domain certificates.

Finally, to get a well-rounded perspective on the distribution of certificates, we take
a look at data set 2. Domain certificates in the Alexa list are covered by just 256

3The only information about its issuer that a certificate contains is the issuer name, not the issuer’s
certificate fingerprint. Additionally, it is important with which issuer key the certificate was signed, as
issuers may own several different keys. The certificate can be validated with any certificate that contains
the right issuer name and public key.

32

3.4 Survey of the TLS Certificate Landscape

0 10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

x: number of certificates

Sh
ar

e
co

ve
re

d

With Let’s Encrypt Certificates
Without Let’s Encrypt Certificates

Figure 3.3: Maximum share of certificates of domains in the Alexa list covered by
aggregation of the top x intermediate certificates. Graph is truncated after
x = 100.

0 10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

x: number of certificates

Sh
ar

e
co

ve
re

d

With Let’s Encrypt Certificates
Without Let’s Encrypt Certificates

Figure 3.4: Tight lower bound on achievable share of covered certificates of domains
in the Alexa list when choosing x CA certificates. Graph is truncated after
x = 100.

33

3 Analysis

intermediate certificates, with "Let’s Encrypt Intermediate X3" again taking a lead with
covering 43%. However, domain certificates seem to be distributed slightly more evenly
across intermediate certificates, as 21 intermediates are required for covering 95% and
49 are required for 99%. Without the Let’s Encrypt certificate, 30 and 69 are required,
respectively. These numbers are presented in Figure 3.3.

When taking root intermediates in account, the numbers in set 2 scale worse that in set
1, as the graphs in Figure 3.4 show. To reach a coverage of 95%, 35 CA certificates are
required in total, 67 CA certificates are required for 99%. Without the Let’s Encrypt
certificates, 45 are required for 95% and 85 for 99%.

In conclusion, the numbers presented in this section show that it is possible to validate
the vast majority of certificates even when only a small subset of root and intermediate
certificates are available. While adding CA certificates does not scale as well for Alexa
1 M domains as it does for all TLS certificates, in both cases a very high coverage of
server certificates can be achieved with a low number of CA certificates. In addition,
one root or intermediate certificate maintains is the issuer to very large number of
server certificates. Therefore, centralizing the validation and storage of certificates
– in contrast to validating the whole chain for each server certificate anew – should
have a huge potential in reducing costs in an authentication framework based on TLS
certificates.

3.4.2 Cryptographic Algorithms in Use

Another metric important for the implementation of our system is which cryptographic
algorithms are used for the public key pairs and signatures of the certificates and how
often they are present. For the analysis in this section, the set of certificates that fulfills
the requirements described above was retrieved on the 27th of April and comprises
208,431,988 certificates.

In general, there are five key types defined for X.509 certificates: RSA, DSA, Diffie-
Hellman Key Exchange, KEA, and ECDSA/ECDH [39]. However, only RSA and ECDSA
are commonly in use today: Out of the certificates in the data set, nearly 85% specify an
RSA public key, the rest specifies an ECDSA key. Table 3.1 lists the number of public
key types further divided by the public key length for RSA keys and the curve used for
ECDSA keys.

For creating and validating the signature of a certificate, the encryption algorithm is
usually combined with a cryptographic hash function that is used to create a digest of
the certificate. We refer to the combination of both algorithms as signature algorithm.
The number of absolute occurrences of each signature algorithm is summarized in Table
3.2.

The hash functions we observe in our data set are SHA-14, SHA-256, SHA-384, and
4SHA-1 is not considered secure anymore and certificates should not be issued using this hash function

34

3.4 Survey of the TLS Certificate Landscape

RSA key length Number Share
2048 156,746,476 0.75
3072 1,010,383 4 · 10−3

4096 19,317,221 9 · 10−2

8192 1,753 8 · 10−6

other 1,206 6 · 10−6

Total 177,077,039 0.85

ECDSA curve Number Share
P-256 28,908,431 0.14
P-384 2,446,235 1 · 10−2

P-521 283 1 · 10−6

Total 31,354,949 0.15

Table 3.1: Number of public key types observed.

Signature Algorithm OID Total Number
sha1WithRSAEncryption 1.3.14.3.2.29 11,988
rsassa-pss 1.2.840.113549.1.1.10 2
sha256WithRSAEncryption 1.2.840.113549.1.1.11 182,247,401
sha384WithRSAEncryption 1.2.840.113549.1.1.12 1,501
sha512WithRSAEncryption 1.2.840.113549.1.1.13 10,678
ecdsa-with-SHA256 1.2.840.10045.4.3.2 26,158,204
ecdsa-with-SHA384 1.2.840.10045.4.3.3 2,205
ecdsa-with-SHA512 1.2.840.10045.4.3.4 9

Table 3.2: Number of certificates that are signed with different signature algorithms.

SHA-512. We also observe the signature algorithm rsa-pss, but as it is only used in two
certificates we do not consider it further.

In Table 3.3, we organize the numbers presented in Table 3.2 by hash algorithm and
encryption algorithm. From this table, we can deduct that RSA is used for approximately
87% of signatures, ECDSA for 13%. In terms of hash functions, SHA-256 is clearly leading
with being used in over 99% of signatures. While the other three hash algorithms cover
minimal relative shares, the importance of SHA-1 should not be underestimated. 809
CA certificates are signed using SHA-1, out of which 67 are root certificates. Therefore,
while the number of certificates that are signed with SHA-1 is low, SHA-1 still plays an
important role for the validation of many certificate chains.

SHA-1 SHA-256 SHA-384 SHA-512 Total
RSA 11,988 182,247,401 1,501 10,678 182,271,568
ECDSA 0 26,158,204 2,205 9 26,160,418
Total 11,988 208,405,605 3,706 10,687 208,431,986

Table 3.3: Number of signature algorithms occurring grouped by hash and encryption
algorithms used.

anymore. However, especially root and intermediate certificates that were issued a long time ago and
are not expired yet are signed using SHA-1.

35

3 Analysis

With the data presented in this section, we gain a basic understanding of the current
situation of the TLS ecosystem. We use the information that a small number of CA
certificates issues the vast majority of domain certificates during the design (section
5.2.1) and evaluation (section 7.2) of our system. Furthermore, understanding which
cryptographic algorithms are commonly in use is important for the implementation of
our system (section 6.2.2).

36

4 Related Work

In this chapter we introduce previous work and ongoing efforts with goals or approaches
similar to ours. In section 4.1 we briefly describe several proposals that aim to improve
certain properties of PKIs by relying on blockchain technology. We discuss the Ethereum
Name Service in section section 4.2. Then, we introduce two approaches that leverage
existing TLS infrastructure for blockchains: did:web (section 4.3) and AuthSC (section
4.4).

4.1 Blockchain-based PKI Solutions

There exist numerous proposals to integrate blockchains and existing PKI infrastructure.
However, the focus of these approaches is not to provide identity solutions for blockchain
applications, but to leverage the blockchain for improving the properties of (the TLS)
PKI. Giving an overview of all research that has been done in this field is out of the
scope of this work, so we focus on approaches that target Ethereum or Ethereum-like
blockchains and include CAs for issuing certificates. Various other approaches ([2], [7],
[20], [24], [37], [43], [46]) do not include CAs in their design and introduce web-of-trust
like solutions instead, which means the incompatibility with existing protocols does not
solve the inherent bootstrapping problem, or develop new blockchains, which means
that the certificate information cannot be used for Ethereum.

Khieu and Moh propose CBPKI, a cloud blockchain-based public key infrastructure [26].
CBPKI uses a combination of a CA hosted in the cloud as a stateless web service and
using smart contracts to store associated information such as a certificate’s revocation
status. The idea is that the CA’s security can profit from security measures that have
already been put in place by the cloud provider, while denial of service attacks that
focused on obstructing access to revocation information would now have to target the
blockchain network itself. However, the approach does not fit our requirements as
only the certificate hash is stored on-chain, but not relevant information such as the
subject name or the public key. Consequently, certificates cannot be used for on-chain
authentication. In addition, the approach relies on CAs adapting to it and issuing a
new type of certificate that contains the address of the smart contract that contains it
information.

Chen et al. suggest CertChain as a decentralized and tamper-proof tool for auditing
certificates. In this model [11], CAs need to generate and sign certificate operations,

37

4 Related Work

such a registration, update, or revocation, which they then broadcast to the blockchain.
Certificate operations are stored in a newly defined data structure called CertOper, which
is used for storing and traversing the certificate information. This proposal requires
a new certificate format, an adapted implementation of Ethereum, and a new type of
CAs that also act as miners in the blockchain network, which are all properties that
contradict our requirements.

Kubilay et al. introduce CertLedger, a PKI system with the intention of shifting trust
from CAs to the blockchain and providing certificate and revocation transparency
[27]. On CertLedger, all TLS certificates, their revocation status, the revocation process,
and CA management are handled. Once a certificate is submitted to CertLedger, it is
validated and only added if valid. This means that client can simply refer to CertLedger
instead of validating a certificate themselves when they are authenticating a public key.
This also means that the client does not need to store and maintain a set of trusted roots
anymore. In addition, CertLedger provides a transparent revocation system and allows
owners of certificates – not just the issuers – to revoke them. While this proposal fulfills
many of our requirements, it does not allow open participation: The set of trusted CAs
is defined by CertLedger board and all validation decisions are made depending on it.
This means that (i) the CertLedger board needs to be fully trusted by clients, (ii) clients
cannot distrust individual CAs, and (iii) clients cannot add root certificates for specific
applications.

Matsumoto and Reischuk describe Instant Karma PKI (IKP), an incentivization platform
aiming to prevent fraudulent issuing of TLS certificates [30]. With IKP domains can
define and report CA misbehavior, and CAs can sell insurance against misbehavior. CAs
and domains implement their policies in smart contracts, which allows for an automated
process to trigger financial transactions to the affected domain and the reporter if a
CA is observed to issue an unauthorized certificate. The amount that is payed out is
defined by a reaction policy published on-chain by the CA. This information is public,
allowing clients to assess how likely it is that a CA maintains high security standards.
This proposal focuses strongly on improving the security of the TLS ecosystem, but
does not align with our goals and requirements: certificates are not presented to the
blockchain unless they are fraudulent and CAs have to take significant action to make
the system work.

Yakubov et al. propose a blockchain-based PKI management framework that supports
the issuing, validation, and revocation of certificates [48]. In their system, participating
CAs create smart contracts for their certificates; these contracts contain the hash of all
issued certificates together with their revocation information. This information may only
be altered by the corresponding CA. The authors extend the X.509 format with a custom
extension that contains among other things the smart contract address of the issuing CA.
When a verifier receives a certificate, they refer to the smart contract and verify that the
hash is contained, that the certificate is not revoked, and that the chain of trust is valid.
Just as the approaches before, this proposal relies on proactive CAs. Additionally, a new

38

4.2 Ethereum Name Service

certificate format is required and only the certificate hash is stored on-chain, which is
not sufficient for an on-chain authentication framework.

The aforementioned studies on blockchain-based PKIs all focus on improving the
security and transparency of TLS certificate management. This entails that they leverage
blockchain technology to improve the TLS ecosystem. In this work, we aim to do
the reverse: leverage the TLS ecosystem to provide an authentication framework for
Ethereum.

4.2 Ethereum Name Service

Ethereum Name Service (ENS) was launched in 2017 and aims to provide a decentralized
way to address blockchain resources in a human-friendly way [19]. Similar to the Domain
Name System (DNS) which maps web domains to IP addresses, it enables users to
resolve human-readable names to Ethereum addresses. ENS is curated by the Ethereum
Foundation and is described in three Ethereum Improvement Proposals: EIP-137, EIP-
162, and EIP-181 [6]. ENS names are dot-separated hierarchical names called domains;
currently, the only supported top-level domain (TLD) is ".eth". TLDs are owned by smart
contracts called registrars. The owner of a domain can create subdomains and transfer
the ownership of the subdomains to other parties. For example, Bob can acquire the
ownership of the address "bob.eth" and configure rules for the creation and ownership
transfer of its subdomains.

The ENS architecture consists of two central components: Registries and resolvers. As
noted above, registries are authoritative over one TLS. As ".eth" is currently the only
supported TLD, there exists one registry. The ".eth".registry is currently controlled by a
4-of-7 multisig. It is planned to transfer control to a decentralized account in the future
[6]. A registry contains a list of all its subdomains and its respective owners, resolvers,
and cache expiration. All Ethereum accounts that support the relevant standards can be
the owner of a domain. Resolvers are responsible for translating the domain to an actual
Ethereum address. To translate a domain to the address, the enquirer first obtains the
resolver address from the registry and then retrieves the address and optional associated
information from the resolver.

The big advantage of ENS is that it was developed with Ethereum in mind and is
optimized for its properties. For example, instead of working internally with human-
readable names that are inefficient to implement in Ethereum, 32-byte namehashes are
used. The namehash algorithm is a recursive algorithm that allows to compute the hash
of a new subdomain without requiring knowledge of the human-readable form of the
parent domain. Once ENS is established, it is a cost-efficient and decentralized system
providing human-readable identities to Ethereum addresses. One problem, however,
remains: Domain ownership can be acquired through auctions in which anyone can
participate and the highest bidder wins. This means that ENS domain names cannot be

39

4 Related Work

intuitively mapped to real-world identities. Furthermore, there is no judicial system in
place which would allow the seizing of individual domains, for example in the case of
copyright disputes.

4.3 did:web

The authors of did:web point to the fact that current decentralized identifiers (DIDs)
methods for blockchains lack of enough trusted data for successful bootstrapping.
Therefore, they propose to leverage the TLS system and to use web domain names as
identifiers. In their system, a DID document is created that contains the web domain
name and a public key, for example an Ethereum account address. This document
is stored at the web domain under a well-known path. A verifier can then connect
to the web server through a TLS connection and retrieve this information. As the
TLS connection is authenticated, the public key contained in the DID document is as
well.

While the foundational idea of using TLS mechanisms for a blockchain-authentication
framework is the same, this approach does not align with the properties that we want to
achieve. It depends on the availability of the server and the question of how to migrate
the information safely from the web to the blockchain remains.

4.4 AuthSC

In section 2.1.6 we discuss the security problems that can arise from Ethereum ad-
dresses being independent from real-world identities: When addresses are, for example,
announced on web sites, it is the burden of the user to verify the correctness and au-
thenticity of this address. Proposed approaches such as account address images, vanity
addresses, or announcing the address through different channels merely mitigate and
do not solve this issue. With this problem in mind, Gallersdörfer proposes AuthSC
[21].

The basic idea of AuthSC is that domain owners sign the Ethereum address that they
control with their private key and store the signature together with the domain name
in the smart contract. When a user is interested in interacting with the contract, they
retrieve the information and check that the domain name matches their expectation.
Then, they connect to the web host serving the domain through a TLS connection in
order to obtain the certificate and its chain. They ensure the validity of the certificate in
accordance with the usual criteria (cf. section 2.2.4). Finally, if the certificate is valid,
the user verifies the signature that was stored in the smart contract with the public
key contained in the certificate. If the signed data corresponds to the address of the
Ethereum account that they interact with, the account is deemed authenticated and
linked to the real-world identity of the web domain operator. Consequently, the user can

40

4.4 AuthSC

proceed interacting with the account. To address privacy concerns, AuthSC also offers
the possibility to store the signature without the domain information in the contract
and distribute the domain name off-chain instead. In this case, it is the discretion of
the identity owner to share the signature with entities and disclose which Ethereum
accounts they operate. The verifier can still check the binding of the address to the
identity by performing the steps described above.

This approach solves the bootstrapping problem of identity systems by relying on the
already established TLS ecosystem. Users are already able to link web domain names to
real identities. When an Ethereum addresses is bound to a web domain, it is ultimately
linked to the real identity. However, this approach does not support the on-chain
authentication of accounts as the certificate retrieval, the certificate validation, and the
signature validation are performed off-chain. Furthermore, the approach relies on the
availability of the web server and that it provides the same certificate that was used for
creating the signature. In this thesis, we take the foundational idea of AuthSC and use
TLS certificates for an Ethereum authentication framework but design our system in a
way that allows on-chain authentication and resolves the availability issue.

41

5 Design

The goal of this work is to design a system that enables binding Ethereum account
addresses to real-word identities, namely web domain addresses. The system design
aims to comply with the requirements presented in section 3.3. In this chapter, we
present the conceptual design of our system, which includes the endorsement scheme
(section 5.1) and the on-chain assertion of identities based on TLS certificates (section 5.2).
In addition to our final design, we discuss alternative solution approaches and their
advantages and drawbacks. In section 5.3, we summarize how our design complies with
the requirements.

5.1 Endorsement of Account Addresses

We define the endorsement of an Ethereum address as the signature of the address value
together with optional associated data, such as the web domain or corresponding TLS
certificate, produced with a private cryptographic key. An endorsement indicates that
the endorser claims to own the address, i.e. that they receive ingoing funds, control
outgoing funds, vouch for data associated with the address, and are the originator of
outgoing transactions. Endorsements need to present some kind of liability and make
only sense in scenarios where an adversary cannot gain advantage by signing an address
they do not control. For example, signing a contract or EOA address to prove that one
owns the ether contained in this account does not make sense, as anyone can produce a
signature for an address.

5.1.1 Using TLS Certificates for Endorsements

To endorse an account, any private cryptographic key can be used. However, if the
public key cannot be mapped to an identity, this endorsement is meaningless. We rely
on certificates that bind an identity to the public key, which in turn binds an identity
to the endorsement and account. In theory, any type and kind of certificate could be
used. However, as we point out in requirement R8, our aim is to build a system that is
compatible with widely-used standards to support fast adoption. Therefore, we chose
to rely on X.509 certificates.

In general, it is possible to design a scheme where CAs sign the public key or address of
an account or smart contract, respectively, and issue a certificate that binds the account

43

5 Design

directly to a real world identity. However, this requires that CAs actively engage in
such a new scheme, which contradicts requirement R8. Consequently, we decide to
work with TLS certificates, a certificate type that is already routinely issued. In addition,
TLS certificates are trusted by most internet users and provide a vast and well-studied
ecosystem. For our system, we use root and intermediate certificates as intended for trust
propagation. Instead of being presented during the TLS handshake, server certificates
are used to create endorsements.

While using TLS certificates reduces the types of identity that can be asserted to web
domains in the short run, the broad deployment and sheer number of existing TLS
certificates is an advantage that encourages fast adoption of our system. In the long run,
our vision is to open our system up to other certificate types. This would enable the
assertion of identities other than web domains, permit entities not in ownership of a
web domain to prove their identity, and empower users to build application-specific
PKIs for the identity management on Ethereum. This work, however, focuses on the
opportunities and limitations of using TLS certificates.

5.1.2 Endorsement Content

The format and content of endorsements needs to be specified such that misuse of
endorsements is avoided. This means the endorsements must be unambiguous (R2). In
particular, endorsements need to meet the following requirements:

• An endorsement issued for one Ethereum address may not be reused for another
Ethereum address.

• It must be clear to which web domain an address is linked. The situation when
this is unclear might arise when a certificate is issued for multiple web domains.

• It must be possible to identify the domain certificate with which the endorsement
was created in order to retrieve the public key and to check the validity and
revocation status of the certificate.

• It should be possible for the issuer to specify an expiration date of the endorsement.

An endorsement comprises a signature and associated data. The signature is computed
over the hash of the concatenation of the address account addr, the web domain IDdomain,
the unique certificate identifier IDcert, and the optional expiration date dateexp. An
endorsement E is characterized informally by

E = {sign(hash(addr|IDdomain|IDcert|dateexp), keypriv), addr, IDdomain, IDcert, dateexp}

where sign(m, k) produces the cryptographic signature of the message m using the key k,
keypriv is the endorsement creator’s private key, and hash(x) computes the cryptographic
hash of x. While not strictly necessary for endorsing, we decide to include IDcert in
the signature, as it enables the individual revocation of endorsements (R3). In case of

44

5.1 Endorsement of Account Addresses

Ethereum context

1. create SC

2. get SC adress

5. submit endorsement
 to database

4. store endorsement
 to contract

6. verify and add
 endorsement

7. submit endorsement
 to off-chain database

3. use certificate to
 create endorsement

8. verify and add
 endorsement

Figure 5.1: Different ways of endorsing a smart contract: internally (step 4), externally
on-chain (steps 5 and 6), and externally off-chain (steps 7 and 8). The
endorsed contract and the endorsement are created in steps 1 to 3.

internal endorsements (cf. section 5.1.3), addr does not need to be explicitly provided
with the associated data but should be inferred from the smart contract address.

Another important information concerning an endorsement is its creation date. However,
if the creation date is provided by the endorsement creator, it is not trustworthy as a
malicious party can simply provide an earlier date. Therefore, this requires a TTP that
attests the creation date or the submission date, respectively. Fortunately, Ethereum is
such a TTP and can be used to track when an endorsement was added.

5.1.3 Internal and External Endorsements

The endorsement of an address can be stored in- or outside the corresponding account.
We refer to endorsements that are stored inside a smart contract as internal endorsement.
In contrast, an external endorsement is stored by another entity than the account, which
may be on- or off-chain. An address can simultaneously be endorsed in- and externally.
Figure 5.1 depicts how all three types of endorsement can be deployed.

An internal endorsement contract can be created by any owner of a valid TLS certificate
(called subject below) in the following way:

1. The subject creates a smart contract with the main contract functionality and
support for the standardized endorsement interface.

2. The subject deploys the contract on-chain and retrieves the address of the deployed
contract (steps 1 and 2 in Figure 5.1).

3. The subject uses their private key to create the endorsement. This action takes
place off-chain (step 3 in Figure 5.1).

45

5 Design

4. Through functions offered by the endorsement interface, the subject stores the
endorsement in the contract (step 4 in Figure 5.1).

Subsequently, any other entity that interacts with the contract can retrieve the endorse-
ment and verify it by fetching its corresponding certificate, validating it, and obtaining
the certificate’s public key. The validation of the signature is always performed by the
verifying party.

An internal endorsement has the advantage that the information that an account is
endorsed is immediately available. A verifier does not need to act proactively and
inquire directory services to find out if and by whom a contract is endorsed and an
attacker does not have the chance to keep this information from the verifier. However,
internal endorsements do not work for EOAs and for smart contracts that have been
deployed without the endorsement functionality, a functionality that is demanded by
requirement R6.

An external endorsement can be created in the following way:

1. The subject retrieves the address of the EOA or contract they want to endorse (step
2 in Figure 5.1).

2. The subject creates the endorsement off-chain (step 3 in Figure 5.1).

3. The subject publishes the endorsement together with relevant information. The
publication can take place at on- or off-chain endorsement registrars, web sites, or
also in private messages to specific verifiers (steps 5 to 8 in Figure 5.1).

In this case, a verifier has to act proactively. When they want to interact with a contract,
they need to rely on third-party resources to gather endorsement information. The
fundamental advantage of external endorsements is, in compliance with requirement
R6, that they can be created for all accounts including EOAs and contracts that do not
support endorsement functionality. Additionally, the cost of signature validation can
be partly borne by the subject, when they submit the signature to a trusted party that
performs the validation and offers this information to verifiers.

As both approaches can be applied simultaneously, we decide to offer both possibilities
in our system to combine the advantages. We provide an interface for internal endorse-
ments and endorsement registrars and discovery services for external endorsements.
Users can then chose what the best applicable option – either internal, external, or com-
bined – for their application is. This is also in compliance with requirement R7, which
asks for a system that is flexible and adaptable for different use-case scenarios.

5.1.4 Storage and Distribution of Endorsements

In this section, we define how the structures and policies with which endorsements
are maintained in our system. The operations differ between internal and external

46

5.1 Endorsement of Account Addresses

endorsements. While defining the CRUD operations, we have to keep requirements
R6 – enable signing contracts that do not support the endorsement interface – and R7 –
flexible design that does not limit applications – in mind. Furthermore, the revocation
of individual endorsements must be supported (R3).

Internal-Endorsement Interface

To endorse a contract internally, the contract needs to support a clearly specified
interface. The interface should ensure on application level that only authorized entities –
the owners of a contract – are able to add endorsement information. This mitigates that
authentic endorsements can be replaced by arbitrary endorsements, which would allow
Denial-of-Service attacks. In contrast, it should be possible for anyone in possession of
the corresponding private key to submit the revocation of an endorsement. This is to
allow the revocation of an endorsement in which the initial owner has lost control over
the contract.

The implementation of the internal-endorsement interface needs to offer the following
functionality:

Create The creation of an internal endorsement is outlined in section 5.1.3.

Read The endorsement information can be accessed through getter functions integrated
in the interface. The endorsement is not validated on submission, so it needs to be
checked on retrieval. As the address is not explicitly stored, the address must be
obtained through functions offered by the EVM.

Update Endorsements themselves are immutable. If new information is required, a
new endorsement needs to be created. The only associated information that can
be updated is the revocation status. The endorsement creator can submit a signed
message stating that an endorsements is revoked. The endorsement interface must
require that the signature is validated before the revocation status is updated.

Delete It should be possible to remove internal endorsements before their expiration.
However, it must be ensured an endorsement’s revocation status persists even on
deletion. Otherwise it would be possible for an attacker who has gained control
over the contract to remove the revoked endorsement information and resubmit
the unrevoked endorsement.

External-Endorsement Database

In addition to the internal-endorsement interface, we propose a central database for
storing endorsements. Providing a central database empowers verifiers to proactively
and conveniently search for endorsements. Such a database query can have two distinct
goals: The verifier might either be interested whether and by whom a specific Ethereum
address was endorsed or whether there exist endorsements for a specific web domain.

47

5 Design

In addition, a central data base facilitates the revocation of endorsements. Another
advantage is that the endorsement can be validated upon submission, subsequent parties
interested in the endorsement do not need to perform the validation again.

The implementation of the external-endorsement database should provide the following
functionality:

Create An endorsement E, as defined in section 5.1.2, is submitted to the database.
The validation procedure retrieves the certificate with the certificate ID IDcert,
checks that the certificate is issued for the web domain IDdomain, and obtains the
public key keypub. If the endorsement’s signature is valid and not expired, the
endorsement it stored in the database.

Read Endorsements can be retrieved with addr or IDdomain as key. As multiple en-
dorsements per account or web domain may exist, the query returns a set of
endorsements. The querying party is responsible for checking the endorsements
for one that is signed by a certificate whose root certificate they trust.

Update Endorsements themselves are immutable information. The only associated
information that may change is the revocation status. If the original issuer of an
endorsement wants to revoke it, they sign the respective information and store it
with the endorsement.

Delete Unexpired endorsements may not be deleted from the database. Some applica-
tions might also accept expired endorsements, therefore, expired endorsements
should not be deleted while it is allowed to do so. However, if an endorsement
was revoked, the revocation information should persist.

It is important to note that external endorsements may also exist that are not stored in
the central database. Submitting endorsements to the database is a voluntary action
with the intent to facilitate the discovery of endorsements.

5.2 Enabling On-chain Decisions

To make a decision on trust based on an account endorsement, the verifier relies on two
components: The validity of the signature and the signer certificate and the policies
defined by the verifier. The policies depend on the use-case scenario and can be
implemented in the application’s functionality. Determining the validity of a signature
poses a greater challenge as several factors may influence the decision:

• Time of validation: A verifier validating a certificate during the validity period
of the certificate comes to a different conclusion than one validating it after the
expiration date.

• Mismatch of certificates: A subject might own several certificates that are issued for
different keys. If a verifier retrieves the wrong certificate, the signature validation
inevitably fails.

48

5.2 Enabling On-chain Decisions

Ethereum context

9. retrieve result

endorsed
contract

main
contract

oracle
contract

4. check endorsement

3. retrieve
 endorsement

8. store result

oracle
service

5.trigger

1. endorse

6. retrieve
 certificate

7. validate
 endorsement

2. trigger

owner of certificate and endorsed contract

user

Figure 5.2: Depiction of the workflow when using the oracle approach for certificate
validation.

• Different trusted roots: Ultimately, the decision on trusting a certificate depends if
the verifier trust the root of the certificate chain. The set of trusted root may differ
for different verifiers.

There is no absolute truth on the validity of certificates and we cannot expect that
Ethereum miners validate certificates based on the off-chain TLS PKI and come to
a unanimous decision. Therefore, we need to design a mechanism that allows TLS
certificate validation solely based in the context of the Ethereum blockchain. Only if this
is possible, endorsements can be validated on-chain as required by R1.

5.2.1 Using Oracle Services Versus Migrating the PKI On-chain

We have investigated two approaches to solve this problem and enable the on-chain
usage of TLS certificates: Relying on off-chain oracles and migrating part of the PKI
on-chain. In this section we discuss both approaches and stress out why we decided to
implement the second one.

Using oracles for certificate validation is based on the idea of "outsourcing" the main
tasks of identity assertion, namely the storage and validation of certificate information,

49

5 Design

to the off-chain world. Figure 5.2 depicts the involved steps when using this approach.
Identity owners embed the endorsement information in their contract (step 1). Once a
smart contract is triggered (step 2) that needs to authenticate the contract, it retrieves
the endorsement (step 3) and requests a trusted oracle contract to verify the endorse-
ment (step 4). The off-chain oracle service is triggered (step 5) to obtain and validate
the certificate chain belonging to the endorsement’s web address (step 6), verify the
endorsement signature with the respective server certificate’s public key (step 7), and
report its conclusion about the validity of the endorsement to the oracle contract (step
8). The main application contract can then retrieve the validation result from the oracle
contract (step 9). Alternatively, the oracle contract can also only provide information
whether the certificate is valid together with the public key and the original contract
performs the validation of the signature. Obtaining the certificate chain in step 6 is
done by performing a TLS handshake with the web domain server; the set of trust
anchors used for the chain validation is determined by the oracle service. If the contract
is externally endorsed, the identity owner submits the endorsement to a database in
step 1 instead to the contract and the verifier retrieves it from the database in step 3
instead.

There exist different possibilities for the design of the oracle service. One possibility
is that clients self-host an oracle, which could use a combination of already existing
tools for certificate retrieval and validation, like OpenSSL, and a small routine that is
developed specifically for endorsement verification. If a user is not able to host their own
oracle, they could rely on technologies like TLSNotary1, which produces cryptographic
proofs of TLS traffic content, to query the status of the certificate from online certificate
validators as offered by Digicert2, SSLShopper3, Geocert4, or SSLChecker5. In this case,
the validation of the endorsement would need to be performed by a computation oracle
or on-chain by the requesting contract itself.

Using oracles has several advantages: It is cheaper as certificate information is neither
stored nor validated on-chain. The oracle services can be patched and upgraded, which
makes them adaptable in case of changes of the X.509 or TLS certificate specification.
And as the most recent information is available, the revocation information of the
certificate is up to date. However, the trust and security issues that arise with oracles
are not the only problem of this approach. As it depends on off-chain server responses,
it violates the availability requirement R5. Additionally, there might be a mismatch
between the certificate that was used to create the endorsement and the certificate that is
provided by the server. Considering that server certificates have a significantly shorter
life time than CA certificates, this problem might be mitigated – not solved – by storing
the server certificate with the endorsement on-chain. Off-chain, only the CA certificates

1https://tlsnotary.org/, accessed 13.05.2020
2https://www.digicert.com/help/, accessed 13.05.2020
3https://www.sslshopper.com/ssl-checker.html, accessed 13.05.2020
4https://www.geocerts.com/ssl-checker, accessed 13.05.2020
5https://www.sslchecker.com/sslchecker, accessed 13.05.2020

50

5.2 Enabling On-chain Decisions

of the chain need to be obtained. However, this would diminish the cost advantage of
the oracle approach.

To satisfy the availability requirement R5 and to solve the mismatch problem, the
information that is required for certification validation needs to reside on-chain. We
call this approach migrating (a part of) the TLS PKI to Ethereum. The information
that is required to validate a certificate is the whole certificate chain from server to
root certificate, the set of trust anchors as defined by the verifier, and the validation
procedures.

The validation routine for X.509 certificates can be implemented and offered on-chain
as Ethereum library. It is a security-critical component and needs to be carefully
implemented and the source code needs to be openly available to be trusted by users.
As R4 requires that the set of trust anchors is specific to the verifier, each contract that
acts as verifier needs to declare their own set. There are two different options for storing
the certificate chains: a decentralized and a centralized one. With the decentralized
approach, each endorsement is stored with the corresponding certificate chain. The
endorsement and the certificate are then validated each time a verifier wants to assert
the identity against the set of trusted roots of the verifier. With the centralized approach,
the certificate chain is not stored with the endorsement, but in a central database. The
obvious advantage of this approach is that intermediate and server certificates need to be
stored only once and can be shared by the server certificates. Additionally, if the validity
of a certificate and its chain is asserted by the database when it is submitted and only
valid certificates are accepted, the validation of the certificate needs to be performed
only once. When verifiers assert an identity, they only need to verify that the certificate
is present in the database, that the root certificate is part of the trusted roots, that the
validity period has not expired, and that the certificate has not been revoked. These
operations are significantly cheaper than performing the full validation for a certificate
chain.

A difficulty with the migration approach is the assertion of the revocation status of
certificates. In the oracle approach, the revocation status can be checked through further
interactions to obtain a CRL or OCSP response. As the goal is to be independent from
external servers, this is not possible for the migration approach. Luckily, both CRLs
and OCSP responses are documents that are valid for a certain time period and that are
commonly signed with the issuer private key and can consequently be verified on-chain.
The idea is that the database entries of certificates can be updated with the current
corresponding revocation information. This needs to be repeated while the certificate is
valid and the validity period of the revocation status information expires. If a certificate
is revoked, this information is final and does not need to be updated.

Table 5.1 presents an overview of the degree that the different approaches fulfill the
requirements discussed in section 3.3 and that are relevant for the certificate framework.
All options enable on-chain decisions and open participation: The oracle approach as

51

5 Design

Oracles Decentralized
migration

Centralized
migration

R1 - Support of on-chain decisions 3 3 3

R4 - Open participation 3 3 3

R5 - Availability 7 3 3

R7 - Cost-efficiency 3 7 ∼

Table 5.1: Fulfillment of relevant requirements of the different approaches to enable
on-chain validation of certificates and endorsements.

everyone can choose their trusted oracle and the set of trust anchors, the migration
approach as anybody can define their own set of trust anchors on-chain. The oracle
approach does not guarantee availability, as it relies on external servers, in contrast
to the migration solutions, which operate based solely on information available on-
chain. In terms of on-chain cost (R9), the oracle solution is the least expensive as most
computations are moved off-chain. The centralized migration approach performs all
necessary steps on-chain, but the number of computations and the storage size required
are notably less than with the decentralized migration approach.

Overall, migrating the TLS PKI on-chain in a centralized manner satisfies our require-
ments to the greatest degree. We decide to proceed with this approach; the design of the
central certificate database is discussed in section 5.2.2. Independent from our system
and use case, this solution might also serve as a trusted proxy certificate validator
and storage for resource-constrained devices. Instead of performing the validation
of certificates by themselves, they can retrieve certificate status information from the
blockchain.

5.2.2 Central Certificate Database

For enabling on-chain decisions on the validity of certificates, we rely on a central
database that stores all valid certificates that have been submitted to the system. In the
following, we will describe the CRUD (create, read, update, delete) operations of the
database.

Create Certificates are submitted to the database one-by-one. Anyone can submit
certificates. Before a certificate is stored, it is confirmed that it is valid. This check
is performed in accordance with the criteria presented in section 2.2.4. As the
signature of the certificate needs to be verified, the certificate must either be a
self-signed certificate or the certificate’s issuer’s certificate must already be stored
in the database. The validity period of the certificate must not be expired. If the
certificate validation is successful, the relevant information is retrieved from the
certificate and stored in the database. This includes a pointer to the entry of the
issuer certificate; in the case of self-signed certificates, it is the certificate itself. The

52

5.3 Evaluation of the Design

revocation status information is set to unknown. If the certificate validation is not
successful, the certificate is rejected.

Any self-signed certificate with valid format and content can be added to the
database and subsequently act as trust anchor. This enables anyone to create and
maintain their own application-specific PKI.

Read Certificate information can be retrieved from the database with a unique certificate
identifier. The certificate chain can be retrieved thanks to the pointers that refer to
the issuer of each certificate.

Update The only information that can be updated is the revocation status of certificates.
For this purpose, either the CRL or the OCSP response corresponding to a cer-
tificate can be submitted. The submitted information is only used to update the
revocation status information if it is valid and signed by the certificate’s issuer. For
the CRL, the certificate status is considered as not revoked when its serial number
is not contained in the CRL and considered as revoked when it is contained. For
OCSP responses, the certificate status is updated to the status that is contained in
the response. In both cases, information about the time of the last update and the
expiry date are stored. Once a certificate is marked as revoked in the database, the
state cannot be reversed to unknown or not revoked.

Other certificate attributes cannot be updated in the database as all information
reflects the information of the submitted certificate. If altered information is
required, a newly issued certificate must be submitted with a new unique certificate
identifier.

Delete Once submitted, certificates cannot be deleted. This is because other certificates
and endorsements may rely on this certificate and their validity and revocation
status cannot be verified sufficiently if certificates and their chain of trust are
missing.

5.3 Evaluation of the Design

The design of our system is comprised of an interface for internal endorsements, a
database for external endorsements, a database for certificates, and a library for parsing
and validating TLS certificates. Table 5.2 summarizes how our design complies with the
requirements that we identify in section 3.3.

By storing certificates on-chain and providing functionality for certificate and signa-
ture validation, we enable on-chain decisions on identity and trust (R1). With our
endorsement scheme, we ensure that endorsements are unambiguous (R2) and can be
individually revoked (R3). Our system does not enforce one absolute truth; everyone
can use the system and define their own trust anchors and decision policies (R4). As all
information required in terms of certificate and endorsement validation is stored on the

53

5 Design

R1 Support of on-chain decisions 3

R2 Unambiguous endorsements 3

R3 Revocation of endorsements 3

R4 Open participation 3

R5 Availability 3

R6 Compatibility 3

R7 Flexible design 3

R8 Fast adoption 3

R9 Cost-efficiency ∼

Table 5.2: Compliance with requirements of our design.

Ethereum blockchain, our system does not depend on the availability and state of web
servers (R5). By introducing external endorsements, it is possible to bind identities to
EOAs and already deployed, non-conforming smart contracts (R6). Nevertheless, we
leverage the advantages of internal endorsements by providing an interface for internal
endorsements that can be used for new contracts. It is possible to endorse a contract
with a deliberate combination of internal and multiple external endorsements, serving a
wide range of use-cases and application scenarios (R7). As we utilize TLS certificates
to create endorsements, we do neither require CAs to take any action for our system
to work nor do we rely on new certification processes. Together with leveraging the
large amount of readily-available trusted data, we facilitate the fast adoption of our
system (R8). While we have not chosen the cheapest approach in terms of on-chain
computation, consolidating the maintenance of certificates helps to reduce the cost for
identity verification and abolishes the need for off-chain resources that act as oracles
(R9).

54

6 Implementation

In this section, we present the structure and key technical details of our implementation.
Our prototype includes functionality for parsing DER documents (the data format
in which X.509 certificates are stored), parsing and validating X.509 certificates and
related artifacts, storing validated certificates in a central database, and enabling the
endorsement of Ethereum addresses. We introduce the general structure of our prototype
in section 6.1, before discussing its two parts in more detail: The certificate framework in
section 6.2 and the endorsement framework in section 6.3. The smart contracts presented
below are implemented in Solidity. We implemented and tested the system with support
of the Truffle framework and deployed it on a local test blockchain operated with
Ganache.

6.1 Prototype Structure

Our prototype includes reference implementations for verifiers as well as functionality
for the creation, storage, and validation of endorsements and the submission, storage,
and validation of certificates. The prototype has a layered and modular structure,
meaning that subsystems like the validation routine for X.509 certificates can also be
used independently from our application. In total, our prototype implementation is
comprised of 14 contracts and libraries: Three contracts for the endorsement functionality,
three contracts concerning the validation and storage of certificates, four contracts
provisioning cryptographic algorithms, and four libraries with helper methods.

The simplified basic structure of our system is displayed in a UML-like diagram in
Figure 6.1. Helper contracts and contracts for crypto algorithms are not displayed. The
EndorsementDatabase is the interface to the authentication framework for verifiers. It
stores valid external endorsements and root stores. In order to validate endorsements
and confirm the link of an endorsement to a web domain name, EndorsementDatabase
refers to CertificateStore. This entity validates and stores certificates and certificate
chains. For the validation of X.509 documents such as certificates, CRLs, and OCSP re-
sponses, it utilizes the library X509Parser, which in turn relies on ASN1Parser for parsing
the documents. The functionality of Verifier, EndorsementDatabase, and X509Parser
requires the validation of signatures, which is provided by SignatureValidation and
different crypto libraries used by it. The InternallyEndorsed contract is a structurally
independent contract.

55

6 Implementation

Verifier InternallyEndorsed

+ setEndorsementDatabase(...)
+ setRootStore(...)

- rootStoreIndex: uint256
- ed: EndorsementDatabase

+ getEndorsement()

- domain: string
- certID: bytes32
- expiration: uint256

- signature: bytes

+ updateEndorsement(...)
+ revokeEndorsement(...)

EndorsementDatabaseEndorsementDatabase

- cs: CertificateStore
- endorsements: Endorsement[]
- rootStores: RootStore[]

+ submitEndorsement(...)
+ revokeEndorsement(...)
+ validateEndorsement(...)
+ initializeRootstore()
+ addRootsToStore()
/* several getter methods for
endorsements */

CertificateStoreCertificateStore

- certificates: Certificate[]

+ addSelfSignedCertificate(...)
+ addCertificate(...)
+ refreshRevocationStatus(...)
/* several getter methods for
certificates */

<<library>>
SignatureValidation

<<library>>
SignatureValidation

+ validateSignature(...)
+ validateRSASHA256(...)
+ validateRSASHA1(...)

1

1
refers to

1

1
refers to

usesuses

<<library>>
X509Parser
<<library>>
X509Parser

+ parseAndValidateCertificate(...)
+ parseAndValidateOCSP(...)
+ parseAndValidateCRL(...)

usesuses

<<library>>
ASN1Parser
<<library>>
ASN1Parser

+ getRootNode(...)
+ getNextNode(...)
+ getFirstChildNode(...)
+ getContentOfNode(...)

usesuses

usesuses

usesuses

OwnedOwned

- owner: adddress

+ transferOwnership(...)

*

1
refers to

*

1
refers to

Figure 6.1: Structure of the authentication framework.

56

6.2 Certificate Framework

1 pragma solidity ^0.5.12;
2 import "./X509Parser.sol";
3
4 contract CertStore {
5 event CertificateAdded(bytes32 fingerprint);
6 event SelfSignedCertificateAdded(bytes32 fingerprint, uint256 rootIndex);
7 event CertificateUpdated(bytes32 certID, uint256 expiration);
8 event CertificateRevoked(bytes32 certID);
9

10 mapping (bytes32 => X509Parser.X509certificate) private certificates;
11
12 function addSelfsignedCertificate(bytes memory der) public {...}
13 function addCertificate(bytes memory der, bytes32 issuerID) public {...}
14 function refreshOCSP(bytes32 certID, bytes memory ocsp) public {...}
15 function refreshCRL(bytes32 certID, bytes memory crl) public {...}
16
17 /* Various getter functions are omitted for the sake of brevity. */
18 }

Listing 6.1: Extract from the code of the central certificate database CertificateStore.

6.2 Certificate Framework

We denote the part of our system that provides functionality for the storage, main-
tenance, retrieval, and validation of X.509 certificates as certificate framework. In the
following, we discuss the parts it is comprised of: the certificate database, the routines
for validating and parsing X.509 documents, and the format for the internal processing
of certificates.

6.2.1 Certificate Database

The central component of the certificate framework is the CertificateStore contract,
which serves as certificate database and is point of reference for all actions concerning
certificates. In accordance with our design described in section 5.2.2, anyone can submit
root, intermediate, and server certificates to be added, validated, stored, and maintained.
The shortened code of CertificateStore which contains the most relevant function
and field definitions are shown in Listing 6.1.

All certificates that have been submitted are stored in the mapping certificates (line
10), which maps a certificate’s unique identifier to the certificate information. We
decided to use a certificate’s SHA-256 hash as its unique identifier, as the SHA-256 hash
is natively supported by Ethereum and its value cannot be controlled by an attacker
to forge a duplicate certificate due to its nature as cryptographic hash. The certificate
information is stored in structs of type X509Certificate, which is explained below. The

57

6 Implementation

type of a certificate is not explicitly stored but can be inferred from their properties: Root
certificates are their own issuers and they are a CA certificate, intermediate certificates
have a different from themselves and their CA flag is set, and server certificates have a
different issuer and their CA flag is not set.

Adding Certificates

To add a certificate to the database, the user provides its DER-encoded represen-
tation in bytes to the respective method. To add a root certificate, the function
addSelfSignedCertificate() (line 12) is invoked. This function passes the DER data
to the validation function in X509Parser, which retrieves the certificate’s relevant infor-
mation, confirms that the certificate is not expired, and returns it in a X509Certificate
struct. CertificateStore stores this struct in its certificates mapping. For the
other two certificate types, the process is slightly different: Together with the DER,
the user needs to provide the issuer’s unique identifier, i.e. SHA-256 fingerprint.
CertificateStore retrieves the issuer from the certificates mapping and passes it
along with the DER to the validating function to verify the signature, content, and
expiration of the certificate.

The processing of a certificate is aborted and the transaction is reverted when

• the referenced issuer is not available under the specified ID,

• the submitted DER document does not comply with the X.509 ASN.1 specification,

• or when the certificate is invalid.

Consequently, only valid certificates are stored by CertificateStore. Aside from
the validity period and the revocation status, clients do not need to re-validate the
certificate upon usage. When a new certificate is added to CertificateStore, the
event CertificateAdded or SelfSignedCertificateAdded (lines 5 and 6) is emitted.
CertificateStore offers various public functions to retrieve stored certificate informa-
tion.

Refreshing Revocation Status of a Certificate

Once a certificate is submitted, its properties like the subject name or the expiration
date cannot be modified as they were retrieved from the original document and the
certificate cannot be deleted as other certificates or endorsements may depend on it. The
only associated property of a certificate that can be updated is its revocation status. This
can be done by any user, not just the certificate owner. As first step, the user obtains the
current OCSP response or CRL from the responsible certificate authority off-chain. This
is a common action that verifiers of certificates perform when opening TLS connections.
Then, the user passes the obtained document to CertificateStore along with the
certificate identifier by invoking either refreshOCSP() (line 14) or refreshCRL() (line

58

6.2 Certificate Framework

-----BEGIN CERTIFICATE-----
MIIEvzCCA6egAwIBAgIRAMT1T7RK2JtGCAAAAAA4ymcwDQYJKoZIhvcNAQELBQAw
QjELMAkGA1UEBhMCVVMxHjAcBgNVBAoTFUdvb2dsZSBUcnVzdCBTZXJ2aWNlczET
/* 22 lines omitted */
w/Dk7ZlTIOoL+CN8yIUHLvOvPpKTFBxm4O+jN27DahhJETbraQxVGJtNj0+/LJ1N
gQ+PGC2FmXOFgKgYKxPW7kCfwg==
-----END CERTIFICATE-----

Listing 6.2: Shortend example of the X.509 certificate representation in PEM format.

15). CertificateStore then retrieves the stored certificate and the issuing certificate
and passes them to X509Parser. X509Parser validates that the response is authoritative
over the certificate and that it was signed by the certificate issuer. In case of OCSP, it
returns the status as contained in the response; in the case of CRL, it returns revoked if
the certificate is contained in the list and not revoked otherwise. It is recommended to
use OCSP whenever possible, as CRLs might be quite large and incur a high processing
fee. However, root and intermediate certificates are usually only revoked through CRL,
making this the only option. As OCSP responses and CRLs do have an expiration date,
this information is updated together with the status. When the revocation status of a
certificate is updated, a corresponding event (lines 7 and 8) is emitted.

6.2.2 Certificate Parsing and Validation

The largest part of our implementation – both in terms of lines of code and in total
computing time – concerns itself with parsing and validating X.509 certificates. This
functionality is provided by our X509ParserLibrary, which can also be used for other
applications. In our implementation the parsing and validation of certificates happen
simultaneously. This means that the certificate information is validated already while
we transform the provided certificate representation into our internal representation.
While this means that certificates cannot be parsed or validated independently from the
other step, it reduces the processing cost for our application.

In the remainder of this section we present the common certificate format that is the
input to our routine, the representation of certificates in our implementation, and
the cryptographic algorithms and certificate extensions that the implementation sup-
ports

X.509 Certificate Format

X.509 certificates and other artifacts are usually stored and distributed in the ".pem"
format. These documents contain the Base64-encoded X.509 artifacts. Listing 6.2 displays
the representation of a X.509 certificate in such a document. The first step of processing a

59

6 Implementation

1 SubjectPublicKeyInfo ::= SEQUENCE {
2 algorithm AlgorithmIdentifier,
3 subjectPublicKey BIT STRING }
4
5 AlgorithmIdentifier ::= SEQUENCE {
6 algorithm OBJECT IDENTIFIER,
7 parameters ANY DEFINED BY algorithm OPTIONAL }

Listing 6.3: Definition of the structure of a public key in ASN.1.

certificate is converting the Base64 encoding to the hexadecimal representation, which is
the so-called DER encoding. To save costs, this step is performed off-chain, i.e. certificates
are submitted in their hexadecimal format and not Base64 encoded. All following steps,
however, need to be performed on-chain as it would otherwise be impossible to verify
the signature and assert the integrity of the certificate. Unfortunately, this means that it
is not possible to pre-process the certificate off-chain, for example to remove irrelevant
information and relieve the blockchain from unnecessary computation.

The next step is the parsing of the ASN.1 structure of the DER encoding. ASN.1 is a
formal language used to specify type and format of exchanged information [36]. The
structure and content of all X.509 artifacts, such as certificates, CRLs, OCSP messages,
public keys, are defined using ASN.1 in the respective RFC [16][41]. As an example,
Listing 6.3 displays the ASN.1 definition for the structure of public keys as it is used in
X.509 certificates: Public key information is defined as a sequence of two components:
The cryptographic algorithm that the key is for (line 2) and the public key itself (line 3) .
The algorithm is specified with the AlgorithmIdentifier type, which is a sequence of
the algorithm OID and optional algorithm parameters (lines 5-7). In our implementation,
X509Parser implements the parsing logic for X.509 artifacts relying on ASN1Parser,
which implements general functionality for traversing ASN.1 documents.

X509Parser first divides the certificate in the TBSCertificate, the signature information,
and the signature (cf. section 2.2.1) and validates the signature. If valid, the TBSCertifi-
cate is traversed from top to bottom, starting from the version field and ending with the
extensions. All relevant fields are copied into a new X509Certificate struct, which is
described below. Furthermore, the routine validates that the issuer field matches the
subject field of the issuing certificate, that the certificate is currently valid, and does not
contain any extension that is marked as critical and of a unknown type. If any of these
test is not passed, the transaction is reverted with an error message and consequently,
the certificate cannot be added to the database. The parsing and validation of OCSP and
CRLs is performed very similarly as described here for certificates.

60

6.2 Certificate Framework

Cryptographic Algorithms Supported

One of the most compute-intensive tasks during certificate validation is the verification
of cryptographic signatures. In section 3.4.2 we evaluate which cryptographic encryption
and hash algorithms are currently in use for TLS certificates. For our prototype we
implement a subset of these algorithms that is already available in Ethereum or have
been implemented by third parties.

Ethereum provides a precompiled contract at address 0x02 that computes the SHA-256
hash of a byte array. For SHA-1, we use a third party library1. Since the Byzantium fork,
the precompiled contract at address 0x05 performs modular exponentiation which is the
foundation of RSA algorithms. Furthermore, as Ethereum signatures are created using
elliptic curve cryptography, it provides a cost-efficient function for verifying ECDSA
signatures. Unfortunately, Ethereum uses the secp256k1 curve, which is not used for
X.509 certificates. Other curves are not natively supported by Ethereum. Consequently,
we can validate RSA-SHA1 and RSA-SHA256 signatures which amount to over 84% of
signatures that we observed in our analysis in section 3.4.2. For a nearly full coverage
of certificate signatures, it is advisable to integrate the relevant ECDSA curves and
SHA-384 to the implementation in the future.

Supported Extensions

To keep the cost of verifying certificates small, we decided to only parse the most relevant
extensions. Other extensions are either ignored or, when marked as critical, lead to the
rejection of the certificate. Among other things, this keeps our system from accepting
precertificates created for certificate transparency, as they contain the critical "CT poison"
extension. The risk of supporting only few extensions is that some certificates might be
rejected even if they would normally be considered valid. However, our evaluation in
section 7.1 shows that this is not a problem for the certificates of popular websites that
we test.

Our prototype supports the following extensions:

• Key usage: Indicates actions that the certificate key can be used for. Important for
our implementation to decide whether a certificate is a CA certificate.

• Basic constraints: Indicates whether certificate is a CA certificate or and may define
the maximum path length of a certificate chain.

• Subject alternative name: In combination with the "name" field, this extension
contains all domains that the certificate is for. Processing this field is important as
endorsements may be issued for any of the domains that the certificate contains.

In the future, it might be necessary to assess if there exist other types of extensions
whose value when adding them to our system justifies the additional processing and

1https://github.com/ensdomains/solsha1, accessed 01.05.2020

61

6 Implementation

storage cost. One extension type that we deem a sensible candidate is the "certificate
policies" extension, which can be used to infer whether the certificate is an EV certificate
together with some other factors.

Internal Certificate Representation

Internally, certificates are not processed and stored in their original format, but in the
struct X509Certificate that is defined in the X509Parser library. This allows for a
faster processing of the stored certificates, allows that irrelevant data is discarded and
which would otherwise needed to be stored in the persistent Ethereum storage, and
facilitates adding additional associated data which is not stored in certificates, such as
the certificates revocation status.

The fields of the X509Certificate struct are listed in Table 6.1. The first part of the
table are fields that must be specified by every certificate and are, apart from the issuer
field, directly extracted from the submitted certificate. The issuer information is verified
on validation, but not stored with the subject certificate. Instead, the unique identifier
of the issuer certificate is stored by which the issuer certificate can be retrieved from
the database at any time. The times defining the validity period are converted from
the GeneralizedTime or UTCTime formats to a timestamp, which can then be easily
compared to the current block timestamp. Subject name and public key are stored
exactly as in the DER-encoded certificate and not further converted. This allows for
simple data structures while preserving all information. It is the responsibility of the
processing party to interpret the information correctly.

The second part of the table are the values of extensions fields that are relevant to our
system. As these values are not necessarily contained by a certificate, they are initialized
with appropriate default values and updated if specified by the certificate. In the future,
this part may be extended to other extension types to support more diverse applications.
Now, however, we resort to only supporting the extensions that are essential for the
functioning of our system: The "Subject Alternative Name", short san, is important as
it often contains many additional web domains the certificate is valid for. The cA and
pathLength fields are important to distinguish CA certificates and for checking that a
newly submitted certificate was indeed issued by a CA certificate within a valid path
length. The fields in the third part of the table determine the OCSP and CRL revocation
status of the certificate. Upon the submission of the certificate, the status for both types
is set to unknown. Subsequently, the status can be changed to not revoked or revoked upon
presentation of a valid OCSP response or CRL, respectively. However, once a status is
set to revoked, it cannot be modified anymore.

62

6.2 Certificate Framework

Name Type Description

version uint8 Version of certificate, currently only version 3 certificates
are accepted.

serialNumber bytes Serial number of certificate, stored for validating the
revocation status.

issuer bytes32 Unique identifier of the issuer certificate. Does not store
the issuer name, as this information is available in the
issuer certificate.

notValidBefore uint256 Start of certificate validity represented as timestamp.
notValidAfter uint256 Expiration date of the certificate.
subjectName bytes Name of the subject, represented as it is in the original

certificate as DER-encoded ASN.1 structure.
subjectPublicKey bytes Public key of the subject, represented as it is in the orig-

inal certificate as DER-encoded ASN.1 structure. This
also includes the information about the algorithmic pub-
lic key type.

san bytes Subject Alternative Name, represented as it is in the
original certificate as DER-encoded ASN.1 structure. Set
when the respective extension is present, otherwise an
empty byte array.

cA bool Indicates whether the certificate is a CA certificate. De-
fault value false.

pathLength uint Indicates the maximal length of the certificate chain
starting from this certificate, may only be set when cA is
true.

ocsp_status uint8 OCSP revocation status of the certificate. 0 := not revoked,
1 := revoked, 2 := unknown. Initial value is 2.

ocsp_lastUpdate uint256 lastUpdate field of the last seen OCSP response, repre-
sented as timestamp.

ocsp_nextUpdate uint256 nextUpdate field of the last seen OCSP response, repre-
sented as timestamp.

crl_status uint8 CRL revocation status of the certificate. 0 := not revoked,
1 := revoked, 2 := unknown. Initial value is 2.

crl_lastUpdate uint256 lastUpdate field of the last seen CRL response, repre-
sented as timestamp.

crl_nextUpdate uint256 nextUpdate field of the last seen CRL, represented as
timestamp.

Table 6.1: Fields of the implemented X509Certificate structure.

63

6 Implementation

6.3 Endorsement Framework

We use the term "endorsement framework" to describe the functionality that enables
the creation, submission, and validation of internal and external endorsements. While
certificates can be submitted by anyone, an endorsement can only be created by the
certificate owner as it requires knowledge of the private key. This knowledge is proved
by presenting the valid signature that is part of the endorsement as defined in section
5.1.2. Furthermore, an endorsement can only be created for domain names that are
specified in the referenced certificate. This is ensured by the verifying party, who
confirms that the claimed domain name is part of the certificate. This restriction does
not hold for account addresses: With an external endorsement, any certificate owner
can create an endorsement for any account address. For internal endorsements, this
can be resolved by only allowing the owner of a certificate to add an endorsement.
However, as verifiers might not be able to duly verify the correct implementation of this
restriction, endorsements cannot be trusted in situations where the endorsement creator
could profit from creating a fraudulent endorsement. This applies, for example, when
the endorser wants to prove that they control a certain amount of funds contained by
an Ethereum account. Currently, our system only supports endorsements created with
RSA-SHA-256.

Aside from a reference implementation for internal endorsements and verifiers, our
framework includes an endorsement database. This database serves several purposes: It
allows to store external endorsements, enables the search for endorsement by domain
or account address, and offers a validation functionality for internal endorsements
that verifiers can use. This database is implemented in the EndorsementDatabase
contract and relies on an instance of CertificateStore for certificate information. In
the following, we briefly summarize our implementation and features of the contracts
EndorsementDatabase and InternallyEndorsed.

6.3.1 External Endorsement Database

As shown in Figure 6.1, the main interface to our system for verifiers is the contract
EndorsementDatabase. Certificate owners can provide endorsement information while
verifiers can refer to this contract to verify endorsements, search for endorsed contracts
of a domain, or inquire whether a certain address is endorsed externally. The shortened
code of the EndorsementDatabase implementation is presented in Listing 6.4. The
endorsement database does not perform the maintenance and validation of certificates
by itself, but does rely on an instance of CertificateStore for this purpose. The
address of the CertificateStore instance is passed as argument in the constructor and
is immutably stored in the cs field.

64

6.3 Endorsement Framework

1 pragma solidity ^0.5.12;
2 import "./X509Parser.sol";
3
4 contract EndorsementDatabase {
5 event EndorsementAdded(bytes20 account, string domain, bytes32 certID,

uint256 expiration);
6 event EndorsementRevoked(bytes account, string domain, bytes32 certID,

uint256 expiration);
7 event rootAddedtoStore(uint256 storeIndex, bytes32 fingerprint);
8
9 struct EndorsementStore {

10 mapping (uint256 => uint256) endorsements;
11 uint256 count;
12 }
13 struct Endorsement {
14 bytes20 account; string domain; bytes32 certID;
15 bytes32 rootID; uint256 addedAt; uint256 expiration;
16 }
17 struct RootStore {
18 mapping (uint256 => bytes32) roots;
19 mapping (bytes32 => bool) contained;
20 uint256 count; address owner;
21 }
22
23 CertStore private cs;
24 mapping (uint256 => Endorsement) private endorsements;
25 uint256 private endorsementCounter = 0;
26 mapping (uint256 => RootStore) private rootStores;
27 uint256 private rootStoreCount = 0;
28 mapping (string => EndorsementStore) private endorsementsByDomain;
29 mapping (bytes20 => EndorsementStore) private endorsementsByAddress;
30
31 constructor (address certStore) public{
32 cs = CertStore(certStore);
33 }
34
35 function submitEndorsement(bytes20 account, string memory domain, bytes32

certID, uint256 expiration, bytes memory signature) public {...}
36 function revokeEndorsement(bytes20 account, string memory domain, bytes32

certID, uint256 expiration, bytes memory signature) public {...}
37 function verifyInternalEndorsement(uint256 rootStore, bytes20 account,

string memory domain, bytes32 certID, uint256 expiration, bytes memory
signature) public view returns (bool){...}

38 function initializeRootStore() public returns (uint256) {...}
39 function addRootsToStore(uint256 storeIndex, uint256 startIndex, uint256

endIndex) public {...}
40 function removeRootFromStore(uint256 storeIndex, uint256 rootIndex) public

{...}
41 /* private and getter methods omitted */
42 }

Listing 6.4: Extract from the EndorsementDatabase implementation.

65

6 Implementation

Submission of Endorsements

An external endorsement can be submitted through the public submitEndorsement()
(line 35) function. This function takes all fields that are part of an endorsement as input.
The routine retrieves the public key and the root identifier of the certificate identified by
certID from cs. If the certificate is not present in cs, the submission is rejected. The
public key is then used to verify the provided endorsement signature. If the signature is
valid, a new Endorsement struct is created that contains the endorsement information.
In addition to the fields demanded in section 5.1.2, we also store the root identifier to
ease the retrieval of endorsements as described below. We do not store the signature, as
it already has been used to verify the integrity of the provided information and does
not serve any further purpose.

All endorsements are stored in the endorsements mapping (line 24) indexed by the
order that they have been submitted. Furthermore, there exists an EndorsementStore
for every domain and every account address, which are referenced in the mappings
endorsementsByDomain (line 28) and endorsementsByAccount (line 29), respectively.
Each of these stores contains references to all endorsements for the respective domain.
For example, the mapping "endorsementsByDomain["example.com"].endorsements"
enumerates all endorsements that have been submitted for the domain "example.com".
This feature allows users to search for endorsements for specific domains or accounts.

Retrieval of Endorsements

The on-chain retrieval of endorsements is a more complex matter as it may seem to be
on first look. Several endorsements may exist for one domain or one account, but not all
of them might stem from a certificate chain anchored in a root trusted by the requesting
user. For implementing a "look-up service", we have two options:

1. The look-up routine returns all endorsements, or its position in endorsements, to
the requesting party. This party then goes through all endorsements and decides
whether it trusts one of them.

2. The requesting user passes their set of trusted roots to the look-up service. The
look-up service then goes through all relevant endorsements and returns either a
trusted endorsement or plainly the information that a trusted endorsements exists.

Both approaches are limited by the type and number of parameters that can serve as
input to Solidity functions and can be returned: For public functions, it is not possible to
pass structs or dynamically sized arrays. Therefore, we decided to implement a variant
of option 2.

We introduce so-called RootStores (line 17-21). As their name suggests, these are structs
that contain the identifiers of trusted root certificates. The trusted certificates are stored
in two mappings: roots (line 18), which serves the purpose of being able to quickly

66

6.3 Endorsement Framework

identify all roots contained, and contained (line 19), which serves the purpose to quickly
find out whether a certain root is part of the root store or not. Anybody can initialize a
RootStore and is subsequently its owner (line 38). The owner of a RootStore can both
add and remove roots (lines 39 and 40). When a user wants to retrieve an endorsement,
they specify the identifier of a root store and the look-up routine can efficiently check
whether an endorsement’s rootID is contained in it. This approach has also another
advantage: Users can use root stores that are curated by other entities and do not need
to put effort in maintaining their own. For example, the Mozilla Foundation could
claim a root store, publicly announce its index and keep it in sync with the Mozilla NSS
root store. Malicious actions can be detected by entities monitoring the events that are
emitted when a root is added to a root store.

Revocation of Endorsements

External endorsements can be revoked by updating their revocation flag. For this
purpose, the corresponding certificate owner can create a "revocation signature" which
has the following format:

Rev = sign(hash(addr|IDdomain|dateexp|0xFFFFFFFFFFFFFFFF), keypriv)

This revocation information is submitted to EndorsementStore through the revoke-
Endorsement() function. This function verifies the correctness of the provided signature
and, if the signature is valid, marks the endorsement as revoked.

Utility Functions for Verifiers

EndorsementDatabse provides several utility functions for verifiers. This includes the
verifyInternalEndorsement() function (line 37) which can be used to verify internal
endorsements that are not present in the database. Furthermore, EndorsementDatabase
provides numerous getter functions with which endorsements and meta-information
can be retrieved.

6.3.2 Internal Endorsement Contract

In contrast to the contracts presented above, the InternallyEndorsed contract specifica-
tion is to be deployed multiple times and not only once. Every contract that is supposed
to be internally endorsed should inherit from this contract. The shortened code of the
contract specification is shown in Listing 6.5.

Every contract that supports the specification contains fields for the endorsement fields,
including the signature and excluding the account address (lines 8 -11). This is because
the account address can be retrieved though functions offered by the EVM and the
signature is only verified when a verifier retrieves the endorsement – in contrast to

67

6 Implementation

1 pragma solidity ^0.5.12;
2
3 import "./Owned.sol";
4 import "./EndorsementStore.sol";
5
6 contract InternallyEndorsed is Owned {
7
8 bytes private signature;
9 string private domain;

10 bytes32 private certID;
11 uint256 private expiration;
12 mapping (bytes32 => bool) private allCertIDs;
13 mapping (string => mapping(bytes32 => mapping (uint256 => bool))) private

revoked;
14 EndorsementDatabase private es;
15
16 constructor (address endorsementStore) public{
17 es = EndorsementDatabase(endorsementStore);
18 }
19
20 function updateEndorsement(bytes memory _signature, string memory _domain,

bytes32 _certID, uint256 _expiration) public onlyOwner{...}
21
22 function revokeEndorsement(bytes memory _signature, string memory _domain,

bytes32 _certID, uint256 _expiration) public {
23 if (allCertIDs[certID]){
24 if (es.revokeInternalEndorsement(toBytes(address(this)), _domain,
25 _certID, _expiration, _signature)){
26 revoked[_domain][_certID][_expiration] = true;}}}
27 }

Listing 6.5: Shortened code of the InternallyEndorsed contract specification.

68

6.3 Endorsement Framework

external endorsements, where the signature is verified upon signature submission. The
updateEndorsement() function (line 20) can only be called by the contract owner.

In contrast to this, the revocation of an endorsement can be submitted by anyone that
knows the relevant private key. This is to cover scenarios in which an entity looses
control of a contract. To avoid spam, we put the following protection mechanism into
place: Every internally endorsed contract contains the mapping allCertIDs (line 12).
This mapping is true for all certificate identifiers that were contained in endorsements
submitted to this contract. The first step of the function revokeEndorsement() (line
22) is to ensure that the revocation signature was created with a certificate that was
previously used to create an endorsement, i.e. that was owned by a previous or current
owner of the contract. If this is the case, the EndorsementStore instance is called to
verify the signature. If the signature is valid, the multidimensional mapping revoked
(line 13) is set to true for the combination of domain name, certificate identifier, and
expiration date. This mechanism ensures that only a very small number of entities can
update the revocation status of a certificate.

69

7 Evaluation

In this chapter we evaluate the design and implementation of our system. We test our
Solidity validation routine for certificates and measure the cost that is associated with
different actions in our system in sections 7.1 and 7.2. Furthermore, we discuss some
security concerns in section 7.3. Finally, we formulate concise answers to our research
questions listed in section 1.2 with the knowledge obtained throughout the duration of
this work in section 7.4.

7.1 Compatibility

To test the compatibility of our system and to measure its performance with real and
commonly used certificates, we create a test data set that contains the certificates of the
1,000 most-visited domains on the 30th of April, 2020. Out of the 1000 domains, 869
domains serve certificates that are valid in regards with the criteria that we define in
section 3.4.1. As some domains share one certificate, the total amount of valid certificates
amounts to 779 certificates. Out of this set, we remove certificates whose certificate chain
contains signatures that are using unsupported algorithms such as ECDSA or SHA-384.
Our final testing set is comprised of 576 certificates that serve 660 different domains,
in addition to 47 intermediate and 21 root certificates that are required for valid trust
chains. This means that our testing set contains 644 certificates in total. We refer to this
set as reference data set.

We create a fresh instance of CertificateStore on our test blockchain and consecutively
add all root, intermediate, and domain certificates. All certificates are accepted as valid
and added to the database. This complies with the desired behavior, as we have only
included valid certificates in this test data set. Furthermore, this hints that our worries
discussed in section 6.2.2 are unnecessary: Not one of the certificates contains a critical
extension that our validation routine does not support. Considering the nature of our
data set, this is a good indicator that special critical extensions are uncommon for TLS
certificates and that our implementation is compatible with most certificates.

In addition to our reference dataset we also tested our implementation with a variety of
invalid certificates. This test included expired, wrongly signed, tampered, and formally
incorrect certificates and such with mismatching issuer information and inconsistent
signature information. The submission attempt of all invalid test certificates led to a
rejection of the certificate. It is important to note that due to the prototype nature of the

71

7 Evaluation

0 1 2 3 4 5 6 7

·106

Root

Intermediate

Domain

Decentralized

Gas used

Figure 7.1: Amount of gas used for the submission of root, intermediate, and domain
certificates in the reference data set. The graph displays the minimum,
median, and maximum value and the first and third quartile of each set.
For comparison, the cost for adding domain certificates in a decentralized
scenario is shown.

implementation and the limited time scope of this work, these tests were not exhaustive.
Due to the security-critical role of the certificate validation, further testing is necessary
before deployment.

7.2 Costs and Performance

The performance of our Ethereum application is a fundamental part, as using our system
does not only require time and electricity, but requires paying actual funds in the form
of gas. We acknowledge that the usage cost is an important factor to the success and
viability of our system in requirement R9 and demand cost-efficiency especially for the
verifier. To gain a perspective on the cost to be expected, we once again consider the
reference dataset.

Certificates

We submit all certificates in this set with one certificate per transaction. Figure 7.1
displays the observed gas usage by transaction, grouped by root, intermediate, and
domain certificates. Concrete numbers characterizing the distribution are also presented
in Table 7.1. We encounter the following situation: The median value of the root

72

7.2 Costs and Performance

certificates is the highest. We conclude that this is the case because the majority of root
certificate is self-signed using SHA-1, which costs significantly more than SHA-256.
The cost for intermediate certificates is quite homogeneous, with some outliers that are
signed using SHA-1. For domain certificates the submission cost differs significantly. As
domain certificates are commonly issued using the up-to-date SHA-256, the choice of
algorithm is not the source of this circumstance. Instead, the reason of this occurrence
is the size of domain certificates, especially the number of subject alternative names it
specifies. The larger a certificate, the more it costs to parse and validate it, and the larger
the SAN field, the more gas is payed for writing it to storage. The most costly certificate
specifies 225 subject alternative names.

To show the value of having a centralized database with which root and intermediate
certificates can be reused, we calculate the cost of a decentralized approach. We
model the situation as follows: For every submitted domain certificate, the root and
intermediate certificate need to be submitted and validated anew. This corresponds to
summarizing the cost of adding the root, the intermediate, and the domain certificate as
we observed them for our reference dataset. We plot the distribution of the obtained
costs for comparison in Figure 7.1.

To get an idea of the average savings per certificate, we compute the total cost of both
approaches and divide them by the number of domain certificates. The total gas used for
approach 1 amounts to 597,912,649. Divided by 576 domain certificates, this corresponds
to 1,038,042 gas per certificate. For approach two, the values are 1,590,936,703 and
2,762,042, respectively. The cost per certificate is 2.5 times higher for the decentralized
approach than for the centralized approach. Asymptotically, the costs for the centralized
approach approximates the average cost of adding a domain certificate, while the
decentralized cost approximates the average cost of adding a root, an intermediate, and
a domain certificate. Considering our observations from section 3.4.1, we expect that the
cost of both approaches diverges even more when a larger number of domain certificates
is submitted.

Finally, we set the gas usage in relation to the amount of ether and US dollar used. For
this purpose, we assume a gas fee of 11.1 Gwei and a conversion rate of 206 US dollar
per ether, as observed on the 30th of April 2020 [15]. We convert the minimum, median,
and maximum value, as well as the first and third quartile for the certificate groups that
we evaluated. We present the results in Table 7.1.

In section 3.4.1, we found out that by adding 13 root and 24 intermediate certificates,
we can cover 98% of all certificates; when excluding Let’s Encrypt certificates, it would
be 12 root certificates and 23 intermediate certificates for covering 96% of domain
certificates. Calculating with an average gas usage of 1,041,580 for submitting a root
certificate and 825,926 for submitting an intermediate certificate, an initial investment of
(1, 041, 580 · 13) + (825, 926 · 24) = 33, 362, 764 gas (equivalent to 75.60 $) would mean
that 98% of certificates can be added with only incurring cost for the domain certificate

73

7 Evaluation

Root certificate Intermediate certificate Domain certificate
gas ether $ gas ether $ gas ether $

min 705,035 0.0078 1.60 750,584 0.0083 1.70 544,777 0.0060 1.23
1st 770,455 0.0086 1.77 762,129 0.0085 1.75 733,073 0.0081 1.66
med 1,105,114 0.0123 2.53 783,324 0.0087 1.79 793,954 0.0088 1.81
3rd 1,170,981 0.0130 2.67 832,031 0.0092 1.89 903,813 0.0100 2.06
max 1,537,513 0.0171 3.52 1,233,724 0.0137 2.82 4,503,213 0.0500 10.3

Table 7.1: Cost of certificate submission in gas usage, ether, and US dollar.

submission. Without Let’s Encrypt, it would be (1, 041, 580 · 12) + (825, 926 · 23) =

31, 495, 258 gas (equivalent to 71.37$) for 96% of certificates.

Another point that needs consideration is the cost for updating the revocation status of
a certificate. Unfortunately, OCSP responders seem to use SHA-1 for hashing the issuer
identifier. As this hash needs to be performed multiple times while processing an OCSP
response, the cost for updating the revocation status are, in comparison to the costs for
the initial submission, quite high. With our sample test cases, we observed a gas usage
of approximately 733,100, equivalent to a cost of 1.67 $.

Endorsements

The cost of adding an endorsement does not fluctuate as much as for certificates as the
only one signature algorithm is used (RSA-SHA256) and endorsements are constant in
size except for the length of the domain name. For submitting an endorsement to the
external database, we measure a cost of around 577,219 gas (1.32 $). The gas usage of
retrieving the endorsement information depends on the method which is used:

• Endorsement by index for all endorsements: 32372 gas (0.07 $)

• Endorsement by address and index in specific endorsement store: 35441 gas (0.08$)

• Endorsement by domain and index in specific endorsement store: 35373 gas (0.08$)

• Address by domain and root store: 30550 gas (0.07 $)

• Domain by address and root store: 30546 gas (0.07 $)

• Endorsement by domain, address, and root store: 43364 gas (0.10 $)

Overall, with the external endorsement database, we minimize the cost of the recurring
action, which is authenticating an account by obtaining its endorsement.

For internal endorsements, the absolute cost is higher. For adding the endorsement to
a contract we observe a cost of approximately 446,900 gas (1.02$). At this point, the
signature is not validated. The validation needs to be performed by the verifier. The
retrieval and validation of an internal endorsement comes at a cost of approximately

74

7.3 Security Considerations

446,800 gas (1.02$). Considering this cost occurs upon every retrieval of an endorsement,
it is quite high. Therefore, we propose to adapt the internal endorsement scheme in the
future, such that the signature does not need to be stored anymore and the signature
validation needs to be performed only once. One way to achieve this would be to store
also internal endorsements in the endorsement database and merely embed their index
in the endorsed certificate. As shown above, the retrieval of an endorsement by its index
is significantly cheaper, and the only additional cost the verifier bears is matching the
domain name and the account address.

7.3 Security Considerations

The security of our system relies on three pillars: (i) the implementation of the certificate
validation routine and the databases, (ii) the integrity of the TLS system and its certificate
authorities, and (iii) the ability of users to map domain names to real-world identities.
We briefly discuss these three aspects in this section.

7.3.1 Security of the Certificate and Endorsement Frameworks

We purposefully designed and implemented our system in a way that does not give one
or a number of entities privileges for the system. Once the system is deployed, it is an
immutable piece of code. On the one side, this means that our system cannot be subject
to any kind of censorship and or can be influenced by an authorized party. On the other
side, this means that errors and vulnerabilities cannot be patched. Therefore, the system
must be crafted cautiously.

In the past, the validation of TLS certificates has been a troublesome topic: Many TLS
certificate verifier applications have been shown to have critcal flaws that lead to invalid
certificates being accepted. We aim to minimize the possibility of such critical flaws
with two methods. Firstly, as described in section 6.2.2 we keep the capability of our
validation routine purposefully small and support only the most important extension
types. Less functionality means less surface for errors and attack vectors. Secondly, we
research errors made in past verifier applications so that we can avoid traps that are
easy to fall for. Some of them are accepting X.509 version 1 certificates uniformly with
CA capabilities, not checking the allowed path length for CA certificates, mishandling
the matching of domain names especially in the case of wildcard certificates, and
accepting certificates with unknown critical extensions [1] [12] [33] . We made sure
that our implementation does not repeat these well-known mistakes. However, this is
no guarantee for correctness and code audits and further testing should be performed
before the system is deployed.

For the case that such a critical flaw is detected, we propose the following approach:
An updated and patched contract is created and deployed to Ethereum. Verifiers are

75

7 Evaluation

advised to refer to the new database when verifying certificates and endorsements. New
endorsements and certificates are also to be submitted to the new contract. Instead of
resubmitting old endorsements and contracts however, the patched contract refers to the
vulnerable contract and considers all information that was submitted before a certain
cut-off date. This approach can also be taken when there are significant changes to the
X.509 specification or new essential functionality is to be added to the system.

Another concern is that the open trust model, where anybody can submit a root anchor,
might lead to the system being spammed with "useless" certificates and endorsements.
Useless means that they do not stem from a trust anchor that is included in an actively
used root store and that their purpose is not to enable authentication, but to keep others
from using the system. An attacker can add its own trust anchor, and produce a large
number of valid domain certificates end endorsements that are valid in regards to it.
We are not concerned about the total number of submissions – with 2256 open positions
for both certificate and endorsements, it is unrealistic that the storage will ever run
out of space. However, an attacker might want to hinder a certain certificate from
being added by occupying its position. As we chose to use a certificate’s SHA-256 hash
as position index and due to its properties as cryptographic hash, a computationally-
bounded attacker will not be able to produce a different valid certificate with the
same position index. A more worrying concern is that an attacker might be able to
populate the data structures that are in place for the fast retrieval of endorsements with
fraudulent endorsements. As currently endorsements are traversed one-by-one until
an endorsement stemming from a trusted root is found, this could increase the cost
significantly for the on-chain retrieval of external endorsements. To circumvent this,
we propose to either rely on a combination of off-chain search and on-chain retrieval,
or limit the number of endorsements originating from the same root per domain and
per address. To make the second approach feasible, the cost of adding a root certificate
would need to be elevated. Overall, the cost of actions must be balanced in a way that
incentivizes benign users to participate and that deincentivizes attackers to spam the
system.

7.3.2 Security of the TLS Ecosystem

In the past, the TLS PKI has been under criticism as all trust is transferred to CAs, which
makes them a single point of failure, and CA misbehavior has not been unobserved in
the past. However, as the TLS system is widely adopted and "too big to fail", in the past
a lot of considerations have been made to improve its security. For example, with the
introduction of CT [10], a large step has been made towards the transparency of the
TLS PKI and the issuance processes of CAs. It is no longer possible for a CA to issue a
fraudulent certificate undetected. Furthermore, due to its wide deployment, the TLS is
thoroughly investigated by security researchers in the past and in the present. A system
that is set-up newly does not profit from these efforts but still requires trust anchors for
bootstrapping and endorsing identity information. Furthermore, users have access to a

76

7.3 Security Considerations

wide array of publicly available information. For example, they do not have to assess
the trustworthiness of certificate issuers themselves, but can rely on judgments made by
organizations such as the CAB forum.

A major advantage of our system in comparison to the internet ecosystem is that all
certificates must be publicly submitted and are stored for anyone to see. This way,
rogue certificates can be quickly identified. On the internet, the rogue certificate might
only be presented to one victim, which is not able to identify it as fraudulent. This
property of our system is very similar to the certificate transparency method that has
been introduced.

Another important point that needs to be considered is the security of private keys
or, to be more precise, the actions that are performed with them. It would be fatal
for our endorsement scheme if the owner can be tricked into unknowingly signing an
endorsement during a regular TLS handshake. Fortunately, by design, such handshake
protocols do not require the key owner to sign information provided by the other party.
Instead the private key is either used for decrypting information by provided by the
other party or by signing values chosen by the private key owner [40].

7.3.3 Mapping Domain Names to Real-world Identities

The foundational assumption of using TLS certificates for an authentication framework
is that domain names can be linked reliably to real-world identities. This assumes that
users have the ability and knowledge to connect a domain name to an organization
or person and vice versa. Usually, this is the case as users have experience with using
domain names on the internet and as domain names are constructed to be human-
friendly, for example by consisting of the company name.

One threat to this approach is typosquatting, the intentional registration of slight mis-
spelling of well-known domain names [45]. While these domains are often used to
display advertisements on the web [34], they pose a risk to our system. An attacker
might use a typosquatting domain and trick users into using their similar domain or
count on users accidentally misspelling a domain. For an automated authentication deci-
sion, this can have disastrous consequences. However, we deem the chance of mistyping
an Ethereum address higher and the use of domain names as identifying information
more reliable. In any case, users can rely on the features of higher grade – organizational
validation and extended validation – certificates for more security relevant applications.
These types of certificates are not merely based on the existence of a domain name, but
also ensure that a respective organization exists.

77

7 Evaluation

7.4 Research Questions

Finally, we review the research questions that we phrased at the beginning of our work
and that guided our process. In this section, we will formulate answers to this question.
These answers represent a distillation of the main concepts and results that are the
outcome of this theses.

1. How can we enable on-chain decisions on identity using SSL/TLS certificates?

a) What are possibilities to provide determinism for the validity decision?

We identified two main approaches to provide determinism: either relying
on oracle services that retrieve and provide information as it is needed, or
by storing all required information on-chain. The first approach provides
determinism as an external party decides on the validity and announces the
result, but it does not guarantee availability, as it depends on two off-chain
components: the oracle service and the web server. As all information is
available on-chain with the second approach, it enables deterministic, policy-
based decisions while also guaranteeing availability.

b) What are the associated costs of the approaches?

With the oracle approach, the cost for on-chain computations is low. However,
it incurs off-chain costs by either operating an oracle service or by paying fees
to use one. The migration approach incurs on-chain cost for validating and
storing certificates.

c) How can certificates be revoked on-chain?

The revocation of certificates with the on-chain approach is straight-forward:
The oracle service checks the revocation status of the certificate when re-
trieving it from the web server. With the migration approach, we leverage
that both OCSP messages and CRLs are signed with the private key of the
certificate issuer. Consequently, we can submit such a document to the chain,
where it is verified and subsequently used to update the certificate’s status
information.

d) What are inherent problems of the SSL/TLS public key infrastructure and
how can we mitigate them?

Looking at the TLS PKI, we see two major flaws: All trust is provided
by certificate authorities and the specifications are extensive and diverse,
which leads to a large attack surface. While it does not mitigate the first
problem explicitly, a central database that can be audited by anyone allows the
detection of rogue certificates. This hinders split-world attacks, where only
the victim is presented with the fraudulent certificate. To approach the second
issue, we decide to implement a system that supports the minimal necessary

78

7.4 Research Questions

functionality. This might lead to the rejection of some valid certificates, but
reduces the probability of accepting an invalid certificate.

Considering all points, we find that the centralized migration approach is the
solution that is the most fitting for our problem. We propose a central database
to which any valid certificate can be submitted. This allows the deterministic
validation of certificates. Even though all computations are performed on-chain,
the cost is reasonable.

2. How can we use TLS certificates to endorse Ethereum addresses on-chain?

a) How can already deployed contracts and externally owned accounts be
endorsed?

As deployed smart contracts are immutable and EOAs do not support any
code, the endorsement information cannot be embedded inside them. For
these contracts, we propose external endorsements that can be submitted to
a central database. Verifiers that want to authenticate a certain domain or
account can obtain the endorsement there.

b) How can identity endorsements be revoked?

One possibility of revoking an endorsement is to revoke the certificate that
signed it. This, however, entails that all endorsements created with this cer-
tificate are revoked and that the certificate cannot be used for other purposes
anymore. Therefore, we implement a revocation mechanism that works both
for internal and external endorsements. The owner of a private key can sign
a revocation message that details that the endorsement characterized by a
specific account address, domain name, certificate identifier, and expiration
date is revoked. This information is then submitted to the endorsement
database or the internally endorsed contract, as appropriate.

c) What measures can an identity owner take to increase trust in their identity
claim?

To boost the credibility of an address-identity binding, the identity owner
should pay particular attention to the quality of the information of their TLS
certificate. In particular, this means that higher grade certificates such as
extended validation certificates are considered more trustworthy. Addition-
ally, the identity owner can reinforce the validity of a submitted certificate by
periodically updating its revocation status.

By storing certificate information on-chain, offering support for internal and
external endorsements, and allowing the individual revocation of endorsements,
we provide a comprehensive framework for binding Ethereum addresses to domain
names. As users can decide on a set of trusted root certificates, we enable anyone
to participate with their perception of truth. The costs for setting an endorsement

79

7 Evaluation

up are reasonable; the verification of an endorsement is especially low-priced
when using external endorsements.

80

8 Conclusion

In this work, we present the conceptual idea, design, and implementation of a TLS-
certificate-based authentication framework for Ethereum. Such an authentication frame-
work enables new Ethereum applications that require that at least one of the interaction
partners is authenticated. In our framework, identities can be asserted and verified based
on TLS certificates that are submitted to and validated by a central database. Identity
owners that want to link their identity to an Ethereum account can create endorsements.
An endorsement links information about the account address and the domain name,
and contains a signature that was created with the certificate’s private key and confirms
the identity binding. Subsequently, users can obtain this endorsement to authenticate
Ethereum accounts they aim to interact with.

The evaluation of the TLS ecosystem and our implementation shows that our system
strongly profits from centralizing the validation, storage, and maintenance of certificates.
The centralization lowers the cost for identity providers that submit certificates, as they
only need to provide the domain certificate instead of the whole certificate chain. It
also lowers the cost for verifiers, as the validation of certificates – which is costly due
to the necessary cryptographic algorithms – is performed once when the certificate is
submitted and does not need to be performed again.

The great strength of our system is that it overcomes the bootstrapping problem: Any
identity owner can submit their certificate and endorsement without depending on
other stakeholders. Under the assumption that certificate authorities are trusted, we
can leverage a massive amount of verifiable/verified identity information that is readily
available. However, we also acknowledge that our system comes with drawbacks: The
TLS system is considered fragmented and not secure enough by some researchers, our
system enables authentication only for certificate owners, the on-chain validation of
TLS certificates is costly, and storing certificate information increases the size of the
Ethereum blockchain. However, we believe that solutions or mitigations can be found
to lower the negative impact of these drawbacks. Overall, our framework serves as a
pragmatic and feasible approach to establish a system for the identity assertion and
verification on Ethereum in a timely manner.

Future Work

One main goal of future work should be to investigate whether a TLS-certificate-based
authentication framework can be used in combination with an identity management

81

8 Conclusion

system or naming service developed specifically for Ethereum. A combination of
the approaches could utilize the strengths of both: The certificate-based approach
can boost the bootstrapping phase of the system. The information acquired in the
bootstrapping phase can then be used to populate the system with further, certificate-
independent information. The aim is to make the system gradually independent from
the TLS ecosystem, thereby improving the security of the framework. Combining
the approaches would also allow the system to profit from the potential strengths of
an identity system crafted for a blockchain: more efficient validation routines, more
appropriate trust structures, privacy-preserving mechanisms, and the possibility to
participate independent of certificate-ownership.

Apart from this, attention should be placed on the improvement and testing of the current
design and implementation. This includes the addition of cryptographic algorithms like
ECDSA curves P-256 and P-384, as well as the hash algorithms SHA-1 and SHA-256.
Furthermore, it might be advisable to include more TLS extension types to better support
applications. Since the current mechanism for internal endorsements incurs relatively
high costs for authenticating an account, it is advisable to restructure the current scheme
and centralize the validation of internal endorsements.

Future work should also develop a more elaborate endorsement framework which could
provide two major functionalities. First, such a framework could mark endorsements
with a special type. For example, if an account is endorsed with the attribute "payable",
the endorsement creator expresses that funds should be sent to this account and not to
other accounts that are linked to the same identity. Secondly, such a framework could
support chains of endorsements, which would, for example, enable organizations or
companies to endorse their members or employees on-chain. Such a feature could also
be a solution approach for supporting identity types other than domain names.

82

List of Figures

2.1 The basic structure of a blockchain. 8
2.2 Structure of an X.509 certificate. 14
2.3 Structure of an X.509 certificate revocation list. 16
2.4 Exemplary structure of a hierarchical X.509 PKI. 18

3.1 Maximum share of certificates covered by aggregating the top x interme-
diate certificates. 31

3.2 Tight lower bound on achievable share of covered domain certificates
when choosing x CA certificates. 31

3.3 Maximum share of certificates of domains in the Alexa list covered by
aggregation of the top x intermediate certificates. 33

3.4 Tight lower bound on achievable share of covered certificates of domains
in the Alexa list when choosing x CA certificates. 33

5.1 Different ways of internally or externally endorsing a smart contract. . . 45
5.2 Depiction of the workflow when using the oracle approach for certificate

validation. 49

6.1 Structure of the authentication framework. 56

7.1 Amount of gas used for the submission of root, intermediate, and domain
certificates in the reference data set. 72

83

List of Tables

3.1 Number of public key types observed. 35
3.2 Number of certificates that are signed with different signature algorithms. 35
3.3 Number of signature algorithms occurring grouped by hash and encryp-

tion algorithms used. 35

5.1 Fulfillment of relevant requirements of the different approaches to enable
on-chain validation of certificates and endorsements. 52

5.2 Compliance with requirements of our design. 54

6.1 Fields of the implemented X509Certificate structure. 63

7.1 Cost of certificate submission in gas usage, ether, and US dollar. 74

85

Bibliography

[1] D. Akhawe, B. Amann, M. Vallentin, and R. Sommer. “Here’s my cert, so trust
me, maybe? Understanding TLS errors on the web.” In: Proceedings of the 22nd
international conference on World Wide Web. 2013, pp. 59–70.

[2] M. Ali, J. Nelson, R. Shea, and M. J. Freedman. “Blockstack: A global naming and
storage system secured by blockchains.” In: USENIX Annual Technical Conference.
2016, pp. 181–194.

[3] B. Amann, R. Sommer, M. Vallentin, and S. Hall. “No attack necessary: The
surprising dynamics of SSL trust relationships.” In: Proceedings of the 29th annual
computer security applications conference. 2013, pp. 179–188.

[4] B. Amann, M. Vallentin, S. Hall, and R. Sommer. Extracting certificates from live
traffic: A near real-time SSL notary service. Tech. rep. Citeseer, 2012.

[5] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz. “Mission
accomplished? HTTPS security after DigiNotar.” In: Proceedings of the 2017 Internet
Measurement Conference. 2017, pp. 325–340.

[6] A. M. Antonopoulos and G. Wood. Mastering ethereum: building smart contracts and
dapps. O’reilly Media, 2018.

[7] M. Al-Bassam. “SCPKI: A smart contract-based PKI and identity system.” In:
Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. 2017,
pp. 35–40.

[8] V. Buterin and A. Van de Sande. EIP-55. https://github.com/ethereum/EIPs/
blob/master/EIPS/eip-55.md. 2019 (accessed May 12, 2020).

[9] Certificate Patrol. http://patrol.psyced.org/. (accessed November 26, 2019).

[10] Certificate Transparency. http://www.certificate-transparency.org. 2020 (ac-
cessed May 12, 2020).

[11] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du. “Certchain: Public and efficient
certificate audit based on blockchain for TLS connections.” In: IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE. 2018, pp. 2060–2068.

[12] Y. Chen and Z. Su. “Guided differential testing of certificate validation in SSL/TLS
implementations.” In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. 2015, pp. 793–804.

87

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55.md
http://patrol.psyced.org/
http://www.certificate-transparency.org

Bibliography

[13] J. Clark and P. C. Van Oorschot. “SoK: SSL and HTTPS: Revisiting past challenges
and evaluating certificate trust model enhancements.” In: 2013 IEEE Symposium on
Security and Privacy. IEEE. 2013, pp. 511–525.

[14] CoinDesk. $7 Million Lost in CoinDash ICO Hack. https://www.coindesk.com/7-
million-ico-hack-results-coindash-refund-offer. 2017 (accessed May 12,
2020).

[15] CoinMarketCap. Historical data for Ethereum. https : / / coinmarketcap . com /
currencies/ethereum/historical-data/. 2020 (accessed May 12, 2020).

[16] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. T. Polk, et al. Internet
X. 509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280. RFC Editor, May 2008.

[17] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. “A Search
Engine Backed by Internet-Wide Scanning.” In: 22nd ACM Conference on Computer
and Communications Security. Oct. 2015.

[18] C. Eckert. IT-Sicherheit: Konzepte-Verfahren-Protokolle. Walter de Gruyter, 2018.

[19] Ethereum Name Service. https://ens.domains/. 2020 (accessed May 12, 2020).

[20] C. Fromknecht, D. Velicanu, and S. Yakoubov. “A Decentralized Public Key
Infrastructure with Identity Retention.” In: IACR Cryptology ePrint Archive (2014).

[21] U. Gallersdörfer and F. Matthes. “AuthSC: Mind the Gap between Web and Smart
Contracts.” In: arXiv preprint 2004.14033 (2020).

[22] A. Garba, Z. Guan, A. Li, and Z. Chen. “Analysis of Man-In-The-Middle of Attack
on Bitcoin Address.” In: ICETE. 2018.

[23] P. Hallam-Baker, R. Stradling, and J. Hoffman-Andrews. DNS certification authority
authorization (CAA) resource record. RFC 6844. RFC Editor, Nov. 2019.

[24] M. T. Hammi, P. Bellot, and A. Serhrouchni. “BCTrust: A decentralized authenti-
cation blockchain-based mechanism.” In: 2018 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE. 2018, pp. 1–6.

[25] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. “The SSL landscape: a thorough
analysis of the x. 509 PKI using active and passive measurements.” In: Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement conference. 2011,
pp. 427–444.

[26] B. Khieu and M. Moh. “CBPKI: Cloud Blockchain-based Public Key Infrastruc-
ture.” In: Proceedings of the 2019 ACM Southeast Conference. 2019, pp. 58–63.

[27] M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar. “Certledger: A new PKI model with
certificate transparency based on blockchain.” In: Computers & Security 85 (2019),
pp. 333–352.

[28] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC 6962. RFC Editor,
June 2013.

88

https://www.coindesk.com/7-million-ico-hack-results-coindash-refund-offer
https://www.coindesk.com/7-million-ico-hack-results-coindash-refund-offer
https://coinmarketcap.com/currencies/ethereum/historical-data/
https://coinmarketcap.com/currencies/ethereum/historical-data/
https://ens.domains/

Bibliography

[29] A. K. Malik, A. Anjum, and B. Raza. Innovative solutions for access control manage-
ment. Advances in Information Security, Privacy, and Ethics. IGI Global, 2016.

[30] S. Matsumoto and R. M. Reischuk. “IKP: Turning a PKI around with decentralized
automated incentives.” In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE.
2017, pp. 410–426.

[31] U. Maurer. “Modelling a public-key infrastructure.” In: European Symposium on
Research in Computer Security. Springer. 1996, pp. 325–350.

[32] N. van der Meulen. “DigiNotar: Dissecting the first dutch digital disaster.” In:
Journal of Strategic Security 6.2 (2013), pp. 46–58.

[33] C. Meyer and J. Schwenk. “SoK: Lessons learned from SSL/TLS attacks.” In:
International Workshop on Information Security Applications. Springer. 2013, pp. 189–
209.

[34] T. Moore and B. Edelman. “Measuring the perpetrators and funders of typosquat-
ting.” In: International Conference on Financial Cryptography and Data Security.
Springer. 2010, pp. 175–191.

[35] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech. rep. 2008.

[36] G. Neufeld and S. Vuong. “An overview of ASN. 1.” In: Computer Networks and
ISDN Systems 23.5 (1992), pp. 393–415.

[37] C. Patsonakis, K. Samari, M. Roussopoulos, and A. Kiayias. “Towards a smart
contract-based, decentralized, public-key infrastructure.” In: International Confer-
ence on Cryptology and Network Security. Springer. 2017, pp. 299–321.

[38] Y. Pettersen. The Transport Layer Security (TLS) Multiple Certificate Status Request
Extension. RFC 6961. RFC Editor, June 2013.

[39] W. Polk, R. Housley, and L. Bassham. Algorithms and identifiers for the Internet X.
509 public key infrastructure certificate and certificate revocation list (CRL) profile. RFC
3279. RFC Editor, Apr. 2002.

[40] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. RFC
Editor, Aug. 2018.

[41] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.
509 Internet Public Key Infrastructure Online Certificate Status Protocol-OCSP. RFC
6960. RFC Editor, June 2013.

[42] Q. Scheitle, T. Chung, J. Hiller, O. Gasser, J. Naab, R. van Rijswijk-Deij, O. Hohlfeld,
R. Holz, D. Choffnes, A. Mislove, et al. “A first look at certification authority
authorization (CAA).” In: ACM SIGCOMM Computer Communication Review 48.2
(2018), pp. 10–23.

[43] A. Singla and E. Bertino. “Blockchain-based PKI solutions for IoT.” In: 2018 IEEE
4th International Conference on Collaboration and Internet Computing (CIC). IEEE. 2018,
pp. 9–15.

89

Bibliography

[44] C. Soghoian and S. Stamm. “Certified lies: Detecting and defeating government
interception attacks against SSL.” In: Proceedings of ACM Symposium on Operating
Systems Principles. 2010, pp. 1–18.

[45] J. Spaulding, S. Upadhyaya, and A. Mohaisen. “The landscape of domain name
typosquatting: Techniques and countermeasures.” In: 2016 11th International Con-
ference on Availability, Reliability and Security (ARES). IEEE. 2016, pp. 284–289.

[46] Z. Wang, J. Lin, Q. Cai, Q. Wang, D. Zha, and J. Jing. “Blockchain-based certificate
transparency and revocation transparency.” In: IEEE Transactions on Dependable
and Secure Computing (2020).

[47] G. Wood et al. “Ethereum: A secure decentralised generalised transaction ledger.”
In: Ethereum project yellow paper (2014).

[48] A. Yakubov, W. M. Shbair, A. Wallbom, D. Sanda, and R. State. “A blockchain-
based PKI management framework.” In: NOMS 2018 - 2018 IEEE/IFIP Network
Operations and Management Symposium. 2018.

[49] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. “When private keys
are public: Results from the 2008 Debian OpenSSL vulnerability.” In: Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement. 2009, pp. 15–27.

90

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem Statement
	Research Questions
	Methodology
	Contribution
	Structure

	Background
	Ethereum
	Blockchain Technology
	Ethereum Fundamentals
	Ethereum Virtual Machine
	Smart Contracts
	Bridging the Gap Between Off-chain Data and On-chain Computations
	Ethereum Addresses

	Authentication of Web Servers and Trust Establishment on the Internet
	X.509 Certificates and Certification
	Public Key Infrastructure
	CA/Browser Forum Guidelines
	Certificate Validation

	Analysis
	Use-Case Scenarios
	Address-independent Payments
	Authenticity of Provided Information
	Automated Authentication and Authorization of Accounts

	Stakeholders
	Requirements Analysis
	Survey of the TLS Certificate Landscape
	Distribution of Certificate Types
	Cryptographic Algorithms in Use

	Related Work
	Blockchain-based PKI Solutions
	Ethereum Name Service
	did:web
	AuthSC

	Design
	Endorsement of Account Addresses
	Using TLS Certificates for Endorsements
	Endorsement Content
	Internal and External Endorsements
	Storage and Distribution of Endorsements

	Enabling On-chain Decisions
	Using Oracle Services Versus Migrating the PKI On-chain
	Central Certificate Database

	Evaluation of the Design

	Implementation
	Prototype Structure
	Certificate Framework
	Certificate Database
	Certificate Parsing and Validation

	Endorsement Framework
	External Endorsement Database
	Internal Endorsement Contract

	Evaluation
	Compatibility
	Costs and Performance
	Security Considerations
	Security of the Certificate and Endorsement Frameworks
	Security of the TLS Ecosystem
	Mapping Domain Names to Real-world Identities

	Research Questions

	Conclusion
	List of Figures
	List of Tables
	Bibliography

