
Understanding SAP R/3

A Tutorial for Computer Scientists

Florian Matthes Stephan Ziemer

Technical University Hamburg-Harburg, Germany
http://www.sts.tu-harburg.de/�f.matthes

March 1998 (R 1.0)

Abstract

SAP is the market leader for integrated business administration systems, and its SAP R/3

product is a comprehensive enterprise resource planning software system which integrates

modules for �nance, material management, sales and distribution, etc. Despite its interna-

tional commercial success, the models, languages and architecture of this system are to a large

degree unknown to computer scientists.

The goal of this tutorial is to present the distributed system architecture, the data model,

the database programming language, the transaction and process model and the system evo-

lution concepts of SAP R/3 from a computer science perspective and to relate them to estab-

lished database and distributed system concepts. The presentation will help attendees under-

stand how SAP R/3 relates to their own research and development work and will provide a

well-structured foundation for a further study of SAP R/3's innovative system concepts.

Contents

1 SAP R/3: Past, Presence and Future 3

2 The Integrated R/3 Repository 4

2.1 Integrated Analysis, Design and Implementation 4

2.2 Coexistence of Multiple R/3 Clients . 4

2.3 Application and System Evolution . 4

2.4 Running Example: FM Areas and Funds Centers 7

3 Enterprise Modeling with R/3 7

3.1 Data Modeling: Entities and Relationships . 8

3.2 Functional Decomposition: R/3 Modules . 9

3.3 Process Modeling: R/3 Reference Model and EPCs 9

4 Objects of the R/3 Data Dictionary 11

4.1 Data Modeling: Selected Data Dictionary Objects 12

4.1.1 Domains and Data Elements . 12

4.1.2 Tables and Structures . 12

4.1.3 Views . 13

4.2 Process Modeling: Workows . 14

5 Programming with ABAP/4 and the DynPro Concept 14

5.1 Implementation-Oriented Data Dictionary Objects 14

5.1.1 Data Types and Type Groups . 14

5.1.2 Lock Objects . 16

5.1.3 Matchcodes . 16

5.2 Programming in the Large: Development Class Objects 16

5.2.1 R/3 Transactions . 18

5.2.2 Reports . 18

5.2.3 Function Modules . 18

5.2.4 Messages . 19

5.2.5 Area Menus . 19

5.2.6 Other Development Class Objects . 19

5.3 Programming in the Small: Program Objects 20

5.3.1 GUI Status . 20

5.3.2 Dynpros { Elements of Interactive Transaction 21

5.3.3 An Example of an R/3 DynPro . 21

5.3.4 Components and Attributes of DynPros 23

5.3.5 Characteristics of ABAP/4 . 25

6 Customizing R/3: Concepts and Techniques 26

6.1 Customizing: The Procedure Model . 26

6.2 Customizing: The Implementation Guide . 27

6.3 Customizing R/3 . 28

6.4 System Evolution . 28

7 R/3's Process and System Architecture 28

7.1 Client/Server Architecture . 28

7.2 Process Architecture . 29

7.3 External Gateways . 31

A Overview: R/3 Terminology and Concepts 31

B Source Code of FM22, DynPro 100 32

Further Reading 38

1 SAP R/3: Past, Presence and Future

The Past The company SAP, Walldorf, Germany, was founded in 1972 by �ve IBM pro-

grammers. Their core business idea was to build one program suitable for many companies

instead of writing essentially the same business software again and again for di�erent com-

panies. The system abstracts from the needs of a concrete company and implements the

processes of a generic company.

The `R' in R/3 stands for `real time' which means that the system is interactive and not

based on batch processing. `3' means that it is the third major version of the program, though

there has never been a system called `R/1'. R/3 was introduced in 1992 and by the end of 1995

more than 5,200 R/3 systems were installed worldwide. The latest release of R/3 is 4.0 (Feb

1998). There is still a number of R/2 installations, but SAP intends to move this customer

basis to R/3.

R/3 is a package of standard international business applications for areas such as Finan-

cial Accounting, Controlling, Logistics and Human Resources. R/3 provides an enterprise

solution for all these application areas in a distributed client/server environment. Using R/3,

a company can manage �nancial accounting around the world, receive and track orders for

goods, and organize and retrieve employee information and records, among many other fea-

tures. Many Fortune 500 companies and high-tech companies (including American Airlines,

Chevron, IBM, Mercedes and Microsoft) run their businesses with R/3. The system is avail-

able on many hardware platforms and for many operating systems (Unix / NT).

To use R/3 for a concrete company, it is necessary to `customize' R/3 to suit the speci�c

needs. This kind of software is called `standard business software' or standard ERP software

(enterprise resource planning). Ideally, a customized R/3 installation can follow the evolu-

tion of R/3 (taking into account new tax or law regulations, new currencies, etc.) without

additional development e�ort.

The Future Hot technical topics for the future evolution of R/3 are [SAPHome 1997]

componentization (customers will be able to install and evolve independent releases of R/3

modules), business objects and BAPIs (newly developed client applications written in Java,

VisualBasic, Delphi etc. will have stable, semantically-rich APIs to the R/3 backend), the R/3

Business Engineer (customization will take place at a higher abstraction level than screens and

tables), and OO ABAP (a fully-upward-compatible extension of ABAP/4 with late binding

and a form of inheritance).

The Presence R/3 in its current release 4.0 is a massive client/server development and

application system which uses relational databases (Oracle, ADABAS-D, Informix, . . .) as its

back-end. Cooperation between functions takes place by a traditional, tight database integra-

tion. In 1994, R/3 already comprised 7.000.000 lines of code, 100.000 function calls, 20.000

distinct functions 21.000 reports, 17.000 menu de�nitions and 14.000 function modules [Bun-

desministerium f�ur Forschung und Technologie 1994]. There are 500 developers working on

the core R/3 system, its size grows annually by an estimated 10 percent. Each customer has

to install the full R/3 application which consumes several GB on disk excluding any actual

business data.

The rest of this tuorial gives you an idea of the following technologies underlying R/3

which are also the basis for R/3's future development.

� The integrated R/3 repository

� Enterprise modeling with R/3

� Objects of the R/3 data dictionary

� Programming in the large

� Programming in the small

� Customizing R/3: concepts and techniques

� R/3's process and system architecture

OMT class diagrams (similar to UML class diagrams) are used for conceptual modeling

purposes [Rumbaugh et al. 1991; Fowler and Scott 1997].

2 The Integrated R/3 Repository

Similar to a DBMS, R/3 relies heavily on meta-data describing its own data structures,

functions (modules) and processes (workows). Consistency between the meta-data and the

actual data is preserved either manually or automatically by the development tools. Using

the R/3 Repository Information System, developers can access and browse (textual, tabular

and graphical representions of) repository objects. This section provides a bird-eye view of

the repository and its major conceptual entities (see Fig. 4).

2.1 Integrated Analysis, Design and Implementation

R/3 uses three levels of abstraction to describe the mapping between `real-world entities' and

R/3 system entities. At each level, a process view, a function view and a data view can be

distinguished. These views are connected rather loosely.

At the topmost level, the analysis level, a description of R/3 is given. Processes are

modeled with EPCs (Event-controlled Process Chains) which describe how business processes

are carried out using R/3. An EPC consists of several states and actions and describes side

e�ects like informing someone that an action has taken place.

Functions are described in terms of R/3 modules, each module serving a special functional

purpose within the company. For example, the module HR (human resources) helps to manage

the sta� data.

SAP and R/3 use SERM (Structured Entity Relationship Model) for data modeling. SERM

was invented by SAP but is closely related to the common entity relationship model.

At the second level, the design level, processes are modeled with workows which are

user-de�ned EPCs. There is no notation to speci�y functions at this level. The data model

of the analysis level is mapped to relational tables and foreign keys at this level. A data

dictionary and data dictionary tools help to maintain the association between SERM-entities

(and relationships) and relational tables.

At the lowest level, the implementation level, processes are implicit (transaction se-

quences consisting of functions working on tables). Functions are represented as ABAP/4

programs and reports. Data is modeled by SQL tables and ABAP/4 variables. ABAP/4 is

the programming language of R/3 covered in Sec. 5.

Virtually all parts of the repository are, like any other information in R/3, stored in the

underlying SQL database.

Figure 1 shows the concepts and languages at each level. Figure 2 shows the main objects

of each level. Figure 3 enumerates the modules shipped with R/3 3.0.

2.2 Coexistence of Multiple R/3 Clients

An R/3 installation is partitioned into di�erent clients. A client is a business entity like

a subsidiary. Clients have separate data for customizing and application data. They share

customizing-independent data like meta data and global company settings. Only data can be

client-dependent. All meta-data, e.g. table de�ntions, are globally de�ned. Client-dependent

data is achieved by adding a certain �eld to a table de�ntion of a table which is to hold

client-dependent data. For each row of the table, this �eld holds the number of the client to

which the row belongs.

In a usual R/3 system several clients exist like the default client (number 0000), a devel-

opment client, a testing client and a customizing client. The client used for actual business

processing should be in a separate system to avoid side e�ects by changes of global settings

(see also Fig. 5).

2.3 Application and System Evolution

Application and system evolution in the presence of persistent data is a serious problem to be

solved by standard business software. Updates have to be performed on a \live" system and

customizing adjustments should be preserved across releases. Moreover, name clashes between

customization code and newly developed code of the standard system have to be avoided.

In R/3, the namespace is global and at for each object type. For example, tables must

have system-wide unique names, but a program object can have the same name as a table.

$QDO\VLV
OHYHO

'HVLJQ
OHYHO

,PSOHPHQWDWLRQ
OHYHO

(YHQW�
FRQWUROOHG
SURFHVV
FKDLQ �(3&�
6$3 0RGXOH

6$3 6(50

%XVLQHVV
(QJHQHHULQJ

'DWD
'LFWLRQDU\

'HYHORSPHQW
FODVV

$%$3��

64/

`

UHDO ZRUOG

`
`

5�� 5HSRVLWRU\

'DWD 'LFWLRQDU\

3URFHVV
9LHZ

)XQFWLRQ
9LHZ

'DWD
9LHZ

Figure 1: Concepts and Languages of the R/3 Repository

$QDO\VLV
OHYHO

'HVLJQ
OHYHO

,PSOHPHQWDWLRQ
OHYHO

(YHQW�
)XQFWLRQ�
���

(QLW\�
5HODWLRQVKLS

:RUNIORZ

7DEOH�
'RPDLQ�
)RUHLJQ NH\�
���

7UDQVDFWLRQ

3URJUDP�
5HSRUW�
���

$%$3��
YDULDEOH�
64/ WDEOH�
���

`3URFHVV
9LHZ

)XQFWLRQ
9LHZ

'DWD
9LHZ

0DQXDO 7RRO
VXSSRUWHG

&RQVLVWHQF\
PDLQWHQDQFH
EHWZHHQ OHYHOV
`

5HDO ZRUOG

0DQXDO

`
`

5�� 5HSRVLWRU\

Figure 2: Objects of the R/3 Repository

0DLQWDLQHG
E\

6$3

&RQVXOWDQW

&RPSDQ\

3URJUDPP
REMHFWV

&XVWRPL]LQJ
GDWD

$SSOLFDWLRQ
GDWD

6\VWHP 5��

'DWD
REMHFWV

), +5 75 6' 00 33 40 30 ,6 :) 36 &2 $0

Figure 3: Logical Partition of R/3 into Modules

'HYHORSPHQW FODVV

REMHFW

'DWD

GLFWLRQDU\

5HSRVLWRU\

2EMHFW

$%$3��

GLFWLRQDU\

REMHFW

1DPH

$SSOLFDWLRQ

6WDWH

7UDQVSRUW

&RQVLVWV RI

2ZQHU

&RQVLVWV

&RQVLVWV 'HYROSPHQW FODVV

7UDQVSRUW

Figure 4: The R/3 Repository

&OLHQW� $ EXVLQHVV HQWLW\ LQ WKH 5�� V\VWHP�

5�� V\VWHP
FRQWDLQLQJ
VKDUHG
GDWD

&OLHQW
ZLWK

VHSHUDWH
GDWD

&OLHQW
ZLWK

VHSHUDWH
GDWD

&OLHQW
ZLWK

VHSHUDWH
GDWD

&OLHQW
ZLWK

VHSHUDWH
GDWD

Figure 5: The Notion of Clients in R/3

There are thousands of named objects of all kinds and combined with a strict limitation of

length (approx. 8 characters), the names are by no means self-explanatory. To worsen the

situation, English and German names and abbreviations are mixed.

SAP decided to leave the `name range' of all objects with a name that starts either with a

Y or a Z to customer objects. There are exceptions from this rule leading to some confusion.

SAP guarantees that there will be no name clashes with R/3 objects when a new release is

installed.

The example of the namespace dilemma shows what happens to many systems that have

grown in time: Everywhere in the system one can �nd legacy objects that nobody dares to

remove or |in this case|- dares to rename for the consequences are largely unpredictable.

2.4 Running Example: FM Areas and Funds Centers

Throughout this tutorial, the following tiny fragment of �nancial management will be used

to illustate technical aspects of R/3.

FM area: A �nancial management area (FM area) is the commercial organizational unit,

with which commitment accounting is conducted.

Funds Center: A funds center is a commercial responsibility area to which a budget is

assigned [SAP AG 1996].

A funds center must be assigned to exactly one FM area, several funds centers can be

assigned to the same FM area. A funds center cannot exist without the superordinated FM

area. See [SAP AG 1996] for more details.

Figure 6 describes FM area and funds center using the OMT notation.

In a university context, FM areas could be the departsment, like the department of com-

puter science, and the funds centers could represent workgroups which have their own budget.

3 Enterprise Modeling with R/3

The purpose of EPCs and the data model is to document the business processes and the

conceptual data objects R/3 implements.

)LQDQFDO PDQDJHPHQW DUHD

)XQGV FHQWHU

)LQDQFLDO PDQDJHPHQW FHQWHU �)0 DUHD��

7KH)0 DUHD LV WKH FRPPHUFLDO RUJDQL]DWLRQDO XQLW� ZLWKLQ ZKLFK FRPPLWPHQW DFFRXQWLQJ LV

FRQGXFWHG�

)XQGV FHQWHU�

$ IXQGV FHQWHU LV D FRPPHUFLDO UHVSRQVLELOLW\ DUHD� WR ZKLFK D EXGJHW LV DVVLJQHG�

Figure 6: FM Area and Funds Center in OMT

3.1 Data Modeling: Entities and Relationships

The Data Model is a view on the company from a data point of view. There are two types of

objects in the model.

Entity: An entity represents real data like the existing funds centers in a company. In the

graphical notation entities are noted as boxes.

Relationship: Describes relationships between entities. In R/3 terminology, a relationship

is

� hierarchical, if the key of one entity, the so called dependent entity , depends on

exactly one other entity, the so called source entity . This is the equivalent to a

foreign key constraint in the relational data model. In the graphical notation this is

noted with an arrow from the source entity to the dependent entity. The dependent

entity is on the right hand side of the source entity and the arrow points to the left

edge.

� aggregating, if the key of the dependent entity depends on more than one source

entity.

� referential, if non-key �elds of a dependent entity depend on other source entities.

This is the equivalent to a foreign key relationship with non-key �elds in the re-

lational model. In the graphical notation such a relationship is noted as an arrow

pointing to the lower or upper edge of the dependent entity. Again, the dependent

entity is on the right hand side of the source entity.

� an `is a' relationship, if one entity is a special instance of another entity. E.g., the

entity `Bill' is a special instance of the entity `person'.

A relationship has a cardinality constraint:

1:1 each entity of the source entity type has exactly one dependent entity. Noted by a

single arrow.

1:C each entity of the source entity type has at most one dependent entity, noted by a

single arrow with a crossing line.

1:N each entity of the source entity type has at least one dependent entity. Noted by a

double arrow.

5

5HIHUHQWLDO

+

+LHUDUFKLFDO

$

$JJUHJDWLQJ

,V D

Figure 7: Types of Relationships in the SAP SERM Data Model

1:CN each entity of the source entity type can have any number of dependent entities.

Noted by a double arrow with a crossing line.

There cannot be a direct N:M relationship between entities in the data model!

Entities have some additional attributes, like a unique entity type number and ags to

indicate whether the data is changed during customizing or during normal system operation

and whether the underling implementation is a table or a view. See Fig. 7 and Fig. 8.

Figure 9 is an excerpt from the data model for FM areas and funds centers. The full R/3

data model documented through this notation is distributed by SAP as huge posters which

are several square meters in size.

3.2 Functional Decomposition: R/3 Modules

R/3 consists of large-grain sub-applications, so called modules corresponding to the classi-

cal functional structure of a company. Examples are Financial Management (FI), Materials

Management (MM) and so on. These applications work with the shared data and are highly

interrelated which makes it virtually impossible to use or customize one module in isolation.

SAP is currently developing \top down" a so-called business framework based on the

notion of business components. A business component exposes its functionality by means of

business-objects (with stable BAPIs) to other business components and to third-party client

applications.

Business objects will help to close the large semantic gap between the rather low-level

ABAP/4 function modules that have evolved \bottom up" over the past decades and a

problem-oriented view on R/3 as a collection of logical components that have to be cus-

tomized, deployed and integrated with non-SAP software components.

3.3 Process Modeling: R/3 Reference Model and EPCs

The R/3 Reference Model is a representation of R/3 using graphical models. It describes

various aspects of the R/3 software, i.e., the supported business processes with their possible

variants, data and organizational structures.

� � �

� � &

� � 0

� � &0

(DFK HQWLW\ RI WKH VRXUFH HQWLW\ W\SH KDV H[DFWO\ RQH GHSHQGHQW HQWLW\�

(DFK HQWLW\ RI WKH VRXUFH HQWLW\ W\SH KDV DW PRVW RQH GHSHQGHQW HQWLW\�

(DFK HQWLW\ RI WKH VRXUFH HQWLW\ W\SH KDV DW OHDVW RQH GHSHQGHQW HQWLW\�

(DFK HQWLW\ RI WKH VRXUFH HQWLW\ W\SH FDQ KDYH DQ\ QXPEHU RI GHSHQGHQW HQWLWLHV�

Figure 8: Cardinalities of Relationships in SAP SERM

5

5

+

����� 9

����� $ 9

����� $ 9 ����� $ 9

/DQJXDJH

&XUUHQF\

)LQDQFLDO
0DQDJHPHQW
$UHD

)XQGV &HQWHU

(QWLW\ QXPEHU

*HQHUDOO\ XVHG GDWD

9LHZ

Figure 9: Excerpt form the R/3 Data Model for FM Areas

QHZ)XQGV FHQWHU
WR EH FUHDWHG

FKRRVH
VXSHURUGLQDWHG
IXQGV FHQWHU

)0 DUHD
H[LVWV

FKRRVH
UHVSRVLEOH
SHUVRQ

FKRRVH
IXQG

FKRRVH
)0 DHUD

QHZ)XQGV FHQWHU
FUHDWHG

Figure 10: EPC to create a new funds center

In the R/3 Reference Model, business processes that can be executed in the R/3 System

are described graphically as event controlled process chains (EPCs). An EPC uses events to

show the logical and chronological relationships between R/3 System functions [SAP AG 1996]

using the following graphical elements:

Function: describes what is to be done. The symbol is a hexagon.

Events: describing when things are to be done or at which stage the process is so far. The

symbol is a rounded box.

Organization unit type: describes who (which part of the company) is involved. The sym-

bol is an ellipse.

Information object: describes what kind of information is needed or produced.

Figure 10 shows a concrete example of an EPC to create a new funds center.

EPCs are not integrated into the system in a strict sense. They are purely informational.

There is no guarantee that a given EPC is implemented at all.

The semantics of EPCs are de�ned on an informal base only. One can �nd many con-

tradictions and irregularities in many EPCs published by SAP and others. E�orts are being

made to formalize EPCs so they can be checked automatically for inconsistencies.

4 Objects of the R/3 Data Dictionary

At the design level the data models of the analysis level are brought to a more technical level.

Furthermore, the design level is the link between the actual implementation and the analysis

model.

The main tool at the design level is the data dictionary , holding all meta-data of the

system and the company's data. The objects stored in the Data Dictionary (DDic) can be

grouped into three groups:

� data modeling elements, i.e. tables, views, data elements and domains

� grouped data types, covered in section 5

� system oriented elements, covered in section 5.

��

+
D
V
F
K
H
F
N
WD
E
OH

'GLF REMHFW

'RPDLQ7DEOH

���

'DWD
HOHPHQW

6WDWH

1DPH

)LHOG

'
H
IL
Q
H
V
Y
D
OX
H
V

9LHZ
��

��

7\SH
-RLQ�FRQG�

Figure 11: Data Modeling Elements in the R/3 Data Dictionary

The data dictionary itself is conceptually and technically a part of the integrated R/3

repository.

4.1 Data Modeling: Selected Data Dictionary Objects

The R/3 data model adds several concepts to the classical relational data model to better

meet the modeling and storage requirements of ABAP/4 applications and to also facilitate

schema evolution.

4.1.1 Domains and Data Elements

A domain is a basic elements that hides the technical representation of a piece of data. It

is based on an external type. E.g., the domain FICTR is a sequence of four characters, the

domain FISTL is a sequence of sixteen characters. The external type is in both cases the type

`character'.

Domains based on the external types CURR or QUAN are treated in a special way.

Domains based on CURR and QUAN describe a currency amount or a quantity. There have

to be tables, provided by the system or by the customer, that contain all valid currencies or

quantity units, they are called reference tables. A �eld of a table based on CURR or QUAN

must refer to an appropriate �eld of a reference table, the reference �eld. The reference �eld

itself is based on either the external type CUKY (currency key) or UNIT. It determines the

actually used currency, e.g. dollar or DM, or unit, respectively.

A data element describes the business management use of a domain. One can think of a

data element as a semantic domain. For example, the data element FIKRS describe FM areas

and uses the domain FICTR. The data element FM FICTR describes a funds center and uses the

domain FISTL.

4.1.2 Tables and Structures

The table concept of R/3 is similar to the relation concept in the relational model of data.

An R/3 table consists of one or more �elds. These �elds can either be de�ned directly by

enumeration or by reference to the �elds of another table or of a structure. A structure is

similar to a table, but it does not contain any data (it is a record type, see also Fig. 14). By

de�ning �elds through a reference to another structure or table, subsequent schema de�nitions

are propagated automatically from the base tables to application tables and data structures.

A �eld of a table has a name and an associated data element. A �eld can refer to a so-

called \check table" which de�nes a foreign key relationship. However, the system does not

guarantee referential integrity automatically. The actual R/3 application code has to take

care of that.

Depending on the intended use of a table, it can be realized in di�erent ways in the

database. A table can be

� transparent (being realized as an identical SQL table)

� a pool table (every row of the table is saved with other rows of other pool tables in the

same SQL table)

� a cluster table (the whole table is saved as one row of an SQL table).

Tables for normal use are transparent, tables with only a few rows, which need not to

be accessed from outside the system, can be pool tables. Cluster tables are normally used

for language-dependent tables, e.g. a table that holds a description of an object in various

languages.

It is also possible to de�ne foreign keys. The referring �eld must be based on the same

domain as the �eld referred to. The cardinality of a foreign key relationship (see Fig. 8) can

be set, this is shown in the Data Modeler, if appropriate entities for the tables have been

de�ned.

Foreign keys are important, because the system often uses so called primary and secondary

tables. A secondary table is linked via a foreign key relationship to a primary table. The

referring table is the secondary table, the referred table is the primary table.

The technique of customizing includes and append structures are used to modify the struc-

ture of standard tables hese are tables prede�ned in the system as `hooks' for system exten-

sions.

� Customizing includes are special tables named CI * (btw. an exception to the rule that

the name range for customers is Y* and Z*), which are included by standard tables.

This is to o�er customers the chance to change a standard table and to ensure that the

changes are propagated to subsequent upgrades of the system. Customizing includes are

delivered empty and can be �lled during the customizing process.

� Append structures are structures assigned to exactly one table. The append structure

refers to the table, not vice versa. The table does not `know' that it has a structure

assigned. The Data Dictionary knows that and propagates changes to the table when

necessary. This technique should be used to change a standard table when no customizing

includes are provided for that standard table.

It is not recommended, though possible, to change standard tables directly. The standard

tables could be changed with the next update leading to the loss of the changes made by the

customer.

4.1.3 Views

Views provide a restricted view on data stored in a database. In R/3, a view consists of one

primary table and any number of secondary tables.

In an addition to the well-known concept of views in the relational model, R/3 supports

four types of views:

Database view: A database view is the equivalent to a view in the relational model of data.

If there is more than one table involved, the access is always readonly. Views of this type

are used frequently to represent an entity in the Data Modeler.

Projection view: A projection view hides some columns of a table (a projection). The

hidden columns will not be sent form the database to the application server, reducing

the data volume to be transported (see also Sec. 7).

Help view: A help view shows further �elds (columns) of a table, when a user is to specify

a value in a foreign key �eld and requests help for valid inputs. There can be at most

one help view per table. Matchcodes are a more advanced technique to achieve the same

goal.

Maintenance views: Maintenance views enable a business-oriented approach to looking at

data, while at the same time, making it possible to maintain the data involved. The

data can be maintained by the customizing transactions [SAP AG 1996].

4.2 Process Modeling: Workows

R/3 allows the user to de�ne business workows on top of R/3 transactions. The technique

used is the same as the one used for EPCs (see Sec. 3).

SAP Business Workow provides technologies and tools for processing and controlling

cross-application processes automatically. This involves primarily the coordination

� of the persons involved

� the work steps required

� the data to be processed (business objects)

Its main aims are to reduce throughput times and the costs involved in managing business

processes and to increase transparency and quality [SAP AG 1996].

5 Programming with ABAP/4 and the DynPro Con-

cept

At the implementation level, the actual business processes are implemented. All applications

are written in ABAP/4 (Advanced Business Application Programming Language, 4th gener-

ation), the R/3 programming language. The user-front end is written in ABAP/4 as well and

can be customized and utilized as far as required. The complete functionality of R/3, includ-

ing the ABAP/4 compiler, is accessible in ABAP/4 programs making, e.g., the generation of

programs on demand possible.

5.1 Implementation-Oriented Data Dictionary Objects

5.1.1 Data Types and Type Groups

R/3 supports �ve kinds of data types:

External types: They are the foundation of all types and have an equivalent representation

in SQL. Any object that has to persist must be converted to a corresponding object of

an external type. Table 12 shows the existing external types.

ABAP/4 data type: Every ABAP/4 variable is based on an ABAP/4 data type. The types

are: C(character), N(numeric character), P(packed numer), F(oating point), I(integer),

X(hexadecimal number), T(time) and D(date). All external types have a corresponding

de�nition using ABAP/4 data types.

Header line type: This is an aggregated type. In most cases it is de�ned by referring di-

rectly to a structure, which is the equivalent concept in the Data Dictionary. Header

lines are used to de�ne variables which are necassary to exchange data between ABAP/4

and the database, they serve as bu�ers.

Internal table type: An internal table is used to store data during the execution of an

ABAP/4 program (more precisely: during the execution of an R/3 transaction). Internal

tables are not persistent. If the data has to persist it must be inserted into a database

table.

Type groups are collections of user-de�ned data types or constants in ABAP/4 code. They

are stored in the data dictionary for cross-program use.

External type Description output length

INT1 1 byte integer, unsigned 3

INT2 2 byte integer, used as length description for
LRAW and LCHAR

5

INT4 4 byte integer, signed 10

FLTP oating point number 16

TMS time (HHMMSS) as 6 characters [CHAR(6)] 6

DATS date (YYYYMMDD) as CHAR(8) 8

CLNT client number 3

ACCP account period (YYYYMM) 6

CHAR sequences of characters <256

NUMC numerical characters <256

LCHAR same as LRAW but with characters < 65536

RAW sequence of bytes <255

LRAW sequence of bytes beginning with an INT2 as
length �eld

< 65536

DEC decimal <18

CURR currency �eld, realized as DEC <18

CUKY key for a currency 5

LANG language key 1

QUAN quantity �eld <18

UNIT key for a quantity �eld 2 or 3

Figure 12: External Types in R/3

([WHUQDO
W\SH

'DWD W\SH

7\SH
JURXS

'RPDLQ

%DVHG
RQ

���

)LHOG

1DPH

+HDGHU
OLQH

,QWHUQDO
WDEOH

$%$3��
GDWD W\SH

)LHOG�
V\PERO

64/ W\SH

3URMHFWHG WR

���

''LF REMHFW

Figure 13: Data Types in the Data Dictionary

5.1.2 Lock Objects

Lock objects guarantee the consistency of the database when many users work on the same

data. A lock object can lock one primary table and several secondary tables. The relationship

between (implicit) database locks and explicit lock object operations is explained in Sec. 5.3.5.

The lock mode controls the method by which the users are granted concurrent access to

shared data records (identi�ed by their primary key). The system supports the following lock

modes:

E (Exclusive, cumulative): This mode means that locked data may only be displayed or

processed by a single user at the same time. The user owning the lock can request the

lock again.

S (Shared): This mode means that several users can simultaneously display the same data.

A request for another shared lock is accepted even if it is requested by another user. A

call for an exclusive lock is rejected.

X (Exclusive but not cumulative): A lock of type X can be called only once. Any other

call for such a lock is rejected, even if the user holding the lock calls.

The lock mode can be de�ned separately for each table in the lock object. When a call for

a lock occurs, a corresponding entry is inserted into the lock table of the system [SAP AG

1996].

Special ABAP/4 code, a so called function module, is generated automatically for every

lock object. An ABAP/4 program calls the function module to request a lock. If the lock is

rejected, an exception is thrown.

5.1.3 Matchcodes

In the relational data model, tuples are identi�ed by their (key) values. For performance

reasons, most R/3 tables have rather short, arti�cially-created keys, called id-attributes in

R/3.

Using id-attributes improves system performance but unfortunately they also appear in

interactive forms. Users are often requested to identify a tuple by giving its id-attribute, e.g.,

when processing an incoming order the customer address is requested and the user has to

type in the customer-id. The purpose of matchcodes is to help the user �nd the information

by displaying non-identifying attributes, which are useless for the system but meaningful to

humans. In the example given, a matchcode could display existing customer-ids and additional

information, such as name, street and city.

A matchcode identi�es a primary table, in which the requested attribute is contained, and

it can have secondary tables to also display associated attributes (�elds) of other tables. Fur-

thermore, a matchcode can be used to display di�erent sets of attributes, each set constitutes

a so called matchcode-id .

Matchcodes should not be confused with database indices [SAP AG 1996]:

� A matchcode can contain �elds from several tables. An index contains �elds from only

one table.

� Matchcodes can be built on the basis of both transparent tables stored in the underlying

database and using the special table types pool and cluster.

� The matchcode structure can be restricted by stipulating selection conditions.

� Matchcodes can be used as entry aids in the context of the R/3 help system.

5.2 Programming in the Large: Development Class Objects

A development class is a set of logically related development objects. Such a set of objects

could be, for example, all objects necessary to manipulate funds centers. Figure 15 and 16

explain the concept of development class objects using OMT notation.

/RFN
REMHFW

3ULPDU\
WDEOH

6HFRQGDU\
WDEOH

'GLF REMHNW

6WDWXV

��

7DEOH

���

0DWFK�
FRGH
REMHNW

,'

6HOHFW
FRQGLWLRQ

����

3URMHFWLRQ

3ULPDU\
WDEOH

6HFRQGDU\
WDEOH

��

6WUXFWXUH 'DWD
HOHPHQW

1DPH

)LHOG

1DPH

)LHOG

$SSHQGV

,QFOXGHV ,QFOXGHV

Figure 14: Implementation-Oriented Concepts of the Data Dictionary

3URJUDP REMHFW7UDQVDFWLRQ /RJLFDO
GDWDEDVH

&RGH

$XWKRUL]DWLRQ
REMHFW

9HUVLRQ

0HVVDJH

1XPEHU

'HYHORSPHQW FODVV REMHFW

*HQHUDWH

0HVVDJH
FODVV

)XQFWLRQ PRGXOH
�)81&7,21�322/�

�����

,QWHUIDFH

)XQFWLRQ
JURXS

5HSRUW
�5(3257�352*5$0�

8VHV

6WDUWV

Figure 15: Development Class Objects (1)

'HYHORSPHQW FODVV REMHFW

*HQHUDWH

&$77 SURFHGXUH$UHD PHQX'LDORJ ER[%XVLQHVV
HQJHQHHULQJ�

REMHNW

:RUNIORZ 'DWD PRGHO

*8, VWDWXV

���

,QWHUIDFH

3URJUDPP REMHNW

8VHV

7UDQVDFWLRQV

��

&DOOV

6(7��*(7�
SDUDPHWHU

Figure 16: Development Class Objects (2)

5.2.1 R/3 Transactions

An R/3 transaction covers a logical process in R/3 (e.g., generating a list of customers,

changing the address of a customer, booking a ight reservation for a customer, executing a

program). From the user's point of view it represents a self-contained unit. In terms of dialog

programming, it is a complex object which consists of a module pool, screens, etc. and is

called with a transaction code [SAP AG 1996].

It is helpful to think of an R/3 transaction as one basic business process which cannot

be interrupted or and has to be executed in an all or nothing fashion. R/3 transactions are

therefore sometimes called logical units of work (LUW). A LUW can involve more than one

database transaction (DB-TA).

R/3 transactions can be programmed to comply with the ACID condition (Atomity

Consistency Isolation Durability). This is achieved by postponing all actual database changes

an R/3 transaction has to perform until the end of the R/3 transaction and then performing

all changes atomically within one database transaction. Moreover, many R/3 transaction are

programmed to work on private in-memory copies of data read atomically at the begin of the

R/3 transaction from the database.

To coordinate many users working with the same data, lock objects must be used. Lock

objects lock the data the moment they are called and release it by default when the R/3

transaction is �nished and all the changes in the database have been comitted. Please note

that the data is locked at the time the user works with the data which can be much ahead of

the time when the actual change in the database is carried out.

5.2.2 Reports

Reports are ABAP/4 programs. They will be explained in more depth in the a following

subsection on ABAP/4.

5.2.3 Function Modules

A function module is a routine in ABAP/4. In addition, it has an interface which is stored in

the Data Dictionary. The concept of function modules is one of the most important concepts

in R/3. There are di�erent kinds of function modules, called process types:

Normal: The function module can be called from inside the system only. Database transac-

tions are performed immediately.

RFC supported: The function module can be called via RFC (remote function call) from

applications outside of the R/3 system.

Update with start immediately: The database transactions are delayed until the next

`COMMIT WORK' event. Should a database transaction fail, retrying is possible. This

is called `V1-booking'.

Update immediately: The database transactions are delayed until the next `COMMIT

WORK' event. Should a database transaction fail, retrying is not possible. This is also

called `V1-booking'.

Update with start delayed: The database transactions are performed (booked) after all

V1-bookings have been performed. This is called a `V2-booking'.

Sammellauf: The database transactions can be booked with other V2-bookings at one time.

This is called a `V2-booking'.

So called `batch input' can be provided by the caller of an RFC. This is data stored

in special tables and the system interprets the data as interactive input for the system.

With batch input everything that can be done interactively can be controlled from client

applications.

A function group is a set of logically related function modules. A function library stores

all function modules and allows to search for speci�c modules.

5.2.4 Messages

A message in R/3 is a string. Messages are prompted to the user in a modal dialog. Dialogs

are displayed in separate windows. Every message has a unique number in the message class

it is contained in. A message class is a collection of messages which are used in the same

program. Nevertheless, it is possible for a program to use multiple message classes.

R/3 supports �ve types of messages:

Error (E): The user made an invalid input and as soon as he or she has acknowledged the

message, is forced to reenter the required information.

Warning (W): The user may have made possibly invalid input, but can decide, whether to

reenter the information or whether to proceed.

Information (I): The user has to acknowledge the message and can proceed.

Success (S): This message is not displayed in a modal dialog, but in the bottom line of the

next screen. A message of this type is purely informational and does not need to be

acknowledged.

Abort (A): A critical error has occurred, a re-entering of the information is not possible.

The current R/3 transaction is aborted. In most cases, technical reasons cause this kind

of message to be prompted.

Message classes are maintained with a special tool, in terms of ABAP/4 this tool is an

interactive report. Messages should be language sensitive, of course. The language is chosen

dynamically, based on customization and user login information.

5.2.5 Area Menus

As stated before, ABAP/4 programs can use the full functionality of the R/3 front end,

including menus. An area menu is a menu which triggers R/3 transactions. Area menus can

call any R/3 transaction de�ned in the system. Area menus are not assigned to an ABAP/4

program and are invoked by a transaction code.

5.2.6 Other Development Class Objects

Logical databases are used to write reports. They consist of one or more database table(s),

which are linked by user-de�ned conditions. Logical databases simplify reporting but do

not add true expressive power.

3URJUDP REMHFW
7UDQVDFWLRQ

&RGH

*OREDO
GDWD

'\Q3UR

1XPEHU 7\SH

��

7\SH� 9HUVLRQ

,PSRUWV

&DOOV

/RJLFDO
GDWDEDVH

0RGXOH SRRO
LQ $%$3��

3%2
PRGXOH

3$,
PRGXOH

6XEURXWLQH
�)RUP�

*8,
VWDWXV

*8,
WLWOH

&RGH
6FUHHQ

6
WD
UW
V
Z
LW
K

'\Q3UR ILHOG

��
'DWD H[FKDQJH E\ HTXDOLW\ RI QDPHV

([HFXWHV
)ORZ ORJLF

Figure 17: Program Objects in R/3

Dialog boxes are dialogs, which are used quite often in the system. It is possible to de-

�ne new dialog boxes or to use prede�ned, standardized dialog boxes. Several kinds of

standard dialog boxes are available [Kretschmer and Weiss 1997]: Con�rmation prompt

dialog boxes, dialog boxes for choosing among alternatives, data print dialog boxes, and

text display dialog boxes.

SET-/GET-parameters are used to exchange data between R/3 transactions. Their main

purpose is to set values for input �elds on the screen.

CATT-procedures (Computer Aided Test Tool procedures) are procedures submitted to

the R/3 CATT tool which help developers to test newly developed code, customized

parts of the system etc. with test data (simulating batch or user input).

5.3 Programming in the Small: Program Objects

A program object (see Fig. 17) consists of a module pool , written in ABAP/4, one or more

DynPros, and some GUI stati . A program object can also use at most one logical database,

the program object will then be a report .

The ABAP/4 modules are called by the ow logic and can call other subroutines, called

forms, which cannot be invoked directly by the ow logic. Modules and forms can have their

own local data and have full access to all global variables. The global variables can be used

for internal purposes and are the interface to all database objects.

The data exchange between DynPro �elds and ABAP/4 variables is done automatically.

Before a screen is displayed, the PBO modules �ll ABAP/4 variables, which have the same

name as the DynPro �elds, with the appropriate data. The DynPro interpreter then transfers

the data into the DynPro �elds and after input, it transfers the data back into the ABAP/4

variables.

5.3.1 GUI Status

A GUI status describes which menu bar and buttons should be visible to the user at a certain

point in time.

The menu bar is a container for menus. Two menus are always present: The system menu

and the help menu. Menus themselves can contain menu items, e.g. `Quit', which trigger

*8, VWDWXV�REMHFW

)XQFWLRQ NH\
DVVLJQPHQW

0HQX EDU 7RROEDU
$SSOLFDWLRQ
WRROEDU

0HQX

0HQX LWHP 5
H
IH
UH
Q
F
H
V

&RGH

)XQFWLRQ NH\

&RGH

)XQFWLRQ NH\

&RGH

��

��

*8, VWDWXV

&RGH

Figure 18: GUI Status Objects in R/3

actions or further submenus, like `Create Object. . . ', which lead to other menus and menu

items. A menu can cascade up to a depth of three levels

The tool bar is container for application-independent buttons, the application tool bar is

a container for application dependent buttons.

5.3.2 Dynpros { Elements of Interactive Transaction

To understand the programming concept of R/3 it is necessary to understand the model for

interactive programs. R/3 is mainly event-driven, events can be triggered by the system itself

or by the user.

The model is essentially screen-oriented, the follwoing cycle is processed for every screen

called (DynPro, see Fig. 19 and Fig. 20):

1. At the beginning of the cycle, everything attached to the PBO (Process Before Output)

event is executed. In most cases this will be actions to prepare data to be presented to

the user.

2. Next, the user does the actual input.

3. Depending on how the user terminated the input,

� additional information is displayed,

� another transaction is executed,

� the EXIT-COMMAND-event is triggered,

� the PAI (Process After Input) event is triggered, which is the normal case.

4. The actions assigned to the triggered event are performed.

5.3.3 An Example of an R/3 DynPro

To illustrate the `avor' of programming interactive transactions in R/3, the DynPro 100 of the

function group FM22 will be discussed. The function group provides functionality to maintain

funds centers, like the transaction FM2I, which creates a new funds center. Other transactions

are FM2S (shows an existing funds center) and FM2U (updates/changes an existing funds

$%$3��
PRGXOH

'%�7$

'\Q3UR $
3%2
HYHQW

$%$3��
PRGXOH

'%�7$

$%$3��
PRGXOH

'%�7$

$%$3��
PRGXOH

'%�7$

���

���

'\Q3UR $
3$,
HYHQW

'\Q3UR %
3%2
HYHQW

'\Q3UR %
3$,
HYHQW

WLPH

'\Q3UR $ '\Q3UR %

Figure 19: The R/3 Model for Interactive Transactions

([HFXWH
3%2

PRGXOHV

7UDQVIHU GDWD
IURP $%$3��
YDULDEOHV LQWR
'\Q3UR ILHOGV

3URFHVV
VFUHHQ

*LYH
KHOS

/HDYH WR
WUDQVDFWLRQ

$7 (;,7
&200�
$1'

([HFXWH
3$,

PRGXOHV

1H[W

3%2

6XE�
URXWLQHV

0(66$*(
W\SH ("

)�"

/RFN FHUWDLQ
'\Q3UR ILHOGV

2.�&2'(
W\SH ("

2.�&2'(
W\SH 7"

)�"

6XE�
URXWLQHV

7UDQVIHU GDWD IURP
'\Q3UR ILHOGV LQWR
$%$3�� YDULDEOHV

Figure 20: States of the R/3 DynPro Interpreter

Figure 21: Transaction FM2I, DynPro 100

center). It is very common in R/3 to have these three transactions (insert/show/update) for

a given object type.

In DynPro 100 (see Fig. 21), the user has to type in the funds center (Finanzstelle) and

the superordinated FM area (Finanzkreis) he or she wants to insert or update or look at. This

means that DynPro 100 is shared by multiple transactions. The full source code can be found

in appendix B.

5.3.4 Components and Attributes of DynPros

A DynPro (Dynamic Program) consists of several components [SAP AG 1996]:

DynPro attributes include the DynPro number, the number of the DynPro that should

follow it by default, and some other attributes.

Screen layout speci�es which �elds should appear in the DynPro and where

Field attributes are properties of each �eld in the DynPro.

Flow logic speci�es which ABAP/4 routines should be called for the DynPro.

These components will be explained using the example of DynPro 100, Transaction FM2I

(insert).

DynPro Attributes

Attribute Value Explanation

Progam SAPLFM22 to every function group there exists a program

object named SAPL. . .

Number 100 this is DynPro number 100

Original Language D the language the DynPro has originally been cre-

ated in, in this case is was created in German

Description . . . short description of what the DynPro does

Type normal this is a normal DynPro, no special functionality

Next DynPro 100 by default the next DynPro executed will be the

Dynpro 100

PROCESS BEFORE OUTPUT.

MODULE D0100 INDEPENDENT.
MODULE D0100 MODIFY SCREEN.
MODULE D0100 SET PF-STATUS.

PROCESS AFTER INPUT.

MODULE D0100 EXIT AT EXIT COMMAND.

CHAIN.

FIELD: IFMFCTR-FIKRS, IFMFCTR-FICTR.
* check for illegal characters

MODULE CHECK SONDERZEICHEN.
* store key of FM area in a gobal variable

MODULE D0100 DB KEY NOTICE.
* is the user entitled to do the transaction?

MODULE AUTHORITY CHECK
* set a lock on the table FMFCTR, holding the funds centers

MODULE FMFCTR ENQUEUE.
* read attributes of funds center

MODULE FMFCTR LESEN.
ENDCHAIN.

* set next DynPro to be executed

FIELD OK CODE MODULE D0100 OK CODE.

Figure 22: Flow Logic of DynPro 100, Program SAPLFM22

Screen Layout The screen layout is designed with a special tool, the screen painter. The

required �elds are inserted and placed on the screen. This mask will be used later by the

DynPro interpreter.

Field Attributes

Field Name Type Format Length Remark

IFMFCTR-FIKRS Text CHAR 15 string literal `Finanzkreis'.

IFMFCTR-FIKRS I/O CHAR 4 input �eld for FM area associated

with matchcode FIKRS to assist

user-input

IFMFCTR-FICTR Text CHAR 15 string literal `Finanzstelle'

IFMFCTR-FICTR I/O CHAR 10 input �eld for funds center associ-

ated with matchcode FIST to as-

sist user-input

OK CODE OK function return code (menu selec-

tion, abort, . . .)

The OK-�eld serves a special purpose: Buttons are identi�ed by a function code. Whenever

a button is pressed, user input is terminated and the function code of the button is stored in

the OK-�eld. When input is terminated by pressing the return-key, the value of the OK-�eld

is SPACE.

Flow Logic The ow logic consists of keywords identifying the beginning of a section to

be processed at an event, module calls and error handling.

Consider the ow logic in Fig. 22: the module D0100 INDEPENDENT is called after the

PBO event has occurred. The module D0100 EXIT is called when the user wants to exit the

current transaction, the module D0100 OK CODE is called at the PAI event and the input

is valid.

CALL FUNCTION 'ENQUE EFMFCTR'
EXPORTING

FIKRS = G FIKRS
FICTR = G FICTR

EXCEPTIONS

FOREIGN LOCK = 1
SYSTEM FAILURE = 2

Figure 23: Invocation of a Locking Object

When an error message is issued, all �elds enumerated by the FIELD-command can be

reentered. The CHAIN-ENDCHAIN-commandde�nes a block in which the FIELD-COMMAND

is valid.

5.3.5 Characteristics of ABAP/4

Some of the ABAP/4 charcteristics are:

� ABAP/4 code is interpreted

� the syntax reminds the user of COBOL and BASIC

� the syntax is context-sensitive

� more than 200 key-words in version 3.0C, with an increasing tendency

� little orthogonality.

From a computer scientist's point of view, the language is very old- fashioned and not well-

designed. Its size and complexity has grown in time and SAP was not able, or did not want

to, redesign the language. This has led to a language full of contradictions and irregularities.

Nevertheless, in ABAP/4 there are some concepts worth having a closer look at. For a detailed

introduction to ABAP/4 see, e.g., [Kretschmer and Weiss 1997], [Curran 1996a] or [Matzke

1996].

Consistent De�nitions of ABAP/4 variables and DDic Objects A major prob-

lem of every programmable database system is to keep the de�nitions of program variables

consistent with the de�nitions made in the database, in the case of R/3 the Data Dictionary.

In R/3, variables can be de�ned with the `LIKE'-operator, which has the form `variable

LIKE DDic object '. This causes the ABAP/4 interpreter to look up the de�nition of the

DDic object and to use that de�nition for the ABAP/4 variables. For example, the ABAP/4

statement `DATA G FIKRS LIKE FM01-FIKRS .' (include �le LFM22DEC) de�nes a vari-

able called G FIKRS which has the same de�nition as the �eld FIKRS in the table FM01.

Since ABAP/4 is interpreted, every time the variable G FIKRS is de�ned, it uses the same

de�nition as the �eld FM01-FIKRS in the Data Dictionary.

The LIKE-operator can be used with any DDic object, especially tables and structures.

This is very important, because when new �elds are added or the de�nition of �elds are altered,

older programs using the table or structure will still work. Otherwise the process of customiz-

ing would not only include the altering of tables but also the altering of all applications using

these tables. This would obviously not be feasible.

Locking of Database Tables To guarantee data consistency, database tables must be

locked the moment they are used. As described before, this is done by locking objects and

the system automatically generates function modules to request (enqueue) and to end a lock

(dequeue). Figure 23 shows an example for the invocation of a locking object.

In ABAP/4, database tables cannot be locked directly, all locking must be done via lock-

ing objects. Again, the indirection pays o� when de�nitions or dependencies in the Data

Dictionary are changed. Old programs will still work after a locking object has been changed.

MODULE D0100 MODIFY SCREEN.
LOOP AT SCREEN.

"/ if ((Feldname = 'Finanzkreis') und (TA ist abh�angig))

IF ((SCREEN-NAME = 'IFMFCTR-FIKRS')
AND (FLG CALLD = CON DEPENDANT TA)).
"/ Feld dient nur zur Anzeige

SCREEN-INPUT = 0. "/'0A' in HEX

MODIFY SCREEN.
ENDIF. "/ SCREEN-NAME

ENDLOOP. "/ SCREEN.

ENDMODULE. "/ D0100 MODIFY SCREEN

Figure 24: Dynamic Screen Modi�cation

Persistence The underlying SQL database is the persistent store for ABAP/4. In addi-

tion, ABAP/4 can handle �les, but this is recommended for temporary data or information

interchange with other programs only.

ABAP/4 uses a built-in dialect of SQL, the so called Open SQL language. Open SQL is

similar to standard SQL, there are some modi�cations due to the tight integration in ABAP/4.

It is also possible to use the SQL language of the underlying database, the language is

called Native SQL. It is not wise to use Native SQL, for the applications may not be usable

in other R/3 systems.

Dynamic Screen Modi�cation Di�erent groups of users are interested in the same

objects, but they all want to manipulate it from their point of view. Databases take that into

account by views, R/3 allows to change the screen mask during execution. This is done in a

PBO module like the one shown in Fig. 24.

6 Customizing R/3: Concepts and Techniques

Customizing is a method intended for implementing R/3 (at SAP), enhancing of R/3, under-

taking a release upgrade or a system upgrade.

� R/3 provides a procedure model , the work breakdown structure for implementation and

enhancement of R/3.

� R/3 provides tools for system con�guration and the necessary documentation.

� R/3 provides the customizing project which gives the user tools for management, pro-

cessing and evaluation of his or her implementation or enhancement projects.

� R/3 gives con�guration recommendations and tools to enable this

� R/3 helps to transfer the System con�guration from the development environment into

the production environment.

� R/3 contains a set of tools for system upgrades and release upgrades.

6.1 Customizing: The Procedure Model

The procedure model is the basic element of customizing. The aim of the procedure model

is a structured organization of the R/3 implementation [SAP AG 1996]. It is a high-level

description of what is to be done.

The procedure model consists of four phases:

1. Organization and conceptual design. The focus when creating the conceptual design

is to use the R/3 reference model to help to work out how the R/3 business application

components support the company's processes and functions. Other steps are, e.g., to

train the project team and to design interfaces and enhancements.

Figure 25: Customizing R/3: The Procedure Model

2. Detailed design and system setup. The result of the phase `Detailing and Imple-

mentation' is the checked company-speci�c application system which will be released for

phase 3 (production preparation).

3. Preparations for going live. The result of the `Production Preparation' phase is a

checked and released production system.

4. Productive operation. The result of the phase `Production' is the organization and

execution of a continuous optimization and support of the productive operation.

Figure 25 shows these steps of the procedure model as de�ned for R/3 3.0C [SAP AG

1996].

6.2 Customizing: The Implementation Guide

The implementation guide (IMG) describes what has to be done concretely and is related to

the actual customizing project. Furthermore, it contains the necessary sequence of activities

and the user can start the appropriate customizing transactions. The IMG is the central

element of the customizing process.

Of course, there need to be di�erent IMGs for di�erent companies and projects. SAP

introduced four levels of IMGs [SAP AG 1996]:

The SAP Reference IMG contains documentation on all the business application compo-

nents supplied by SAP.

The Enterprise IMG is a subset of the SAP Reference IMG and contains documentation

for those components to be implemented only.

Project IMGs are Enterprise IMG subsets containing just the documentation for Enterprise

IMG components to be implemented in particular Customizing projects

Upgrade Customizing IMGs are based either on the Enterprise IMG or on a Project IMG

and show, for a given release upgrade, all the documents that are linked to a release

note.

IMGs are created by the execution of special R/3 transactions.

6.3 Customizing R/3

Customizing is realized by �lling in data into certain customizing tables or leaving them with

the default data. R/3 standard modules react to customizing data, standard code should not

be changed. In some ABAP/4 modules, R/3 provides `gateways' to user-de�ned ABAP/4

functions. Obviously this is restricted to foreseen cases only. But within the implementation

process it may prove necessary to add additional functionality to the system where no `gate-

ways' or customizing is provided. The only way is to write programs which are highly linked

with standard code, which can lead to trouble when SAP decides to change some of the

standard code.

A big problem during R/3 customization is to �nd out which R/3 modules (FI, TR,

HR,. . .) and functions provide the required functionality. For example, in order to implement

budget controlling, free-lance employees are modeled best as suppliers.

The basic top-down-approach to solve customization problems consists of the following

steps:

1. read the functional description of a module in the R/3 documentation on a high level

2. read the documentation `Functions in Detail', provided by R/3

3. analyze the EPCs

4. analyze the data model

5. check the functionality with appropriate testing data.

Customizing is a time-consuming process which involves a lot of reading and experimen-

tation. The sheer amount of documentation for customizing and the problem of �nding out

the required information and functions is a major obstacle to quickly introduce R/3 into an

enterprise with already established business rules and business practice.

6.4 System Evolution

In an R/3 system, there exists exactly one original object and any number of copies. The

Workbench Organizer takes care that no copies of an object can be changed. To propagate

changes of the original object in the system, the so called transport system is used. It replaces

outdated copies of the original object with new copies.

The transport system is used for a system upgrade as well. All changes are transported

from the R/3 original objects into client 0, the default client. From there, the changes can

be transported to the required destination in the system. Development classes are the basic

objects that can be transported.

7 R/3's Process and System Architecture

Despite the fact that R/3 uses relational technology and a client/server architecture, many of

its process and distribution concepts clearly show their origin in R/2's centralized mainframe

world.

7.1 Client/Server Architecture

Every R/3 System consists of three tiers or layers:

Presentation layer: The graphical user interface (SAPGUI) is run on this layer. No appli-

cation logic is processed. SAPGUI does not adhere to the style guidelines of its host

system.

Application layer: This layer executes the application logic, like DynPros and ABAP/4

modules. It sends the data to be presented to the user to the presentation layer.

Database layer: This layer holds the system-wide database and the central booking process.

All three layers must exist, but they may be on one computer. In `normal' R/3 systems, the

layers will be on separate computers. Figure 26 shows the three layers and the communication

between the most important components (example taken from [Will et al. 1996]).

:LQGRZ

PDQDJHU

6$3*8,

SURFHVV

6$3*8,

SURFHVV

6$3*8,

SURFHVV

'LVSDWFKHU'\Q3UR SURFHVVRU

$%$3�� LQWHUSUHWHU

:RUNSURFHVV

'\Q3UR SURFHVVRU

$%$3�� LQWHUSUHWHU

:RUNSURFHVV

&HQWUDO

ERRNLQJ

SURFHVV

5'%06

3&

;�7HUPLQDOV

3UHVHQWDWLRQ VHUYHU

$SSOLFDWLRQ VHUYHU

'DWDEDVH VHUYHU

Figure 26: The three-tiered R/3 System Architecture

TCP/IP is used as the communication protocol within R/3. With LU 6.2 it is possible to

communicate with IBM mainframes. Fig. 27, adapted from [Buck-Emden and Galimow 1997],

shows the use of network protocols by R/3.

On top of the communication protocol, a presentation protocol is used for data exchange

between the presentation layer and the application layer. This SAP protocol minimizes the

amount of data to be exchanged for a switch from the current screen to the next and during

bulk data display.

Remote SQL is used to exchange data between the database and the application layer.

7.2 Process Architecture

As depicted in Fig. 28, an R/3 system consists of at least one presentation server, at least

one application server and exactly one database server. R/3 does not support distributed

databases. SAP claims that distributed databases are not safe enough for practical use.

Every application server consists of one message server which handles the communication

with other system servers. There can be at most one gateway server in an R/3 system, which

handles the communication with other systems, either other R/3 systems or systems form

other vendors.

The central element of an application server is the dispatcher which controls the workpro-

cesses. The dispatcher assigns the jobs to the appropriate workprocess.

The workprocesses (WP) do the actual work, having their own task handler, DynPro

processor, ABAP/4 processor and database interface. One can imagine a WP as `R/3 in a

nutshell', being specialized on special jobs.

Dialog WPs: Execute DynPros and ABAP/4 modules which are called in the ow logic. At

the beginning of a basic cycle, the dispatcher assigns the request by the presentation

server to an idle Dialog WP, which then does all preparations for screen output, like

executing the ABAP/4 modules assigned to the PBO event. After transmitting the new

screen layout to the presentation server, the Dialog WP is idle again. When the user

has ended the input, the dispatcher will again look for an idle Dialog WP to execute the

requested actions.

Batch WPs: Batch WPs are used instead of Dialog WPs when the input is a batch input.

5)& �UHPRWH IXQFWLRQ FDOOV�

&3,�& �6$3 LPSOHPHQWDWLRQ�

$33&

/8 ���

7&3�,3

;���

(WKHU�
QHW

7RNHQ�
ULQJ

��� (WKHU�
QHW

7RNHQ�
ULQJ

���

$SSOLFDWLRQ
OD\HU

3UHVHQWDWLRQ
OD\HU

6HVVLRQ
OD\HU

7UDQVSRUW
OD\HU

1HWZRUN
OD\HU

'DWD /LQN
OD\HU

3K\VLFDO
OD\HU

Figure 27: Communication Protocols Supported by R/3

3UHVHQWDWLRQ VHUYHU $SSOLFDWLRQ VHUYHU 'DWDEVH VHUYHU

'LVSDWFKHU *DWHZD\ VHUYHU0HVVDJH VHUYHU

:RUNSURFHVV

��

5�� V\VWHP

����

Figure 28: R/3 Process Architecture in OMT Notation

:RUNSURFHVV

'LDORJ

6SRRO

%DWFK

(QTXHXH

%RRNLQJ

7DVNKDQGOHU

'\Q3UR
SURFHVVRU

$%$3��
SURFHVVRU

'DWDEDVH
LQWHUIDFH

0HVVDJH

Figure 29: R/3 Work Processes

Spool WPs: They do the internal spooling, like printing or transferring data to the database.

Enqueue WPs: An Enqueue WP is specialized on the locking of DDic objects.

7.3 External Gateways

R/3 has technical interfaces to external systems at virtually all layers.

� Presentation layer: Intelligent Terminal

� Application layer: Files, CPI-C, RFC, OLE (Windows only), email, EDI, Business API

� Database layer: ODBC, Remote SQL.

The interfaces to the application layer have distinct control possibilities, e.g.:

Data import Data export Control from Control of

outside external Software

Files X X

RFC X X X X

OLE X X X X

ODBC, X X

remote SQL

The best way to interact with R/3 on a program to program base is the RFC mechanism

for it has full control and is platform-independent. Function modules can be called via RFCs,

they prove again to be a useful concept. BAPIs are nothing else than conventional RFCs.

A Overview: R/3 Terminology and Concepts

Figure 30 summarizes the R/3 client/server architecture by means of an OMT diagram.

Figure 31 gives an overview of all conceptual R/3 objects mentioned in this tutorial and

shows their static relationships.

3
UH
V
H
Q
WD
WLR
Q
V
H
UY
H
U

$
S
S
OLF
D
WLR
Q
V
H
UY
H
U

'
D
WD
E
V
H
V
H
UY
H
U

'
LV
S
D
WF
K
H
U

*
D
WH
Z
D
\
V
H
UY
H
U

0
H
V
V
D
J
H
V
H
UY
H
U

:
R
UN
S
UR
F
H
V
V

�
�

5
��
V
\
V
WH
P

�
�

�
�

'
LD
OR
J

6
S
R
R
O

%
D
WF
K

(
Q
T
X
H
X
H

%
R
R
N
LQ
J

7
D
V
N
K
D
Q
G
OH
U

'
\
Q
3
UR

S
UR
F
H
V
V
R
U

$
%
$
3
��

S
UR
F
H
V
V
R
U

'
D
WD
E
D
V
H

LQ
WH
UID

F
H

0
H
V
V
D
J
H

Figure 30: R/3 Architecture

B Source Code of FM22, DynPro 100

The complete source code can be found in the program SAPLFM22 (Release 3.0). The code

given here is a subset which is executed by DynPro 100. The reader should get an impression

of what ABAP/4 programs look like.

The original comments (and several variable names) are in German and have been trans-

lated.

* Program header

FUNCTION-POOL FM22 MESSAGE-ID FI.

...

*---

* DEC - include local table data and field-symobol definitions

*---

INCLUDE LFM22DEC.

...

*---

* Interal tables

*---

* Internal table for funds center used for data storage during

* transaction processing and to propagate data from on Dynpro to the

* next

DATA: BEGIN OF I_FMFCTR OCCURS 10.

INCLUDE STRUCTURE IFMFCTR.

DATA: END OF I_FMFCTR.

* Backup of non-updated value

DATA: BEGIN OF I_OLD_FMFCTR.

INCLUDE STRUCTURE IFMFCTR.

DATA: END OF I_OLD_FMFCTR.

...

TABLES:

'
H
Y
H
OR
S
P
H
Q
W
F
OD
V
V

R
E
MH
F
W

'
D
WD

G
LF
WL
R
Q
D
U\

5
H
S
R
V
LW
R
U\

2
E
MH
F
W

$
%
$
3
��

G
LF
WL
R
Q
D
U\

R
E
MH
F
W

1
D
P
H

$
S
S
OLF
D
WL
R
Q

6
WD
WH

7
UD
Q
V
S
R
UW

&
R
Q
V
LV
WV

R
I

2
Z
Q
H
U

&
R
Q
V
LV
WV

&
R
Q
V
LV
WV

'
H
Y
R
OS
P
H
Q
W
F
OD
V
V

7
UD
Q
V
S
R
UW

�
�

+DVFKHFNWDEOH

7
D
E
OH

'
D
WD

H
OH
P
H
Q
W

1
D
P
H

)
LH
OG

'HILQHVYDOXHV

(
[
WH
UQ
D
O

W\
S
H

'
D
WD
W\
S
H

7
\
S
H

J
UR
X
S

'
R
P
D
LQ

%
D
V
H
G

R
Q

)
LH
OG

1
D
P
H

+
H
D
G
H
U

OLQ
H

,Q
WH
UQ
D
O

WD
E
OH

$
%
$
3
��

G
D
WD
W\
S
H

)
LH
OG
�

V
\
P
E
R
O

6
4
/
W\
S
H

3
UR
MH
F
WH
G
WR

/
R
F
N

R
E
MH
F
W

3
UL
P
D
U\

WD
E
OH

6
H
F
R
Q
G
D
U\

WD
E
OH

0
D
WF
K
�

F
R
G
H

R
E
MH
N
W

,'

6
H
OH
F
W

F
R
Q
G
LW
LR
Q

�
��
�

3
UR
MH
F
WL
R
Q

3
UL
P
D
U\

WD
E
OH

6
H
F
R
Q
G
D
U\

WD
E
OH

6
WU
X
F
WX
UH

$
S
S
H
Q
G
V

,Q
F
OX
G
H
V

�
�

1
D
P
H

)
LH
OG

9
LH
Z

7
\
S
H

-
R
LQ
�F
R
Q
G
�

3
UL
P
D
U\

WD
E
OH

6
H
F
R
Q
G
D
U\

WD
E
OH

3
UR
J
UD
P

R
E
MH
F
W

7
UD
Q
V
D
F
WL
R
Q

/
R
J
LF
D
O

G
D
WD
E
D
V
H

&
R
G
H

$
X
WK
R
UL
]
D
WL
R
Q

R
E
MH
F
W

9
H
UV
LR
Q

0
H
V
V
D
J
H

1
X
P
E
H
U

0
H
V
V
D
J
H

F
OD
V
V

)
X
Q
F
WL
R
Q
P
R
G
X
OH

�)
8
1
&
7
,
2
1
�
3
2
2
/
�

,Q
WH
UI
D
F
H

)
X
Q
F
WL
R
Q

J
UR
X
S

5
H
S
R
UW

�5
(
3
2
5
7
�3
5
2
*
5
$
0
�

8
V
H
V

6
WD
UW
V

,P
S
R
U
WV

'
LD
OR
J
E
R
[

%
X
V
LQ
H
V
V

H
Q
J
H
Q
H
H
UL
Q
J
�

R
E
MH
N
W

:
R
UN
IO
R
Z

'
D
WD

P
R
G
H
O

,Q
WH
UI
D
F
H

6
(
7
�

S
D
UD

)
X
Q
F
WL
R
Q
N
H
\

D
V
V
LJ
Q
P
H
Q
W

0

0

0
H

&
R
G
H

*
OR
E
D
O

G
D
WD

'
\
Q
3
UR

1
X
P
E
H
U

7
\
S
H

�
�

&
D
OOV

0
R
G
X
OH

S
R
R
O

LQ
$
%
$
3
��

3
%
2

P
R
G
X
OH

3
$
,

P
R
G
X
OH

6
X
E
UR
X
WL
Q
H

�)
R
U
P
�

*
8
,

WL
WO
H

&
R
G
H

6
F
UH
H
Q6
WD
UW
V
Z
LW
K

'
\
Q
3
UR

IL
H
OG

�
�

'
D
WD

H
[
F
K
D
Q
J
H
E
\
H
T
X
D
OLW
\
R
I
Q
D
P
H
V

(
[
H
F
X
WH
V

)
OR
Z
OR
J
LF

Figure 31: Overview of the R/3 Terminology

"/ FM area

FM01,

"/ Text for FM area

FM01T,

"/ Funds center

FMFCTR,

"/ Internal table for Dynpro fields of the Funds center

IFMFCTR.

* structure fo a funds center

DATA: BEGIN OF FFMFCTR.

INCLUDE STRUCTURE IFMFCTR.

DATA: END OF FFMFCTR.

DATA:

"/ FM area identification

G_FIKRS LIKE FM01-FIKRS,

"/ Funds center identification

G_FICTR LIKE FMFCTR-FICTR,

"/ Transaction code

G_TCODE LIKE SY-TCODE,

"/Flag to signal that the transaction / function module has been

"/ called indepndently

FLG_CALLD LIKE SY-CALLD VALUE 0.

...

MODULE D0100_MODIFY_SCREEN.

--

* Dynamic screen modification for Dynpro 0100: *

* - truncate the output size of the field FM area to 10 characters *

* - disable input to the FM area identification field if the *

* screen is called from within another transaction *

--

"/ Loop over all fields defined for the Dynpro

LOOP AT SCREEN.

IF ((SCREEN-NAME = 'IFMFCTR-FIKRS')

AND (FLG_CALLD = CON_DEPENDANT_TA)).

"/ Feld dient nur zur Anzeige

SCREEN-INPUT = 0. "/'0A' in HEX

MODIFY SCREEN.

ENDIF. "/ SCREEN-NAME

ENDLOOP. "/ SCREEN.

ENDMODULE. "/ D0100_MODIFY_SCREEN

...

MODULE D0100_EXIT.

--

* Functions called if the the current processing is terminated *

* without executing the checks of the PAI modules. *

* LEAVE TO TRANSACTION releases all locks held by the transaction *

--

"/ get the return code determined by the user

"/ indicate that procssing can continue

SAV_OK_CODE = OK_CODE.

CLEAR OK_CODE.

"/ Evaluate the saved return code

CASE SAV_OK_CODE.

"/ ENDE = quit

WHEN 'ENDE'.

SET SCREEN 0.

LEAVE SCREEN.

"/ EINS = branch to transaction "create funds center"

WHEN 'EINS'.

"/ branc to this transaction

LEAVE TO TRANSACTION TR_FICTR_INS.

ENDCASE.

ENDMODULE. "/ D0100_EXIT

...

* check for special characters:

MODULE CHECK_SONDERZEICHEN INPUT.

FIELD-SYMBOLS <F>.

IF SY-TCODE = TR_FICTR_INS

OR SY-TCODE = TR_FICTRHI_MNTN.

IF IFMFCTR-FICTR CA CON_SONDERZEICHEN.

ASSIGN IFMFCTR-FICTR+SY-FDPOS(1) TO <F>.

MESSAGE E669 WITH <F>.

ENDIF.

ENDIF.

ENDMODULE. " CHECK_SONDERZEICHEN INPUT

...

MODULE D0100_DB_KEY_NOTICE.

* keep key of the FM area

CONDENSE IFMFCTR-FIKRS NO-GAPS.

G_FIKRS = IFMFCTR-FIKRS.

"/ store the FM center

CONDENSE IFMFCTR-FICTR NO-GAPS.

G_FICTR = IFMFCTR-FICTR.

" / if called from another transaction (here a graphical display of an FM area)

IF (FLG_CALLD = CON_INDEPENDANT_TA).

"/ initialize variables using values passed from the preceding graphical display

SELECT SINGLE *

FROM FM01

WHERE FIKRS = G_FIKRS.

"/store object number of the FM area

G_FMA_OBJNR = FM01-OBJNR.

"/set a flag to force an insertion without a copy in a later

"/ processing stage

FLG_COPY = CON_NEIN.

"/initialize variable (sic!)

CLEAR G_REF_FICTR.

ENDIF.

ENDMODULE. "/ D0100_DB_KEY_NOTICE

...

MODULE FMFCTR_ENQUEUE INPUT. "/call a function to lock the funds center

PERFORM FMCTR_ENQUEUE.

ENDMODULE. "/ FMFCTR_ENQUEUE

FORM FMFCTR_ENQUEUE.

"/ if (creation or update of a funds center)

CHECK ((G_TCODE = TR_FICTR_INS)

OR (G_TCODE = TR_FICTR_UPD)).

"/ request a lock for this funds center

CALL FUNCTION 'ENQUEUE_EFMFCTR'

EXPORTING

FIKRS = G_FIKRS

FICTR = G_FICTR

EXCEPTIONS

FOREIGN_LOCK = 1

SYSTEM_FAILURE = 2.

CASE SY-SUBRC. "/ exception handling (-> inform user)

WHEN 1. "/already locked by another user (FOREIGN_LOCK)

MESSAGE E641 WITH G_FICTR.

WHEN 2. "/ SYSTEM_FAILURE

MESSAGE A521 WITH G_FICTR.

ENDCASE. "/ SY-SUBRC

ENDFORM. "/ FMFCTR_ENQUEUE

...

MODULE FMFCTR_LESEN.

PERFORM FMFCTR_LESEN. "/ call a function to read the funds center

ENDMODULE. "/ FMFCTR_LESEN.

FORM FMFCTR_LESEN.

DATA: L_FMFCTR_EXISTS LIKE CON_JA. "/Funds center already exists

IF (G_TCODE = TR_FICTR_UPD OR G_TCODE = TR_FICTR_SHOW).

PERFORM FMFCTR_LESEN_UPD USING G_FIKRS "/VALUE

G_FICTR "/VALUE

CHANGING L_FMFCTR_EXISTS. "/VALUE

ELSE.

PERFORM FMFCTR_LESEN_INS USING G_FIKRS "/VALUE

G_FICTR "/VALUE

FLG_COPY "/VALUE

G_REF_FICTR. "/VALUE

ENDIF. "/G_TCODE

ENDFORM. "/FMFCTR_LESEN.

FORM FMFCTR_LESEN_INS USING VALUE(P_FIKRS)

VALUE(P_FICTR)

VALUE(P_COPY)

VALUE(P_REF_FICTR).

...

IF (L_FMFCTR_EXISTS = CON_JA). "/ Error message and stay within this Dynpro

MESSAGE E642 WITH P_FIKRS P_FICTR.

...

ENDFORM. "/FMFCTR_LESEN_INS

...

MODULE D0100_OK_CODE INPUT.

--

* Evaluate user commands of DynPro 100 *

--

"/ get the return code determined by the user

"/ indicate that procssing can continue

SAV_OK_CODE = OK_CODE.

CLEAR OK_CODE.

"/ evaluate the saved return code

CASE SAV_OK_CODE.

"/ ENTER

WHEN SPACE.

"/ Branch to successor DynPro 200

SET SCREEN 200.

LEAVE SCREEN.

ENDCASE.

ENDMODULE. "/ D0100_OK_CODE

References

Bancroft 1996: Bancroft, N. H. Implementing SAP R/3. Prentice Hall, Englewood Cli�s,

New Jersey, 1996.

Buck-Emden and Galimow 1997: Buck-Emden, R. and Galimow, J. The Client/Server Tech-

nology of the SAP R/3 System. Addison-Wesley Publishing Company, 1997.

Bundesministerium f�ur Forschung und Technologie 1994: Bundesministerium f�ur Forschung

und Technologie. Initiative zur Frderung der Software-Technologie. In Wirtschaft, Wis-

senschaft und Technik, August 1994.

Curran 1995: Curran, T. A. ABAP/4 Development Workbench. Technical report, TCMan-

agement Inc., Oderstrasse 28, 81677 Munich, Germany, January 1995. Also available through

SAP AG, Neurottstrasse 16, 69190 Walldorf, Germany.

Curran 1996a: Curran, T. Client/Server Development With SAP's ABAP/4 Development

Workbench 3.0. Prentice Hall, Englewood Cli�s, New Jersey, 1996.

Curran 1996b: Curran, T. Using SAP,s R/3 Client Server Business Process Blueprint Tool.

Prentice Hall, Englewood Cli�s, New Jersey, 1996.

de Brian and other 1996: Brian, Gareth de and other. Introduction to ABAP/4 Programming

for SAP. Asap World Consultancy, 1996.

Fowler and Scott 1997: Fowler, M. and Scott, K. UML Distilled - Applying the Standard

Object Modeling Language. Addison-Wesley Publishing Company, 1997.

H. 1997: H., Muneer. Designing and Implementing SAP R/3. Sybex, 1997.

Hernandez 1997a: Hernandez, J. Administering SAP. AP Professional, 1997.

Hernandez 1997b: Hernandez, J. The SAP R/3 Handbook. McGraw Hill, 1997.

Kretschmer and Weiss 1997: Kretschmer, R. and Weiss, W. Developing SAP's R/3 Applica-

tions with ABAP/4. Sybex, 1997.

Matzke 1996: Matzke, B. ABAP/4 - Die Programmiersprache des SAP-Systems R/3.

Addison-Wesley Publishing Company, 1996.

Rumbaugh et al. 1991: Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen,

W., editors. Object-Oriented Modeling and Design. Prentice Hall, Englewood Cli�s, New

Jersey, 1991.

SAP AG 1996: SAP AG. Online Documentation SAP System R/3, Release 3.0C. Technical

report, SAP AG, Neurottstrasse 16, 69190 Walldorf, Germany, March 1996.

SAPHome 1997: WWW Home Page of the SAP AG, Germany. http://www.sap-ag.de/,

1997.

Schuessler 1997: Schuessler, T. Integrating SAP's R/3 with Visual Basic and OLE. Sybex,

1997.

Taylor 1996: Taylor, R. Using SAP R/3 - Special Edition. Que Corp, 1996.

Will et al. 1996: Will, L., Hienger, Ch., Strassenburg, F., and Himmer, R. R/3-

Administration. Addison-Wesley Publishing Company, 1996.

