
Chair of Software Engineering for Business Information Systems (sebis)
Faculty of Informatics
Technische Universität München
wwwmatthes.in.tum.de

Bachelor‘s Thesis:
Conceptualization and Implementation of a Rule-based
Workbench for Textual Pattern Annotation
Georg Bonczek, 2018

Rule-based text annotation is still useful in times of machine learning:

● De-Facto Industry standard for information extraction [1]

● Easy and fast to implement

● Incorporation of domain knowledge

Motivation

2

Rule-based text annotation is still useful in times of machine learning:

● De-Facto Industry standard for information extraction [1]

● Easy and fast to implement

● Incorporation of domain knowledge

Domain experts often require support of software engineers

● Goal: Reduction of overhead in such a cooperation

Motivation

3

Research Questions

● Which advantages and disadvantages do rule-based approaches have?

● How does a typical workflow for rule engineering in the legal domain look like

and which roles are involved?

● What is the current state of the art tool support for rule development?

● How can the barrier to the development of rules be lowered?

3

Research Questions

● Which advantages and disadvantages do rule-based approaches have?

● How does a typical workflow for rule engineering in the legal domain look like

and which roles are involved?

● What is the current state of the art tool support for rule development?

● How can the barrier to the development of rules be lowered?

3

Research Questions

● Which advantages and disadvantages do rule-based approaches have?

● How does a typical workflow for rule engineering in the legal domain look like

and which roles are involved?

● What is the current state of the art tool support for rule development?

● How can the barrier to the development of rules be lowered?

3

Research Questions

● Which advantages and disadvantages do rule-based approaches have?

● How does a typical workflow for rule engineering in the legal domain look like

and which roles are involved?

● What is the current state of the art tool support for rule development?

● How can the barrier to the development of rules be lowered?

3

Previous Workflow

6

Samples for
Annotations Define Rules

Implement RulesTest RulesRules
Correct

refine rules
Domain
Expert

Software
Engineer

true

Define Annotation
Types

false

Previous Obstacles

● Rule languages are not targeted at non-technical users

● Conceptualization, Development and Evaluation phases are fragmented

● Necessary collaboration made difficult

● IDEs are code-centered not document-centered

4

UIMA Ruta Workbench

10

Approach

● Rule languages are not targeted at non-technical users

● Minimal, extensible rule expression language

● Conceptualization, Development and Evaluation phases are fragmented

● IDEs are code-centered not document-centered

● Necessary collaboration made difficult

4

DECLARE INFINITIV;
V.PosValue == "VVIZU" {-> INFINITIV};
V.PosValue == "VAINF" {-> INFINITIV};
V.PosValue == "VNINF" {-> INFINITIV};
V.PosValue == "VVINF" {-> INFINITIV};

DECLARE ISTINFINITV;
(W{REGEXP("ist|sind")} # W{REGEXP("zu")} INFINITIV) {->ISTINFINITV};
(W{REGEXP("hat|haben")} # W{REGEXP("zu")} INFINITIV) {->ISTINFINITV};
(W{REGEXP("ist|sind")} # V.PosValue == "VVIZU") {->ISTINFINITV};
(W{REGEXP("hat|haben")} # V.PosValue == "VVIZU") {->ISTINFINITV};

INFINITIV {-> UNMARK(INFINITIV)}
ISTINFINITIV {-> UNMARK(ISTINFINITIV)}

12

UIMA Ruta

Raft

tmp INFINITIV
V{isInfinitive()} -> INFINITIV

tmp ISTINFINITV
"ist|sind" & "zu" INFINITIV -> ISTINFINITV
"hat|haben" & zu" INFINITIV -> ISTINFINITV
"ist|sind" & V{isZuInfinitive()} -> ISTINFINITV
"hat|haben" & V{isZuInfinitive()} -> ISTINFINITV

13

Approach

● Rule languages are not targeted at non-technical users

● Conceptualization, Development and Evaluation phases are fragmented

● Necessary collaboration made difficult

● IDEs are code-centered not document-centered

● Create and merge necessary tools into Lexia

4

15

Current Workflow

7

Samples for
Annotations Implement Rules

Rules
Correct Domain

Expert

Provide
Functionality

true

Define Annotation
Types

Software
Engineer

false

Rule Language

● DSL for linguistic phrase matching on legal texts

● Limited syntax and expressiveness by design

● Based on common code patterns in UIMA Ruta

● Extensible with Java

● Transpiled into UIMA Ruta

8

Rule Language Implementation

18

Demo

11

Evaluation

● Feature comparison concerning workflow

● Extension of the Lexia workbench with integrated development workflow

● Code metrics

● Drastic reduction in source lines of code through DSLs

12

Conclusion

● Conventional tools suffer in interdisciplinary contexts

● Most of these drawbacks can be mitigated

● DSLs as powerful pier of the workflow

● Realizing potential of rule-based information extraction

13

Questions

14

[1] Chiticariu, Laura, Yunyao Li, and Frederick R. Reiss. "Rule-based information
extraction is dead! long live rule-based information extraction systems!."
Proceedings of the 2013 conference on empirical methods in natural language
processing. 2013.
[2] J. Pustejovsky and A. Stubbs. Natural Language Annotation for Machine
Learning. 2013.

23

Rule Language Extensions

● Implemented using Java Annotations

● Automatic Generation of Ruta Extension classes

● Averts boilerplate of Ruta Extensions

/**

* Tests if the provided token is an infinitive

* @return true if the token is an infinitive

*/

@RutaCondition(targetPackage = "lexia") public static boolean isInfinitive(RutaContext context) {

Feature f =

context.getAnnotation().getCAS().getAnnotationType().getFeatureByBaseName("morphTag");

String fval = context.getAnnotation().getFeatureValueAsString(f);

return fval.equals("VVIZU") || fval.equals("VAINF") || fval.equals("VNINF") || fval

.equals("VVINF");

}

24

Rule Language Integration

25

User Interface

.raft.rutaStorage

Lexia Backend

Transpilation

Get Save

Base Workflow

5

Base Workflow

5

Base Workflow

5

