
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Assessing the Cost and Benefit of a
Microservice Landscape Discovery Method

Ludwig Achhammer

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Assessing the Cost and Benefit of a
Microservice Landscape Discovery Method

Bewertung der Kosten und des Nutzens
einer Methode für die automatisierte

Rekonstruktion von Microservice
Architekturen

Author: Ludwig Achhammer
Supervisor: Prof. Dr. rer. nat. Florian Matthes
Advisor: M.Sc. Martin Kleehaus
Submission Date: 15.10.2019

I confirm that this master’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, 15.10.2019 Ludwig Achhammer

Acknowledgments

I would like to take the opportunity to express my special thanks to the many friends,
colleagues and family out there who supported me over the last six months. First of
all, I want to thank my advisers Martin Kleehaus, Benjamin M. and Matheus H. for
advising me throughout the creation of this thesis. Their constructive feedback was of
enormous value and they inspired me and this work in many ways. My gratitude also
goes to the many colleagues at the industry partner for their time, interest and valuable
feedback during the interview sessions. Further, I would like to thank Nina B., my
family and friends who accompanied me during this time which was sometimes tough.
Last but not least, I want to thank my proofreaders Benjamin B., Anna and Viktor H.
and Karla S. as well as the SEBIS chair led by Prof. Dr. Florian Matthes for giving my
the opportunity to write this master’s thesis.

Abstract

Over the last decades, Enterprise Architecture Management has evolved to a well-
established discipline in mid-size to large enterprises with the overall goal to enable
strategic transformation of IT landscapes in close alignment with business goals. Usu-
ally, such transformation is accompanied by multiple Enterprise Architecture models
reaching from a current state to a long term target state.
The documentation of the current Enterprise Architecture has been a challenge ever
since to the discipline as the required information is used to be scattered across multiple
stakeholders and information systems. Manual data collection and maintenance is
laborious, error-prone and thus, cost-intensive work. The growing adoption of agile
development methodologies and closely related technologies such as microservice
architectures and continuous deployment make this situation even more severe. Arti-
facts change faster than ever whereas the technical diversity increases and applications
are distributed across multi-platform environments. Manual Enterprise Architecture
documentation is no more option to cope with such fast-paced environments.
This thesis puts the focus on a novel approach for automated Enterprise Architecture
model maintenance that is based on the use of runtime data originating from cloud
platforms and distributed tracing. Discovered applications are enriched with business-
related information by instrumenting continuous deployment pipelines which, as a
result, enables to generate and maintain multi-layer Enterprise Architecture models. To
assess its capabilities and feasibility, the suggested solution approach is evaluated in
a real-case environment at a large German enterprise. This includes the analysis and
answers of (1) how to integrate the approach into agile software development, (2) what
EA model elements can be discovered using which data sources and (3) what savings
and what costs this implies. Finally, a series of interviews is conducted to obtain experts’
judgment of whether the suggested approach is worth being implemented and what
issues remain to be solved.

iv

Contents

Acknowledgments iii

Abstract iv

List of Figures 1

List of Tables 4

List of Abbreviations 5

1. Introduction 7
1.1. Motivation & problem statement . 7
1.2. Research questions . 8
1.3. Research methodology . 9
1.4. Outline . 11

2. Foundation 12
2.1. Enterprise Architecture Management . 12

2.1.1. Federated Enterprise Architecture Management 13
2.1.2. Enterprise Architecture Model Maintenance 13

2.2. Trends and technologies impacting EAM 16
2.2.1. Agile Development Methodologies 16
2.2.2. Continuous Deployment . 18
2.2.3. Microservice architectures and related technologies 18

2.3. ArchiMate . 20

3. Related work 23
3.1. Alternative EAMM solution approaches 23
3.2. Demarcation . 25

4. Solution approach 27
4.1. Introduction to MICROLYZE . 27
4.2. Solution architecture . 30

4.2.1. EAD functional components . 30

v

Contents

4.2.2. Preconditions & required inputs 32
4.2.3. Approach for automated pipeline-driven EA documentation . . 34

4.3. Processes and procedures . 34
4.3.1. Integration into agile development process 35
4.3.2. EA model maintenance process 37
4.3.3. Ead.json validation . 38

4.4. Prototypical implementation . 40
4.4.1. Logical data model . 40
4.4.2. Prototype improvements . 41
4.4.3. Pipeline integration procedure . 45
4.4.4. Automated, deployment-driven EA documentation process . . . 45

5. Evaluation design 50
5.1. Case study design . 50

5.1.1. The case . 50
5.1.2. The evaluation environment . 51
5.1.3. Evaluation objectives and structure 53
5.1.4. Evaluation criteria . 55

5.2. Data collection methods . 56
5.2.1. Quantitative analysis of archival data 56
5.2.2. Semi-structured interviews . 57
5.2.3. Three-point-estimation . 58

6. Evaluation - Case study at a German enterprise 60
6.1. Definition and mapping of EA modeling concepts 60
6.2. Status Quo . 62

6.2.1. EA documentation responsibilities 63
6.2.2. EA documentation weaknesses . 64
6.2.3. Documentation gap . 69

6.3. Requirements analysis . 71
6.3.1. Automation priorities . 71
6.3.2. Functional and non-functional requirements 72
6.3.3. Ead.json adjustment . 78

6.4. Target state . 79
6.4.1. EA information sources . 79
6.4.2. EA element and attribute coverage 84
6.4.3. Automation potential . 88

6.5. Productive use - adoption to real-case projects 89
6.5.1. Integration efforts and perception 89

vi

Contents

6.5.2. EA documentation results and findings 92
6.6. Analysis of cost and savings . 97

6.6.1. Running cost and savings for manual EA modeling 97
6.6.2. Implementation, roll-out and running cost for EAD 100
6.6.3. Total cost of ownership . 102

6.7. Evaluation interview results . 108
6.7.1. Evaluation aspect - Solution approach 109
6.7.2. Evaluation aspect - Pipeline integration 120
6.7.3. Evaluation aspect - ead.json . 121
6.7.4. Evaluation aspect - Documentation coverage 124
6.7.5. Expert’s conclusion and feedback 124
6.7.6. Key findings and suggestions . 127
6.7.7. Revised process based on experts’ feedback 131

7. Fulfillment of requirements and evaluation criteria 136
7.1. Fulfillment of requirements . 136
7.2. Fulfillment of evaluation criteria . 138

8. Summary 147
8.1. Limitations . 148
8.2. Suggestions for future work . 149

A. Appendix 151
A.1. Appendix to EA model coverage . 151
A.2. Appendix to Cost & Savings analysis . 151

A.2.1. Estimated implementation onetime and running costs for EAD . 151
A.2.2. AS-IS EAM repository quantities 151

A.3. Evaluation Interview . 151
A.3.1. Part I - General Information . 151
A.3.2. Part II - General feedback about solution approach 151
A.3.3. Part III - Pipeline integration . 151
A.3.4. Part IV - ead.json configuration file 151
A.3.5. Part V - EA Documentation coverage 151

Bibliography 164

vii

List of Figures

1.1. Evaluation activities within this master’s thesis, adapted from [37] . . . 10

4.1. MICROLYZE - Microservice architecture discovery process [21] 27
4.2. Key building blocks of the EAD concept [20] 29
4.3. EAD component diagram . 32
4.4. Solution concept overview . 35
4.5. Integration of the EAD-library using agile development processes . . . 36
4.6. Continuous EA model maintenance process 38
4.7. EAD pipeline stage and ead.json validation process 40
4.8. Logical data model outlined as UML class diagram 42
4.9. Pipeline integration code snippet . 46
4.10. Ead-library - Process sequence diagram 49

5.1. IT landscape overview . 53
5.2. Case study overview . 54

6.1. The industry partner’s EA meta model 61
6.2. EA documentation responsibilities . 65
6.3. Usage and perceived importance of federated information sources . . . 75
6.4. Consent of enterprise architects with requirements formulated by Far-

wick et al. [8] . 77
6.5. Adjusted ead.json according to the industry partner’s needs 79
6.6. EA information sources - coverage matrix 81
6.7. Reverse engineered Cloud Foundry meta model outlined in ArchiMate

notation . 85
6.8. Linkage of EA information sources . 87
6.9. Automation potential . 90
6.10. Schematic comparison of current and achieved EA model 93
6.11. Consolidation of preexisting and achieved EA models 95
6.12. Modeled EA elements - preexisting vs. achieved EA documentation . . 96
6.13. Development of cost and savings . 104
6.14. Total cost of ownership over a five years runtime 105
6.15. Development of cost and savings including distributed tracing 107

1

List of Figures

6.16. Q1: The instrumentation of deployment pipelines to drive EA documen-
tation is a practicable and reasonable approach? 111

6.17. Q2: The discovery of EA elements from runtime data is a practicable and
reasonable approach? . 111

6.18. Q3: The use of a configuration file (ead.json) to link static information
([..]) to an application is a practicable and reasonable approach? 111

6.19. Q4: The shift in responsibility for EA documentation to agile teams is a
practicable and reasonable approach? . 111

6.20. Q5: The suggested solution is easy to integrate into the agile development
process? . 113

6.21. Q6: The suggested solution reasonably integrates into the EAM ecosys-
tem (documentation processes, actors and tools)? 113

6.22. Q7: The suggested approach will improve the quality of data in the EAM
repository? . 114

6.23. Q9: The effort it takes to get the tool operational is manageable? 116
6.24. Q10: The effort it takes to get the tool operational pays off quickly? . . . 116
6.25. Q11a: Overall, the suggested approach is capable to reduce the amount

of manual documentation effort? (excl. tracing) 116
6.26. Q11b: Overall, the suggested approach is capable to reduce the amount

of manual documentation effort? (incl. tracing) 116
6.27. Q12: The suggested approach supports the strategy of moving legacy

applications to cloud based environments? 117
6.28. Q13: The suggested approach is capable of being adapted to newly

introduced technologies? . 117
6.29. Q14: Which of the following suggestions [for enabled use cases] are most

promising/interesting to you? . 118
6.30. Q15: How do you judge the severity of observed risks in the context of

your company? . 119
6.31. Q17: The EAD-library can be integrated with reasonable effort? 121
6.32. Q20: The code repository is a more convenient place to maintain the

information asked by the ead.json file than compared to Iteraplan? . . . 123
6.33. Q22: The ead.json template can be created with reasonable effort? 123
6.34. Q23: The ead.json can be maintained with reasonable effort? 123
6.35. Q24: The ead.json is easy to understand? 123
6.36. Q26: How satisfying is the coverage of business layer relationships? . . 125
6.37. Q27a: How satisfying is the coverage of application layer relationships?

(excl. tracing) . 125
6.38. Q27b: How satisfying is the coverage of application layer relationships?

(incl. tracing) . 125

2

List of Figures

6.39. Q28: How satisfying is the coverage of technology layer relationships? . 125
6.40. Q29: How satisfying is the coverage of attributes? 125
6.41. Q16: Would you roll-out the suggested solution? 127
6.42. Roll-out preconditions mentioned by interviewed experts 127
6.43. Revised process including the EA plan phase 135

7.1. Duration EAD pipeline stage and EAD crawler 141

A.1. Questionnaire coverage by selected information sources and relevant API
endpoints . 152

A.2. Effort estimations and savings potential 153
A.3. Monthly running cost and savings potential of the current data stock . 154
A.4. Onetime and running cost and savings potential for documentation gap

to be closed . 155
A.5. EAM repository quantities as of August 2019 156
A.6. Part I - General Information . 157
A.7. Part IIa - General feedback about solution approach 158
A.8. Part IIb - General feedback about solution approach 159
A.9. Part IIc - General feedback about solution approach 160
A.10.Part III - Pipeline Integration . 161
A.11.Part IV - ead.json configuration file . 162
A.12.Part V - EA Documentation coverage . 163

3

List of Tables

2.1. ArchiMate core model . 21
2.2. ArchiMate EA elements used in this work 22

4.1. Explanation of ead() function parameters 47

5.1. Interview register . 57

6.1. Mapping of EA elements . 62
6.2. Extract of the conducted survey regarding current EA documentation . 67
6.3. Rating per layer averaged over elements 69
6.4. Quantified EA documentation gap . 70
6.5. Automation priorities - ranking by score 73
6.6. Usage and perceived importance of runtime information data sources . 74
6.7. Feedback received from pilot teams . 91
6.8. Total operation savings . 99
6.9. Data retrieval and transformation classifications and effort estimations . 101
6.10. Estimated implementation onetime and running costs for EAD 103
6.11. Compiled feedback of expert interviews 128

7.1. Overall fulfillment of evaluation criteria incl. tracing data 145

4

List of Abbreviations

ADM Architecture Development Method

API Application Programming Interface

APM Application Performance Monitoring

BCM Business Continuity Management

BPMN Business Process Model and Notation

BRM Binary Repository Manager

CD Continuous Delivery

CI Continuous Integration

CMDB Configuration Management Database

EA Enterprise Architecture

EAD Enterprise Architecture Documentation

EAM Enterprise Architecture Management

EAMM Enterprise Architecture Model Maintenance

EPC Enterprise Private Cloud

ESB Enterprise Service Bus

FQDN Full Qualified Domain Name

JSON JavaScript Object Notation

KPI Key Performance Indicator

MSA Microservice Architecture

PaaS Platform as a Service

5

List of Tables

PCF Pivotal Cloud Foundry

PERT Program Evaluation and Review Technique

PPM Project Portfolio Management

REST Representational State Transfer

SLA Service Level Agreement

SOA Service-oriented architecture

SaaS Software as a Service

TCO Total Cost of Ownership

UML Unified Modeling Language

VCS Version Control Service

6

1. Introduction

1.1. Motivation & problem statement

As today’s enterprises increasingly rely on their information systems and IT infrastruc-
ture, Enterprise Architecture Management (EAM) has become a strategic discipline
for improving Business-IT alignment and support business goals [11]. An Enterprise
Architecture (EA) models business and IT artifacts and puts them into relation with one
another. Having a thorough understanding of the inter-dependencies between these
elements, strategic decisions can be derived more easily to transform the enterprise
architecture into the desired direction in line with business needs [8]. This process
of transformation is usually accompanied by modeling a current state, one or more
planned states and a long term target state of the enterprise architecture [38].

A critical success factor to reliably capture the current state of an enterprise ar-
chitecture is to build upon data that is in sync and accurately reflects the reality.
The documentation of the as-is enterprise architecture, therefore, constitutes a major
challenge for the EAM discipline as being found by practitioners and researchers [15].

In the context of the growing adoption of agile software development methodologies
and the increased usage of microservice-based architectures, today’s IT landscapes
are exposed to rapid architectural changes. As a consequence, EA documentation
processes are challenged all the more to keep pace with continuously changing and
growing complexity of the IT landscape. Current research and practitioners are in
search of an appropriate solution to this challenge and to automate the documentation
and maintenance of EA models. Several solution approaches have been proposed
(e.g. based on Network Scanners [16], cloud platforms [7], Enterprise Service Buses
[4], cloud platforms [8] and machine learning [23]) by literature. However, most of
this solutions do not cover the EA business layer and have not been reflected within
real-case enterprise environments.

As part of the chair’s research in this area, a novel approach to automate the EA model
documentation and maintenance process within microservice-based environments was
developed. The two key enabling technologies of this approach are (1) the use of cloud
platform and distributed tracing data which allows the discovery of microservices and
their inter-dependencies at runtime and (2) the integration into CI/CD pipelines. This
thesis puts the focus on automated, pipeline-driven EA documentation. The approach

7

1. Introduction

uses software deployment processes as a trigger for the automated EA documentation
process. Application related data collected at runtime is completed to a multi-layer
EA model by the help of static information coupled to the software artifact using a
configuration file.

This work follows up on a proof of concept of this novel approach and further
develops it into an integral part of the EA processes within a large German enterprise.
This includes the roll-out to a real-case environment and the integration into existing
processes. Based on this, the goal is to critically assess the cost and benefit of this
solution approach from several perspectives. The assessment should deliver prove
about the feasibility and the capabilities of the suggested solution in practical use.

1.2. Research questions

As part of this work the following research questions will be handled and answered:

• RQ1: How can the suggested solution be integrated into agile development and
what challenges do occur?

• RQ2: What EA model elements should be documented and to what degree can
this be automated using the solution approach?

• RQ3: What are the solution’s integration costs and value propositions for Enter-
prise Architecture Management?

RQ1 targets at the integration and of the suggested solution approach into a real-case
ecosystem (processes, tools and actors) and evaluate its behavior in productive use. The
goal is to identify practical challenges that arise and provide recommendations on how
they might be overcome.

RQ2 will be answered as part of the case study conducted at the industry partner.
By assessing the solution’s capabilities within a real-case enterprise context, it will be
clarified to what degree the target EA meta model can be discovered automatically.
This will also reveal the limitations of the suggested approach.

RQ3 will be answered by evaluating the suggested solution approach from multiple
perspectives and evaluation criteria. Judgments are based on findings made throughout
the case study, an analysis of cost and savings as well as feedback obtained during a
series of expert interviews. The goal is to draw a cost/benefit ratio about the suggested
solution approach.

8

1. Introduction

1.3. Research methodology

In design science research, evaluation activities are differentiated in formative vs. sum-
mative (Purpose: Why to evaluate an artifact?) and ex ante vs. ex post (Point in time:
When to evaluate an artifact?) [42]. This master’s thesis follows the design science
research methodology and comprises a formative, ex post evaluation of an Enterprise
Architecture documentation solution concept. Thus, this work strives to assess the
values of an implemented system (ex post) based on monetary and non-monetary
measures. In parallel, it still exhibits a strong exploratory and improving (formative)
character as the evaluand is still at a prototype stage. 1.1 puts this into the context of a
design science cycle and points out the activities covered by this work.

So far, a prototype was developed and demonstrated in a fully controlled environ-
ment where realistic enterprise conditions were absent. Therefore, before the actual
USE phase, the prototype is brought a step back to the CONSTRUCT phase to solve
challenges identified in EVAL 3 which are hindering the use of the prototype in a real-
case setting. In the following, the advanced solution will be integrated by a selection of
agile teams working at the industry partner. This will allow to evaluate the concept
under realistic circumstances and identify problems that remain to be solved as well as
insights about the solution’s value proposition. The evaluation will comprise a set of
financial and non-financial criteria defined by [28]. Details about this are covered in
chapter 5.

According to [34], data collection methods can be categorized into three degrees.
Typical first degree or direct data collection methods are interviews, focus groups or
Delphi surveys. The precondition is direct contact with the studied object. Raw data
collections without direct contact are considered second degree or indirect methods, e.g.
video observations or software monitoring. Lastly, the use of independent, preexisting
data or information is called third degree data. This work primarily makes use of
first (a questionnaire for as-is analysis and a series of semi-structured interviews for
evaluation purposes) and third degree data (database exports) collection methods.
Expert’s estimations part of this thesis can be considered second degree of data. Details
about data collection methods used in this work are covered in chapter 5.

9

1. Introduction

Figure 1.1.: Evaluation activities within this master’s thesis, adapted from [37]

10

1. Introduction

1.4. Outline

This master’s thesis organizes as follows.
Chapter 2 will briefly introduce the reader into the most important terms and ideas

of Enterprise Architecture Management. Additionally, it explains the most decisive
trends that have an influence on this discipline which also includes certain technologies
that bear challenges and opportunities as well.

Chapter 3 will introduce important related research that has an influence on this
thesis and alternative solution concepts which have been suggested by literature.

At the beginning of chapter 4, the solution approach will be introduced in more
detail. This includes the solution’s core concepts, its architecture as well as details about
the implemented prototype. Additionally, it describes the most important processes for
a successful EA documentation and maintenance as well as how the solution can be
seamlessly integrated into daily operation. Referring back to 1.1 this chapter covers an
additional iteration between the phases EVAL 3 and CONSTRUCT.

Chapter 5 explains the structure and content of the case study conducted at the
industry partner. This includes the definition of goals, the scope of studied objects, the
evaluation environment as well as data collection methods used.

Chapter 6 is the major part of this work. It includes an analysis of the Status Quo, a
Requirements Analysis and the presentation of a Target State. The target state essentially
describes the state that can be reached if the solution was rolled out to the entire
organization. Section 6.5 shows exemplary results that prove that this is actually
feasible under real-case settings. The chapter concludes with an assessment of cost and
savings (section 6.6 and the evaluation interview results (section 6.7).

Chapter 7 finally generalizes the the findings and concludes to what degree posed
requirements to an EAMM solution and evaluation criteria can be fulfilled by the
suggested solution approach.

11

2. Foundation

2.1. Enterprise Architecture Management

Enterprise Architecture (EA):
The standard ISO/IEC/IEEE 42010:2011 defines the term architecture as "the fundamen-
tal concepts or properties of a system in its environment embodied in its elements,
relationships, and in the principles of its design and evolution". The Open Group’s en-
terprise architecture management standard TOGAF complements this by the "structure
of components, their inter-relationships, and the principles and guidelines governing
their design and evolution over time" [38]. On this foundation, the term Enterprise
Architecture is defined as "the organizing logic for business processes and IT infras-
tructure, reflecting the integration and standardization requirements of the company’s
operating model". The operating model is denoted as "the necessary level of business
process integration and standardization for delivering goods and services to customers"
[30]. EA strives to provide a long term view of the enterprise with the purpose to
"optimize across the enterprise [...] into an integrated environment that is responsive to
change and supportive of the delivery of the business strategy [38].

Enterprise Architecture Management:
The term Enterprise Architecture Management (EAM) is considered a "well-defined
practice for conducting enterprise analysis, design, planning, and implementation,
using a holistic approach at all times, for the successful development and execution
of strategy" [5]. Practically speaking, EAM typically documents the current state of
EA and develops a desired target state of EA that better serves enterprise goals. EAM
accompanies the transformation from the current to the target state, often passing one or
more intermediate states of EA [10]. TOGAF lists improved business and IT operation,
facilitated digital transformation, increased return on investment by reduced risk and
improved procurement as benefits of EA [38]. Typical goals pursued by practitioners
are for instance the increase in IT / Business alignment, identification of cost savings
[8], [19], improved decision support [9], [41], strategic planning [7], [19], management
of complexity [21], standardization and the assurance of legal compliance [8].

12

2. Foundation

2.1.1. Federated Enterprise Architecture Management

According to [12] there are two strategies for the management of EA models. (1) an
holistic EA meta model that defines all required types of artifacts. In this approach,
specialized architecture models existing in the enterprise are interpreted and remodeled
using the central notation. (2) the management of a federated EA model that feeds from
specialized architectures using meta model integration. The data is either gathered on
demand or by storing a copy which is periodically updated. Specialized architectures for
instance are models contained in certain tools (e.g. CMDBs, network scanners, project
portfolio system) are other modeling tools (e.g. BPMN, UML). The authors in [12]
argue that the federated approach results in a more accepted EA model, more current
data, less management effort and less risk for model misinterpretation. Examples for
EA documentation approaches following the federated strategy are presented in [15]
and [32]. The solution approach presented in this work also follows a federated EA
management strategy.

2.1.2. Enterprise Architecture Model Maintenance

The TOGAF Architecture Development Method (ADM), describes a generic process of how
EA can be developed and used to transform the business from an baseline architecture
(current EA) into a desired direction (target EA) that is in line with business goals. To
support this ambition the Architecture Landscape holds the "architectural representation
of assets in use, or planned, by the enterprise at particular points in time". Results
achieved in ADM are persisted in an Architecture Repository that stores "different classes
of architectural output at different levels of abstraction" [38]. In the course of this work,
Architecture Repositories will also be referenced as EAM repositories. A key precondition
to successful EAM is the availability of an up-to-date and continuously maintained EA
model which depicts the current state of an enterprise’s architecture. The process of
data gathering, modeling and model maintenance is denoted by Enterprise Architecture
Model Maintenance (EAMM). This includes the initial documentation of EA elements
as well as the process of continuous updating. In the course of this work, Enterprise
Architecture Model Maintenance will also be referenced as EA Documentation.

EA documentation is a time consuming, error prone and therefore cost intensive task
as it is mostly performed on a manual basis [8], [14], [15], [33]. A claim made is that
existing EA frameworks and tools do not provide sufficient assistance to overcome this
challenge [10]. For more than a decade practitioners and researcher seek for a reliable
and efficient way to automate EA documentation and model maintenance.

13

2. Foundation

Requirements and success factors to EAMM

An automated EAMM solution must satisfy various requirements to be successful.
A list of such requirements was compiled first by [8] based on a literature analysis
and a survey among practitioners. Results were categorized into Architectural Require-
ments, Organizational Requirements, Integration/Data Source Requirements, Data Quality
Requirements, Functional System Requirements and Non-functional Requirements. Since
then, researcher often refer back to this initial list, including [14], [15], [39], [41]. The
most important requirements including supplements named by other literature are
shortly summarized in the following.

An Architectural Requirement as per [8] is that EA data collection should be fed
from federated systems. The authors [41] add that such a process should be optimized
to allow an easy extension by further information sources and to reduce the need for
manual inspection.

A central Organizational Requirement is the existence of an organizational process
that regulates the EAMM process for involved individuals and tools. Such a process
must be supported by technical means and incorporate quality assurance mechanisms.
Furthermore the system must allow to adapt this features to preexisting processes in
an organization [8].

Integration/Data Source Requirements, Data Quality Requirements subsume vari-
ous functional requirements an automated EAMM system should satisfy with regards
to EA discovery. Beside some others this includes the capability of the system to auto-
matically detect (1) changes to the real-world EA, (2) changes to the infrastructure, (3)
changes to and interfaces between information system as well as functionality required
for (4) model transformation between source and target data structure [8].

With regards to Data Quality Requirements an automated EAMM system has to
feature functionality to ensure data actuality, data consistency as well as handling data
granularity and data validity (from a timely perspective). This either must be auto-
mated (e.g. automated conflict identification and resolution from different information
sources) or provide active support to the EA team for quality assurance. Furthermore
the automated propagation of changes must be supported [8]. The authors in [41]
complement these requirements. They demand that data quality attributes must be
measurable and controllable. Further, data sources’ credibility should be known and
provided along with the EA data.

14

2. Foundation

Additional Functional System Requirements formulated by [8] are features that
allow the definitions of KPIs and the ability to calculate them based on runtime infor-
mation.

A non-functional Requirement is that the system must scale for large inputs [8].

Such a solution cannot be free of cost. It is therefore indispensable to reflect the
cost/benefit ratio before implementation. Key success factors with an influence to the
solution’s value propositions are (1) the degree to which manual effort is reduced, (2)
the surplus of EA information provided, (3) the increase of data quality and (4) the
satisfaction of information demand [8]. The integration of federated data sources in this
context must always be assessed with regards to their value add as the implementation
and maintenance of such an integration itself is a costly task [10]. General research
towards a cost-benefit assessment for automated EA data collection is set out as future
work. In a survey conducted by Farwick et al., 60 percent of responses stated that the
high cost incurred by EA data source integration is an issue. In parallel 28 percent
claimed a low return on investment of such endeavors [10].

EAMM challenges

The authors in [33] set out the the key problems experienced by practitioners in regards
to EAMM. Major issues named are enormous data collection efforts and low data
quality when it comes to EA documentation. In [15] specific challenges faced with
applying automation endeavors are analyzed. The authors summarize their findings
in four categories. Typical Data Challenges faced are identifying the best fit out of
a plethora of potential information sources, handling information overload and data
quality issues as well as the detection and propagation of changes that are relevant to EA.
[11] adds a lack of structured information sources for business layer elements and the
detection of removed elements as additional challenges to this category. Transformation
Challenges describe the difficulties with model transformation required to overcome
different meta models and abstraction gaps between source systems and the EAM
repository. The consolidation of ambiguous concepts imported and efforts to assure data
consistency and actuality also belong to this category. Business and Organizational
Challenges arise from security vulnerabilities of too invasive automation solutions,
required participation of data source owners and low return on investment. [11]
supplements the list by unclear responsibilities for connected data sources as well as
content and quality assurance of automated updates. Finally, the lack of tool support
for automation, synchronization of changes between source an target systems and the
appropriate data granularity level are grouped by the category Tooling challenges [15].

15

2. Foundation

Resulting to a systematic literature review, Farwick et al. did not only supplement the
list by additional challenges but also found broad support in other literature for the
items identified by Hauder et al. [11].

2.2. Trends and technologies impacting EAM

In this section important trends and technologies that recently impact the EAM disci-
pline for the better or worse are defined and shortly introduced as these terms often
reoccur throughout this thesis.

As a response to the increased pressure to adapt to rapidly changing business re-
quirements, agile software development methodologies have emerged. Along with
this, the growing adoption of microservice architectures (MSA), continuous integra-
tion and deployment (CI/CD) pose new challenges to EAM and EAMM. Combined
with accelerated development cycles driven by agile development methodologies and
continuous deployment this trend lead to a growing speed of architectural changes,
increased volatility of deployed services and a spread in technological diversity [3].
While back in 2013 [33] already found that practitioners have difficulties to keep pace
with architectural changes, the situation has become even more severe. However, these
trends also bring forth new valuable information sources that could be exploited for
the benefit of EA. Important examples considered in this section are

1. Continuous Deployment (CD)

2. Application Performance Management (APM)

3. API Gateways

4. Services Meshes

2.2.1. Agile Development Methodologies

The term Agile in context of software development is considered to be introduced by
the Agile Manifesto written in 2001 following to a number of early frameworks that
pioneered the way to agile concepts [24]. The Agile Manifesto defines Agile as a set
of core values and principles. Agile is considered a mindset that wraps around these
core values and principles but also as a methodology that includes certain engineering
practices, tools and processes [24]. The key differentiating characteristic from classic
software development approaches is an iterative and incremental development approach
that allows for more flexible reaction to changing requirements. Agile methodologies
are based on more lightweight processes and are less plan-driven while teams are

16

2. Foundation

self-organizing. Development cycles are considerable shorter and a functional software
product should be delivered at the end of any iteration. According to the Annual State
of Agile Report, Scrum, SCRUM/Extreme programming (XP) hybrids and SCRUMBAN
count to the most popular and widely adopted agile frameworks [44]. Most employed
agile engineering practices include Continuous Integration, Continuous Delivery and
Continuous Deployment [44]. These practices are key enablers of the suggested solution
approach and are explained in more detail later in this section. The following items
(Top5) are the key reasons of applying agile development as found by the Annual State
of Agile Report [44]:

• Accelerate software delivery

• Enhance ability to manage changing priorities

• Increase productivity

• Increase business/IT alignment

• Enhance software quality

Scrum

Scrum is the most widely-practiced agile methodology (72 percent of respondents as
per 13th Annual State of Agile Report [44]). It denotes a framework "within which
people can address complex adaptive problems, while productively and creatively
delivering products of the highest possible value" [35]. As part of this framework
certain processes, techniques and artifacts are described that should allow for agile
software development. The most central artifact is the so called Sprint, "a time-box of
one month or less during which a “Done”, usable, and potentially releasable product
Increment is created" [35]. All other Scrum events and artifacts are organized around
sprints. The Scrum team consists of the Product Owner, the Agile Master and the
Development Team. The Product Owner’s responsibility is to maximize the value of
a product being developed by specifying and prioritizing the products requirements
which are captured in Backlog Items. During Sprint Planning the Scrum team selects and
defines what Backlog Items should be realized as part of a Sprint. This subset of items
is called the Sprint Backlog. The Development Team is a self-organizing, cross-functional
team of professionals, responsible to implement and deliver the product increment (the
"Done") at the end of the Sprint. The specification in the Definition of Done ensures that
the entire team is aligned on what "done" actually means. The Scrum Master has no
active role in implementing the product but helps everyone in- and outside the team
to understand the Scrum methodology and to remove Impediments which hinder the

17

2. Foundation

team’s progress [35]. The aforementioned only covers the most important aspects the
the Scrum methodology that are to be found again in the course of this work.

DevOps

DevOps is composed of the terms Development and Operations. DevOps follows the agile
mindset and offers process frameworks and tools that strive to tear down organizational
silos of development and operation. In classical environments development and
operation are often separated by organizational units as well as by the tools and
processes they use [40], [43]. The goal of DevOps is "to integrate all the phases of the
application life cycle, and ensure they function as a cohesive unit" as well as to increase
the degree of process automation in software development. Typical best practices
for instance are Build Automation and Continuous Delivery [40]. To achieve this,
DevOps follows a set of software design principles that lead to a increasing usage
of Microservice Architectures [40]. According to 13th Annual State of Agile Report
found that 72 percent of respondents already have a DevOps initiative running or are
planning to do so [44].

2.2.2. Continuous Deployment

Continuous Deployment (CD) denotes the process of automating the software deploy-
ment process including Continuous Integration and Continuous Delivery [31]. The first
part of the automation process, Continuous Integration, is "about ensuring your soft-
ware is in a deployable state at all times. That is, the code compiles and the quality of
the code can be assumed to be of reasonably good quality" [31]. Once this precondition
is fulfilled, Continuous Delivery automates the rest of the process of deploying the
produced software artifact to its operating platform [31]. In his master thesis [45] laid
the foundation how this technology can be used for the benefit of EA documentation.
It is the key enabler of the solution approach discussed in this thesis.

2.2.3. Microservice architectures and related technologies

Microservice Architecture (MSA) basically means the decomposition of an application
into a set of independent, loosely coupled components which are built around business
capabilities [3]. Microservices are small, autonomous and distributed services that each
run their own processes and work together via the network by providing/consuming
API resources. This architectural style is often seen as a more fine-grained service-
oriented architecture [3]. The services’ functionalities are leaned against business
boundaries following the Single Responsibility Principle [26]. Microservices characterize
themselves by being independent, horizontally scale-able, easy deploy-able, highly

18

2. Foundation

flexible and more resilient. However, they are also considered to be more complex than
classic monolithic architectures due to a high distribution and increased technological
heterogeneity [3], [13]. The adoption of this architectural style often relates to an
increased need for agile development practices and a DevOps culture [3]. Impacts from
an EAM perspective are the accelerated speed of architectural changes in a more-fine
grained IT landscape with a higher level of interaction and increased technological
diversity that quickly becomes unmanageable. EAM has therefore to address the
"difficulty of keeping a healthy amount of governance and standardization while still
allowing enough technological heterogeneity to not hinder innovation and agility" [3].

Application Performance Management

The term Application Performance Management (APM) bundles a set of technologies
and skills that allow to monitor the runtime behavior of deployed components, visualize
an applications topology, profile transactions as they pass through the system as well
as reporting and analytic capabilities [17], [27]. These technologies have grown in
maturity over recent years. Distributed tracing technologies enable an in-depth end-
to-end analysis of communication flows within and across microservice applications.
Aggregating such fine grained information to a higher level can be beneficial to EAM in
order to understand the topology of IT landscapes in their entirety [20]. MICROLYZE, as
presented in [21], already delivered initial prove about the value of the open distributed
tracing technology 1 for EA documentation goals.

API Gateways

In the context of microservice and service-oriented architectures (SOA), API Gateways
play a central role in the overall architecture. It constitutes the single entry point for
incoming requests to a specific service and, thus, decouples clients from distributed
and independent microservices. In this key position, it abstracts common functionality
needed by microservices such as load balancing, authentication and authorization,
caching and monitoring [46]. API gateways also help to overcome the challenges of
deviation between the fine-grained APIs provided by microservices and the more
sophisticated ones used by clients. To serve clients with different needs, API gateways
allow to bundle sets of APIs and publish them to a dedicated set of clients [25].
Examples for API gateways are OpenAPI 2, ApiGee 3 or AWS’ API Gateway 4. In this
thesis, ApiGee is analyzed and used as one of the EA information sources.

1https://opentracing.io
2https://www.openapis.org/
3https://apigee.com/
4https://aws.amazon.com/de/api-gateway/

19

2. Foundation

Service Meshes

Similar to API gateways, service meshes govern the communication between services
in a network. It "is a configurable, low-latency infrastructure layer designed to han-
dle a high volume of network-based interprocess communication among application
infrastructure services using application programming interfaces (APIs)" [36]. A differ-
entiating feature of service meshes is "that it takes the logic governing service-to-service
communication out of individual services and abstracts it to a layer of infrastructure"
[29]. This is technically based on deploying lightweight proxies along with instances
of a microservice whereas these proxies span up the service mesh. Based on that,
service meshes provide common functionality such as discovery, observability, load
balancing and security features [36]. With regards to EA documentation purposes, this
makes them as interesting as distributed tracing. For instance, Istio 5 provides graphs
of microservice application topology over REST APIs that could easily be integrated as
an EAM information source.

2.3. ArchiMate

In the course of this work, numerous enterprise architecture models are included for
visualization and better comprehensibility. Due to this, the most important aspects and
basics of the ArchiMate notation language are summarized in this section. ArchiMate
is an open and commonly used Enterprise Architecture modeling language that is
published and maintained by the Open Group 6. It contains a "set of entities and rela-
tionships with their corresponding iconography for the representation of Architecture
Descriptions" that should serve to visually describe, analyze and communicate typical
concerns of Enterprise Architecture [2].

The ArchiMate Core Framework slices the EA into three horizontal layers and three
vertical aspects as depicted in 2.1:

• Architectural Layers

– The Business Layer of an EA "depicts business services offered to customers,
which are realized in the organization by business processes performed by
business actors."

– The Application Layer of an EA "depicts application services that support
the business, and the applications that realize them."

5https://istio.io/
6https://www.opengroup.org/

20

2. Foundation

– The Technology Layer of an EA depicts technology services needed to run
applications. These services are realized by networks, hard- and software as
well as the underlying physical infrastructure.

• Architectural Aspects

– Active Structure Aspects of an EA contains acting elements such as acting
organizations or applications that expose a certain behavior

– Behavior Aspects of an EA includes behaviors such as processes, functions,
events and services exposed by certain acting EA elements

– Passive Structure Aspects of an EA contains passive objects that are target
of a behavior exposed by active EA elements. Examples are information and
data objects but also physical elements.

Table 2.1.: ArchiMate core model

This basic structure serves to group the specific EA model elements provided by
ArchiMate and define their basic relationships to each other. The details about existing
types of relationships are skipped to be described at this point as they are intuitively
understandable in the context of an EA model and often are similar to the ones used
in UML notation such as assignments, aggregations and specializations. Figure 2.2
contains the definition and visual notation of the essential EA elements used in this
master’s thesis. All provided definitions follow the official ArchiMate 3.0.1 standard.

21

2. Foundation

Table 2.2.: ArchiMate EA elements used in this work

22

3. Related work

3.1. Alternative EAMM solution approaches

This section briefly presents important related work with regards to alternative solu-
tion approaches to automate Enterprise Architecture documentation. Not included
are rather procedural descriptions with the goal to structure and formalize the EA
documentation process as suggested in papers like [8], [11] or [14].

Farwick et al. 2010 [7]: The paper presents a federated EA documentation approach.
A central EA model controller retrieves application-related data from cloud platforms
and a project portfolio management (PPM) tool and transforms it into an integrated
model. Detected elements and occurring changes are pushed to a central EAM reposi-
tory. The integration of the PPM tool serves the idea to register applications already at
planned state (target EA). Once this application is deployed and detected by the system,
the state is changed from planned to current. The reconciliation is based on a GUID that
is already assigned to the planned application in the PPM system. This GUID is then
added as a tag to the corresponding runtime artifact. This is a first attempt to automate
EA documentation across lifecycle phases.

Buschle et al. 2012 [4]: The authors conduct a qualitative assessment of an Enterprise
Service Bus which is a central interlinking component of the IT landscape. The goal
pursued is to achieve automated EA documentation based on this information source.
The results are measured against the entire EA meta model as suggested by ArchiMate.
This work revealed that ESBs are a profound source to discover EA elements on the
application layer (up to 75 percent) and on the technology layer (up to 50 percent)
whereas there are weaknesses on the business layer (up to 20 percent).

Holm et al. 2014 [16]: The authors conduct an assessment of a network scanner. The
goal pursued is to automatically generate ArchiMate based EA models from a network
scan. The models obtained are very fine-grained and include beside infrastructure
elements also logged in users as well as installed system software. The authors admit
that the results might be too fine-grained for EA purposes. Also, the approach is
restricted to a technology and application layer.

23

3. Related work

Valja et al. 2015 [41]: The authors present a generic, systematic process of how
modeling automation can be achieved. The process is demonstrated using an example
which incorporates an active network scanner and a network traffic analyzer as infor-
mation sources. The data is used to automatically generate CySeMoL models. Reflected
against typical enterprise architecture meta models, the approach is restricted to the
technology layer.

Trojer et al. 2015 [39]: The paper introduces a novel EAM tool that features different
editors for manual EA modeling and as well as a set of interfaces to common data
repositories which should facilitate data imports. This includes a CMDB interface,
Excel spreadsheet and relational databases. The solution assumes that preexisting
architectural data is available for import. It does not discover such data itself.

Johnson et al. 2016 [18]: The authors introduce a machine-learning technique to
automate EA modeling. The solution considered EA modeling a probabilistic state
estimation problem where EA elements can be identified based on classification. The
approach was tested using data produced by a network sniffer. However, the results
were limited to two EA elements only, namely hosts and network messages. For all
other EA elements, the paper remains theoretical.

Granchelli et al. 2017 [13]: With MicroART [13] presented a prototypical implementa-
tion of an architecture recovery tool dedicated to microservice-based systems. Required
information sources are a source code repository (by providing the repository URL),
dynamic queries to the Docker runtime environment and log files about the application
components communication. Individual application components are discovered by
calling the Docker runtime environment and matching the detected services against
Docker-Compose and Dockerfiles found in the source code repository. Based on the
assigned IP addresses and network interfaces, MicroART able to recover a communica-
tion graph by the help of the provided log files. Finally, the service discovery service is
determined and resolved in order to make the direct communication paths between
components visible.

Landthaler et al. 2018 [23]: The author suggests the use of machine learning tech-
niques to classify installed executable files and map them to EA model elements. From
an EAM perspective, the approach is restricted to the technology layer.

Hacks et al. 2019 [14]: Similar to the EA documentation solution approach at
hand, [14] took notice about the potential that resides in continuous deployment
technologies for EAM purposes. However, the authors do not use this technology for
EA documentation. Instead, they describe how to implement and partly automate an

24

3. Related work

EA model evolution process from a given preexisting EA model towards a revised EA
model. This process ensures the model quality by the help of several quality gates and
the calculation of KPIs. Only if all quality gates are passed successful, the new EA
model version is released to production.

3.2. Demarcation

The suggested solution approach part of this work differentiates itself in various
aspects from preexisting solution approaches. The approach follows a hybrid strategy.
In its core, it is based upon the analysis of runtime data which is retrieved from
cloud platforms and distributed tracing systems. This data allows to discovery a full
inventory of deployed applications and their communication relationships. To make
the technical data more valuable from an EAM perspective, it is further enriched by
static information that references relationships to the business architecture. For this
purpose a configuration file is used which is stored in the source code repository
can be extracted during the artifact’s deployment process. Moreover, the usage of
APIs exposed by other relevant information sources should enable a federated EA
documentation strategy. The overall goal is to achieve the discovery of a holistic and
multi-layer EA. What all solutions have in common, is the goal of reducing manual
modeling efforts by the use of automation techniques. From a technical perspective, the
solution in this work is not comparable to the approaches suggested by [23] and [18] as
machine-learning techniques do not play a role. Approaches introduced by [16] and
[41] both rely on network scanners and/or sniffers. These systems proved to be effective
on an application and technology layer but lack to close the gap to the EA’s business
layer. Another limitations is that the obtained models might be too fine-grained for
most EA initiatives. Also, network sniffers might be too intrusive as they require
system credentials and could provoke failures. This might be an advantage of the
suggested solution. Enterprise service buses were found to be valuable to discover
EA elements on application and technology layer by [4]. A precondition is, that a
significant part of the IT landscape has to be connected to this technology. It also lacks
to provide EA information about the business layer. The EA tool introduced by [39]
assumes suitable data repositories that contain preexisting, EA relevant data such as
CMDBs, relational databases or spreadsheets. As such sources are often maintained on
a manual basis, the approach deviates from the suggested solution approach as it does
not discover the EA based on runtime information. The closest relationship exists to
the approaches suggested by [7] and [13] as both are using data exposed by operating
platforms. Whereas [7] does solely rely on cloud platform APIs, the approach is capable
to provide an inventory but lacks to discoverer interrelationships. [13] is able to cover

25

3. Related work

both, application inventory and respective communication flows. However, the solution
concentrates on single microservice-based applications, not on an entire IT landscape
that might contain numerous of such applications. Similar to the suggested solution
approach, [7] tries to establish a more holistic EA model by incorporating the project
portfolio management system and the introduction of unique identifiers which are
propagated across the systems. This enables simple management of EA elements across
the lifecycle stages (PLANNED vs. CURRENT). In this work no system overarching
identifiers are introduced, still, it incorporates federated information sources to obtain
a more holistic EA model. The only related solution approach that is also based on
pipeline integration is presented by [14]. The solution, however, pursues a different goal.
It is directed to revise a preexisting EA model to a new version in a controlled manner
by the help of a pipeline that leads through several automated and semi-automated
stages to ensure model quality. This means that the approach requires EA models as
an input but does not itself discover or document EA models.

26

4. Solution approach

4.1. Introduction to MICROLYZE

As part of the "Software Engineering for Business Information Systems" (SEBIS) chair’s
research in the area of Enterprise Architecture Management, a novel approach to
automate EAMM within microservice-based environments was recently presented. MI-
CROLYZE denotes a framework for the real-time recovery of microservice architectures
across multiple layers of enterprise architecture. This includes the business, application
and technology layer as well as inter-dependencies among them. To this goal, several
information sources that provide runtime and static information are leveraged herein
[21].

MICROLYZE considers the recovery of enterprise architecture a never-ending process.
This satisfies the fact that microservice-based architectures evolve over time and underlie
constant change. For example, instances are dynamically scaled in or out whereas new
services are being deployed and older ones disposed. To keep track of such changes,
continuous monitoring and the collection of runtime data constitutes a central element
of the discovery process.

Figure 4.1.: MICROLYZE - Microservice architecture discovery process [21]

Figure 4.1 describes the architecture discovery process as a continuous cycle in a
total of six phases (gray rectangles). Different information sources are used along this

27

4. Solution approach

process which data is linked together to stepwise obtain more and more architectural
information. The presence of a service discovery service and distributed tracing tech-
nologies are key preconditions to make this concept work. Human contribution is
needed to some extent to correlate technical events processed by the application with
certain activities from a business perspective. The individual phases of the architecture
discovery process are shortly characterized as follows:

• Phase 1 - Microservice: In this phase, a service discovery service (e.g. Eureka1 or
Consul2) is polled to obtain the current inventory of registered microservices and
their instances. Besides, data retrieved includes health information, IP addresses,
ports, etc.

• Phase 2 - Hardware: The second phase serves to obtain the details about the
underlying hardware. Based on mapping IP addresses, a relationship between mi-
croservice instances and hardware components can be established. Precondition
to this phase is that all hardware components have a monitoring agent installed.

• Phase 3 - Relationship: In the third phase, distributed tracing data is analyzed to
unveil the communications flows of incoming requests and to discover the inter-
relationships between individual microservices. For this purpose, microservices
need to be instrumented with a monitoring probe which supports distributed
tracing3.

• Phase 4 - Business activities: In this phase, business activities supported by
the microservices are defined with a clear semantic description using a business
process modeller featured by MICROLYZE. This is a manual process.

• Phase 5 - Business-IT Mapping: This phase makes use of the regular expression
language in order to describe incoming technical requests which are streamed
and stored to a database as they are issued to the application. These technical
requests are mapped to the business activities defined in the previous phase.

• Phase 6 - Recognize changes: The last phase serves to detect and react to changes
to the microservice landscape. This is achieved by regularly polling the service
discovery service. Besides, unknown requests are stored for later a later mapping
by the use of the business process modeller

1https://github.com/Netflix/eureka
2https://www.consul.io/
3http://opentracing.io/

28

4. Solution approach

A prototypical implementation applied to discover the microservice-based system
TUM-LLCM4 showed very promising results about the concept’s capabilities. The
evaluation environment consisted of nine microservices, operated with one instance
each distributed over three virtual machines. MICROLYZE was able to identify all
microservices, all running instances, the underlying operating machines as well as the
interconnections and communication paths among them. Using the business process
modeller and the business activity mapper (featured by MICROLYZE) it could be shown
that the mapping between technical requests and business activities is feasible. This
way, the gap between business and application layer could be closed [21]. A notable lim-
itation of the solution approach is that MICROLYZE can only become fully operational
in case distributed tracing complying with the open tracing standard is supported and
a service discovery service or similar is in use that registers all microservices in place
[21].

From that point in time, MICROLYZE has been further developed. The Enterprise
Architecture Discovery (EAD) approach evolved the initial concept by adding a decentral
component to the solution: A pipeline-driven, federated EA documentation approach
which makes primarily use of continuous deployment (CD) technologies and cloud
platform APIs in order to become operational [20]. As in typical cloud environments
and agile development practices both, CD and cloud APIs, are present per default, this
might be more lightweight to adopt. The initial concept behind EAD is presented in
[20]. MICROLYZE and EAD are supposed to complement each other. Figure 4.2 depicts
the interplay of the evolved solution concept.

Figure 4.2.: Key building blocks of the EAD concept [20]

4http://tum-llcm.de/

29

4. Solution approach

A central idea to this concept is to enrich runtime data retrieved from cloud platforms
with static information that is contained in a configuration file stored in artifacts’ source
code repositories. The file is meant to contain information about the business context of
a microservice and contextual data such as a human-readable naming and its purpose.
In addition, the file should deliver links to federated information systems. Using these
references, it is possible to automatically obtain further architectural information from
e.g. Configuration Management Databases (CMDB), Project Portfolio Management
(PPM) systems, Version Control Systems (VCS) or any desired other information source.
The definition of a JSON schema allows to validate the provided configuration file
against requirements mutually agreed by key stakeholders. The required code logic
is added to the continuous deployment pipelines which serves as a vehicle to extract
and validate the configuration file’s content and combine it with runtime data retrieved
from cloud platforms. Based on this process, a multi-layer enterprise architecture
documentation is enabled. An early-stage prototype was implemented from this
concept as part of previous work which demonstrated that this is actually feasible [45].

This work is going to further enhance the concept and the prototypical implementa-
tion of EAD with the main purpose of evaluating it under real-case conditions in an
enterprise context.

4.2. Solution architecture

This chapter gives an overview of the solution’s architecture and introduces its func-
tional components. Moreover, this section describes the most important procedures of
how automated EAMM is achieved. It also proposes an approach on how the artifact
can be integrated by agile development teams.

4.2.1. EAD functional components

The solution consists of five functional components that work together to achieve
automated EA documentation.

EAD-tool: The EAD-tool is a central component whose foundations were lied by [45].
It consists of three components which are (1) a database, (2) a backend component
providing a REST-based CRUD (Create, Read, Update, Delete) interface and (3) a
frontend component. The ead-frontend allows to browse and visualize discovered EA
elements that are stored in the solution’s database. The ead-backend allows to store EA
element information discovered and provided by the decentral components. It receives
and processes data provided by the ead-library and the ead-crawler which contain the
actual EA discovery logic. The backend component also features required functionality
for EA model transformation before pushing data to an EAM repository. Together,

30

4. Solution approach

the EAD-tool makes a middleware between the decentral components ead-library and
ead-crawler and a central EAM repository. Both, frontend and backend, are prototyped
in Java using the Spring Boot framework 5.

EAD-library: The ead-library provides the core functionality for EA documentation.
To fulfill this goal, the configuration file (which contains the business context of the
application) is extracted from the VCS and combined with runtime data retrieved from
a given cloud platform. Further information sources can be integrated as to business
needs. The library is meant to be imported and executed from within deployment
pipelines. The details about the functionality contained are described in section 4.3.2.
This component is implemented as a Jenkins Shared Library6 using the language
Groovy7.

EAD-crawler: The ead-crawler provides functionality for the discovery of deployed
microservices on a target cloud platform. It automatically polls the cloud platform for
its application inventory and thus, allows to regularly update data about microservices
already registered with the EAD-tool but also to identify newly deployed microservices.
This component primarily serves to solve EA model maintenance tasks. The current
prototype is also implemented using Groovy. More details are provided in section 4.3.2.

Additionally consumed APIs denoted with further EA sources represent the idea
to enable a federated EA strategy by integrating additional information systems that
contain EA relevant data. Depending on the type of source such integration could either
be added to the ead-library or ead-backend. Figure 4.3 depicts the described components
and their interplay as an UML component diagram.

5https://spring.io/projects/spring-boot
6https://jenkins.io/doc/book/pipeline/shared-libraries/
7https://groovy-lang.org/

31

4. Solution approach

Figure 4.3.: EAD component diagram

4.2.2. Preconditions & required inputs

In order to become operational, agile teams need to meet two preconditions upfront:

1. Integration of a configuration file (called ead.json) into artifacts’ source code
repositories

2. Extension of artifacts’ deployment pipelines with EA documentation logic pro-
vided by ead-library

1. Integration of a configuration file into artifacts’ source code repositories

Agile teams need to fill a configuration file following a predefined structure and store
it into the artifact’s source code repository. This need to be done for each individual
artifact. The integration of a configuration file serves two purposes:

• Contextual information: The configuration is meant to contain contextual infor-
mation about a software artifact which can later be linked to the runtime artifact
resulting from the deployment process. This serves the goal to make runtime
data more valuable and easier to analyze from an EAM perspective. For instance,
such contextual information is meant to include business layer assignments (e.g.
business domain assignments, supported processes and business capabilities) and
the artifact’s belonging to a super-ordinate application.

32

4. Solution approach

• References to federated EA information sources: To enable a federated EA
documentation strategy another key purpose of the configuration file is to provide
references to the artifact’s representation in federated systems. For instance,
existing entries in Project Portfolio Management tools, monitoring tools or version
control systems. Theses references allow enriching the EA meta model by further
information residing in these sources.

The configuration file is specified in JSON8 format. For the solution to become opera-
tional, the configuration file should at least specify the following fields. Fields indicated
as mandatory are required for the proper functionality of the system. <federated_system_name>
can be specified according to business needs.

1 {
2 "application_component_name": "human−understandable name of the application component (

mandatory)",
3 "description": "short description of the application component’s purpose (optional)",
4 "superordinate_application": "name of the top level application the application component belongs to

(mandatory)",
5 "product_owner": "email of the product owner (optional)",
6 "business_domain": "the business domain the application component belongs to (optional)",
7 "<federated_system_name>":"URL to or ID of the corresponding element in the referenced system (

optional)"
8 }

2. Extension of deployment pipelines by EA documentation logic

Agile teams need to adapt their deployment pipelines to include the EA documentation
logic provided by the ead-library. This serves the main purpose of extracting the ead.json
file from the source code repository, validate it for correctness/completeness and
finally link the information contained to the runtime artifact that results from the
deployment process. The pipeline-integration also enables a deployment-triggered EA
documentation and automated updates along with each execution of the pipeline script.
In an agile development environment, this means that the EA model is updated at least
once per sprint and product increment release. Subsequent changes to the content of
the ead.json files are therefore also captured and updated accordingly.

The approach on how these two precondition can be integrated into the daily business
of agile development is described in detail in section 4.3.

8https://www.json.org/

33

4. Solution approach

4.2.3. Approach for automated pipeline-driven EA documentation

Figure 4.4 puts the aforementioned functional components and preconditions into
the overall context of a DevOps cycle which is depicted as a process at the center of
the illustration. There is a split of responsibilities between agile teams and the EAM
team. The EAM team is responsible for the EA documentation logic contained in the
ead-library. It needs to be centrally provided to the agile teams. This can be achieved
using a Version Control System (VCS). Agile teams are responsible to create the two
preconditions highlighted in red color (1) integrate config file and (2) Pipeline integration.
(1) consists of filling the ead.json configuration file according to predefined requirements
specified in a schema provided by the EAM team and its integration into the source
code repository. (2) requires the team to adapt their deployment pipeline scripts to
incorporate the EA documentation logic provided by the ead-library. The result of this
step is an additional stage in the pipeline following the artifact’s deployment to a
cloud platform (called document EA in figure 4.4). The stage combines the static data
contained in the provided configuration file with runtime data retrieved from the cloud
platform. Based on this information an EA model of the artifact is constructed and
posted to the ead-backend. Once the preconditions are established, the EA documentation
becomes a natural part of the agile development process. It is executed along with
each run of the deployment pipeline without any further manual intervention. In an
iterative and incremental software development process the EA model is therefore
updated at least with each product increment release. Nevertheless, it is necessary to
regularly retrieve status information from the cloud platform as there can be change
events (such as scaling, deletion, renaming, migrations, etc.) that also impact the EA
model. This functionality is provided by the ead-crawler which main purpose is to
detect changes to the current microservice landscape. Finally, the ead-frontend allows
to browse and visualize the results of the EA documentation procedure. Detailed
procedural descriptions are contained in 4.4.3 for the pipeline integration, 4.3.1 for
integration into agile development processes and 4.3.2 for EA model maintenance.

4.3. Processes and procedures

This section introduces and explains the most important processes and procedures
for the solution. The first subsection suggests an approach of how the solution can
be integrated as part of agile development processes. The second subsection explains
how automated EA model maintenance is enabled by the suggested solution. The last
subsection introduces a validation process whose goal is to ensure the data quality and
correctness of ead.json files provided which is a key success factor to the solution.

34

4. Solution approach

36

Deployment Pipeline

test deploy
document

EA
buildcheckout

Code Build / Test / Release / Deploy

ead-library

Operate / Monitor

ead-crawler

Plan

Source
Code Repository

Pipeline
script

2. Instrument
pipeline

1. Create
ead.json

Cloud Platform

MS3

MS1

MS2 MS4

Agile Team

EAM Team

specifies requirements
in json-schema

provides

establish
preconditions

CI/CD server

validate ead.json
against schema

get
updatesget runtime

data

import

ead-backend

EA model
data

EA model
data

Figure 4.4.: Solution concept overview

4.3.1. Integration into agile development process

In order to ensure a high acceptance of the solution in agile teams, it is important to
think about a smooth integration into their daily business and used processes. This
section proposes an approach on how to achieve this in the context of the agile develop-
ment methodology Scrum. To make the solution work, agile teams are responsible for
(1) the initial adoption of the solution consisting of equipping artifacts with the ead.json
file and integrating the ead-library into deployment pipelines (onetime activity) and (2)
to keep the ead.json file up-to-date. This, like all manual documentation efforts, poses
a certain risk for outdated information whereas the pipeline integration is a one-time
effort.

Figure 4.5 (modeled in BPMN 2.0 notation9) describes the process of how the solution
can be rolled out using regular Scrum processes. In essence, the solution’s adoption
should be handled just as any other requirement. First, Product Owners have to
create the ead.json and pre-fill it with the required business layer assignment valid for
the artifact (e.g. domain and sub-domain, business units, supported processes, etc.).
Afterwards, a user story is created that contains the requirements for the solution’s
integration. For further facilitation and reduction of errors, the EAM team should
provide product owners with a template. The user story is added to the Product Backlog
and at some point selected for execution as part of a Sprint Backlog. Depending on

9https://www.omg.org/bpmn/

35

4. Solution approach

how fast the roll-out should proceed, the backlog items priority may vary according to
the organization’s needs. During the Sprint, the development team needs to complete
the pre-filled ead.json file by references to defined federated information systems and
finally to commit it to the source code repository. Besides, they need to integrate the
ead-library into the deployment pipelines as described in section 4.4.3. This completes
the user story. The EA documentation itself is automatically executed with each run of
the deployment pipeline. There is no further need for manual intervention. In figure
4.5 this is exemplarily shown following to the Sprint Review. Scrum, however, does
not set a fixed time for deployments. There can be multiple during a sprint or even be
skipped.

P
ro

du
ct

 O
w

ne
r

D
ev

el
op

m
en

t T
ea

m

Start

create and
prefill ead.json
(business layer
assignments)

create user
story for

ead-library
integration

ead.json

add user story
to product
backlog

Sprint
Planning

add user
story to Sprint

Backlog
Sprint

Sprint
Review

Deployment
of product
increment

End

complete
ead.json
(technical

references)

Start add
ead-library to

CD server

integrate
EAD-stage into

deplyoment
pipeline

End

commit
ead.json to

code
repositoryUser Story for

ead-library
integration

User
Story

User Story

Figure 4.5.: Integration of the EAD-library using agile development processes

Once the solution is integrated, it has to be ensured that the information contained
in the ead.json is kept up-to-date. A preventive measure to ensure this is to limit the
content to static or almost static attributes. Nevertheless, it cannot be excluded that
there may be changes in future. To cover this risk it is suggested to make an addition
to the Definition of "Done" (DoD) for a product increment. The DoD is a Scrum artifact
that ensures a common understanding of what "Done" means and what criteria have
to be fulfilled [35]. By including the review of the ead.json as one of these criteria it is
possible to ensure that the information is maintained before any product increment

36

4. Solution approach

release. Section 4.3.3 gives further advice how data quality assurance with ead.json files
can be achieved.

4.3.2. EA model maintenance process

The solution supports automated EA model maintenance by a close collaboration of the
ead-library and ead-crawler. The integration of the ead-library ensures that at least with
any execution of a deployment process, EA data is automatically updated (in case of
changes to the ead.json file or any of the information sources incorporated in the EA
documentation logic). This ensures a minimum update frequency at least once per
sprint release in agile development.

However, there might be changes that are directly invoked from the cloud platform
after an application’s deployment that cannot be captured by the ead-library. Thinking
of simple scenarios like application deletion, application renaming, changes of assigned
URLs or changes in services used are only a few examples of such changes. Therefore,
it is necessary to have a functionality that covers change events that occur after the
deployment during runtime. Another scenario that needs to be covered are artifacts
that are deployed to production without having integrated the ead-library. This is
especially true applications which exist prior to the roll-out of the solution or if there is
no possibility to technically enforce the integration of the ead-library.

The ead-crawler is executed fully independent from the ead-library with the goal to
detect deployed apps and report about their current state. This allows updating the
EA documentation about already registered apps and create new entries for newly
discovered apps. In case agile teams did properly integrate the ead-library prior to
the first deployment, apps are usually known and at least the last-seen timestamp
is updated after each crawling process. In case an app is detected but unknown in
existing documentation, the ead-crawler is capable of creating new entries with limited
EA information as the ead.json is not provided. This scenario also implies that the
responsible agile team’s pipeline is not equipped with the ead-library. To sort this out,
there can be notifications to the central EA team or directly to the respective contacts
which are registered with the cloud platform. Especially during the roll-out phase
this is a valuable vehicle to track the process and inform teams about open tasks. The
last-seen timestamp serves to judge whether an app is still alive or not. For instance,
deleted apps won’t be registered any more during crawling processes. Also, no new
deployments might come in. After a certain threshold since the time an app was last
seen, the respective EA documentation can be handled accordingly and either set to an
obsolete or inactive state or even just deleted.

Figure 4.6 depicts the EA model maintenance procedure in BPMN 2.0 notation.

37

4. Solution approach

start
crawl

detect
deployed

apps

gather app
status

summary
information

known
UPDATE

existing entry

obtain further
EA relevant
information

unkown

CREATE new
entry

update
"last_seen"
timestamp

end

notify EA team about
missing pipeline

integration

timer

Deployment
event

document EA

deployment-triggered EA Documentation by ead-library

ead-backend

checkout build test deploy end

EAM repository

recurring EA discovery by ead-crawler

Cloud
Platform

GUID registered
with EA

repository?

Figure 4.6.: Continuous EA model maintenance process

4.3.3. Ead.json validation

As ead.json files have to be created manually, there is a risk of errors and incorrectly
specified attributes. Therefore, quality assurance measures are required to ensure the
proper functionality of the EA documentation process and the correctness of its results.
There are two possibilities to achieve this. Either (1) have ead.json files generated by the
help of interactive forms and/or (2) validate the file during the deployment process
against a predefined json-schema10. These options can be combined to obtain the best
results.

Form-support can be achieved in multiple ways. One option is to provide a simple
web-based form that actively supports the user to choose the correct values and
providing the generated ead.json as a download. Important is, that the option provided
by the form (e.g. drop-down or multiple-choice fields) are always up-to-date. Ideally,
the from is connected to a repository where the values are stored (e.g. enterprise
domain models are usually stored in the EAM repository). Another way is to integrate
the form into software project initialization tools such as the Spring Initializr 11. This

10https://json-schema.org/
11https://start.spring.io/

38

4. Solution approach

tool supports developers setting up and initialize a new source code project. The first
option suits best for preexisting projects which have to be equipped with the ead.json
file subsequently. The second option is the better choice for new software projects.
Both options ensure that the generated JSON file follows the schema and structure as
expected by the ead-library and therefore reduces the risk for errors.

However, forms cannot guarantee the content is correct. Also, the links to federated
information sources might be specified incorrectly. To tackle this issue, the concept
includes a validation process as part of the overall EA documentation stage in deploy-
ment pipelines. The entire EAD pipeline stage, drilled down to the validation step is
depicted in figure 4.7 outlined in BPMN 2.0 notation. The ead.json validation makes
the first step in the EA documentation stage that starts with a method call to ead().
The ead.json located in the source code repository is read from the VCS and checked
against a predefined json-schema. In case the file is not available at all or violates the
schema, the validation fails and the EAD process is stopped with respective feedback
to the user. Ead.json files that pass the schema validation run through further content
quality checks. In the first place, business layer assignments (i.e. domains, sub-domains,
supported business units, etc.) are checked for existence. At this place, it is assumed
that this can be validated against a repository that stores the business layer elements
(e.g. domains as part of an enterprise domain model or business processes as part of a
business process management system). This is an important step as the ead.json is not
meant to create business layer elements but to link the artifact to existing ones. The
process moves on to verify the provided federated system references for correctness
and reachability. Correctness in this context means that the paths (URL) are specified as
expected by the ead-library. For instance, assuming that Jira Components are involved
into the documentation process, it must be checked that the path actually leads to a
component and not to a backlog item. Reachability means that a ping to the given
URL is successful. Given that validation issues occur, they are recorded and provided
to the user at the end of the process. This feedback could either be included into the
deployment pipeline’s logs or sent out as an email notification. A critical validation
failure will terminate the EAD stage prematurely. Else, the process will continue.
Depending on the organization needs the process can be designed to be blocking or
non-blocking. Figure 4.7 depicts a non-blocking process as the validation follows the
deployment. In a blocking variant, the validation should precede the deployment stage,
so that a successful deployment depends on the success of EA documentation.

39

4. Solution approach

validateEadJSON()

validate
ead.json

against json
schema

validate
existence

business layer
assignments

check
correctness &
reachability of
provided links

invalid

valid

unreachable

summarize
validation

issues

valid

invalid

reachable

validation
success

validation
fuilure

ead() validate
ead.json

extract
jenkins

environment

extract
ead.json from

VCS

get
federated
systems

information

store
EA

information

ead
success

notify user about validation issues

EA Documentation stage

ead.json ead.json schema

Repository

Figure 4.7.: EAD pipeline stage and ead.json validation process

4.4. Prototypical implementation

This section describes the solution concept’s essential aspects and features that were
implemented. As previously mentioned an early stage prototype was developed by
previous work [45]. Implementation activities concentrated on making the solution
ready for productive use. The ead-library is a fully new developed component resulting
from this process whereas preexisting components including the ead-crawler and ead-
backend were improved with additional functionality.

4.4.1. Logical data model

Figure 4.8 depicts the logical data model depicted as a UML class diagram. Except for
methods for setting and getting attributes, these classes do not expose specific behavior.

The class Application Component refers to any microservice discovered and registered
by the ead-library or ead-crawler. It stores basic attributes (e.g. business layer assign-
ments, technical and human-understandable name, descriptive information), technical
attributes (e.g. Full Qualified Domain Name (FQDN), last deployment date, used
programming languages and deployment location within Cloud Foundry (space and
organization)) and functional attributes that help to manage data consistency (cloud
platform GUID, EAM repository ID and various timestamps). In this model, business

40

4. Solution approach

layer assignment including business domains, business products, business units and busi-
ness functions are considered attributes, not individual objects as their name is unique.
In a usual EAM repository these assignments would of course correspond to individual
elements.

Other objects that usually are represented as dedicated elements in EAM repositories
are depicted as individual classes. This includes the Cloud Platform the application is
operated on, Cloud Services the application makes use of, the overall Business Application
the component belongs to and Interfaces that are either consumed or exposed by the
application component. All of these classes are equipped with unique IDs reflecting
their co-existence in an EAM repository. This is a precondition to ensure data con-
sistency when exporting data. Interfaces and Cloud Platforms are mainly characterized
by the URL used to remotely address them. A Cloud Service in Cloud Foundry is
characterized by its name, service plan and service type (e.g. MySQL database, redis
database, autoscaler, monitoring agent). The attribute name refers to the name that is
also assigned in the cloud platform. The class Business Application is meant to aggregate
individual components to a logical application level. Usually, this level is also modeled
in EAM repositories which is why it is expressed as a dedicated class instead of a
simple attribute.

Lastly, the class References reflects federated information systems used for EA data
collection. It stores the label, i.e. the name of the federated information source (e.g.
JIRA, CMDB, etc.) and the URL that directly points to the application component’s
representation in this federated system.

4.4.2. Prototype improvements

From the point of takeover, the prototype implementation was not ready to be rolled
out. It suffered the following deficiencies that blocked the adoption in a real case
setting:

1. ead-script deficiencies:

• Provisioning model: the pipeline script that contains the documentation
logic counts more than 200 lines of code. This makes the integration difficult
and prone to errors

• Lack of maintainability: once rolled-out to the teams, it is impossible to
centrally maintain or extend the functionality. Each change would require
the agile teams to manually integrate the script again

• Generality: the pipeline script is using CLI calls to retrieve information from
the cloud platforms. The text-based console responses cannot be interpreted

41

4. Solution approach

Business Application

- unique_name:string
- EAM_repository_id:string

Application Component

- cloud_platform_guid:string
- EAM_repository_id:string
- created_date:date
- last_seen:date
- name:string
- technical_name:string
- description:string
- product_owner:string
- business_domain:ArrayList<string>
- supported_business_products:ArrayList<string>
- supported_business_units:ArrayList<string>
- supported_business_functions:ArrayList<string>
- programming_languages:ArrayList<string>
- last_deployment:date
- full_qualified_domain_name:string
- cloud_organisation:string
- cloud_space_string

1

1..*

is a component of

Cloud Platform

- unique_name:string
- EAM_repository_id:string
- rest_api_url:string

operated on 1..*
1

Cloud Service

- cloud_platform_guid:string
- EAM_repository_id:string
- name:string
- service_plan:string
- service_type:string

0..*

1..*
makes use of

References

- label:string
- url:string

1

0..*

contained in federated information source

provides
1

0..*

Interface

- EAM_repository_id:string
- interface_URL:string

consumes

0..*

0..*

Figure 4.8.: Logical data model outlined as UML class diagram

42

4. Solution approach

right away but have to be segmented and cut into relevant pieces by the help
text processing functions. This makes the functionality very prone to errors
as well as hard to maintain and extend.

2. ead-crawler script deficiencies: The cloud crawler script suffers the same issue
that are valid for the ead-script. So far, the crawling process only retrieves and
updates information about applications that are already registered in the backend.
It ignores apps where no documentation is available.

3. Functional deficiencies:

• Robustness against refactoring: So far the prototype relies on name match-
ing when it comes to checking discovered applications against already
registered applications.

• Consistency: Currently, the backend does not provide functionality to avoid
the creation of redundant entries on post actions.

• Integration of federated systems: Connectors to federated systems were
not implemented to support basic or token-based authentication.

• Detection of communication relationships: Upon investigation, it was
found that the analysis of configured of network policies is not a reliable
source to discover communication among applications as applied by the
initial prototype. Such policies tend to be not used or too generic. Also,
they do not give information about whether there actually is communication
traffic for certain.

To overcome these issues one important decision was to use a Jenkins Shared Li-
brary12 as provisioning model for the ead-script and the ead-crawler-script. The outcome
of this implementation is the ead-library component that contains both, the logic for EA
documentation and EA crawling. The most important benefits of using a library in the
context of the suggested solutions are as follows:

• Central management and maintenance: a library can be centrally managed by
the enterprise architecture department. They can maintain the source code,
extend its functionality and provide different versions to cope with different
cloud platform technologies in use at an enterprise.

• Ease of integration: libraries are easy to import and to integrate into pipelines.
The centrally managed code logic is loaded into the CI/CD server instance and
executed decentrally. From more than 200 lines of code to integrate, this can now

12https://jenkins.io/doc/book/pipeline/shared-libraries/

43

4. Solution approach

be achieved with only five lines of code. More detailed information about the
integration procedure is contained in section 4.4.3

• Reduced roll-out and run costs: Thanks to the benefits mentioned above, the roll-
out costs can be reduced. Also, in case of updates, agile teams are not required to
integrate the logic anew. The only exception from this is the case of the method’s
signature (which is called from within deployment pipelines) to change, which
would then also require the teams to act.

• Reuse of existing credentials: One issue claimed when using network sniffers
or agents-based EA discovery methods is, that it requires extensive access rights
to the target system that might cause an increase security risks. As libraries code
logic is loaded into the pipeline it allows to reuse the credentials that are needed
to run the deployment (e.g. SCM credentials to checkout source code, credentials
to BRM system and credentials to the target deployment platform). There are
no additional access rights required for such systems. However, this requires the
library to be trusted by its users.

• Reuse of code: libraries are ideal to provide code in a reusable manner. It also
allows to modularize the EAD process logic contained and provide tailored
sequences according to actual need.

This decision, however, implied to rewrite major parts of the prototype’s source code.
Along with this, also other issues previously mentioned were handled. This includes
the following improvements:

• Exchange CLI by API calls: With the goal the make the scripts more robust and
prevent labour intensive handling of text-based CLI responses, the ead-script and
ead-crawler-script were rewritten to use API calls. The JSON-based responses also
allowed for easier and faster handling of retrieved data.

• Refactoring robustness: Name-based matching was replaced by ID-based match-
ing wherever possible

• Crawling scope: The ead-crawler-script was extended to also document applica-
tions not yet registered with the backend instead of ignoring them. As such
applications are not equipped with an ead.json file the documentation scope is
limited, however, gives the opportunity to notify relevant stakeholders about this.

• Consistency: To avoid duplicates, the backend’s functionality was extended to
validate whether a posted element is already registered (based on its GUID)
before any POST action is executed.

44

4. Solution approach

Deficiencies that remained unsolved are:

• ead-crawler limitations: For documenting an application along with its deploy-
ment it is sufficient to reuse the credentials being provided to Jenkins. For
crawling, however, these access rights typically only cover a certain subset of the
cloud platform. For this reason, crawling should on the long run be centralized
with global reading access to the entire cloud platform. Such access rights were
not granted at the industry partner.

• Detection of communication relationships: As previously mentioned network
policies do not make a reliable source for the discovery of communication rela-
tionships between applications. To cover this functionality, the use of distributed
tracing is required throughout the entire platform. This precondition is not met
at the industry partner.

4.4.3. Pipeline integration procedure

This section describes the concept of how the redesigned prototype can be integrated
into the CI/CD pipelines. It is essential to keep this a fast and easy executable task to
keep the roll-out costs low and the acceptance by development teams on a high level.

This is achieved by providing the solution in form of a Jenkins Shared Library. To
integrate the solution only two steps are necessary:

1. Add the library to the CI/CD server.

2. Import the library into the pipeline script with a pre-configured stage for EAD
documentation.

Adding a library to the CI/CD server is a task that can be achieved using the system
settings menu. This will make the library publicly available to all jobs on the server. The
library can be integrated into the pipeline script as depicted in 4.9. The code snippet
has to be pasted into the pipeline script after the deployment stage. The highlighted
keywords are parameters that need to be replaced by the developers. Table 4.1 explains
the meaning and purpose of these parameters.

This completes the integration the EAD-library.

4.4.4. Automated, deployment-driven EA documentation process

This section describes the process of automated EA documentation which functionality
is provided by the ead-library. Figure 4.10 depicts a sequence diagram of the EA
documentation process. The process relies on standard REST APIs provided by the

45

4. Solution approach

1 // import the ead−library into the pipeline script
2 \@Library([’ead−jenkins−library@master’]) _
3
4 // original pipeline stages (checkout, build, test, deploy)
5 [...]
6
7 // pipeline stage to be added
8 stage(’EAD documentation process’) {
9

10 steps {
11 script {
12
13 // read manifest.yml
14 def manifest = readFile "${PATH_TO_MANIFEST.YML}"
15
16 // read ead.json to a JSONObject
17 def eadjson = readJSON file: "${PATH_TO_EAD.JSON}"
18
19 // method call to the EAD process
20 eadprocess.ead(eadjson_file: eadjson, manifest_file: manifest, pcfApiUrl: "${

CLOUD_PLATFORM_API_URL}", pcfCredentialsID: "${PCF_CREDENTIALS_ID}", org
: "${PCF_ORG}", space: "${PCF_SPACE}")

21 }
22 }
23 }

Figure 4.9.: Pipeline integration code snippet

used information sources. This basic example features the API endpoints used for
Cloud Foundry (cloud platform) and GitHub (VCS). Functional components provided
by the suggested solution concept are highlighted in blue color.

Process trigger: The overall process starts with an event triggering the deployment
pipeline. This either can be a human or an automatism, depending on the pipeline’s
configuration. The solution does not require a certain interval of execution. Agile teams
are free to run the deployment pipeline whenever there is a need to.

1) Load library: At the beginning of the pipeline job, the ead-library’s EA documenta-
tion logic is loaded from the VCS system to the CI/CD servers environment.

2) Regular pipeline stages: Following to that the regular pipeline stages are executed.
Typically such a pipeline consists of the following stages:

46

4. Solution approach

Parameter Description Purpose

PATH_TO_MANIFEST.YML
relative path to
the manifest.yml
config-file

delivers the artefact’s techni-
cal name name and further
configuration data

PATH_TO_EAD.JSON
relative path to
the ead.json file

stores the ead.json file to a
JSON object

CLOUD_PLATFORM_API_URL API URL
provides the cloud platforms
API base url

PCF_CREDENTIALS_ID credentials ID
provides the credentials to be
used for calling the cloud plat-
form

PCF_ORG
PCF organization
name

target organization in Cloud
Foundry

PCF_SPACE PCF space name
target space in Cloud
Foundry

Table 4.1.: Explanation of ead() function parameters

• 2a) checkout source code: loads the artifact’s source code from the VCS system
into the CI/CD server’s working directory

• 2b) build artifact: in this step the CI/CD server builds the source code into an
executable artifact

• 2c) run tests: functional tests such as unit tests or integration tests are executed
to ensure the built artifact works properly

• 2d) deploy to operating environment: this stage finally deploys the executable
artifact to a defined target operating environment (e.g. cloud platform). The
deployment must take place before the EA documentation stage is started.

3) EA documentation stage: The actual EA documentation starts with a method call
to ead(). The logic for this method is provided by the ead-library.

• 3a) ead.json validation: The process starts with validating the ead.json. This stage
checks for the existence of the file and the correctness of its content. This is
important to ensure the success of the remaining process and the quality of EA
documentation achieved. The details of this validation process are described in
4.3.3.

47

4. Solution approach

• 3b) extract static information: This step consists of multiple tasks. First, af-
ter successful validation, the information provided in the ead.json is stored to
variables. Secondly, descriptive information about the artifact contained in the
README.MD file is extracted. And lastly, specific CI/CD server environment
variables, including the URL to the source code repository, the URL of the deploy-
ment pipeline itself and, if applicable, URLs to the BRM system the built artifact
was stored to and the code inspection system that stores the results obtained in
the test stage.

• 3c) extract app name from manifest.yml: This step serves to obtain the app’s
technical name, i.e. the name that is assigned to the artifact in the cloud platform.
In the case of Cloud Foundry, a config file called manifest.yml contains this
information. For other technologies, possible alternatives are the extraction from
POM.xml files or other build scripts (e.g. Gradle files). If there is no option for
automatic retrieval, the artifact’s name has to be provided as part of the ead()
methods parameters.

• 3d) get app GUID: Using the app’s technical name identified in the previous step,
the cloud platform API can be called to retrieve the GUID assigned to the app.
This is a necessary step to use further API resources that require the specification
of a GUID as a query parameter and to gain robustness against later refactoring

• 3e) get app runtime information: this step fetches runtime data about the de-
ployed app from the cloud platform. This includes status information, running
instances, cloud platform information, etc.

• 3f) get app environment: The app stores various environmental information
including assigned routes (i.e. URL that are externally available to call the app
remotely) and used cloud services (databases, auto-scaling services, monitoring
agents, etc.). This information is also of interest for EA.

• 3g) get programming languages: This step serves to retrieve used programming
languages the application is implemented with from the VCS’s API.

• 3h) post collected EA information to ead-backend: This final step of the EA
documentation stage is responsible to store the information gathered throughout
the steps 3b) to 3g) to the ead-backend. Depending on whether the application is
already known (based on matching its GUID), existing entries are updated or
new ones generated.

• 3i) forward EA data to EAM repository: As described in previous sections the
ead-backend takes over EA model transformation functionality. If applicable, the

48

4. Solution approach

data is forwarded to and stored by a central EAM repository. The HTTP response
object contains the ID of the created or updated object. ead-backend stores this ID
back to its own database to link it with the app’s cloud platform GUID. By the
help of this ID a direct link to the EAM repository element can be generated. The
link is then pushed back together with additional information about the success
or failure of the EA documentation stages to the CI/CD server users. This ends
the overall deployment pipeline.

CI/CD Server

DEPLYOMENT
PIPELINE

EAD-LIBRARY VCS

load ead-library

CLOUD
PLATFORM

depoy artefact to cloud platform

EAD-BACKEND EAM
REPOSITORY

call ead() method

validate ead.json

extract static information

extract app name from manifest.yml

get app GUID (GET /v3/apps?names=t[:name])

get app runtime information (GET /v2/apps/:[GUID]/summary)

get app environment (GET /v3/apps/:[GUID]/env)

get progr. languages (GET /v3/repos/:[owner]/:[repo]/languages)

post collected EA data to ead-backend

success/failure information

forward EA data

EAM_id
Iteraplan link

build artefact

run tests

checkout source code

regular
pipeline
stages

store EA data

EA
documentation

stage

1)

2)

2a)

2b)

2c)

2d)

3)

3a)

3b)

3c)

3d)

3e)

3f)

3g)

3h)

3i)

Figure 4.10.: Ead-library - Process sequence diagram

49

5. Evaluation design

This chapter describes the objectives, scope and structure of the case study as well
as data collection methodologies used. The design follows the guidelines and best
practices suggested by [34].

5.1. Case study design

5.1.1. The case

The case study is conducted in cooperation with a large German enterprise with an
international market presence. The German organization employs almost 30,000 em-
ployees and generates a yearly revenue in a mid-range double-digit billion number of
revenue. Its IT organization which, with some exceptions, follows a federal structure
with a central IT governance consists of up to two thousand employees. Around 1,900
applications of different kinds are in use to directly or indirectly support business pro-
cesses and the daily work of employees. Approximately 200 applications decomposed
into more than 2,000 components are operated upon Platform-as-a-Service (PaaS) based
cloud environments (Pivotal Cloud Foundry (PCF) 1 and Redhat OpenShift Container
Platform 2).

The case is considered the Enterprise Architecture documentation process with re-
gards to the applications operated on these cloud platforms. This includes the initial
situation, which refers to the current state of enterprise architecture documentation
(Status Quo), and the target situation, describing the state that can be achieved by
applying the suggested solution (Target state). The unit of analysis is the suggested
EAMM solution concept and its capabilities assessed within a real-case environment
which also includes the analysis of costs and benefits implied from a monetary and
non-monetary perspective.

1https://pivotal.io/de/platform
2https://www.openshift.com/

50

5. Evaluation design

5.1.2. The evaluation environment

In a narrow sense, the evaluation environment is the part of the IT landscape which
Enterprise Architecture should be automatically discovered and documented by the
suggested solution. This encloses all applications and their components that are
operated on the industry partner’s cloud platforms. This also includes the application’s
ecosystem, meaning other applications or microservices that are interconnected with
one another. Within this scope, two agile teams were selected to integrate and test the
suggested solution productively. In a broader sense, the solution has to be reflected
in its entire ecosystem. This is necessary because it is not working on its own but
does affect surrounding processes, tools and actors. As the solution does integrate
into deployment pipelines, the software development process and the teams driving
it are an important part of the broader evaluation environment. Moreover, also other
information sources serve as EA information supplier and import data into the central
EAM repository (Iteratec’s Iteraplan 3. These tools should of course work collaboratively
rather than impairing each other and introducing data conflicts and inconsistencies.

Having said this, the evaluation environment can be split into a technical perspective
and a socio-technical perspective. The technical evaluation environment takes the
following components into account:

• The cloud environments (Cloud Foundry, OpenShift) used by the industry partner
to operate its applications

• The CI/CD infrastructure (Jenkins) used to deploy application components

• A selection of federated information systems that contain enterprise architecture
relevant data and which are integrated into the documentation process

• The central EAM repository (Iteraplan)

The socio-technical evaluation environment consists of:

• The software development process, as it is directly impacted by adopting the
solution

• The agile development teams (including product owners and development teams)
who take a central role in order to make the solution work

• The central Enterprise Architecture Management department, that is both, provider
of the EAM repository and key consumer of EA information

• Domain architects, that currently bear the most manual EA modeling activities
3https://www.iteraplan.de/

51

5. Evaluation design

Central department of Enterprise Architecture

The central department of Enterprise Architecture consists of to focus groups, technology-
oriented and business-oriented, where each is comprised of six enterprise architects.
The department strives to develop and optimize over-arching architecture solutions
which focus on the enterprise as a whole. This includes all business units and the
comprehensive integration of economic, business and technology aspects. The most
important goals are to leverage synergies, improve re-usability and gain higher flex-
ibility and pace with implementing new endeavors. The department also supports
and promotes business-unit and platform-overarching collaboration. Its operational
responsibilities include

• Architectural committees

• Definition and communication of architectural directives

• Architectural decision making

• Provision and operation of the EAM repository

• Integration and automation of EA documentation

• Training on the EAM repository and architectural directives

IT landscape overview

The industry partner’s IT landscape can be generalized as depicted by 5.1. It consists
of an Enterprise Private Cloud layer that is subdivided into a militarized zone (Zone
A) and a de-militarized zone (Zone B). Internet-facing front-end applications located in
the militarized zone are decoupled from the backend application components located in
the de-militarized zone. In each of these zones dedicated cloud platform instances are
located which host the industry partner’s applications. Communication across these
zones is either based on message queues or the central API gateway. The industry
partner’s core business systems and data stores mainly reside in proprietary, traditional
data centers. This part of the IT landscape is out of scope of the evaluation. In scope
of the evaluation are both, militarized zone and de-militarized zone, as well as the central
API gateway. The message broker is not considered in this work as it does not suit as
an EA information source as explained in the later course. The two agile teams that
were selected to integrate the solution, develop and operate applications that consist of
multiple components which are spread over both zones.

52

5. Evaluation design
Evaluation Environment – a large German enterprise

38

Zone A

c

Zone B

Enterprise Private Cloud

API GatewayProxy Server

On Premise
Infrastructure

PCF PCF

OpenShiftOpenShift

Project
Space

Core Business
Systems and Data

Stores

Project
Space

Project
Space

Project
SpaceInternet

Firewall

Project
Space

Project
Space

Project
Space

Project
Space

Out of scope
In scope

Agile Team A Agile Team B

Figure 5.1.: IT landscape overview

5.1.3. Evaluation objectives and structure

Generally speaking, the case study’s objective is to assess the suggested solution’s
capabilities applied to a real case enterprise context. To achieve this, the case study is
structured along the following elements:

1. Analysis of the Status Quo: The goal of this phase is to determine the industry
partner’s current state of enterprise architecture with regards to documentation
completeness, documentation weaknesses and documentation gaps. This should
serve as a baseline to measure achieved improvements after applying the sug-
gested solution. Data collection methods used in this phase are quantitative
analysis’ of the EAM repository’s data stock in comparison with the CMDB and
cloud platforms as well as the conduction of a questionnaire which gathers ex-
pert’s perception of EA elements importance, completeness, actuality and change
frequency.

2. Conduction of a Requirements Analysis: The goal of this phase is to derive EA
automation requirements and priorities based on the findings in the previous
phase. In addition, a semi-structured interview was conducted to record further
functional and non-functional requirements.

3. Analysis of the Target State: This phase adapts the suggested solution to the
industry partner’s context and qualitatively assesses its capabilities with regards

53

5. Evaluation design

to the automated discovery and generation EA documentation. It answers the
question to what degree the industry partner’s target EA meta model (EA model
coverage) can be covered and how much of it can be automated (degree of
automation).

4. Adoption and Productive use: This phase validates the qualitative assessment
against results obtained under productive use of the solution. For this purpose,
the prototype is integrated into the pipelines and applications operated by two
agile teams.

5. Analysis of cost and savings: The goal of this phase is to determine the solution’s
costs (implementation, roll-out and operation) and compare it against the saving
potential (reduced manual EA modeling efforts) that can be realized in case
the solution would be rolled out to the entire organization. Both, expected cost
and savings, are based on expert estimations using the three-point.estimation
technique.

6. Evaluation interviews: This last phase bundles all findings acquired in the
previous phases and presents them to experts in the field. The goal is to obtain
their feedback about the solution’s capabilities, ideas for improvement and their
judgment whether or not they would support to roll-out the solution.

Figure 5.2 depicts the individual phases of the case study including in- and outputs.

Status Quo
Analysis

Requirements
Analysis

Target State
Analysis

Productive
Use

Evaluation
Interviews

Target EACurrent
EA

EA Gaps Require-
ments

Questionnaire
EAM repository

EA
Result
(real)

Ratings /
Feedback

Evaluation
Results

Cost /
Savings
Analysis

 Cost &
Savings

Expert
Estimation

EA
Result

(hypoth.)

Figure 5.2.: Case study overview

54

5. Evaluation design

Out of Scope:

Some aspects of EAMM functionality that typically are of relevance are out of scope of
this work

• EA change propagation

• Synchronization with other independent data sources

• EA model visualization

5.1.4. Evaluation criteria

The authors in [28] tackled the question of what and how to evaluate information
system artifacts in the design science research area. The authors compiled their findings
based on over ten years of literature in a taxonomy of evaluation methods [28]. The
hierarchy of evaluation criteria comprised by this taxonomy sets the basis for the
evaluation at hand. The following subset of criteria is covered by this work:

• Goal:

– Efficacy: The degree to which the artifact achieves its goal considered nar-
rowly, without addressing situational concerns

– Effectiveness: The degree to which the artifact achieves its goal in a real
situation

– Utility: Utility measures the value of achieving the artifact’s goal, i.e. the
difference between the worth of achieving this goal and the price paid for
achieving it

– Validity: Validity means that the artifact works correctly, i.e. correctly
achieves its goal

– Technical feasibility: Evaluates from a technical point of view, the ease with
which a proposed artifact will be built and operated

– Generality: Refers to the scope of the artifact’s goal. The broader the goal
scope, the more general the artifact

• Environment:

– Usefulness: The degree to which the artifact positively impacts the task
performance of individuals

– Ease of use: The degree to which the use of the artifact by individuals is
free of effort

55

5. Evaluation design

– Fit into technical IS architecture: The degree to which the artifact integrates
into the technical IS architecture of the organization

– Alignment with business: The congruence of the artifact with the organiza-
tion and its strategy

– Alignment with IT Innovation: The degree to which the artifact uses inno-
vative IT

– Absence of side effects: The degree to which the artifact is free of undesir-
able impacts on the technical IS architecture of the organization in the long
run

• Activity:

– Accuracy: The degree of agreement between outputs of the artifact and the
expected outputs

– Performance: The degree to which the artifact accomplishes its functions
within given constraints of time or space. Speed and throughput (the amount
of output produced in a given period of time) are examples of time con-
straints. Memory usage is an example of space constraint

– Functionality: The capability of the artifact to provide functions which meet
stated and implied needs when the artifact is used under specified conditions

• Structure:

– Correspondence with another model: The degree to which the structure of
the artifact corresponds to a reference model

• Evolution:

– Adaptability: The ease with which the artifact can work in contexts other
than those for which it was specifically designed. Synonym: flexibility

5.2. Data collection methods

5.2.1. Quantitative analysis of archival data

Archival data analysis was used for several purposes and included data exports from
the central EAM repository, the CMDB, the API gateway and cloud platform data. Cross
comparison of the data contained in these sources allowed to determine the current
EA documentation completeness as well as to localize and quantify the documentation
gap. The obtained figures play an important role in the further course of this work.
The figures obtained also allowed to determine potential cost savings based on the

56

5. Evaluation design

interpolation of registered modeling activities and per element efforts estimated by
experts.

5.2.2. Semi-structured interviews

Semi-structured interviews are an important instrument during all phases of the case
study. 5.1 depicts the interview subjects and the interviews conducted separated by
topics. The acronyms contain the function (Enterprise Architect, Software Developer,
etc.) an interviewee works in.

EA1 EA2 EA3 EA4 EA5 EA6 EA7 EA8 EA9 DA1 DA2 DA3 DA4 PO1 PO2 DEV1 DEV2 #
Years Of Experience 8 1,5 11 9 2 5 2,5 5 7 8 10 1 2 3 2,5 6 7

AS-IS EA Documentation Survey X X X X X X X 7
Requirements Analysis Interview X X 2

Cost & Savings Estimation X X X X 4
Evaluation Interview X X X X X X X X X X X X X X 14

EA Enterprise Architect 6 27
DA Domain Architect 4
PO Product Owner 2

DEV Software Developer 2

TOTAL:

Table 5.1.: Interview register

Interviews conducted are mostly semi-structured, including open questions paired
with survey-like questions that asked ratings on a Likert scale. This allows for easier
comparison among and between different functions. The following shortly describes
the goal and content of interviews conducted as part of the evaluation.

Questionnaire AS-IS EA Documentation: This questionnaire was targeted at the
industry partner’s central EA department. The goal was to get a quick insight into
the current situation and perception about existing EA documentation along different
criteria and architectural elements. The questionnaires results are covered in 6.2.

Requirements Analysis Interview: An extensive analysis of challenges and require-
ments for automated EAMM has already been conducted by research [8], [10], [15],
[41]. For this reason, only two selected enterprise architects were interviewed in order
to validate whether the requirements identified by literature persist or deviate in the
context of the industry partner. Also additional requirements were recorded.

Estimation/Validation of Cost & Savings: To determine the solution’s economic
feasibility, expert estimations were conducted to (1) approximate the implementation,
roll-out and operating costs which go along with the suggested solution and (2) the

57

5. Evaluation design

current efforts spent for manual EA modeling activities. The recording of estimations
about activities in a pre-defined structure primarily formed the core of these interviews.

Evaluation Interview: The final evaluation interviews served to obtain independent
expert’s judgment about the solution’s capabilities and value proposition. At the
beginning of these interviews, experts were introduced to the solution and presented
with the findings acquired throughout the prior phases of the case study. Experts were
then asked to give their rating about diverse aspects on a Likert scale and explain their
choice. Open questions took an important role in these interviews to get more insight
about interviewee’s opinions and to gather inspiration for further improvement. Finally,
experts had to judge whether they would roll-out the suggested solution.

5.2.3. Three-point-estimation

The three-point-estimation initially was introduced and made popular in the project
management discipline. The method is used to estimate the duration of individual
activities as part of the program evaluation and review technique (PERT) [1]. The
name comes from the estimation of three values (worst case, likely case and best case
estimate) that together define the so called PERT distribution. Ee denotes the weighted
average that takes into account all three estimates. Formula 5.1 depicts the calculation
of the expected value Ee.

Ee :=
(a + 4×m + b)

6
(5.1)

where
Ee = estimation value based on double-triangular distribution
a = the best case estimate
m = the most likely case estimate
b = the worst case estimate

The technique is especially suited in case estimations are linked to high risk and
uncertainty. As opposed to the two-point-estimation, the additional estimation of a
likely case meets the assumption that the likely case is not centered between worst
and best case estimates but has a bias towards one the extremes. This characteristics
also apply to the manual modeling of EA. In the context of this work, this method was
therefore used to estimate manual EA modeling efforts as well as implementation cost.

Advantages of the technique are that it considers extreme values on both sides of
an estimate. It does not force experts to decide for a single best estimate but rather
allows them to specify a range based on their experience. The uncertainty inherent to
estimations can be made transparent and taken care of respectively.

58

5. Evaluation design

A disadvantage, as typical for all estimation techniques, is a lack of objectiveness.
Therefore one should not rely on the estimate of a single expert. If required, noteworthy
deviations can be sorted out in a subsequent discussion. For this reason, all estimations
conducted in this work were obtained independently by multiple experts and cross
validated afterwards.

59

6. Evaluation - Case study at a German
enterprise

This chapter reports on all activities and findings obtained throughout the case study
at a large German enterprise. The sections are organized along the case study elements
introduced in section 5.1.3. At the end of this chapter, the key findings and suggestions
obtained during the evaluation interviews are compiled and processed to a preliminary,
revised approach that serves as a recommendation for future development.

6.1. Definition and mapping of EA modeling concepts

This section shortly explains the most important mappings between EA meta model
elements used. This serves a better understanding of this chapter as many different
concepts and wordings are in use. Table 6.1 maps the three groups of EA meta model
elements that need to be differentiated. The elements used by the industry partner are
given in the first column of the table. These elements are mapped against the ArchiMate
notation as well as against Iteraplan’s specific building blocks, which is in use as the
central EAM repository. Special attention has to be put on the threefold classification of
applications into Applications, Application Components and Services that are all modeled
using Iteraplan’s building block Information System. The element Interface is used to
model a relationship between a target and a source Application. Business Channels are
business actors from an ArchiMate perspective and correspond to the industry partner’s
various user groups. Business Mappings are a specific building block in Iteraplan that
is used to model multidimensional relationships between an Information System and
business layer elements including Business Processes, Business Units, Business Functions,
Business Domains and Business Objects. Only one element per type can be part of such a
tuple.

Figure 6.1 depicts the industry partner’s EA meta model in ArchiMate notation.
The element hierarchy of Business Domain > Business Subdomain > Business Capability
is one special characteristic of this EA model. Domains and subdomains group any
business layer elements. All business layer elements can have connections to each other
except for Product Owners. Business Applications make the most central EA element. It
can be further specialized into Application Components and Services. The definition and

60

6. Evaluation - Case study at a German enterprise

Business
Capability

Business
Application

Business Product/
Service

Business
Process

Business Object

Interface
Application
Component

Product
Owner

Technical
Component

Infrastructure
Platform

Business Domain

Business Subdomain

Service

Business
Channel

Figure 6.1.: The industry partner’s EA meta model

61

6. Evaluation - Case study at a German enterprise

modeling of Services is oriented on SOA, that specifies a service as an integral part
of a Business Application that makes a specified business logic remotely available to
consumers (i.e. Applications or Application Components). Application Components are
defined as an integral part of a Business Application which provides a specific part of
the functionality of the overall Business Application. Interfaces are used to model 1:1
communication flows between a source and a target application, enriched by further
attributes. Technical components serve to model different kinds of technologies used.
This includes programming languages, standard software, databases, etc. Infrastructure
Platforms solely model operating environments on a platform level. There is no further
break down into more fine-grained elements such as virtual machines, nodes or similar.

For the remainder of this chapter, the industry partner’s wording has to be used
from time to time as the differentiation at an Application Component level often plays an
important role.

Industry Partner ArchiMate Iteraplan Additional comment
Business (Sub-) Domain Grouping of Business Layer Elements Business Domain
Business Capability Grouping of Business Layer Elements Business Function
Business Channel Business Actor Business Unit user group, distribution channel
Business Object Business Object Business Object
Business Process Business Process Business Process
Business Line (Produkt Sparte) Business Product Business Product

Application Application Component Information System
micro-service application (aggregate)

Application Component Application Component Information System individual microservices
Service Application Component Information System service according to SOA

Interface Application Interface Information Flow
1:1 relationships between source and
target

IT Component System Software Technology Component
standard software, databases,
programming languages

Infrastructure Component IT Service Infrastructure Element
Platform level only, e.g. Cloud
Foundry instance

Project Project Project PlanView Project

Table 6.1.: Mapping of EA elements

6.2. Status Quo

The purpose of this section is to give an overview of how enterprise architecture
documentation is performed at the industry partner. It covers the most important roles
and procedures. It also analyzes the current documentation weaknesses and quantifies
the documentation gap.

62

6. Evaluation - Case study at a German enterprise

6.2.1. EA documentation responsibilities

Enterprise architecture documentation is mostly performed on a manual basis. Excep-
tions are automated import interfaces that connect data from the CMDB and the PPM
system. The data imported from these systems, in turn, are itself manually documented.
Various functions play their part in the documentation process. Figure 6.2 shows the
split of responsibilities laid upon the EA meta model.

Enterprise Architects: The central EA department has the overall accountability for
the EAM repository, its operation and the EA meta model. In terms of EA documenta-
tion enterprise architects are responsible for defining central guidelines and rules for
modeling. The department centrally defines and models the most central business layer
elements including Business Domains and Subdomains, Business Functions (i.e. Business
Capabilities) and Products in close collaboration and alignment with the industry part-
ner’s international group level organization. In addition, they develop and maintain
interfaces for automatic data import into the EAM repository (CMDB and PPM system).

Domain Architects: Domain Architects work on an overarching level with respon-
sibility for a certain domain or sub-domain. They cover most of manual modeling
efforts and ensure that the business and application layer are reasonably documented
and interconnected by the most important relationships. This information is mainly
obtained by the means of meetings and intensive collaboration with agile teams.

Product Owners: Product Owners should take the responsibility for the documen-
tation of the application they own including the relationships to other applications,
provided and consumed interfaces, transferred business objects and the related infras-
tructure platforms they are operated on. Documentation is limited to an application
level, skipping to model the more fine-grained application components. Important to
state is, that the application owners responsibility is only mandatory for the CMDB but
not for the EAM repository. In practice most application owners never directly use the
EAM repository for modeling. The CMDB data is being imported on daily basis on
element level. Relationships are not imported which is one of the main reasons for a
lack of documentation at this place. In general the CMDB is considered the leading
system over the EAM repository.

Development Team: The development team does not have a defined responsibility
for documentation in the CMDB or EAM repository. In practice, they often support
product owners to create the CMDB model.

63

6. Evaluation - Case study at a German enterprise

Projects: After its introduction, the EA department quickly started to support overar-
ching projects by allowing them to add project specific attribute groups to the EAM
repository’s meta model. This means that a range of projects and their members act
cross-cuttingly on most of the application layer elements. As a result a considerable
amount of attributes is project-specific.

CMDB Import: Before the EAM repository has been introduced, the industry partner
already modeled its applications as so called Business Services in the CMDB (Servi-
ceNow1). This is part of a mandatory process to application owners which serves
to obtain approval to bring their application to the production stage. As the CMDB
is closely connected to operative IT service management processes such as change,
incident or request management, the main purpose is, to ensure that all necessary
preconditions are met to ensure a successful go-live. The modeling requirements
also include up- and downstream dependencies (used by, uses). In total 50 attributes
are being imported from the CMDB into the EAM repository on a daily basis. This
integration is unidirectional, meaning that if the data in the EAM repository is changed
manually, there will be no synchronization back to the CMDB. There is also no name- or
ID-based merging with existing elements but only a check for the CMDB’s proprietary
ID.

PPM Import: Currently Iteraplan’s building bock Project is solely used by PPM sys-
tem data imports. This reflects a project from a mostly financial perspective. Typically
such elements include dates, descriptive texts and attachments that originated from
the financial legitimization process. The import does not include any relationship
information to other EA elements.

Naming conventions and global identifier: For applications, no naming conventions
or global, system-independent identifiers are in place that would allow for a clear
matching of an application’s representation in different systems. As different systems
are typically used by different roles, the used naming most often does not match across
these systems.

6.2.2. EA documentation weaknesses

At the beginning of the case study, a questionnaire was conducted with the goal to
analyze the perceived as-is situation with regards to the following criteria:

1https://www.servicenow.com/products/servicenow-platform/configuration-management-
database.html

64

6. Evaluation - Case study at a German enterprise

Product Owners

Enterprise Architects

CMDB

Development
Team

Domain Architects

centrally
modelled

modelling
guidelines

Figure 6.2.: EA documentation responsibilities

• Importance of a given EA meta model element

• Completeness of the data stock of a given EA meta model element

• Actuality of the data stock of a given EA meta model element

• Change frequency of a given EA meta model element

• Degree of automation of a given EA meta model element

These criteria were structured along the three main architecture layers (business
layer, application layer and technology layer) and the inter-relationships between these
layers. In addition to that some specific attributes were also included so that in total 41
architecture elements and attributes were judged on a Likert scale with regards to each
of the specified criteria. The results were used to identify the perceived documentation
gaps most painful to the organization but also to derive requirements and priorities
with regards to the enterprise architecture model elements the automation solution
should cover in first place. Table 6.2 shows an extract of the survey results including
the average rating per asked element and rating variance.

In addition to that the EAM repository was analyzed quantitatively to validate the
questionnaire findings and to reveal issues with the current data stock, that might be

65

6. Evaluation - Case study at a German enterprise

unknown to date. Steps that were undertaken are

• Analysis of quantities and relative amount of inter- and intra-specific relationships

• Analysis of attribute usage, the degree to which modeled attributes are actually
filled with values

• Analysis of the time since last update

• Analysis of modification users and modification rates (automatic vs. manual)

As compared the to the other architectural layers the business layer’s documentation
is the one perceived most complete, even though an average rating of 2.59 indicates that
there are still deficiencies. Whereas business domain’s and project’s documentation
completeness is rated highest, business roles and actors have the lowest rating within
the business layer. It needs to be mentioned that both, roles and actors are modeled
as attributes not as own elements in the industry partners meta model. Business
domains, subdomains and capabilities as well as products and business units are
centrally defined and modeled by the EA department in close alignment with the global
group organization. Products currently are only modeled at a very high level. It is
subject to future development and concrete use cases whether this is broken down into
more fine grained structures.

At the application layer, the highest documentation deficiencies are with interfaces,
data flows and dependencies and intra-specific relationships. In contrast, these elements
are rated as highly important (average importance rating ranges from 1.1 to 1.8)
which makes this gap more severe to the organization. Despite the automated data
import from the CMDB, applications are also perceived to be rather incomplete (avg.
completeness rating 2.60) due to the fact, that the CMDB is itself modeled manually.
There is a need to improve this value as all interviewees rated this EA element as
essential (avg. importance rating 1.0). So far, it has been a conscious decision by the
industry partner, not to model application components as this would cause too much
manual modeling effort. This also explains the low average rating of 3.2 for this element.
Due to the high number of project-specific attributes the overall degree of attribute
usage is just around 18 percent. Deducting the project specifics, the percentage is still
only 19.92 percent. On average the last update took place 56.36 days ago, whereof
approximately 16 percent of all elements were updated within the last quarter, app. 30
percent within the last half a year and 40 percent within the last year. The portion of
applications that is being imported from the CMDB is 28.57 percent.

The technology layer is of least relevance to the industry partner (average importance
rating of 2.54). Still, its documentation completeness is perceived slightly better as
compared to the application layer, which is in contrast way more relevant (average

66

6. Evaluation - Case study at a German enterprise

Variance Average Variance Average Variance Average Variance Average
Business Layer

Business processes 0,12 1,14 0,69 2,86 0,24 3,57 0,57 3,00
Business capailities 0,00 1,00 0,56 2,20 0,56 2,20 0,80 3,00
Business objects 0,00 2,00 0,24 2,60 0,16 2,80 0,96 3,20
Business domains and subdomains 0,20 1,29 0,20 1,71 0,49 3,29 0,20 1,71
Actors (customers, partners, employees) 0,69 1,86 0,53 3,57 0,20 3,71 2,00 3,50
Roles (product owner, developer, unit head, etc.) 1,27 2,17 2,82 3,00 1,96 2,83 2,82 3,60
Product domain 0,49 1,50 1,92 2,67 3,27 4,00 2,69 2,60
Product 0,24 1,43 1,63 2,71 0,53 3,57 1,10 1,67
Department 0,78 2,29 0,98 2,14 0,98 2,86 0,57 2,00
Business functions (marketing, accounting, etc.) 1,14 2,33 1,84 3,67 2,49 3,20 2,78 3,20
Projects 0,82 2,57 0,49 1,71 0,98 1,86 0,29 2,00
Intrapecific relationships (within business layer) 0,00 1,00 0,78 2,29 0,78 2,71 0,20 2,71

Application Layer
Application (logical aggregate of components) 0,00 1,00 0,24 2,60 0,64 2,40 0,24 2,40
Application component 0,16 2,80 0,16 3,20 0,56 2,80 0,24 2,40
Interface (external application behavior) 0,12 1,14 0,41 3,14 0,78 2,71 0,00 3,00
Technical domain 2,78 3,00 2,82 3,60 3,55 3,75 3,55 3,75
Data flow and dependencies 0,24 1,43 0,20 3,29 0,53 2,43 0,00 3,00
Intrapecific relationships (within application layer) 0,78 1,80 2,82 3,60 1,84 2,60 1,84 3,00

Technology Layer
Instance (running process) 0,49 1,71 1,67 2,83 1,71 2,33 1,63 3,17
Database (Mysql, MongoDB, etc.) 1,39 2,57 2,20 2,67 1,35 3,17 1,67 3,00
Runtime environment (OS, host, cloud platform) 1,55 2,14 2,12 2,50 1,84 3,33 2,49 2,67
Virtualisation technique 2,12 2,50 2,82 3,00 1,71 3,50 2,82 3,00
Communication technology (e.g. protocols) 1,63 3,17 1,71 3,50 1,71 3,50 1,92 3,83
Physical IT resource (server, router, network device, etc.)2,12 2,17 1,96 3,00 1,84 3,33 2,49 2,67
Intrapecific relationships (within technology layer) 3,43 3,50 3,92 4,00 3,14 3,50 3,55 3,75

Interspecific relationships between business and application layer
Business domain - application component 0,00 1,00 0,12 2,86 0,78 3,29 0,20 2,71
Product - application component 0,12 1,14 0,12 3,14 1,92 3,17 1,10 2,83
Business process - application component 0,12 1,14 0,12 2,86 0,69 3,14 0,12 2,86
Project - application component 0,20 1,71 0,12 3,14 0,98 2,86 0,12 3,14
Actor - application component 0,98 1,86 0,24 3,43 1,67 3,00 1,63 3,17
Business function - application component 1,10 1,43 1,10 3,00 1,67 2,83 1,06 2,67

interspecific relationships between application and technology layer
Application component - instance 0,29 1,17 1,35 3,17 1,06 2,67 1,35 3,17

Application Layer (Attributes)
Version 0,86 2,33 2,20 2,67 2,00 2,33 2,00 2,33
Lifecycle state 0,78 2,00 1,35 2,67 0,98 2,50 1,35 2,67
Compliance and data protection 0,82 1,83 1,35 2,67 0,98 2,50 1,14 2,33
Last deployment/update 1,67 3,00 1,67 3,00 1,67 3,00 1,67 3,00

Technology Layer (Attributes)
Technology (NodeJs, JEE, .Net, etc.) 1,67 2,83 1,71 3,50 1,92 3,83 1,71 3,50
Runtime data (saturation, availability, requests, etc.)2,29 2,33 2,82 3,00 1,96 4,00 2,82 3,00
Event data (Incidents, MTTR, MTTF, etc.) 2,53 2,20 2,78 3,20 2,82 3,60 3,14 2,80
Complexity 1,67 3,00 2,00 3,50 3,55 3,75 1,92 3,83
Cost structure (TCO, running costs, licenses) 1,39 1,83 1,92 3,17 1,92 3,83 1,96 3,00
Usage classification (business vs. technical, orchestration, load balancing, etc.)2,49 3,17 2,41 3,33 3,14 3,50 2,00 3,50
Software dependencies 0,98 2,50 1,71 3,50 2,24 2,83 1,84 3,33

Importance Completeness Actuality Change frequency

Table 6.2.: Extract of the conducted survey regarding current EA documentation

67

6. Evaluation - Case study at a German enterprise

importance rating of 1.86). It’s notable, that the variance of received importance rating
is highest for technology layer elements, which indicates that the interviewees do not
have a uniform perception here. In the EAM repository Technical Components typically
cover technologies used (e.g. databases, protocols, programming languages) as well as
organization-specific or generic reference architectures followed. Infrastructure Elements
that in total have a two-digit number only, only cover operating platforms such as cloud
platforms. During the interviews, it was stated that this is sufficient for the industry
partner’s EAM use cases. Therefore this is explicitly not considered a weakness. In case
details about infrastructure elements are required, the CMDB is being consulted.

Inter-Relationships, i.e. relationships between elements of different architectural
layers, have an average importance rating of 1.35 and thus, have the highest importance
to the industry partner. Also Intra-Relationships, i.e. relationships between elements
within an architectural layer, are perceived important (avg. importance rating of 2.10).
Hence, it is all the more severe that the rating of documentation completeness only
ranges between 3.09 to 3.30 for these EA model elements. As all kinds of relationships
are modeled fully manually, interviewees stated doubts regarding the actuality of the
data stock (average actuality rating of 2.97). The EAM repository confirms that only a
third of registered applications are equipped with a relationship to surrounding appli-
cations or a superior or inferior system. Only 15 percent bear a relation to a (Technical
Component and only 27 percent to an Infrastructure Element). 29.2 percent of applications
are connected over the element Information Flow. 54.2 percent of information systems on
average have 5.9 relationships to business layer elements whereas 45.8 percent do not
have any. Intra-specific relationships at the technology layer are at a even lower level.
However, this is not perceived a weakness considering an average importance rating
of 3.50. At the business layer the numbers for intra-specific relationships looks more
satisfactory even though an average rating of 2.29 indicates that there are weaknesses.

During the case study, it was found that there are numerous modeling errors. EA
model elements were used incorrectly and relationships were modeled inconsistently.
This especially is an issue for EA reporting as filter results might either be falsified by
unnecessary elements or miss parts of the desired result. This leads to a low level of
data reliability and slows down decision making. A reason for this issue is different
user groups with different skills and knowledge about EA modeling. The EAM tool
provides many different possibilities to connect items with each other but doesn’t give
guidance how to correctly use them.

Table 6.3 summarizes the figures stated in the section above.

68

6. Evaluation - Case study at a German enterprise

Importance Completeness Actuality Change Frequency
Business Layer 1,71 2,59 3,05 2,68
Application Layer 1,86 3,24 2,78 2,93
Technology Layer 2,54 3,07 3,24 3,15
Intra-Relationships 2,10 3,30 2,94 3,15
Inter-Relationships 1,35 3,09 2,99 2,94

Table 6.3.: Rating per layer averaged over elements

6.2.3. Documentation gap

To quantify and validate the perceived documentation gaps, figures from the EAM
repository, CMDB and cloud platforms were obtained and compared to each other. The
comparison allows to draw conclusions and assumptions to determine the expected
documentation gap. However, this needs to be interpreted with special care as only for
few architecture elements the ground truth, i.e. the total amount, is known with certainty.

Application Layer Elements: As a common baseline, the scope is restricted to appli-
cations, application components and services operated on cloud platforms and being
in production stage. The cloud platform delivered the total amount of deployed appli-
cations. This is considered the ground truth. Based on this figure the documentation
gap of application components is almost certain. The CMDB delivered to total amount
of cloud-based applications. The data contained is modeled manually as demanded
by an obligatory process. Expert estimate this to be be 80 percent complete. Thus, an
application would aggregate approximately nine application components each. For
services, there is a lack of a reliable source, therefore the total amount is unknown
except for a subset that is governed by the central API gateway. Based on feedback
received in the questionnaire and further estimations by enterprise architects the current
data stock of services is expected to be 30 percent complete.

Application Layer Relationships: The ground truth for such relationships is un-
known. The completeness of relationships between EA elements is almost impossible
to judge as most of them reflect one-to-many or even many-to-many relationships.
In order to approximate the gap, the average amount of relationships per existing
application based on the current EAM data stock was used for interpolation. This
constitutes a rather pessimistic approximations as experts perceive the current data
stock as incomplete.

Business Layer Relationships: The ground truth for these relationships is also un-

69

6. Evaluation - Case study at a German enterprise

known. Still, based on the analysis of the EAM repositories’ data stock it was possible
to determine the ratio of unconnected applications (i.e. application that do not connect
to a single business layer element of a kind). The underlying assumption is that an
application must at least be connected with one of the business layer elements each (e.g.
at least one process must be supported, at least one domain must be assigned, etc.).
The ratios calculated were used for interpolation to approximate the documentation gap.

Technology Layer Relationships: In order to approximate the documentation gap,
the same approach as for business layer relationships was used.

Table 6.4 shows the results for this approximation. In the later course of this work
these approximations will play an important role to determine the cost and savings
potential for the documentation gap to be closed by the help of the suggested solution.

Completeness Estimated Gap Comment

Application 80% 20% observed from CMDB; Experts Estimation
Application Component 15% 85% observed from CloudPlatform
Service 30% 70% observed from API Gateway; Experts Estimation

Applciation <-> Product 52% 48% observed from EAM repository; interprolation
Applciation <-> Business Domain 91% 9% observed from EAM repository; interprolation
Applciation <-> Business Function 17% 83% observed from EAM repository; interprolation
Applciation <-> Business Unit 11% 89% observed from EAM repository; interprolation
Applciation <-> Business Process 28% 72% observed from EAM repository; interprolation
Applciation <-> Business Object 8% 92% observed from EAM repository; interprolation
Applciation <-> Project 32% 68% observed from EAM repository; interprolation

Applciation <-> Application (used by) 11% 89% observed from EAM repository; interprolation
Applciation <-> Interface 29% 71% observed from EAM repository; interprolation

Applciation <-> Technical Component 15% 85% observed from EAM repository; interprolation
Applciation <-> Infrastructure Element 27% 73% observed from EAM repository; interprolation

Element in scope

Business Layer Relationship

Intraspecific Relationships (within Application Layer)

Technology Layer Relationships

Table 6.4.: Quantified EA documentation gap

70

6. Evaluation - Case study at a German enterprise

6.3. Requirements analysis

The requirements analysis is fed by three sources

1. Questionnaire regarding the perception of the as-is EAM documentation (see
previous section)

2. Quantitative analysis of the EAM repository

3. Semi-structured interview with two EA department representatives

Whereas the questionnaire and the quantitative analysis served to inductively derive
requirements from identified documentation weaknesses and gaps, the interview
directly asked the experts for requirements they pose. As a basis, requirements
identified by literature were used.

6.3.1. Automation priorities

With the goal to derive priorities for the automation of EA documentation, a score was
build over the questionnaire’s criteria importance, completeness, actuality and change
frequency. Weights were aligned with enterprise architects and applied to the criteria
importance (factor 2.0) and completeness (factor 1.5) so that the scoring calculates as
depicted in formula 6.3.1.

scoree := 2× |i mod −5|︸ ︷︷ ︸
rating reversal

+1.5× c + a + | f mod −5|︸ ︷︷ ︸
rating reversal

(6.1)

where:
scoree ∈ {5.5, ..., 22.5}, denotes the need for automation for an architecture element e
i ∈ {1 (essential), . . . , 4 (irrelevant)}, denotes the importance rating
c ∈ {1 (complete), . . . , 4 (not documented)}, denotes the completeness rating
a ∈ {1 (up-to-date), . . . , 4 (not documented)}, denotes the actuality rating
f ∈ {1 (very often), . . . , 4 (seldom)}, denotes the change frequency rating

The equation’s part "|i mod −5|" serves to reverse the ratings from e.g. "1" to "4",
"2" to "3", etc. This way, all criteria follow the same schema from "1" as low to "4"
as high. The score reflects the need for automation. The higher the value the higher
the automation priority. In case of the EA element Interface the following value is
calculated:

scoreinter f ace = (2× |1 mod −5|+ 1.5× 3 + 3 + |4 mod −5|) = 16.5

71

6. Evaluation - Case study at a German enterprise

Figure 6.5 shows the entire list of EA elements and attributes, ranked by the described
score. As enterprise architects follow two different focuses (IT focus and business focus)
the table includes an extra column for these focus groups. The column difference denotes
the deviation between them. It can be stated that most higher deviations appear for
business layer elements where business-oriented enterprise architects tend to give a
higher rating regarding the importance and a lower rating for completeness. The
technology layer attribute cost structure can be interpreted as business-oriented. For all
other elements and attributes asked, there is rather small deviation between the two
groups.

Business Layer Elements were excluded from the ranking as these elements are
modeled centrally by the EA department. Thus, there is no need for an automated
discovery for these elements. This, of course, does not include relationships towards
the business layer. Still, table 6.5 depicts the score values. An important remark is
that the industry partner’s meta model currently only supports the elements Business
Domains and Subdomains, Business Processes, Business Capabilities and Product.

An eye-catching finding is that all Inter-Relationships belong to the Top10 within
the ranking. This indicates that there is a high need for automating the discovery
and the documentation of relationships between architectural elements. Intra-specific
relationships within the application layer (rank 5), i.e. communication dependencies
between applications or application components also takes a high position.

Most Application Layer Elements elements are placed within the Top10 due to the
high importance and the poor documentation. An interesting exception from this are
Application Components that only rank on position 24. This corresponds to the current
circumstance that the industry partner focuses on the modeling of applications only,
and skips to modeled more fine-grained components. Components are perceived as
being too expensive for manual modeling.

Despite being perceived as poorly documented, Technology Layer Elements, except
for Instance (running process), take lower positions in the ranking. The reason behind
this are rather low ratings for the criteria importance, which has an average of 2.54.

6.3.2. Functional and non-functional requirements

The requirements analysis also comprised a semi-structured interview with two repre-
sentatives of the EA department responsible for the EAM repository. Its structure and
content is set up oriented on requirements to EAMM formulated by [8] and potential

72

6. Evaluation - Case study at a German enterprise

EA Element / Attribute EA Layer Av
g.

 S
co

re

Sc
or

e
EA

 -
IT

 fo
cu

s

Sc
or

e
EA

 -
Bu

si
ne

ss
 fo

cu
s

Difference Rank
Application component - instance Relationship 17,92 17,5 18,3 0,83 1
Interface (external application behavior) Application 17,71 17,2 18,1 0,96 2
Data flow and dependencies Application 17,64 17,8 17,5 0,33 3
Business function - Application Relationship 17,33 16,5 18,2 1,67 4
Intrapecific relationships (within application layer) Application 17,20 18,0 17,0 1,00 5
Product - Application Relationship 17,17 16,5 17,8 1,33 6
Instance (running process) Technology 17,08 17,3 16,8 0,50 7
Application (logical aggregate of components) Application 17,00 17,5 16,8 0,67 8
Actor - Application Relationship 16,83 15,5 18,2 2,67 9
Business domain - Application Relationship 16,71 16,5 16,9 0,38 10
Business process - Application Relationship 16,71 16,0 17,3 1,25 10
Project - Application Relationship 16,57 16,0 17,0 1,00 12
Software dependencies Technology 15,75 16,0 15,5 0,50 13
Cost structure (TCO, running costs, licenses) Technology 15,25 12,3 18,2 5,83 14
Lifecycle state Application 15,17 14,3 16,0 1,67 15
Compliance and data protection Application 15,17 14,3 16,0 1,67 15
Event data (Incidents, MTTR, MTTF, etc.) Technology 14,60 15,7 13,0 2,67 17
Physical IT resource (server, router, network device, etc.)Technology 14,50 14,0 15,0 1,00 18
Version Application 14,33 13,3 15,3 2,00 19
Technical domain Application 14,25 16,5 13,5 3,00 20
Communication technology (e.g. protocols) Technology 14,25 13,5 15,0 1,50 20
Intrapecific relationships (within technology layer) Technology 14,25 13,0 14,7 1,67 20
Technology (NodeJs, JEE, .Net, etc.) Technology 14,25 14,2 14,3 0,17 20
Application component Application 14,13 13,5 14,3 0,83 24
Virtualisation technique Technology 14,00 13,0 15,0 2,00 25
Complexity Technology 13,88 15,5 13,3 2,17 26
Database (Mysql, MongoDB, etc.) Technology 13,83 13,5 14,2 0,67 27
Runtime data (saturation, availability, requests, etc.) Technology 13,83 14,0 13,7 0,33 27
Runtime environment (OS, host, cloud platform) Technology 13,75 13,0 14,5 1,50 29
Usage classification (business vs. technical, orchestration, load balancing, etc.)Technology 13,75 13,5 13,8 0,33 29
Last deployment/update Application 13,50 11,7 15,3 3,67 31
Business processes Business 16,43 14,5 17,9 3,38 ---
Use cases Business 16,07 16,2 16,0 0,17 ---
Business Capabilities Business 17,25 18,0 17,0 1,00 ---
Business Objects Business 15,50 16,5 15,2 1,33 ---
Business domains and subdomains Business 13,43 12,2 14,4 2,21 ---
Actors (customers, partners, employees) Business 16,58 14,7 18,5 3,83 ---
Roles Business 15,60 10,5 19,0 8,50 ---
Product domain Business 14,90 11,0 17,5 6,50 ---
Product Business 13,92 12,0 15,8 3,83 ---
Department Business 12,79 9,5 15,3 5,75 ---
actors (customers, partners, employees) Business 16,40 17,0 16,0 1,00 ---
Project Business 12,57 12,5 12,6 0,13 ---
Intraspecific relationships (within business layer) Business 16,43 14,5 17,9 3,38 ---

Table 6.5.: Automation priorities - ranking by score

73

6. Evaluation - Case study at a German enterprise

EA information sources analyzed by [10]. The interview consists of the following
sections:

• Usage and importance of potential information sources

• Review of the questionnaire results and automation priority ranking

• Recording of function and non-functional requirements to the prototype

Usage and importance of potential information sources

As the solution concept puts runtime data in a central position, the question about the
current use and perceived importance of such information sources with regards to EA
documentation purposes was asked. The answers are depicted in Table 6.6.

ID Requirements formulated by Farwick et al. (2011)

fu
lly

ag

re
e

ra
th

er

ag
re

e

ra
th

er

di
sa

gr
ee

fu
lly

di

sa
gr

ee

IR1 The system must be able to detect changes in the real-world enterprise architecture ☒ ☐ ☐ ☐
IR1.2 The system must be able to detect changes to the infrastructure ☒ ☐ ☒ ☐
IR1.3 The system must be able to detect interfaces between information systems ☐ ☒ ☐ ☐
IR1.4 The system must be able to detect changes to information systems ☐ ☐ ☒ ☐
IR1.6 The system must be independent of refactoring in the EA information sources ☒ ☐ ☐ ☐

DQR1 The system must provide mechanisms that help the QA team to ensure data consistency ☐ ☒ ☐ ☐
DQR2 The system must provide mechanisms to ensure data actuality that is sufficient for the EA goals ☐ ☒ ☐ ☐

DQR2.1 Each element in the systems data structure must have a creation time stamp and an expiration date (volatility) ☐ ☒ ☐ ☐
DQR6 The system must be able to provide relationship information between and within the EA layers. ☒ ☐ ☐ ☐

FR1 The system must allow for the definition of KPIs calculations ☒ ☐ ☐ ☐
FR2 The system must be able to calculate the defined KPIs from runtime information ☒ ☐ ☐ ☐

NFR1 The system must scale for large data input ☐ ☐ ☒ ☐

In
 u

se

N
ot

 u
se

d

Ve
ry

 im
po

rt
an

t

im
po

rt
an

t

Le
ss

 im
po

rt
an

t

N
ot

 in
vo

lv
ed

Cloud APIs ☐ ☒ ☒ ☐ ☐ ☐
Tracing Data ☐ ☒ ☐ ☐ ☒ ☐
Monitoring Data ☐ ☒ ☒ ☐ ☐ ☐

Table 6.6.: Usage and perceived importance of runtime information data sources

Cloud platform data is judged highly important for EA documentation as it can
provide a full inventory of deployed application components. The enterprise architects
considered this data the ground truth and a powerful information source due to the
rich information that is being exposed by APIs.

In terms of Tracing data, the tool Dynatrace2 is being used at the industry partner.
Its usage is fully optional and up to the agile team’s individual decision. Usually, it
is not used continuously but rather temporarily in the context of troubleshooting or
performance analysis. Due to this, Dynatrace doesn’t make a reliable source for EA
documentation as only fractions could be covered.

The industry partner uses Prometheus3 for metrics collection and Grafana4 for
visualization purposes. Monitoring data is judged as highly important mainly due

2https://www.dynatrace.de/
3https://prometheus.io/
4https://grafana.com/

74

6. Evaluation - Case study at a German enterprise

to EA use cases that might be (partly) automated based on monitoring data. EA use
cases that could be driven by the incorporation of monitoring data are the validation of
12-factor-app5 criteria for a given application and operational stability assessments (e.g.
fulfillment of resilience patterns).

Next, the experts were asked about their judgment of federated information sources
that could be integrated by the prototype. The answers are depicted in figure 6.3.

In
 u

se

U
se

 p
la

nn
ed

U
se

 n
ot

pl

an
ne

d

Ve
ry

Im

po
rt

an
t

im
po

rt
an

t

Le
ss

im

po
rt

an
t

irr
el

ev
an

t

Project Portfolio Management ☒ ☐ ☐ ☒ ☐ ☐ ☐
CMDB ☒ ☐ ☐ ☒ ☐ ☐ ☐
File-based import ☒ ☐ ☐ ☐ ☐ ☒ ☐
Enterprise Service Bus ☐ ☐ ☒ ☐ ☐ ☐ ☒
Network Scanners ☐ ☐ ☒ ☐ ☐ ☐ ☒
Monitoring Tools ☐ ☒ ☐ ☐ ☒ ☐ ☐
Change-Management System ☒ ☐ ☐ ☒ ☐ ☒ ☒
License-Management System ☐ ☐ ☒ ☐ ☒ ☐ ☐
Directory Services ☐ ☐ ☒ ☐ ☐ ☒ ☐
Business Process Engins / Modelling ☐ ☐ ☒ ☐ ☐ ☐ ☒
Other?

API Gateway ☐ ☒ ☐ ☐ ☒ ☐ ☐
Message Broker ☐ ☐ ☒ ☐ ☐ ☒ ☐

dfdsf

fhfhg

Figure 6.3.: Usage and perceived importance of federated information sources

Automated data import from the CMDB, PPM system and file-based imports are
already used by the industry partner. The option Change Management System was also
checked as used as changes are handled along with the CMDB (same tool). Still, no
change data is being imported as there is no demand for such information. While
Buschle et. al. [4] already examined the value of an Enterprise Service Bus for EA
documentation purposes, the industry partner judges it as irrelevant in their context as
it is about to be decommissioned. The department already thought about integrating
the license management system, however, the endeavor failed due to issues in establish-
ing a reliable mapping between the system’s elements. There is lower to no interest
in network scanners, business process modeling systems and directory services. As
the enterprises cloud architecture blueprint makes use of a layered structure, commu-
nication between them, are passed either through central API gateways (ApiGee6) or
message queues (Active MQ7). For this reason these systems were added to the list.
The message broker however only covers a small portion of traffic between the layer
and therefore is of less relevance for EA documentation.

5https://12factor.net/de/
6https://docs.apigee.com/
7https://activemq.apache.org/

75

6. Evaluation - Case study at a German enterprise

Review of the questionnaire results and priority ranking:

This part of the interview served to review the questionnaire results and derived au-
tomation priorities as presented in the previous section. Experts were asked whether
the calculated score and raking meets their expectations towards the automation of
EA documentation. The weights applied in the score calculation formula 6.3.1 were
adjusted accordingly to reflect the experts’ requirements.

Recording of functional and non-functional requirements to the prototype

In this section the enterprise architects were presented a list of requirements suggested
by literature. In addition, they had the opportunity to formulate requirements freely.

With regards to functional requirements, a subset of the elements compiled by
Farwick et al. [8] were used as a baseline for this section of the interview. Figure
6.4 displays the consent of the enterprise architects with these requirements. As
presumed, high consent was stated for the capability to detect changes to the real-
world enterprise architecture, the capability to detect relationships among architecture
layers and robustness against refactoring in used EA information sources. These are
considered fundamental functionalities. Also the ability to detect interfaces between
information systems, mechanisms to assure data consistency and appropriate data
actuality as well as time-stamping belongs to the functionalities considered basic. The
definition of KPIs and calculation based on runtime data are features that would cause
excitement about the solution but are not considered mandatory. The reason behind this
judgment is that the industry partner has a set of architecture assessments in place that
are performed regularly. Currently they mainly consist of the fulfillment of checklists
and adherence to best practices and reference models. The opportunity is, to partly
automate these procedures and become capable of continuously monitor applications
for their compliance with given standards. With regards to the detection of changes
to the infrastructure and information systems rather disagreement was expressed. As
the industry partner is not interested and also does not import infrastructure elements
into the EAM repository, this functionality is not required. In general, is was stated
that it is sufficient to know which platform (e.g. OpenShift, Cloud Foundry instance)
an information system is operated on. Changes to information system are of low
relevance if interpreted according to IT Infrastructure Library (ITIL)8. Relevant changes

8http://www.officialitil4.com/

76

6. Evaluation - Case study at a German enterprise

to information systems are only those that actually have an impact to the architecture.
Such changes are covered by IR1.

ID Requirements formulated by Farwick et al. (2011)

fu
lly

ag

re
e

ra
th

er

ag
re

e

ra
th

er

di
sa

gr
ee

fu
lly

di

sa
gr

ee

IR1 The system must be able to detect changes in the real-world enterprise architecture ☒ ☐ ☐ ☐
IR1.2 The system must be able to detect changes to the infrastructure ☒ ☐ ☒ ☐
IR1.3 The system must be able to detect interfaces between information systems ☐ ☒ ☐ ☐
IR1.4 The system must be able to detect changes to information systems ☐ ☐ ☒ ☐
IR1.6 The system must be independent of refactoring in the EA information sources ☒ ☐ ☐ ☐

DQR1 The system must provide mechanisms that help the QA team to ensure data consistency ☐ ☒ ☐ ☐
DQR2 The system must provide mechanisms to ensure data actuality that is sufficient for the EA goals ☐ ☒ ☐ ☐

DQR2.1 Each element in the systems data structure must have a creation time stamp and an expiration date (volatility) ☐ ☒ ☐ ☐
DQR6 The system must be able to provide relationship information between and within the EA layers. ☒ ☐ ☐ ☐

FR1 The system must allow for the definition of KPIs calculations ☒ ☐ ☐ ☐
FR2 The system must be able to calculate the defined KPIs from runtime information ☒ ☐ ☐ ☐

NFR1 The system must scale for large data input ☐ ☐ ☒ ☐

In
 u

se

N
ot

 u
se

d

Ve
ry

 im
po

rt
an

t

im
po

rt
an

t

Le
ss

 im
po

rt
an

t

N
ot

 in
vo

lv
ed

Cloud APIs ☐ ☒ ☒ ☐ ☐ ☐
Tracing Data ☐ ☒ ☐ ☐ ☒ ☐
Monitoring Data ☐ ☒ ☒ ☐ ☐ ☐

Figure 6.4.: Consent of enterprise architects with requirements formulated by Farwick et al. [8]

In addition to this, the following requirements were demanded explicitly:

• Capability to detect and document deployed applications (inventory)

• Capability to group application components to a logical super-ordinate application

• Capability to detect hierarchies and dependencies between applications

• Smooth integration of the solution into the software development process and
pipelines

• Capability to export the data into the existing EAM repository

• Data collection for the assessment of architecture policies and guidelines

As the industry partner does not wish to have an additional front-end next to the
existing EAM repository, explicitly not demanded were the following functionalities:

• Visualization of deployed artifacts

• Visualization of communication dependencies

• Visualization of architectural changes over time (history)

Summarizing the requirements analysis that incorporates the information gathered
by questionnaires and semi-structured interviews the following key requirements are
captured. Generally speaking, the industry partner primarily requires a solution for
the automated EA discovery and data integration into an existing EAM repository. A
separate front-end for architecture visualization purposes is not desired. With the scope
of used cloud environments this solution is required to solve the following challenges:

77

6. Evaluation - Case study at a German enterprise

• R1 - Application Inventory: Closure of the the EA documentation gap in appli-
cation inventory in an automated manner

• R2 - Application Relationships: Closure of the EA documentation gap in appli-
cation inter-relationships in an automated manner

• R3 - Business Layer Relationships: Capability to connect discovered applications
with respective business layer elements

• R4 - EA Model Maintenance: Capability to detect changes to the real-world EA
and ensure sufficient actuality of EA models

• R5 - Ease of Use: Impairment to the agile development process needs to be
kept as low as possible, the solution itself must be centrally manageable and
maintainable

• R6 - Data Integration: discovered EA data must be importable into the existing
EAM repository

• R7 - Automation Priorities: Consideration of automation priorities as per Table
6.5

6.3.3. Ead.json adjustment

The first adoptions of the prototype quickly revealed limitations with the initial scope
and usage of the ead.json configuration file. The original version only expected singular
business domain assignments while the industry partner required the possibility for
multiple assignments and a set of other business layer assignments. The ead.json
therefore needed to be adapted to the industry partner’s needs. The revised version of
the configuration file consisted of the following specifications:

The fields business_domain, business_subdomain, business_product and business_units
reflect the industry partner’s most important business layer assignments. Theses
elements are centrally defined in the EAM repository and are almost static. It is
therefore possible to incorporate them into the configuration file without the risk of
outdating soon. Referenced federated information systems contained are the CMDB
and the central API gateway. Both fields are optional as there might be applications that
are not registered in these systems. The reference to the CMDB allows to consolidate
and merge the EA documentation imported by EAD into the EAM repository with the
EA data imported by the CMDB. The reference to the API gateway allows to discover
which APIs a given application consumes over the API gateway.

78

6. Evaluation - Case study at a German enterprise

1 {
2 "application_component_name": "a human understandable name of the application component (

mandatory)",
3 "description": "short description of the application component (optional)",
4 "superordinate_application": "top level application name the application component belongs to (

mandatory)",
5 "product_owner": "email of the product owner (mandatory)",
6 "business_domain": "the business domains the component belongs to (mandatory)",
7 "business_subdomain": "the business subdomain the component belongs to (mandatory)",
8 "business_product": ["array − set of products the application component supports (optional)"],
9 "business_unit": ["array − set of business units the component supports (optional)"],

10 "cmdb_id": "the ID of the corresponding element in the CMDB (optional)",
11 "api_gateway_client": "the unique name of the corresponding client registered in the API gateway (

optional)"
12 }

Figure 6.5.: Adjusted ead.json according to the industry partner’s needs

6.4. Target state

After analyzing the as-is situation and gathering requirements from the industry partner,
an in-depth analysis was performed to identify the degree to which the requirements
can be fulfilled by the use of the suggested solution concept. This includes observations
from the practical adoption and use of the solution in a real case setting as well
as qualitative analysis of EA information sources that are required to satisfy the
information demand. In this section, the following questions will be answered

1. What are the information sources required to satisfy the information demand
(section 6.4.1)?

2. To what extent can they contribute to the EA model (section 6.4.2)?

3. To what extent can this be automated (section 6.4.3)?

6.4.1. EA information sources

In the first step, potential information sources are analyzed which could satisfy the
industry partner’s information demand. The goal of this analysis is to identify the most
valuable EA information sources that finally can be incorporated into the suggested
solution approach. The baseline for the selection of tools to be analyzed is that they
contain data that most closely reflects the current EA. The data contained should be
in close relation with productive systems. Moreover, it should not be documented

79

6. Evaluation - Case study at a German enterprise

manually as this would increase the risk to build upon outdated and incomplete
data. Therefore, the focus was put on platforms used to run and operate applications
including the development tool-chain.

The potential information sources are categorized as config files which are static files
that provide configuration and other meta information about an application, software
development tools and runtime information that originates from the operating envi-
ronments. A rating r ∈ {1, ..., 4} was applied where "1" stand for highest adequacy and
"4" for very low adequacy. This rating refers to the adequacy of a given information
source to retrieve data about the EA element in question. Cells that remain empty stand
for not suited or no information contained about the respective EA element. The ranking
at the lower end of figure 6.6 was calculated by weighting the reversed rating by its
automation priority rank which resulted in a score, the higher the better. This score
finally was ranked. For time reasons only one representative system of a kind could be
analyzed. It is assumed that the tools of different vendors contain similar information.

The ratings are based on analyzing the individual data source publicly available
documentation and real-case examples assessed at the industry partner. Not all ratings
can be justified at this point but the most important clusters are explained in the
following paragraph.

Config files can hide surprisingly much EA relevant information, especially within
the application layer and even about some relationships. Examples are container
configurations such as Docker-files9 and Docker-compose files10 or Kubernetes resource
configuration files which are used to define Services11, Deployments12 or Pods13. They
allow to enrich their content by meta information which can be added using tags or
labels. This feature could be used to set the artifact into relation of business layer
elements. The authors in [13] demonstrated the value of extracting information from
Docker-files and Docker-compose files in combination with runtime information to re-
cover microservice architectures. Config files used to be contained in the source code
repository and thus, are directly accessible from the CI/CD servers working directory
after being checked out. This makes them directly available within the CI/CD pipeline
for further processing. Relationship information is held by config files insofar that
they reference other components they depend on (e.g. Docker-compose file attribute
"depends on"). Assessing real-case examples, it was found that these files often contain
variables instead of being hardcoded. As variables cannot be resolved when being read

9https://docs.docker.com/engine/reference/builder/
10https://docs.docker.com/compose/compose-file/
11https://kubernetes.io/docs/concepts/services-networking/service/
12https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
13https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

80

6. Evaluation - Case study at a German enterprise

Figure 6.6.: EA information sources - coverage matrix

81

6. Evaluation - Case study at a German enterprise

from the CI/CD servers working directory, this makes this source less reliable (therefore
rated with "3" or "4"). The ead.json is exempt from this limitation as it is an integral
part of the suggested solution concept and is dedicated to hold static information with
regards to EA. It is an ideal vehicle to map business-related information such as domain
assignments, supported business units, etc. to the application. They are also easier to
maintain than labels that are scattered across multiple docker files.

Software development tools are a valuable source for identifying actors and their
roles which are involved in the development process (e.g. developers, project leads, etc.)
and putting them into relation to the application. Given that the respective features
are used, software products and related components can be precisely represented (e.g.
by JIRA components or GitHub Releases). In GitHub, application components often
have an individual repository and are grouped to a logical application by GitHub
Organizations. GitHub Projects and JIRA Projects can be interpreted as Projects form
an ArchiMate perspective as they store work packages intending to transform a given
EA element. Software characteristics such as software versioning, complexity and
technologies being used can be found within VCS system. Continuous Code Inspection
tool such as SonarQube14 used for static code analysis and testing, store software test
results, vulnerabilities and other code issues which indicate the software’s quality and
complexity. Details about deployments and releases versions can be extracted from
BRM system (e.g. Arfifactory15 or DockerHub16) or the CI/CD server. Such tools often
provide their objects, metrics and event data via REST APIs that could be incorporated
for EA purposes.

The group of runtime information sources consists of the operation environment
itself (e.g. cloud platforms), tools that govern services and their communication such
as API gateways and service meshes and finally, distributed tracing technologies which
allow to analyze communication flows. These tools provide runtime information,
metrics, actors and relationships of different kinds. Still, there are differences in ad-
equacy to be considered. Cloud platforms reliably reflect the ground truth about
deployed applications (application inventory) and a broad range of information across
the application and technology layer. Also some relationships, for instance, bound
cloud services, exposed URLs accessible for external applications and related actors
can be retrieved from these platforms. Application logs produced are often stored
in central logging solutions such as the ELK-Stack17 that can be further analyzed to

14https://www.sonarqube.org/
15https://jfrog.com/artifactory/
16https://hub.docker.com/
17https://www.elastic.co/de/what-is/elk-stack

82

6. Evaluation - Case study at a German enterprise

discover communications between individual applications deployed. Though, cloud
applications have dynamic IP addresses which frequently change. This implies that
there is usually a small time window where communication paths can be discovered
based on simple logs. This issue was exemplary observed using Cloud Foundry which
logs reference the IP address of an incoming request’s source only. Mapping to the
requesting application is only possible as long one of its instances bears the respective
IP address. An easier solution to the discovery of communication paths, therefore, is the
analysis of distributed tracing data. This technology (cf. OpenTracing18) equips request
headers with certain IDs that can be matched across all logs of involved applications.
Therefore, it allows to recover the exact end-to-end path a request took through the IT
landscape. Dependent on the level of instrumentation, such tracing solution reach from
application-level elements down to infrastructure-level devices. A potential alternative
are service meshes. For instance, Istio19 places a sidecar-proxies along with deployed
services which allows to govern inter-service communication across the mesh uniquely
and can visualize and provide this information via REST APIs. Such a mesh can be
spanned across multiple cloud platforms.

Regarding this set of potential EA information sources, it can be stated that there is a
gap in the field of business layer elements. No tool is a direct representative for one
of the business layer elements, instead, objects contained only be interpreted as such.
For example, a JIRA project owner or a GitHub team could be interpreted as Business
Actors from an EA perspective. A Jira project can be interpreted as an IT product.
Whether this is suited or not depends on the individual companies EA meta model
and requirements. Resulting to this, another weakness is with relationships between
business and application layer. The only vehicle found suited for such assignments is
the solution concept’s ead.json file. Compared to tagging or labeling it has the advantage
that it can be maintained at a single central location in the code repository. However,
the number of required entries should be kept on an acceptable level to ensure its
maintainability.

Based on the calculated ranking which considers the industry partner’s automation
priorities and information demand, the following tools were selected to be integrated
into the suggested solution as they contribute the most information to the target EA
model.

1. Cloud Foundry as cloud platform

2. ApiGee as API gateway
18https://opentracing.io/
19https://istio.io/

83

6. Evaluation - Case study at a German enterprise

3. GitHub as SCM

4. A set of config files including

• ead.json

• readme file as an alternative source for components descriptions

• manifest.yml files as a source to extract the artifacts name in the cloud
platform

Despite their promising ranking, service meshes and distributed tracing are dropped
from the selection of information sources. At the industry partner, Dynatrace is not
used for continuous tracing but on demand only in context of troubleshooting or
performance analysis. As of now, Dynatrace therefore does not make a reliable source
for EA documentation. Service meshes are not in use at the industry partner.

6.4.2. EA element and attribute coverage

This section analyses in detail which parts of the industry partner’s EA meta model
(cf. 6.1) can be satisfied by the help of the suggested solution approach and the set of
selected EA information sources.

Mapping Cloud Foundry to the EA meta model

Figure 6.7 illustrates the fundamental concepts of Cloud Foundry interpreted as Archi-
Mate elements. This should facilitate the mapping from a simple object model to an
EA meta model. All of the elements are retrievable using the cloud platform’s exposed
REST APIs. A Droplet is a OCI20-compliant container which results from the staging
process. It contains the executable application from the build process and a Container
Image / Buildpack (defines the runtime environment) and a Stack (specifies the base op-
erating and file system being used). These elements are interpreted as System Software.
There can be multiple instances (interpreted as Node) of an app which run on a cluster.
Cloud Services can be bound by an app. They provide standard software functionalities
such as databases, autoscalers and monitoring agents. Thus, cloud services are inter-
preted as System Software. Apps are the most central element in Cloud Foundry around
which most other element are organized. Apps represent an ArchiMate Application
Component. The Cloud Foundry allows to organize apps in two hierarchies. Organi-
zational and Space level while a space is part of an organization. Apps can be reached
remotely using defined Routes which belong to a specified Domain. In other words,
Routes and Domain represent an application’s fully qualified domain name (FQDN) and

20https://www.opencontainers.org/

84

6. Evaluation - Case study at a German enterprise

a certain endpoint URL. Both are interpreted as Application Interfaces. With regards to
the industry partner’s meta model Apps are considered Application Components whereas
bound Service Instances are modeled as Technical Components. Droplets, Container, Stack
and Packages are handled as application attributes. The cloud platform itself is modeled
as Infrastructure Platform. Routes and Domains are modeled as application attributes.

User

...

Admin

Developer

Space

Organisation

App

Container Image
/ Buildpack

Stack

Domain

Route

Cluster

App Instance

Security Group

Service
Instance

Build Service

Droplet

Figure 6.7.: Reverse engineered Cloud Foundry meta model outlined in ArchiMate notation

Mapping ApiGee to the EA meta model

ApiGee’s and GitHub’s meta model (simplified) interpreted in ArchiMate notation
are depicted in 6.8. API providing applications are represented by API Products that
bundle a set of API Proxies which cover individual API resources. Both can be modeled
as Application Service from an ArchiMate perspective. The API providing application
itself is not directly represented in ApiGee. Still, a mapping between API proxies and

85

6. Evaluation - Case study at a German enterprise

the origin API is easy to achieve based on the FQDN both elements have in common.
API Consumers (also called Clients) are managed as Companies and their Developers.
Both have to be registered in the ApiGee Developer Portal. In ArchiMate, they are
represented by a Business Actor element. Developers and Companies can register their
applications as Consuming Apps in order to obtain access to a desired API Product
published in ApiGee. In the industry partner’s meta model, each published API proxy
is considered a Service exposed by an given application component. API providers and
API consumers are interconnected using the Interface element.

Mapping GitHub to the EA meta model

The source code versioning system GitHub essentially is organized around repositories
of source code where different branches and releases of code reside. These elements are
interpreted as Artifacts from an ArchiMate perspective. Individual Users or user groups,
bundled by Teams, contained in GitHub are represented as Business Actors. They work
on one or more repositories. Activities and tasks around one or more repositories can
be managed as part of a Project. A set of repositories can be grouped using a GitHub
Organizations.

Linking EA information sources

For all information systems integrated into EAD, the questions needs to be answered
how objects and information contained in these systems can uniquely be linked to
each other. As elaborated by [20], business layer related information can be linked
to a concrete cloud application along with the deployment pipeline by passing the
ead.json as additional input. This works for any kind of data as well as references to
federated EA information systems by including a target URL or ID which references
the given artifact. Figure 6.8 shows this part of the process in the upper center. The
repository that contains the source code of an artifact can automatically be mapped to
the deployed cloud application as it passes the CI/CD pipeline, where the repository
is checked out, then build and deployed to the cloud platform. In case of ApiGee,
one needs to differentiate API providers from API consumers as the mapping works
differently. In case an application consumes APIs published via ApiGee, the ead.json
must reference the registered Consuming App that represents the application. This
reference makes it possible to retrieve information about consumed APIs and their
providers by calling ApiGee’s REST API. For API providing applications the mapping
process can be fully automated. Registered API resources can directly be matched based

86

6. Evaluation - Case study at a German enterprise

on their base URL that equals the FQDN of the providing application. This means
that a particular Cloud Foundry application can be looked up in ApiGee based on its
FQDN. Matching API Proxies are then considered to be exposed Application Services
by this application. For API consuming applications this is not possible as ApiGee
registers applications based on certificates21. An automatic matching would therefore
require to integrate the certificate store to match an application with its certificate name
followed by a lookup in ApiGee. Thus, adding a reference to the ead.json is a more
lightweight approach.

In the appendix, Figure A.1 gives more details about what the relevant API endpoints
for information retrieval are.

Figure 6.8.: Linkage of EA information sources

21this might deviate from organization to organization

87

6. Evaluation - Case study at a German enterprise

6.4.3. Automation potential

Figure 6.9 puts the contribution of these EA information sources together, transformed
to the industry partner’s target meta model. The percentages given on the left reflect the
Status Quo state of EA repository completeness (cf. section 6.2.3) versus the Target state
of EA repository completeness. The baseline was determined by the documentation
gap analysis in section 6.2.3. As the ground truth of what complete actually means is for
some element (Technical Components, Interfaces and Services is unknown, corresponding
values are approximations. The same is valid for Relationships that have a many-to-many
or one-to-many multiplicity.

Business layer relationships, i.e. relationships of an application or application
component towards business layer elements, can be created up to 100 percent. Though,
this relies on the availability and completeness of the ead.json provided. Therefore the
creation and maintenance of these relationships are considered semi-automatic. To
ensure completeness it is indispensable that all agile teams properly adopt the solution.
Therefore, this should be enforced by governance or technical means to ensure the
adoption.

The same is valid for Applications where the approach relies on the specifications
made in the config file. At the industry partner, there is no reliable way to technically
discover logical applications, i.e. the product of several deployed application compo-
nents. An aggregation based on Spaces (in Cloud Foundry) or namespace (in Kubernetes)
that are used to organize application components makes a feasible solution. However,
this was rejected due to a lack of reliability, as the naming of such spaces does often
not correspond to a certain application’s name or other components are contained that
would falsify the result. As no naming conventions or other global identifiers are in
place that would allow to map components and applications, the ead.json was the only
possible solution.

Application Components can be discovered automatically a 100 percent using the
cloud platform’s REST API. Provided that the ead.json config file is provided along
with the deployment process, an attribute coverage of up to 60 percent can be achieved.
Otherwise only limited attribute documentation is possible.

Services and Interfaces can only be discovered in case the application component is
registered in the API Gateway. As previously mentioned, a fully automated discovery is
only possible for API providing applications. For API consuming applications, a unique
reference has to be added to the ead.json file. Based on the analysis published APIs
and clients registered in ApiGee, the current data stock of Services could be doubled
from 30 to 62 percent. Attributes can be filled up to 48 percent automatically. The
total amount for Interfaces can only be approximated. Based on interpolation, the
integration of ApiGee would result in a plus of approximately 21 percent of elements.

88

6. Evaluation - Case study at a German enterprise

Relationships that connect source and target application over these elements would
increase proportionally. For Interfaces the attribute coverage percentage is up to 75
percent.

Most important Technical Components an application component is build upon can
be discovered from Cloud Foundry and GitHub. This includes bound cloud services
(e.g. databases, autoscaler, monitoring agents, etc.), technology stack, programming
languages and software dependencies. The portion of element coverage, however,
cannot be determined as there is no fixed definition of what technical components an
application consists of. Nevertheless, this can cover approximately up to 80 percent of
relevant technical components which are of relevance to the industry partner.

Relationships to the Infrastructure Platforms a given application component is oper-
ated on, can be determined in any case fully automated.

Summarizing this section one can state that with regards to the Business Layer, the
suggested solution strongly depends on the availability and correctness of the ead.json
file which has to be created manually. The process should therefore be enforced by
governance or technical means to ensure the success of the solution. Also quality
assurance mechanisms are crucial to validate the quality of information contained (cf.
section 4.3.3). Regarding the Application Layer, the solution is able to provide full
transparency on application components including most important Technology Layer
elements. The API gateway as a source to discover Services and application relationships
proofed to be valuable, however, is far off providing on overall picture. In order to
close the remaining gap in application relationships, the analysis of distributed tracing
data is indispensable. The element and attribute coverage ratios will further be used to
calculate the cost savings potential in section 6.6.

6.5. Productive use - adoption to real-case projects

In total, the prototype was rolled-out to two projects with the goal to get insights on
the solution’s behavior under real-case settings. Another goal was to get qualitative
feedback from Software Developers and Product Owners after integrating the concept
into their environment. This qualitative feedback is included in section 6.7 together
with all other findings gathered as part of the evaluation interviews.

6.5.1. Integration efforts and perception

From a processual perspective, the teams did integrate the solution using known Scrum
procedures. First, a user story was created which stored the integration requirements
and then was implemented as part of a regular sprint. The first adoption (i.e. the first

89

6. Evaluation - Case study at a German enterprise

Centrally
modelled
(out of scope)

In scope

automatic

semi-automatic (ead.json file)

BEFORE | AFTER

80% 100%

15% 100%

30% 62%

52% up to 100%

91% up to 100%

17% up to 100%11% up to 100% 28% up to 100%

8% up to 100%

91% up to 100%

15% 80% 27% 100%

29% 50%

57% up to 100%

Figure 6.9.: Automation potential

90

6. Evaluation - Case study at a German enterprise

ead.json to be created and the first pipeline to be instrumented) took between four to
five hours effort for both, the pipeline integration and initialization of the ead.json. One
software engineer had issues with adding the ead-library due to missing admin rights
which caused a delay (3 hours for pipeline integration) whereas the other team was able
to integrate and test the functionality within a single hour. Difficulties with the creation
of the ead.json were caused by a lack of knowledge about business assignments but by
specifying the correct references to federated information systems. The teams expected
to require between 0.5 to 1.0 hours for each further artifact to be integrated due to
learning effects. The effort needed is perceived as acceptable. None of the team did
report impairments to the execution of the deployment pipelines beside a longer but
acceptable duration. Similar to the ead-libraries test environment, the documentation
stage took around 1.5 to 1.75 minutes to complete. Table 6.7 summarizes the figures.

All involved subjects perceived the integration procedure as easy to implement. Still,
four to five hours for the initial adoption is a fairly long time which indicates that the
process should be further improved and facilitated. Especially additional support to
correctly fill the ead.json file is necessary as software engineers claimed that the manual
was not always clear enough about how to specify the required values. This mainly was
attributed to references to federated information systems. There were uncertainties of
what the correct path should be. Developers also requested a more meaningful console
based feedback about the success or failure of the EA documentation stage.

Product Owner Developer Product Owner SW-Architect
effort for pipeline integration (1st Adoption) < 3,0 h < 1,0 h

effort for ead.json initialization (1st Adoption) < 2,0 h < 3,0 h
average for further adoptions < 1,0 h < 1,0 h < 1,0 h

EAD stage duration

percieved complexity very low very low very low low
effort for ead.json is acceptable fully agree fully agree fully agree

effort for pipeline integration is acceptable fully agree fully agree fully agree fully agree

Team 1 Team 2

5 micro-services 9 micro-services
number of services

perception
1:47 min1:33 min

integration efforts

pipeline duration

Table 6.7.: Feedback received from pilot teams

91

6. Evaluation - Case study at a German enterprise

6.5.2. EA documentation results and findings

This section shows exemplary results of one of the selected projects. The main difference
between the current EA model and the one created by EAD is a deviation in abstraction
levels. The current, manual documentation is based on application level whereas EAD
documents EA based on application component level. Figure 6.10 shows the project’s
manually modeled EA on the left hand side. The right hand side depicts the EA
modeled by EAD. The comparison brought forth the following findings:

1. From a business layer perspective, the solution is capable to provide an equal EA
documentation as the existing one, thanks to the ead.json file.

2. The solution was able to identify all application components. Compared to the
preexisting model, there is a mismatch in the level of abstraction (application
level vs. application component level). Therefore both models can complement
each other. To achieve this, the ead.json should reference the identifier of the
preexisting EA element. Based on this, EAD can connect discovered application
components to the preexisting application-based EA models they belong to. As a
result, current EA documentation is enriched rather than substituted. From the
industry partner’s perspective this is a reasonable approach as the preexisting
documentation contains many attributes that cannot be covered by EAD.

3. The solution was able to discover exposed services and their clients from the
Api Gateway. A considerable mismatch was identified when comparing the
resulting elements with the preexisting EA model. It was previously known
that the API gateway only governs a certain part of the communication traffic
between applications. Therefore, the assumption was, that a subset of interfaces
and relationships modeled in the current EA could be automatically detected.
Instead, almost none of the relationships contained in the API gateway mapped
to the preexisting documentation. Following to this, a cross comparison between
application relationships modeled in the EA repository, the CMDB and the API
gateway was conducted. It revealed that between all of these sources only few
entries matched. The reason identified behind this finding, is that manually
modeled relationships abstract much of the details of a communication path.
They rather are logical end-to-end aggregation of the first and last node of a path.
Opposed to that, the relationships discovered by EAD refer to technical interfaces
being published and consumed. This used to cover a segment of an end-to-end
communication flow and therefore most often cannot be matched to existing EA
documentation. Still, EAD was able to identify a number of relationships that
were not at all documented in the current EA model.

92

6. Evaluation - Case study at a German enterprise

4. On the technology layer a considerable information surplus could be achieved.
All discovered components could be related to the Infrastructure Platform they are
operated on. Additional details about bound cloud services, the technical stack
and used programming languages could be documented which was absent in the
existing EA models.

5. Other elements modeled in the current EA, such as retired applications and
projects are not covered by EAD.

55

matching

not matching

matching

Information
Surplus

preexisting application-level-based EA model acheived component-level-based EA model

Figure 6.10.: Schematic comparison of current and achieved EA model

As summarized in section 6.2, the EA documentation of Business Applications is
perceived 80 percent complete due to the automated import from the CMDB and
a mandatory modeling process for this system. Over a 150 fields are attributed to
the EA element Application. This includes architectural assessments and decisions,
organizational details, project related information and attributes relating to regulatory
and compliance requirements. As such attributes can hardly be automated, it is clear
that the preexisting documentation cannot be substituted by EAD. Still, EAD is capable
to contribute much relevant EA information and close current documentation gaps to
large extent. Therefore a consolidation of the preexisting and the achieved EA models
is suggested as depicted in figure 6.11.

93

6. Evaluation - Case study at a German enterprise

To achieve this, GUID based matching needs to be used to ensure a unique mapping
of application components to the preexisting documentation on application level. For
the industry partner’s case the CMDBs unique identifier is used. This identifier is
stored in the EAM repository along with the data import. Agile teams have to add
the identifier to the ead.json. This allows to connect application components discovered
by EAD to their respective super-ordinate application. The questionnaire presented
in section 6.2 revealed that the application component level is of less relevance than
the application level. For this reason, information gathered on the more fine-grained
component level should be aggregated and replicated to the application level. All
relationships and interfaces should be visible on this level. The same applies for the
Infrastructure Platforms (i.e. cloud platform) the application is operated on. Optionally,
also discovered technical components could be aggregated. However, in this example
this isn’t the case due to the relatively low importance of these elements. As a result
of this aggregation the application level documentation can be completed and further
enriched while a drill down to the more fine-grained component level is still possible.
Benefits of this approach are (1) that preexisting documentation is retained and further
enriched and (2) enterprise architects as well as agile teams can find the elements in
the EAM repository they are familiar with.

Drawbacks of this, however, are blurred boundaries between manual and automatic
modeling. This bears the risk of modeling conflicts that need to be handled. For
instance, recurring updates from EAD could override manual changes. The EAM repos-
itory supports the reservation of writing access to individual meta model objects and
attributes to specified users and roles. This could solve some of the conflict potential
on an element level but is insufficient for an attribute level. The EA repository should
still allow for the flexibility of manual modeling. Therefore, an appropriate trade-off is
necessary.

Concluding this section, it can be stated that all application components were suc-
cessfully identified by EAD. This is a considerable information surplus compared
to existing EA models which do not contain application components. The ead.json
fulfilled its purpose and delivered relationships to business layer elements and the
super-ordinate application. On the technology layer the existing EA model can be
enriched with information previously not documented. The API gateway delivered a
number of exposed services and consumed services and allowed to connect providing
and consuming applications. Figure 6.12 depicts the difference in modeled EA elements
between the preexisting and the achieved EA model for both agile teams. The percent-
ages given indicate the completeness compared to the documentation contained in the
applications’ IT concept. For some elements the percentage could not be determined.
This comparison revealed that gaps in relationship documentation are still considerable.

94

6. Evaluation - Case study at a German enterprise

Application A's components

Component 2

Component 3

Component 3

Component 4

Component 1Application A

Business Domain
Product A

Product B

Product C

Capability A

Capability B

Application

Owner

Business Unit

A

Business Unit

B

Business Unit

C

exposed

Interface

Application A

(retired)

Project

Technical

Components

Infrastructur

e Platform

Programming

Languages
Cloud

Service

Container

Image

consumed

Interface B

consumed

Interface A

Figure 6.11.: Consolidation of preexisting and achieved EA models

95

6. Evaluation - Case study at a German enterprise

Without the analysis of distributed tracing data, communication flows among applica-
tion components and to surrounding applications cannot be fully discovered except
for the subset which passes the API gateway. Simply speaking, EAD in its current
state is capable to white-box the preexisting application-level EA documentation by its
application components and enrich it by technology layer relationships as well as a
certain part of relationships. In the context of the overall MICROLYZE concept, tracing
data is crucial to fully discover inter-relationships between applications.

Current EA Model Achieved EA Model Current EA Model Achieved EA Model
of Application 1 1 1 1
of Application Components 0 9 (100 %) 0 5 (100 %)
of Exposed Services 0 5* 0 4*
of Inter-Relationships (betw. Applications) 0 1* 4 5*
of Intra-Relationships (betw. Components) 0 5 (~ 38 %) 0 3*
of Connected Databases 0 1 (~ 17 %) 0 0 (0 %)
of Related Technical Components 0 10* 0 5*
of Related Infrastructure Platforms 0 2 (100 %) 0 2 (100 %)

*) percentage is unkown

Agile Team A Agile Team B
Modelled elements

Figure 6.12.: Modeled EA elements - preexisting vs. achieved EA documentation

96

6. Evaluation - Case study at a German enterprise

6.6. Analysis of cost and savings

As discussed by [22] it is not reasonable to judge an IT investment from a purely
monetary viewpoint as the value propositions often cannot be directly mapped to
financial impact. Instead IT systems often have an indirect influence which can hardly
be measured. Besides, non-monetary aspects have to be considered.

This section discusses a business case which was calculated with the industry partner.
The first subsection estimates the costs it takes to implement, roll-out and operate EAD.
The second subsection estimates the current expenditures for manual modeling efforts
and derives the cost savings potential. The third subsection compares the determined
investment against the estimated cost savings. This results in a net benefit from a
monetary perspective only. Other value propositions of the suggested solution are not
monetized in this work as they cannot be directly related to costs and efforts. Still,
such factors have to be considered on top of the identified financial net value. A final
judgment is left to experts in the field and is a part of the evaluation interviews which
results are presented in section 6.7. However, this section aims to make the financial
impacts transparent in order to facilitate such a judgment.

6.6.1. Running cost and savings for manual EA modeling

The following steps were undertaken to determine the cost savings potential

1. Determine quantity structure and monthly amount of create and update activities
in the EAM repository

2. Calculate (where possible) or approximate the documentation gap of EA elements

3. Conduct expert estimations regarding manual modeling efforts per EA element
using the three-point-estimation method

4. Validate estimations with experts

5. Calculate the savings potential by the help of the EAMM automation degrees
determined in section 6.4.3

First, the current quantity structure of existing elements in the EAM repository was
identified, describing the total amount of elements per type, the amount of attributes
per element type and the number of relationships that connects them. Moreover, the
monthly average of manual modeling activities was determined as the average of create
and update activities in 2019. Previous years were ignored as there were many bulk

97

6. Evaluation - Case study at a German enterprise

activities that would have falsified the value. These quantities serve to determine
manual efforts caused by the current data stock by linear extrapolation (cf. Table A.5).

Second, the estimated gap of elements not yet documented in the EAM repository
was analyzed. To achieve this, extracts from the CMDB, the API gateway and the cloud
platforms were used to get the total number of applications, application components
and services. This was compared to the current data stock in the EAM repository.
From this comparison the degree of completeness of the current data stock was derived.
Further details about this analysis are described in section 6.4. These quantities serve
to determine manual efforts that would be caused by closing the documentation gap
(onetime efforts) and maintaining the additional data volume (running efforts).

Third, the effort estimations were conducted independently with three Enterprise
and Domain Architects using the three-point-estimation methodology described in
section 5.2.3. For each type of EA element estimations were recorded differentiated in
create and update activities for a single unit. This estimations include the time necessary
to look up information and fill the attributes as well as setting of relationships to
other existing EA elements. Explicitly not contained in these estimations are efforts
which are needed to obtain information by the means of meetings, calls or email
based communication due to the immense variance this would cause. Such efforts
are considered in form of a percentual supplement. This process resulted in a PERT
estimation value E as per three-point-estimation that is required to create or update a
given EA element. Multiplied by the quantities determined in the first two steps, it is
possible to calculate the expected manual modeling efforts per EA elements and time
period.

Forth, the resulting estimations were cross validated by the experts.
Fifth, after calculating the total efforts by multiplying the quantities determined in

the first two steps by the estimated efforts, the saving potential can be derived. This
was achieved by multiplying the efforts by the determined automation degree in 6.4.3
on element level as well as on attribute level.

After supplementing the total efforts with 10 percent surcharge to approximate
meeting and alignment efforts the total effort and savings potential is determined. The
most important figures that were revealed by this calculation are depicted in table 6.8.
In the appendix, the corresponding calculations can be found:

• Table A.2 summarizes the effort estimation process. It contains the averaged three-
point-estimations obtained by three experts (red colored figures) and calculates
the PERT value E from these estimations. E is then multiplied by the monthly
quantities to determine the total monthly effort per element shown at the left-
hand side of the table. The right-hand side of the table first states the degree

98

6. Evaluation - Case study at a German enterprise

of automation that is then multiplied by the total PERT values E for create and
update activities.

• Table A.3 is concerned with cost and savings that emerge from the current data
stock. It starts with the sum of monthly efforts determined and multiplies them by
an assumed internal cost rate of 100 EUR. By applying the degree of automation
determined onto the yearly costs, the savings potential is calculated and finally
expressed as a percentage.

• Table A.4 is concerned with cost and savings that emerge the EA documentation
gap to be closed. On the left-hand side, onetime costs and savings are displayed
that would occur if the documentation gap was closed manually. The right-hand
side covers cost and savings that would emerge from the additional data in stock.

current data stock documentation gap total data stock
PERT SUM PERT SUM PERT SUM

monthly efforts in hours 39,96 16,69 56,65
monthly Cost in EUR 3.995,56 € 1.669,30 € 5.664,86 €

yearly Cost in EUR 47.946,70 € 20.031,63 € 67.978,33 €

monthly savings in hours 24,40 8,57 32,96
monthly savings in EUR 2.439,69 € 856,72 € 3.296,40 €

yearly savings in EUR 29.276,22 € 10.280,62 € 39.556,84 €

PERT SUM PERT SUM PERT SUM
Savings Potenial 61% 51% 58%

SA
VI

N
G

S
CO

ST

Table 6.8.: Total operation savings

Important remarks and assumptions

1. Monthly average modeling activities are considered to be steady in this calculation
as no prediction about the future is possible.

2. The monthly update rate does not differentiate between application classifications,
i.e. applications, application components and services are treated identically.

3. The efforts for updates for application components were considerably lowered as
compared to applications due to the fact that most attributes for this element
type are sufficient to be filled on a application level. Therefore fewer attributes

99

6. Evaluation - Case study at a German enterprise

are necessary for application components which results in a higher degree of
automation in these cases but also in considerably less saving potential.

6.6.2. Implementation, roll-out and running cost for EAD

In this section, the cost for the solution’s implementation, roll-out and operation are
determined. The following aspects are taken into consideration:

1. Preparation efforts (concept, planning and documentation)

2. Implementation efforts (solution implementation, integration with EAM reposi-
tory)

3. Cross-cutting activities such as project management, enabling and quality assur-
ance

4. Roll-out efforts (ead.json creation, pipeline integration and troubleshooting)

5. Operation and maintenance efforts for the suggested solution

The solution’s Implementation efforts are estimated using the following schema:
First, the approach of how relevant data is retrieved from a given data source is
determined and classified in a set of predefined retrieval methods. Next, the approach of
how data is transformed into information that is actually valuable for EA documentation
is determined. Again this is classified in a set of predefined transformation methods.
The classification sets were derived from practical experience collected during the
implementation of the prototype. Two experienced software developers were asked
to give their efforts estimation for each of these classifications using the three-point-
estimation methodology. For instance, the developers estimated the effort in hours it
takes to implement an REST-API call (Data Retrieval Classification) and to transform the
retrieved data into useful information (Data Transformation Classification). Figure 6.9
shows the result of this process. The expected effort E is the actual estimation used for
further processing. It is determined as per three-point-estimation technique. The total
effort is determined by multiplying the expected effort E by the number of occurrences
of the respective classification in the solution’s source code. For instance: In total two
CLI-Calls and three API-Calls need to be implemented to get the most valuable data out
of Cloud Foundry where in nine cases the data returned can directly be used, a single
case that requires mapping logic (implicit/indirect) and two cases where the results
have to be combined with data originating from a secondary information source (e.g.
matching Cloud Foundry applications with related API proxies published in ApiGee).
These numbers are partly directly observable from the prototypes source code. For all

100

6. Evaluation - Case study at a German enterprise

other cases, the numbers were determined by analyzing the API documentation (parts
of GitHub and ApiGee). The values for Kubernetes are assumed to be similar to the
ones of Cloud Foundry. Initial project ramp up, concept, planning and documentation
was included as a lump sum estimated by the software developers. Efforts for testing
and integration with the central EAM repository calculated as an estimated lump sum
per source.

Table 6.9.: Data retrieval and transformation classifications and effort estimations

Cross-cutting activities are included as percentual supplement applied to the im-
plementation costs. These are five percent for project management activities during
the roll-out, ten percent for quality assurance and ten percent for enabling of and
communication with agile teams. Roll-out costs essentially consist of onetime efforts
it takes for agile teams to create the ead.json for each of their artifacts and to integrate
the ead-library into the deployment pipelines. The first adoption per team is estimated
to take two hours and each further adoptions half an hour. Additionally, one hour
of troubleshooting per involved team is calculated. Running costs for Operation and
maintenance were estimated to be one working day per month plus a small amount of
infrastructure costs for the ead-backend component.

Figure 6.10 summarizes all estimated onetime and running cost positions. Onetime
costs in total accumulate to more than 210,000 EUR. Implementation efforts only cause
a quarter of this amount. Key cost drivers are the number of application components
and deployment pipelines to be integrated. These activities make up to 68 percent of

101

6. Evaluation - Case study at a German enterprise

the overall cost.

6.6.3. Total cost of ownership

Concluding the monetary assessment the figures are brought into context of time. Figure
6.13 shows the timely evolution of costs and savings. The lines depict running yearly
costs/savings whereas the bars cover onetime effects and the progressing amortization.
Year t0 reflects the current state, without the suggested solution in place. Yearly running
costs for manual EA modeling are approximately 50,000 EUR as determined in section
6.6.1 based the current data stock of approximately 2,000 application components (i.e.
approximately 25,- EUR per unit and year). In year t1 the solution is implemented
and rolled out (onetime effect costs as per section 6.6.2). It is assumed that only
a little portion of the identified savings potential can be realized during the first
year. Instead, run costs will first increase by the amount of operation costs of the
solution. Realized savings will then start to increase until year t3 while the amount of
registered application components in the EAM repository’s data stock will grow up to
approximately 4,000 elements as the documentation gap is closed. During the first year
upon the invest, a large amount of onetime savings is realized. This essentially reflects
the value it would take if the documentation gap was closed on a manual basis (see
section 6.6.1). Starting from year t2, run costs are decreasing due to increased savings
and stabilize itself with a reduction of 3.4 percent as compared to year t0. While this is
an almost neglectable amount, the run costs per registered application component in
the EAM data stock, however, is reduced by 52.2 percent (approximately 10,- EUR per
unit and year). The suggested solution is expected to be fully amortized in year t5.

The so called Total Cost of Ownership (TCO) is a concept that was developed and
made popular by the Gartner Group. It targets at determining the actual cost that
emerge from an IT investment across its entire life-cycle from acquisition until decom-
missioning [6], [22]. Figure 6.14 concludes this section by illustrating the total cost of
ownership over a runtime of five years. In this case, the solution’s decommissioning
cost are omitted. From a monetary perspective, after five years runtime the solution is
fully amortized. As already argued at the beginning of this section, a purely monetary
view is not reasonable when evaluating IT investments. According to Krcmar, value
proposition potentials of IT systems can include automation, information provision, contin-
uous measurements and surveillance, complex analytics, overcoming of geographical barriers,
integration of heterogeneous activities, knowledge creation and facilitation of processes [22].
Many of these potentials are also valid for the suggested solution. The following lists a
set of additional value propositions that were identified during interview sessions.

• Avoid manual reviews/rework: As the data quality is at an insufficient level,
EAM repository-based reports currently often need manual reviews and in some

102

6. Evaluation - Case study at a German enterprise

Effot in hours Cost in € Percentage
557,00 55.700,00 € 26%

50,67 5.066,67 € 9%
RampUp / Documentation 25,33 2.533,33 € 50%

Concept / Planning 25,33 2.533,33 € 50%

52,00 5.200,00 € 9%
Backend Extension 0,00 - € 0%

Iteraplan Integration 52,00 5.200,00 € 100%

454,33 45.433,33 € 82%
CloudFoundry 37,79 3.779,17 € 8%

Kubernetes 37,79 3.779,17 € 8%
ApiGee 31,29 3.129,17 € 7%
Github 19,42 1.941,67 € 4%
Jenkins 11,79 1.179,17 € 3%

ead.json 38,92 3.891,67 € 9%

Testing 277,33 27.733,33 € 61%

1460,00 146.000,00 € 68%
ead.json creation 1080,00 108.000,00 € 74%

pipeline integration 328,00 32.800,00 € 22%
troubeshooting 52,00 5.200,00 € 4%

139,25 13.925,00 € 6%
Project Management 27,85 2.785,00 € 20%

Quality Assurance 55,70 5.570,00 € 40%
Communication / Information 55,70 5.570,00 € 40%

2156,25 215.625,00 € 100%

hours / year Cost in € / year PERCENTAGE
96,00 11.400,00 € 100%

Maitenance 96,00 9.600,00 € 84%
Infrastructure Operation n.a. 1.800,00 € 16%

96,00 11.400,00 € 100%

TOTAL ONE TIME COST

TOTAL YEARLY RUNNING COST

RU
N

CO

ST

TOTAL Cost - Roll-out

TOTAL Cost - Cross Cutting Activities

IM
PL

EM
EN

TA
TI

O
N

TOTAL Cost - Operation & Maintenance

RO
LL

-O
U

T
CR

O
SS

CU

TT
U

N
G

TOTAL Cost - EA Source Integration

TOTAL Cost - EAM Integration

TOTAL - Preparation
GRAND TOTAL - IMPLEMENTATION

Table 6.10.: Estimated implementation onetime and running costs for EAD

103

6. Evaluation - Case study at a German enterprise

Figure 6.13.: Development of cost and savings

cases manual rework to ensure that the data contained is reliable and correct.
The suggested solution can help to increase the data quality to a level that makes
manual reviews and reworks unnecessary.

• Avoid unnecessary inventories: During the interview sessions, it was claimed,
that despite continuous EA modeling efforts, there are still spreadsheet based
inventories as the trust in the current data stock is insufficient. For the scope of
automation, such inventories can be avoided.

• Facilitation of projects and decision making: While the documentation gap is
closed and EA model maintenance becomes more and more automated, the
overall reliability and data quality in the EAM repository will increase. Projects
and decisions that rely on this information provided can progress faster.

• Enabling of new use cases: Once being rolled out, it is feasible to extend the
functionality as the connection to important information sources is already estab-
lished. For instance, architectural KPIs could be calculated based upon runtime
data or architectural assessments (currently conducted manually) automated.

All in all, such additional non-monetized value has to be incorporated as illustrated
in Figure 6.14. Expert’s judgment whether the solution is worth being rolled out from

104

6. Evaluation - Case study at a German enterprise

the industry partners perspective is given as part of the evaluation interviews which
results are described in the following section.

Figure 6.14.: Total cost of ownership over a five years runtime

Digression: Generic formulas for the approximation of cost and amortization

As the calculations in the previous section are specific to the industry partner, this
section provides the basic formulas that can be used to approximate the roll-out cost
and amortization of the suggested solution in general.

The first formula 6.2 approximates the total cost for implementation and roll-out
C. The implementation costs I are considered fixed and have to be determined by
experts estimation (cf. section 6.6.2). The roll-out cost R are driven by the total amount
of ead.json files qapps to be created, the number of deployment pipelines qpipes to be
instrumented with the ead-library and the number of involved agile teams qteams. For
each agile team, the first adoption (i.e. first ead.json to be created ca1st and first pipeline
to be instrumented cp1st is assumed to take more time than succeeding adoptions that
become faster due to learning effects (ca2nd,..,n and cp2nd,..,n). Per team, a certain cost ct

for resolving issues is calculated in addition as a risk factor. By adapting the variables
in the formula 6.2, the total costs for implementation and roll-out can be determined
depending on the size of variables chosen.

105

6. Evaluation - Case study at a German enterprise

C = I +
((

qpipes − qteams
)
× cp2nd,..,n + qteams × cp1st

)︸ ︷︷ ︸
integration cost for pipelines

+
((

qapps − qteams
)
× ca2nd,..,n + qteams × ca1st

)︸ ︷︷ ︸
integration cost for ead.json files

+ (qteams × ct)︸ ︷︷ ︸
troubleshooting cost per team

(6.2)

where:
C = Total one-time cost including roll-out
I = Implementation Cost (Preparation, Development, Cross Cutting Activities)
qpipes = total number of pipelines to be instrumented
qapps = total number of apps to be equipped with ead.json files
qteams = total number of agile teams involved
ca1st = monetary effort for first ead.json creation
ca2nd,..,n = monetary effort for second to all further ead.json creation
cp1st = monetary effort for first ead-library integration
cp2nd,..,n = monetary effort for second to all further ead-library integrations
ct = monetary effort per team for troubleshooting

Formula 6.3 allows to determine the remaining value after y years of amortization.
The total cost C determined previously is deducted by the onetime savings Sonetime that
are realized due to automated closure of the EA documentation gap and the sum of
generated operating savings across all elements and y years of runtime. Quantities and
individual savings potential of course cannot be generalized and has to be estimated
for a given organization.

A = C− Sonetime − ∑
e∈E

(y× Se × qe)︸ ︷︷ ︸
sum of yearly operation savings per EA model element e

(6.3)

where:
A = the remaining cost to be amortized after y years
C = Total one-time cost including roll-out
Sonetime = Total onetime savings due to closing documentation gap
e = EA element e in set of EA Element e ∈ E {e1, ..., en}
Se = operating savings realized for automated maintenance of EA model element e
qe = total amount of EA model element e in the EAM data stock

106

6. Evaluation - Case study at a German enterprise

y = years of runtime
Se = operating savings per element e
qe = total amount of element e

Digression: Alternative scenario including distributed tracing

As previously mentioned, distributed tracing could not be evaluated with the industry
partner. This technology has a significant contribution to the overall solutions value
proposition as it is allows to discover application relationships based on the analysis of
tracing data produced. The degree of automation for the detection of Services, Interfaces
and Intra-relationships at the application layer is assumed to be considerably higher than
the current state of implementation. Gathering relationship information is currently one
of the major effort drivers for manual EA modeling. Therefore, the savings potential
for meetings, calls and email communication is considered to be at a higher level.
This, in turn, would lead to a higher cost savings and faster amortization. Figure 6.15
approximates the impact of distributed tracing on the development of running cost and
savings. The implementation cost that would be caused on top cannot be determined.
For this reason the gray colored bars should indicate that there is a certain supplement
to the invest and amortization to be considered.

Figure 6.15.: Development of cost and savings including distributed tracing

107

6. Evaluation - Case study at a German enterprise

6.7. Evaluation interview results

At the end of the case study, 14 semi-structured expert interviews including six en-
terprise architects, four domain architects, two product owners and two software
developers ware conducted to obtain qualitative and independent judgment from
different perspectives and roles directly affected by the suggested solution.

At the beginning of each session, the interviewees were given an overview of the
solution. This included a problem statement, motivation and goals to be achieved.
Afterwards, the process of automation of the EA documentation was presented by
leading the interviewee through the individual touch points stakeholders encounter
while working with the solution. This started with the preconditions which have to
be created upfront by agile teams and how the solution affects their daily business
(positive and negative). At the end, the visualization of specific examples resulting
in the EAM repository were presented. The results were compared to the current EA
models. Once the experts have heard and understood the solution in its various aspects,
the actual interview started.

In total the interview consisted of 29 questions that were organized along different as-
pects of the solution. At the beginning, general questions about the concept were asked
before details about more specific aspects as the pipeline integration procedure and the
ead.json were tackled. Experts were required to express their agreement or disagreement
with a certain statement on a Likert scale. Additionally, they were given room to explain
their choice and add additional feedback in response to open questions. The interviews
took between 1.5 to 2.0 hours each. Depending on their role, interviewees were some-
times not able to judge certain questions. The full interview is available in the appendix.

Terminology used: The following specifications correspond to the table 6.11 in
section 6.7.6 that aggregates all spoken feedback received.

• Appreciations: Key Appreciation recorded during the interviews are marked with
an unique identifier: A1, ..., An

• Concerns: Key Concerns recorded during the interviews are marked with an
unique identifier: C1, ..., Cn

• Limitation: Key Limitations recorded during the interviews are marked with an
unique identifier: L1, ..., Ln

• Suggestions: Key Suggestions recorded during the interviews are marked with
an unique identifier: S1, ..., Sn

These items were compiled based on the analysis of spoken feedback received
during the interviews. The items correspond to the most important feedback received

108

6. Evaluation - Case study at a German enterprise

repeatedly and independently by interviewees or which is most promising to the further
development of the solution.

6.7.1. Evaluation aspect - Solution approach

The first set of questions focused on the overall concept of MICROLYZE as presented
in chapter 4. Experts were asked to express their opinion if the core foundations of the
solution are reasonable and practicable.

Q1 The instrumentation of deployment pipelines to drive EA documentation is a practicable
and reasonable approach?: Most of the interviewees fully agreed with this statement (cf.
figure 6.16). The highest appreciation was expressed about the fact, that the solution
brings the EA documentation process closet to the actual knowledge carriers, the agile
teams (cf. Appreciation A1). The idea of using configuration files and pipelines to
pass additional information (as suggested by the ead.json) was judged as very useful (cf.
Appreciation A3). Experts also highlighted that deployment-driven EA documentation
would ensure EA updates at the most important points in time (cf. Appreciation A7) as
architectural changes usually are introduced along with the deployment process. Two
enterprise architects claimed that EA documentation at deployment-time would be too
late. They demanded that the solution should consider preceding EA phases in future
work (cf. Concern C11). Another enterprise architect feared that the approach could
lead to a complex fragmentation of the overall EA documentation process. Therefore a
roll-out would require to properly re-define the overall process which clearly defines
the roles and responsibilities of different stakeholders and systems (cf. Concern C2).

Q2 The discovery of EA elements from runtime data (cloud platforms, API gateways, dis-
tributed tracing) is a practicable and reasonable approach?: All experts either agreed or fully
agreed with this statement (cf. figure 6.17). They highlighted that runtime data as
an ideal source for the discovery of the as-is IT landscape which at any time reliably
reflects the current state (cf. Appreciation A2). Drawbacks mentioned by the experts
(and that prevented some of higher agreement) are issues with data granularity which
used to be too fine-grained and not matching the one required for EA purposes (cf.
Concern C4). Another claim frequently made is that this kind of data often is difficult to
interpret from an EA perspective (e.g. due to technical names). Therefore runtime data
alone is of little value for the practice as most of the current use cases are driven from
the business layer. The combination with the static business-oriented data provided by
the ead.json configuration file is therefore crucial (cf. Concern C1).

Q3 The use of a configuration file (ead.json) to bind static information (business layer rela-

109

6. Evaluation - Case study at a German enterprise

tionships, links) to an application is a practicable and reasonable approach?: All experts either
agreed or fully agreed (cf. figure 6.18). The general idea was well appreciated by
the interviewees. They especially highlighted the importance of the configuration file
to link business layer information to the artifact but also that this could be further
expanded to other use cases as well (cf. Appreciation A3). This adds a high value for
EAM as it allows to interpret, filter and report on applications discovered at runtime
from a business layer perspective and therefore overcomes aforementioned issues with
pure runtime data based EA discovery (lack of interpretability, data granularity issues).
However, a potential lack of knowledge about business layer assignments at agile teams
is a drawback. Such knowledge would have to be build upfront to ensure correct
assignments (cf. Concern C6). For some product owners, the handling of the JSON
format based ead.json might cause troubles (cf. Concern C5). The idea, to have the
configuration file generated by an interactive form, was named numerous times (cf.
Suggestion S4). Some of the experts also see a risk in low acceptance of agile teams.
However, both interviewed product owners did judge this risk as minor. Suggestions for
further improvement made by the experts were (1) to bind the information contained
in the ead.json to the runtime artifact either by the use of tags or environment variables
(cf. Suggestion S3), (2) to enhance the automated detection of federated information
systems based on static code analysis or extraction from the environment variables (cf.
Suggestion S6) and (3) to bring the ead.json initialization forward to the EA planning
phase and pass it through to the design and implementation phase in order to bridge
the gap between these EA life-cycle phases (cf. Suggestion S1). These suggestions are
explained in more detail in section 6.7.6.

Q4 The shift in responsibility for EA documentation to agile teams is a practicable and rea-
sonable approach?: This statement received the highest agreement, no matter the role
(cf. figure 6.19). All experts agreed that this is the correct approach and constitutes a
necessity. Despite risks regarding acceptance, one exceptional feedback was that the
approach brings the EA documentation process closer to the agile teams by integrating
into their natural process and tool environment (cf. Appreciation A5). This would lead
to a higher acceptance than imposing them to use an EAM repository for modeling. By
making them responsible for EA documentation, the current gap between agile teams
and EA might be reduced in general and leads to increased understanding at both
sides. Experts of all roles pointed out that the documentation responsibility should
be as close to the knowledge carriers as possible which is enabled by the suggested
approach (cf. Appreciation A1). In contrast, they stated, that this currently is not the
case and most of EA modeling is covered by domain architects who have to gather
information from agile teams in labor-intensive and error prone work.

110

6. Evaluation - Case study at a German enterprise

Figure 6.16.: Q1: The instrumentation of
deployment pipelines to drive EA doc-
umentation is a practicable and reason-
able approach?

Figure 6.17.: Q2: The discovery of EA ele-
ments from runtime data is a practicable
and reasonable approach?

Figure 6.18.: Q3: The use of a configura-
tion file (ead.json) to link static informa-
tion ([..]) to an application is a practica-
ble and reasonable approach?

Figure 6.19.: Q4: The shift in respon-
sibility for EA documentation to agile
teams is a practicable and reasonable ap-
proach?

111

6. Evaluation - Case study at a German enterprise

Q5 The suggested solution is easy to integrate into the agile development process?: A central
requirement of the industry partner is the solution’s reasonable integration into the
preexisting environment of processes, tools and actors. Additional efforts and potential
side effects have to be reduced to a minimum. With regards to the agile development
process experts see this requirement as fulfilled (cf. Figure 6.20 and Appreciation
A4). All interviewees expressed their agreement or strong agreement. The solutions
preconditions are easy to create as part of regular sprint planning and sprint execution
processes as also described in section 4.3.1 which was inspired in exchange with the ag-
ile teams that adopted the solution. A product owner and a developer appreciated that
only a onetime effort is needed. Additionally, the integration procedure is perceived as
simple and time-efficient according to the two teams that adopted the solution to their
applications (cf. Appreciation A8).

Q6 The suggested solution reasonably integrates into the EAM ecosystem (documentation
processes, actors and tools)?: In the context of existing EA documentation processes
around the central EAM repository, interviewees were cautious to answer this ques-
tion. Most experts still agreed, two experts disagreed (cf. figure 6.21). The most
mentioned challenge arises from multiple independent information sources which get
automatically imported into the EAM repository. Conflicts and duplicates need to be
mitigated and therefore proper mechanisms to ensure data consistency are required (cf.
Concern C3). One enterprise architect claimed, that automated imports would reduce
the flexibility for manual modeling and corrections using the EAM repository’s user
interface (cf. Concern C7). Attributes that are affected by automatic import would
need to be protected against manual changes. Otherwise they would be overwritten
by the next import. Corrections using the deployment pipeline, in turn, would lead
to high overhead. In opposition, one expert argued that this is not an issue but only a
matter of processual change. In his opinion, agile teams have to know what to what
business layer elements their application corresponds to. In case such assignments
are incorrect in the ead.json, agile teams have to be made aware of their mistake and
correct it respectively. Some experts claimed that other lifecycle phases are not or
poorly considered by the solution (cf. Limitation L1). The solution would concentrate
too much on the current state of EA. They did not only demand to integrate further
federated systems but suggested to have real incorporation of the EA planning phase
from a process perspective (cf. Suggestion S1). Two experts suggested that the solution
could even help to establish system-overarching unique identifiers (cf. Suggestion S2).
These suggestion are further explained in section 6.7.6.

Q7 The suggested approach will improve the quality of data in the EAM repository?: Data
quality can be broken down into data granularity, data completeness, data consistency and

112

6. Evaluation - Case study at a German enterprise

Figure 6.20.: Q5: The suggested solution
is easy to integrate into the agile devel-
opment process?

Figure 6.21.: Q6: The suggested solu-
tion reasonably integrates into the EAM
ecosystem (documentation processes, ac-
tors and tools)?

data actuality. High data quality is a key success factor and therefore a fundamental
requirement to EAMM solutions [8]. Experts’ judgments go in disperse direction with
regards to what kind of impact the suggested solution would have on the data quality
(cf. Figure 6.22). Regarding data completeness and data actuality experts are optimistic
that the solution has a positive impact. Limitations regarding data completeness were
mentioned as a significant part of the industry partner’s IT landscape cannot be covered
as it resides in legacy data center environments (cf. Limitation L3). Still, there was a
high appreciation that cloud-based environments can reliably be covered what indeed
is a valuable benefit to the organization. The biggest doubts expressed were regarding
data consistency. Certainly, if used on its own, the solution would deliver a very
high data quality. Putting it into the current environment where there is still manual
modeling in the EAM repository and other independent imports from different sources
in parallel, interviewees were skeptical whether an improvement could be achieved.
Some expected it to decrease at the beginning and only recover and improve upon
a time after processes stabilized. The answers to data reliability as an outcome of
the three aforementioned data quality characteristics, in consequence, reflected this
skepticism. Most mentioned challenges were (1) the assurance of data consistency and
handling of conflicts across acting people and import mechanisms (cf. Concern C3)
and (2) incorrect business layer assignments contained in ead.json (cf. Concern C10).
However, experts did also see opportunities for increasing data quality. They argue
that the trust into the data stock could be increased as manual modeling is reduced.
Runtime data is generally perceived as highly credible and up-to-date. The result of
this could manifest itself in reduced efforts for verification of reports generated from
the data stock and time-consuming rework. A current issue to data quality are manual

113

6. Evaluation - Case study at a German enterprise

modeling faults where elements are incorrectly modeled and classified. This falsifies
filters and reports applied to the EAM repository. Thanks to the suggested solution,
the modeling error rate could be reduced and unified modeling of elements ensured
due to automation (cf. Appreciation A6).

0%

10%

20%

30%

40%

50%

60%

70%

Completeness Actuality Consistency Reliability

fully agree agree neutral disagree fully disagree

Figure 6.22.: Q7: The suggested approach will improve the quality of data in the EAM repository?

Q9 The effort it takes to get the tool operational is manageable? and Q10 The effort it takes
to get the tool operational pays off quickly?: At this point, interviewees did know about
the required preconditions (pipeline integration procedure described in section 4.4.3
and ead.json creation described in section 4.3.1) and were presented results about the
cost and savings analysis covered in section 6.6. With this background information the
questions about economic feasibility were asked. The majority of experts agreed or
fully agreed to these questions (cf. figure 6.23 and figure 6.24). The determined roll-out
cost was perceived plausible and low (relatively seen within the industry partner). Still,
such a project could not be funded by the EA department on its own (cf. Concern C8).
Other sponsors would need to be acquired. However, as the solution is easy to adopt
with small amounts of onetime efforts, some experts argued that there is no need to
fund a roll-out but only the implementation cost. Onetime efforts to the agile teams
are reasonable and could be covered as part of their daily work without too much
impact. Agile teams could be convinced about their intrinsic motivation as they can
save time for meetings currently required to model the EA in the EAM repository (cf.
Suggestion S8). On a mid-term period, they would therefore profit from the solution.

114

6. Evaluation - Case study at a German enterprise

Other interviewees suggested to provide agile teams with standardized deployment
pipelines which include the EA documentation logic per default and based on this
technically enforce its usage (cf. Suggestion S6). Admittedly, they confirmed, that this
is currently not possible due to the numerous independent CI/CD servers that limit
the solution’s scalability (cf. Concern C12). Section 6.6 resulted in an amortization
period between four to five years, solely considering saved cost due to reduced man-
ual modeling efforts. Some experts stated that this might constitute an issue as the
organization usually demands a faster payback. They highlighted that the presented
analysis did not include other value propositions beside time savings. Therefore, the
results are rather pessimistic. They agreed that such beneficial aspects are difficult to
monetize, however, they would expect the solution to pay off faster. Examples named
for additional savings potential not included in the cost analysis are (1) reduction
of manual verification/rework of EAM repository based reports due to higher data
reliability, (2) saved efforts for alignment meetings and workshops with the purpose
of manual EA modeling and (3) satisfaction of increased demand by running projects
with regards to the application component layer that currently is not documented. An
important note is that the aforementioned cost and savings analysis as well as experts’
judgments consider the current state of implementation at the industry partner, i.e.
without the use of tracing data. Almost all experts stated that the future inclusion of
tracing, as a vehicle to discover application layer inter-relationships would make the
solution from an economic and added-value perspective more attractive (cf. Limitation
L4).

Q11 Overall, the suggested approach is capable to reduce the amount of manual documenta-
tion effort?: This questions was asked with regards to the (1) current state of imple-
mentation (i.e. without tracing data) (Q11a)and the (2) target state of implementation
that includes tracing data (Q11b). The key difference is that the current state only
covers parts of application inter-relationships whereas distributed tracing could make
all interrelationships transparent. With regards to the target state, all of the experts
expressed their full agreement, as it currently makes one of the most time consuming
factors to find out about applications communication relationships (cf. figure 6.26). So
far, domain architects take over most EA modeling activities in the EAM repository. As
they do not know about the details on an application layer it is necessary to request
and clarify this information together with the responsible agile team. Meetings, calls
and emails undertaken for this purpose are very time consuming and bind several
resources at once. Such activities could be saved to a major extent by the help of
automated relationship modeling based on tracing data. Development teams and
domain architects would most profit from this situation. Two experts don’t believe in
distributed tracing to be the right instrument as it would cause too much costs and

115

6. Evaluation - Case study at a German enterprise

negatively impacts applications’ performance if enabled continuously (cf. Concern
C9). Instead, they promote the use of cloud native solutions to solve this challenge (cf.
Suggestion S7). Product owners would profit to a little portion only as they still have
to model their application in the CMDB in parallel. With regards to the current state
of implementation, i.e. without tracing data available, interviewees still perceive the
solution as valuable as explained in the previous questions, however, they doubt that
this results in noticeable savings of modeling efforts (cf. figure 6.25). The main reason
for this perception is that so far it was a conscious decision not to model the application
component level due to additional extraordinary efforts that would be caused. A major
part of time savings as calculated in 6.6 would therefore actually be imputed savings as
the costs currently do not materialize.

Figure 6.23.: Q9: The effort it takes to get
the tool operational is manageable?

Figure 6.24.: Q10: The effort it takes to
get the tool operational pays off quickly?

Figure 6.25.: Q11a: Overall, the sug-
gested approach is capable to reduce the
amount of manual documentation effort?
(excl. tracing)

Figure 6.26.: Q11b: Overall, the sug-
gested approach is capable to reduce the
amount of manual documentation effort?
(incl. tracing)

Q12 The suggested approach supports the strategy of moving legacy applications to cloud

116

6. Evaluation - Case study at a German enterprise

based environments? and Q13 The suggested approach is capable of being adapted to newly
introduced technologies?: With regards to Q12 all experts fully agreed or agreed (cf. figure
6.27). According to them, the suggested solution has a good fit to current strategies
pursued. On the one hand side, cloud migration projects are still ongoing which leads
to an increasing volume of IT landscape which can be handled by the help of the
suggested solution. New applications are build per default on cloud environments. On
the other hand, a major project regarding the SOA transformation has been launched.
Its goals include to publish and manage all internal and external services on central
API gateways. Both projects will therefore implicitly result in a higher value of the
suggested solution as the importance of cloud platforms and API Gateway (the two core
information sources to the suggested solution) is about to further increase. Regarding
Q13, the majority of interviewees agreed, that the solution is adaptable to technologies
newly introduced (cf. figure 6.28). CI/CD pipelines are in use independently of the
targeted cloud platform. The same applies to distributed tracing which today is already
supported by most of the cloud platforms.

Figure 6.27.: Q12: The suggested ap-
proach supports the strategy of moving
legacy applications to cloud based envi-
ronments?

Figure 6.28.: Q13: The suggested ap-
proach is capable of being adapted to
newly introduced technologies?

A central idea of the suggested solution is to enable a federated EA strategy, by pass-
ing references to other systems which contain information about a given artifact along
with its ead.json file. From an EAM perspective, this allows the retrieve additional infor-
mation in real-time and on demand from these systems as described by [20]. Question
Q14 (The approach could enable/drive new EAM use cases. Which of the following suggestions
are most promising/interesting to you?) therefore asked experts to give their opinion to
suggestions including (1) EAM KPIs retrieved from source system (e.g. complexity,
performance or code quality metrics), (2) Architecture Evolution (i.e. visual representa-

117

6. Evaluation - Case study at a German enterprise

tion of historic EA model evolution), (3) automation of Architecture Assessments (e.g.
assessment of an applications operability, cloud readiness or technical debts) and (4)
automated architectural guideline compliance checks. Responses recorded about this
question are dispersed (cf. figure 6.29). Most agreement was attributed to the automatic
calculation of EAM KPIs and architecture assessments. Architecture evolution and
guideline compliance was perceived as less promising. Some experts claimed that
architecture assessments and guideline compliance actually are interesting use cases.
However, automation is only partially feasible as qualitative judgment by humans is
necessary in many cases.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

EAM KPIs Architecture Evolution Architecture Assessment Guidline Compliance

very interessting interessting neutral not interessting irrelevant

Figure 6.29.: Q14: Which of the following suggestions [for enabled use cases] are most
promising/interesting to you?

Q15 How do you judge the severity of observed risks in the context of your company? target
at potential negative side effects of the proposed solution. Experts should judge the
severity of a set of observed risks during the case study or name own concerns. Listed
risks were:

1. Challenge of Consolidation of independent data sources delivering into the EAM
repository

2. Challenge of Conflict handling between manual and imported data from source
systems into the EAM repository

3. Too much Overhead, this means additional efforts caused to affected actors due to
the suggested solution

4. Too much impact on deployment pipelines Performance caused due to the sug-
gested solution

118

6. Evaluation - Case study at a German enterprise

5. Potential Security caused due to the suggested solution

6. Lack of Acceptance with product owners (PO)

7. Lack of Acceptance with the development team (DEV)

8. Risk of outdated ead.json content

9. Risk of inconsistent ead.json content, i.e. mismatch of information across compo-
nents of an application

Risks perceived most severe are consolidation and conflict handling of data sources
which independently deliver into the EAM repository. All other risks were attributed
to have a medium severity, except for security with a minor severity judgment (cf.
figure 6.30). Experts recommended that acceptance with agile teams (product owners
and developers) needs to be achieved by explaining the motivation and value of EAM.
They should understand, they had an intrinsic interest in the solution and they can
directly profit from its usage. First, they would benefit in saving time for meetings,
calls and email currently needed for manual modeling of an application. Second, the
solution supports bridging the current gap between EA models which use a very high
level language and degree of abstraction and the application components that actually
underlie these models and are developed by the team. As a result, better collaboration
could be enabled.

 -

 1,00

 2,00

 3,00

 4,00

 5,00

0%

10%

20%

30%

40%

50%

60%

70%

Inconsistent
ead.json

Outdated
ead.json

Acceptance PO Acceptance
DEV

Security
concerns

Decreased
pipeline

performance

Too much
overhead

Conflict
Handling

Data
Consolidation

very high high medium low neglectable Avg. Rating

very high

high

medium

low

neglectable

Figure 6.30.: Q15: How do you judge the severity of observed risks in the context of your
company?

119

6. Evaluation - Case study at a German enterprise

6.7.2. Evaluation aspect - Pipeline integration

Interviewees with a software developer knowledge background (eight experts) were
presented a dedicated section regarding the concept of pipeline integration in order to
get more detailed feedback.

Q17 The EAD-library can be integrated with reasonable effort?: The first question was
meant to find out whether the solution can be integrated with reasonable and ac-
ceptable effort. The majority of interviewees fully agreed, some agreed. There was
no disagreement recorded. As already mentioned in section 6.5, the two teams that
actually adopted and tested the solution, perceived its complexity as low or very low.
They fully agreed that the required effort is at an acceptable level, especially compared
to other existing governance regulations which require pipeline integration (cf. Ap-
preciation A8). This was also confirmed by the answers received to Q17, where all
experts agreed and the majority fully agreed (cf. figure 6.31). Still, some suggestions
for further facilitation were pointed out, e.g. to provide more detailed examples in the
procedure’s description and reduce the number of required method parameters. As
mentioned at the beginning of this section, developers at the industry partner are very
familiar with the concept and usage of Jenkins Shared Libraries. At the current state of
implementation, the EA documentation stage executed in deployment pipelines takes
approximately 1.0 to 1.25 minutes. Q18 asked, what duration would be acceptable to
agile teams. One product owner had little willingness to accept more than 0.5 minutes
of extra duration as productive deployments usually take much time even without the
EA documentation logic. Other experts, in turn, stated that the duration should be
kept as little as possible. However, no negative impact would emerge from the current
duration. One interviewee suggested to separate the EA documentation logic into
a dedicated CI/CD server job, that should be triggered from the origin deployment
pipeline. Doing so would lead to no additional waiting time at all, it would however
limit other functional aspects of the solution.

Q19 asked the experts to judge the severity of a list of risks and challenges that
goes along with using pipeline integration with regards to (1) Security, (2) Pipeline
Performance, (3) Acceptance by developers and (4) Overhead caused by this solution.
Answers in the majority of cases resulted in a low to neglectable severity. Some inter-
viewees attributed a medium severity to a potential lack of acceptance and too much
overhead caused and in a single case high severity for decreased pipeline performance
(cf. figure 6.30).

120

6. Evaluation - Case study at a German enterprise

Figure 6.31.: Q17: The EAD-library can be
integrated with reasonable effort?

6.7.3. Evaluation aspect - ead.json

One section of the evaluation interview was dedicated to the concept of using a con-
figuration file (ead.json) to link artifacts with business layer elements and references
to federated information sources. As previous questions already revealed, experts do
highly value this approach (cf. Appreciation A3 and Concern C1). Answers got more
disperse as they were asked whether the source code repository would be a more conve-
nient place to provide this information (contained in ead.json configuration file) than the
EAM repository (Q20). A slight majority fully supported this idea as software artifacts
become directly associated with business layer relationships instead of having this infor-
mation maintained decoupled in an EAM repository (cf. figure 6.32). Some experts even
would go a step further. They suggest binding this information directly to the runtime
artifact e.g. as environment variables or tags (cf. Suggestion S3). Doing so would allow
to retrieve this information at any time from the artifact’s runtime environment after
deployment. Pipeline integration allows to technically achieve this. A similar use case
based on this idea is already in use at the industry partner and proved its practicability.
The remaining interviewees had a rather neutral and a single one a negative position
about this idea. They see a lack of usability and reduced flexibility as compared to
manual modeling in the EAM repository. Using the suggested solution would require
to prohibit manual business layer assignments in the EAM repositories user interface
due to conflicts and overriding situations by automated and manual modeling activities.

Q21 What additional EA information sources should be included (as of now: Github, Jenkins,
Jira, ApiGee)?: Interviewees were also asked what kind of information actually should
be included in the ead.json. As already mentioned a few times, experts highly valued
the idea including business layer assignments in the ead.json. However, this should be

121

6. Evaluation - Case study at a German enterprise

limited to the almost static ones. As of now this includes Business Domains, Products,
Business Processes, Business Objects and Business Units. Business Capabilities currently
experience many changes so that they should be skipped from the configuration file.
Regarding federated information systems, one expert demanded to assess all tools
along the application lifecycle whether they can be integrated. This is not always
an easy task, as there is no direct mapping between an application component and
elements contained in other systems in many cases. For instance, during project portfo-
lio planning it is not yet clear of what components an application will consist of. In
CMDBs, application components might not be represented as well. Other tools might
only register applications but not components. Therefore an individual assessment is
necessary for a given tool. Other tools demanded, that reflect individual application
components are Continuous Code Inspections Tools (e.g. SonarQube, Selenium), Binary
Repository Managers (e.g. Artifactory, Docker Hub) and APM systems (e.g. Grafana,
Prometheus). One expert suggested that dependencies towards systems outside the
technical scope of the suggested solution (e.g. legacy systems) could be included in the
ead.json file.

Two questions tackled the issue whether the configuration file can be created (Q22)
and maintained (Q23) with reasonable effort. All experts agreed or fully agreed that the
effort needed for the initial creation of the file is reasonable and acceptable (cf. figure
6.33). A majority thought the same about the maintenance of the information contained
as it was almost static. Two interviewees (a product owner and an enterprise architect)
were less optimistic and gave a neutral rating.

Q24 asked whether the current version of the ead.json is understandable to affected
roles, responsible for the creation and maintenance of data contained. Experts agreed,
however, also made suggestions for further improvement (cf. figure 6.34). Besides a
more detailed manual including real-case examples, the idea most often mentioned was
to introduce a form-based process for ead.json initialization. A web-based form should
lead the user through the fields of the configuration file which gets finally generated
automatically and provided as a download (cf. Suggestion S4).

Finally, Q25 asked the experts to judge the severity of a list of risks and challenges
which go along with using the ead.json concept with regards to (1) ead.json inconsisten-
cies that might occur across the configuration files of a set of components building an
application together, (2) outdated ead.json content and (4) acceptance by agile teams.
Data quality issues with the configuration file were judged with a low to medium level
severity by most experts (cf. figure 6.30). Some expressed more skepticism. Still, this
risk was attributed to be manageable as the information contained in the ead.json is of

122

6. Evaluation - Case study at a German enterprise

Figure 6.32.: Q20: The code repository is
a more convenient place to maintain the
information asked by the ead.json file
than compared to Iteraplan?

Figure 6.33.: Q22: The ead.json template
can be created with reasonable effort?

Figure 6.34.: Q23: The ead.json can be
maintained with reasonable effort?

Figure 6.35.: Q24: The ead.json is easy to
understand?

123

6. Evaluation - Case study at a German enterprise

very static nature. Figure 6.30 depicts the results.

6.7.4. Evaluation aspect - Documentation coverage

The last section of the interview focused on whether the industry partner’s EA informa-
tion demand can be satisfied by the suggested solution. Business layer relationships
(Q26) are very well covered by the concept of using configuration files as an addition to
software artifacts source code repositories. Most experts therefore were rather satisfied to
fully satisfied (cf. figure 6.36). All essential relationships can be covered at an acceptable
and reasonable level of effort for creation and maintenance. A drawback mentioned
by some of the experts obviously is that there is no real automated discovery of such
information (cf. Limitation L2). They admitted that they currently see no solution to
achieve such automation.

Application layer relationships, at the current state of implementation, are partly
covered. In general, experts perceive this as insufficient (Q27a, cf. figure 6.37). The
reason is that no tracing data is incorporated which would allow discovering communi-
cation relationships and derive inter-dependencies among applications and applications
components. At the industry partner, distributed tracing technology is not used consis-
tently and therefore is not a reliable data source as of now. Given the case, that this gap
is closed, experts in a majority are very satisfied with the solution’s capabilities (Q27b,
cf. Figure 6.38).

The solution is capable to satisfy most of the experts demand for technology layer
relationships (Q28, cf. figure 6.39). This includes the cloud platform the application
component is operated on, its technical stack and used cloud services (e.g. databases,
autoscalers, monitoring agents, etc.) as well as the programming languages used for
implementation. Some had no specific interest in this information and therefore took a
neutral position.

Regarding the coverage of attributes (Q29) for application components the majority
of experts stated to be rather satisfied (cf. figure 6.40). They appreciated that there is a
solid foundation of attributes covered. However, most attributes would remain to be
handled manually.

6.7.5. Expert’s conclusion and feedback

At the end of the interview, experts were asked, whether they would roll-out the
suggested solution and, if applicable, what conditions they would impose (Q16 Would

124

6. Evaluation - Case study at a German enterprise

Figure 6.36.: Q26: How satisfying is the
coverage of business layer relationships?

Figure 6.37.: Q27a: How satisfying is the
coverage of application layer relation-
ships? (excl. tracing)

Figure 6.38.: Q27b: How satisfying is the
coverage of application layer relation-
ships? (incl. tracing)

Figure 6.39.: Q28: How satisfying is the
coverage of technology layer relation-
ships?

Figure 6.40.: Q29: How satisfying is the
coverage of attributes?

125

6. Evaluation - Case study at a German enterprise

you roll-out the suggested solution? and If not, why? What needs to be fixed?). With only
a single exception all interviewees agreed or fully agreed to roll-out the suggested
solution despite its current state of implementation without tracing data integration
(cf. Figure 6.41). However, most interviewees pointed out additional conditions to be
fulfilled prior to the roll-out or to be caught up on as soon as possible.

1. Process enforcement: The adoption of the suggested solution needs to be manda-
tory, ideally enforced by technical means. A possible solution would be the use of
a standardized, pre-configured deployment pipeline which fails as long as the EA
documentation step cannot be executed due to missing ead.json file or incomplete
properties. In such a case the validation of the configuration file must happen
prior to the artifacts deployment stage (cf. Suggestion S6).

2. QA measures: Prior to the roll-out, further functionality needs to be implemented
to resolve data consolidation and conflicts between overlapping data imports by
different source systems. This corresponds to the specific situation at the industry
partner where multiple tools independently import data into the EAM repository.

3. Tracing data integration: The automated detection and modeling of communi-
cation relationships between applications and application components is a key
value proposition of the solution. Therefore tracing data must be incorporated on
a mid-term plan as part of further development.

4. Extension of the roll-out scope: In order to increase the solution’s profitability,
a roll-out should be expanded to a cross-country or even group level, not only
within a single country organization.

5. Extension of the technical scope: Parts of the current IT landscape are technically
out of scope of the solution. To increase its value proposition, the solution’s
capabilities should be further extended to cover non-cloud environments.

6. Standardized deployment pipelines: Prior to the roll-out, distributed CI/CD
servers should be consolidated to enable standardization of deployment pipelines
which is a precondition to further reduce the pipeline integration efforts and
allow technically effective process enforcement (see also 1)

7. Inclusion of the EA planning phase: EA elements that have been created during
target IT landscape planning must automatically be linkable to discovered EA
artifacts in order to avoid duplicates and enable EA life cycle management.

Figure 6.42 summarizes the mentioned conditions for a roll-out of the suggested
solution including the number of independent mentions and the percentage of all re-
sponses. Most experts explicitly demanded a future integration of tracing data in order

126

6. Evaluation - Case study at a German enterprise

to further increase the automation potential and the value proposition of the solution.
Process enforcement and consolidation of CI/CD servers are preconditions named
second most frequent. The inclusion of the EA planning phase and implementation of
reliable quality assurance mechanisms is also a key requirement to some of the experts.
Only few experts demand for a organizational (roll-out scope) or technical extension
(IT landscape coverage) of the solution’s scope. Only a single experts required the
EAD stage to be configured non-blocking as the deployment success goes over EA
documentation success.

Figure 6.41.: Q16: Would you roll-out the
suggested solution?

Figure 6.42.: Roll-out preconditions men-
tioned by interviewed experts

6.7.6. Key findings and suggestions

All feedback received as part of the open question was complied into a set of items
classified as Appreciations, Concerns, Limitations and Suggestions. Table 6.11 shows
the result of this aggregation. Appreciations denote aspects of the presented solution
approach which were explicitly valued by experts. Concerns denote skepticism or
doubts expressed regarding a certain topic. Limitations denote restrictions of different
kinds which the solution currently does no cover. Suggestions denote ideas expressed by
experts to overcome concerns and limitations named and/or for further improvement
of existing functionality. The column # of mentions denotes the number an item was
independently mentioned by an interviewee. I.e. the items were not presented to
experts beforehand but identified from their individual and free feedback.

Appreciations, concerns and limitations were already mentioned in the previous sec-
tion along with the analysis of interview responses. Therefore no further specification

127

6. Evaluation - Case study at a German enterprise

Abbr. Feedback Type Topic Description # of mentions Percentage
A1 Appreciation Concept Enables EA documentation closest to knowledge carriers 11 92%
A2 Appreciation Concept Always reflects a current as-is IT landscape due to the use of runtime data 8 67%
A3 Appreciation Concept Ead.json very important and well-suited to enrich static information 8 67%
A4 Appreciation Process Fits well into agile development process 7 58%
A5 Appreciation Process Involves agile teams into EA using their natural process & tool environment 7 58%
A6 Appreciation Data Quality Allows to reduces EA modelling errors due to automation 1 8%
A7 Appreciation Concept Pipeline-driven EA documentation ensures updates at most important points in time 6 50%
A8 Appreciation Concept Easy to apply integration procedure 5 42%
A9 Appreciation Concept Allows to overcome the gap between logical and technical EA modelling 3 25%
C1 Concern Concept Runtime data alone not valuable enough for EAM. Combination with ead.json is essential 5 42%
C10 Concern Feasibility Rollout difficulties due to a lack of technical process enforcement and acceptance 1 8%
C11 Concern Scope RUN-Phase is too late for EA documentation 3 25%
C12 Concern Feasibility Numerous CI/CD servers limit scalability of the solution 5 42%
C13 Concern Data Quality Risk of outdated and inconsisted ead.json files 2 17%
C2 Concern Process Leads to a fragmentation of the EA documentation process 2 17%
C3 Concern Data Quality Challenge of consolidation / harmonisation with other EA data sources 7 58%
C4 Concern Data Quality Challenge of providing appropirate data granularity of runtime information 7 58%
C5 Concern Skills Lack of skills in handling JSON file format by Product Owners 3 25%
C6 Concern Skills Lack of knowledge about business layer assignments in agile teams 6 50%
C7 Concern Process Reduced flexibility in manual EA modelling due to automation 1 8%
C8 Concern Feasibility Insufficient EAM budget 4 33%
C9 Concern Adequacy Tracing is too invasive and cost intensive 2 17%
L1 Limitation Scope Focus an RUN-Phase only - other EA lifecycle phases not covered 5 42%
L2 Limitation Functionality Lack of real automation for business layer assignments 1 8%
L3 Limitation Scope Scope not sufficient reg. IT landscape outside cloud environments 3 25%
L4 Limitation Feasibility Tracing is essential to make the solution more valuable 9 75%
S1 Suggestion Scope Integration of the EA PLAN-Phase 5 42%
S2 Suggestion Functionality Introduction of a system-overarching ID by the help if the solution 2 17%
S3 Suggestion Functionality Integration of ead.json contents into the artefact itself 2 17%
S4 Suggestion Functionality Form-based initialisation of ead.json file 9 75%
S5 Suggestion Functionality Automatic detection of federated information sources by static code analysis 1 8%
S6 Suggestion Concept Incorporate EAD pipeline stage into a standardised overarching pipeline 4 33%
S7 Suggestion Concept Usage of cloud native technologies instead of tracing 3 25%
S8 Suggestion Feasibility Voluntary adoption due to intrinsic motivation of agile teams 6 50%

Table 6.11.: Compiled feedback of expert interviews

128

6. Evaluation - Case study at a German enterprise

is made at this place. For suggestions, additional explanation is required and provided
in the following.

S1: Integration of the EA PLAN-Phase
Especially enterprise architects and domain architects claimed a lack of integration of
the EA planning process, i.e. the planning of the target EA including the specification of
new applications to be built (see concern C11 and limitation L1). At this phase architects
already start to register and model elements in EAM repository in a PLANNED state.
Once an application is implemented and the first components are build and deployed
to the operating environment, the solution would be unable to link the EA elements
created on its own with preexisting elements in a planned state. Today, this is already
an issue as the same happens with imported EA elements originating from the CMDB
that used to cover elements in a CURRENT state. Interviewees therefore promote to
integrate the EA planning process into the solution.

S2: Introduction of a global unique application identifiers by the help if the
solution
As of now no, naming conventions or global (i.e. system overarching) application
identifiers exist at the industry partner. This constitutes an issue whenever elements
from different information sources should be matched due to the lack of unique, shared
attributes. Two enterprise architects saw the opportunity to overcome this gap by the
help of the suggested solution. The pipeline integration technically allows to being
extended to include such an identifier, for instance as part of the ead.json. Assuming a
web formula based initialization process for the config file, a unique identifier could
be generated and automatically placed into the configuration file generated. Along
with the ead.json this ID becomes an integral part of an artifacts source code repository.
Through its integrated nature with other federated systems, the solution could also
be used to propagate unique IDs to other relevant systems it connects to (e.g. CMDB,
EAM repository, etc.).

S3: Integration of ead.json contents into the artifact itself
According to two enterprise architects, a consequent improvement of the ead.json
concept would be to build the information contained into an artifact instead of just
extracting the file’s information during the deployment process. This could be achieved
either using application tags or environment variables that are automatically set based
on ead.json information. Widely-spread cloud platforms including Cloud Foundry and
Kubernetes feature such functionality based on CLI or API calls. Thanks to this, this
suggestion could be realized within the ead-library with no further need to adapt the
pipeline integration procedure. Resulting to this, business layer relationships could

129

6. Evaluation - Case study at a German enterprise

also be retrieved directly from the cloud platform.

S4: Form-based initialization of ead.json file
As already suggested in the section 4.3.3 a form-supported initialization of the ead.json
was suggested by numerous experts as this would further facilitate the process for
individuals that are unfamiliar with the JSON format (see concern C5) and support
the correct choice of business layer assignments (see concern C6). A driver of efforts
currently is that these configuration files have to be created and integrated for each ap-
plication component. However, most of the information contained, especially business
layer assignments, rarely will deviate for components of an application. Form-support
therefore could also serve to reduce efforts by generating the ead.json once per appli-
cation and replicate it for each of its components. As a result, the risk of manual
errors and inconsistencies introduced is minimized. The form should be connected to a
repository that holds current information about existing business layer assignments
e.g. the EAM repository for the current domain landscape or a directory service for
business units.

S5: Automatic detection of federated information sources by static code analysis
From the pipeline’s environment, it is possible to automatically detect federated in-
formation sources including the source code repository, the CI/CD system and if
applicable, source code inspection tool (i.e. SonarQube22, Selenium23) used during the
test stage and binary repositories (e.g. Docker Hub24, Artifactory25) where the build
image is used to be uploaded and stored. Still, a lot of other relevant information
sources remain to be provided manually as part of the ead.json, such as monitoring
dashboard, logging systems, etc. A product owner argued that some links to such
federated information systems could be automatically detected from the source code
repository by the means of code analysis. For instance, the monitoring solution Grafana
and Prometheus used to be configured in configuration files which could be extracted
and analyzed for such information.

S6: Incorporate EAD pipeline stage into a standardized overarching pipeline
Following the slogan of "Trust is a good thing, control is better" some experts proposed
to integrate the solution even deeper into CI/CD systems. They argue that the library
could be delivered per default when being included in the CI/CD servers images.
Moreover, instead of having individual deployment pipelines per team, they suggest to
establish a standardized, team-overarching deployment pipeline that includes default

22https://www.sonarqube.org/
23https://www.seleniumhq.org/
24https://hub.docker.com/
25https://jfrog.com/artifactory/

130

6. Evaluation - Case study at a German enterprise

steps needed across the entire organization but also the EA documentation stage. With
such an approach even technical enforcement of this process would be possible. (see
also concerns C10 and C12)

S7: Usage of cloud native technologies instead of tracing
Two enterprise architects considered distributed tracing as not appropriate for EA
discovery as it is too invasive and cost intense when being conducted continuously
(see concern C9). Moreover, enabled application-based tracing would reduce the ap-
plication’s performance. For these reasons, tracing should only be used on-demand.
However, continuous tracing across the entire IT landscape is an important precondi-
tion to the discovery of communication relationships. This depicts a conflict with a
potentially considerable cost impact. The experts, therefore, argue to use a cloud native
solutions as provided for example by service meshes. Another option, for instance, are
so-called Kubernetes Operators26, an extension to the platforms master node that could
actively report EA relevant information and activities using a push principle to the
EAM repository.

S8: Adoption due to intrinsic motivation of agile teams
Some experts argued that the determined roll-out cost could not be covered by the
existing EAM budget. However, the roll-out makes the major fraction of costs. Due to
the solution’s easy and fast to adopt integration procedure (see Appreciation A4 and
A5), experts argue that such a roll-out must not be funded as a project. They rather
see an intrinsic motivation with agile teams to adopt the solution as they can save time
consumed by meetings, calls and email conversations which are currently needed to
align manual EA modeling. Agile teams would therefore quickly realize the benefit of
the suggested solution and thus integrate it on their own.

6.7.7. Revised process based on experts’ feedback

This section proposes a preliminary, revised process which incorporates the most
important experts’ feedback. The process should overcome the Concerns C5, C6, C11
and Limitation L1 as well as consider the Suggestions S1, S2 and S4. As demanded
by enterprise architects, the process already starts from the EA planning phase. The
approach is oriented on the solution demonstrated by Farwick et al. [7]. The following
concepts are required additionally:

• System-overarching GUID: In order to map elements contained in different
information systems, it is key that there is at least one unique, shared attribute

26https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

131

6. Evaluation - Case study at a German enterprise

available which allows the matching of elements. This often is not the case as
information systems use their own identifiers. Matching based on element names
or other textual attributes is usually too prone to errors. The introduction of a
system-overarching GUID for applications is therefore required to overcome this
challenge. The GUID should be generated and handled by the EAD-Tool. This
should satisfy Suggestion S2.

• Handling of applications across the lifecycle: If new applications are planned,
domain architects used to create a new EA element in the EAM repository and
assign it a "PLANNED" state. Once this planned application becomes reality and
is being deployed to the cloud platform, the suggested solution would discover
it and create another EA element for this application in a "CURRENT" state.
This would cause a duplicate in the EAM repository as the previously registered
element in a "PLANNED" state still exists in parallel. As of now, this cannot be
consolidated. Therefore, the revised process suggests to bridge this gap by the
help of the introduced GUID. This should overcome Concern C11, Limitation L1
and Suggestion S1.

• From-based ead.json initialization at EA planning phase: A prerequisite to the
revised process is, that the ead.json configuration files can be generated using an
interactive web-based form. A significant change to the process is, that ead.json
files should already be created at the EA planning phase, i.e. if a new application
is planned to be developed. The form should be provided by the EAD-tool and is
meant to be used by domain architects who have knowledge about business layer.
The aforementioned GUID is generated together with the ead.json and directly
stored into it. This is important, so that the GUID is also present at the time the
artifact is deployed. This approach should overcome the Concerns C5, C6 and
should satisfy Suggestion S4.

Assuming that these concepts have been introduced, a revised process that could
overcome many of the claimed issues could look as follows. (cf. figure 6.43).

Activities during EA Planning Phase

1. Plan new application: Domain architects play a central role during the planning
of new applications. They are directly involved when such decisions are made.
At this time it is already clear for what business purpose a new application is
developed for. This means that the core business layer relationships the resulting
artifact will have are already known (Business domain and subdomain, supported
business units and processes, etc.).

132

6. Evaluation - Case study at a German enterprise

2. Register planned application in EAD-tool: Domain architects should register
a planned application including their business assignments by the help of the
web-based form provided by the EAD-tool.

3. Initialize ead.json stump: Based on the input provided, the ead.json configuration
file is generated. At this stage, not all information required by the ead.json is
known. Therefore it is only a stub at this point in time. The remainder will be
completed by agile teams.

4. Generate application GUID: Along with the previous step, a system-overarching
GUID is generated and stored into the ead.json.

5. Store ead.json incl. GUID & create EA element: The EAD-tool creates and stores
a new Application EA element and assigns the status "PLANNED". The ead.json is
also stored to the database and provided as a download to agile teams for later
purposes.

Activities during EA Build & Run Phase

1. Design application components: After the project started, agile teams begin to
work on the application’s implementation. At this phase, it becomes clear what
components the application should consist of.

2. Download, propagate & complete ead.json per application component: Each
of the application’s components has to be equipped with a ead.json file. For
this purpose the agile team downloads the pre-generated ead.json file from the
EAD-Tool. The configuration file then has to be replicated and to be completed
for each application components (i.e. add component name, description and
technical references).

3. Add ead.json & instrument pipeline: Next, the agile teams adds the ead.json files
into the source code repository of the corresponding component and instruments
the pipeline as described in section 4.4.3.

4. Build/deploy application component(s): Finally, the teams starts to deploy the
application components to the cloud platform.

5. Register application component as EA element: Along with the deployment
processes triggered by the agile teams the ead-library will extract the ead.json file
and report the new component to the EAD-Tool. Based on this, the EAD-Tool
creates a new EA element Application Component in the repository and assigns a
"CURRENT" state.

133

6. Evaluation - Case study at a German enterprise

6. Map component based on GUID: Using the application GUID contained in each
ead.json file, the EAD-Tool can match the newly created elements to the Application
EA element they belong to and which domain architects registered at the EA
planning phase.

7. Update status to "CURRENT": As at this time the first components have been
deployed to production, the state of the parent application can be changed from
"PLANNED" to "CURRENT".

The lifecycle does not end after the last activity listed. Following to this, the operation
phase moves on and, at some point in time, the application will be decommissioned
and/or substituted. This phases are already covered as described in the solution’s EA
model maintenance process in section 4.3.2.

134

6. Evaluation - Case study at a German enterprise

pl
an

 n
ew

ap

pl
ic

at
io

n

re
gi

st
er

pl

an
ne

d
ap

pl
ic

at
io

n
in

E

A
D

-T
oo

l

in
iti

al
iz

e
ea

d.
js

on

st
um

p

Domain Architect EAD-Tool Agile Team
ge

ne
ra

te

ap
pl

ic
at

io
n

G
U

ID

D
es

ig
n/

B
ui

ld

ap
pl

ic
at

io
n

co
m

po
ne

nt
s

bu
ild

/d
ep

lo
y

ap
pl

ic
at

io
n

co
m

po
ne

nt
(s

)

re
gi

st
er

 a
pp

lic
at

io
n

co
m

po
ne

nt
 a

s
E

A

el
em

en
t

E
A

E
A

P
ro

je
ct

S

ta
rt

P
ro

je
ct

S

ta
rt

js
on

D
at

ab
as

e

S
ta

rt

E
A

P

la
nn

in
g

G
U

ID

ea
d.

js
on

 s
tu

m
p

in
cl

. G
U

ID
"P

LA
N

N
E

D
"

A
pp

lic
at

io
n

"C
U

R
R

E
N

T
"

A
pp

lic
at

io
n

m
ap

pi
ng

 b
as

ed
 o

n
G

U
ID

ad
d

ea
d.

js
on

&

 in
st

ru
m

en
t

pi
pe

lin
e

js
on

co
m

pl
et

e
ea

d.
js

on

in
cl

. G
U

ID

st
or

e
ea

d.
js

on

in
cl

. G
U

ID
 &

cr

ea
te

 E
A

el

em
en

t

re
ce

iv
e

ap
pl

ic
at

io
n

G
U

ID

m
ap

co

m
po

ne
nt

ba

se
d

on

G
U

ID

do
w

nl
oa

d,
 p

ro
pa

ga
te

 &

co
m

pl
et

e
ea

d.
js

on
 p

er

ap
pl

ic
at

io
n

co
m

po
ne

nt

up
da

te
 s

ta
tu

s
to

"C

U
R

R
E

N
T

"

E
A

A
pp

lic
at

io
n

C
om

po
ne

nt

"C
U

R
R

E
N

T
"

E
A

 P
la

nn
in

g
ph

as
e

E
A

 B
ui

ld
 /

R
un

 p
ha

se

Figure 6.43.: Revised process including the EA plan phase

135

7. Fulfillment of requirements and
evaluation criteria

This sections elaborates to what degree the suggested automated EA model maintenance
solution is capable to satisfy demanded requirements and evaluation criteria.

7.1. Fulfillment of requirements

Referring back to section 2 which summarizes general requirements to an automated
EAMM solution and section 6.3 which analyzed the industry partner’s specific EA
information demand, this section gives a conclusion to what degree recorded require-
ments are fulfilled and where limitations remain.

Integration/Data Source Requirements: Section 4 explained how automated EAMM
is achieved by the suggested solution. Due to the use of runtime data, the suggested
solution is capable of reflecting the current IT landscape on the application component
level at any given point in time. The detection of changes to information systems is
enabled by regularly retrieving status updates about deployed apps from the cloud
platform and by pipeline-triggered EA documentation. Thanks to this combination
most important changes to the real-world EA can be reliably covered. At the case study
environment, only a fraction of application inter-relationships and exposed APIs could
be covered, as distributed tracing is not in place. A central API Gateway was used alter-
natively. It proved to be valuable for the discovery of exposed services and their clients,
however, fails to provide full transparency as not all communication traffic passes
the gateway. Usually, depending on the availability and the depth of instrumentation
with distributed tracing technology, the solution should be capable to detect interfaces
between information systems and changes to the underlying infrastructure. As this
could not be demonstrated in this thesis, Integration/Data Source Requirements are
considered to be satisfied to a large extent, except for inter-relationships on the EA
application layer.

Architectural Requirements: As the solution promotes to incorporate additional in-
formation sources, Architectural Requirements regarding the use of a federated strategy

136

7. Fulfillment of requirements and evaluation criteria

formulated by [8] are satisfied. In this work, the potential EA model contribution of
several information systems contained in a development tool-chain was assessed. A
cloud platform, an API gateway and a VCS system were then actually incorporated
for EA discovery. As of now, there is no generic solution concept of how federated
information systems can efficiently be integrated. So far, the solution’s source code
would need to be extended to consume additional APIs and to transform the data into
its internal data structure.

Data Quality Requirements: Thanks to the use of runtime data and deployment-
triggered EA documentation, data actuality and validity is ensured at all times except
for manual entries made in the ead.json. To solve this, the solution concept suggests
a validation process for the ead.json (see section 4.3.3) to minimize the risk of errors.
For the runtime data sources used, such functionality is not required as this kind of
data directly reflects the as-is IT landscape and its behavior. Therefore, such data
sources are highly credible. Instead, a challenge is to aggregate the raw data to an
abstraction level that is useful to EAM. Within its own system boundaries and the set
of data sources used, data consistency did not cause issues as elements can be mapped
uniquely. As the data retrieved does not overlap, conflict resolution was not a problem
as well. However, when reflecting the solution as part of a larger EAM ecosystem,
including other independent data supplying information systems, the solution concept
does not offer a general answer. Such environments are very specific to an organization
and can hardly be generalized. All in all, it can be stated that Data Quality Requirements
formulated by literature are fulfilled with regards to actuality, validity and credibility.
More advanced functionality to support quality assurance teams or the propagation of
changes is not covered by this work.

Functional Requirements named with regards to the definition and the calculation
of KPIs based on runtime data were not in the scope of this work. Still, the suggested
solution could pioneer the path into this direction and enable such functionality as it
already interconnects important data suppliers. For instance, cloud platforms, API gate-
ways and distributed tracing can provide runtime metrics and behavioral information
that could be used to assess an application’s operational stability. Moreover, pipeline
integration could be used to asses an application’s software quality and complexity.
VCS systems provide detailed information about used software dependencies and
technologies whereas Continuous Code Inspection systems store software test results,
vulnerabilities and other indicators of source code quality. Both, VCS and Continuous
Code inspection tools, are accessible from within the CI/CD pipeline. Within the course
of this work, no assessment of the system under heavy load could be performed as only
two agile teams supported the integration of the prototype. Therefore no judgment

137

7. Fulfillment of requirements and evaluation criteria

about the solution’s capability to scale for large inputs can be provided.

Cost-Benefit ratio: An in-depth monetary assessment of the solution was conducted
in section 6.6. The calculations resulted in an amortization period of four to five
year solely by reducing manual EA modeling efforts. As other value propositions
which cannot be directly mapped to financial impact have to be calculated additionally,
a faster amortization period can be assumed. The use of distributed tracing data
could additionally improve the financial performance as it allows to abolish manual
modeling for application inter-relationships which are a main driver of efforts. Experts’
judgments obtained during evaluation interviews showed that the solution is worth
being rolled-out despite some further conditions named that should be considered.

7.2. Fulfillment of evaluation criteria

This section discusses the degree of fulfillment of evaluation criteria sketched in 5 based
on the following inputs

1. Own practical experiences made during implementation and productive use
across the case study

2. Qualitative feedback that originated from evaluation interviews

3. Quantitative observations

Validity refers to the degree the artifact works correctly to achieve its goals [28]. Vice
versa this criteria asks about the potential the artifact might fail or work incorrectly.
In the context of EA documentation, the challenge is to ensure high data quality and
prevent the system from introducing inconsistencies, conflicts or duplicates into the
data stock. The ead-crawler, the ead.json validation process and other quality assurance
functionality described in chapter 4 are some of the instruments that serve to achieve
this criterion. The system is designed to be proof of refactoring and to rely on GUID-
based consistency checks where ever possible. Still, the case study’s time frame did not
allow for long term observation of the system’s behavior. There might be situations
that have not been considered yet. Another limitation is that only few artifacts were
equipped with the solution and the productive EAM repository was not fully integrated.
This means that there is no proof for the artifact’s reliability yet.

Generality refers to the scope of the artifact’s goal [28]. Transferred to the suggested
solution this can be interpreted twofold. (1) Whether the solution can cover different
kinds of cloud platforms or (2) whether the solution can also be applied to non-cloud

138

7. Fulfillment of requirements and evaluation criteria

environments. With regards to (1), it can be stated that the type of cloud platform is
of little matter as long as the platform allows deployment using CI/CD technologies
and there are exposed APIs for data retrieval. The solution would need to be extended
to support a certain platform as there is no standard API across cloud platforms.
Still, popular technologies like Kubernetes1 or Docker2 and also proprietary services
as Azure Service Fabric3 or AWS Elastic Container Service4 allow for remote access
through REST API or CLI calls. Regarding the second interpretation of generality, there
are limitations. Operating environments that do not support a remote deployment by
pipelines cannot be covered by the suggested solution. Assuming that tracing data
is available for EA discovery, it depends on whether applications are instrumented
from an end-to-end perspective. The case of the industry partner shows that this is not
self-evident. As they are using a highly layered architecture with several independent
cloud platforms separated by central API gateways or message queues this end-to-end
perspective might be fragmented.

Fit into technical IS architecture: This criterion denotes the degree to which the
artifact integrates into the technical IS architecture [28]. Actively affected (i.e. writ-
ing access or need for adaption) IS architecture elements are CI/CD servers and the
documentation target system, the EAM repository. Passively affected, i.e. reading
access only, are information sources used to gather data from (e.g. cloud platform, API
Gateway, VCS). Section 4.4.3 and 4.3 described how the solution can be integrated into
existing processes and systems without causing a lot of overhead. This was confirmed
by interview responses presented in section 6.7. All other named systems are only
affected by API calls for information gathering (read-only access). This means that
except for the CD servers, the solution solely relies on exposed APIs. As no adaption is
needed to any of these systems the solution is considered to have a good fit into the
technical IS architecture.

Accuracy denotes the degree of agreement between outputs of the artifact and the
expected outputs [28]. A central success factor to fulfill this requirement is a correctly
implemented EA modeling behavior, i.e. the logic of how raw data is transformed into
EA model elements. Before the implementation, a mapping has to be set up and aligned
with the target EA meta model. It has to be well defined what gathered raw data has to
be mapped to what target EA element or attribute. Once implemented, such mapping
is static. Thus, there is little risk that actual outputs deviate from expected outputs. This

1https://kubernetes.io/docs/concepts/overview/kubernetes-api/
2https://docs.docker.com/registry/spec/api/
3https://docs.microsoft.com/de-de/rest/api/servicefabric/
4https://docs.aws.amazon.com/de_de/AmazonECS/latest/APIReference/Welcome.html

139

7. Fulfillment of requirements and evaluation criteria

makes a general advantage of EA documentation automation over manual modeling.

Performance: [28] defines the term performance as "the degree to which the artifact
accomplishes its functions within given constraints of time or space". As the solution
consists of several independent components (ead-library, ead-crawler and ead-backend),
performance is not easy to grasp. Due to the Jenkins Library provisioning model, most
EA documentation logic is executed decentral as part of the deployment process. The
ead-crawler is implemented as a pipeline job as well. Due to access rights limitations,
it was only possible to test within the boundaries of a single Cloud Foundry space
that contained ten deployed apps. Nevertheless, Figure 7.1 gives an indication of the
solution’s performance. The majority of time is consumed by logins and API calls at
the cloud platform. Except for one product owner, interviewees judged the duration as
acceptable. The ead-crawler was configured to run each working day at 01:00 AM. The
average duration slightly fluctuates around 2.0 minutes for a scope of 10 deployed apps.
Thereof four apps were instrumented with the ead-library. Additional documentation
for the remaining, unregistered apps was necessary which consumed most of the time.
Considering the total amount of more than 2,000 deployed apps the crawling procedure
should be paralleled or implemented as an own microservice to achieve acceptable
performance.

Adaptability is defined as "the ease with which the artifact can work in contexts
other than those for which it was specifically designed" [28]. Parts of this criterion
were already answered when elaborating on the solution’s Generality. As the range of
integrated federated information sources might change over time or vary according to
organizations needs, the solution has to be easy to extend and maintain. Groovy5, the
used implementation programming language, is a scripting language that supports key
concepts of object-oriented programming such as inheritance, interfaces, abstraction,
etc.. Therefore, Groovy can be used to implement most important software design pat-
terns that allow for easy extension by further information sources. As there are CI/CD
solutions that do not support the Groovy language, the solution could be designed
more universal by being implemented in Python6, Ruby7 or even in plain Shell scripts
that have broader support than Groovy. From the backend’s perspective, an universal
data model, ideally adhering to an EA modeling standard such as ArchiMate, should
be implemented. Still, for each information source used, integration logic is required to
allow model transformation. The prototypical implementation so far does not fulfill
this and therefore is subject to further development.

5https://groovy-lang.org/
6https://www.python.org/
7https://www.ruby-lang.org/

140

7. Fulfillment of requirements and evaluation criteria

Figure 7.1.: Duration EAD pipeline stage and EAD crawler

141

7. Fulfillment of requirements and evaluation criteria

Alignment with business strategy and IT innovation: [28] defines this term as "the
congruence of the artifact with the organization and its strategy" (business alignment)
and "the degree to which the artifact uses innovative IT" (IT innovation alignment). The
industry partner currently undertakes a large cloud migration endeavor to move and
transform legacy information systems to cloud-ready applications. As a consequence,
the number of cloud-based applications will continue to grow. New implementation
projects have to be built on top of cloud technologies. This matches the scope of the
suggested solution and therefore is in line with this business strategy. Apart from that,
the industry partner prepares to introduce a global group level EAM repository whose
use is mandatory to all country organizations. As used cloud platforms become in-
creasingly standardized within the group, the value of the suggested solution increases
if it would be adopted on an overarching level. Interviewed experts confirmed this
reasoning as presented in section 6.7.

Absence of side effects: [28] defined this term as "the degree to which the artifact is
free of undesirable impacts" on (1) the technical IS architecture, (2) the organization and
(3) on individuals in the long run. During the evaluation interviews, experts were asked
to judge and name risks that might emerge from the solution’s adoption. These risks can
be seen as undesirable side effects (cf. Figure 6.30). Moreover, they were asked whether
the efforts caused to agile teams for the solution’s integration are acceptable. The major-
ity of the responses were positive (cf Figures 6.31, 6.33 and 6.34). Still, the risk lacking
acceptance with agile teams is judged as medium which indicates that there further need
for improvement. The agile teams involved reported that the initial adoption took four
to five hours. This implies that the process requires further facilitation, for instance,
form-based initialization of the ead.json configuration file or pre-configured pipelines.
The risk of data quality issues with the ead.json configuration file is also considered
to have medium severity. However, such issues can easily be mitigated by the use of
form-based ead.json initialization and validation procedures as described in section 4.3.3.
Challenges of handling conflicts and data consistency in the central EAM repository is
a risk seen most severe by experts. This is not caused by the suggested solution itself
but emerges from the industry partner’s specific context where multiple sources import
their data independently into the EAM repository. Insofar, the adoption of EAD could
(in the specific context of the industry partner) lead to data quality issues as long as no
further quality assurance functionality is implemented or data imports are fully free of
overlapping. This is an issue that needs to be solved individually and is not of this work.

Technical Feasibility: This term is defined as "the ease with which a proposed
artifact will be built and operated" [28]. As explained in section 4.4.2 the use of a library

142

7. Fulfillment of requirements and evaluation criteria

as a provisioning model is an important step to facilitate the maintenance of the EA
documentation logic. Benefit are (1) the decoupling of maintenance and usage, (2)
central management and maintenance, (3) reduced roll-out cost, (4) increased flexibility
for future extensions without the need for another roll-out. At the industry partner,
pipeline libraries are already in use for several purposes (e.g. share and improve
reuse of code or provisioning of functional pipeline modules). One of these libraries is
partly provided and managed by the EA department. This means, that the technical
knowledge and skills on a provider (EA department) and consumer (agile teams) side
are already established at the industry partner. It is subject to further investigation
whether such knowledge is also present in other practitioners.

Functionality defines as "the capability of the artifact to provide functions which
meet stated and implied needs when the artifact is used under specified conditions"
[28]. This criterion is handled in detail in section 7.1.

Utility and Usefulness: The term Usefulness is defined as "the degree to which the
artifact positively impacts the task performance of individuals" and Utility as "the value
of achieving the artifact’s goal, i.e. the difference between the worth of achieving this
goal and the price paid for achieving it"[28]. The difference between these terms is that
Utility considers the cost-benefit ratio on an organizational level whereas Usefulness
focuses on the value proposition for individuals. During the evaluation interviews, it
was confirmed that the suggested solution is worth being rolled out could pay back
in a reasonable time (cf. Figures 6.23, 6.24 and 6.41). Key value propositions on an
organizational level are (1) reduction of manual modeling efforts and errors, (2) increase
of data quality in terms of completeness, actuality and reliability, (4) the engagement of
agile team into EA documentation and (4) enabling of new use cases. Regarding certain
affected roles, the main profiteers of the suggested solution are Domain Architects that
currently bear most of EA modeling efforts as well as Agile Teams, which can save
time for meetings, calls and email conversations to support Domain Architects with EA
modeling. Agile teams also benefit insofar as the EA documentation integrates into
their common process and tooling environment rather than imposing them to use an
EAM repository.

Completeness is defined as "the degree to which the activity of the artifact contains
all necessary elements and relationships between elements" [28]. This criterion refers
to the solution’s EA model coverage measured against a target EA meta model. This
question is analyzed in-depth in section 6.4 and under real-case conditions in section
6.5. The evaluation interviews delivered experts’ judgments about these criteria. The
solution’s capability to cover the business layer and technology layer reached the highest

143

7. Fulfillment of requirements and evaluation criteria

satisfaction level (cf. Figures 6.36 and 6.39). On the application layer, the solution is able
to establish full transparency regarding deployed applications. Regarding application
inter-relationships, however, the solution strongly depends on the availability of dis-
tributed tracing data to discover communication flows. In the course of this work, an
API gateway was used as a potential alternative. However, it was found that the API
gateway only covers a fraction of existing relationships. Therefore, the solution’s capa-
bility to detect inter-relationships was judged to be insufficient regarding the current
state of implementation (cf. Figure 6.37). Assuming that tracing data was available,
most experts would have been highly satisfied (cf. Figure 6.38). In the industry part-
ner’s EAM repository, the EA element Application has more than a hundred attributes
assigned whereof the majority has either a project-specific or qualitative character.
As a consequence, the coverage of attributes measured against the industry partners
meta model is rather low. Still, a majority of experts judged the solution’s capabil-
ity in this area as rather satisfying as it covers the fundamental attributes (cf. Figure 6.40).

Efficacy and Effectiveness: These criteria denote the "degree to which the artifact
achieves its goal considered narrowly, without addressing situational concerns" (Effi-
cacy) and under real-case circumstances (Effectiveness) [28]. Referring to the suggested
solution, this asks whether the approach and is appropriate and suited for EAMM
automation. Its characteristics are (1) the use of runtime data to discover EA elements,
(2) the instrumentation of deployment pipelines to drive EA documentation, (3) the
usage of configuration files to provide static information and lastly (4) the shift of
responsibility of EA documentation into agile teams. Experts agreed or fully agreed
that the approach is practicable and reasonable with regards to these core elements
(cf. Figures 6.16, 6.17, 6.18 and 6.19) which confirms that the solution goes into the
right direction. Moreover, the solution was attributed to have a good fit into agile
development (cf. Figure 6.20) which is a necessity to engage agile teams into the EA
process. As a result, the solution enables EA documentation close to knowledge carriers
and leverages their expertise.

To conclude this section, table 7.1 summarizes and aggregates all of the above.
The evaluation interview questions are mapped onto the list of evaluation criteria
as referenced in table column Input (Question \Source). The percentual distribution
of answers and an average rating (Likert scale "1" (strong agreement) to "5" (strong
disagreement)) is depicted in the table’s center. Criteria that have no interview questions
assigned were either answered by qualitative analysis or quantitative observation in
the course of this master’s thesis. Remaining criteria were qualitatively judged in the
first part of this section.

Experts clearly see the concept’s strengths in its Efficacy, Alignment with business, its

144

7. Fulfillment of requirements and evaluation criteria

1 (++) 2 (+) 3 (o) 4 (-) 5 (--) Avg. Rating

Efficacy The artifact fulfills its purpose 61% 32% 5% 2% 0% 1,51 Q1 - Q4; Q21

Effectiveness The artifact achieves its goal in a real situation --- cf. Chapter 6.4 and Chapter 6.5

Utility The artifacts value, i.e. positive cost/benefit ratio 36% 29% 19% 9% 0% 1,69 Q7; Q11a - Q11b; Q15

Validity The artefact works correctly --- cf. Chapter 7.2

Generality The broader the goal scope, the more general the artifact --- cf. Chapter 7.2

Technical Feasibility The ease to built and operate the artifact --- cf. Chapter 7.2

Operational Feasibility The degree of support / acceptance by stakeholders 42% 50% 0% 8% 0% 1,75 Q16

Economic Feasibility The artifacts value, i.e. positive cost/benefit difference 27% 45% 9% 18% 0% 2,18 Q9 - Q10

Usefulness The degree to which stakeholders profit from the artifact --- cf. Chapter 7.2

Ease of Use The degree to which the artifact usage is free of effort 53% 42% 5% 0% 0% 1,51 Q17; Q22 - Q24

Alignment with Business The congruence with the organization and its strategy 82% 18% 0% 0% 0% 1,18 Q12

Technology Fit The artifact integrates well into the IS architecture 10% 70% 20% 0% 0% 2,10 Q5 - Q6; Q13

Absence of Side Effects The artifact is free of undesirable impacts 3% 21% 27% 43% 6% 2,73 Q14; Q18 - Q19; Q25

Functionality Provided functionality meets stated and implied needs --- cf. Chapter 7.1

Accuracy Accordance of acual and expected outputs of the artifact --- cf. Chapter 7.2

Performance Accomplishment of functions within given constraints --- cf. Chapter 7.2

Completeness Containment of all necessary elements and relationships 49% 40% 9% 0% 2% 1,70 Q26 - Q29

Adaptability The artifact can work in different contexts --- cf. Chapter 7.2

quantitative observation

qualitative judgement

EVOLUTION

ACTIVITY

STRUCTURE

Input (Questions / Section)Evaluation Criteria Description
Level of Agreement on ordinal scale (1 - 5)

GOAL

qualitative judgement

qualitative judgement

ENVIRONMENT

qualitative analysis

qualitative judgement

qualitative judgement

qualitative judgement

qualitative analysis

Table 7.1.: Overall fulfillment of evaluation criteria incl. tracing data

145

7. Fulfillment of requirements and evaluation criteria

Ease of Use and Operational Feasibility. The solution’s Utility and Completeness is also
seen as a strength given that distributed tracing data is available. Without tracing data,
as it was the case at the industry partner, the average ratings would decrease to 2.54 for
Completeness and 2.4 for Utility. A good Technology fit is at hand, however, there could
be further improvements. The costs to implement and roll-out the solution are seen
as reasonable. Still, due to the limited EAM budget available, a full sponsoring by the
EA department is doubtful. An average rating for Economic feasibility of 2.03 which
is still a good result. A weakness of the solution is seen in the criteria Absence of Side
Effect that subsumed potential risks including acceptance, data quality issues as well
as performance and security concerns. Risks with regards to handling data conflicts
and data consistency are not caused by the solution itself but emerge from the industry
partner’s specific EAM environment where other automatisms are already in place.
As a result, a key success factor to adopting organization is that a seamless interplay
between several automation solutions is ensured.

146

8. Summary

This master’s thesis is based on a holistic, multi-layer Enterprise Architecture discovery
framework, called MICROLYZE, developed as part of a larger research endeavor by the
university’s chair. This framework is meant to achieve automated EA model documen-
tation and maintenance with regards to the special challenges that emerge from the
increasing adoption of cloud computing, agile methodologies and microservice-based
architectures. Key enabling technologies used by the solution are cloud platforms,
distributed tracing and continuous deployment. This work focused on the evaluation
of CI/CD driven EA discovery as one of the main foundations of MICROLYZE.

The goal of this thesis was to assess the cost and benefits of the aforementioned
solution concept in a real-case enterprise environment. To fulfill this, the work covered
two major parts: (1) A detailed description and evolution of how CI/CD pipelines
can be instrumented to serve the goal of EA model maintenance including required
integration processes and a prototypical implementation and (2) a comprehensive
evaluation conducted in the course of a case study and a series of expert interviews.
This included the solution’s capabilities, value propositions, cost and savings.

The qualitative analysis of the solution within an enterprise context and the adoption
to two real-case projects brought forth valuable insights about the capabilities and
value propositions. Besides, limitations and challenges that remain to be solved were
identified. This allowed to answer the research questions posed at the beginning of this
work and which are shortly summarized:

Research Question 1 ("How can the suggested solution be integrated into agile
development and what challenges do occur?"): As the solution has a direct impact on
agile teams in the field, a key success factor is to keep the solution easy to adopt and
integrate. The implemented prototype and its adoption to real-case projects showed
that this challenge can be solved by providing the required EA documentation logic as a
library. This enables an easy integration procedure for agile teams while in parallel, the
functionality contained is centrally maintainable for the EA department. Form-based
initialization of the ead.json configuration files can further facilitate the process and
reduce the risk of errors. As long as MICROLYZE cannot replace classic EAM reposito-

147

8. Summary

ries, a challenge that remains to be solved, is the collaboration with preexisting EAM
ecosystems consisting of processes, tools and other data sources which are specific to
adopting organizations.

Research Question 2 ("What EA model elements should be documented and to what
degree can this be automated using the solution approach?"): This work has revealed
that the solution is capable to cover most important aspects of an EA meta model
that spans across all architectural layers. Information sources used in this work are a
cloud platform, a API gateway, source code repositories and configuration files. For
the interviewed Enterprise Architects, the combination of business-related information
contained in the ead.json configuration files with runtime data retrieved from operating
environments plays a crucial role to make the data valuable and usable for EA pur-
poses. Distributed tracing is indispensable as a data source to discover application
inter-relationships based on their communication behavior.

Research Question 3 ("What are the solution’s integration costs and value propo-
sitions for Enterprise Architecture Management?"): The in-depth monetary analysis
and experts’ feedback revealed, that the investment required to develop, roll-out and
operate the suggested solution is acceptable and can pay off in a reasonable time due
to the reduction of manual EA modeling efforts and other value propositions. Key cost
drivers are the number of application components and pipelines to be integrated. Given
a consolidated CI/CD infrastructure, costs can be significantly lowered. Distributed
tracing plays an important role in the solution’s value proposition as it could make
manual efforts for time-consuming relationship modeling obsolete and thus, further
increase the cost savings potential.

8.1. Limitations

MICROLYZE could not be evaluated in its entirety as distributed tracing turned out
not to be a reliable data source at the case study environment. Besides this constraint,
the following limitations are captured:

1. Due to the aforementioned, the monetary analysis does not include figures about
the costs and savings that emerge from the use of distributed tracing.

2. As part of the case study, only a few teams did integrate the prototype into their
environment. Future work should include additional field studies distributed
across multiple organizations to draw conclusions with general validity.

148

8. Summary

3. The case study time frame did not allow to make long-term observations about
the solution’s behavior. As a consequence, no judgment about the long term
impact on EA model quality and completeness can be inferred.

8.2. Suggestions for future work

As inferred from the expert interviews conducted, future work and development of
MICROLYZE should include the following.

Preexisting EAM ecosystems: Meanwhile, EAM has evolved to a widely-adopted
discipline and is being practiced for several years to even decades. This implies that
organizations might already use established EAM repositories and might have partly
solved the challenge of automated EA documentation. To be successful, MICROLYZE
has to face such situations as enterprises might no longer be on a greenfield. Future
work should develop ideas on how MICROLYZE can complement and collaborate with
preexisting environments.

Integration of the EA plan phase: As of now, MICROLYZE concentrates on the dis-
covery of the current state of Enterprise Architecture. However, EAM used to maintain
multiple states of EA including a target state and, optionally, one or more intermediate
states. Experts therefore demand that the solution should support the evolution of EA
elements from a "planned" state into the "current" state. In section 6.7.7, a preliminary
process was presented that might form the basis for future development.

EAM KPIs and automation of architecture assessment: MICROLYZE interconnects
various runtime information sources as well as tools along the software development
tool-chain. This forms a solid foundation for the calculation of EAM KPIs from runtime
data. It can also serve to facilitate or even automate architectural assessments that
used to be manual work. Continuous reporting on software quality, complexity (e.g.
based on VCS and Continuous Code Inspection systems) as well as compliance with
organizational standards or adherence to best practices (e.g. 12-factor-app1) could be
the subject of such KPIs. Experts’ feedback obtained in this work indicates that these
are promising use cases. Future research should assess the needs of practitioners and
evaluate how MICROLYZE could support this.

Cloud native EA discovery: Services meshes could be a valuable and lightweight
solution to discover applications and their inter-relationships as compared to distributed

1https://12factor.net/

149

8. Summary

tracing. Examples of open-source service meshes are Istio2 or LINKERD3 but also
proprietary solution offered by public cloud providers (e.g. AWS AppMesh4 or Google
Cloud Service Mesh5) exist. Istio, for example, exposes JSON based service graphs
via REST APIs that could easily be integrated. Future work should closely watch this
emerging technology and assess its potential for automated EA model maintenance.

2https://istio.io/
3https://linkerd.io/2/overview/
4https://aws.amazon.com/de/app-mesh/
5https://cloud.google.com/service-mesh/

150

A. Appendix

A.1. Appendix to EA model coverage

A.2. Appendix to Cost & Savings analysis

A.2.1. Estimated implementation onetime and running costs for EAD

A.2.2. AS-IS EAM repository quantities

A.3. Evaluation Interview

A.3.1. Part I - General Information

A.3.2. Part II - General feedback about solution approach

A.3.3. Part III - Pipeline integration

A.3.4. Part IV - ead.json configuration file

A.3.5. Part V - EA Documentation coverage

151

A. Appendix

EA
 a

rt
ef

ac
ts

 /
 a

tt
rib

ut
es

La
ye

r
Co

ve
re

d
Sc

op
e

So
ur

ce
AP

I e
nd

po
in

t u
se

d
/

ea
d.

js
on

 fi
el

d
ad

di
tio

na
l c

om
m

en
t

in
te

rf
ac

e
(e

xt
er

na
l a

pp
lic

at
io

n
be

ha
vi

or
)

L2
pa

rt
ia

l
Ap

iG
ee

 o
nl

y
Ap

iG
ee

G
ET

 /
v1

/o
rg

an
iz

at
io

ns
/[

:o
rg

an
iz

at
io

n]
/a

pi
s/

[:a
pi

-p
ro

xy
]

re
tu

rn
s

pu
bl

is
he

d
AP

Is
da

ta
 fl

ow
 a

nd
 d

ep
en

de
nc

ie
s

L2
pa

rt
ia

l
bo

un
d

cl
ou

d
se

rv
ic

es
Cl

ou
d

Fo
un

dr
y

G
ET

 /
v3

/a
pp

s/
[:g

ui
d]

/e
nv

in
cl

ud
es

 a
ll

bo
un

d
cl

ou
d

se
rv

ic
es

 b
y

an
 a

pp
in

tr
ap

ec
ifi

c
re

la
tio

ns
hi

ps
 (w

ith
in

 a
pp

lic
at

io
n

la
ye

r)
L2

pa
rt

ia
l

Ap
iG

ee
 o

nl
y

Cl
ou

d
Fo

un
dr

y,
 A

pi
G

ee
FQ

DN
 b

as
ed

 m
at

ch
in

g
of

 A
PI

 P
ro

xi
es

 a
nd

 a
pp

s
ap

pl
ic

at
io

n
(lo

gi
ca

l a
gg

re
ga

te
 o

f c
om

po
ne

nt
s)

L2
ye

s
fu

ll
ea

d.
jso

n
fie

ld
 c

m
db

_i
d

ap
pl

ic
at

io
n

co
m

po
ne

nt
L2

ye
s

fu
ll

Cl
ou

d
Fo

un
dr

y
G

ET
 /

v3
/a

pp
s/

[:g
ui

d]
re

tu
rn

 a
ll

ap
ps

 w
ith

in
 a

 o
rg

/s
pa

ce
Co

m
pl

ia
nc

e
un

d
D

at
en

sc
hu

tz
L2

no
N

/A
N

/A
no

t c
ov

er
ed

 b
y

th
is

 w
or

k
lif

ec
yc

le
 s

ta
te

L2
pa

rt
ia

l
cu

rr
en

t s
ta

te
 o

nl
y

Cl
ou

d
Fo

un
dr

y
in

fe
rr

ed
 fr

om
 c

lo
ud

 p
la

tf
or

m
 (d

ev
id

ed
 in

 s
ta

ge
s)

ve
rs

io
n

L2
ye

s
fu

ll
G

itH
ub

G
ET

 /
re

po
s/

{o
w

ne
r}

/[
:r

ep
o]

/r
el

ea
se

s
te

ch
ni

ca
l d

om
ai

n
L2

no
N

/A
N

/A
no

t u
se

d
at

 th
e

in
du

st
ry

 p
ar

tn
er

la
st

 d
ep

lo
ym

en
t/

up
da

te
L2

ye
s

fu
ll

Cl
ou

d
Fo

un
dr

y
G

ET
 /

v2
/a

pp
s/

[:g
ui

d]
/s

um
m

ar
y

in
cl

ud
es

 ti
m

es
ta

m
p

of
 la

st
 d

ep
lo

ym
en

t
ap

pl
ic

at
io

n
co

m
po

ne
nt

 -
in

st
an

ce
Re

l
ye

s
fu

ll
Cl

ou
d

Fo
un

dr
y

G
ET

 /
v3

/a
pp

s/
[:g

ui
d]

/p
ro

ce
ss

es
re

tu
rn

s
al

l r
un

ni
ng

 in
st

an
ce

s
fo

r a
n

ap
p

bu
si

ne
ss

 fu
nc

tio
n

- a
pp

lic
at

io
n

co
m

po
ne

nt
Re

l
ye

s
fu

ll
ea

d.
jso

n
fie

ld
 s

up
po

rt
ed

_b
us

in
es

s_
ca

pa
bi

lit
ie

s
pr

od
uc

t -
 a

pp
lic

at
io

n
co

m
po

ne
nt

Re
l

ye
s

fu
ll

ea
d.

js
on

fie
ld

 s
up

po
rt

ed
_p

ro
du

ct
s

ac
to

r -
 a

pp
lic

at
io

n
co

m
po

ne
nt

Re
l

pa
rt

ia
l

Pr
od

uc
t O

w
ne

rs
 o

nl
y

ea
d.

js
on

fie
ld

 p
ro

du
ct

_o
w

ne
r_

em
ai

l
bu

si
ne

ss
 d

om
ai

n
- a

pp
lic

at
io

n
co

m
po

ne
nt

Re
l

ye
s

fu
ll

ea
d.

jso
n

fie
ld

 s
up

po
rt

ed
_b

us
in

es
s_

do
m

ai
ns

bu
si

ne
ss

 p
ro

ce
ss

 -
ap

pl
ic

at
io

n
co

m
po

ne
nt

Re
l

ye
s

fu
ll

ea
d.

jso
n

fie
ld

 s
up

po
rt

ed
_b

us
in

es
s_

pr
oc

es
se

s
pr

oj
ec

t -
 a

pp
lic

at
io

n
co

m
po

ne
nt

Re
l

no
N

/A
N

/A
N

/A
in

st
an

ce
s

(r
un

ni
ng

 p
ro

ce
ss

)
L3

ye
s

fu
ll

Cl
ou

d
Fo

un
dr

y
G

ET
 /

v3
/a

pp
s/

[:g
ui

d]
/p

ro
ce

ss
es

re
tu

rn
s a

ll
ru

nn
in

g
in

st
an

ce
s

fo
r a

n
ap

p
so

ft
w

ar
e

de
pe

nd
en

ci
es

L3
pa

rt
ia

l
so

m
e

te
ch

no
lo

gi
es

 o
nl

y
G

itH
ub

G
itH

ub
 v

4
G

ra
ph

Q
L

AP
I (

pr
ev

ie
w

)
ju

st
 a

s
an

 o
ut

lo
ok

co
st

 s
tr

uc
tu

re
 (T

CO
, r

un
ni

ng
 c

os
ts

, l
ic

en
se

s)
L3

no
N

/A
N

/A
N

/A
no

t c
ov

er
ed

 b
y

Cl
ou

d
Fo

un
dr

y
ev

en
t d

at
a

(In
ci

de
nt

s,
 M

TT
R,

 M
TT

F,
 e

tc
.)

L3
ye

s
in

te
gr

at
ed

 s
ou

rc
es

Cl
ou

d
Fo

un
dr

y,
 A

pi
G

ee
, G

itH
ub

m
ul

tip
le

al
l a

llo
w

 to
 re

tr
ie

ve
 e

ve
nt

s o
ve

r A
PI

s
ph

ys
ic

al
 IT

 re
so

ur
ce

L3

no
N

/A
N

/A
N

/A
no

t d
em

an
de

d
by

 in
du

st
ry

 p
ar

tn
er

co
m

m
un

ic
at

io
n

te
ch

no
lo

gy
 (e

.g
. p

ro
to

co
ls

)
L3

ye
s

Cl
ou

d
Fo

un
dr

y
Cl

ou
d

Fo
un

dr
y

G
ET

 /
v3

/r
ou

te
s/

:g
ui

d/
de

st
in

at
io

ns
ch

ec
k

fo
r e

xp
os

ed
 p

or
ts

te
ch

no
lo

gy
 (N

od
eJ

s,
 JE

E,
 .N

et
, e

tc
.)

L3
pa

rt
ia

l
Cl

ou
d

Fo
un

dr
y,

 G
ith

ub
Cl

ou
d

Fo
un

dr
y,

 G
ith

ub
G

ET
 /

v3
/a

pp
s/

[:g
ui

d]
;

G
ET

 /
re

po
s/

[:o
w

ne
r]

/[
:r

ep
o]

/l
an

gu
ag

es
in

fe
rr

ab
le

 fr
om

 u
se

d
Cl

ou
d

Fo
un

dr
y

bu
ild

pa
ck

in
tr

ap
ec

ifi
c

re
la

tio
ns

hi
ps

 (w
ith

in
 te

ch
no

lo
gy

 la
ye

r)
L3

no
N

/A
N

/A
N

/A
no

t d
em

an
de

d
by

 in
du

st
ry

 p
ar

tn
er

vi
rt

ua
lis

at
io

n
te

ch
ni

qu
e

L3
ye

s
fu

ll
Cl

ou
d

Fo
un

dr
y

N
/A

is
 a

lw
ay

s c
on

ta
in

er
 v

irt
ua

lis
at

io
n

co
m

pl
ex

ity
L3

pa
rt

ia
l

So
na

rQ
ub

e
So

na
rQ

ub
e

N
/A

no
t c

ov
er

ed
 b

y
th

is
 w

or
k

da
ta

ba
se

 (M
ys

ql
, M

on
go

DB
, e

tc
.)

L3
pa

rt
ia

l
bo

un
d

cl
ou

d
se

rv
ic

es
Cl

ou
dF

ou
nd

ry
G

ET
 /

v2
/a

pp
s/

[:g
ui

d]
/e

nv
in

cl
ud

es
 a

ll
bo

un
d

cl
ou

d
se

rv
ic

es
 in

cl
. D

Bs
ru

nt
im

e
da

ta
 (s

at
ur

at
io

n,
 a

va
ila

bi
lit

y,
 re

qu
es

ts
, e

tc
.)

L3
ye

s
hi

gh
 le

ve
l

Cl
ou

dF
ou

nd
ry

G
ET

 /
v3

/p
ro

ce
ss

es
/[

:p
ro

ce
ss

gu
id

]/
st

at
s

re
tu

rn
 s

ta
ts

 fo
r a

n
gi

ve
n

in
st

an
ce

ru
nt

im
e

en
vi

ro
nm

en
t (

O
S,

 h
os

t,
cl

ou
d

pl
at

fo
rm

)
L3

ye
s

fu
ll

Cl
ou

dF
ou

nd
ry

G
ET

 /
v2

/a
pp

s/
[:g

ui
d]

/s
um

m
ar

y;

in
fe

rr
ab

le
 fr

om
 "

st
ac

k"
 a

nd
 C

lo
ud

 P
la

tf
or

m
us

ag
e

cl
as

si
fic

at
io

n
(b

us
in

es
s

vs
. u

til
ity

)
L3

no
N

/A
N

/A
N

/A
no

t d
em

an
de

d
by

 in
du

st
ry

 p
ar

tn
er

Figure A.1.: Questionnaire coverage by selected information sources and relevant API endpoints

152

A. Appendix

Figure A.2.: Effort estimations and savings potential

153

A. Appendix

Figure A.3.: Monthly running cost and savings potential of the current data stock

154

A. Appendix

Figure A.4.: Onetime and running cost and savings potential for documentation gap to be closed

155

A. Appendix

of

 E
le

m
en

ts

of

 A
tt

rib
ut

es

Cr
ea

te
s

p.
m

.

U
pd

at
es

 p
.m

of

 E
le

m
en

ts

Elements 13876 421 127 327 Relationships 20122
Architectural Domain 28 2 n.a. n.a. Architectural Domain <-> Technical Component 107
Business Domain 13 7 n.a. n.a. Business Domain <-> Business Function 100
Business Function 397 10 n.a. n.a. Business Domain <-> Business Object 57
Business Mapping 6004 6 90 0,75 Business Domain <-> Information System 2177
Business Object 57 7 n.a. n.a. Business Function <-> Project 301
Business Process 146 8 n.a. n.a. Information System <-> Business Function (BM) 1067
Business Unit 9 3 n.a. n.a. Information System <-> Business Unit (BM) 1050
Information Flow 2513 19 5,4 7 Information System <-> Business Process (BM) 2283
Information System 1858 180 16,1 184 Information System <-> Product (BM) 4992
Information System Domain 57 2 n.a. n.a. Information System <-> Business Object (BM) 288
Infrastructure Element 29 5 0 3,3 Business Object <-> Information Flow 95
IT Service 0 0 n.a. n.a. Information Flow <-> Technical Component 45
Product 4 3 n.a. n.a. Information System <-> Information Flow 4980
Project 2466 64 n.a. n.a. Information System <-> Information System Domain 586
Technical Component 295 105 15,4 132 Information System <-> Infrastructure Element 607

Information System <-> Project 737
Self-Relationships 514 Information System <-> Technical Component 641

Information System <-> Information System 470 Techical Component <-> Infrastructure Element 8
Project <-> Project 14 Techical Component <-> Project 1
Technical Component <-> Technical Component 30

Figure A.5.: EAM repository quantities as of August 2019

156

A. Appendix

Semi-structured evaluation interview

1. General Information

Date: ________________

Company: ______________

Interviewee: ________________

What is your Function/Role?

 Role / Function
☐ Enterprise Architect
☐ Application/Software Architect
☐ Domain Architect
☐ SW Developer
☐ Product/Application Owner

Years of Experience: ________

In your role, which of the following modelling tools do you use?

 Not at all Only reading Only writing Reading & writing
EAM repository ☐ ☐ ☐ ☐
CMDB ☐ ☐ ☐ ☐
Other:
_______________ ☐ ☐ ☐ ☐

Additional comment about the usage/purpose:

- __
- __
- __

Figure A.6.: Part I - General Information

157

A. Appendix

2. General feedback about the solution concept

Q1: The instrumentation of deployment pipelines to drive EA documentation is a practicable and reasonable
approach?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q2: The discovery of EA elements from runtime data (cloud platforms, API gateways, distributed tracing) is a
practicable and reasonable approach?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q3: The use of a configuration file (ead.json) to link static information (business layer relationships, federated
information sources) to an artefact is a practicable and reasonable approach?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q4: The shift in responsibility for EA documentation to agile teams is a practicable and reasonable approach?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q5: The suggested solution is easy to integrate into the agile development process?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Figure A.7.: Part IIa - General feedback about solution approach

158

A. Appendix

Q6: The suggested solution reasonably integrates into the EAM ecosystem (documentation processes, actors
and tools)?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q7: The suggested approach will improve the quality of data in the EAM repository?

 fully disagree disagree neutral agree fully agree
completeness ☐ ☐ ☐ ☐ ☐
actuality ☐ ☐ ☐ ☐ ☐
consistency ☐ ☐ ☐ ☐ ☐
reliability ☐ ☐ ☐ ☐ ☐

Q8: What are the Architecture Elements that you miss most?

 fully disagree Rather disagree neutral Rather agree fully agree
Relationships among application
components

☐ ☐ ☐ ☐ ☐

Relationships between applications ☐ ☐ ☐ ☐ ☐
Physical infrastructure elements (e.g.
server, router, etc,)

☐ ☐ ☐ ☐ ☐

Other:

Q9: The effort it takes to get the tool operational is manageable?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q10: The effort it takes to get the tool operational pays off quickly?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q11: Overall, the suggested approach is capable to reduce the amount of manual documentation effort?

 fully disagree disagree neutral agree fully agree
reg. organization ☐ ☐ ☐ ☐ ☐
reg. your role ☐ ☐ ☐ ☐ ☐

Explain your choice:

Figure A.8.: Part IIb - General feedback about solution approach

159

A. Appendix

Q12: The suggested approach supports the strategy of moving legacy applications to cloud based
environments?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Q13: The suggested approach is capable of being adapted to newly introduced technologies?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q14: The approach could allow to enable/drive new EAM use cases. Which of the following suggestions are
most promising/interesting to you?

 fully disagree disagree neutral agree fully agree
KPIs based on runtime
information

☐ ☐ ☐ ☐ ☐

Architecture Evolution
over time

☐ ☐ ☐ ☐ ☐

Architecture
Assessment

☐ ☐ ☐ ☐ ☐

Guideline Compliance ☐ ☐ ☐ ☐ ☐
Own ideas:

Q15: How do you judge the severity of observed risks in the context of your company?

 neglectable minor medium severe major
Security ☐ ☐ ☐ ☐ ☐
Access rights ☐ ☐ ☐ ☐ ☐
Consolidation / Harmonization of
information sources

☐ ☐ ☐ ☐ ☐

Conflict handling ☐ ☐ ☐ ☐ ☐
Other:

Q16: Would you roll out the suggested solution?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

If not, why? What need to be fixed?

1. ______________________________________
2. ______________________________________
3. ______________________________________

Figure A.9.: Part IIc - General feedback about solution approach

160

A. Appendix

3. Pipeline Integration

Q17: The EAD-library can be integrated with reasonable effort?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q16: How much extra time per pipeline job execution would you accept for an additional “Enterprise
Architecture Documentation” stage in your deployment pipeline?

0 – 0,5 min 0,5 – 1,0 min 1,0 – 1,5 min 1,5 – 2,0 min 2,0 – 2,5 min 2,5 – 3,0 min
☐ ☐ ☐ ☐ ☐ ☐

Explain your choice:

Q19: How do you judge the severity of observed risks regarding pipeline integration in the context of your
company?

 fully disagree disagree neutral agree fully agree
Security issues ☐ ☐ ☐ ☐ ☐
Pipeline performance ☐ ☐ ☐ ☐ ☐
Acceptance by development
teams

☐ ☐ ☐ ☐ ☐

Too much overhead ☐ ☐ ☐ ☐ ☐
Other:

Figure A.10.: Part III - Pipeline Integration

161

A. Appendix

4. EAD.json configuration file

Q20: The code repository is a more convenient place to maintain the information asked by the ead.json file
than compared to the EAM repository?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q21: What additional EA information sources should be included (as of now: Github, Jenkins, Jira, ApiGee)?

- __
- __

Q22: The ead.json template can be created with reasonable effort?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q23: The ead.json can be maintained with reasonable effort?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q24: The ead.json is easy to understand?

fully disagree disagree neutral agree fully agree
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q25: How do you judge the severity of observed risks regarding the use of the ead.json in the context of your
company?

 fully disagree disagree neutral agree fully agree
Inconsistencies across ead.json
files

☐ ☐ ☐ ☐ ☐

Outdated information in
ead.json

☐ ☐ ☐ ☐ ☐

Acceptance by
product/application owners

☐ ☐ ☐ ☐ ☐

Other:

Figure A.11.: Part IV - ead.json configuration file

162

A. Appendix

5. Documentation Coverage

Q26: How satisfying is the coverage of business layer relationships?

insufficient rather insufficient neutral rather satisfying very satisfying
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q27: How satisfying is the coverage of application layer relationships?

insufficient rather insufficient neutral rather satisfying very satisfying
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q28: How satisfying is the coverage of technology layer relationships?

insufficient rather insufficient neutral rather satisfying very satisfying
☐ ☐ ☐ ☐ ☐

Explain your choice:

Q29: How satisfying is the coverage of attributes?

insufficient rather insufficient neutral rather satisfying very satisfying
☐ ☐ ☐ ☐ ☐

Explain your choice:

Figure A.12.: Part V - EA Documentation coverage

163

Bibliography

[1] A guide to the Project Management Body of Knowledge (PMBOK guide), fifth edition,
5th ed. Newtown Square, Pa.: Project Management Institute, 2013, isbn: 978-1-
935589-67-9.

[2] ArchiMate 3.0.1 specification: Open group standard, Fifth edition, ser. The Open
Group Series. Zaltbommel: Van Haren Publishing, 2017, isbn: 9789401802369.

[3] J. Bogner and A. Zimmermann, “Towards integrating microservices with adapt-
able enterprise architecture,” in 2016 IEEE 20th International Enterprise Distributed
Object Computing Workshop (EDOCW), IEEE, 2016, pp. 1–6, isbn: 978-1-4673-9933-
3. doi: 10.1109/EDOCW.2016.7584392.

[4] M. Buschle, M. Ekstedt, S. Grunow, M. Hauder, F. Matthes, and S. Roth, “Au-
tomating enterprise architecture documentation using an enterprise service bus,”
in AMCIS, 2012.

[5] B. Cameron. (2018). Common-perspectives-on-enterprise-architecture-final-1-copy,
[Online]. Available: https://feapo.org/wp-content/uploads/2018/10/Common-
Perspectives-on-Enterprise-Architecture-Final-1-copy.pdf (visited on
09/05/2019).

[6] J. S. David, D. Schuff, and R. St. Louis, “Managing your total it cost of ownership,”
Communications of the ACM, vol. 45, no. 1, pp. 101–106, 2002, issn: 00010782. doi:
10.1145/502269.502273.

[7] M. Farwick, B. Agreiter, R. Breu, M. Häring, K. Voges, and I. Hanschke, “To-
wards living landscape models: Automated integration of infrastructure cloud
in enterprise architecture management,” in 2010 IEEE 3rd International Confer-
ence on Cloud Computing: A Requirements Analysis based on a Literature Review
and an Exploratory Survey, IEEE, 2010, pp. 35–42, isbn: 978-1-4244-8207-8. doi:
10.1109/CLOUD.2010.20.

[8] M. Farwick, B. Agreiter, R. Breu, S. Ryll, and I. Hanschke, “Requirements for
automated enterprise architecture model maintenance - a requirements analysis
based on a literature review and an exploratory survey,” 2011, pp. 325–337.

164

https://doi.org/10.1109/EDOCW.2016.7584392
https://feapo.org/wp-content/uploads/2018/10/Common-Perspectives-on-Enterprise-Architecture-Final-1-copy.pdf
https://feapo.org/wp-content/uploads/2018/10/Common-Perspectives-on-Enterprise-Architecture-Final-1-copy.pdf
https://doi.org/10.1145/502269.502273
https://doi.org/10.1109/CLOUD.2010.20

Bibliography

[9] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges, and I. Hanschke, “Automation
processes for enterprise architecture management,” in 2011 IEEE 15th International
Enterprise Distributed Object Computing Conference Workshops, IEEE, 2011, pp. 340–
349, isbn: 978-1-4577-0869-5. doi: 10.1109/EDOCW.2011.19.

[10] M. Farwick, R. Breu, M. Hauder, S. Roth, and F. Matthes, “Enterprise architecture
documentation: Empirical analysis of information sources for automation,” in
2013 46th Hawaii International Conference on System Sciences, IEEE, 2013, pp. 3868–
3877, isbn: 978-1-4673-5933-7. doi: 10.1109/HICSS.2013.200.

[11] M. Farwick, C. M. Schweda, R. Breu, and I. Hanschke, “A situational method
for semi-automated enterprise architecture documentation,” Software & Systems
Modeling, vol. 15, no. 2, pp. 397–426, 2016, issn: 1619-1366. doi: 10.1007/s10270-
014-0407-3.

[12] R. Fischer, S. Aier, and R. Winter, “A federated approach to enterprise architecture
model maintenance: 14-22 pages / enterprise modelling and information systems
architectures, vol 2, no 2 (2007),” 2015. doi: 10.18417/EMISA.2.2.2.

[13] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di
Salle, “Microart: A software architecture recovery tool for maintaining microservice-
based systems,” in ICSA 2017, IEEE, 2017, pp. 298–302, isbn: 978-1-5090-4793-2.

[14] S. Hacks, A. Steffens, P. Hansen, and N. Rajashekar, “A continuous delivery
pipeline for ea model evolution,” in Enterprise, Business-Process and Informa-
tion Systems Modeling, ser. Lecture Notes in Business Information Processing, I.
Reinhartz-Berger, J. Zdravkovic, J. Gulden, and R. Schmidt, Eds., vol. 352, Cham:
Springer International Publishing, 2019, pp. 141–155, isbn: 978-3-030-20617-8. doi:
10.1007/978-3-030-20618-5_10.

[15] M. Hauder, F. Matthes, and S. Roth, “Challenges for automated enterprise archi-
tecture documentation,” in Trends in enterprise architecture research and practice-
driven research on enterprise transformation : 7th Workshop, TEAR 2012, and 5th
Working Conference, PRET 2012 ; held at the Open Group Conference 2012, Barcelona,
Spain, October 23-24, 2012 ; proceedings, vol. 131, Springer, 2012, pp. 21–39, isbn:
978-3-642-34162-5. doi: 10.1007/978-3-642-34163-2_2.

[16] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt, “Automatic data collection
for enterprise architecture models,” Software & Systems Modeling, vol. 13, no. 2,
pp. 825–841, 2014. doi: 10.1007/s10270-012-0252-1.

[17] S. Horovitz, Y. Arian, M. Vaisbrot, and N. Peretz, “Non-intrusive cloud application
transaction pattern discovery,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), IEEE, 2019, pp. 311–320, isbn: 978-1-7281-2705-7. doi: 10.
1109/CLOUD.2019.00059.

165

https://doi.org/10.1109/EDOCW.2011.19
https://doi.org/10.1109/HICSS.2013.200
https://doi.org/10.1007/s10270-014-0407-3
https://doi.org/10.1007/s10270-014-0407-3
https://doi.org/10.18417/EMISA.2.2.2
https://doi.org/10.1007/978-3-030-20618-5_10
https://doi.org/10.1007/978-3-642-34163-2_2
https://doi.org/10.1007/s10270-012-0252-1
https://doi.org/10.1109/CLOUD.2019.00059
https://doi.org/10.1109/CLOUD.2019.00059

Bibliography

[18] P. Johnson, M. Ekstedt, and R. Lagerstrom, “Automatic probabilistic enterprise it
architecture modeling: A dynamic bayesian networks approach,” in 2016 IEEE
20th International Enterprise Distributed Object Computing Workshop (EDOCW), IEEE,
2016, pp. 1–8, isbn: 978-1-4673-9933-3. doi: 10.1109/EDOCW.2016.7584351.

[19] P. A. Khosroshahi, M. Hauder, and F. Matthes, “Analyzing the evolution and
usage of enterprise architecture management patterns,” in AMCIS, 2016.

[20] M. Kleehaus, M. Hauder, F. Matthes, and Ö. Uludag, “Enterprise architecture
discovery via runtime instrumentation for automating enterprise architecture
model maintenance,” 2019.

[21] M. Kleehaus, Ö. Uludağ, P. Schäfer, and F. Matthes, “Microlyze: A framework
for recovering the software architecture in microservice-based environments,” in
Information Systems in the Big Data Era, ser. Lecture Notes in Business Information
Processing, J. Mendling and H. Mouratidis, Eds., vol. 317, Springer International
Publishing, 2018, pp. 148–162, isbn: 978-3-319-92900-2.

[22] H. Krcmar, Informationsmanagement. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2015, isbn: 978-3-662-45862-4.

[23] J. Landthaler, Ö. Uludağ, G. Bondel, A. Elnaggar, S. Nair, and F. Matthes, “A
machine learning based approach to application landscape documentation,” in
The Practice of Enterprise Modeling, ser. Lecture Notes in Business Information
Processing, R. A. Buchmann, D. Karagiannis, and M. Kirikova, Eds., vol. 335,
Cham: Springer International Publishing, 2018, pp. 71–85, isbn: 978-3-030-02301-0.
doi: 10.1007/978-3-030-02302-7_5.

[24] P. Measey, Ed., Agile Foundation: Principles, Practices and Frameworks. London: BCS,
2015, isbn: 9781780172569.

[25] F. Montesi and J. Weber, Circuit breakers, discovery, and api gateways in microservices,
Sep. 19, 2016.

[26] S. Newman, Building microservices. Sebastopol: O’Reilly Media, 2015, isbn: 9781491950357.

[27] M. Panwar, “Application performance management emerging trends,” in 2013
International Conference on Cloud & Ubiquitous Computing & Emerging Technologies,
IEEE, 2013, pp. 178–182, isbn: 978-1-4799-2235-2. doi: 10.1109/CUBE.2013.40.

[28] N. Prat, I. Comyn-Wattiau, and J. Akoka, “A taxonomy of evaluation methods for
information systems artifacts,” Journal of Management Information Systems, vol. 32,
no. 3, pp. 229–267, 2015, issn: 0742-1222. doi: 10.1080/07421222.2015.1099390.

[29] I. Red Hat. (2019). What’s a service mesh? [Online]. Available: https://www.
redhat.com/en/topics/microservices/what-is-a-service-mesh (visited on
09/11/2019).

166

https://doi.org/10.1109/EDOCW.2016.7584351
https://doi.org/10.1007/978-3-030-02302-7_5
https://doi.org/10.1109/CUBE.2013.40
https://doi.org/10.1080/07421222.2015.1099390
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh

Bibliography

[30] J. W. Ross, P. Weill, and D. Robertson, Enterprise Architecture As Strategy: Creating
a Foundation for Business Execution. Boston: Harvard Business Review Press, 2014,
isbn: 1-59139-839-8.

[31] S. Rossel, Continuous Integration. Birmingham: Packt Publishing, 2017, isbn: 978-
1-78728-418-0.

[32] S. Roth, “Federated enterprise architecture model management: Conceptual
foundations, collaborative model integration, and software support,” Dissertation,
Technische Universität München, München, 2014.

[33] S. Roth, M. Hauder, M. Farwick, R. Breu, and F. Matthes, “Enterprise architecture
documentation: Current practices and future directions,” in Wirtschaftsinformatik,
2013.

[34] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical Software Engineering, vol. 14, no. 2,
pp. 131–164, 2009.

[35] K. Schwaber and J. Sutherland. (2015). The scrum guide, [Online]. Available:
https://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-DE.pdf
(visited on 09/14/2019).

[36] G. O. Smith F. (2018). What is a service mesh? [Online]. Available: https://www.
nginx.com/blog/what-is-a-service-mesh/ (visited on 09/11/2019).

[37] C. Sonnenberg and J. vom Brocke, “Evaluations in the science of the artificial –
reconsidering the build-evaluate pattern in design science research,” in Design
Science Research in Information Systems. Advances in Theory and Practice, ser. Lecture
Notes in Computer Science, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, K. Peffers, M.
Rothenberger, and B. Kuechler, Eds., vol. 7286, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 381–397, isbn: 978-3-642-29862-2. doi: 10.1007/978-
3-642-29863-9_28.

[38] The TOGAF standard, Version 9.2. Zaltbommel: Van Haren Publishing, 2018, isbn:
9789401802833.

[39] T. Trojer, M. Farwick, M. Häusler, and R. Breu, “Living modeling of it architec-
tures: Challenges and solutions,” in Software, Services, and Systems, ser. Lecture
Notes in Computer Science, R. de Nicola and R. Hennicker, Eds., vol. 8950, Cham:
Springer International Publishing, 2015, pp. 458–474, isbn: 978-3-319-15544-9. doi:
10.1007/978-3-319-15545-6_26.

167

https://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-DE.pdf
https://www.nginx.com/blog/what-is-a-service-mesh/
https://www.nginx.com/blog/what-is-a-service-mesh/
https://doi.org/10.1007/978-3-642-29863-9_28
https://doi.org/10.1007/978-3-642-29863-9_28
https://doi.org/10.1007/978-3-319-15545-6_26

Bibliography

[40] S. Vadapalli, DevOps: Continuous Delivery, Integration, and Deployment with De-
vOps. [Place of publication not identified]: Packt Publishing, 2018, isbn: 978-1-
78913-299-1.

[41] M. Valja, R. Lagerstrom, M. Ekstedt, and M. Korman, “A requirements based
approach for automating enterprise it architecture modeling using multiple data
sources,” in 2015 IEEE 19th International Enterprise Distributed Object Computing
Workshop, IEEE, 2015, pp. 79–87, isbn: 978-1-4673-9331-7. doi: 10.1109/EDOCW.
2015.33.

[42] J. Venable, J. Pries-Heje, and R. Baskerville, “Feds: A framework for evaluation
in design science research,” European Journal of Information Systems, vol. 25, no. 1,
pp. 77–89, 2016, issn: 0960-085X. doi: 10.1057/ejis.2014.36.

[43] J. Verona, Practical DevOps, Second Edition: Implement DevOps in your organization
by effectively building, deploying, testing, and monitoring code, 2nd Edition, 2nd ed.
Birmingham: Packt Publishing, 2018, isbn: 9781788398619.

[44] VersionOne. (2019). Collabnet versionone releases 13th annual state of agile
report, [Online]. Available: https://www.collab.net/news/press/collabnet-
versionone-releases-13th-annual-state-agile-report (visited on 09/24/2019).

[45] N. Villasana Corpancho, “Automated documentation of business domain as-
signments and cloud application information from an application development
pipeline,” Master Thesis, 2019.

[46] J. T. Zhao, S. Y. Jing, and L. Z. Jiang, “Management of api gateway based on micro-
service architecture,” Journal of Physics: Conference Series, vol. 1087, p. 032 032, 2018,
issn: 1742-6588. doi: 10.1088/1742-6596/1087/3/032032.

168

https://doi.org/10.1109/EDOCW.2015.33
https://doi.org/10.1109/EDOCW.2015.33
https://doi.org/10.1057/ejis.2014.36
https://www.collab.net/news/press/collabnet-versionone-releases-13th-annual-state-agile-report
https://www.collab.net/news/press/collabnet-versionone-releases-13th-annual-state-agile-report
https://doi.org/10.1088/1742-6596/1087/3/032032

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation & problem statement
	Research questions
	Research methodology
	Outline

	Foundation
	Enterprise Architecture Management
	Federated Enterprise Architecture Management
	Enterprise Architecture Model Maintenance

	Trends and technologies impacting EAM
	Agile Development Methodologies
	Continuous Deployment
	Microservice architectures and related technologies

	ArchiMate

	Related work
	Alternative EAMM solution approaches
	Demarcation

	Solution approach
	Introduction to MICROLYZE
	Solution architecture
	EAD functional components
	Preconditions & required inputs
	Approach for automated pipeline-driven EA documentation

	Processes and procedures
	Integration into agile development process
	EA model maintenance process
	Ead.json validation

	Prototypical implementation
	Logical data model
	Prototype improvements
	Pipeline integration procedure
	Automated, deployment-driven EA documentation process

	Evaluation design
	Case study design
	The case
	The evaluation environment
	Evaluation objectives and structure
	Evaluation criteria

	Data collection methods
	Quantitative analysis of archival data
	Semi-structured interviews
	Three-point-estimation

	Evaluation - Case study at a German enterprise
	Definition and mapping of EA modeling concepts
	Status Quo
	EA documentation responsibilities
	EA documentation weaknesses
	Documentation gap

	Requirements analysis
	Automation priorities
	Functional and non-functional requirements
	Ead.json adjustment

	Target state
	EA information sources
	EA element and attribute coverage
	Automation potential

	Productive use - adoption to real-case projects
	Integration efforts and perception
	EA documentation results and findings

	Analysis of cost and savings
	Running cost and savings for manual EA modeling
	Implementation, roll-out and running cost for EAD
	Total cost of ownership

	Evaluation interview results
	Evaluation aspect - Solution approach
	Evaluation aspect - Pipeline integration
	Evaluation aspect - ead.json
	Evaluation aspect - Documentation coverage
	Expert's conclusion and feedback
	Key findings and suggestions
	Revised process based on experts' feedback

	Fulfillment of requirements and evaluation criteria
	Fulfillment of requirements
	Fulfillment of evaluation criteria

	Summary
	Limitations
	Suggestions for future work

	Appendix
	Appendix to EA model coverage
	Appendix to Cost & Savings analysis
	Estimated implementation onetime and running costs for EAD
	AS-IS EAM repository quantities

	Evaluation Interview
	Part I - General Information
	Part II - General feedback about solution approach
	Part III - Pipeline integration
	Part IV - ead.json configuration file
	Part V - EA Documentation coverage

	Bibliography

