

Technische Universität München

Fakultät für Informatik
Lehrstuhl für Software Engineering betrieblicher Informationssysteme (I 19)

Prof. Dr. F. Matthes

Systementwicklungsprojekt

Evaluation of the RIA Technology Macromedia Flex
for User-Centered Social Software

Yi Zheng

 Aufgabensteller: Prof. Dr. Florian Matthes

 Betreuer: Vanda Lehel
 Sheng Wei

 Abgabedatum: 22.05.2006

 1

Table of Contents

1 Introduction... 3
1.1 Aims of this Report... 3
1.2 Organisation of this Report... 3

2 Rich Internet Applications.. 5
2.1 Limitations of Traditional Web Applications ... 5
2.2 Term and Idea of RIA... 6
2.3 RIA Solutions.. 14

2.3.1 Java - Extending Rich Client ... 14
2.3.2 Ajax – related Web Frameworks ... 14
2.3.3 XML UI ... 18
2.3.4 Windows Presentation Foundation (formerly code name “Avalon”) 18
2.3.5 Adobe Flex 2.0 (formerly Macromedia Flex).. 21

2.4 Comparison ... 27
3 Social Organizer UI Analysis and Design ... 30

3.1 Background of User-Centered Social Software.. 30
3.1.1 Social Software .. 31
3.1.2 Use Cases of UCSS.. 32

3.2 Design Considerations for the Social Organizer... 34
3.2.1 Architecture Overview... 34
3.2.2 Information Model ... 35

3.3 Implementation of the Social Organizer User Interface 36
3.3.1 Search Inside Panel .. 39
3.3.2 Search Outside Panel ... 41
3.3.3 Content Panel ... 42

3.3.3.1 Annotation Tab ... 43
3.3.3.2 Preview Tab .. 43
3.3.3.3 Details Tab.. 45
3.3.3.4 Publish Tab ... 45
3.3.3.5 Feedback Tab .. 46

3.3.4 New Community Platform Window .. 47
3.3.5 Look and Feel of the Application Social Organizer 48
3.3.6 Deployment of the Application Social Organizer.. 49

4 Conclusion and Outlook ... 51
4.1 Conclusions... 51
4.2 Outlook ... 51

5 Reference Materials .. 52

 2

1 Introduction

This chapter is an introduction to Rich Internet Application technologies. It also provides
information about the aims and organization of this report in the subsequent sections.

Rich Internet Applications (RIAs) combine the ubiquity of web browser-based
applications with the user interface of traditional desktop applications as well as the
interactive, multimedia communication to favour the enterprise and business application
development. Desktop applications offer an interactive user interface for validation and
formatting, fast interface response time without page refresh, common user interface
behaviours such as drag-and-drop and the ability to work online or offline. Meanwhile
advantages of the Web applications include: instant deployment, cross-platform
availability, the use of progressive download for retrieving content and data, the
magazine-like layout and wide Internet standards adopted. The best of communication
means incorporating two-way interactive audio and video [Duhl03]. With RIAs,
developers benefit from the simplicity and low-cost of server based deployments while
end-users take advantage of a true rich application with dramatically improved
performance and an enhanced user experience: more reliable, robust, responsive and
effective.

RIAs represent the trend of the future for enterprise application development which is
manifest by nearly all technologies from Adobe Flex with Flash Platform, Ajax – related
web frameworks, Mozilla’s XUL, Microsoft’s Windows Presentation Foundation
(formerly code named “Avalon”) , Sun’s Java Web Start.

1.1 Aims of this Report

This report will address the situation of Rich Internet Application Development. Some
solutions and technologies are described that have been incorporated during prototyping
the application Social Organizer based on Adobe Flex framework. Moreover, the Social
Organizer user interface is presented as an example for analysing how Flex toolsets can
provide user enhanced experience and how this can be achieved seamlessly. Finally, it
will also be briefly pointed out how Flex 2.0 and other frameworks can be used to
improve the features of the Social Organizer user interface.

1.2 Organisation of this Report

This report is divided into four chapters:

 3

The second chapter will first educe the term RIA through briefing the disadvantage of
current web application, and then mainly explain some major solutions of RIA, finally
conclude with a detailed feature comparison of their benefits and limitations respectively.

The third chapter will describe the fundamental concepts of User-Centered Social
Software which the prototype Social Organizer is based on. After that the focus will be
put on the implementation of the Social Organizer UI by using Adobe Flex and some
main features and mechanisms of Flex.

The last chapter will summarize the subjects involved in this report and the success made
by using one of mentioned RIA methods: Flex. Moreover, some suggestions from
practice will also be given to help to improve the future development of the application
Social Organizer.

 4

2 Rich Internet Applications

This chapter provides the technical background for the UI implementation of the Social
Organizer. It explains the limitations of traditional web applications, discusses the
features of rich Internet applications and the technical requirements. Moreover, it
explores the current popular RIA solutions: Java-extending web applications, XML UI,
Ajax-related web framework, Avalon, and Adobe Flex framework as well. A
comprehensive comparison between these solutions is also given at the end in order to
help choose appropriate effective method for building a rich Internet application.

2.1 Limitations of Traditional Web Applications

Traditional web applications are based on Client/Server network architecture with thin
clients. A client is separated by such “two-tier” architecture from the server. The thin
client has little or no application logic and depends primarily on the central server for
processing activities. So far this model has been proven successful in aspects of easy
manageability, high security, centralized administer controls, low hardware cost etc.
However it still suffers from some limitations as:

• Inflexibility

A route is fixed like this: all interaction with the application must pass through the
server and then the server responds to get a page reloaded.

• Bandwidth issue

Like any network, the available bandwidth for any user depends on the number of
total users in the network. By thin client all processing need to be carried out by the
server. The increasing user number accompanies with increasing processing
commands and response actions result in network traffic.

• Shortage of application rich interfaces and poor multimedia performance

Graphics intensive applications or multimedia programs which require high levels of
processing may not work well in networks based on thin client because processing is
performed by the server and is shared with the rest of the network. Recent advances
in both processing technology and server technology have improved this to some
extent, but there are some problematic areas e.g. real time applications will encounter
latency on a thin client network [Bect04].

In opposition to thin clients rich clients need less network bandwidth and fewer server
requirements while offering better multimedia performance and possess more flexibility.
By using a client side technology the client’s computer can execute more complex

 5

instructions. Figure 2.1 compares the functionalities between thin client and rich client.
The thin client normally include only presentation engine, thus even the presentation
logic has to be handled by server side. The fat client or rich client can process not only
the presentation logic but some or whole business logic of an application with ease.
Obviously, the load of the server can be effectively reduced.

Figure 2.1: Differences of Rich client and thin client [Dome06]

2.2 Term and Idea of RIA

History of RIA

The concept of Rich Internet Application derives from the relevant influence and benefits
which web brings to the businesses, education and government worldwide with rapid
growth in the past ten years. Even though until now the Internet’s potential as a platform
for commerce, communications, and business automation has to be constrained by the
limitations of today’s user experience. The key to improve the Internet’s potential
concerns two aspects: to deliver end-user more effective experiences through the browser;
and to extend the capabilities of the web to provide richer, more interactive, and more
responsive user interfaces that can be deployed not just to personal computers but across
many portable devices [Macr03]. To meet this requirement, a new generation of internet
applications – Rich Internet Applications – is emerging. Macromedia whitepaper of
March 2002 [Alla02] introduced this term officially. Several years before that the concept
was named like:

• Remote Scripting , by Microsoft, circa 1998
• X Internet, by Forrester Research [Forr06], in October 2000,

 6

• Webtop, coined by Hummingbird Ltd [Humm06] for their DM WebServer
product in February 2002,

• Rich (Web) Clients,
• Rich Web Application

Definition of RIA

Rich Internet Application (RIA) which runs on top of rich client is a combination of web
applications and traditional desktop applications; so that it takes advantages of rich client
technology to offer more intuitive, responsive and effective user experiences on the web.
It combines the media-rich power of the traditional desktop with the deployment
flexibility and content-rich nature of web applications. The client is capable of doing
more than just rendering pages, such as performing computations, sending and retrieving
data in the background asynchronously from the user’s requests, redrawing partial screen,
using audio and video in a tightly integrated manner [Duhl03], and all those can be done
independently from the server or a backend it is connected to. Most RIAs run within a
browser and many run within a web page along with HTML content. Still HTML plays a
big role in delivering content, user interfaces and navigation [Macr03]. RIAs can also run
locally in a secure environment like applets and virtual machines or be “occasionally
connected” wandering in and out of hot-spots [Wiki05].

Spectrum of RIA

The spectrum of potential uses for Rich Internet Application (RIA) is fairly broad. Figure
2.2 explores the scope ranging from externally interactive sites, to customer and partner
facing applications, to internal enterprise and departmental applications.

Figure 2.2: Spectrum of Rich Internet Applications [Duhl03]

 7

Examples of RIA

Here some examples can help to better understand how Rich Internet Applications
advance Internet application development and benefit these areas.

• Broadmoor Hotel: The Broadmoor uses a flash-based Rich Internet Application
to deliver a better user experience for online reservations. While the original
reservation system used five HTML pages, the new system provides a single,
intuitive screen. By moving the reservation from HTML to a rich client
technology, the Broadmoor reduced the average time for their customers to
complete a reservation and increased the number of online reservations
(www.broadmoor.com).

Figure 2.3: Single Screen Interface [Duhl03]

• Google Map: Google Map [Gmap05] features a draggable map that can be

zoomed in to show detailed street information. It is an example of web
applications using Ajax-related approach.

 8

Figure 2.4: Google Map (Hybrid) [Gmap05]

• Yahoo maps: a series of web applications of Yahoo which are based on the
Adobe Flex framework. They enable user to find interactive sites that can provide
maps of cities and towns around the world, driving directions, road trip plans, and
local information. Using those people will feel even easier and more fun to get
where they are going.

Figure 2.5: Yahoo Map [Ymap05]

 9

• Flickr: Using Ajax and Flash technologies this photo-sharing community enables

users to upload hundreds of photos and tag each photo with descriptive words.
Other user can then search on these tags, enabling them to find and comment on
the photos of other users. Flickr’s community and addictive sharing features have
attracted millions of users. Even better, Flickr exposes a rich set of Web services.

Figure 2.6: Flickr [Flic05]

• SAP Analytics Application “Sales Order Credit Check”: SAP Analytics
Application greatly helps to solve business problem in an enterprise. By
combining the SAP NetWeaver integration platform and SAP NetWeaver Visual
Composer with the Adobe Flex the end-user experience are empowered
[CMSW05].

 10

http://en.wikipedia.org/wiki/Digital_photography
http://en.wikipedia.org/wiki/Photo_sharing

Figure 2.7: Running the SAP Analytics Application “Sales Order Credit Check”
[CMSW05]

 11

Architecture of RIA

The typical architecture for an RIA is shown in Figure 2.8. XML is generally used as the
data transfer format and is sometimes also used to describe form layouts. In many
instances, the client can stay connected to the data source, so a server can update the
client in real time. In this case, the green part “Application Controller/Gateway” should
make use rich client technology mentioned later.

Figure 2.8: Typical RIA Architecture [Rour04]

Requirements for Rich Internet Applications

So to deliver successful Rich Internet Application there are three fundamental elements
needed: Rich Client Technology, Server Technology and Development Tools.

• Rich Client Technology

1. Rich client technology is the first key element to make it possible to build Rich

Internet Applications by providing a runtime environment for deploying rich user
interfaces. The client-side applications connect to existing application server
backend using asynchronous client/server architecture. This is secure, scalable,
and well-suited to the new service-oriented model driven by the adoption of web
services. The step of adopting rich client technology will extend capability of
browsers and devices for more effective user interfaces.

2. Macromedia RIA Whitepaper [Alla02] announced most crucial principles which

Rich client technology should follow:

- Integrate content, communications, and application interfaces into a common
environment.

 This means, rich clients should provide deep integration for textual content,

communications functions and user interface.

 12

- Provide an efficient, high-performance runtime for executing code, content and
communications.

 This means, rich clients should realize the limitation of current HTML-based web

application: slow response time, the lack of client-side data storage; the inability
to easily invoke and use remote business logic and improve them.

- Provide powerful and extensible object models for interactivity.

 This means, rich clients need to provide a powerful, object-based model for

applications and events. This common object model must integrate user interface,
communications, and system level services.

- Enable rapid application development through components and re-use.

 This means, rich clients should support powerful component-driven development,

such as providing extensible components, enabling developers to use third party
components and so forth.

- Enable the use of web and data services provided by application servers.

This means, rich clients should provide a model for easily using remote services
provided by back-end components, whether hosted in an application server or
accessed as XML web services.

- Embrace connected and disconnected clients.

This means, rich clients must enable both types of applications (persistent
connections and occasional connections) to be easily built and deployed.

- Enable easy deployment on multiple platforms and devices.

 This means, rich clients must support all popular desktop operating systems, as

well as the emerging device platforms such as smart phones, PDAs, game
consoles, and Internet appliances.

• Server Technology

As the connection between rich clients, application logic and data, The server
technology offer a rapid scripting environment, enterprise integration, client
connectivity, and support for key standards.

• Development Tools

Having a client and server technology would be much less meaningful without a
set of easy and powerful development tools that delivery advanced solutions and

 13

allow one to get started quickly. Rich Internet Applications need a range of
cooperative development tools due to the client/server architecture.

2.3 RIA Solutions

Among RIA solutions here we focus on such major technologies and their features
respectively as:

• Java – Extending rich client
• Ajax Web Framework
• XUL (UI)
• Avalon (now Presentation Framework)
• Adobe Flex 2.0

2.3.1 Java - Extending Rich Client

Java can be used to create almost any rich client imaginable thanks to its solid standards
base, homogeneous technology, flexible choice in high-quality tooling. It offers such
features as: reliability, availability, scalability security and wide platforms.

Java has also very comprehensive support for building form-based UIs. Besides Java
Foundation Classes where the user interface component could be found, there are
amounts of standard widget toolkits (SWT) and a raft of other third-party libraries for
desktops as well as mobile devices. One can deploy applications by using either Java
Plug-In software with a Web browser as an applet or with the newer Java Web Start
technology included with the JRE (Java Runtime Environment).

The main disadvantage of using Java to build RIA is its complexity (even simple forms
and graphics require dozens of lines of nontrivial code). Its advantages include Java's
comprehensive support for web standards and the depth of both the language and its class
library. Java RIA offerings typically follow a thin client approach. What involved issues
in using Java to build RIAs are the JREs (Java Runtime Environment) supported, the UI
libraries employed, and the leverage of Java standards.

2.3.2 Ajax – related Web Frameworks

Definition

 14

Ajax stands for Asynchronous JavaScript CSS DOM and XML and it represents a new
web application model. The name was firstly used by Adaptive Path’s Jesse James
Garrett in his article on AJAX [Garr05]. Particularly, he addressed the usage of
"XMLHttpRequest" object for performing asynchronous communications as a key
enabler. Since then, the term "AJAX" has spread around the world.

At the first glance at its name, it’s not comprised of a single technology, but a
combination of cooperative technologies that can be implemented in a more efficient way:
XHTML and CSS used for standard-based Presentation; DOM (Document Object Model)
used for dynamic display and interaction; XMLHttpRequest used for asynchronous data
retrieval [McLe05]; XML and XSLT [Kay01] used for data interchange and manipulation;
JavaScript [Croc01] used to bind everything together.

Examples

Gmail [Gmai05], Google Map [Gmap05] and Google Suggest [Gsug05] are in argument
as the most popular Ajax based RIA on the Web now. From these applications one can
have hints on possibilities realized by using Ajax. It improved the web to be more
interactive, more responsive, and smarter than ever while no "click, wait, and refresh"
approach anymore.

Advantages

The Ajax model alters classic Web model in two fundamental aspects:

1. "Partial screen update" replaces the "click, wait, and refresh" user
interaction model [Wei05].

 During user interaction within an AJAX-based application, only user interface
 elements that contain new information are updated; the rest of the user interface
 remains displayed without interruption. This "partial screen update" interaction
 model enables continuous operation context and non-linear workflow possible.

2. Asynchronous communication replaces "synchronous request/response
model" [Wei05].

 For an AJAX-based application, the request/response can be asynchronous from
 server interaction. Therefore, the user can continue to use the application while
 the client program requests information from the server in the background. When
 new information comes in, only the related user interface will be updated. Figure
 2.9 and Figure 2.10 draw a clear distinction between the synchronous model of

 15

 the classic web application and the asynchronous model of application on top of
 Ajax.

Figure 2.9: Classic Web Application Model: Full page refresh and Synchronous
Communication [Wei05]

Figure 2.10: Ajax Model: Partial UI Updates and Asynchronous
Communications [Wei05]

 16

Architecture

At the view of Software architecture Ajax Framework differs from classic Web
application architecture by adding an Ajax engine that can be shown in figure 2.11 below.

While running within a web browser of client-side, this Ajax engine enables the browser
to perform a "partial screen update" instead of a "full page refresh" and also
communicates with the server-side in the background, decoupling user interaction from
server communications.

Figure 2.11: Classic Web Application Architecture vs. Ajax Architecture [Wei05]

Limitations

Though Ajax based products appear to be intelligent, it has some unexpected limitations
regarding several aspects:

• JavaScript implementations have not been standardized across browsers and
operating Systems. As a result issues like browser, operating system, version
supporting might be a problem

• JavaScript supports only limited RIA functions. Compared with UI toolkits for

desktop applications the rich UI widgets which can be used by Ajax application
are relatively poor.

 17

• JavaScript is difficult in maintaining and the performance, security limitations are
also challenging in case building large scale Internet applications.

2.3.3 XML UI

XML UI defines an innovative technique meaning User Interface described by XML.
Some of following Frameworks like Adobe Flex, Avalon, are generally based on this idea.
This approach is superior to API-based UI toolkits such as Java Swing because it clearly
separates the user interface into four parts: content, which is the structure and description
of UI elements; appearance, which defines the look and feel of an application; behavior
and localization information for internationalization.

Resource

There are a lot of Open Source XML UI Toolkits in Java [XmlU05]. These frameworks
can save developer much of the code typically needed to build an application. The results
are savings in development time and maintenance costs and greater stability.

XUL Definition

XUL stands for XML UI Language and was pioneered by Mozilla. It is used to create
forms applications running in the Mozilla browser as well as other rendering engines. As
with Java, there is a fairly large user community with plenty of open source tools such as
the Theodore Thinlet Editor, a Java application that allows one graphically to lay out a UI
and generate the corresponding XUL [Rour05].

Advantage and disadvantage

XUL’s advantages include: it has open access to a number of Web standards because it
integrates with the Gecko engine; XUL is very expressive and compact language
compared with other XML UI description languages. As a disadvantage it lacks support
by a major commercial entity.

2.3.4 Windows Presentation Foundation (formerly code name “Avalon”)

Introduction of Windows Vista

Longhorn (now Windows Vista) is the code name for the next major Windows desktop
operating system release to follow Windows XP of Microsoft. The scheduled release date

 18

for Longhorn has been pushed back several times; the operating system is currently
scheduled for release sometime in the latter part of 2006.

Overview of WinFX

From a programmer view of Longhorn, its new programming model names WinFX and it
consists of three components as figure 2.12 shows: Avalon, Indigo, WinFS which
represent the presentation layer, the networking Web service layer and the storage layer
respectively.

Figure 2.12: WinFX [Long06]

Overview of Avalon

As the core portion of presentation layer in Longhorn, Avalon (now Windows
Presentation Foundation) integrates Document, UI elements, Media to provide the
foundation for building Windows applications, Web applications, graphical applications,
and applications running on various devices. The architecture of Avalon is demonstrated
in figure 2.13.

 19

Figure 2.13: Avalon Architecture [Long06]

Avalon (media) integrates both 2-D and 3-D graphic, seamless management of audio files,
features to play video, animated controls and other visual elements. Avalon (Document,
UI elements) supports fixed flow and adaptive layouts, pagination as well as printing.
Because Avalon supports 3-D rendering and the rendering is based on vector graphics,
the hardware requirement is high, especially an appropriate graphics card or updating
previous graphic card is commonly needed.

XAML

• XAML is an XML-based markup language used in Avalon to create User
Interface. It based on the approach of XML UI mentioned in section 2.3.3. XAML
corresponds to the underlying .NET object model.

• Simplest example: Hello World

<DockPanel xmlns="http://schemas.microsoft.com/2003/xaml">
<Text>Hello World</Text>

</DockPanel>

The code above shows that XAML is just XML with a defined schema. The tags
correspond to objects and attributes correspond to properties.

 20

2.3.5 Adobe Flex 2.0 (formerly Macromedia Flex)

Background of Flex

As mentioned above, the phrase “Rich Internet Application” was first addressed by
Macromedia in early 2001 after seeing that developers and designers were building rich
Internet application in Macromedia Flash. Flash is arguably (depending on the Flash
Player version) the most widely deployed front-end technology on the Web, claiming up
to 98 percent penetration across all desktops.

The first complete family of product and technologies dedicated to work together to
deliver Rich Internet Applications is Macromedia MX product, which was announced at
August 2003.

In March 2004 Macromedia released their presentation server and application framework
Flex 1.0, which enables enterprise development teams to put more effective interfaces on
serious business applications. Flex represents new application architecture. This new
approach blends the flexibility of services-oriented data access with the superior reach
and effectiveness of a cross-platform rich client [Flex04].

The announcement of Flex 2.0 is on 2005, almost one year after the release of version
Flex 1.5. The facts reflex that Macromedia is continuously engaging in developing
comprehensive RIA solutions.

Overview of Flex 2.0

Flex 2.0 is actually a new lineup of developer tools, libraries, and runtime services that
will enable developers everywhere to build and deploy Rich Internet Applications that
take advantage of the Flash Player runtime. It also uses an XML-based language called
MXML that provides a declarative way to manage the visual elements of an application.
The framework of Flex 2.0 offers an extensible and customizable class library of pre-built
components, effects, behaviors, and layout managers. Flex compiler is now a part of IDE
- Flex Builder 2.0 (Eclipse based tools) and executes Flex application locally. Therefore
the Flex applications no longer need compiler in the server side [Flex05].

Foundation of Flex 2.0

The product line of Flex 2.0 is based on Flash Player 8.0 (scheduled for release in spring
2006, currently in public beta) and ActionScript 3.0.

• Flash Player 8.5

Flash Player is the backbone of Flash Platform. Its primary function is to be as a
client for playing animation and support for an embedded scripting language

 21

ActionScript (AS), which is based on ECMAScript (the same standard that drives
the development of JavaScript). Adopting the advanced of Flash Player 8.0,
version 8.5 provides great performance not only in the rendering engine, video
supported, and enhancing API, but also improves script execution in the virtual
machine. The new virtual machine is known as AVM2 and promised to be
significantly faster, support full runtime error reporting and industry-standard
debugging. For backward-compatibility reasons AVM1 which executes Action
Script 1.0 and 2.0 codes is included [Wadh05].

• Action Script 3.0

The first version of Action Script is a primitive script language which didn’t even
support variables. Over the years AS has evolved with the update of Flash Player
to an object-oriented programming language.

Action Script 3.0 based on the next generation of ECMAScript standard and
contains a host of new features. The support of Regular expression enables better
operations on text: parsing, validating, processing. ECMAScript for XML (E4X)
transforms XML into a native data type, thus manipulating XML becomes more
natural. The standardized DOM event model gets more unified. Stronger compile-
time type checking is supported, and so forth. The code below shows how to
implement a validating class using RegExp.

Figure 2.14: Regular Expression Example [Regu06]

 22

Involved Technologies in Flex 2.0

Based on Flash Player 8.5 and Action Script 3.0 other technologies of Flex 2.0 Product
line need to be talked about are Flex Framework 2.0, Flex Builder 2.0, Flex Enterprise
Services 2.0, Flex Compiler and Flex Charting Components 2.0.

• Flex Framework 2.0

Flex Framework 2.0 is the core of Flex 2.0. It can be used to build and style Flex
applications without a server or any particular IDE. The major pieces of it are
programming languages (MXML and Action Script 3.0), core application services
and class library, components, compiler and tools.

Framework 2.0 adds a rich set of class library including extensible UI components,
a flexible model for controlling layout and user interaction, and a robust
infrastructure for data binding.

More specifically, the component library Flex 2.0 provides more rich components
(visual components and service components) than before. Support of Rich Text
Editor is an example. One doesn’t have to make it additionally using Flash
authorities tools and import the executed SWF into Flex like in 1.5 anymore.
Developers can directly use these components, subclass them to modify their
behaviors or use component API to create new components. Using MXML to
layout and control an application’s visual look is a flexible approach. The robust
data binding infrastructure enables automatically updates the user interface when
data is returned, allowing applications to remain responsive even when waiting
for results from the server and never lost the context ("Partial screen update").

• Flex Builder 2.0

Based on the Dreamweaver MX 2004 the previous authoring tools for Flex 1.5 is
Flex Builder 1.5. It can provide things like design and code view, syntax
highlighting, simple code hinting, and application preview.

Flex Builder 2.0 has almost nothing in common with Flex Builder 1.5 because it
is build on top of Eclipse. Currently it can be available as a standalone application
or as an Eclipse plug-in that developers can use with theirs existing Eclipse
installation. Features like integrated compiler, code hinting, debugging, and
design view, source control system integration all make development much
simpler. Figure 2.15, figure 2.16 show how these features look like in Flex
Builder 2.0.

 23

Figure 2.15: Flex Debugger [FBui06]

Figure 2.16: Code Navigation [FBui06]

• Flex Enterprise Services 2.0

Flex Enterprise Service 2.0 includes three components: Message Service, RPC
Services and Data Services which are shown in figure 2.17.

Flex Message Service is the foundation of the Flex Enterprise Services and
provides publish/subscribe messaging infrastructure. It is made of two key
components: a message service running in the application server, and a client-side

 24

API. The Flex Data Services automatically synchronizes data manipulated locally
with data on the server.

Figure 2.17: Flex Enterprise Services Architecture [Fent06]

The Flex Enterprise Services enable developers to build “Data-Rich” Internet
Applications that are not only rich in terms of the user interface, but also in terms
of how the data flows between tiers [Coen06].

• Flex Compiler

Although Flex Builder 2.0 and Flex Enterprise Services 2.0 both have the Flex
compiler built in, it can also be used outside of either product. From the command
line the compiler can also be used for compiling MXML or ActionScript
applications.

• Flex Charting Components 2

The Flex Charting Components 2 is an extension to the Flex Framework and
provides very slick data visualization capabilities. Developers can use them with
Flex Builder 2 and Flex Enterprise Services.

Flex Architecture

Architecture is an important issue before building any application. Rich Internet
Applications have the same requirements as any other applications: stability, robustness,

 25

http://labs.macromedia.com/wiki/index.php/Image:Fes_03.jpg

reusability and extensibility. The proven software engineering methodologies and
practices is well-suit for Flex based application too.

MVC architecture

MVC architecture is the well common used design patterns. It promotes the overall
maintainability of an application and the reusability of classes. Using MVC architecture
the entire application will be partitioned into three categories of classes:

• Model classes: classes that encapsulate data and behaviors related to the data;
• View classes: classes that are responsible for the user interface;
• Controller classes: classes, those are responsible for the plumbing.

Loose Coupling of Application Components

Loose coupling of components is another best practice in object-oriented development.
Loose coupling is a programming technique that consists in avoiding interdependencies
between classes, so that it can increase the reusability of components throughout an
application and across applications.

In Flex based applications it’ better to use event notifications between components and
avoid direct reference to other components.

Besides these there are many other design patterns and best practice can be applied to
Flex Applications. But it doesn’t mean the more design patterns used in an application,
the more better the application works. Capturing the requirements of an application and
then applying appropriate design patterns are essential.

Cairngorm Framework

Cairngorm is an open-source architectural framework which can be used as a skeleton for
development of RIAs. It was released by a software consultancy: iteration::two [Iter05].
Cairngorm Framework borrows a small number of relevant design patterns from the core
J2EE Patterns advocated by Sun Microsystems and reassembles them in order to provide
microarchitecture for the declarative programming model of Flex. The fundamental
patterns introduced in the Cairngorm architecture are the Value Object pattern and the
Model Locator pattern. Three key areas addressed by Cairngorm are [Webs06]:

• Handling user gestures on the client
• Encapsulating business logic and server interactions
• Managing state on the client and representing this state to the user interface

 26

2.4 Comparison

The comprehensive introductions in section 2.3 coved the current popular RIA solutions:
Java, XML UI, Ajax-related web framework, Avalon, and Adobe Flex framework.

Basically, these approaches all fulfill RIA technologies requirements (see section 2.2)
and have successful examples in different fields. Substantially, they vary in their
technical foundation and their suitability for specific problems. Therefore, an objective
evaluation will be helpful in choosing an appropriate approach to build web application.
Table 1 uses several essential factors from the aspects of business and technology like
cost, functionalities provided, and richness of UI etc. to differentiate these technologies.

 Java XUL Ajax Flex 2 Avalon

C
os

t

Open source

Open source

Open source

Commercial
product, Flex
Builder 2 will
be sold for less
than $1000 per
developer.

Commercial
product, cost
money

M
at

ur
e

fu
nc

tio
na

lit
y

Reliability,
availability,
scalability
and security

very mature

Performance and
functionality are
limited due to
JavaScript

Mature
application
framework both
in user
experience and
code
maintainability

Comprehensive
functionalities

U
I r

ic
hn

es
s

high-level
libraries
(Swing,
JFace)

a powerful
set of user
interface
widgets

Available rich
visual
components are
poor and only
supports parts of
all RIA functions

as rich as
traditional
desktop
applications

abandon visual
components
provided

M
ed

ia

su
pp

or
te

d

Java Media
Framework
API.

Limited
supported

Supported only
through external
plug-ins (like
Media Player).

Dynamically
load audio,
embedded flash
audio

Powerful media
services
embedded

 27

http://www.macromedia.com/macromedia/proom/pr/2005/announcing_flex2.html
http://www.macromedia.com/macromedia/proom/pr/2005/announcing_flex2.html
http://www.macromedia.com/macromedia/proom/pr/2005/announcing_flex2.html
http://www.macromedia.com/macromedia/proom/pr/2005/announcing_flex2.html
http://www.macromedia.com/macromedia/proom/pr/2005/announcing_flex2.html

B
ro

w
se

r
In

te
gr

at
io

n

as applet in
a browser

mainly
running in
Mozzila

JavaScript
natively
supported by
modern browsers.

Flash Player
plug-in
required.

No plug-in
needed

B
ro

w
se

r
C

om
pa

tib
ili

ty

Cross
platforms

Cross
platforms

Major
compatibility
differences
between browser
versions.

Cross platforms

Cross platforms

Pr
og

ra
m

m
in

g
M

od
el

Java

XBL

JavaScript, XML

MXML and
Action Script
3.0

XAML

Se
rv

er

in
te

gr
at

io
n

Many
solutions
available.

Limited.
With PHP
server

Limited.
Dynamically with
server using
XMLHttpRequest
Object.

Enterprise
Services 2
provides
powerful
mechanism

Many solutions
available.

X
M

L

su
pp

or
te

d
full support

full support

full support

full support

full support

D
ev

el
op

m
en

t t
oo

ls

Eclipse

plenty of
open source
tools such
as the
Theodore
Thinlet
Editor

No ideal
development
tools available
currently

Flex Builder 2.0
can be available
as a Eclipse
plug-in.

Visual
Studio .NET
IDE

Table 1: Comparison of RIA Technologies

 28

From the final comparison of their features Flex 1.5 (Flex 2.0 was not released at that
time) was chosen here to perform implementation because it fulfils all requirements of
the Social Organizer and thus provides user real breakthrough visual effects and
comprehensive rich functionalities.

 29

3 Social Organizer UI Analysis and Design

This chapter explains the concept of User-Centered Social Software and describes the
developing process of the prototype system Social Organizer in detail: the architecture,
the information model and the implementation of the UI. After reading this chapter it is
clear that how Flex Framework discussed in the previous chapter benefits the application
Social Organizer in many ways.

3.1 Background of User-Centered Social Software

On the Internet, several types of multi-user platforms exist that can be accessed by users
role-based and device-independently. Besides centralized software systems like
enterprise information portals, in which all information is managed at a single location,
individual users increasingly become members of several community platforms like
social software (section 3.1.2) that focus on information search, publication and sharing
support for their members. Thus, personal information is distributed across multiple
platforms in addition to personal devices and applications [LMW05].
The idea behind User-Centered Social Software is therefore to provide a unified view
on all available information and services in the social context of the user. Services of
social software are integrated for supporting use cases like searching, sharing and
organizing information across multiple platforms [LMW05]. The prototype application of
such user-centered social software is referred to as the Social Organizer in this report.

IC
Q

SOAPSync

Sync

R
S

S

FOAF
SMTP

S
yn

c

HTTP

Figure 3.1: Scenario for User-Centered Social Software [Lehe05]

 30

Figure 3.1 illustrates this idea more clearly. People store and manage personal
information in various devices (PDA, Laptop, and PC etc.). They are also members of
different community platforms and share some contents there. Different contents are
linked together through the same social context. Contacts are built up because context
groups people in a community. All of the information, which is located inside or outside,
needs to be well organized and synchronized with each other. Therefore, as an extension
of personal information management (PIM) and client software on the personal device
the Social Organizer enables user to organize information in a social way that is in the
social context of the user.

3.1.1 Social Software

Social Software, which enables individuals and groups to interact, collaborate and form
online communities through computer-mediated communications, has become relatively
popular during the last years. Weblogs, Social Networking Services and Object-Centered
Social Software are the newly emerging classes of this kind of services.

Weblogs make publishing of personal knowledge and information easy.

Social networking services allow people to build up and manage contact networks on a
community platform. Well-known communities are LinkedIn [Link06] in the USA and
OpenBC [Open06] in Europe. New contact or relationship of members from different
communities can be set up by means of viewing the path of indirect contacts.

Object-Centered Social Software provides users the opportunity to perform series of
activities like to store, organize, and share their individual collections of objects. Objects
can be different types of contents: documents, bookmarks, references, multimedia files
etc. Users can freely choose keywords (tags) to classify their collections into different
categories. The keywords chosen by a member represent shared metadata and context
information about this user in the community [Lehe05]. Well-established examples are
Del.icio.us [Deli05] for bookmark sharing and Flickr [Flic05] for photo sharing. Unlike
social networking services, this kind of community platforms try to group people around
shared objects, resulting in different kinds of social groups in a community.

Figure 3.2 shows where all bookmarks that are tagged with “km” in del.icio.us. The
related tags here “tools”, “wiki”, “toread”, “knowledge management” etc. describe
different meanings as “km” by individuals and have more common meaning than “km”
in public. It also shows how many other users are interested in the same bookmark and
their feedbacks.

 31

Figure 3.2: Del.icio.us [Deli05]

The benefits of this collaborative tagging service are: Individuals can access their own
bookmarks, classify contents in social contexts, learn about new content from others’
posts feedback, and find people through shared contents. In the network new vocabularies
can be established.

3.1.2 Use Cases of UCSS

Figure 3.3 shows a view of User-Centered Social Software as an extension of Personal
Information Management. In this section the information workflow with its specific
meanings will be explained, which are the fundamental concepts for the implementation
of the Social Organizer user interface.

Content here contains different types of objects such as text files, RSS feeds, contacts etc.
or even notes, annotations that can be used as private or public (to publish on certain
social software systems in the future). The context links together content and contacts and
defines the way how to share these objects.

 32

According to the technical report on User-Centered Social Software-Beyond Closed
Community Platforms in 2005 [LMW05] Social Organizer is proposed to support
bidirectional information processes. The information flow in figure 3.3 depicts these
processes:

The use cases of the Collect process are the following: finding a specific content object
by its URI, searching content locally or externally using keywords, browsing content,
subscribing in order to automatically collect contents, getting feedback of content
published on communities, or synchronizing equivalent versions of content automatically.

The Organize process means, that the user can classify a content by giving it specific
context definition, link a content semantically to another content, store a content
persistently on his personal devices, annotate a content, rate the content from his personal
view, or create and delete content etc.

The Share process describes how a user publishes contents and shares them with contacts
in a controlled way.

The Learn process will be accomplished in the way the user receives feedback from
others and also gives feedback to his contacts.

In section 3.3 some of above mentioned processes are shown in detail.

Figure 3.3: User-Centered Social Software as an Extension of Personal Information
Management [Lehe05]

 33

3.2 Design Considerations for the Social Organizer

3.2.1 Architecture Overview

Figure 3.4 shows the distributed content syndication architecture of user-centered social
software – Social Organizer. In this SEP period, the UI of the Social Organizer was
implemented with Flex 1.5.

Figure 3.4: Architecture Overview of the Social Organizer [Lehe06]

The user interface is designed to allow individuals to manage all their information by
personal devices and on social communities simultaneously. In this work most of the
User Interface, some of Business Logic Component are involved and implemented as
well. As Information Repository the local shared object (see Section 3.3.1) mechanism
was used. The information stored in the repository can only be accessed by the local user
since it resides on the personal device.

 34

3.2.2 Information Model

The information model of the Social Organizer is demonstrated in Figure 3.5. According
to the requirements of the user interface, the relevant classes have been implemented in
the model package. These classes are Annotation, CommunityPlatform,
Contact, ContentProvider, ContentRef, ContentType, TaskContext,
Portfolio, and Tag (with blue border colour). Their association relationships have
following meanings:

A CommunityProvider can manage a set of ContentRef objects each of which has
a ContentType that can be associated with multiple ContentRef instances. The
CommunityPlatform extends the abstract class CommunityProvider and can be
associated to several TaskContext instances; A TaskContext can contain multiple
Portfolio instances which contain ContentRef objects; multiple instances of
Annotation can be associated with a ContentRef object; Concerning context
information, multiple ContentRef objects can be classified by one Tag whereas one
ContentRef can be given multiple Tags;

Figure 3.5: Information Model of the Social Organizer [Lehe06]

The functions which perform data manupulation, data management like to read and
process xml data, to mapping them into relative model classes, or to retrieve data
collection based on various criteria are wrapped explicitly in classes Annotations.as,
CommunityPlatforms.as, Contacts.as, ContentProviders.as,
ContentRefs.as, ContentTypes.as, Contexts.as, Domains.as,

 35

Links.as, LinkTypes.as, Portfolios.as, Propertys.as,
PropertyTypes.as, Tags.as. These AS classes are included in the dataWrapper
package. Instances of these classes can be used directly to execute data logic. The
default data, which the application uses, should come from server side in the future. But
in the meantime of UI implementation a set of xml files are proposed to model this
process. They are all available in the serverData package.

3.3 Implementation of the Social Organizer User Interface

Figure 3.6: User Interface of the Social Organizer

The user interface of the Social Organizer is shown in Figure 3.6. The interface is
contained within a Panel layout, adding a MenuBar and a vertical two-panel layout to

 36

show the summary of search transactions, and as an example for the extension of search
outside a panel containing images searched at Flickr [Flic05].

Implementation of the main panel

As mentioned in the previous chapters, flex adopts this idea, which uses xml to descript
and create user interfaces, but with its own xml language (mxml) as described in Chapter
2.

All files that concern visual interface are in the ucss/view package except index.mxml
which assembles all classes together.

The code below is a part of index.mxml and used here as an example to give an overview
of visual composition.
<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:s="view.searchPanel.*"

xmlns:com="flickrAPI.com.macromedia.flickr.*"

xmlns:fui="flickrAPI.ui.*" >

<mx:Script source="index_script.as"></mx:Script>

<mx:Panel id="wholePanel" title="Social Organizer" status="UCSS">

 <mx:Model id="menulist" source="config/menudata.xml"/>

 <mx:MenuBar id="menuB" change="changeItem(event)"

 dataProvider="{menulist.menuitem}" initialize="menuItemInit()"/>

 <mx:VDividedBox>

 <mx:HBox id="searchComp">

 <mx:Accordion id="search">

 <mx:TabNavigator label="Search Inside" id="tnIn">

 <s:searchIn id="searchPanelIn"/>

 </mx:TabNavigator>

 <mx:TabNavigator label="Search Outside" id="tnOut">

 <s:searchOut id="searchPanel"/>

 </mx:TabNavigator>

 </mx:Accordion>

 </mx:HBox>

 <mx:Panel id="galleryPanel" title="Photo Gallery: {galleryTitle}">

 <fui:Gallery label="Gallery" id="imageGallery"/>

 <mx:ControlBar id="bar">

 <mx:Label text="{galleryStatus}"/>

 <mx:Spacer width="10" />

 <fui:GalleryProgressBar id="progressBar"/>

 <mx:Spacer width="10" />

 <mx:Label text="Pages:" />

 <mx:NumericStepper id="pageStepper"/>

 <mx:Link id="goButton2"/>

 37

 <mx:Link label="Sebis User-Centered SocialSoftware"/>

 </mx:ControlBar>

 </mx:Panel>

 </mx:VDividedBox>

</mx:Panel>

</mx:Application>

MXML is an XML 1.0 language. Every MXML file should begin with an XML
declaration :<?xml version="1.0"?>. The xmlns attribute declares an XML
namespace. Namespaces mechanism enables using multiple XML tags within a single
XML document. Flex uses the namespaces of custom components to locate those
components in its classpath. The :mx namespace here is a standard one for the MXML
class library and is included in every MXML file. The :s refers to the directory where
custom classes – Search Components – reside .

The id attribute is available for nearly all Flex classes which can be used to provide a
unique identifier for an instance of the class. An explicit id value is required unless this
object is to be referred in data bindings or ActionScript.

Generally the visual components of a Flex application are placed inside containers, which
provide bounding boxes for text, controls, images, and other elements. Here, the Panel
container is used to provide the overall visual wrapper. The title attribute of the Panel is
automatically included at the top of the panel therefore can be used to display title text in
a title bar. In this case they are called “Social Organizer”.

Inside panel there are two blocks divided: MenuBar and VDividedBox. MenuBar
displays the menu texts from menudata.xml through the faceless component Model.
VDividedBox features the resizing effect between its child containers; here are a HBox
and a gallery Panel.

A Container called Accordion enables only one of its child containers to be visible at one
time. Figure 3.6 show that the current visible element is Search Inside. TabNavigator can
also consist of a collection of child containers and help guide the user navigate by using
its TabBar. SearchIn is placed as a child of the TabNavigator and it is a reused custom
component. Some functions implemented in searchIn.mxml like newTab() provide to
dynamic generation of this component.

The example Photo Gallery is the downside part of the VDividedBox. It contains a
custom class named Gallery which will display the thumbnail images resulted from the
search query in Search Outside, and a ControlBar which can include a set of visual
elements like Label, Link, etc. In figure 3.3 the photos displayed are from Flickr with
search keywords “social software”.

Another essential part of MXML file is its <mx:Script/> tag. Functions and attributes
of a Flex class can be declared between this tag or in an external ActionScript file. Latter
need to be imported using the source attribute of Script.

 38

3.3.1 Search Inside Panel

Figure 3.7: Search inside Panel

Component-based building mechanism

Components are the building blocks of all Flex applications – from navigator containers,
to layout containers like HBox, to the controls such as Links introduced in the last section.
They define what is seen by the user and how the user can interact with the application.

There is already a broad range of components shipped with Flex, but it’s also necessary
to create own components sometimes. Flex’s component architecture makes it possible
to build custom components and provides two different ways to do so: either via pure
MXML or through creating an ActionScript 2 class. Which strategy to use is up to the
developer and the specific problem, but empirical methods should be taken into
consideration before going down a certain path. Creating custom components in MXML
is a faster process, but the flexibility of a class-based development environment in which
functionality can be encapsulated into multiple classes, increasing reusability across the
custom components and testing these components using unit testing frameworks are lost.
Therefore MXML-only components have minimal reusability. Outside of the Flex
environment brand new components can also be built by Flash MX 2004 and reused by
Flex.

Layout description

 39

The Search inside Panel displayed in Figure 3.7 was implemented as class
searchIn.mxml that mixes the two solutions, creating an MXML component that utilizes
ActionScript classes.

Inside searchIn.mxml there is another reusable MXML component named
Suggest.mxml, which performs Google suggest [Goog05] - alike functionalities if user
enters keywords in the TextInput control.

Functionalities

Search queries can be collected from keywords of user inputs or take from suggestion list,
and the content type selected from a combo box, or the specific date from date
component. The results will be shown in the DataGrid component below. The DataGrid
has a list of predefined contents available for the user to select from, but they will also be
able to add new entries to the DataGrid, which can be persisted to a local shared object.
Multiple Content can be selected from the DataGrid, dragged and dropped into trashcan,
added to some portfolio (“Add” button), viewed included metadata in a new window
(“Show” button). The “Get similar content” button can open the Search outside Panel,
dynamically generate a new tab and then get search results there which are contents that
are similar to the selected ones. The button “Get related content” will create a new Search
Inside tab and show result there. Some effective features can be found in the DataGrid
such as some personalized columns with icons or links, checkboxes or images or combo
boxes. They are ActionScript classes that can be referenced to the cellRenderer attributes
of the corresponding DataGridColumn component. The code blow shows an example.
ComboBoxCellRenderer.as extends UIComponent and implements the CellRenderer
API of Flex.

<mx:DataGridColumn columnName="comboData" headerText="Setting"
cellRenderer="{ucss.utils. ComboBoxCellRenderer}">

All customized CellRenderer Classes for the application Social Organizer reside in the
utils package, they are: CheckCellRenderer.as, ComboBoxCellRenderer.as,
HyperlinkCell.as, IconsCellRenderer.mxml, LinkCellRenderer.as,
RatingCellRenderer.mxml, TileCellRenderer.as.

Local Shared Objects

Local shared objects are generated by the web browser’s flash player and used by Flex to
store persistent data on the client machine. The data permitted to store are simple types
like Number, String, Boolean, XML, Array or Object, but not functions or Movie Clips.
The default capacity is 100kb. Beyond the limit the user will be prompted to allow more
data to be stored locally by means of flash player configuration tools. At the initiation of
the application, corresponding shared objects can be generated under Application
Data\Macromedia\Flash Player\ directory:

 40

CommunityManager.sol : object converted from preCommunities.xml
ContentManager.sol : object converted from preContentsRefs.xml
ContentTypeManager.sol : object converted from preContentTypes.xml
ContextManager.sol : object converted from preCommunities.xml
PortfolioManager.sol : object converted from prePortfolios.xml
TagsManager.sol : object converted from preTagLib.xml

After that the system accesses the requested data from these shared objects and saves
modified data to these shared objects.

RIA Features

Every component has a built-in toolTip attribute. Text can be added to explain the
function of this component thus the application seems friendly to users.

3.3.2 Search Outside Panel

Figure 3.8: Search outside Panel

 41

In search outside panel user can collect contents from online communities through
various social software services and display them with metadata in the DataGrid. The
columns of the DataGrid are dynamically changeable when the user selects a content type
from the combo box above. This means, the Social Organizer defines different metadata
to display for each content type. Figure 3.8 shows the current search keyword-“social
software”. By invoking corresponding Flickr service API all images tagged with “social
software” are retrieved and displayed in the DataGrid. The User can double click any
item of this DataGrid to view it in a popup window or to add it to the repository of the
Social Organizer.

3.3.3 Content Panel

A number of tabs offer the opportunity to perform operations on the currently selected
content – such as handling annotations, previewing this content, viewing metadata or
modifying certain of them, publishing this content on some communities, checking the
feedback from others. By default the six tabs are created for all kinds of content, but they
can also be configured at the menu: Options -> Display

A look of content panel is shown in Figure 3.10. It has been set to display all these tabs
for a document file.

Figure 3.9: Display Panel

 42

3.3.3.1 Annotation Tab

The use cases in the annotation tab are:

Creating a new annotation by clicking the symbol “+”; deleting an annotation by clicking
the symbol “-”; an existing annotation can be editable after clicking the “Edit” button,
saving current annotation by clicking the “OK” button. Setting an annotation as private
results in the invisibility of the “Post as Feedback” button, otherwise an annotation can be
also published as feedback.

Figure 3.10: Annotation Tab

3.3.3.2 Preview Tab

For different content types corresponding preview tabs will be dynamically generated.
Figure 3.11 is an example for content type: image. Figure 3.12 is an example for content
type: document.

 43

Figure 3.11: Preview Tab for selected Content Type: Image

Figure 3.12: Preview Tab for selected Content Type: Document

 44

3.3.3.3 Details Tab

Details tab shows a list of metadata of the selected content. Some metadata such as rating
and tags can also be modified. The tags input area uses the same component
Suggest.mxml as in search inside panel and search outside panel. The user can scroll up
and down to select a description to define this content or insert a new vocabulary. In the
future the function of this Suggest component could be better enhanced. For example, if
the inserted words are new to the system, they should be remembered and appear in the
drop down list the next time.

Figure 3.13: Details tab

3.3.3.4 Publish Tab

 45

The publish tab displays a DataGrid to show the publishing community platforms and the
corresponding information. Figure 3.14 shows the appearance of one publish tab. By
clicking the “Publish” button below the selected items can be published to other systems.

Figure 3.14: Publish Tab

3.3.3.5 Feedback Tab

Figure 3.15: Feedback Tab of a Weblog Entry

 46

By integrating appropriate services of community platforms in the Social Organizer, the
user can get feedback automatically. Concerning the user interface for this use case,
feedbacks are listed in the DataGrid that contain a preview of the comment text. When
clicking the link of comments as shown in Figure 3.15 user can navigate to see the whole
comments posted on the related community platforms.

3.3.4 New Community Platform Window

New community platform panel is a popup window comprising a form-based layout. Flex
provides a set of built-in validation classes such as StringValidator, DateValidator,
CreditCardValidator etc. to simplify the processing of data input detection and data
validation. These classes can be found in the package mx.validators of the ActionScript
API. Figure 3.16 shows an example using StringValidator and the red marked parts
prompting the user that they are not allowed to be left empty before finishing operations.
As well as the Flex data validation mechanism, custom validation logic can also be
applied to perform this process.

Figure 3.16: New Community Platform Window

 47

3.3.5 Look and Feel of the Application Social Organizer

Styles are useful for defining the look and feel (appearance) of an application. The
common “Halo” appearance (see Figure 3.17) of Flex components can be modified
individually or unified through style properties. The latter needs to be defined once and
then applied it to all. The Flex Style Explore [Expl05] implemented by Flex consulting
group is a comprehensive online application for better understanding and operating styles
in Flex.

.

Figure 3.17: A Simple Application with “Halo” Style [Expl05]

CSS

Using Cascading Styles Sheets (CSS) specification to change the style of a document or
entire applications is the most convenient means which Flex supports, but least flexible.
Style Sheets can define global styles that are inherited by all controls, or individual
classes of styles for certain controls. The following example applies the external style
sheet mac_osx.css to the application Social Organizer. The Macintosh style can be
explored from previous introduction of the user interface.

<mx:Style source="ui_css/mac_osx.css"/>

Flex includes a global style sheet defined in the flex-config.xml that is the basis of all
style definitions applied to all applications. By default, this global style sheet has no style
definitions, but it provides a convenient location to define them.

Themes and Skins

Furthermore, themes and skins can also be applied to the style of an application
conferring more flexibility. Using the theme property of the <mx:Application> tag a

 48

single theme can be applied to the Flex application. The following example applies the
mac_osx.swc theme to the application Social Organizer:

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" theme="
ui_css/mac_osx.swc ">

3.3.6 Deployment of the Application Social Organizer

HTML Wrapper

At sending a MXML request to the browser, the default behavior is for Flex to return an
HTML wrapper pointing to a generated SWF file. In this case the generated SWF for the
Social Organizer is index.mxml.swf which can be found in the source code of the
HTML file. This HTML wrapper includes supports for history management and could
be used as a template for creating a customized wrapper in the future.

Precompiling SWF files

Precompiling SWF files from MXML source code can be done by using the mxmlc
compiler or requesting them in a browser and then saving the generated files.
Precompiled SWF file can be simply added later to any existing dynamic or static web
page by adding the HTML wrapper needed.

Requirements of the Deployment

The platform used in this developing process is Microsoft Windows XP Professional. The
Java version used is JDK 1.5.0. The IDE applied here is Flex Builder. The software
chosen here is Flex 1.5. Flex is a J2EE web application that can be installed as a Web
Application Archive (WAR) file to any supported Java application server. Flex includes
the following WAR files:

• flex.war — The primary Flex WAR file
• samples.war — Sample Flex applications
• profiler.war — Debugging application for use with Flex

Since I select to install Flex to an integrated Java Application Server (JRun 4.0), it is
needed is to deploy these Flex WAR files to JRun4/servers/default directory before start
building Flex applications. Similarly, if using Tomcat as the application server, these
Flex WAR files should be deployed to Tomcat/webapps directory. Besides, Flash Player
7.0.14 or later should be installed in the system as well.

 49

To view the application Social Organizer, run the following link in the browser (if using
JRun):

http://localhost:8700/flex/SocialOrganizer/index.mxml

 50

http://localhost:8700/flex/SocialOrganizer/index.mxml

4 Conclusion and Outlook

This chapter summarizes the experiences and draws some conclusions in order to make
better use of RIA technologies to improve the features of the Social Organizer.

4.1 Conclusions

Rich Internet Applications can address the challenge which traditional web application
couldn’t achieve and therefore draw a promising future for the improved user experience
upon their internet activities. This benefit has been shown by more and more successful
RIAs emerging on the web. There are already several RIA solutions available currently as
choices depending on the specific problem.

This report covers the various RIA solutions, analyzes their features and shows their
advantages as well as disadvantages in different aspects. The references presented are
purposed to contribute in building and architecting Rich Internet Applications.

Furthermore, as best practice Adobe Flex 1.5 was chosen to develop the user interface of
the Social Organizer – a user-centered social software as an extension of personal
information management. From the user interface introduced in section 3 it is seen that
Flex 1.5 benefits the implementation of the Social Organizer UI. Even though some
issues like inconvenienced debugging and code hunting exist in Flex 1.5, they are solved
in Flex 2.0. From the developers’ point of view, using Flex is an efficient way to create
applications with rich user experiences.

4.2 Outlook

The above considerations present the starting point. Along with the announcement of
Flex 2.0 some new considerations need to be taken into account. Comparing with formal
versions the new generation seems to be more matured and attractive in a number of
aspects such as: abundant build-in UI components, rich collection of class libraries,
enterprise services, development environment, programming language, and conjunction
with Ajax technologies. The Social Organizer can step by step adopt these new
advantages of Flex 2.0. Some already existing frameworks like Cairngorm framework
[Cair05] - microarchitecture (collection of design patterns) for RIAs [Webs06], FAST
framework providing application services for logging and tracing, and value-adding class
libraries extending the Flex Framework's own implementation of RPC data services in
Flex 1.x [FAST05], and Flex Unit Testing Framework [Unit05] greatly improve the
Social Organizer and other large scalable RIAs.

 51

5 Reference Materials

[Alla02] Jeremy Allaire: Macromedia Flash MX – A next generation rich client,

http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf,
Access: June 2005.

[Bect04] Becta: Thin client networking

http://www.becta.org.uk/subsections/foi/documents/technology_and_educ
ation_research/thin_client.pdf#2, Access: October 2005.

[Cair05] Cairngorm framework,

http://www.iterationtwo.com/open_source_cairngorm.html, Access:
December 2005.

[Coen06] Christophe Coenraets: Publish/Subscribe Messaging and End-to-End

Persistence for Rich Internet Applications,
http://labs.macromedia.com/wiki/index.php/Flex_Enterprise_Services:ove
rview, Access: January 2006.

[CMSW05] Christophe Coenraets (Macromedia), Vincent Mendicino (SAP), Natalia

Shmoilova (SAP), Dirk Wodtke (SAP): Creating Next Generation SAP
Analytics Applications with SAP NetWeaver and Macromedia Flex,
http://www.macromedia.com/software/flex/whitepapers/pdf/sap_flex.pdf,
Access: February 2005.

[Croc01] Douglas Crockford: JavaScript:

The World's Most Misunderstood Programming Language,
http://www.crockford.com/javascript/javascript.html, Access: August
2005.

[Deli05] Del.icio.us, http://del.icio.us, Access: May 2005.

[Dome06] Marc Domenig: Rich Internet Applications and AJAX - Selecting the best

product, http://www.javalobby.org/articles/ajax-ria-overview/, Access:
January 2006.

[Duhl03] Joshua Duhl: Rich Internet Applications,

http://download.macromedia.com/pub/solutions/downloads/business/idc_i
mpact_of_rias.pdf, Access: April 2005.

[Expl05] Flex Style Explorer

http://weblogs.macromedia.com/mc/archives/FlexStyleExplorer.html,
Access: October 2005.

 52

http://www.iterationtwo.com/open_source_cairngorm.html
http://weblogs.macromedia.com/mc/archives/FlexStyleExplorer.html

[FAST05] Flex Application Starter Toolkit,
http://www.macromedia.com/devnet/flex/articles/fast_userguide.html,
Access: December 2005.

[FBui06] Flex Builder 2.0,

http://labs.macromedia.com/wiki/index.php/Flex_Builder:overview,
Access: January 2006.

[FEnt06] Flex Enterprise Services,

http://labs.macromedia.com/wiki/index.php/Flex_Enterprise_Services,
Access: January 2006.

[Flex04] Press Releases,

http://www.macromedia.com/macromedia/proom/pr/2004/flex_available.h
tml, Access: October 2005.

[Flex05] Press Releases,

http://www.macromedia.com/macromedia/proom/pr/2005/announcing_fle
x2.html, Access: October 2005.

[Flic05] Flickr, http://www.flickr.com/, Access: September 2005.

[Forr06] Forrester Research, http://www.forrester.com/my/1,,1-0,FF.html, Access:

January 2006.

[Gmai05] Gmail, http://www.gmail.com/, Access: February 2005.

[Gmap05] Google Maps, http://maps.google.com/, Access: February 2005.

[Gsug05] Google Suggest, http://www.google.com/webhp?complete=1&hl=en,

Access: October 2005.

[Garr05] Jesse James Garrett: Ajax: A New Approach to Web Applications,

http://www.adaptivepath.com/publications/essays/archives/000385.php,
Access: October 2005.

[Humm06] Hummingbird Ltd, http://www.hummingbird.com/index.html?cks=y,

Access: January 2006.

[Iter05] iteration:: two, http://www.iterationtwo.com/open_source_cairngorm.html,

Access: October 2005.

[Kay01] Michael Kay: What kind of language is XSLT?

http://www-128.ibm.com/developerworks/xml/library/x-xslt/?article=xr,
Access: October 2005.

 53

http://www.macromedia.com/devnet/flex/articles/fast_userguide.html

[Lehe05] Vanda Lehel: User-Centered Social Software – Beyond Closed
Community Platforms (slides), Chair sebis in TUM, 2005

[Lehe06] Vanda Lehel: User-Centered Social Software - Model and Characteristics

of a Software Family for Personal Information Management (slides), Chair
sebis in TUM, 2006

[LMW05] Vanda Lehel, Florian Matthes, Sheng Wei: User-Centered Social Software

– Beyond Closed Community Platforms, Chair sebis in TUM, June 2005.

[Link06] Linkedin, http://linkedin.com, Access: January 2006.

[Long06] Longhorn, http://msdn.microsoft.com/longhorn, Access: January 2006.

[Macr03] Macromedia whitepaper: Developing Rich Internet Applications with

Macromedia MX 2004,
http://www.macromedia.com/devnet/studio/whitepapers/rich_internet_app
s.pdf, Access: October 2005.

[McLe05] Drew McLellan: Very Dynamic Web Interfaces,

http://www.xml.com/pub/a/2005/02/09/xml-http-request.html, Access:
September 2005.

[Open06] OpenBC, https://www.openbc.com/, Access: January 2006.

[Regu06] Regular Expression,

http://labs.macromedia.com/svn/flashplatform/?/projects/actionscriptsampl
es/tags/0_1_0/src/actionscript3/regularexpressions/RegularExpressions/,
Access: January 2006.

[Rour04] Cameron O'Rourke: A Look at Rich Internet Applications,

http://www.oracle.com/technology/oramag/oracle/04-
jul/o44dev_trends.html, Access: November 2005.

[Unit05] Flex open source Unit Testing Framework,

http://www.iterationtwo.com/open_source_flexunit.html, Access:
December 2005.

[Wadh05] David Wadhwani: Flex 2.0: Enabling the Next Generation of Rich Internet

Applications,
http://www.macromedia.com/devnet/flex/articles/flex2_intro.html, Access:
December 2005.

[Webs06] Steven Webster: Developing Flex RIAs with Cairngorm Microarchitecture,

http://www.macromedia.com/devnet/flex/articles/cairngorm_pt1.html,
Access: January 2006.

 54

http://www.iterationtwo.com/open_source_flexunit.html

[Wei05] Coach K. Wei: AJAX: Asynchronous Java + XML?

http://www.developer.com/design/article.php/3526681, Access: December
2005.

[Wiki05] Rich Internet Application,

http://en.wikipedia.org/wiki/Rich_Internet_Application, Access:
September 2005.

[XmlU05] Open Source XML UI Toolkits in Java, http://java-source.net/open-

source/xml-user-interface-toolkits, Access: December 2005.

[Ymap05] Yahoo Maps, http://maps.yahoo.com/, Access: August 2005.

 55

	 Introduction
	1.1 Aims of this Report
	1.2 Organisation of this Report

	2 Rich Internet Applications
	2.1 Limitations of Traditional Web Applications
	2.2 Term and Idea of RIA
	2.3 RIA Solutions
	2.3.1 Java - Extending Rich Client
	2.3.2 Ajax – related Web Frameworks
	2.3.3 XML UI
	2.3.4 Windows Presentation Foundation (formerly code name “Avalon”)
	2.3.5 Adobe Flex 2.0 (formerly Macromedia Flex)

	2.4 Comparison

	3 Social Organizer UI Analysis and Design
	3.1 Background of User-Centered Social Software
	3.1.1 Social Software
	3.1.2 Use Cases of UCSS

	3.2 Design Considerations for the Social Organizer
	3.2.1 Architecture Overview
	3.2.2 Information Model

	3.3 Implementation of the Social Organizer User Interface
	3.3.1 Search Inside Panel
	3.3.2 Search Outside Panel
	3.3.3 Content Panel
	3.3.3.1 Annotation Tab
	3.3.3.2 Preview Tab
	3.3.3.3 Details Tab
	3.3.3.4 Publish Tab
	3.3.3.5 Feedback Tab

	3.3.4 New Community Platform Window
	3.3.5 Look and Feel of the Application Social Organizer
	3.3.6 Deployment of the Application Social Organizer

	4 Conclusion and Outlook
	4.1 Conclusions
	4.2 Outlook

	5 Reference Materials

