
FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis

Implementation of Collaboration Features
in CAD Software

Robert Gleixner

FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis

Implementation of Collaboration Features in CAD
Software

Integration von Kollaborationsfunktionalität in
CAD-Anwendungen

Author: Robert Gleixner
Supervisor: Prof. Dr. Florian Matthes
Advisor: M.Sc. Alexander Waldmann
Submission Date: March 16, 2015

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, March 16, 2015 Robert Gleixner

Acknowledgments

I would like to express my special appreciation and thanks to my advisor Alexander
Waldmann. Thank you for guiding me throughout the creation of the thesis. I wish to
thank my contacts at Siemens, Dr. Manfred Langen and Mike Burgold, for taking the
time to discuss the concepts of my thesis. Finally, i owe special thanks to my family
and all my friends who gave me a lot of advice and encouragement. I would not have
completed this work without them.

ABSTRACT

Urgent problems cost a lot of money if they are not addressed immediately. Question
and answer systems are excellent platforms for getting solutions to problems. The thesis
investigates whether the process of finding answers to a question can be improved
with a deeper integration into the user’s workspace. The ability to collect context
information can be used to classify questions more accurately. Together with a social
approach of tagging this is the foundation for a new question recommendation system.
Recommending and actively pushing notification should lower the response time of user
and lower the barrier of getting active at all. The proposed question and answer system
is prototyped as a REST service and an integration plugin for the CAD tool SolidEdge.
Through a comprehensive survey the usefulness of the system is evaluated.

vii

CONTENTS

Acknowledgments v

Abstract vii

List of Figures xi

List of Tables xiii

1. Introduction 1
1.1. Problem Statement . 2
1.2. Motivation . 2
1.3. Structure of the Thesis . 3

2. Context 5
2.1. Requirements . 7
2.2. NF-Requirements . 8
2.3. Constraints . 9
2.4. Scenarios . 9
2.5. Use Cases . 14

3. Related Work 17

4. Conceptual Design 21
4.1. Question and Answers . 21
4.2. Search . 21
4.3. Watch and Push . 22
4.4. Recommendation . 22
4.5. Relations . 23
4.6. Contextual Information . 23
4.7. User Management . 25

5. Software Design 27
5.1. Data Design . 27

ix

Contents

5.2. System Architecture . 28
5.3. Procedural Flow . 29
5.4. API Design . 32

6. Implementation 35
6.1. QnAaaS . 35

6.1.1. Used Software . 35
6.1.2. Data Layer . 36
6.1.3. Application Layer . 37
6.1.4. Watcher and Recommender . 38

6.2. SocialEdge . 38
6.2.1. Views and View Models . 39
6.2.2. Model . 41

7. Evaluation 43
7.1. Survey . 43
7.2. Procedures . 44
7.3. Results . 44

8. Conclusion and Future Work 49

A. API Documentation 51

B. Survey 55

C. Survey Result 63

Glossary 67

Acronyms 69

Bibliography 71

x

LIST OF FIGURES

2.1. SolidEdge . 6

4.1. Search process . 22
4.2. Recommendation process . 24
4.3. Recommendation . 25

5.1. Model . 28
5.2. Architectural Overview . 30
5.3. Component Deployment . 31
5.4. Asking Sequence . 32
5.5. Tagging Sequence . 32
5.6. Answering Sequence . 32
5.7. Search Sequence . 33

6.1. Messaging System . 36
6.2. Ribbon Bar . 39
6.3. Login View . 40
6.4. Profile View . 40
6.5. Search View . 40
6.6. Ask View . 40
6.7. Detail View . 41
6.8. Events View . 41
6.9. SolidEdge: Edgebar . 42

7.1. Usability Ratings . 45
7.2. Completion Time . 46
7.3. Task success . 47

xi

LIST OF TABLES

5.1. REST endpoints . 33

xiii

CHAPTER 1

INTRODUCTION

"An investment in knowledge always pays the
best interest."

— Benjamin Franklin

The history of Knowledge Management (KM) dates back to the early/mid eight-
ies [Wii97], where companies had to manage their knowledge manually due to the lack
of technical solutions. Over the years knowledge had become one of the most important
assets for companies and although the first tools for KM had arisen, no one really knew
how to manage it. Intranet and wiki systems had proven to be suitable solutions to
support the accumulation and sharing of knowledge. Nevertheless, access to static
information is not sufficient, as there is tacit knowledge which requires face-to-face
interaction [Swa+99].

Community-based platforms, which support asking questions and discussions, are
an important source of information [NAA09]. Questions and Answers (Q&A) systems
have their roots in Answer Garden [AM90], a system for collecting and retrieving already
answered questions. It simplifies the access to information and eliminates the need for
experts to answer the same questions over and over again. Recently, a lot of general
Q&A platforms like Quora [14f] or Yahoo Answers[14o] have grown. These are not limited
to a specific subject area and target the general public. However, the poor quality of
questions and answers have led to much mischief [14n], where people ask silly questions
or give useless answers. Google’s Q&A platform Google Answers [CHK10] did not suffer
from mischief as much as Yahoo Answers, because they have another business model. In
their knowledge market, the questioner offers a bounty of at least $2 and the researchers
need to complete an application process to be approved to be able to answer. This model
has proven to be inefficient due to the low amount of contracted researchers and the
platform was shut down in 2006 [14a].

Today, the trend is towards domain specific communities. One of the most successful
platforms is Stack Overflow, "a question and answer site for professional and enthusiast

1

1. Introduction

programmers" [14j]. According to Mamykina, Manoim, Mittal, et al. [Mam+11], it
had a community of approximately 300,000 user and more then 7 million monthly
visitors back in 2011. As of November, 2014, there are over 3.3 million registered users
and about 8.4 million questions [14l; 14k]; the monthly visitors are already beyond 42
million [14m]. That huge growth alone justifies the raison d’être of Q&A systems for
knowledge management. Nowadays, the existing solutions just need to be successfully
integrated into the business process.

1.1. Problem Statement

Though the Q&A concept is great for accumulating knowledge and making people more
productive, it has optimization potential. The study conducted by Lou, Fang, Lim, and
Peng [Lou+13] "regards quantity and quality as two important, yet distinct, aspects of
knowledge contribution". Therefore, the design of a Q&A system has to reflect about
these two aspects carefully.

The system becomes more valuable the more questions are covered. Thus, the system
is very dependent on an active community to increase the quantity of information. This
implies to motivate people to ask questions and more important to take time to answer
questions. The design of the platform has to accommodate to the human drives [RH08]
and come up with solutions to increase user participation. A lot of big communities, not
only limited to the KM area, use Gamification to increase social engagement [ZC11].

Another important factor of Q&A systems is the quality of the knowledge. Questions
and answers need to be formulated precisely and preferable not overlap with other
questions. Certain quality standards ensure the sustainability of the contained knowl-
edge. Again Gamification elements can support quality management by using voting or
reputation mechanisms. Although the quantity of information within the system is a
positive characteristic in general, it can lead to a loss of trust in the platform when the
quality is too low. [Lou+13]

Finally, the added value of a Q&A platform is revealed by the structure of and the
accessibility to the knowledge. On large platforms, a humongous amount of questions
is asked. Although there are active members in a community which are able to answer
a specific questions, it might be buried under the flood of information. It is vital that
questions and answers can be found by anyone easily.

1.2. Motivation

The main aspects of Q&A systems – namely quantity, quality and accessibility of
the information – are coupled tightly. Nevertheless, as there are already plenty of
concepts [Har+08; Lou+13; RH08; ZC11] for increasing the quality and quantity of
Q&A sites, this thesis mainly focuses on the accessibility aspect. A service-oriented
middleware system is proposed, which allows direct integration of Q&A functionality
into end-user applications. The goal is to reduce answer times and thus increase the

2

1.3. Structure of the Thesis

users’ productivity. The concept involves designing a sophisticated architecture, which
can be extended with intelligent logic.

Questions can be enriched with meta data, such as tags, to increase accessibility. Con-
text information from the user’s working environment helps to automatically categorize
questions. Through machine learning techniques the system is able to learn about the
user’s interests and suggests questions to him. This reduces the problem of finding
adequate questions to answer. Additionally, the response time is minimized by using
push notifications.

With the rising count of different platforms it has become hard to keep track of the
information flow and process them efficiently. Another goal of the proposed system is
to aggregate knowledge across different sources. A central place to search for answers
makes finding them more efficient. A middleware-based approach is able to provide
a consistent Application Programming Interface (API) to access multiple knowledge
sources.

1.3. Structure of the Thesis

The thesis consists of two - a theoretical and a practical - parts. The theoretical part
tries to answer the question how to improve the quality of the data in Q&A systems. Its
findings are (partially) implemented in the practical part, which is the design of a new
Q&A prototype and the integration into SolidEdge.

As the thesis is conducted in close collaboration with Siemens, there is a context,
which influences mostly the practical parts of the thesis. Chapter 2 describes this context
through requirements, use cases and mockups for the user interface.

In chapter 3 related work concerning Q&A systems is evaluated. It provides theoretical
and psychological background to understand how users interact with Q&A systems and
what problems need to be solved.

The main contribution of the thesis is formulated in chapter 4. The conceptional
design of the solution introduces a recommendation system for questions, which aims
at improving the answering process.

Chapter 5 describes the data and the architecture of the target system. Furthermore,
the API and the functionality behind are defined.

All important implementation details are summarized in chapter 6. This includes a
description of the used technologies and third party libraries as well as the structure of
the project.

The evaluation of the thesis is conducted in chapter 7 followed by the conclusion in
chapter 8.

3

CHAPTER 2

CONTEXT

One of the main ways of getting corporate advantage for a company is to optimize
their Product Development Process (PDP). [IK07] The thesis is conducted in close
collaboration with Siemens in order to improve the experience in their PDP. Design
is a major part of that process and thus improved Computer Aided Design (CAD)
tools can greatly increase the productivity. According to Alducin-Quintero, Contero,
Martín-Gutiérrez, et al. [Ald+11] a CAD model is not only a 3D geometry representation,
but also stores knowledge on how to build it. Capturing and sharing this complex
information is also part of the development process. In a lot of activities within the
process direct interaction is needed. Whether it is sharing information or asking for
assistance, social support at tool level can help to optimize the process.

A product developed and used by Siemens is SolidEdge, a 3D CAD history based,
parametric feature and synchronous technology solid modeling software. Figure 2.1
shows a screenshot of SolidEdge. Although it is a starter-tier CAD tool, it is a complete
design environment and has a lot of features.

For new users it can be quite frustrating to get a task done. When the user has a
problem, either with the tool itself, the model or with the underlying process, he needs
to ask an expert. In most cases this will not happen face-to-face, but rather filing an
issue with an online tracking system or posting a question to a board. Remote users
might have trouble to answer an question, when they are not fully aware about the
questioner’s context. It costs a significant amount of time to formulate a question with all
the required background information, e.g. steps to reproduce the issue or a screenshot
of the error. The integration of social features might be a way to optimize the solution
finding process to common problems.

SolidEdge does not have any social features that are targeted to increase the users
productivity. This thesis is part of a larger research project for the integration of social
features into CAD environments. It focuses on improving the problem solving process
by assisting the user in asking and answering questions. The elimination of the need to
use external platforms and formulate the context manually helps the user to get answers
to his questions faster.

5

2. Context

Figure 2.1.: Screenshot of the synchronous environment of SolidEdge.

The core idea besides using context information is a recommendation engine for
questions. Users typically do not have enough time to constantly search for answerable
questions. Thus, an urgent question may stay unanswered for a long time, although
there are users, who are able to answer it. It is convenient to get notified when there is a
question to answer available.

In this thesis a novel recommendation approach is developed and implemented as
a Q&A service with integration into SolidEdge. This prototype addresses the lack of
social integration in the target application. Together with Siemens, the following set
of requirements, constraints, use cases and scenarios for the Q&A system have been
identified.

6

2.1. Requirements

2.1. Requirements

/ F 001 / Core Q&A functionality
The basic Q&A functionality contains the creation of questions and
answers. A question is created by a user with a title and a body. Answers
to a question only include a body and can be made by all users, including
the one that asked the question. Furthermore, the questioner can mark
the question as solved by accepting one of the answers. An accepted
answer is highlighted in a special way and indicates the solution to the
question.

/ F 002 / Search for questions
Users can search for questions by specifying multiple criteria. These
criteria include free-text and tags. Furthermore, the user can filter
questions that are asked or observed by him, or are recommended to
him. The search yields a list of questions, which can be detailed to see
all information including the answers.

/ F 003 / Observe question
A user can observe a question to express special interest in it. Usually,
only the questioner is informed when a new answer is posted. When
a user observes the question he is also notified about new answers.
Observed questions must be easy findable using the search function.

/ F 004 / Tagging and mentioning
User can attach tags to questions in order to categorize them. A tag
can either be a string describing the topic of a question or another
user. The latter one expresses a direct relationship between the question
and the user and hence is called a mention. Any user can attach
an arbitrary amount of tags and mentions to a question. Tags are
important for improving the search functionality and are the basis for
the recommendation engine.

/ F 005 / Profiling
Every user has its own profile with personal information about him.
This information must at least contain his name and a unique identifier.
Additionally, the user’s interests are saved in the profile; these can be set
manually by himself and/or trained by the system. Through machine
learning techniques the system is able to estimate the user’s interests by
examining his previous actions, especially his answered question. The
interests are used together with tags in the recommendation engine to
match questions and possible answerers.

7

2. Context

/ F 006 / Recommendation system
In order to receive valuable answers as fast as possible, the system
recommends an asked question to users, which are presumably able
to answer the question. The mapping between questions and users
is established by utilizing the tagging and profiling system. As tags
represent the topic of a question, it can be matched against the interests
profile of a user. With mentions one user can directly recommend the
question to another user. Hence, the recommendation process consists of
both machine learning and human interaction. Recommended questions
must be explicitly presented to the user. If the user is not able to
answer the question he can choose to add further tags or mentions.
The recommender keeps up with his work until the question is marked
as solved. The recommendation process is usually triggered by the
creation of the question or when tags are added but it can also operate
on schedule. This way, unanswered questions that receive no actions
can be recommended to additional users.

/ F 007 / Push notifications
Users receive notifications of relevant events in order to reduce their re-
sponse time. The push notification is displayed within the environment
without requiring user interaction. The questioner and users observ-
ing the question need to be informed about answers. All users get a
notification when there is a new recommended question for them to
answer.

2.2. NF-Requirements

/ NF 001 / Extensibility
The architecture allows for an easy integration of additional knowledge
sources for question and answers. Moreover additional systems can be
plugged onto the middleware and post-process questions and answers.
The recommendation engine is designed as an extension to the core
middleware and can be easily replaced by another implementation.

/ NF 002 / Scalability
The core middleware and the attached systems need to scale individu-
ally through replication. This requires loosely coupled components,
which can be distributed over different virtual or physical execution
environments.

8

2.3. Constraints

2.3. Constraints

/ C 001 / Service-orientation
The Q&A system is implemented through a service-oriented middle-
ware. The API needs to be consumable from different end-user applica-
tions.

/ C 002 / Technology stack
Node.js is used as primary technology for the middleware. This in-
cludes all required components except the integration into the end-user
application. The data layer needs at least support for MongoDB.

2.4. Scenarios

Name: Ask question
Summary: John asks a technical question

Description: John is designing a driveshaft for a car with SolidEdge. He has a
technical problem concerning the stress analysis of his draft and wants
to ask a question via the SocialEdge plugin. He opens the dialog for
asking a new question, which is sketched out in the mockup section.
He fills in the title and body of his question and adds the two tags
"‘construction"’ and "‘stress analysis"’. The tags are added by writing
in the tags box and starting with a hashtag. By pressing the "‘Ask
Question"’ button in the dialog the question is sent and the dialog
closes. Now, John waits until he gets notified that his question has
been answered.

Mockup:

9

2. Context

Name: Tag question
Summary: Raymond receives a recommended question and adds tags to it

Description: Raymond gets notified about being recommended for a question to
answer. He opens the questions dialog (see mockup) and checks the
"Recommended for me" box. A list of question titles appears and he
clicks on one of his interest. The details of the question from John
about stress analysis appear. Although Raymond has some technical
knowledge about stress analysis he is not very familiar with FEM,
which is required to solve the issue. He decides to add the tag "FEM"
to the existing tags to narrow down the topic. The tag is added by
writing in the tags box and starting with a hash sign. Furthermore,
he associates Alice with the question because he knows that she is an
expert in the FEM field. Mentioning people occurs by adding a tag,
but starting with an "at" sign instead of a "hash" sign and typing the
name of the user. After that he dismisses the question by right-clicking
on it and selecting "Dismiss" from the context menu. The question
vanishes from the list of recommended questions.

Mockup:

10

2.4. Scenarios

Name: Answer question
Summary: Alice receives a recommended question and answers it

Description: Alice gets notified about being recommended for a question to answer.
She opens the question dialog (see mockup) and checks the "Recom-
mended for me" box. A list of question titles appears and she clicks
on one of her interest. By clicking on it, the details of the questions
from John and an answer from Bob appear. Alice finds Bobs answer
inaccurate and decides to write her own answer into the message field
and hitting enter to send it. Her answer is immediately shown in the
list of answers.

Mockup:

11

2. Context

Name: Accept answer
Summary: John receives answers to his question and accepts the most helpful one

Description: John is waiting for answers to his questions. Finally, he checks the
list of his asked questions by clicking the "‘Asked questions"’ button
in the top navigation bar. A dialog appears where he sees a list with
all his open questions. One question is marked as changed, so he
clicks on it and the details show up. Two new answers from Alice
and Bob are shown below his question. After reading and trying
the proposed solutions he accepts Alice’s answer, which helped him
solving his problem, by clicking onto the accept button below the
answer. The answer is marked as resolved and vanishes from the list
of open questions.

Mockup:

12

2.4. Scenarios

Name: Search question with answers
Summary: Fred has a question and looks for similar questions

Description: Fred has a problem with the FEM method. He knows that this is a
common problem, which is already solved, but he does not know the
exact solution. So he opens the questions dialog and searches for the
FEM tag by entering it with a prefixed hash sign in the search box.
Additionally he checks the "Answered" box to only receive questions
that are answered. By clicking on the question title in the list of the
search results, the details show up. Fred clicks through the list until
he finds a working solution and closes the dialog.

Mockup:

13

2. Context

2.5. Use Cases

Name: Authenticate client
Summary: The client connects to the middleware and authenticates the client

Pre-condition: The client is disconnected
Post-condition: The client is connected and authenticated

Flow:
1. The user starts the client (i.e. SolidEdge)
2. The client connects to the middleware and sends login cre-

dentials
3. The middleware evaluates the credentials and sends back an

access token
4. The middleware starts pushing events to the user

Name: Ask question
Summary: The user asks a question

Pre-condition: The client is authenticated
Post-condition: The question with tags is available within the system

Flow:
1. The user asks the question
2. The client sends the question with context information to the

middleware
3. The middleware saves the question

Name: Search question
Summary: The user searches a question

Pre-condition: The client is authenticated
Post-condition: A list of questions matching the search criteria is presented to the

user
Flow:

1. The user fills in the criteria into the search field
2. The client sends the search criteria to the middleware
3. The middleware processes the request and sends the search

results back to the client
4. The list of found questions is displayed

14

2.5. Use Cases

Name: Recommend question
Summary: The system recommends a question to experts

Pre-condition: A question is asked
Post-condition: The question is recommended for multiple users

Flow:
1. The middleware analyzes the questions and matches the ques-

tion to experts
2. The question is marked as recommended for the experts
3. The experts are notified about the recommendation

Name: Answer question
Summary: The user answers a question

Pre-condition: The user has received a question, either through push or active
search

Post-condition: The answer is pushed to the questioner
Flow:

1. The user answers the question
2. The client sends the answer to the middleware
3. The middleware saves the answer
4. The middleware initiates the push of the answer to the ques-

tioner

Name: Tag question or mention user
Summary: The user tags a question and/or mentions a user

Pre-condition: The user has received a question, either through push or active
search

Post-condition: The question is tagged and is pushed to additional experts
Flow:

1. The user adds tags and/or mentions a user
2. The client sends the update to the middleware
3. The middleware saves the question
4. The middleware initiates the push of the question to new

experts according to the updated tags/mentions

15

CHAPTER 3

RELATED WORK

This chapter summarizes related work which has influenced the design of the proposed
middleware solution.

Various studies [NAA09; MTP10] deal with the importance of Q&A systems. In
order to build a successful Q&A community, one must understand the process of
asking questions and giving answers. D. R. Raban and Harper [RH08] summarize some
intrinsic and extrinsic motivators for answering questions. Reputation and rewards
are two powerful concepts to improve quantity and quality of quentions and answers.
When people are looking for answers to a specific question they will typically either
ask the question or search if it has already been asked. Hence, the two basic use cases
for the Q&A system are derived thereof: asking questions and searching for answered
questions.

Especially the search functionality requires more attention. In order to find suitable
answers the question must be categorized properly. There is plenty of literature [GH06;
Res+94; Mor08] that deals with mechanisms to improve the quality of stored data and
increase the search effectiveness. Collaborative tagging proves to be very usable, as
everybody would describe the same thing in a different way. When more than one user
specify tags more terms are covered. On the one hand this enhances the chance to hit
the right search term, on the other hand the topic of the question is narrowed down.

The typical way of asking a new question is to open a new thread in a Q&A system and
wait for another user to answer it. This leads to duplicate questions and the information
contained in the answers may be split and harder to find for other users. To avoid
this, Jeon, Croft, and Lee [JCL05] propose to automatically retrieve answers by finding
similar questions in the archives. Over time Q&A services build up large archives of
questions and answers. When a user asks a question these archives can be searched and
if this question has already been asked, the answers can immediately be retrieved. It
reduces redundant data in the archives and eliminates the time lag until an answer is
available. In contrast to the usual search paradigm, where the answers are searched
through, the method in the paper proposes to look for semantic similarities between
questions. It is however non-trivial to measure the distance of the meanings between

17

3. Related Work

two questions. Exact the same question can be formulated using different words. The
paper introduces a model to estimate the probabilities that one question semantically
translates to another. In order to train the system existing similar question pairs need to
be found. It is trivial to find lexicographically identical questions but semantic similar
questions can be extracted by analyzing the answers. The idea is, when two answers
are almost equal, then the corresponding questions are also likely to be equal. Results
show that exploiting existing archives is a viable solution to find similarities between
questions.

Design lessons [Mam+11] for a successful Q&A platform can be obtained from Stack
Overflow. Their success is i.a. built upon the exploitation of human drives. By employing
game mechanics, e.g. rating systems, competition is made productive and increases
user participation. Up and down voting on questions and answers also assures quality
and improves credibility of the community. Furthermore a feedback loop has been
established and the users’ wishes are incorporated quickly into the platform for assuring
its quality and the satisfaction of dedicated users.

A low participation rate impedes the growth of community-based Q&A systems.
In the paper by Guo, Xu, Bao, and Yu [Guo+08] the inefficiency of finding a suitable
question for a user to answer is – besides lacking motivation – identified as one of the
main causes. They tackle this problem by introducing a probabilistic model for user
behavior in order to recommend questions to appropriate users. The model takes a
question as input and maps it to an ordered list of persons which are able to give an
answer in all likelihood. The key note consists of finding similarities between the new
and previously solved questions as well as profiling users in order to build ranked lists
of experts on various topics.

According to Adomavicius and Tuzhilin [AT05] a recommendation is based on the
maximization of a utility function. A utility function outputs the value for a user and an
item. Given an user, one want to recommend the item which yields the most utility. The
utility function can be an arbitrary function, i.e. an profit function, but is usually based
on user ratings. There are three major types of recommendation systems, which are
content-based recommendations, collaborative recommendations and hybrid approaches.
Content-based recommender systems recommend items based on a user’s previously
used items. In collaborative recommendations the items of other users, which share the
same tastes are recommended. It is possible to combine both approaches, as they both
are based on user history and the relevancy between users and items. Machine learning
techniques are used to estimate the relevancy and can be trained with data from existing
services.

In order to further decrease the time to find a solution for a problem task-specific
search interfaces must be integrated into the development environment [Bra+10]. This
has also the benefit of being able to exploit environmental context information to
automatically categorize questions though machine learning [Seb02]. Scoble and Israel
[SI14] describe the "Age of Context" in their eponymous book as an epoche driven by
the Five Forces: mobile, social media, data, sensors and location. Location – as one

18

of the most important force – is vital for predicting the user’s intentions and starting
an appropriate action automatically. In the context of Q&A a question might yield
different answers if the questioner’s location is known. Nevertheless, location is tightly
coupled to mobile solutions, as the physical location of a desktop computer does not
yield as much useful information. For the integration of Q&A services into an end-user
application a broader interpretation of location has to be found. Schmidt [SBG99] states
that there "is more to context than location" and shows some examples using time as
context information. To generalize the concept of context, they propose to see context
information as a description of the situation and the environment a device or user is in.
In a traditional working environment, information of the used software, e.g. name or
version number, and his last actions can be leveraged.

A good way to maximize user satisfaction is using an User Experience (UX) driven
design process. It aims on improving the usability of a system’s interface by addressing
all aspects of a system as perceived by users. An important part in the UX design process
is the collection of usability metrics. In Albert and Tullis [AT13] a variety of UX design
metrics is presented and discussed in a product and technology neutral way. A metric
is defined as a way to reliable measure or evaluate phenomena; using the same set of
measurements should yield comparable results. All UX metrics need to be observable
and quantifiable, and represent aspects of user experience like effectiveness, efficiency
or satisfaction. For the development of a prototype, it is important to establish a set of
metrics against which future versions can be compared. It is the best way to see if the
design is improving or not. There are essentially three types of UX metrics: performance
metrics measure the user’s behavior, self-reported metrics are based on what the user
shares and behavioral or physiological metrics capture reactions of the human body
as a result of the experience of the interaction with a user interface. According to the
book, the most common method for collecting usability data is a lab test. Typically
five to ten participants are needed; they need to conduct some product specific tasks
and answer questions about them. The goal is to collect performance data such as task
success, errors and efficiency.

19

CHAPTER 4

CONCEPTUAL DESIGN

This chapter describes the features of the solution in an abstract way and reasons about
the design decision that were made.

4.1. Question and Answers

There is a basic set of functionality, which is present in all major Q&A community sites,
like StackOverflow [14j], Quora [14f] or Yahoo Answers [14o]. Obviously, this includes the
creation of questions and the possibility to find and answer them. In the prototype a
question consists of a title and a body whereas an answer only has a body. The question
can also be answered by the questioner. This is valid, because a self answered question
also adds valuable information to the system and is better than deleting the question.
Deleting questions and answers is also unsupported in order to preserve information;
questions can only be edited by the creator. Otherwise, valuable information contained
in the answers would get lost, when the corresponding question is deleted.

4.2. Search

Answering questions or finding information by looking for similar questions both
require a flexible search functionality. Questions have a title upon which a full-text
search can be performed. The questions in the systems are not organized in any type
of hierarchy. There is no forum-like grouping of questions according to topics and
subtopics. Instead every question has an arbitrary number of so-called tags attached to
it. These keywords indicate the topic of a question. Figure 4.1 depicts the search process.
The query contains a string that is searched for in all questions titles. To narrow down
the search results of the full-text search, they are additionally filtered by a list of tags.
A question matches the filter when it has at least one of the provided tags attached.
This way a user willing to answer questions can enumerate all questions of interest by
filtering an empty full-search text by a list of tags that are relevant to him.

21

4. Conceptual Design

Figure 4.1.: The search process of the prototype. In the first step the query is searched
within the question titles. The query needs to be included literally in the
title. In the second step the resulting questions are filtered by tags. At least
one tag must match in order to pass the filter.

4.3. Watch and Push

One goal of the thesis is to minimize the overall time a questioner needs to wait before
he has the final solution to his question. A considerable amount of time is consumed
for waiting. Besides the time a user needs to formulate an answer to a question, he first
needs time to find an appropriate question; additional time passes until the questioner
reads the answer. When a person asks a question, he usually does not wait until it is
answered, but rather continues his business and periodically checks if an answer is
available. To reduce this reaction time, the questioner needs to be informed about an
available answer. The system sends out push notifications to relevant users, indicating
that a relevant event occurred in the system. As not only the questioner himself, but
also other users might have interest in the question and its answers, they need a way to
express interest. Users can explicitly watch a question and will – like the questioner –
get notified about relevant events, such as a new available answer. A watch is a relation
between a user and a question.

4.4. Recommendation

The main contribution of the thesis is a unique recommendation process. The system
actively pushes a question to users that interest profiles match the topic. The recom-
mendation process is a recurring task, which users can influence by adding tags to a
question or directly mentioning another user. Figure 4.2 shows the complete answering
process, where a chain-of-responsibility for the question is established. When a user
asks a question the system determines appropriate users and pushes the question to
them. Users who cannot answer the question directly but have some insight in the topic
can add appropriate tags to classify the topic. This makes it easier for another user to

22

4.5. Relations

find the question and it helps the system to find additional users, which the question
can be pushed to. Furthermore if a user knows other users that might be able to answer
the question, he can mention them in the question. Eventually, the question receives
one or more answers, which are reported back to the questioner. The recommendation
process stops when an answer is accepted. A recommendation is a relation between a user
and a question.

A recommendation is issued automatically by the system. Figure 4.3 shows how a
recommendation is issued by the system. The idea is to identify the topic of the question
and match it with the interests of users. There are two – a manual and an automatic
– approaches, which can also be used together. Both, the topic of questions and the
interest of users can be represented by a statistical model. In their paper, Guo, Xu, Bao,
and Yu [Guo+08] model them as distribution over terms. They suggest extracting the
terms that describe the topic of a question using Natural Language Processing (NLP)
and the user interest based on his answer history. By using this model, the probability
for every user that he can answer the question can be estimated.

Of course these terms can be set manually. Every user is responsible for his interests
by specifying terms in his interest profile. A numeric value is used to describe how deep
his interest in the subject is. The topic of a question is derived from the tags attached to
the question. The questioner as well as every other user can freely add tags – similar to
collaborative tagging [GH06] in social bookmark sites.

4.5. Relations

Although, a user is notified about relevant events, he might miss them or need to search
through them. An event log captures all occurring events in chronological order. The
search functionality is extended by another option, where a relation between the user
and the questions can be set as filter. Possible relations between users and questions are:

• asked: show only questions that are asked by the current user

• watch: show only questions that are watched by the current user

• recommendation: show only questions that are recommended for the current user

4.6. Contextual Information

Contextual awareness allows the system to take actions automatically based on the
user’s environment. Big data is an important aspect of context, as the system needs
to learn about the user’s behavior and more data enhances the training process. The
prototype is meant to be integrated into end-user-application, specifically CAD tools
like SolidEdge. Therefore, typical context information include information about:

• the software itself: e.g. name and version

23

4. Conceptual Design

...
Question

Answer

Asker
Receiver

Tagger

Answerer

Figure 4.2.: Chain-of-responsibility for the question. The questioner asks a question
which is pushed out to users until an answer is found. Every user adding
tags or mentioning people causes the recommendation process to start. The
bottom half of the picture shows a possible graph of the causal relationship
on how the answer has been found.

24

4.7. User Management

Figure 4.3.: Automatic recommendation of a question for a user. The topic of a question
is matched with the interests of a user. Both can be declared explicitly (by
adding tags to questions and specifying interests in the profile) or implicitly
(by using NLP on the question and analyzing the user’s answer history).

• the environment: e.g. opened view within the software and last action taken

• the document: e.g. type and path

The context information is collected every time a question is asked. A use case for
using context information is to influence the recommendation process. A user asking a
question in the context of a specific tool, might not have a technical issue rather than
a problem with the handling of the tool itself. It makes sense to prefer pushing the
question to users that operate out of a similar context.

4.7. User Management

The account concept ensures that every actor in the system is identifiable. Every user
needs to register with the system by supplying authentication information and profile
details. For a prototype, registering with name, email and password is sufficient. The
name will be displayed in the interface, but it is not unique and cannot be used for
authentication. The email address is unique for each user and is in combination with a
password used for login. Only users which are logged in can interact with the rest of
the system (all but register and login).

25

CHAPTER 5

SOFTWARE DESIGN

This chapter details the conceptual design of the previous chapter by describing the data
and the architecture of the target system.

5.1. Data Design

This section describes the data model of the Q&A service. Figure 5.1 is a graphical
representation of the main model in UML. The model is mainly built around the two
entities User and Question. Every entity in the model is extended by two attributes
createdAt and updatedAt, which contain the timestamp from the creation and the last
update of the instance, respectively. These two attributes are omitted in the diagram for
simplicity reasons.

A user consists of a name and the login credentials, username and a password. All
other entities are aggregated to User, because all instances are created in the context of
a particular user and therefore "owned" by him. A user also composed of instances of
Interest with the attribute term, which defines a single topic the user is interested in.

A question is represented by instances of Question, which have a title and a body.
Furthermore a question can have multiple answers and tags, represented by Answer

and Tag. An answer is consists only of a body. There is an additional relation, accepted,
which optionally links a question to one of its composed answers, when it is marked as
the accepted answer.

Tag represents a tag of a question and has a sole attribute term. User mentions are
represented by Mention, which has no attribute and only acts as a tertiary relation
between and a question and a user in addition to the owning user. An instance means
that the owner mentioned the target in the question.

A custom association of the owning user and a question with a certain type can be
instantiated in the Relation entity. The meaning of the association is dependent of the
type. Setting the type to recommendation defines a recommended question for the user.
Setting the type to watch indicates interest of the user in the question.

27

5. Software Design

Question

title : String

body : String

context : JSON Answer

body : String

User

name : String

username : String

password : String

1 0..*

1

0..*

accepted

0..1 0..1

1

0..*

Tag

term : String

Mention
10..*

target1 1

1

0..*

0..* 1

1

0..*

Interest

term : String

Relation

type : String

1 0..*

1 0..*

1 0..*

Figure 5.1.: Data model of the QnAaaS back-end. Every model instance has a reference
to the "owning" user, that created to instance.

5.2. System Architecture

Since the goal is to integrate the functionality into existing end user applications through
plug-ins, a classical client-server-architecture is used. The plug-in communicates with the
back-end through a simple Representational State Transfer (REST) API. REST is chosen,
because it is very lightweight and a de-facto standard in web service development. This
way, the API can be easily integrated into other applications.

Basically, the system is organized in a 3-tier-architecture with a message bus sys-
tem. Figure 5.2 details the architecture at component level. The client only communi-
cates directly with the application layer of the core middleware which consists of the
QuestionProvider and the PushService.

The QuestionProvider contains the main business logic for all the Q&A functionality
and exposes the API of the service. It authenticates the user by using an external
AuthService and checks if he has sufficient permissions for the request. It uses the
PushService to register a user for push notifications and delegates model operations to
the AccessLayer.

The PushService is responsible for delivering push notifications and has three differ-
ent interfaces. One public for the Client to receive messages, one internal for associating

28

5.3. Procedural Flow

users and clients, which is used by the QAProvider, and one, which is available to ex-
ternal components for issuing push notifications. The push service addresses devices
instead of users in order to remain compatible with existing push service, which are
required if a notification needs to be delivered to a mobile device. The big services,
Apple Push Notification Service (APNs) and Google Cloud Messaging (GCM) for iOS
and Android, respectively, only distinct between devices for sending push notifications.
The client obtains the id for his device and issues a request to the QuestionProvider to
setup the push notification for the user. That way, the push service does not need to
care about authentication details and only needs to maintain a mapping between users
and devices.

The data tier consists of a thin abstraction layer, the AccessLayer, and the actual
database. It allows to aggregate data across multiple external knowledge sources.
A KnowledgeSource can for example be a connector to an existing Q&A service like
StackOverflow [14j]. The access layer exposes CRUD operations on all entities of the
model defined in section 5.1. Furthermore, the access layer acts as a message bus where
all model operations are broadcasted as events. External services can listen to these
events in order to perform additional tasks.

The Recommender and the Watcher are two external services, that listen to the events
of the access layer and make use of the interfaces exposed by the core middleware. The
watcher is responsible for sending question updates to interested users, i.e. the creator
and users, who watch the question. The recommender is responsible for recommending
questions to users and notifying users about it. Both use the push component of the
core service to deliver the notifications.

Figure 5.3 is a deployment diagram, showing the partitioning of the components. The
application layer, the data layer, the watcher and the recommender are designed (but
not required) to reside on different machines. Furthermore, the components can be
individually scaled though replication.

5.3. Procedural Flow

This section details the steps necessary to fulfill the two main use cases, getting an
answer to a question and retrieving existing information. The first use case can be split
up in three, so, together there are four steps:

• asking the question,

• adding tags (or mentions) to the question,

• answering the question and

• searching for the question.

These four steps are tasks initiated by a user and the first three cause the system to
react by starting the recommendation process or sending push messages. The following

29

5. Software Design

Client

QuestionProvider

AccessLayer

Database

Recommender

KnowledgeSource

AuthProvider PushService

Watcher

External
PushService

Figure 5.2.: Architectural overview containing the main components and connectors of
the Q&A system.

sequence diagrams illustrate the process of each step and the interaction between the
involved components.

Figure 5.4 shows the process of asking a question. The Client sends the question
to the QuestionProvider in the backend. The provider is charge to store the using
the access layer and returning the created question to the client. Furthermore, the
Recommender is notified about the new question and starts the recommendation process.
Every time a question is recommended it is passed on to the PushService, which is
responsible to deliver the message to the client of the receiving user.

The process of adding a tag to a question is detailed in figure 5.5. The Client sends
the tag request to the QuestionProvider, which creates the tag and sends back the
results. The questioner and watchers are notified about the change by the PushService.
The rest of the process is exactly like when a new question is asked. The Recommender is
notified, gets active and pushes out notifications to recommended users. Mentioning a
user is omitted in the diagrams since it is essentially the same process as tagging with
the difference, that exactly one user receives a recommendation.

30

5.3. Procedural Flow

<<device>>

ApplicationServer

<<process>>

Façade

<<process>>

AccessLayer

<<device>>

DatabaseServer

<<device>>

Client

<<device>>

RecommendationServer

<<process>>

Recommender

<<process>>

Database

<<process>>

ClientApplication

<<device>>

AuthServer

<<process>>

AuthProvider

QuestionProvider PushService

Figure 5.3.: Deployment diagram showing the physical distribution of the components.

The answering process is illuminated in figure 5.6. The QuestionProvider creates the
answer with the data layer and responds to the Client. Again, questioner and watchers
are notified via the PushService.

Finally, figure 5.7 details the search use case. The QuestionProvider evaluates the
query from the Client and fetches the data using the AccessLayer. Data filtered data is
afterwards returned to the client.

31

5. Software Design

/Client (asker) /PushService/Recommender/QuestionProvider

ask()

notify()

recommend()

/Client (receiver)

recommend()

push()

Figure 5.4.: Sequence diagram showing the process of asking a question.

/Client (tager) /QuestionProvider /Recommender /PushService /Client (receiver)

tag()

notify()

recommend()

recommend()

push()

notify()

Figure 5.5.: Sequence diagram showing the process of tagging a question.

/Client (answerer) /QuestionProvider /PushService /Client (asker)

answer()

notify()

push()

Figure 5.6.: Sequence diagram showing the process of answering a question.

5.4. API Design

The API of the core middleware exposed to client is REST conform. REST is an
architectural style, which consists of best practices for scalable web services [FT00] and

32

5.4. API Design

/Client /QuestionProvider

search()

/AccessLayer

query()

Figure 5.7.: Sequence diagram showing the process of searching for question.

widely adopted for designing web services.
A key principle of this architectural style is stateless communication. Every request to

an endpoint is independent, has no side-effects and thus always yields the same result.
The user has no session in the system and every request needs to be authenticated
separately. For this reason a token based authentication mechanism is chosen. On
successful login, an access token is generated and transferred to the client. This token
uniquely identifies the user and needs to be attached to every request.

Every action in the system is identified by a Uniform Resource Identifier (URI), but
there is no definite common naming convention. The API of the prototype follows the
convention of the Sails.js [14h] framework, whenever it makes sense. It basically maps
the verbs POST, GET, PUT and DELETE to CRUD operations. The structure of a request
is:

[verb] [protocol]://[host]:[port]/[route]?[parameters]

The protocol, host and port part of the request address the system as a whole and
therefore never change (in a simple setup). The parameters are a list of key-value-pairs
passed to action. Consequently, the verb and the route part uniquely identify the action.
The basic mapping between the action and the CRUD operations are defined in the
table below. The controller is a part of the Model View Controller (MVC) pattern and
usually operates on the eponymous database model. Every model element has a unique
identifier id.

Verb Route −→ Operation Description
POST /[controller] −→ CREATE Create a new model element
GET /[controller] −→ READ List all model elements
GET /[controller]/[id] −→ READ Return the specified element
PUT /[controller]/[id] −→ UPDATE Update the specified element
DELETE /[controller]/[id] −→ DELETE Update the specified element

Table 5.1.: The standard mapping between REST endpoints and CRUD operations.

Complexer operations need either be spitted up in smaller ones or - if atomicity is
preferred - be mapped to special actions. The prototype uses following forms:

33

5. Software Design

[verb] /[controller]/[action]

[verb] /[controller]/[id]/[action]

The verb depends on the actions’ characteristics and tries to follow the REST principles:

• GET is used when the action only returns data. Firing the same request twice in
order will yield the same results.

• PUT is used when the action modifies data but is idempotent. Firing the same
request a second time in order has no effect.

• POST is used when the action creates new data or has side-effects. Firing the same
request twice will have some impact.

• DELETE is used when the actions destroys data and has irreversible effects on the
resource. Firing the same request a second time in order has no effect.

The API documentation in appendix A contains a list of all exceptions to the standard
mapping.

34

CHAPTER 6

IMPLEMENTATION

The implementation of the prototype is split into two parts:

• the backend service, QnAaaS (Questions and Answers as a Service), and

• the plugin for the SolidEdge integration, SocialEdge.

6.1. QnAaaS

6.1.1. Used Software

As required by the constraints, the backend service builds upon Node.js. Sails.js is
a popular MVC framework for Node.js. It features automatic generation of REST
APIs based on data models and is therefore a perfect fit for rapid prototyping. These
models also allow to define the data structure in a database-agnostic way and the Object
Relational Mapper (ORM) already has many adapters to support different database
implementations, including MongoDB. The ORM has support for associations between
models, even across different database implementations. Sails.js is built on top the
famous express.js framework and every middleware for express.js can be simply reused
in Sails.js. It also has excellent real-time support through deep integration of socket.io [14i],
a websocket abstraction library. The SocialEdge plugin makes heavy use of socket.io for
the push notification feature.

Messaging is used in QnAaaS for the communication between the core middleware
and the plugins. The core middleware emits important events as messages and external
plugins listen to them. The message broker RabbitMQ [14g] is an open source imple-
mentation of the Advanced Message Queuing Protocol (AMQP). It is written in Erlang
and designed to built scalable messaging systems. Messages are stored in queues and
buffered until they are delivered. Different routing methods allow for broadcasting or
directed distribution of messages. This is used to implement a message bus architec-
ture. The loose coupling allows to add plugins and remove them without the need to

35

6. Implementation

restart the core. It is even possible to scale all parts of the system individually through
replication.

Passport [14e] provides "simple, unobtrusive authentication for Node.js". It sup-
ports over 140 authentication strategies, like different OpenID and OAuth providers,
Lightweight Directory Access Protocol (LDAP) and Active Directory, or just simple login
with username and password. It offers a modular approach to authentication, so-called
strategies. The prototype uses a combination of the local authentication strategy with
username and password and bearer authentication strategy. The local authentication is
used to generate a token, with which the user signs his requests. The bearer strategy
finds the user associated with the token and authenticates the requests. No session is
required on the backend; every request is independent.

6.1.2. Data Layer

The data layer consists of the Sails.js models, which are an exact transformation of the
general data model defined in section 5.1, and the messaging system. The RabbitMQ
based messaging system is depicted in figure 6.1. QnAaaS requires two types of
communication: unicast for request and broadcast for events. This is achieved with
two different exchanges. An exchange is virtual target for messages with a specific
routing method. Queues can be bound to it and receive messages according to the
routing method and the used binding key. The fanout exchange replicates a message to
all bound queues, while the topic exchange forwards the message only to those queues
that binding keys match the routing key of the message.

Figure 6.1.: The messaging system of the data layer uses RabbitMQ exchanges. Every
component can bind to the two exchanges in order to receive messages and
also enqueue messages to them.

The data layer uses the fanout exchange for events; whenever a model instance is
created or updated it sends a message to this queue containing the model name, the

36

6.1. QnAaaS

action and the data. The recommender and the watch component each bind a queue to
the events exchange to observe model changes and react to them. The request exchange
is used to make requests to a specific component. Every component that wishes to take
requests binds a queue to the request exchange using the component name as binding
key. The push component binds to the request exchange in order to take push requests
from other components. The recommender and the watch component use the exchange
to enqueue push requests while the push controller of the core middleware uses it
to register the client to receive push notifications. The data layer listenes to directed
requests under the routing key access. It expects a model name, an action name and
action parameters as arguments, which are passed to the corresponding ORM action.
RabbitMQ has two special header fields replyTo, which is the queue name where the
response of the request is send to, and correlationId, which can be chosen freely and is
also set in the response.

6.1.3. Application Layer

The application layer mainly consists of controllers together with route configuration
and policies. The controllers implement the actions defined in chapter 5.4; the route
configuration is responsible for the mapping between an URI and an action. Policies
are functions which can be composed and bound to a route. They run before the action
and are used to authenticate and do access checks. Except for user creation and login
every request runs through the bearer policy, which checks if the request is signed with
a valid access token and fetches the according user. If no or an invalid token is supplied,
the request is aborted and the Hypertext Transfer Protocol (HTTP) status code [14b]
403 (forbidden) is returned. The generic simpleRest policy is another standard policy
for all controllers which are backed by a model. It modifies the body of all POST
requests so that the user field matches the current user. Every model has a attribute
user which identifies the owning user. For PUT and DELETE requests it checks if the
addressed instance is owned by the requesting user or denies the request with 403. The
policy ensures nobody can create model instances on behalf of another user or make
modifications to an unowned resource. An exception is the route which leads to the
accept answer question. This route needs a special policy for access control, as not the
owner of the answer but rather the owner of the related question has the authority to
accept an answer. Watching a question, registering for push messages and logout are
actions, which do not need a policy for access control; they only require a valid access
token.

Another part of the application layer is the push component. It hooks into on connect
event of Socket.IO to associate the client’s id with the socket object. The socket object is
necessary to send a message to it. In order to send a message to a user, the user must
be associated with the client’ id. This is realized via the push controller’s only action:
subscribe. The client calls this endpoint with the id as parameter and from now on the
push component has a mapping from a user to one or more socket objects. It is possible
for a user to receive pushes to multiple devices. The push component listens to directed

37

6. Implementation

requests from RabbitMQ under the routing key push. A push request consists of the
user’s id, an event name and arbitrary data. The event name and the data is passed to
Socket.IO

6.1.4. Watcher and Recommender

The watcher is a plugin listening to answer creation events from the access layer. When-
ever a new answer is created, a push request is issued to the owner of the answered
question. The push message uses the event name answer and sends the question, the
answer and the current date/time as payload.

The recommender listens to create and update events of questions. This includes also
the modification of related tags and mentions. Then the recommendation process starts,
where the tags are matched against the users’ interests. The resulting users together with
the users that are directly mentioned are notified via push messages. The event name
recommendation is used and the question and the current date/time are transmitted as
payload.

6.2. SocialEdge

SocialEdge is the name of the plugin, which integrates the Q&A features into Solid-
Edge. It is written in C# using .NET Framework technology. To create a plugin, the
Solidedge.Community package must be installed via the package manager. The main file
of the plugin needs to extend the base class SolidEdgeAddIn. The plugin API allows to
register custom controls in the ribbon bar and the side bar of SolidEdge. There are six
different views in the plugin, the

• Login view, where the user logs into the backend, the

• Profile view, where the user manages his interests, the

• Search view, where questions are searched and filtered, the

• Detail view, where one question with answers is shown in detail, the

• Ask view, where a new question is asked, and the

• Events view, which lists all recent incoming push notifications.

The ribbon bar shown in figure 6.2 is the entry point for any activity. It has buttons to
open all views except the detail view, which opens when detailing a list entry in the
search or event view, or after a new question is asked.

SolidEdge provides a second interface for plugins to register UI components. Every
plugin can register a tab in the edge view. SocialEdge uses this tab to directly integrate
the search view, because it has the most important functionality. A screenshot of the
integration with the edge-bar can be seen in figure 6.9.

38

6.2. SocialEdge

Figure 6.2.: Screenshot of the top ribbon bar of SocialEdge.

For displaying events SocialEdge creates a custom tray icon in Windows. Clicking on
the icon will open the events view of SocialEdge. Furthermore, a popup notification is
shown, whenever an important event occurs.

All views are designed using WPF, which favors using the MVVM pattern. They are
described in XAML, a markup language, and each has its own view model attached
to it. View models contain all the dynamic properties and actions, which are needed
in the view. All view models communicate with the actual model to synchronize data.
The model defines the mapping from actions to the REST endpoints and abstracts the
transport protocol. SocialEdge uses Socket.IO not only for real-time messaging, but also
as transport for the communication with the REST endpoints.

6.2.1. Views and View Models

Every view in SocialEdge is backed by its own view model, which defines all dynamic
properties and actions. A view model is responsible to react to changes in the model and
update the view properly. Furthermore, whenever the user makes an action, like clicking
a button, the corresponding handler in the view model is executed. It is responsible to
call the appropriate model function, process the results and refresh the view.

The login view in 6.3 is opened by pressing the login button in the top ribbon. The
user must enter the url of the backend service as well as his credentials. By clicking the
Login button the credentials are authenticated against the backend. On success the url
and credentials are stored in application data and are used to automatically login the
user when SolidEdge starts.

The profile view in figure 6.4 shows a list of the users’ interests. New interests are
added by entering the term and the skill level and pressing the Add button. By selecting
an interest and clicking on Remove, it is deleted.

The search view seen in figure 6.5 is splitted in the filter part on the left and the results
part on the right. In order to search for a title the first input is used. It can be left blank
for matching all questions. Additionally, a comma-separated list of tags to filter can be
entered in the second input field. The options below allow to filter for a certain relation
between the user and the question. Only matching questions are shown in the list in the
right. Double-clicking an item opens the question in the detail view.

A question can be asked using the ask view shown in figure 6.6. Title and body are
entered in the text fields on the top. Below there are two lists with an autocomplete field

39

6. Implementation

Figure 6.3.: Screenshot of the login view
in SolidEdge. Figure 6.4.: Screenshot of the profile view

in SolidEdge.

Figure 6.5.: Screenshot of the search view
in SolidEdge.

Figure 6.6.: Screenshot of the ask view in
SolidEdge.

for adding tags and mentions. By clicking the Answer button the answer together with
the tags and mentions are created at once. Afterwards the detail view for the created
question is opened.

Figure 6.7 shows the detail view. The label in the top show the questioner, the title
and the body of the questions. On the right there are toggle buttons for watching and
editing the question. Only the questioner can edit the question, whereupon the labels
turn into edit fields. By pressing the edit button again, the question is updated.

The two lists below, show the tags and mentions and by whom they were added.
Every user can add new tags or mention users by using the autocomplete field and
pressing the appropriate button. The tags and mentions are created immediately.

The bottom part is the answer section, where a answer can be created using the input
field and the Answer button. All answers with their creators are shown in the list below.
Only the questioner has the ability to accept an answer with the Accept button. It is
possible to correct the accepted answer by accepting another one.

40

6.2. SocialEdge

Figure 6.7.: Screenshot of the detail view
in SolidEdge.

Figure 6.8.: Screenshot of the events view
in SolidEdge.

All events which are shown for five seconds in the popup notification of the Windows
tray icon are also collected in the events view shown in figure 6.8. A double-click opens
the detail view of the associated question.

6.2.2. Model

The model consists of two abstraction layers which are implemented in the classes Client
and Model.

The lower abstraction layer is called client and implements the data transmission.
It exports only low level methods for sending requests to named endpoints. The
implementation in SocialEdge uses socket.io to make requests to the sails backend, but
can easily be swapped out to use HTTP for example. Furthermore the client handles
authentication by storing the access token from the login process and attaching it to
every subsequent request.

The second abstraction is the actual model and uses the client to make requests to the
backend. The model exports functions for manipulating the data model and is used by
all the viewmodels. The functions contain the actual mapping to the REST endpoints
and transform the data to be compliant with the API.

41

6. Implementation

Figure 6.9.: Screenshot of the edgebar of SolidEdge containing the search view integra-
tion.

42

CHAPTER 7

EVALUATION

The evaluation of the prototype focuses on the system’s usability and the usefulness of
the Q&A functionality. According to Perlman Perlman [Per95], "Questionnaires have
long been used to evaluate user interfaces". The questionnaire of the thesis’ evaluation is
based on "USE Questionnaire: Usefulness, Satisfaction, and Ease of use" Lund [Lun01].
The participants are asked thirty general questions about usefulness, ease of use, ease of
learning and satisfaction. In order to be able to answer an questionnaire, the participants
needs to get familiar with the system. Therefore, after a quick introduction, he is asked
to solve some tasks using the prototype. These tasks cover all basic use cases of the
system.

Albert and Tullis [AT13] cover in their book the essential statistical tools to evaluate
the results of the questionnaire. Furthermore, they describe basic usability metrics,
which can be taken by the interviewer, while the participant solves his tasks. The most
common metrics include task success, completion time and committed errors, but also
feedback of the user on positive and negative aspects of the system or the idea in general.

Five participants, who have either used Q&A systems before or have some experience
with CAD applications, took part in the survey. The survey is attached in appendix B.

7.1. Survey

The first part of the survey covers basic information about the participant. This includes
his age and gender as well as his self-estimated skill level with CAD systems, SolidEdge,
Enterprise Social Software (ESS) and Q&A systems. The skill level as well as all other
items in the third part of the survey follow the Likert scale [Lik32] from strongly disagree
(1) to strongly agree (7). Although, the data is ordinal, the items and answer possibilities
are constructed in a way, that they are considered as equidistant. It is therefore common
to use the scale as an interval scale.

The seconds part consists of eight tasks, which the participant must solve. These tasks
are:

1. Registration,

43

7. Evaluation

2. Login,

3. Profile Management,

4. Asking Questions and Tagging,

5. Watching Questions,

6. Answering Questions,

7. Editing Questions and

8. Finding Recommendations.

Each task has a setup phase, where the user fulfills eventual preconditions. The second
phase consists of one or more objectives the user must fulfill.

The third part of the survey utilizes the items of the USE questionnaire, which contains
thirty questions spread over the four categories usefullness, ease of use, ease of leaning and
satisfaction. Additionally the three most positive and negatives aspects are written down
as free text.

7.2. Procedures

At first, the participant gets a quick introduction to SocialEdge and the Q&A system
by the interviewer. Afterwards, the participant knows all relevant information on how
the systems works as well as the basic usage of the environment. After collecting their
demographic data by filling out the first part of the survey, they are assigned eight tasks
about SocialEdge. These tasks cover the basic use cases and involve utilizing all user
interface elements. The participant is asked to read the instructions and then finish
the task on his own, while giving verbal feedback. The interviewer watches, collects
metrics about each task and makes notes about the participants’ thinking-aloud process.
When the user is stuck or is about to make a wrong move, the interviewer gives him a
hint. The metrics include the task success, the completion time and the errors the user
made. The task success can either be total, partial or none, depending on whether the
participant completed the task without making mistakes, with minor mistakes or failed
completely. A minor mistake is for example when the user uses the wrong controls,
because he has a different opinion on how the system should work. A major mistake is
when the user is totally unable to solve the task without help. After finishing their tasks,
the participants fill out the third part of the survey, which is a questionnaire about the
usability of the system.

7.3. Results

All the results of the survey including the notes of the interviewer are consolidated on
the result sheet in appendix C. It contains the values of the questionnaire as well as the

44

7.3. Results

completion times and task success for every user. The textual fields like remarks of the
interviewer and input from the participants are preprocessed; similar statements are
grouped and only mentioned once.

The main metric used for evaluating the thesis is usability. Usability cannot be
measured directly as it is individually perceived by a user. The survey contains 30 items
from the USE questionnaire which are divided in four usability aspects: usefulness (1-8),
ease of use (9-19), ease of leaning (20-23) and satisfaction (24-30). Figure 7.1 shows the
average rating of each user for the usability aspects. All categories have strictly good
ratings; no user rated any category below 4, which is the middle of the rating scale.
Also the individual values do not differ much from each other. Ease of use, usefulness
and satisfaction score very similar with average values of 5.0, 5.0 and 4.8. The ease of
leaning has the best score with a mean value of 6.0.

5,5

4,7

4,0

5,0

6,3

4,6
5,0

4,3

5,3 5,4
5,0

4,5

5,8

5,2 5,1
5,5

7,0

5,0
4,7

5,6

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

Ease of Learning Ease of Use Satisfaction Usefullness

A
V

ER
A

G
E

R
A

TI
N

G

Usability Ratings

Average of P. 1

Average of P. 2

Average of P. 3

Average of P. 4

Average of P. 5

Figure 7.1.: Average scores of the four usability aspects from each participant. The
average score can range from 1 (worst) to 7 (best).

The average times to complete the tasks are shown in figure 7.2. The average is
computed using two datasets. The first contains all participants’ completion times and
the second uses only the data of those participants that have an average self estimated
skill level of 2.0 or higher. The completion time reduces drastically, if the users have
some basic experience with CAD or Q&A systems. Probably, this is related to the general

45

7. Evaluation

usage of computers in the daily life of the participants, as most concepts in handling the
prototype are very generic. This metric gains significance in future design iterations or
in the development of new integrations as it only useful when compared to something.

69 68

45

82

71

50

81

33

42
45

26

59
53

35

58

26

0

10

20

30

40

50

60

70

80

90

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

M
EA

N
 IN

 S
EC

O
N

D
S

Completion Time

Unfiltered

Filtered

Figure 7.2.: Average completion time for each task of the survey measured in seconds.
The red bars show the average completion time for each task using filtered
data from only those participants that have an average skill level of 2.0 or
higher. The blue bars are using unfiltered data.

The task success is a simple metric to evaluate whether the current user interface
is designed good enough to fulfill the systems use cases. Figure 7.3 illustrates the
success of the participants in solving the eight tasks. While most of the tasks are
completed successfully by the majority or even all users, there are some issues with
task five and seven. The error details and remarks indicate, that opening the detail
view after searching and can be designed more intuitively. The last step of editing a
question requires to untoggle the edit button, which also needs a significant time for the
participants to figure out how it works.

The verbal and written feedback from the participants are mostly about the same
aspects. There are some minor usability issues, especially the low contrast between the
controls and the wish for more feedback on actions. However, the participants like the
idea of recommending questions and find the system very useful. The handling of the

46

7.3. Results

5 5 5

4

2

4

2

5

1

2

1

3

1

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

P
A

R
TI

C
IP

A
N

TS
 C

O
U

N
T

Task Success

N

P

T

Figure 7.3.: Distribution of the task success. Each user can totally (T), partially (P) or
not (N) succeed in finishing the task. Partial success is when the user makes
some mistakes but easily recovers or when he just needs minor hints from
the interviewer. Making an irreversible error or being completely stuck
results in task failure.

prototype is mostly intuitive, fast and easy to learn. The ideas for improvement contain
amongst others email notification and support for completing actions with the keyboard
(i.e. using the enter button instead of clicking a button using the mouse).

47

CHAPTER 8

CONCLUSION AND FUTURE WORK

The thesis is focused on deeper integration of social services into end user applications
and raising contextual awareness. A question and answer service was chosen, because it
is a very common social service in corporate environments. Furthermore, it increases
productivity through a simple way of managing knowledge and reveals an important
case for using context information. Questions are always embedded into a certain
context and people need to know it in order to provide a satisfying answer. A lot of
information can be automatically collected from the user’s working environment to
make question and answer system smarter.

Through a social tagging system combined with the power of automatic data analysis
a new recommendation engine for question and answer systems has been designed.
Similar to recommender systems in e-commerce, an inverse way on how the information
finds the target is established. And used together with push notifications users do not
need to explicitly search for questions which they can answer, the questions magically
find the users. This does not only save time but also sways the users to get active and
answer questions.

For the prototypical implementation, the question and answer service was designed
from scratch and implemented using Node.js. The service is build for and integrated
into the CAD application SolidEdge, although the concept is in no way limited to it or
the construction domain in general.

The thesis was evaluated by conducting a survey consisting of eight tasks the user must
solve using the prototype followed by a usability questionnaire. Five user participated
in the survey and gave important feedback to the idea and the design of the prototype.
Although the feedback was very positive, usability can and must be improved because
it is especially important for social applications.

Additionally, the recommendation concept for question and answer system described
in the thesis is subject to future work. The user currently has no possibility to influence
how many recommendations he receives. A high amount of notifications is likely to an-
noy the user and can yield a contra-productive effect. Furthermore, the recommendation
engine can be supplemented with machine-learning techniques. The prototype only uses

49

8. Conclusion and Future Work

self-created profiles and matches them with tags added to the questions by hand. The
profiling of users as well as analyzing the topic of questions can additionally be deducted
automatically based on previous user actions and natural language processing.

50

APPENDIXA

API DOCUMENTATION

The following list documents all REST actions which differ from the standard mapping.

Question Controller

Route: GET /question/
Summary: Search for questions.
Parameters:

Name Type Description
query string The search string
tags string[] A list of tags to filter for (OR)
relation string[] A list of relations to filter for (AND)

Route: POST /question/
Summary: Create a question.
Parameters:

Name Type Description
title string
body string
tags string[] A list of tag terms to be attached to the question.
mentions integer[] A list of user ids to be mentioned in the ques-

tion.

Route: POST /question/{id}/tag
Summary: Add a list of tags and/or mentions to the question.
Parameters:

51

A. API Documentation

Name Type Description
tags string[] A list of tag terms to be attached to the question.
mentions integer[] A list of user ids to be mentioned in the ques-

tion.

Route: PUT /question/{id}/watch
Summary: UnWatch a question.
Parameters:

Name Type Description
id integer
active boolean true to watch / false to unwatch question

Answer Controller

Route: PUT /answer/{id}/accept
Summary: Accept an answer.
Parameters: —

User Controller

The creation of a user is unprotected; no login is required to use this action.

Route: GET /user/me
Summary: Get current user.
Parameters: —

Auth Controller

The auth controller does not have an underlying model and thus no default actions. The
login of a user is unprotected; no login is required to use this action.

Route: POST /auth/login
Summary: Sign the user in.
Parameters:

Name Type Description
username string The user’s username
password string The user’s password

52

Route: POST /auth/logout
Summary: Sign the user out
Parameters: —

Push Controller

The push controller does not have an underlying model and thus no default actions.

Route: PUT /push/subscribe
Summary: Register the client to receive push notifications.
Parameters:

Name Type Description
token string The client’s id (socket id)

53

APPENDIXB

SURVEY

This is the survey used for the evaluation of the thesis.

55

[1]

Usability Survey

QnAaaS-SolidEdge-Integration

Introduction
Thank you for participating in the survey for the evalution integration of QnAaaS, a question and answer

system integrated into the CAD application SolidEdge. The survey has three parts.

The first part is basic information about yourself and your skills. Rate every statement depending if you:

Strongly disagree (1), Mostly disagreee (2), Slightly disagree (3), Neither disagree nor agree (4),

Slightly agree (5), Mostly agree (6), Strongly agree (7).

In the second part you have to interact with the system. There are eight tasks on the following sheets,

which you need to process. Every task consists of one or more setup steps. Feel free to ask the

interviewer if something is unclear. Once the setup is finished and the interviever gives the go signal, the

actual tasks begins and ends when all objectives are done. Please try to fulfill the objects without asking

for help and give feedback about your thoughts. The interviever will assist you with tips if you are stuck

or making errors.

The third part is a questionnaire about the usability of the software. Again, rate every statement from

Strongly disagree (1) to Strongly agree (7).

Basic Information
Please fill out the following information:

DEMOGRAPHICS

Gender

Age

Please rate the following statements using the scale from Strongly Disagree (1) to Strongly Agree (7):

SKILL LEVEL 1 2 3 4 5 6 7

A I have experience with CAD software.

B I have experience with SolidEdge.

C I have experience with enterprise social software.

D I have experience with question and answer systems.

[2]

Tasks
The screenshot below shows the synchronous environment of SolidEdge. This is the entry point for the

tasks 2-8. The red marked area is the ribbon of the Q&A integration, which contains all controls required

for the following tasks.

1. Registration

a. Setup

 Navigate to http://localhost:8008/ with your browser.

b. Objectives

 Register new user using

 Name: John Doe

 Email: test@test.com

 Password: test1234

[3]

2. Login

a. Setup

 Open SolidEdge synchronous environment.

b. Objectives

 Login using

 Url: http://localhost:8008/

 Username: test@test.com

 Password: test1234

3. Profile Management

a. Setup

 Open SolidEdge synchronous environment.

b. Objectives

 Add a new interest in „JavaScript“ with skill level 4.

4. Asking

a. Setup

 Open SolidEdge synchronous environment.

b. Objectives

 Ask a question with:

 Title: Q1

 Body: Lorem ipsum…

 Tags: „.NET“ und „C#“

5. Watching

a. Setup

 Open SolidEdge synchronous environment.

b. Objectives

 Find the question with title „Question 1“

 Enable „Watch“ on the question

[4]

6. Answering

a. Setup

 Open SolidEdge synchronous environment.

b. Objectives

 Find an arbitrary question containing the tag „JavaScript“

 Answer the question with „A1“

7. Editing

a. Setup

 Open SolidEdge synchronous environment.

b. Objectives

 Find your own question

 Edit the title to „Q1a“

8. Recommendations

a. Setup

 Open SolidEdge synchronous environment.

 Find the question with title „Question 2“

 Mention yourself („John Doe“)

 Close Window

b. Objectives

 Find a recommended question

 Add Tag „T1“

[5]

Results

Filled out by the interviewer.

Task Completion Completion Time Errors Remarks
 Total / Partial / None In seconds Description Think-aloud protocol

1

2

3

4

5

6

7

8

[6]

USE Questionnaire
Please rate the following statements using the scale from Strongly Disagree (1) to Strongly Agree (7):

USEFULLNESS 1 2 3 4 5 6 7

01 It helps me be more effective.

02 It helps me be more productive.

03 It is useful.

04 It gives me more control over the activities in my life.

05 It makes the things I want to accomplish easier to get done.

06 It saves me time when I use it.

07 It meets my needs.

08 It does everything I would expect it to do.

EASE OF USE 1 2 3 4 5 6 7

09 It is easy to use.

10 It is simple to use.

11 It is user friendly.

12 It requires the fewest steps possible to accomplish my tasks.

13 It is flexible.

14 Using it is effortless.

15 I can use it without written instructions.

16 I don't notice any inconsistencies as I use it.

17 Both occasional and regular users would like it.

18 I can recover from mistakes quickly and easily.

19 I can use it successfully every time.

EASE OF LEARNING 1 2 3 4 5 6 7

20 I learned to use it quickly.

21 I easily remember how to use it.

22 It is easy to learn to use it.

23 I quickly became skillful with it.

SATISFACTION 1 2 3 4 5 6 7

24 I am satisfied with it.

25 I would recommend it to a friend.

26 It is fun to use.

27 It works the way I want it to work.

28 It is wonderful.

29 I feel I need to have it.

30 It is pleasant to use.

[7]

 Positive Aspects











Negative Aspects











Ideas for Improvement











APPENDIXC

SURVEY RESULT

This is the result sheet of the evaluation survey.

63

Gender M M M M M Task 1 2 3 4 5 6 7 8

Age 27 29 21 60 30 P. 1 24 50 22 41 75 22 57 17

#A 1 2 5 2 1 P. 2 33 31 35 62 32 45 35 23

#B 1 1 1 1 2 P. 3 32 56 25 70 41 47 90 19

#C 4 5 2 1 6 P. 4 179 161 123 175 145 108 176 62

#D 6 3 4 2 4 P. 5 78 42 22 61 62 27 48 46

#01 5 6 5 6 6 Mean 69,2 68 45,4 81,8 71 49,8 81,2 33,4

#02 5 5 5 6 6

#03 6 7 5 6 7

#04 4 2 4 4 2 Task 1 2 3 4 5 6 7 8

#05 6 4 4 6 6 P. 1 T T T T P T T T

#06 7 4 6 5 7 P. 2 T T T T T T P T

#07 4 2 4 5 7 P. 3 T T T T T P P T

#08 3 4 3 6 4 P. 4 T T T P N T P T

#09 5 6 6 6 4 P. 5 T T T T P T T T

#10 6 5 6 5 4

#11 3 6 5 5 2

#12 4 5 4 5 4 Task

#13 6 3 6 6 6 1

#14 6 4 5 5 6 2

#15 5 6 4 6 7 3

#16 3 2 5 5 6 4

#17 4 5 6 4 6 5

#18 5 5 6 5 4 6

#19 5 4 6 5 6 7

#20 6 7 6 5 7 8

#21 6 6 5 6 7

#22 5 6 5 7 7 Task

#23 5 6 5 5 7 1

#24 4 6 5 5 4 2

#25 4 6 6 5 7 3

#26 2 4 4 4 1 4

#27 3 5 5 6 6 5

#28 4 5 5 5 4 6

#29 6 4 5 6 7 7

#30 5 5 5 5 4 8

Skill 3,0 2,8 3,0 1,5 3,3 2,7

Usefullness 5,0 4,3 4,5 5,5 5,6 5,0

Ease of Use 4,7 4,6 5,4 5,2 5,0 5,0

Ease of L. 5,5 6,3 5,3 5,8 7,0 6,0

Satisfaction 4,0 5,0 5,0 5,1 4,7 4,8

Overall 4,4 4,6 4,6 4,6 5,1 4,7

Show asked questions in profile

Remarks

Url inconvenient / No Feedback

Low contrast

Filter options unclear / Focus input

Errors

Multiple tags added

Open Details failed

Tag entered in title field

Finish Editing failed

Completion Times

Task Success

Questionnaire

Positive Aspects

Good Idea

Pretty Icons

Autocomplete

Easy to use

Fast / Responsive

Easy to learn

Negative Aspects

Usability improvable

Low visual contrast

No Feedback

Ideas for Improvement

Notification by Email

More colors

Enter button to finish action

Autofocus on search field

General Feedback

GLOSSARY

.NET Framework is a software framework developed by Microsoft that runs primarily
on Microsoft Windows..

Active Directory is a directory service developed by Microsoft..

Android is a mobile operating system based on the Linux kernel and currently devel-
oped by Google..

CRUD stands for the basic database operations Create, Read, Update and Delete..

express.js is a rapid application framework for Node.js.

Gamification denotes the usage of game mechanics in non-game contexts to increase
user engagement. Common elements are i.a. virtual currency, experience points,
badges and leader boards. [ZC11].

iOS iOS is a mobile operating system developed by Apple Inc. and distributed exclu-
sively for Apple hardware..

MongoDB is a cross-platform document-oriented database following the NoSQL ap-
proach. In constrast to traditional table-based rational databases it stores data in
JSON-like documents with a dynamic structure. [14c].

MVVM is an architectural pattern for software development..

Node.js is a server-side platform for running networking applications. It is based
on JavaScript and provides an event-driven architecture with non-blocking I/O
operations. [14d].

OAuth is an open standard for authorization..

OpenID is an open standard for authentication..

67

Glossary

RabbitMQ is a request broker implementing the Advanced Message Queuing Protocol..

Sails.js is a rapid application framework for Node.js.

Socket.IO is a JavaScript library for realtime web applications. It enables realtime,
bi-directional communication between web clients and server..

WPF is a graphical subsystem for rendering user interfaces in Windows-based applica-
tions by Microsoft..

XAML is a declarative XML-based language developed by Microsoft that is used for
initializing structured values and objects..

68

ACRONYMS

AMQP Advanced Message Queuing Protocol.

API Application Programming Interface.

APNs Apple Push Notification Service.

CAD Computer Aided Design.

ESS Enterprise Social Software.

FEM Finite Element Method.

GCM Google Cloud Messaging.

HTTP Hypertext Transfer Protocol.

KM Knowledge Management.

LDAP Lightweight Directory Access Protocol.

MVC Model View Controller.

NLP Natural Language Processing.

ORM Object Relational Mapper.

PDP Product Development Process.

Q&A Questions and Answers.

REST Representational State Transfer.

TUM Technische Universität München.

URI Uniform Resource Identifier.

UX User Experience.

69

BIBLIOGRAPHY

[14a] Oct. 2014. url: http://googleblog.blogspot.de/2006/11/adieu-to-
google-answers.html.

[14b] HTTP Status Code. Oct. 2014. url: http://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html.

[14c] MongoDB. Oct. 2014. url: http://www.mongodb.org/.

[14d] Node.js. Oct. 2014. url: http://nodejs.org/about/.

[14e] Passport. Oct. 2014. url: http://passportjs.org/.

[14f] Quora. Oct. 2014. url: https://answers.yahoo.com/.

[14g] RabbitMQ. Oct. 2014. url: http://www.rabbitmq.com/.

[14h] Sails.js. Oct. 2014. url: http://sailsjs.org/.

[14i] socket.io. Oct. 2014. url: http://socket.io/.

[14j] StackOverflow. Oct. 2014. url: http://stackoverflow.com/.

[14k] StackOverflow question statistics. Oct. 2014. url: https://stackoverflow.
com/questions.

[14l] StackOverflow user statistics. Oct. 2014. url: https://stackoverflow.com/
users.

[14m] StackOverflow visitor analysis. Oct. 2014. url: https://www.quantcast.com/
stackoverflow.com.

[14n] Strange questions on Yahoo Answers. Oct. 2014. url: http://www.pcworld.
com/article/184999/strange_questions_yahoo_answers.html.

[14o] Yahoo Answers. Oct. 2014. url: https://www.quora.com/.

[Ald+11] G. Alducin-Quintero, M. Contero, J. Martín-Gutiérrez, D. Guerra-Zubiaga,
and M. Johnson. “Productivity Improvement by Using Social-Annotations
about Design Intent in CAD Modelling Process.” English. In: Online Commu-
nities and Social Computing. Ed. by A. Ozok and P. Zaphiris. Vol. 6778. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 153–161.
isbn: 978-3-642-21795-1. doi: 10.1007/978-3-642-21796-8_16.

71

http://googleblog.blogspot.de/2006/11/adieu-to-google-answers.html
http://googleblog.blogspot.de/2006/11/adieu-to-google-answers.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.mongodb.org/
http://nodejs.org/about/
http://passportjs.org/
https://answers.yahoo.com/
http://www.rabbitmq.com/
http://sailsjs.org/
http://socket.io/
http://stackoverflow.com/
https://stackoverflow.com/questions
https://stackoverflow.com/questions
https://stackoverflow.com/users
https://stackoverflow.com/users
https://www.quantcast.com/stackoverflow.com
https://www.quantcast.com/stackoverflow.com
http://www.pcworld.com/article/184999/strange_questions_yahoo_answers.html
http://www.pcworld.com/article/184999/strange_questions_yahoo_answers.html
https://www.quora.com/
http://dx.doi.org/10.1007/978-3-642-21796-8_16

Bibliography

[AM90] M. S. Ackerman and T. W. Malone. “Answer Garden: A Tool for Growing
Organizational Memory.” In: Proceedings of the ACM SIGOIS and IEEE
CS TC-OA Conference on Office Information Systems. COCS ’90. Cambridge,
Massachusetts, USA: ACM, 1990, pp. 31–39. isbn: 0-89791-358-2. doi: 10.
1145/91474.91485.

[AT05] G. Adomavicius and A. Tuzhilin. “Toward the next generation of recom-
mender systems: a survey of the state-of-the-art and possible extensions.”
In: Knowledge and Data Engineering, IEEE Transactions on 17.6 (June 2005),
pp. 734–749. issn: 1041-4347. doi: 10.1109/TKDE.2005.99.

[AT13] W. Albert and T. Tullis. Measuring the User Experience: Collecting, Analyzing,
and Presenting Usability Metrics. Interactive Technologies. Elsevier Science,
2013. isbn: 9780124157927.

[Bra+10] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer. “Example-centric
Programming: Integrating Web Search into the Development Environment.”
In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’10. Atlanta, Georgia, USA: ACM, 2010, pp. 513–522. isbn:
978-1-60558-929-9. doi: 10.1145/1753326.1753402.

[CHK10] Y. CHEN, T.-H. HO, and Y.-M. KIM. “Knowledge Market Design: A Field
Experiment at Google Answers.” In: Journal of Public Economic Theory 12.4
(2010), pp. 641–664. issn: 1467-9779. doi: 10.1111/j.1467-9779.2010.
01468.x.

[FT00] R. T. Fielding and R. N. Taylor. “Principled Design of the Modern Web
Architecture.” In: Proceedings of the 22Nd International Conference on Software
Engineering. ICSE ’00. Limerick, Ireland: ACM, 2000, pp. 407–416. isbn:
1-58113-206-9. doi: 10.1145/337180.337228.

[GH06] S. A. Golder and B. A. Huberman. “Usage patterns of collaborative tagging
systems.” In: Journal of Information Science 32.2 (2006), pp. 198–208. doi:
10.1177/0165551506062337. eprint: http://jis.sagepub.com/content/
32/2/198.full.pdf+html.

[Guo+08] J. Guo, S. Xu, S. Bao, and Y. Yu. “Tapping on the Potential of Q&a
Community by Recommending Answer Providers.” In: Proceedings of the
17th ACM Conference on Information and Knowledge Management. CIKM ’08.
Napa Valley, California, USA: ACM, 2008, pp. 921–930. isbn: 978-1-59593-
991-3. doi: 10.1145/1458082.1458204.

[Har+08] F. M. Harper, D. Raban, S. Rafaeli, and J. A. Konstan. “Predictors of Answer
Quality in Online Q&Amp;A Sites.” In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’08. Florence, Italy: ACM, 2008,
pp. 865–874. isbn: 978-1-60558-011-1. doi: 10.1145/1357054.1357191.

72

http://dx.doi.org/10.1145/91474.91485
http://dx.doi.org/10.1145/91474.91485
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1145/1753326.1753402
http://dx.doi.org/10.1111/j.1467-9779.2010.01468.x
http://dx.doi.org/10.1111/j.1467-9779.2010.01468.x
http://dx.doi.org/10.1145/337180.337228
http://dx.doi.org/10.1177/0165551506062337
http://jis.sagepub.com/content/32/2/198.full.pdf+html
http://jis.sagepub.com/content/32/2/198.full.pdf+html
http://dx.doi.org/10.1145/1458082.1458204
http://dx.doi.org/10.1145/1357054.1357191

Bibliography

[IK07] U. Ibusuki and P. C. Kaminski. “Product development process with focus
on value engineering and target-costing: A case study in an automotive
company.” In: International Journal of Production Economics 105.2 (2007).
Scheduling in batch-processing industries and supply chains, pp. 459–474.
issn: 0925-5273. doi: http://dx.doi.org/10.1016/j.ijpe.2005.08.009.

[JCL05] J. Jeon, W. B. Croft, and J. H. Lee. “Finding Similar Questions in Large Ques-
tion and Answer Archives.” In: Proceedings of the 14th ACM International
Conference on Information and Knowledge Management. CIKM ’05. Bremen, Ger-
many: ACM, 2005, pp. 84–90. isbn: 1-59593-140-6. doi: 10.1145/1099554.
1099572.

[Lik32] R. Likert. “A technique for the measurement of attitudes.” In: Archives of
Psychology 22.140 (1932), pp. 1–55.

[Lou+13] J. Lou, Y. Fang, K. H. Lim, and J. Z. Peng. “Contributing high quantity and
quality knowledge to online Q&A communities.” In: Journal of the American
Society for Information Science and Technology 64.2 (2013), pp. 356–371. issn:
1532-2890. doi: 10.1002/asi.22750.

[Lun01] A. Lund. Measuring Usability with the USE Questionnaire. STC Usability SIG
Newsletter, 8:2. 2001.

[Mam+11] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann. “De-
sign Lessons from the Fastest Q&a Site in the West.” In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’11.
Vancouver, BC, Canada: ACM, 2011, pp. 2857–2866. isbn: 978-1-4503-0228-9.
doi: 10.1145/1978942.1979366.

[Mor08] P. J. Morrison. “Tagging and searching: Search retrieval effectiveness of folk-
sonomies on the World Wide Web.” In: Information Processing & Management
44.4 (2008), pp. 1562–1579. issn: 0306-4573. doi: http://dx.doi.org/10.
1016/j.ipm.2007.12.010.

[MTP10] M. R. Morris, J. Teevan, and K. Panovich. “What Do People Ask Their
Social Networks, and Why?: A Survey Study of Status Message Q&a
Behavior.” In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’10. Atlanta, Georgia, USA: ACM, 2010, pp. 1739–
1748. isbn: 978-1-60558-929-9. doi: 10.1145/1753326.1753587.

[NAA09] K. K. Nam, M. S. Ackerman, and L. A. Adamic. “Questions in, Knowledge
in?: A Study of Naver’s Question Answering Community.” In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’09.
Boston, MA, USA: ACM, 2009, pp. 779–788. isbn: 978-1-60558-246-7. doi:
10.1145/1518701.1518821.

[Per95] G. Perlman. “Practical Usability Evaluation.” In: Conference Companion on
Human Factors in Computing Systems. CHI ’95. Denver, Colorado, USA: ACM,
1995, pp. 369–370. isbn: 0-89791-755-3. doi: 10.1145/223355.223726.

73

http://dx.doi.org/http://dx.doi.org/10.1016/j.ijpe.2005.08.009
http://dx.doi.org/10.1145/1099554.1099572
http://dx.doi.org/10.1145/1099554.1099572
http://dx.doi.org/10.1002/asi.22750
http://dx.doi.org/10.1145/1978942.1979366
http://dx.doi.org/http://dx.doi.org/10.1016/j.ipm.2007.12.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.ipm.2007.12.010
http://dx.doi.org/10.1145/1753326.1753587
http://dx.doi.org/10.1145/1518701.1518821
http://dx.doi.org/10.1145/223355.223726

Bibliography

[Res+94] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. “GroupLens:
An Open Architecture for Collaborative Filtering of Netnews.” In: Proceed-
ings of the 1994 ACM Conference on Computer Supported Cooperative Work.
CSCW ’94. Chapel Hill, North Carolina, USA: ACM, 1994, pp. 175–186.
isbn: 0-89791-689-1. doi: 10.1145/192844.192905.

[RH08] D. R. Raban and F. M. Harper. Motivations for Answering Questions Online
Abstract. 2008.

[SBG99] A. Schmidt, M. Beigl, and H.-W. Gellersen. “There is more to context than
location.” In: Computers & Graphics 23.6 (1999), pp. 893–901. issn: 0097-8493.
doi: http://dx.doi.org/10.1016/S0097-8493(99)00120-X.

[Seb02] F. Sebastiani. “Machine Learning in Automated Text Categorization.” In:
ACM Comput. Surv. 34.1 (Mar. 2002), pp. 1–47. issn: 0360-0300. doi: 10.
1145/505282.505283.

[SI14] R. Scoble and S. Israel. Age of Context. Patrick Brewster Press, 2014. isbn:
978-1-4923-4843-6.

[Swa+99] J. Swan, S. Newell, H. Scarbrough, and D. Hislop. “Knowledge management
and innovation: networks and networking.” In: Journal of Knowledge Man-
agement 3.4 (1999), pp. 262–275. doi: 10.1108/13673279910304014. eprint:
http://www.emeraldinsight.com/doi/pdf/10.1108/13673279910304014.

[Wii97] K. M. Wiig. “Knowledge management: Where did it come from and where
will it go?” In: Expert Systems with Applications 13.1 (1997). Knowledge
management, pp. 1–14. issn: 0957-4174. doi: http://dx.doi.org/10.1016/
S0957-4174(97)00018-3.

[ZC11] G. Zichermann and C. Cunningham. Gamification by Design: Implementing
Game Mechanics in Web and Mobile Apps. 2011.

74

http://dx.doi.org/10.1145/192844.192905
http://dx.doi.org/http://dx.doi.org/10.1016/S0097-8493(99)00120-X
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1108/13673279910304014
http://www.emeraldinsight.com/doi/pdf/10.1108/13673279910304014
http://dx.doi.org/http://dx.doi.org/10.1016/S0957-4174(97)00018-3
http://dx.doi.org/http://dx.doi.org/10.1016/S0957-4174(97)00018-3

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Motivation
	Structure of the Thesis

	Context
	Requirements
	NF-Requirements
	Constraints
	Scenarios
	Use Cases

	Related Work
	Conceptual Design
	Question and Answers
	Search
	Watch and Push
	Recommendation
	Relations
	Contextual Information
	User Management

	Software Design
	Data Design
	System Architecture
	Procedural Flow
	API Design

	Implementation
	QnAaaS
	Used Software
	Data Layer
	Application Layer
	Watcher and Recommender

	SocialEdge
	Views and View Models
	Model

	Evaluation
	Survey
	Procedures
	Results

	Conclusion and Future Work
	API Documentation
	Survey
	Survey Result
	Glossary
	Acronyms
	Bibliography

