
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Analysis of Business Applications
Integrating Distributed Ledger

Technologies

Christian Ziegler

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Analysis of Business Applications
Integrating Distributed Ledger

Technologies

Analyse von Geschäftsanwendungen mit
Distributed Ledger Technologies

Author: Christian Ziegler
Supervisor: Professor Dr. Florian Matthes
Advisor: Ulrich Gallersdörfer, M.Sc.
Submission Date: February 15th, 2021

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, February 15th, 2021 Christian Ziegler

Acknowledgments

Primarily, I want to thank Ulrich Gallerdsörfer for supporting and advising me during
this thesis and in the semesters before. His Blockchain-based Systems Engineering exer-
cises gave me the fundamentals I was missing even though I thought I knew everything
to know about Bitcoin and Ethereum. The Lab Course "Web Applications" where we
created a student wallet that had to be non-custodial taught me that decentralization
sometimes is the better way, even if it is the harder one. Finally, the work as his stu-
dent associate has provided me with new experiences that I would not have received
anywhere else. All of this has been invaluable to me. Thank you, Uli.

Secondarily, I want to thank all the great interview partners that took the time to
discuss their use-cases with me. Namely: Steven Pannell, Christoph Langewisch, Marco
Barulli, Andreas Zeiselmair, Felix Gerbig, Maximilian Forster, Marijo Radman, Dennis
Zimmer, Erdi Dogruel, and Jeroen Breteler.

And lastly, ML for - until today - almost two not easy, but wonderful years in Munich.

Abstract

Since the introduction of Bitcoin through Bitcoin: A Peer-to-Peer Electronic Cash System in
2008 [24] there has been ongoing development around distributed ledger technology.
Five years later, in 2013, Vitalik Buterin [6] published the Ethereum Whitepaper, which
in its core describes a next-generation smart contract and decentralized application
platform. Four years later, in 2017, the Linux Foundation released Hyperledger Fabric
1.0 [20] the first major platform utilizing distributed ledger technology aimed at private
companies.

In 2020 there are more than 7000 active Cryptocurrency projects active [9]. Millions of
smart contracts have been deployed on the Ethereum Blockchain [12], and about 250
companies collaborate on the Hyperledger project [19]. From these statistics, a huge
interest in the technology world can be assumed for distributed ledger technology.

This work looks at features and functionality that are frequently used within dis-
tributed ledger applications and provides them summarized in a structured form. This
thesis aims to structure and bundle research and development efforts made to dis-
tributed ledger technology allowing developers to follow them when they create new
distributed ledger applications instead of re-inventing already existing features and
workflows. Furthermore, structured use-case studies are presented that show decisions
made in the development of distributed ledger applications and explain why they were
made to help guide new developers in their process of developing. The use case studies
are also used to verify the presented feature summary.

This thesis introduces the fundamentals of distributed ledger technologies on the
example of Bitcoin and Ethereum representing public permissionless ledgers, and
Hyperledger representing private permissioned ledgers. Following an overview of
distributed ledger features in general and business applications in this context are given.
Furthermore, related work is presented, and differences to this thesis are made clear.
However, the core is the eight structured use-case studies that each describe a current
distributed ledger project, its decisions, and features. Additionally, a feature summary
divided into 12 categories that each have their related features is given. Each feature is
also validated by the interviews that are conducted for the use-case studies.

v

Contents

Acknowledgments iii

Abstract v

1. Introduction 1
1.1. Motivation . 2
1.2. Research Questions . 3
1.3. Approach . 4
1.4. Outline . 6

2. Fundamentals 7
2.1. Distributed Ledger Technologies . 7

2.1.1. Public Ledgers on the Example of Bitcoin 9
2.1.2. Private Ledgers on the Example of Hyperledger Fabric 10
2.1.3. Comparison between public and private Ledgers 11

2.2. Business Applications . 12

3. Related Work 15
3.1. A systematic literature review of blockchain-based applications: Current

status, classification and open issues . 15
3.2. An Overview of Blockchain Technology: Architecture, Consensus, and

Future Trends . 16
3.3. A Pattern Collection for Blockchain-based Applications 16

4. Feature Summaries 19
4.1. Functional Features . 19

4.1.1. Identity Management . 19
4.1.2. Unique Asset Management . 20
4.1.3. Unique Asset Transfer . 21
4.1.4. Code Execution on the Blockchain 21
4.1.5. Information Broadcasting . 22
4.1.6. Storing verifiable Data Off-Chain: Hash Anchoring Pattern 24
4.1.7. Storing Data On-Chain and its Usage 24
4.1.8. Interoperability . 26
4.1.9. Governance . 27
4.1.10. Cryptocurrency Minting . 29
4.1.11. Cryptocurrency Storing . 31

vii

Contents

4.1.12. Cryptocurrency Transfer . 33
4.2. Non-Functional Features . 34

4.2.1. Scalability . 34
4.2.2. Privacy . 36
4.2.3. Security . 37

5. Case Studies 39
5.1. IBO - Product Tracing . 39
5.2. Cash on Ledger - Payment processing . 43
5.3. CodeNotary - Create Trust in Digital Objects 47
5.4. Lakoma - Insurance of Sustainability . 52
5.5. Chaincentive - Digital Incentives . 55
5.6. FfE - Proof of Origin for Electricity . 59
5.7. BMW - Traceability of the Supply Chain . 64
5.8. Bernstein - Secure the Ownership of Intellectual Property 67

6. Summary and Evaluation 73
6.1. Statistical evaluation of the Case Studies 73
6.2. Summary . 74
6.3. Evaluation . 75

7. Future Work and Conclusion 79
7.1. Future Work . 79
7.2. Conclusion . 80

A. Appendix 81
A.1. Blockchain Applications . 81
A.2. Blockchain Attributes . 82
A.3. Features of the Catalog used by the projects 83
A.4. Interview Questionnaire . 84

List of Figures 85

List of Tables 87

Bibliography 89

viii

1. Introduction

Computing has started centralized with massive monoliths such as the IBM 701 dating
back to 1952 [11]. However, centralized systems have significant downsides, such as
being a single point of failure and not being able to scale horizontally. These two
downsides are especially harmful to databases as they need to persist millions or even
billions of records. Therefore, the first ideas for distributed databases were published in
1980 [32] that tried to eliminate monoliths’ downsides. Distributed Systems, in general,
have the advantage of having no single point of failure. So when one node crashes, the
network continues without the failed node. Additionally, distributed systems can scale
horizontal and vertical. However, centralized systems have their advantages, too, such as
being easier to coordinate and implement. These benefits, however, can be disregarded
in a system that must scale.

A Ledger describes a database in which no record can be edited after it has been
written in. It can be seen as a family register or a land register where a new member
of the family is added, or new owners to land are added while the old records remain
there. This approach ensures immutability, one of the key properties of distributed
ledger technology.

The term distributed ledger technology is often interchangeably used with the term
Blockchain. Distributed ledger technology is the term that is more used in science, and
Blockchain is more commonly used in common speech. Technically speaking, there
is a difference between distributed ledger technology and Blockchain. A distributed
ledger keeps the records immutable in many different places, and so does a Blockchain.
Withal, a Blockchain also requires data to be put inside containers called blocks that are
connected in a chain with the hash of the previous block that needs to be contained in
the following block. Various proofing algorithms then confirm these blocks explained in
the Fundamentals chapter of this work.

Distributed ledger technology is critical in business applications that need to store
data immutable and in business applications used inside a consortium. For example, in
a company network where many suppliers and manufacturers collaborate with many
different contracts, the company that owns the network has a knowledge advantage
over all other participants. In a time where data security has become a central topic in
daily life, such a system is no longer sustainable unless there is lots of trust between the
participants or the bigger companies push such a system upon smaller companies that
can not fight back. Therefore many companies are now pushing towards distributed
instead of centralized systems that are made in collaboration inside or outside of the
consortium.

Companies seemingly have a very high interest in these kinds of technologies as more

1

1. Introduction

than 250 companies are part of the Hyperledger Foundation to date [19]. However,
for most developers, this is the first time they are working with distributed ledger
technologies. Pilot projects are started, and developers tend to either use Hyperledger
Fabric resulting in lots of similar but different projects or create new platforms such
as Hyperledger Besu, Borrow, Indy, Iroha, and sawtooth. Since both approaches are
far from ideal, this work proposes feature summaries intended to help developers pick
their needed features and hold their hands making architecture decisions for their new
application.

The summaries proposed in this work are feature-based and meant to be used in
a modular fashion. Every category of currently in a distributed ledger or Blockchain
applications implemented features is represented and structured to achieve the goal
of this work: Ease the introduction of distributed ledger-based applications to the
enterprise sector and improve the collaboration between companies to increase the
overall productivity of the economy.

1.1. Motivation

Distributed ledger technology and Blockchain technology commonly used interchange-
ably as described in the introduction is mostly seen very different in real-world usage.
Where Blockchain Technology is almost exclusively used in applications that utilize a
permissionless ledger, a ledger in which unknown and distrusted parties can collaborate
on a trusted basis. Distributed ledger technology uses permissioned ledgers instead
where all participants are known.

Distributed Ledger Technology (DLT) started to receive academic attention in 2016
with 18 papers available on Scopus, 3 on ACM, and 5 publications on Web of Science.
958 papers with the publication year of 2019 are available on Scopus, 71 on ACM, and
394 on Web of Science. This shows a large interest of the academic community in this
topic.

In 1.1 we display the combined Blockchain and Distributed Ledger Technology re-
lated publications from the mayor platform Scopus, Web of Science, and ACM. The
chart displays a much higher interest in the term Blockchain than Distributed Ledger
Technology.

Blockchain technology experienced an immense increase in popularity since the rise of
Bitcoin in 2009 [24]. The combined market cap of all Cryptocurrencies is $339,86B with a
Bitcoin dominance of 58,3% (06.10.2020 [10]). Additionally, 5818 papers about Blockchain
with a publication date of 2019 are available on Scopus, 822 on ACM, and 2867 on
Web of Science. This shows that the general interest in the particular specification of
Blockchain within the distributed ledger technologies is more interesting to researchers
and common people than the broader topic of distributed ledger technologies.

In this work, the characteristic of distributed ledger technology is neglected, and all
projects that contain any specification of distributed ledger technologies are considered
for their features and distilled in feature summaries. Those play an important part in

2

1.2. Research Questions

Figure 1.1.: Publications of Blockchain and DLT related work

crafting complex architecture for computing systems, in the specific case of this work,
crafting complex distributed ledger architecture with numerous features and use-cases.
This allows developer teams that tend to "re-invent the wheel" to build on proven and
widespread features for the specific use-case.

Development processes at companies are most of the time closed source, and addition-
ally, not many companies are currently developing new distributed ledger technology
due to the immaturity of the technology. Therefore structured use-case studies are very
sparse. Thus the core reason for presenting them.

1.2. Research Questions

This work aims to find common features in distributed ledger projects and structure
them into feature summaries. The desired outcome for this work is the finished feature
summary catalog divided into their respective categories. To achieve this goal, five
research questions are given as a guideline:

Q1 - What are common features that distributed ledger applications share?

a) Which applications that use distributed ledger technology are being used and
created at the moment?

b) Which distributed ledger technology do these applications use?

c) Is there related work regarding patterns for distributed ledger technology?

3

1. Introduction

Q2 - How can these features be categorized and formalized?

a) Which technologies are used most and how are they implemented?

b) Which different categories do the features fit in?

c) How can these features be summarized to understand for no DLT savvy
engineer?

Q3 - Which decisions are made in the current DLT developments?

a) Which problems are the projects that are currently in development solving?

b) What are re-occurring questions in the architecture of enterprise DLT applica-
tions?

Q4 - How can a feature summary be verified?

a) Which technology features of the catalog are implemented in business appli-
cations?

b) Are there features used in nearly every application and rare features that are
only used in a limited number of applications?

c) Can the relevance of the features be derived from the use-case studies?

Q5 - What are characteristics for proper DLT applications?

a) Why is DLT needed for solving the specific issues?

b) Could DLT Projects also be realized without DLT and still solve the same
issues?

c) Would it be possible that projects are easier to implement and execute without
DLT while still solving the same issues?

1.3. Approach

The presented work uses the following approach to answer the research questions:

• Q1 - Literature review and interviews
Q1.a - The goal of the first research question Q1.a in 1.2 is to find the most popular
and active (open source) projects in the distributed ledger and Blockchain tech-
nology space. This is achieved by looking at the market and following the trends.
In a first step, Google Scholar is searched for DLT, Distributed ledger technology,
blockchain and the result is sorted by new. The papers are then summarized. Addi-
tionally the top 10 Cryptocurrency projects are extracted from CoinMarketCap1

and also summarized. Lastly, Everest.link2 and DEFI PULSE3.

1https://coinmarketcap.com/ - CoinMarketCap
2https://everest.link/ - Universally shared projects registry
3https://defipulse.com/ - DEFI PULSE

4

1.3. Approach

Q1.b - The goal of this research question is to identify technologies and features
that are frequently integrated within distributed ledger applications. This goal is
achieved by extracting the features and their use-cases from the summaries written
in Q1.a.
Q1.c - This research question aims to find related work, so nothing duplicated is
presented as new work in the final research result. A secondary goal is to find
existing patterns. This achieved by searching common databases for the search
terms DLT, Distributed ledger technology, blockchain. The databases used are Scopus4,
ACM5 and Web of Science6.

• Q2 - Categorization and formalization of features
Q2.a - The goal of this research question is to create a list of the most used
distributed ledger technology features and, if possible, implementation details for
each feature. This is achieved by counting the features that were worked out in
Q1.b.
Q2.b - This research question aims to provide feature categories that fit the features.
This is achieved by literature review and feedback from industry experts, which is
acquired through interviews.
Q2.c - This research question aims to create easy to understand summaries of all
categories and features. This is achieved with a literature review.

• Q3 - Decisions made in DLT developments
Q3.a - This research question aims to find enterprise DLT projects that are currently
in development and find out which problems they are solving and which decisions
are made while solving the problems. This is achieved by conducting interviews
with leading members of current DLT projects. The results are presented in a
structured use-case study form.
Q3.b - This research question aims to find re-occurring structures and decisions in
the use-case studies. This is achieved by generalizing the use-cases and finding
common ground.

• Q4 - Verification of the feature summary
Q4.a - This research question aims to find out which features of the summary are
implemented in the applications of the use-case studies. This goal is achieved by
counting the features of the use-case studies.
Q4.b - This research question aims to find accumulations of features by counting
the features of the use-case study using the feature summary.
Q4.c - This research question aims to derive the relevance of each feature from the
feature summary.

• Q5 - Characteristics of proper DLT applications

4https://www.scopus.com/ - Scopus
5https://dl.acm.org/ - ACM Digital Library
6https://webofknowledge.com/ - Web of Science

5

1. Introduction

Q5.a - The goal of this research question is to find the essential answer to the
questions "Why is DLT needed?" for every use-case study. This is achieved by
asking this question in the interview process.
Q5.b - The goal of this research question is to find out if projects of the use-case
study could be realized without DLT. This goal is achieved with literature review
and asking this question in the interviews.
Q5.c - The goal of this research question is to find out if projects would have been
easier implemented without DLT. This is achieved by discussing this question with
the interviewees.

1.4. Outline

This work starts by explaining the fundamentals of public and private ledgers on the
example of Bitcoin and Hyperledger Fabric, respectively, and then goes over to defining
Business Applications in the context of this work.

Next, we present related work that classifies Blockchain-based applications and
present an existing pattern catalog where we summarize the most important pattern.

After that, we present feature summaries for 12 functional and three non-functional
feature categories, which each have their own sub-features that each have brief explana-
tions.

Then we provide eight use-case studies that were created by interviewing industry
experts about their current projects.

In the end, we draw a summary and evaluate this work by answering the research
question. After that, we describe what future work can be done and conclude this work.

6

2. Fundamentals

This chapter is designed to introduce distributed ledger technologies and use-cases for
distributed ledger technologies of business applications to the technology-savvy user
unfamiliar with DLT. Each section starts with defining essential terms that are commonly
used with the section’s topic and then goes over to explaining their uses on examples.

2.1. Distributed Ledger Technologies

Generally speaking, distributed ledgers can be divided into the two main categories
public or permissionless ledger and private or permissioned ledger.

However, some authors make a distinction between permissionless and public or permis-
sioned and private. For example PETERS and PANAYI [25] define it as follows:

• Permissionless: Anyone can participate in the verification process without autho-
rization.

• Permissioned: A central authority or consortium preselects verification nodes.

• Public: Anyone can read and submit transactions.

• Private: Only users or groups with the correct permission can read and submit
transactions.

This work tries to weaken the boundaries between the hard categorizations and
focuses more on the feature side of Blockchains and where those features are more
commonly used. Therefore we do not make a hard distinction between the two different
categories. Nonetheless, we acknowledge the possibility of a permissionless ledger being
private although, from a technical and business perspective, this combination does not
yield practical results.

In a public permissionless ledger everyone can join the network and interact with it
without revealing his real identity. Popular examples for this ledger type are Bitcoin1,
Ethereum2 and all Cryptocurrencies that build on top of those. Public permissionless
ledgers often have a native Cryptocurrency and most of the time use consensus mecha-
nism such as Proof-Of-Work or Proof-Of-Stake which are explained in more detail in this
chapter [2].

1https://bitcoin.org - Bitcoin
2https://ethereum.org - Ethereum

7

2. Fundamentals

Public permissionless ledgers are designed for verifiable interactions between unknown
entities and distrusted entities. permissioned ledgers require every participant of the
network to be identifiable. Without authentication, the user can not join the network
nor interact with it. Private permissioned ledgers are designed for trusted interactions
between known distrusted participants [2]. Commonly known examples for private
permissioned ledger software are Hyperledger3 and Corda4.

In this context, Blockchain Technology is also important because it is common and,
most of the time, used in an invalid way for distributed ledger technology. Blockchain
Technology is almost always used in public permissionless ledgers and is a more narrow
implementation. In a Blockchain-based system, transactions are bundled in blocks and
confirmed with a consensus algorithm.

Figure 2.1.: Block structure [39]

Figure 2.2.: Blockchain Architecture [39]

Figure 2.1 depicts an exemplary block structure, and figure 2.2 shows how a sequence
of blocks is connected through each previous block hash.

3https://hyperledger.org/use/fabric - Hyperledger Fabric
4https://corda.net - Corda

8

2.1. Distributed Ledger Technologies

In the following subsection, public permissionless ledgers are explained in great detail
on the example of the Blockchain Technology used by Bitcoin.

2.1.1. Public Ledgers on the Example of Bitcoin

This whole section uses ANTONOPOULOS [3] as a knowledge basis to explain how
Bitcoin works and should be consulted for deeper understanding. The main point of the
section is to introduce public permissionless ledgers and their features. ANTONOPOU-
LOS describes Bitcoin as

a collection of concepts and technologies that form the basis of a digital
money ecosystem. Units of currency called bitcoins are used to store and
transmit value among participants in the bitcoin network. Bitcoin users
communicate with each other using the bitcoin protocol primarily via the
Internet, although other transport networks can also be used. The bitcoin
protocol stack, available as open-source software, can be run on a wide
range of computing devices, including laptops and smartphones, making the
technology easily accessible [3]

Bitcoin is the most commonly used example for public permissionless ledgers because
the field emerged starting with the publication Bitcoin: A Peer-to-Peer Electronic Cash
System [24]. Furthermore, Bitcoin implements all common features of a permission-
less ledger. More specifically, Bitcoin is a Blockchain as it utilizes blocks to bundle
transactions and uses a Proof-Of-Work algorithm.

In this section, Bitcoin is the name of the permissionless ledger that is explained, and
bitcoins refer to the Cryptocurrency that can be used for payments.

Bitcoin has four main features: Identity Management, Cryptocurrency Storing, Cryptocur-
rency Transfer and Minting Cryptocurrency. These four features are shared among all
Cryptocurrencies. The following chapters will also break down its technologies in their
core features and take a closer look at the features themselves and not the product they
are bundled as.

In the Bitcoin Blockchain Network, all participants are unknown by default, and the
participants have a strong distrust of all other participants. Bitcoin uses asymmetric key
pairs for Identity Management. The general functionality of a key pair is the same as
for an RSA key pair. There are a public-key and a private key, which are derived from
the public-key. In bitcoin, the public-key is used as a hash as public address - the bitcoin
address - where other participants of the network can send bitcoin to. The private key
is used to identify the owner of the bitcoins and can be compared to something (less
complex) like a pin code. All key pairs together owned by a participant are bundled in
his wallet.

To receive bitcoins in the Bitcoin Blockchain Network, a participant can either try
to solve a mining puzzle to receive the mining reward or get a transfer from another
participant. Through mining, new Blocks are created for the Bitcoin Blockchain. It can
be compared to the central bank introducing new money to the system. To establish

9

2. Fundamentals

trust, Bitcoin uses mining, ensuring that the network only accepts transactions if enough
computational power is devoted to the blocks containing them. This concept is more
commonly known as Proof-Of-Work - the computational power is the work - and can be
categorized under Minting Cryptocurrency.

Commonly, monetary assets such as Euros or Dollars are stored in bank accounts.
Each bank account has an owner and address to transfer to it. In Europe, IBAN is used
as a uniquely identifiable address. Ownership in Bitcoin, however, is handled via the
before described Identity Management. Before we can understand how bitcoins are
actually stored, we need to look at how transactions work in Bitcoin. When bitcoins are
mined, the miner receives bitcoins in the form of an unspent transaction output (UTXO).
The miner is then allowed to spend this UTXO, meaning that he could now create a
transaction to send bitcoins to participants of the network. For example, he can send
half of this UTXO to Bob and half of it to Alice. Now two UTXO exist that Bob and Alice
can spend. In Bitcoin, the balance available on a wallet is the sum of all UTXOs that
can be spent using the private key, which is in the collection of a network participant’s
wallet. Bitcoin, therefore, uses a UTXO pattern for Cryptocurrency storing.

Bitcoins can be transferred between participants in the Bitcoin Network. To send
bitcoins, the sender needs to draft a transaction containing a reference to a UTXO
owned by the sender. This transaction then needs to be signed by the sender with
its private key, creating the signature. The whole transaction is then verified by the
network, which checks if the signature matches the input values. Bitcoin also offers
the possibility to use multiple signatures for a transaction. For example, a participant
can define that at least two out of three signatures are required to spend the bitcoins.
Summarizing, Bitcoin offers the possibility of sending bitcoins using a single signature
and multiple signatures. Both features can be combined under the more general category
Cryptocurrency transfer.

This section has explained Bitcoin’s core features and showed that breaking down
Bitcoin in its core features is very much possible. The following subsection will do the
same with private ledgers on the example of Hyperledger Fabric.

2.1.2. Private Ledgers on the Example of Hyperledger Fabric

Hyperledger Fabric is a platform for distributed private permissioned ledger applications
that are supported by its modular architecture. Furthermore, Hyperledger Fabric offers
a high degree of reliability, flexibility, and scalability. It is one of the most well-known
platforms for this ledger type and receives continuous updates and security patches,
and general support from developers. Fabric supports modular consensus protocols
and chain code. The Hyperledger Fabric platform is part of the Hyperledger ecosystem
managed by the Linux Foundation and is supported by many well-known industry
partners such as Accenture, Airbus, IBM, Daimler, and J.P.Morgan [13][2].

In a private permissioned ledger, all participants are known and have to register
to participate in the network. However, there is still a general distrust between the
participants.

10

2.1. Distributed Ledger Technologies

The features of Hyperledger Fabric can be broken down in five categories: Identity
Management, Information Broadcasting, Unique Asset Transfer, Unique Asset Management
and Code Execution on the Blockchain.

Identity Management in Fabric is managed by the Membership Service Provider
(MSP). The MSP provides a digital identity for every actor of the network in the form
of a X.509 digital certificate. Each actor has its own unique identity with its own exact
permissions over resources and access to information in the blockchain network [16].

Another feature of Fabric is Information Broadcasting which is implemented through
Events and Event Listeners. A short example of how this can be used is the following:
A vendor (vendor1) is in a network with other vendors and has 1000 Items replicated
on the chain. The vendor now changes the price of one of the items. Another vendor
(vendor2) waited for the price of the item to drop to buy it. So vendor1 emits a price
change event, and vendor2 gets the event because he has set an event listener on this
change [16].

To replicate an item on the network, the network needs to be capable of representing
assets. Fabric is capable of Unique Asset Management meaning that any item can be
represented and managed in Fabric. For example, a diamond can be uniquely described
with the properties clarity, karat, weight, size, and serial. All these properties get written
into an object and then stored on the ledger. Additionally, the object’s owner can be
stored using the owner’s MSP Id to re-create ownership on the chain [16].

Furthermore, Fabric supports Unique Asset Transfering. Meaning that the ownership
of any asset can be changed at any time - or - the ownership of an item can be changed
automatically following rules set and agreed on by the parties beforehand.

To change the ownership of an item, a chain code is required. Chaincode is basically
a program that runs on-chain and whose source code is available to all parties to
look at. For example, chain code can be set up to exchange X of item A for Y of
item B. The advantage of chain code is that no intermediary is needed to supervise a
contract between two parties. In simple terms, all parties of the permissioned distributed
ledger execute the same transaction, and only if enough come to the same result, it is
written to the ledger. Speaking more generally, this is known as Code Execution on the
Blockchain.

2.1.3. Comparison between public and private Ledgers

In the two subsections before, public and private ledgers were introduced on the example
of Bitcoin and Fabric. In this section, this work looks at their similarities and differences.

Before this work goes into the comparison, it is important to note that this section
looks at public and private ledgers’ typical implementation. In theory, it is possible that
a private ledger implements a Proof-Of-Work approach for creating new blocks in the
Blockchain or that a public ledger does not implement a mining reward for creating
blocks. However, speaking in practical terms, this has very little use and is not used in
any use-case this work has looked at.

The incentive for joining a distributed network is always monetary gain. This gain can

11

2. Fundamentals

be achieved by simplifying an existing workflow or direct in the form of Cryptocurrency.
Public Ledgers commonly offer compensation in the form of Cryptocurrency, whereas
private Ledgers improve workflows between participants.

Most public ledger implementations use the Proof-Of-Work consensus algorithms
such as Bitcoin, Litecoin, and Ethereum. Whereas private ledgers mostly use consensus
algorithms that do not require a massive amount of hashing power. Examples of consen-
sus algorithms used in private ledgers are Crash Fault Tolerance (CFT) in Hyperledger
Fabric or Proof-Of-Authority in Hyperledger BESU.

Generally speaking, public ledgers implement Cryptocurrency features such as storing
and transfer. On the other hand, private ledgers rarely implement Cryptocurrency
features by default and concentrate more on Asset features such as management and
transfer and code execution on the Blockchain.

2.2. Business Applications

In this work, we propose three categories to divide distributed ledger applications in.
With this categorization, we justify the focus in the case-studies on one of the categories
instead of having a more broad selection of case-studies.

• Cryptocurrencies are distributed ledger applications that serve the main pur-
pose of creating a digital currency with most of the prominent Cryptocurrencies
all implementing Cryptocurrency Storing, Cryptocurrency transfer and Minting
Cryptocurrency. Examples for Cryptocurrencies that fit this description are Bit-
coin5 and Tether6. The popularity of the Cryptocurrencies was assessed using their
marketcap7. Cryptocurrencies are almost always Blockchains in their core. Fur-
thermore, DeFi Pulse8 categorizes so-called decentralized finance projects (DeFi)
into five categories. Following, each category is named, and the top project for
each category is named and briefly described using the project description on
DeFi Pulse and the respective website of the project. The top project is assessed
by marketcap as of 12.09.2020 – 16:47. These categories are listed because of each
projects unique feature in addition to the base features mentioned before. In
general, the specific projects are not important, but their ideas are.

– Lending: Aave9 allows for decentralized lending and borrowing. Aave offers
flash loans: this means that borrowing and repayment must occur in the same
transaction. [27]

– DEXES: Curve Finance10 is a decentralized exchange (DEX) for extremely

5https://bitcoin.org/de/
6https://tether.to/
7https://coinmarketcap.com/
8https://defipulse.com/
9https://aave.com/

10https://www.curve.fi/

12

2.2. Business Applications

efficient stablecoin trading. Allow trading between stablecoins with low fees.
[28]

– Derivates: Synthetix11 allows for the creation of Synths: on-chain synthetic
assets that track the value of real-world goods. The platform supports Synths
representing fiat currencies, commodities (e.g. gold), and cryptoassets. [30]

– Payments: Flexa12 is an instant payments network for digital assets. It al-
lows users to spend selected Cryptocurrencies instantly without fees. The
underlying Flexcoin collateral token allows for the underlying digital asset
transaction to confirm and settle on chain. [29]

– Assets: yearn.finance13 "is a decentralized ecosystem of aggregators that utilize
lending services such as Aave, Compound, etc. to optimize token lending.
When tokens are deposited to yearn.finance they are converted to yTokens,
which are perodically rebalanced to choose the most profitable lending ser-
vices. Curve.fi is a prominent integrator of yTokens – creating and AMM
(Automated Market Maker) between yDAI, yUSDC, etc. that not only earns
the lending fees back but also the trading fees on Curve.fi. YFI, yearn.finance’s
governance token is distributed to users who provide liquidity with certain
yTokens" [31].

• DLT-based Business Problem Solvers are designed with solving real-world use-
cases in mind. Most DLT-based Business Problem Solvers either bring together lots
of actors that interact with each other, store assets or data on the ledger that many
actors need to access, or enable a digital process that required an intermediary to
work on the ledger without that intermediary. These DLT-based Business Problem
Solvers are almost always built on top of an existing distributed ledger platform
and therefore utilize DLT.

• Ecosystem Software has an architecture that improves existing Cryptocurrencies or
DLT-based Business Problem Solvers by, for example, improving the accessibility of
Wallets, automate some of their functions or combine different DLT-based Business
Problem Solvers to allow for Interoperability. The list for Ecosystem Software is
not finite as any piece of software that utilizes either Cryptocurrencies or DLT-
based Business Problem Solvers to create value for the customer is categorized as
Ecosystem Software.

In this work, we only look at the category DLT-based Business Problem Solvers as
those are most relevant for economic use-cases. Ecosystem Software in its core is not
DLT; therefore, it is not looked at yet. Cryptocurrencies have been deemed as out of
scope. Additionally, use-cases for Cryptocurrency are very similar.

11https://www.synthetix.io/
12https://app.flexa.network/
13https://yearn.finance/

13

3. Related Work

Since this thesis’s core is to analyze business applications integrating distributed ledger
technology, the presented related work primarily discusses Blockchain and DLT use-
cases and classification; However, since the final goal of this research is to find generally
applicable pattern for DLT, some related work, that already achieved universal patterns
for DLT is also included.

3.1. A systematic literature review of blockchain-based
applications: Current status, classification and open issues

CASINO [8] performs a systematic literature review on blockchain-based applications.
In the first table, he describes the main characteristics and classifies Blockchain networks.
Originally, he included the Blockchain category "Federated", but it is not presented as
this category is not part of this thesis. The presented table includes the two Blockchain
categories discussed in the previous chapters of this work: "Public" and "Private".

Table 3.1.: Classification and main characteristics of blockchain networks [8]

Furthermore, CASINO [8] depicts a mind-map of different types of Blockchain-
Applications A.1 (appendix). The primary categories are privacy and security, business
and industry, data management, financial, integrity verification, governance, the internet
of things, health, and education. These categories will be used to classify the use-cases
presented later in this work.

Moreover, CASINO [8] gives an analysis of attributes and prerequisites of Blockchain

15

3. Related Work

versus traditional databases A.1 (appendix). He compares the Architectures Permission-
less, Permissioned, and Database. The most important takeaway is that Permissionless
Blockchain architectures offer reduced privacy but higher latency and transaction speed,
and better Scalability, compared to Permissionless systems. Database neither offers trust
nor transparency, security, privacy, or consensus but is better in scalability and latency,
and transaction speed.

3.2. An Overview of Blockchain Technology: Architecture,
Consensus, and Future Trends

ZHENG [39] presents a comparison similar to 3.1 and A.1. Representing Public, Private,
and Consortium Blockchains with overall similar results.

Table 3.2.: Comparisons among public blockchain, consortium blockchain and private
blockchain [39]

3.3. A Pattern Collection for Blockchain-based Applications

While CASINO and ZHENG performed a more general review of Distributed Ledger
Systems, XU [38] presents pattern on a more technical and feature heavy basis. He
presents four categories, each with its own pattern: Interactions with external world
patterns, Data Management, Security, and Structural Patterns of Contract.

XU’s work is interesting for this thesis since all patterns require a specific feature set
of the Blockchain so that they can work. In this thesis, we present a feature catalog that
is intended to become a pattern catalog ultimately, and the work of XU is somewhere
in-between those two.

He presents the Oracle, Reverse Oracle, and Legal and smart contract pair pattern for
the Interactions with external world patterns. Where the Oracle pattern brings external
data into the Blockchain system, and the Reverse Oracle feeds external systems with
Blockchain data. The Legal and smart contract pair connects a Smart Contract to a legal
contract.

Within the Data Management Category, four patterns are presented: Encrypting
on-chain data where the data on the blockchain is encrypted, Tokenisation that uses
tokens to represent assets on the Blockchain, Off-chain data storage that utilizes the

16

3.3. A Pattern Collection for Blockchain-based Applications

hashes of files to store the file on an external database and the hash on the blockchain
to prevent bloating of the chain while maintaining immutability and lastly the State
channel pattern which utilizes side-chains to process small transactions and ultimately
settles them in a condensed transaction on the main chain.

Three patterns are explained in the Security category: Multiple authorizations, Off-
chain secret enabled dynamic authorization and X-confirmation. The first is basically
a Multi-Signature send in which at least X out of Y participants have to authorize a
transaction; the second uses a hash that is created off-chain to binding authority for a
transaction dynamically. The last pattern is about waiting for enough confirmations
until a transaction output can be used repeatedly until the transaction is viewed as
confirmed by the receiving system.

The last category that Xu presents is the Structural Patterns of Contracts category. In
this category, he presents five patterns:

1. The Contract registry, which looks up the address of the latest version of the smart
contract on a contract registry by name.

2. The Embedded permission pattern is used to restrict the access to certain functions
defined in the smart contract.

3. A Data contract defines that the data normally stored in the same contract is stored
differently.

4. The Factory contract represents an on-chain template contract used as a factory to
generate contract instances from itself.

5. Incentive execution rewards the caller of a contract function.

17

4. Feature Summaries

In this chapter, a feature summary for all functional and non-functional features identi-
fied by this work is given. This is designed for DLT newcomers and junior developers
that want to grasp the possibilities of features that could be implemented in their com-
panies new DLT project or DLT platform. Even though functional and non-functional
features go hand in hand, they are separated in this chapter. When functional features
are important for implementing non-functional features, the differences of the imple-
mentations and their consequences are shown so that developers can make an educated
choice regarding functional features looking at non-functional features.

4.1. Functional Features

In this section, all functional features found in DLT projects are categorized into twelve
main categories. Each category contains its responding features with a description of it.
Additionally, a brief description is given for every category, and a common use-case is
described. The catalog was verified with industry experts named in the next chapter as
part of their respective use-case studies.

4.1.1. Identity Management

Identity Management refers to a framework of policies and technologies for ensuring
that only authorized individuals can access the associated resources in an organization
[23].

Identity Management is the most important feature of any DLT system. When a
participant of the network wants to take action in it, e.g., transfer Cryptocurrency,
create an asset, etc., the participant needs to be verifiable to, for example, check if
the participant has enough Cryptocurrency to send if he has the correct permissions
to create an asset, etc. In a DLT system, members do not participate with their real
identity, email address, or contact details. Cryptographic algorithms and keys identify
participants. The most common ones are explained in the subsections.

Asymmetric Cryptography

In most Cryptocurrencies such as Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), asym-
metric cryptography is used for identity management. The general functionality of a
key pair is the same as for an RSA key pair. There is a public-key and a private-key,
which is derived from the public-key. The private key is used to identify the identity

19

4. Feature Summaries

owner and can be compared to something (less complex) like a pin code. In Bitcoin, for
example, the hashed public-key is used as the address participants can send bitcoin to,
and the private key is used to sign transactions to confirm their validity.

Certificate based Authentication

Certificate-based Authentication encapsulates a digital identity for every actor in the
network that can consume services with an X.509 digital certificate. The main difference
between certificate-based authentication and asymmetric keys is that certificates allow
defining exact permissions over resources and access to information that actors have
in the network. Additionally, certificates may embed principals like groupID, giving
the actors access to an organization’s resources and their respective permissions. The
certificates, however, must be signed by a trusted authority. Outside of the Blockchain
sector, this would be the Root-Certificate-Authorities. The specific example of Hyper-
ledger Fabric implements this trusted authority using a membership service provider
(MSRP) which defines the rules that govern valid identities for organizations [17].

Self-Sovereign Identities (SSI)

Self-Sovereign Identities try to solve the issue that nowadays, there are an increasing
amount of digital identities that are associated with the workplace, personal life, and
professional activities. Self-Sovereign Identities give the owner of an identity full control
over it, which strengthens data-privacy. A Blockchain-based system enables users to
shift their sensitive data from servers of third parties to a distributed ledger. In a
Blockchain-based System designed for distributed identity management, a user can act
as a node in the network and store its own identity on the ledger. This can minimize
the risk of, for example, user identity abuse [23]. Three prominent Blockchain-based
identity management systems are Sovrin, uPort and ShoCard [23].

4.1.2. Unique Asset Management

Unique Asset Management describes the creation and storage of uniquely identifiable
objects on the ledger. Examples of such assets are ERC721 Tokens (Non-Fungible Tokens)
on the Ethereum Blockchain that are used to describe, for example, physical property
such as houses, unique artwork, virtual collectibles such as unique pictures of kittens1,
collectible cards or represent "Negative value" assets such as loans or burdens [36].
Another example of Assets are objects on Hyperledger Fabric, which are represented
with a key and a set of key-value pairs where arbitrary data can be created, and stored
[18]. Special characteristics of this feature are Digital Twins and Ownership.

1https://www.cryptokitties.co/

20

4.1. Functional Features

Digital Twin

A Digital Twin describes an - at best - exact representation of a physical item in a digital
form [35]. The goal of a Digital Twin on the Ledger is to create a secure and permanent
record of an asset’s characteristics. For example, this can be used to describe a unique
painting on the Ledger, and when the ownership of the physical painting changes, the
ownership of the digital painting changes too.

Matching Unique Assets with Digital Identities

Representing ownership of a unique asset can be done by connecting digital identities
such as asymmetric key pairs, certificates, or SSI with a unique asset. To link the
digital identity, a reference to it is written into a unique asset. Using asymmetric key
pairs, either the public-key or the hashed public-key is written into the unique asset.
Certificates allow for more fine control over ownership. For example, a unique asset can
be assigned to a single actor or to an organization where every actor in the organization
has control over it.

4.1.3. Unique Asset Transfer

The easiest way of transferring a unique asset is to change the owner by, for example,
issuing a transaction or changing the properties of the unique asset through a smart
contract/chain code interaction. However, an asset can also be exchanged against other
assets or Cryptocurrency. Code Execution on the Blockchain makes trades with rules,
but without intermediaries, possible.

4.1.4. Code Execution on the Blockchain

Code Execution on the Blockchain describes the execution of transactions without
intermediary on the chain using smart contracts. Depending on the used software - in
this example, Hyperledger -, smart contracts may also be called chain code [16]. The
idea of smart contracts was formulated by Nick Szabo [34] way before the publication of
the Bitcoin Whitepaper by Satoshi Nakamoto. In Szabo’s original definition, he describes
smart contracts "as a computerized transaction protocol that executes the terms of a
contract". He also defines their general design objectives "to satisfy common contractual
conditions [...], minimize exceptions both malicious and accidental, and minimize the
need for trusted intermediaries."

In the case of smart contracts on the Blockchain, the goal is not only to minimize the
need for trusted intermediaries but eliminate it. The following two subsections describe
specific smart contract and chain code implementations on Hyperledger Fabric and
Ethereum.

21

4. Feature Summaries

Execute-Order-Validate Architecture Pattern

In Hyperledger, the state of the Blockchain is maintained by a versioned key-value store.
Each entry in this store is a tuple (key, version, value) [33]. The execute-order-validate
architecture represents a way of modifying the Blockchain state and is divided into three
execution steps: Execution, Ordering, and Validation.

Execution: a client proposes a transaction consisting of interactions with smart
contracts to endorsing peers selected by an endorsement policy. The endorsing peers
then all execute the transaction simulation in parallel and send the result, which contains
the readset (all keys read by the simulation) and writeset (all keys modified with their
new values), together with their endorsement signature back to the proposing client
[33].

Ordering: here, transactions are ordered in a total order to create a block. There can
be many different orderers from different organizations, but they have to follow the
same consensus protocol. A block is created when the number of pending transactions
reaches a certain threshold, or a timeout is triggered [33].

Validation: validation happens when a block has been received from the ordering
peers. The receiving client then sequentially validates each transaction based on the
corresponding endorsement policy and transaction serializability, which is tested by
inspecting the staleness of its readset. In the event that the transaction does not match
the endorsement policy or the transaction serializability, it is marked as invalid [33].

EVM Architecture Pattern

The full computational state of the Ethereum Virtual Machine (EVM) can be defined
by the tuple (block_state, transaction, message, code, memory, stack, pc, gas). Where
block_state is the global state of all accounts and includes balances and storage [6].

Code can be executed in the EVM using Ethereum virtual machine code. The code
consists of a series of operations, with each operation having its own program counter.
Code execution is an infinite loop that executes these operations at the order of the
program counter until a STOP or RETURN instruction is reached. The smart contract
code can only access the value, sender, and data of the incoming message and the block
header data [6].

4.1.5. Information Broadcasting

Information Broadcasting over the Blockchain describes the usage of the underlying
peer-to-peer network of connected nodes to send information. The information can, for
example, be a raw transaction that is propagated to the network and then - if valid -
incorporated into the Blockchain, or it can be an arbitrary message directed at a specific
node in the network. Another possible piece of information could be the broadcast of a
new node joining the network with the request to also open a connection to the joining
node. Lastly, events such as contract modifications can be broadcasted and listened to
by event listeners.

22

4.1. Functional Features

Message broadcasting over the Network

Message broadcasting over the Network is used for building second-layer solutions
such as messengers on top of DLT applications. A second layer solution uses existing
infrastructure to create a new use-case on top of it. In the specific example of a messenger
on top of DLT applications, a message that is encrypted with the receiver’s public key is
broadcasted over the network, which can only be read by the receiver. The downside
of this approach is that everyone has to relay every message sent in the network. This
approach’s upside is the use of existing infrastructure, complete anonymity through
peer-to-peer use, and the security of the existing public-private key encryption scheme.
An example for an implementation is TrezarMessage2.

Event Emits and Event Listeners

Event listeners on the Blockchain work the same way as any other event listeners.
An event listener is bound to a specific event and triggers once this event is emitted.
Following, the specific implementation of Hyperledger Fabric 1.4 is presented for
contract events:
With this listener, the block number, transaction id and status is printed every time the

/**

* @param {String} listenerName the name of the event listener

* @param {String} eventName the name of the event being listened to

* @param {Function} callback the callback function with signature

(error, event, blockNumber, transactionId, status)

* @param {module:fabric-network.Network~EventListenerOptions} options

**/

const listener = await contract.

addContractListener(

'my-contract-listener',

'sale',

(err, event, blockNumber, transactionId, status) => {

if (err) {

console.error(err);

return;

}

console.log(`Block Number: ${blockNumber} Transaction ID:

${transactionId} Status: ${status}`);

})

Figure 4.1.: Registering a contract listener [21]

2https://github.com/TrezarCoin/TrezarCoin/blob/master/src/qt/trezarmessage.cpp

23

4. Feature Summaries

event is emitted.

4.1.6. Storing verifiable Data Off-Chain: Hash Anchoring Pattern

In a distributed ledger system, it is best practice to store as little information as on-chain
since all participants of the system have to verify and synchronize all content that is
stored on-chain to ensure full replication and verifiability. Additionally, Blockchains
like Ethereum and Bitcoin limit the amount of data that can be put on the chain in one
transaction.

XU [38] describes the forces of this problem:

• Scalability: limited, full replication and immutability.

• Cost: embedding data into transactions is cheapest, storing data in a contract is
more efficient but less flexible. Transaction costs vary between Blockchains.

• Size: Block sizes are limited.

Rather than storing data directly on the chain, the distributed ledger system only
stores an immutable reference in the form of a hash.

However, this approach is mostly only useful for private permissioned ledgers as a
complementary database is needed to store the additional data. This database would
also be distributed in the best case—an example for this is IPFS3.

Figure 4.2.: Off-chain Data Storage Pattern [38]

This behavior is depicted in 4.2. In addition to the reference, metadata about the data
can be stored on the distributed ledger system to, for example, make it easier to find or
index it.

4.1.7. Storing Data On-Chain and its Usage

When the hash anchoring approach is not applicable, for example, in public permission-
less Blockchains, it has to be stored on-chain. This category shows the most effective
ways of doing so.

3https://ipfs.io/

24

4.1. Functional Features

Encrypting Data on-chain Pattern

Encrypting data on the chain is necessary when the information written to the chain
has to stay private, for example, the trade secrets of a company. XU [38] suggests using
symmetric or on the data.

XU [38] describes the forces to balance this problem as follows:

• Transparency: every transaction on the blockchain is visible for every participant on
the internet or even every user of the internet using a Blockexporer for common
chains such as a Bitcoin explorer4 5.

• Lack of confidentiality: since all data is publicly visible, no sensitive data should be
stored on the Blockchain in plain text.

Furthermore, he describes the drawbacks of this approach, with the main concern being
that even though the data is encrypted, it will be on the ledger forever, and there may
come a time where the encryption can be broken.

Another drawback of this approach is that the data will not be searchable.

Oracles Pattern

The EVM as described in 4.1.4 is a closed execution environment that can only access
data of the system. This is the case with all systems that do code execution on the
Blockchain. This has the background that every transaction must always yield the same
result at any point in time given the Blockchain’s same state, meaning that there can
never be a dependency on outside sources that could change their content rendering the
Blockchain unverifiable.

Oracles solve this problem by introducing outside resources to the Blockchain through,
for example, the invocation of a smart contract or adding the data in transactions.

Xu [38] describes the drawbacks of this approach being trust and validity. Participants
of the network have to trust the oracle only to insert valid data into the system.

Reverse Oracles Pattern

As opposed to oracles, Reverse oracles are used to integrate data of the Ledger into
external systems. The reverse oracle should be designed to be minimally intrusive to
the external system, for example, with a REST-API Endpoint that is universal. The base
functionality of a reverse oracle is depicted in 4.3.

XU [38] suggests Connectivity and Simplicity as forces that need to be balanced. On the
one hand, the ledger should be integrated into an existing system the best way possible,
and on the other hand, it should introduce only minimal changes to the existing external
system.

4https://www.blockchain.com/de/explorer
5https://btc.com/

25

4. Feature Summaries

Figure 4.3.: Reverse Oracle [38]

Findable Data

On large and small distributed ledger systems, it can be necessary to find specific data on
the ledger like assets. Let’s look at a business example: Company A stores products on
the blockchain with specific properties like category, name, and location. One workflow
of the company is to get a list of all assets currently in warehouse XY.

To achieve functionality like this, we have to look at the different chains. In Blockchains
that do not feature a world state like Hyperledger does6, the whole blockchain needs to
be iterated in order to find the matching items, which is very tedious. Here it is useful
to build an index in each client that can query the blockchain where the current state is
represented as a snapshot, which can then be queried. Each client should calculate the
current state based on the Blockchain data to maintain trust.

In extensive Blockchain-based systems like the Ethereum Mainnet, an indexing ap-
proach might be infeasible. Here a registry service where any asset or contract that
needs to be findable is registered with the identifiers needed for querying.

An example for such a registry is thegraph7. It is an indexing protocol for querying
networks like Ethereum and IPFS with open APIs called subgraphs. Thegraph also aims
to solve the issue of encrypted data (4.1.7) on the Blockchain not being findable but has
solved it as of 16.12.2020.

4.1.8. Interoperability

Interoperability is concerned with the interaction between two or more ledgers. The
most prominent example for a framework that enables interoperability between ledgers
is Polkadot8. For example, interoperability can be used to tackle scalability issues, verify

6https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger/ledger.html
7https://thegraph.com/
8https://polkadot.network/

26

4.1. Functional Features

information across networks, or exchange information or assets between distributed
ledgers.

Atomic Cross-Chain Swaps

“An atomic cross-chain swap is a distributed coordination task where multiple parties
exchange assets across multiple blockchains, for example, trading bitcoin for ether” [15]

HERLIHY [15] lists the following guarantees for the atomic swap protocol:

1. The swap only takes place if all parties agree

2. No party ends up worse off when one coalition deviates from the protocol

3. There is no incentive for the party to deviate from the protocol

HERLIHY [15] also gives a practical example for the use of atomic cross-chain swaps:
Three participants in a transaction, namely Carol, Alice, and Bob. Alice wants to buy
an asset from Carol, but Carol only accepts Cryptocurrency that Alice does not have.
However, Bob can exchange the Cryptocurrency that Alice has in the Cryptocurrency
that Carol wants. The transaction, therefore, goes as follows: Alice transfers her
Cryptocurrency to Bob, Bob transfers his Cryptocurrency to Carol, and Carol transfers
the asset to Alice. When any party deviates from the intended behavior, refunds are
issued, and no party is worse of than before. For the technical implementation of this
case, HERLIHY [15] should be consulted, as it is too complex for this thesis.

Flash swaps, Liquidity pools

ADAMS [1] introduces flash swaps as a feature for traders that allows them to receive
assets and use them somewhere else before paying for them later in the same atomic
transaction. The traders pay a minimal fee for this.

For enabling flash swaps, a liquidity pool is required. A liquidity pool is a smart
contract wallet in which participants lock their funds for a specific period of time to
provide liquidity for the smart contract application. The participants get rewarded for
locking their funds with interest either in the token they locked or in a token issued by
the liquidity pool provider. The rewards are paid for by the trader fees.

The most prominent example for this is Uniswap v29.

4.1.9. Governance

All distributed ledger technologies are first and foremost distributed. Governance tries to
enable participants of a network to not only have distributed consensus for verifying data
in the distributed ledger system but also in the decision making of further developments
that upgrade the network.

9https://uniswap.org/

27

4. Feature Summaries

This is not as important in private permissioned system as there most decisions are
made outside of the system in a more traditional environment like conferences between
the participating companies or parties.

However, in a public permissionless system where every participant wants to remain
anonymous, on-chain governance tools are essential for further development.

Superblocks

Superblocks are blocks in a Blockchain containing a large number of coins or tokens
that are mined periodically. This Cryptocurrency is used for funding projects that help
the Blockchain to improve its technology, increase awareness or help the community in
general.

Such a system is built of three components: Proposals, Votes, and Superblocks.
Users who are skilled in their respective traits and want to improve the Blockchain

or its ecosystem can open a proposal on the Blockchain where they describe what they
want to develop or do and put this proposal on the Blockchain. PIVX10 also offers a
forum where proposals are pulled from the Blockchain and can be discussed.

Each participant of the network can then vote on the proposals. To be eligible for
voting, criteria such as "node has to be active for at least one month", "node has to own
at least X Cryptocurrency", or "Y Cryptocurrency has to be locked with timelocks" can
be defined.

The voting is purely done on the Blockchain. PIVX implementation of the voting is as
follows mnbudgetvote many <hash> yes to vote in favour, mnbudgetvote many <hash> no to
vote against.

Depending on the yes and no votes, the next Superblock pays out to the proposal cre-
ators sorting by in favor descending until no more Cryptocurrency is in the Superblock.

The specific implementation of PIVX is PIVXCentral11 where all current, archived, and
coming proposals are listed. However, once the provider of PIVXCentral has no financial
interest in running the page anymore, all additional information to the proposals are
permanently deleted. Only the raw information that is actually stored on the Blockchain
will last until the last participant of the network shuts down its node and deletes the
Blockchain data.

Signalling and Voting

Contradictory to Superblocks, signaling and voting is not about funding projects but
rather accepting modifications to the Blockchain, which change the consensus mecha-
nism and cause a hard fork or a soft fork. Miners then signal their preference.

In Bitcoin for example, each miner can signal support for a fork by setting a bit in
the version field of the block that he mined. The specification of BIP912 defines that

10https://pivx.org/
11https://pivxcentral.org
12https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki

28

4.1. Functional Features

each soft fork needs to define a name, bit, starttime and timeout. Where the bit has to be
chosen from the set {0,1,2,...,28}. Once enough miners signal for their preferred fork,
it transitions to state LOCKED_IN and is activated on the next block that satisfies the
condition block.height % 2016 == 0.

This, however, is a specification that should be used to keep the network stable.
However, everyone with enough hashing power to create a new block with a different
consensus mechanism can fork the Blockchain.

4.1.10. Cryptocurrency Minting

This subsection discusses how Cryptocurrency can be created. Five categories will
be described which each have the goal to create or destroy Cryptocurrency. Two of
them will introduce Cryptocurrency as a reward for validation and work done on
the Blockchain, while three merely describe how Cryptocurrency can be created or
destroyed.

Pre-Mined Cryptocurrency

Pre-Mined Cryptocurrency defines a way of obtaining Cryptocurrency before any consen-
sus mechanism has been executed. On creating a Blockchain, the genesis block assigns
the desired amount of Cryptocurrency to an address controlled by the Blockchain’s
creator. When acting in good faith, the development team behind the Blockchain will
use the pre-mined coins to pay for development efforts.

Mining Pattern: Proof-Of-Work

Using SHA256, a hexadecimal hash from an arbitrary value can be created.
ANTONOPOULOS [3] gives the simple example of "I am Satoshi Nakamoto" hashing to

5d7c7ba21cbbcd75d14800b100252d5b428e5b1213d27c385bc141ca6b47989e
using the SHA256 algorithm.

The Proof-Of-Work algorithm rewards miners for finding a block with a block header
of less value than a set amount. The minimal difficulty in Bitcoin starts with 1 and is
currently at 18670168558399,59 (Block height 661782) with the block hash of that height
being
000000000000000000090f2d2575fe8c7b97b266ec2b9721f3d340f1ad034e20

This difficulty can be translated to the bits 0x170f1372 and the target value of less than
resulting in the target value of less than
000000000000000000170f137200000000000000000000000000000000000000 when compared
to the hash of the block at that height, it can be seen that it is less than the target value.
The conversion was done using the formula nbits ∗ 256(0x18−3) so for our specific block
height 0x170 f 1372 ∗ 256(0x18−3).

The reward that miners received is called the mining reward. Finding a correct block
allows miners to issue a so-called coinbase transaction to themselves with the of the

29

4. Feature Summaries

network agreed amount in it. The correctness of the block is determined by the correct
block structure as defined in the protocol.

The Bitcoin network aims to create one block every ten minutes for the network. To
achieve this goal, the difficulty for the Proof-Of-Work algorithm is adjusted every 2016th
block. The difficulty directly corresponds to the hash-value that the block header has to
be smaller than.

The main goal of Proof-Of-Work, however, is that the network is kept stable and that
there is always a longest chain13 and not many chains with the same height that result
in orphaned blocks.

The Proof-Of-Work algorithm was introduced by Satoshi Nakamoto in the 2008 Bitcoin
white paper [24].

Staking Pattern: Proof-Of-Stake

Proof-Of-Stake offers an alternative to the Proof-Of-Work algorithm, with its main
advantage being that it does not consume an excessive amount of energy.

In the Proof-Of-Stake algorithm, the user’s coins and the time they have not been
moved define how much staking power a user has. The calculation proposed by [22]
which took the concept of coindays from NAKAMOTO [24] is coins * days. When Alice
has 10 coins, and they have not been moved for 20 days, Alice has a staking power of
200 coindays. When Alice now moves the coins to Bob, the coindays are at 0 again.
KING [22] introduces the Proof-Of-Stake as follows:

The proof-of-stake in the new type of blocks is a special transaction called
coinstake (named after Bitcoin’s special transaction coinbase). In the coin-
stake transaction block owner pays himself thereby consuming his coin age
while gaining the privilege of generating a block for the network and mint-
ing for proof-of-stake. The first input of coinstake is called kernel and is
required to meet certain hash target protocol, thus making the generation
of proof-of-stake blocks a stochastic process similar to Proof-of-Work blocks.
However an important difference is that the hashing operation is done over
a limited search space (more specifically one hash per unspent wallet-output
per second) instead of an unlimited search space as in proof-of-work, thus
no significant consumption of energy is involved. [22]

Minting

Minting is mostly applied in Stablecoins such as Tether14 which are controlled by a
central authority. Stablecoins have the property that they are always worth the same.
For example, one USD-Tether (USDT) is always worth one US-Dollar (USD). The pattern
has two functions: First, the minting. Here the central authority can create an arbitrary

13longest chain refers to the chain with the most work done
14https://tether.to/

30

4.1. Functional Features

amount of Cryptocurrency to an arbitrary address. Second, the removal of coins from
the system.

In general, this pattern makes the most sense in a permissioned environment or in a
system where an authority has the power to force the system upon its users.

Elastic Supply

The idea of elastic supply is to connect the supply of a Cryptocurrency to a fiat cur-
rency. The connection triggers when a certain threshold of price change between the
Cryptocurrency and fiat currency pair happens and balances the supply accordingly.

Ampleforth15 is the first Blockchain to implement this concept. Ampleforth has
three states: Expansion, Contraction, and Equilibrium. When the price of one AMPL
(Cryptocurrency unit of Ampleforth), for example, raises by 10%, then the expansion
state is triggered where the amount of AMPL every participant owns increases by 10%
so instead of the price rising, the amount of AMPL in the participants wallets rises.
Contraction is triggered respectively when the price lowers. Equilibrium is the default
state when the price is stable.

4.1.11. Cryptocurrency Storing

This category is about storing Cryptocurrency. It shows different ways to programmat-
ically create ways to store the data needed to check the balance of a participant in a
Blockchain-based system.

UTXO Pattern

UTXO refers to unspent transaction output. UTXOs are indivisible chunks of Cryptocur-
rency that can be combined to create new transactions. Each UTXO can only be spent
fully [3]. The combination of all UTXOs in the wallet of a user is his balance. For better
understanding, an example is given in the following paragraph.

Alice has 50 bitcoin in a single UTXO and wants to send 20 bitcoin to Carol and 15
bitcoin to Bob. Alice now creates a transaction with a single input - her UTXO - and
three outputs for Carol, Bob, and her return. Alice now has a UTXO worth 15 bitcoin,
Bob one that allows him to spend 15 bitcoin, and Carol 20. Alice now wants to send
another 20 bitcoin to Carol. Alice has to combine her 15 bitcoin UTXO with another
input to create another two outputs. If Alice would only create one output for Carol
and none for herself, the miners would receive the remaining bitcoin. The thought
experiment is depicted in 4.4.

Summarising, the following statements about UTXOs can be made:

• UTXOs can only be spent fully

• One UTXO can create many other UTXOs in a transaction

15https://www.ampleforth.org/

31

4. Feature Summaries

Figure 4.4.: Example UTXO transfers

• Multiple UTXOs can be combined to create a single output

• Everything above the combined value of the input UTXOs minus the combined
outputs is given to the miner

Besides, the UTXO Pattern offers a much higher degree of privacy than the accounting
system since linking transactions to users is much easier than linking transactions to
UTXOs linked to a user.

Account Pattern

The Account Pattern takes a simpler approach to storing Cryptocurrency when compared
to the UTXO Pattern. Here, every user has an account, hence, the name for the pattern.
With every transaction, balance can be added or subtracted from the account given the
transaction’s nature.

Ethereum, for example, takes this approach to accounting. Every user has an account
that is created by generating a key-pair.

Hybrid Approaches

Hybrid approaches are used when the simple functionality of an Account Pattern is
needed for usability, but the underlying system is a UTXO-based Blockchain.

Beforehand, it is important to note that the Bitcoin-Core software deprecated its ac-
counting system, which implemented this hybrid approach in version 0.16.016 replacing
it with a less automatic system.

This chapter briefly describes the hybrid approach and then goes into details about
why this approach did not yield the results the Bitcoin-Core developers expected it to.

The hybrid approach builds a virtual layer on top of the Bitcoin-Wallet, summing
up all UTXOs to a single balance for every account to display it in the wallet. The
underlying system to create transactions remains the same. The only real difference
lies in the handling of the specific accounts inside a wallet. The Bitcoin-Wallet allows
users to create an arbitrary amount of named accounts inside a single wallet, enabling,

16https://bitcoincore.org/en/doc/0.16.0/rpc/wallet/getbalance/

32

4.1. Functional Features

for example, exchanges or other service providers the possibility to directly send and
receive from a single wallet using the account as a parameter.

However, especially the exchange wallets accumulate hundreds of thousands or even
millions of UTXOs. Since the layer on top of the Bitcoin-Wallet is only virtual and not
persistent, all UTXOs have to be iterated to fetch the balance of a single account or to
create a transaction resulting in extremely heavy executions of a single balance call.

This resulted in the change of the Bitcoin-Core RPC API to not allow this behavior
anymore and developers needing to create an external database when they want to
manage multiple accounts in a single wallet efficiently.

4.1.12. Cryptocurrency Transfer

This chapter goes into detail about how Cryptocurrency can be moved from one par-
ticipant of the network to another participant of the same network and which security
measures should be implemented by developers when they design systems accepting
Cryptocurrency.

Confirmation Pattern

The Confirmation Pattern is a security pattern that aims to improve the security of
systems accepting Cryptocurrency. Even though the Blockchain is immutable in theory,
there exists the possibility that a few blocks are replaced by a competing chain fork [38].

Figure 4.5.: Confirmation Pattern [38]

In figure 4.5 confirmations are depicted. After the transaction has been broadcast to
the network, it has 0-confirmations. Once it is included in a block, it has 1-confirmation.
Each following block adds another confirmation.

XU [38] names the two forces for this pattern. Chain fork and Frequency of chain fork.
Where Chain fork is the possibility of a chain fork and Frequency of chain fork the frequency
of forks. He also lists the major drawback as being Latency. When for example, a Bitcoin
transaction is issued and is included in the very next block, a single confirmation takes
10 minutes. When the application now has to wait for 6 confirmations, this security
pattern adds a latency of 60 minutes to the application.

Here, the forces and drawbacks should be balanced. When implementing this pattern,
it is important to know how frequent chain forks happen and to what extent they

33

4. Feature Summaries

happen. In Bitcoin, for example, the chain is very stable due to the high difficulty
needed to find new blocks using the Proof-Of-Work algorithm, and therefore a lower
number of confirmations for Bitcoin might be acceptable such as 1 to 3 confirmations.
In smaller networks, e.g., Bitcoin clones, 6 to 12 confirmations might be needed as the
work was done that is needed to publish a new longest chain could be afforded by a
single malicious actor.

Single Signature Send

The Single Signature Send represents the default way of sending Cryptocurrency. It
defines that users create a transaction that is syntactically and semantically in the bounds
of the consensus protocol and sign this transaction with their private key, using funds
that are only locked by a single signature requirement.

Multiple Signature Pattern

The Multiple Signature Pattern describes a way of sending Cryptocurrency which
requires at least M out of N signatures to create a valid transaction to spend funds and is
also known as the M-of-N scheme [3]. For example, two out of three possible signatures
are needed to spend funds.

An example of the need for this pattern is exchange wallets where millions or even
billions of USD worth of Cryptocurrencies are stored. Here, the signatures of multiple
high ranking employees of the exchange are required to send large amounts of Cryp-
tocurrency so that in the case that a single or multiple employees have their private keys
stolen, the funds are still secure.

A locking script in Bitcoin for setting up such as M-of-N multi-signature condition is:
M <Public Key 1> <Public Key 2> ... <Public Key N> N OP_CHECKMULTISIG [3], where
M is the corresponding amount of signatures needed to use the funds and N the total
amount of signatures in the lock.

4.2. Non-Functional Features

Non-Functional Features are as important as functional features, if not more important.
Functional features in DLT make systems compelling to solve DLT-based Business Prob-
lem Solverss. However, non-functional features make the system useable in production
through scalability, privacy, and security.

Therefore, this chapter summarises the forces that need to be balanced when designing
a distributed ledger system and describes the ups and downsides.

4.2.1. Scalability

Scalability in DLT is a double-edged sword with two main components: Keeping the size
of the Blockchain low, decentralization high, stability high, and executing transactions

34

4.2. Non-Functional Features

fast. The goal of every distributed ledger system is to prioritize the right attributes for
the right use-case. Therefore, a general recommendation can not be given, and every
developer that creates a new distributed ledger system has to make his own decisions.
The following points give examples of which adjusting screws can be used and describes
the benefits and drawbacks of each.

Stability, Decentralisation, and Size VS Transaction Speeds

The simplest way to increase the speed of a Blockchain-based system is to increase the
Blocktime. For example, Bitcoin is hard to justify for daily use because of the 10-minute
Blocktime combined with the relatively small Blocksize. Those two factors increase
the cost for each transaction. One could now reduce the Blocktime to 10 seconds and
increase the Blocksize by tenfold. This would result in Bitcoin being perfectly usable for
daily use and make it, in theory, the perfect payment solution. One could even decrease
the Blocktime even further down to one second to make the transactions even faster.

However, the downsides to this are predominantly. First, Bitcoin would see huge
inflation since the Block reward has not been lowered.

Second, the chain would produce lots of orphan blocks since the work needed to
create a block is significantly reduced, resulting in lots of miners finding the next block
simultaneously again, resulting in a volatile network.

Third, the Bitcoin Blockchain size would increase heavily since everyone can now
spam transactions to the chain and therefore bloat it. This results in a Blockchain
size that is no longer usable for the average user running a full-node. Consequently,
only a few large participants would still have their nodes running, resulting in a more
centralized network.

Summarizing, faster transaction speeds result in a more unstable, centralized network
with a more data-heavy ledger.

Sidechains

“A Network of Micropayment Channels Can Solve Scalability” [26] - Joseph Poon,
creator of the Bitcoin Lightning Network.

The Bitcoin Lightning Network is, as of today, the best example for a sidechain that
solves the scalability issues of a large distributed ledger.

The idea of the network is that a channel is created between two parties with a funding
transaction that locks the parties’ funds on the real Bitcoin Blockchain. After this, the
parties can make transactions to each other while the channel tracks the parties’ balance.
Once one party needs the funds on the real Bitcoin Blockchain, the channel is closed,
and one multi-send transaction is issued to the network to settle the balance of the
channels on-chain to the parties. For a deeper understanding, POON [26] should be
consulted.

The only downside to this approach is currently the immaturity of the software, which
does not always behave correctly from an administrator’s perspective. However, the

35

4. Feature Summaries

cryptographic functions have not been found to be incorrect yet, so that the lightning
network - which is still in beta - is in use in production for many large players in the
Blockchain space.

Popular implementations of the Lightning Network Protocol are c-lightning17 and
LND18. A more technical overview of the protocol and its implementations can be found
on the awesome-lightning-network repository on GitHub19.

4.2.2. Privacy

Generally speaking, one can divide privacy in DLT and Blockchain into the different
categories of user privacy and data privacy. Furthermore, those two have to be looked
at from the permissioned and permissionless side. Permissionless systems tend to value
user privacy higher than permissioned systems—Permissionless systems, on the other
hand, value data privacy less.

This observation is made from looking at the different features of common permission-
less and permissioned systems. For example, Bitcoin implements methods that make it
harder to track a user’s identity but none out of the box for user privacy. Hyperledger
Fabric implements private data collections and channels to make the ledger’s data
only available to the ones that should have access to it. However, this assumption is
not always correct as BUTERIN [7] presented privacy-preserving smart contracts that
encrypt data inside a smart contract for privacy back in 2016 on Ethereum, which is a
permissionless platform.

We conclude that user privacy on permissionless system is only more important
on systems whose main feature is Transferring and Storing Cryptocurrency. Whereas
in permissionless systems that implement Code Execution on the Blockchain, Asset
Management, Asset Transfer and Data Privacy is as important as, or more important as
User Privacy.

Different functionalities in DLT and Blockchain can be implemented to make user and
data privacy better. The ones we describe in this work are pseudo-anonymity, which
describes participants interacting on the network using pseudonyms, private ledgers
as described in subsection 2.1.2, which restrict access to a few selected participants,
encryption which was already explained in subsection 4.1.7 and Zero-Knowledge Proofs
which allow confirmation of a transaction without knowing its content. However, each
feature that adds privacy decreases either security, scalability or usability.

Pseudo-anonymity

Pseudo-anonymity is only relevant in permissionless system since all participants in
permissioned systems are known. In the section Identity management 4.1.1 possible
ways of identification were described. These ways always provide a cryptographic

17https://github.com/ElementsProject/lightning
18https://github.com/lightningnetwork/lnd
19https://github.com/bcongdon/awesome-lightning-network

36

4.2. Non-Functional Features

pseudonym for a real participant whose physical address and details are unknown.
However, if used carelessly, the traces of the cryptographic pseudonym can be tracked
back through looking up transactions, and assumptions can be made about the real
identity of a participant when he makes a transaction to a service where Know your
Customer (KYC) is required.

To combat the linking of a cryptographic identity with a real identity, we recommend
strictly disallow address re-use, meaning that each address the user has can only be used
for receiving and sending once. However, this is only possible in UTXO-based Ledgers
as described in 4.1.11. Account-based Ledgers have to solve this issue differently by, for
example, implementing a mixer by default. A mixer mixes coins of many different users
by consolidating the balances on a single address and splitting it again multiple times,
and then sending it to the users again in many transactions to different addresses.

Zero-Knowledge Proofs

Cryptographic proofs with strong privacy and efficiency properties are known as
zkSNARKs (zero-knowledge Succinct Non-interactive ARgument of Knowledge) and are,
for example, the core of the privacy-preserving Cryptocurrency Zcash [37]. zkSNARKS
allow participants of the network to broadcast encrypted transaction details that can be
proved without validators knowing the transaction’s plain text contents.

More formally, zkSNARKs allow a prover (e.g., a Zcash user making a
payment) to convince a verifier (e.g., any other Zcash user) of a statement of
the form "given a function F and input x, there is a secret w such that F(x,w)
= true". In the cryptocurrency example, w is the private payment details, x is
the encryption of the payment details, and F is a predicate that checks that x
is an encryption of w and w is a valid payment. [37]

This allows participants to interact in the Ledger privately. However, this comes at the
cost of a significant computational overhead on the prover side.

4.2.3. Security

Security in DLT has many aspects, such as guaranteed immutability, sufficiently dis-
tributed trust, attack resistance, and the correctness of implementing a protocol.

Since immutability is the core feature of a distributed ledger system, it must always
be guaranteed.

Sufficiently distributed trust requires many different and, in the best case, equally
computationally mighty nodes with higher block times, increasing the system’s security
and stability.

Attack resistance requires implementing the specific ledger to prevent all known
attacks, or at least, strong mitigations against them. Examples of known attacks are 51%,
Dos, Quantum, Double spending, Sybil, Eclipse, and Selfish mining. Since each attack is
a topic of itself, this work will not further discuss the single attacks.

37

4. Feature Summaries

The implementation’s correctness describes that the underlying code can not be
exploited for personal or financial gain and follows the underlying mathematical guide-
lines properly. The most prominent example of an incorrect implementation is the smart
contract of "The DAO" that had a flaw that allowed malicious parties to drain the ether
stored on the contract to gain more than 3.6 million ether20. This attack shows that
open-source is not a guarantee for the correctness of an implementation.

20https://www.coindesk.com/understanding-dao-hack-journalists

38

5. Case Studies

In this work, we present case studies that were created by interviewing industry experts.
The interviews were scheduled to take about 30 minutes and were conducted over video
chat. The questions used for the interview are split into five main categories: Meta
Information, Overview of the Project, Technology Choices, Questions to the Catalogue,
and Development Process. Each of the question categories is designed to gather a
specific set of information. The full questionnaire can be found in A.4 (appendix).

The first part Meta Information collects personal information about the interviewee
and his position, the company he works for, and his DLT background. The second
category is designed to get an overview of the specific DLT project the interviewee is
working on by asking for the problem the project is solving, the justification for DLT,
and the perceived value for the customer.

The third category asks for specific technology choices by asking for the selected
platform and the reasoning for choosing it and frameworks and design patterns used in
the project.

The fourth category is only in part important for the case studies as it asks questions
about the feature summary catalog. Here, the goal was to determine if the catalog
is complete from their perspective, if any feature is misplaced, which features of the
catalog are used in their project and if such a catalog would benefit their development
process and a general understanding of DLT on a technical level.

The last category is about the development process and gathers information about
the general development process, tools used to develop the project, and the deployment
process in place. In the following sections, eight structured use-case studies will
be presented, each using the same template to allow for a better comparison and
summarization in the next chapter.

5.1. IBO - Product Tracing

Meta Information

Interviewee Steven Pannell
Position Chief Technology Officer
Company IBO GmbH
Company Size Medium
Company founded 1991

39

5. Case Studies

The Project

Summary of the Project in one Sentence

Recording Quality-Documentation and making it available

Project State

Minimal viable product (Development)

Problem Statement

IBO is a manufacturer that creates parts for the aerospace industry and has a very
complex supply chain. In the supply chain, a quality document is issued for every step
in an item’s lifecycle. Every material or component needs a quality document for every
production and shipping step. The quality documents are important because materials
and components have to meet ISO standards and processes are regularly audited by
authorities, and customers want to verify materials and components.

Currently, these quality documents are only available in paper and are shipped with
the materials and components. However, the documents get lost a lot of the time,
and if the customer needs them, IBO has to find them and send them to the customer
again. This is a very time-consuming process as there are many quality documents.
Furthermore, the quality document is only included for the current step in the process
and has no history.

Since there are many parties involved in the supply chain of IBO and all of them have
different interests, it would not be possible for IBO to have a single database for all
quality documents since then IBO would have a business advantage over the suppliers
and their suppliers in the form of a knowledge advantage. That is why only an open
system can be used in this case. Additionally, the gathered data must be in a data
storage that can not be manipulated.

This project aims to create an easily adoptable cross-organizational documentation
platform for small- and medium-sized manufacturers and supplies to track the complete
supply chain, verify that correct quality documents exist and trace the origins and
components of a product.

How the Problem is solved

The main goal for IBO is to onboard every supplier in their supply chain on the new
quality document tracing platform. The team tries to achieve this by giving the suppliers
free access to the platform and tools to adopt it. The plan is that adopting the system is
seen as a free technology push for small to medium-sized suppliers.

Their system is split into two main parts. The first part is responsible for storing
the encrypted files in a file-storage, and the second part is responsible for saving the

40

5.1. IBO - Product Tracing

decryption key to the quality document on the ledger and keep meta-information about
the quality document on the chain.

The quality documents that are currently only available as paper need to be scanned
and converted to an export format such as PDF. This document is then uploaded into
the system through a frontend-application that passes that file to a backend-application,
which then encrypts the document, creates an object on the ledger, and saves the access
keys with the correct decryption permissions on the ledger.

The system only saves the hash of the encrypted file on the ledger. With this approach,
the team prevents bloating of the blockchain and ensures that only the minimum
necessary data is saved on the immutable ledger. This approach also allows the system
to be GDPR compliant since documents can be deleted from the file storage when such a
request is made. The system, therefore, uses the DLT Design Pattern Storing verifiable
Data Off-Chain: Hash Anchoring Pattern.

Internally, the decryption keys and quality document hashes are stored in each
organization’s private data collection (PDC). However, the identity management is not
yet implemented with the membership service provider.

Availability of the Project

The project is closed source. Making it open-source in the future might be possible, but
it is not being discussed right now. The code is not very well documented in its current
state, and it would take extra effort to make it useable for outsiders.

Justification for DLT

According to Mr. Pannell, DLT is needed because of the following reasons: The
documents have to be stored on immutable file storage, and comparable systems that
can store data immutable are niche and therefore very expensive.

None of the participants can gain more advantage from the system than another. A
few years ago, a centralized system could have been possible, but after the recent debate
about data-privacy and data-security, not many suppliers would accept a centralized
system.

The before mentioned argument about the knowledge benefits also includes that
everyone needs to have access to the same data, and therefore, a distributed ledger is
required for this use-case.

What the Customer says

More recent feedback that the team received was not as expected. The team had the
idea to use DLT for this use-case because of the aforementioned reasons, but the value
of the technology choice is not that high for the customer. For the customer, the chosen
technology is not that important. It is only important to them where they can save money

41

5. Case Studies

and where they can save time. Monetary the system is not justifiable, and because of
this, the development of the system has slowed down by a lot.

Technology Choices

The Platform

The project uses Hyperledger Fabric (and AWS File storage)

Used Frameworks and Design Pattern

According to Mr. Pannell, the team has built the application – more or less – from
scratch.

Public or Private

The team has looked into the matter of public versus private chain but decided on a
private chain because they needed a permissioned base because the system cannot be
completely open. The access to the data needs to be tightly controlled on an organization-
granular level, and according to the team, this would not be possible with a public
chain.

Justification for the Platform Choice

The team did not have a long decision process regarding the platform of choice. Because
of the immaturity of the technology, the team wanted to have a mature and actively
developed platform that they can rely on. However, Mr. Pannell noted, "As it stands
today, Hyperledger is not exactly the perfect fit, but it is the best that they have got
at the moment," but it meets a certain feature saturation that allows for developing
such a complex system. Another important factor for the decision was the support that
Hyperledger Fabric receives, which is - according to the team - unseen in most other
DLT-Platforms. Its modularity also allows each network participant to tailor their peers
to their specific needs if necessary.

Used Frameworks and Design Pattern

The Project of IBO can be represented using the Feature catalog:
Storing data off-chain and its usage: Strong verifiable data off-chain
Unique Asset Transfer
Unique Asset Management
Code Execution on the Blockchain: Execute-order-validate Architecture Pattern

42

5.2. Cash on Ledger - Payment processing

Development Process

General Approach

The team uses an agile approach for development with Kanban. The team runs on
weekly sprints and does a delivery every week. The team also has a planning session
where it defines the goals for the next week and sums up features that need to be
implemented.

Used Tools

IBO uses the following tools for their development process:

• Jira for project management

• GitHub for storing the Sourcecode

• Visual Studio Code for development

• Azure for Continuous Integration and Continuous Development

Deployment Process

The Team deploys weekly where the code is manually deployed. There is no immutable
data on the blockchain nor chaincode that would need to be endorsed.

5.2. Cash on Ledger - Payment processing

Meta Information

Interviewee Maximilian Forster
Position Co-Founder
Company CashOnLedger
Company Size Small
DLT Experience Created Blockchain Offerings for KPMG, Accenture.
Company founded January 2020

The Project

Summary of the Project in one Sentence

Orchestration of payments using Blockchain-Technology

Project State

Live Case (Production)

43

5. Case Studies

Problem Statement

CashOnLedger wants to establish a pay-per-use system for industrial machinery. CashOn-
Ledger brings together the payment processing of the parties involved in the system so
that customers only receive one invoice, and the individual payments are returned to
the parties involved, such as manufacturers and insurers. However, this business model
is only profitable if all steps - including a settlement with the bank - are fully automated.

How the Problem is solved

For this purpose, CashOnLedger works together with Lindner Traktoren Werke from
Austria. They build tractors that are equipped with telemetry data. This data is extracted
from the vehicle and forwarded to CashOnLedger’s platform. CashOnLedger brings
this data into a settlement logic to present the settlements in a bill-compliant manner.
For this purpose, CashOnLedger offers integration with ERP systems. Furthermore, a
PDF file is created for the invoice and sent to the customer. The accounting logic is also
connected to an interface in the bank to balance the amounts there automatically.

The core of the project is to bring data into accounting logic. If, for example, someone
decides to use a tractor or any other machine, the machine’s data is transferred to
CashOnLedger and evaluated so that the data can be settled usage-oriented. The
following is an example of how this concept is already being applied in the B2C sector:
"Drive Now" offers its customers the option of renting cars by the minute so that only
the actual use of the customer is paid for. CashOnLedger wants to implement this
principle for all types of industrial machines and additionally allow user-defined orders
through the collected data. For example, in the case of tractors, there are attachments
such as spreaders and plows, which offer the customer additional benefits. However,
there is also more wear and use of the machine, so that a higher price is charged if a
tractor with a plow is used. CashOnLedger’s business model is the billing of flexible
and user-defined industrial machinery.

CashOnLedger represents the Pay-per-Use process fully automatically. All steps
in the process have been fully automated, so no human intervention is necessary.
The automation makes it possible to transfer and use the model for car-sharing to
industrial goods. For the settlement of payments, the euro is, in fact, shifted and not a
Cryptocurrency. For this purpose, ERC721 (Non-Fungible Tokens) are used because of
the regulations, representing clear payment demands. A Blockchain listener has been
implemented but is currently not used productively because customers are not yet up to
date with the technology to be able to use it. Non-Fungible tokens are unique, unlike
Bitcoin or ERC20 tokens, and can not be replicated or equally exchanged.

Availability of the Project

The Project is currently closed source, and there are no plans of making it publicly
available with open source.

44

5.2. Cash on Ledger - Payment processing

Justification for DLT

The problem can easily be solved without DLT. However, DLT allows for a higher degree
of automation. In the system, many parties are under one roof. There is the customer
who uses the tractor and the manufacturer of the tractor. There are also insurance
companies that cover the system’s use in case of damage to the industrial machinery
or unexpected breakdowns. A multi-party system is needed, which consolidates the
payments because the end customer does not want to pay money to the manufacturer
and the insurance companies but only wants to have one invoice, including all ser-
vices. CashOnLedger then has to distribute this payment back to the different parties.
Blockchain continues to offer the Single Source of Truth (SSoT) for the different parties to
recalculate everything themselves. Finally, a bank is involved, with which the payments
can be settled programmatically. The programmed payment eliminates an accountant
who would otherwise have to execute the payment manually.

In summary, process efficiencies are achieved with DLT that were previously unattained.
Rolls Royce, for example, has tried a similar system but failed because of the administra-
tion. The turnover for such a system has a linearly increasing turnover but exponentially
increasing costs. The whole system can, therefore, only be profitable if all activities are
automated. This automation reduces the costs to a linear instead of exponential growth.

What the Customer says

Customers do not care how the system is implemented internally. They only care about
the degree of automation that can be achieved with the technology.

Technology Choices

The Platform

Ethereum based on Hyperledger BESU is used. Hyperledger BESU is an enterprise
Ethereum client that allows running public and private networks with either Proof-Of-
Work (PoW) or Proof-Of-Authority (PoA) and is specifically designed for consortium
environments. Furthermore, it supports test networks such as Rinkeby, Ropsten, and
Görli.

The Ethereum client is connected with an interlink to Corda so that both platforms
can be used simultaneously. Corda is a permissioned DLT Platform that supports
Chaincode.

Used Frameworks and Design Pattern

CashOnLedger uses the following frameworks and design patterns:

• IoT Reference Architecture

• Swagger for the REST interfaces

45

5. Case Studies

• Microservice Architecture

• Standards developed with banking partners, such as network adapters that connect
customers to network structures.

Public or Private

The CashOnLedger team decided to use a private blockchain because it has low transac-
tion costs. Moreover, data protection was a crucial point.

Justification for the Platform Choice

In general, CashOnLedger requires two main points of the DLT architecture: Smart
Contracts and Asset tokenization.

In the system, a virtual container is needed, representing money in the form of a
token. Moreover, an automated logic is needed to use the money programmatically.

The team has chosen Ethereum on a private instance, realized by Hyperledger BESU
because Ethereum supports token standards like ERC20 and ERC721 by default. Addi-
tionally, Mr. Forster claims that Ethereum has the largest developer community with
400-600 developers. This strengthens the trust in the chain and increases reliability.

On the other hand, the team has chosen Corda because the Corda Token SDK allows
easy asset tokenization. Another reason for the decision was that it is one of the most
widely used systems in the banking sector. In Corda, trust and reliability are also given
by continuous development. This is especially important for CashOnLedger to comply
with regulations and SLA’s.

The team decided against Hyperledger Fabric because, at the start of the system’s
development, there was no easy way to tokenize to Hyperledger Fabric. Meanwhile,
Hyperledger Token exists for this purpose.

What would happen if a new technology emerges?

Rapid technology changes in the DLT world do not pose a high risk for CashOnLedger
since adapters can be exchanged quickly to adapt to a new DLT Platform.

Used Frameworks and Design Pattern

The Project of CashOnLedger can be represented using the Feature catalog:
Information Broadcasting: Event Emits/Event Listeners
Unique Asset Transfer
Unique Asset Management
Code Execution on the Blockchain: EVM Architecture Pattern
Storing verifiable Data Off-Chain: Hash Anchoring Pattern
Interoperability: Atomic Cross-Chain Swaps

46

5.3. CodeNotary - Create Trust in Digital Objects

Development Process

General Approach

CashOnLedger uses an agile development process but does not use a Scrum master.
Kanban boards are mainly used for the tasks.

Used Tools

CashOnLedger uses the following Tools for its Development Process:

• GitHub and GitLab for Sourcecode administration and task distribution

• Confluence with links to GitHub and GitLab

• Kanban boards on GitLab

Deployment Process

There is no special Deployment process in place. Since immutability does not a big role
in the current system and most of the system is off-chain, deploys are just made to the
network.

5.3. CodeNotary - Create Trust in Digital Objects

Meta Information

Interviewee Dennis Zimmer
Position Chief Technology Officer
Company CodeNotary Inc.
Company Size Medium
DLT Experience Started in 2016 focusing on smart contracts
Company founded date 2018

The Project

Summary of the Project in one Sentence

Create trust in digital objects

Project State

Shipped (Production)

47

5. Case Studies

Problem Statement

Software producers nowadays have their extensive Continuous Integration (CI) and
Continuous Delivery (CD) pipelines. An example of such a pipeline would be the
following: Every build of a project starts with the Sourcecode. In the Sourcecode, there
is the configuration file for the CI and CD systems. After that, the quality assurance signs
off on the Sourcecode and the CI and CD configuration. The project’s dependencies get
pulled from the internet or an artifact repository, and they are checked by anti-virus
software for malware or known security vulnerabilities. When the initial build process
has concluded, a binary file is produced, and the completion is verified by CI and CD
Software like Travis, Bamboo, or CircleCi. Now that a finished build exists, the project is
deployed encapsulated as a container, and this container is then put into a runtime like
Docker or Kubernetes.

Programs running in the runtime of the software companies must be verified. The
default way of doing this is by creating a digital certificate that assures the program’s
integrity. These certificates have the downside that they cannot be easily revoked, can
only be issued once for every object, cost a non-trivial amount of money, can be issued in
a malicious way that the user cannot distinguish between a real and a forged certificate,
and additionally, not the workflow is certified by the certificate but only the result is.

A possible attack scenario could be the following: An attacker manages to inject
malicious code into a repository or an artifactory because of a security issue within the
Sourcecode repository or the artifactory provider. The injection stays unnoticed and
is active in the next deployment of the product. A real-world example of this is the
SolarWinds-Hack.

There may also be a situation where some parts of the build system have not been
working properly, e.g., there are five virus-scanners in production, and one of them is
outdated, and therefore the executables cannot be fully trusted anymore. Naturally,
the software company now wants to set the executables to untrusted but cannot do so,
as either all certificates of an issuer must be revoked or none. There is a big incentive
for software manufacturers to not revoke all their certificates because of a few possibly
malicious builds, so they are more likely to ignore those builds.

How the Problem is solved

Initially, the project ran on Parity Ethereum but later moved to an own custom platform.
During this process of moving the platform, the main business case changed from
replacing digital certificates to certifying CI and CD pipelines of software manufacturers.

The first system’s goal was to store digital assets like documents, docker containers,
or executables, which are created in a software build process. All checksums of the
build artifacts mentioned before are written to the Blockchain. These artifacts can now
be trusted, and others can verify that.

Every participant of the system has a Wallet with which the participant can sign a
step in the deployment process. The participant can call a smart contract with the object

48

5.3. CodeNotary - Create Trust in Digital Objects

which results from the step in the deployment process and can mark it as "I trust it", "I
do not trust it", or "It is outdated".

All single items in the pipeline are converted to a checksum and notarized on the
Ledger so that for every step in the CI and CD process, the integrity of the data and
process is notarized by digital signatures that are stored in a smart contract.

At the runtime stage, an agent periodically checks if any program is running, which
cannot be traced back completely to its origin by looking up the state of every executable
on the Ledger to see whether it is trusted untrusted or outdated.

The original plan of CodeNotary was to replace digital certificates with their system,
which was impossible since they would have to persuade Microsoft and Apple also to
accept their system instead of only digital certificates. Therefore, they went ahead and
marketed their solution to mainly big customers that needed to secure their internal
build process.

Their second system’s goal is to store as many checksums of artifacts on the Ledger
as possible while maintaining immutability and being auditable.

It builds upon immudb, which turns around the concept of DLT. In immudb, there
is only a single central database for the data storage, and only the clients perform the
cryptographic proof. This concept allows CodeNotary to achieve ten million transactions
per second. A transaction is a single write of a larger hash into the database; this is
necessary because customers produce many artifacts that need to be verifiable.

Immudb carries along a Merkle tree, which is statically connected to the data, so the
construct cannot be unraveled.

The Merkle tree acts as a representative role in the blockchain and contains
all transactions in a block. Such a container leaves all transaction details in
the body, and the relatively light block header can only hold a Merkle root
of these transactions and other configured attributes. [23]

The Merkle tree enables nodes to verify the integrity of the chain without storing the
complete Blockchain [23].

In immudb the client trusts the storage because he can proof and recalculate it.
Every client, which can be an application or an auditor, saves the interim report of the
Merkle-tree regularly. Basically, every client has a Checkpoint-Blockchain with a rolling
checkpoint-window that is verified by the client to prevent any tampering with the data
and ensure immutability. CodeNotary offers auditor programs that run the verification
on a second basis.

Availability of the Project

Their own platform immudb is open source1.

1https://github.com/codenotary/immudb

49

5. Case Studies

Justification for DLT

The main reason for using DLT in this project is that everything needs to be publicly
visible. It was crucial for the project that many different companies can get together
in the Consortium Blockchain, and all have the same data and the same knowledge to
verify the data.

The second reason for DLT is that many actors are in the system, which need a way
to interact with one another securely.

What the Customer says

CodeNotary Inc. emerged from vChain Inc. When the vChain team initially started
with the project, there was a huge distrust against any Blockchain-Technology, and any
customer that heard the word Blockchain immediately walled. So, the team changed
their approach to telling the customers that they have a distributed, trustable platform
protected by multiple companies and directly offered them a test of the product.

The customer base, especially the small ones, accepted the system relatively quickly.
Securing the internal build process of big customers has been a huge success, according
to Mr. Zimmer.

Technology Choices

The Platform

First Parity Ethereum on a private chain then immudb. Parity Ethereum is one of the
most prominent interoperable implementations of the Ethereum client software and
is written in Rust and is an implementation of a full-node Ethereum client and DApp
browser [4].

Used Frameworks and Design Pattern

The CodeNotary team used the Design Pattern provided by the Parity team. For example,
this led to a configuration that excluded Cryptocurrency from the project in the Parity
Ethereum chain.

Public or Private

The decision for a private platform was very clear from the start since the team needed
a platform that could compute a high number of transactions at extremely low or no
cost, which is unfeasible with a public Ledger, according to Mr. Zimmer.

Justification for the Platform Choice

CodeNotary used to run the system on Parity Ethereum with fees set to zero but
switched to their own platform called immudb.

50

5.3. CodeNotary - Create Trust in Digital Objects

Initially, the team decided on Parity Ethereum instead of other Platforms because
the technology was much further than comparable platforms back when they started
developing Mr. Zimmer claims. Furthermore, it was much easier for CodeNotary to find
staff that was able to work with Ethereum tools. Lastly, it is still much more complex to
set up a project on Hyperledger Sawtooth than on Parity Ethereum, Mr. Zimmer claims.

The Team also discussed Corda, Quorum, and Hyperledger Sawtooth. Sawtooth did
not seem appropriate from the teams’ perspective for the use-case and was too complex
for it. Corda was not investigated in detail and was kicked out of the decision process
together with Sawtooth. Finally, there was only the decision between Quorum and
Parity Ethereum, and the team decided on Parity because they discussed with the Parity
Team in Berlin and the support and tool base of the platform persuaded the team to use
it. Additionally, Parity Ethereum was the fastest Platform back then when the team ran
tests on it.

The main reason for CodeNotary to build their own platform is that they have
encountered customers during the development who had millions of objects that needed
to be stored on the Ledger. However, DLT is too slow for this specific use-case because
of the distributed database’s latency. CodeNotary could only achieve about sixty
thousand transactions per minute with Parity Ethereum but needed around ten million
transactions per minute for their largest customer. Since they could not satisfy the large
customers’ needs, they had to switch away from Parity Ethereum.

Used Frameworks and Design Pattern

The Project of CodeNotary can be represented using the Feature catalog:
Identity Management: Asymmetric Cryptography
Unique Asset Management
Code Execution on the Blockchain: EVM Architecture Pattern

Development Process

General Approach

The CodeNotary Team uses an agile approach running a modified version of scrum.

Used Tools

The Team uses the following tools for their development process:

• Truffle suite

• GitHub Project

51

5. Case Studies

5.4. Lakoma - Insurance of Sustainability

Meta Information

Interviewee Christoph Langewisch
Position Founder
Company Lakoma
Company Size Small
DLT Experience Four Years, several projects
Company founded 2017

The Project

Summary of the Project in one Sentence

Proof of sustainable production across company borders

Project State

Pilot - 8 Month in - about to go into production (Development)

Problem Statement

Lakoma wants to solve the sustainability issue in today’s supply chains. The UN has
defined 17 criteria on how companies should produce and deliver sustainable products.
Such as no child labor, climate protection, etc. It is becoming increasingly important
for companies responsible to know whether the compliance rules are actually being
enforced. To be able to present the data credibly, immutability, trust, and transparency
need to be enforced at every step of the supply chain. The supply chain brings many
stakeholders together who work, for example, as supplies. Therefore, a system is needed
that combines immutability, trust, and transparency across company borders within the
supply chain.

In a concrete example, a farmer has produced and delivered products. For the
subsequent partners in the supply chain, it is important that the farmer is certified and
has worked, e.g., according to the organic certificate; That his people have been paid,
where each step of the production conducted done until the product arrived in Europe,
etc.

How the Problem is solved

In the supply chain, the crop is produced by a first entity; Then processed by a second
entity. After that, it is passed to a third entity for logistics and shipping. The goal is to
track the asset until the final customer consumes it. Assets are created on the public
Ethereum Blockchain when they are first entered into the system for the first entity.
E.g., at the harvest, where the picker and collector confirm the validity of the entered

52

5.4. Lakoma - Insurance of Sustainability

assets. At each step and each transfer from one entity to another, further information
about the process is added to the asset. From a technical perspective, Lakoma creates a
smart contract where the data is stored, and workers can be identified with their digital
identities. The fees that need to be paid are paid by the customer but are layered by
Lakoma, so the customer does not have to deal with DLT and only pays Lakoma in Fiat
money.

Therefore, the main issues are solved through a public permissionless ledger that
offers immutability, trust, and transparency by default. New companies are easily
onboarded and can see the history because of the transparent nature of a permissionless
ledger. Specific workflow problems are solved with assets that are managed by smart
contracts.

Like the picker, collection partner, or operation partner, all relevant stakeholders that
participate in the system can register by themselves and are activated by the higher
instance. For example, a collection partner registers a picker, and this digital identity is
secured by saving it on the Blockchain. To interact with the system, entities are identified
by the underlying system with their digital identities that have unique IDs and digital
signatures assigned to them.

The specific assets like crops, products, etc., are represented using the ERC-1155
protocol on the Ethereum Blockchain. This is because the team claims that they can
combine fungible and non-fungible tokens that help to secure the entire supply chain
for each product. These assets are transferred between entities at checkpoints of a real
process like logistics, which are monitored and execute the transfer on the Blockchain.
When information needs to be added to assets, it is either stored on a cloud service
or the Blockchain-service. Cloud focuses on normal data like personal data and the
Blockchain service on compliance data that needs to be digitally secured.

Availability of the Project

Parts of the project are open source, but it depends on the customer. More parts may be
open-sourced when contracts with the customer allow it.

Justification for DLT

According to Mr. Langewisch, DLT was chosen in this use-case because it would not be
possible to realize it without DLT.

• Information is propagated peer-to-peer without central instances

• Digital Identities are created for every collector

• Pickers verify that collectors give correct data and approve it with a transaction

53

5. Case Studies

What the Customer says

The customer has given positive feedback so far and approved going from pilot to
production. Once a whole harvest cycle is completed, a full review can be given.

Technology Choices

The Platform

Lakoma uses the Ethereum Mainnet

Used Frameworks and Design Pattern

Lakoma uses a few frameworks and design pattern to bootstrap their project more
quickly:

• Solidity toolchain for Smart Contracts

• ERC20 for Tokens

• Open-Zeppelin for security in Smart Contracts

• Truffle for development

Public or Private

Lakoma decided on a public permissioned platform due to the following points:

• They wanted to have an open standard that has a huge community

• From their perspective, the continuous development in Ethereum is more extensive
than in Hyperledger Fabric

• Ethereum has a higher brand awareness

• The Know-how of the team is mainly Ethereum

• It was more of a gut feeling than scientific consideration

Justification for the Platform Choice

The Ethereum mainnet was chosen as the platform of the product because:

• A permissionless platform can be used without investing in infrastructure

• The time to market is shorter with an existing DLT network

• An own DLT network for a pilot is more expensive than transaction costs in the
Ethereum Mainnet

• The team can focus on the use-case and not the platform

54

5.5. Chaincentive - Digital Incentives

Used Frameworks and Design Pattern

The Project of Lakoma can be represented using the Feature catalog:
Cryptocurrency Minting: Pre-Mined Cryptocurrency
Cryptocurrency Storing: Account Pattern
Cryptocurrency Transfer: Single Signature Send
Identity Management: Asymmetric Cryptography
Unique Asset Transfer
Unique Asset Management: Digital Twin
Code Execution on the Blockchain: EVM Architecture Pattern
Storing verifiable Data Off-Chain: Hash Anchoring Pattern

Development Process

General Approach

Lakoma uses an iterative and agile development process. All of their problem statements
are split into smaller chunks and solved use-case by use-case. For the customer, this
development process is represented by multiple workshops that are being held to
develop further requirements and specifications with the customer.

Used Tools

GitLab is used to manage the Sourcecode, tasks, and requirements, etc. When enough
features have been developed, quality assurance is performed.

5.5. Chaincentive - Digital Incentives

Meta Information

Interviewee Marijo Radman
Position Founder
Company Chaincentive
Company Size Small
DLT Experience Four Years

The Project

Summary of the Project in one Sentence

Incentives for the positive change in behavior

Project State

The Project has a finished prototype (Development)

55

5. Case Studies

Problem Statement

In companies, social behavior develops between employees. These behavioral patterns
arise through their default attitude. As this social behavior is not optimal most of the
time, the project aims to influence and optimize the employees’ behavioral patterns.
As an example: There is a normal company with employees and systems. Now a new
system is introduced, and employees are skeptical by default because they know the
old system and not the new system and are very careful to adapt it. Especially old
employees or employees who are about to retire do not tend to use new systems. Since
companies have invested time and money into the new system, they want employees to
use it.

How the Problem is solved

Chaincentive develops a system that encourages employees to use the new system.
Tokens are generated and then given to employees for good behavior and can be used
for rewards such as vouchers. There are three levels of psychological influence the
system offers:

1. A small economy within the company is created where employees can exchange
tokens with each other

2. Employees are rewarded for good behavior with the token

3. Employees know that they are rewarded for good behavior

An example of a reward that has already been implemented is a voucher for Jochen
Schweizer. Chaincentive is paid by the customer for the system integration and pays
their reward partners such as Jochen Schweizer, that exchange vouchers for Services,
fiat to "buy back the tokens".

Availability of the Project

The Project is not open source since it contains sophisticated software to connect to the
customer’s systems, and the customers do not want this to be public.

Justification for DLT

The project could theoretically be implemented without DLT; However, a few downsides
occur without DLT.

• Blockchain-Technology provides pseudo-anonymity which would not be possible
without it

• DLT makes the data tamper-proof and immutable

• Transparency is offered to the customer so that the data can be reviewed

56

5.5. Chaincentive - Digital Incentives

• Once the system reaches across companies; it is harder to implement without DLT

• By using DLT, the problem is solved more elegantly

• By using DLT, a distributed platform is created which offers business benefits to
all partners

What the Customer says

Privacy is most important to the customer. Chaincentive sells the product to companies
over their Human Resources Department as they are the gatekeeper for such systems.
Chaincentive does not advertise with DLT to their customers, and they mainly argue
with the psychological aspect. Companies know that the offered system is cutting edge
and are willing to join the experiment.

Technology Choices

The Platform

Chaincentive uses the Kaleido platform with Enterprise Ethereum.

Used Frameworks and Design Pattern

Chaincentive uses a few Frameworks and Design Patterns to bootstrap their project
quicker:

• ERC20 interface for Token

• Truffle and Drizzle for Smart Contracts

• Open Zeppelin for Smart Contract Design Pattern

• React and Web3 for Frontend Development

Public or Private

Chaincentive uses a private blockchain because of two main points:

• On public Blockchain transactions are visible, and their customers do not want
that because of privacy aspects

• The transaction fees on the public Ethereum Network are too high

57

5. Case Studies

Justification for the Platform Choice

The platform was primarily chosen because it was the easiest and well known for the
team to start with. However, additional arguments can be made:

• Hyperledger does not offer Token support by default. The developer must use
libraries and re-create tokens in Chaincode2.

• The platform is supported by all major cloud providers allowing Chaincentive to
spin up nodes at different providers to allow for more decentralization.

• It supports the known frameworks such as Drizzle and Truffle.

• Developers in the company have completed courses about this platform and knew
how to use it.

Used Frameworks and Design Pattern

The Project of Chaincentive can be represented using the Feature catalog:
Cryptocurrency Minting: Pre-Mined Cryptocurrency
Cryptocurrency Storing: Account Pattern
Cryptocurrency Transfer: Single Signature Send
Identity Management: Asymmetric Cryptography
Code Execution on the Blockchain: EVM Architecture Pattern
Storing verifiable Data Off-Chain: Hash Anchoring Pattern
Interoperability: Atomic Cross-Chain Swaps

Development Process

General Approach

Chaincentive uses an Agile approach to development. It uses an adaption of Scrum but
without Product Owner and Retrospectives.

Used Tools

Chaincentive uses a few tools to streamline their development process:

• Trello

• GitHub

• Microsoft Teams and Zoom

Deployment Process

On a new deployment, Smart Contracts are "killed" and newly deployed.

2Hyperledger Fabric 2.0 offers FabToken which promises to make this easier

58

5.6. FfE - Proof of Origin for Electricity

5.6. FfE - Proof of Origin for Electricity

Meta Information

Interviewee Andres Zeiselmair
Position Scientific Employee
Company Forschungsstelle für Energiewirtschaft (FfE)
Company Size Medium
DLT Experience 4-5 Years
Company founded 2001

The Project

Summary of the Project in one Sentence

Blockchain-based proof of origin for electricity in a high resolution

Project State

Before Pilot (Planning)

Problem Statement

The Project InDEED wants to enable Blockchain-based proof of origin for electricity in
a high resolution to create new verifiable energy products for the consumer without
relying on many intermediaries.

The widespread adoption of smart meters in Europe enables new business models
that leverage data-based value creation through new possibilities for consumer-producer
interactions. An increasing number of actors - both on the producer and consumer side -
which interact with the Energy system combined, with the growing importance of real-
time processes, lead to increased automation and scalability requirements. Therefore,
there is a need to replace historically grown legacy systems with new systems capable
of delivering the automation and scalability needed to meet the market requirements,
offer additional features, follow regulations, and ensure compatibility [5].

Currently, the origin of electricity is very opaque, which is also the main problem.
Furthermore, the process of identifying the origin of the electricity is based on many
intermediaries. For example, it is possible to buy certified green electricity, but this
contract is very basic and not very specific. Those contracts are very basic because the
temporal resolution is very simple, and the allocation of origin energy quantities to
consumption is opaque. The goal is now to prove the origin of the electricity without an
intermediary such as the TÜV and to achieve a higher resolution through Blockchain-
Technology.

According to Mr. Zeiselmair, the Blockchain-based System should fulfill the following
technical requirements:

59

5. Case Studies

1. Compatibility with certified smart metering solutions and increased automation to
foster scalability, security, trust, and interoperability

2. Increased time resolution and guidance for individual customer behavior adapta-
tion

3. Scalability and micro-transactions to facilitate millions of small-scale renewable
energy systems

4. Implementation of simple physical boundary conditions (e.g., cross-country grid
constraints for imports) to reflect realistic cross-border energy quantities

Figure 5.1.: The complex process of the current German guarantees of origin register
(GOR) [5]

In Figure 1, the complex process of the German GOR with its many involved parties
is displayed. From the figure, it is easy to see that many parties are involved in this
process and that there is much information, financial transactions, products, and services
involved.

How the Problem is solved

Ideally, the consumption data is collected directly from the consumer using a smart meter
infrastructure. Furthermore, the feed-in data is measured directly at the generation
plants using a similar infrastructure. Other data transmitted by the infrastructure are,
for example, the name of the plant, geolocation of the plant, installed power of the plant,
information about the owner of the plant. The system aims to achieve a more granular
resolution of the electricity data than a quarter of an hour.

60

5.6. FfE - Proof of Origin for Electricity

Now the customer has the possibility to say that he wants to get the electricity from a
radius of 50km, preferably from solar plants, then wind power plants, and lastly from
hydroelectric plants. Thus, the customer can be offered a new electricity product in
which he has full control over the origin, eliminating the non-transparency of the current
established – legacy – system.

A concrete example: The goal of the system is to be able to tell every quarter of an
hour from which system the electricity comes. Generation and consumption of electricity
are fed into a digital platform every quarter of an hour. This platform then uses a linear
optimization algorithm to calculate supply and demand allocation based on a distance
matrix. The optimization result is written to a Blockchain, and the zero-knowledge
proof is used to prove that the calculation was performed correctly.

Figure 5.2.: The Architecture of the proposed Platform [5]

The platform proposed by the team is split into two components: One for trading the
rights of future produced renewable energy certificates. Here the system has to estimate
energy quantities for all energy resources for the future staggered in days, weeks, and
months. Currently, these usage rights are traded over-the-counter or via brokers and
markets. The second component is responsible for downstream linear optimization
and distributing the certificates to the customers. One goal of the linear optimization
could be to optimize electricity distribution to maximize revenue from regional direct
marketing or the distribution according to the preferred energy mix for any customer
[5].

Availability of the Project

The project will be available open-source as soon as it is in a later state. Furthermore, a
paper about this use-case has been published by Alexander Bogensperger and Andreas
Zeiselmair called "Updating renewable energy certificate markets via integration of
smart meter data, improved time resolution and spatial optimization" [5].

61

5. Case Studies

Justification for DLT

The project is a use case in which there are many partners and many actors. All partners
and actors must be brought to a single platform that unifies all data and actions.

Furthermore, transparency is essential. In the case of the project, it is crucial that it
can be proven beyond doubt that the calculation of the optimization algorithm, which
combines supply and demand, has been performed correctly.

Also, privacy is a big issue. The data transferred from the smart meter to the platform
is all personal and must not be seen by the actors.

As was explained, on the one hand, transparency is needed to prove that the data
has been calculated correctly. On the other hand, the personal data must not be public.
Therefore, DLT is used in the project, as it is one of the only technologies that can be
used to prove the correctness of data without intermediaries actually seeing them.

What the Customer says

There is no customer feedback so far, as the project is still in a very early phase. In
general, the customer base is generation plants that are no longer eligible for EEG
subsidies and private and commercial end customers who can benefit from such a
system.

Technology Choices

The Platform

So far, no final decision has been made regarding the platform. However, the team has
made a pre-selection between Hyperledger Fabric and Ethereum, with Ethereum either
being on the Mainnet or a private ledger.

Used Frameworks and Design Pattern

The Team currently only considers using the Zero-Knowledge Proofs toolbox Zokrates3

of the TU Berlin. Further Frameworks or Design Pattern have no been decided on yet.

Public or Private

No final decision has yet been made between public and private Blockchains. For the
InDEED team, the following points speak for a public chain: Greater security and greater
transparency. In terms of transparency, more open is better for the team. According
to the InDEED team, private Blockchains generally perform better when compared to
public blockchains. Transaction fees and infrastructure costs are not yet considered a
major problem by the team.

3https://www.ise.tu-berlin.de/menue/projekte/zokrates/

62

5.6. FfE - Proof of Origin for Electricity

Justification for the Platform Choice

Against the Ethereum Mainnet speak the high transaction cost.

In Hyperledger Fabric, many features can be used "out-of-the-box", which is - ac-
cording to the team - not the case with Ethereum. Only these two platforms come into
question since code execution on the Blockchain is urgently needed, and this is realized
in Ethereum with EVM and in Hyperledger with chain code. Furthermore, it is these
two platforms that make the biggest development steps from the team’s perspective.

Used Frameworks and Design Pattern

The Project of InDEED can be represented using the Feature catalog:
Identity Management: Self-Sovereign identities (SSI), Asymmetric Cryptography
Information Broadcasting: Event Emits and Event Listeners (planned)
Unique Assets Transfer
Unique Asset Management: Matching Unique Assets with Digital Identities
Code Execution on the Blockchain: (No yet decided on the architecture)
Storing verifiable Data Off-Chain: Hash Anchoring Pattern

Development Process

General Approach

The Team uses an agile development process. The team utilizes sprints and tries to run
scrum without a scrum master but with a product owner.

Used Tools

The InDEED team uses tools for development:

• GitLab for Sourcecode and Tasks

• Asana as Kanban-Board

Deployment Process

There is no deployment process in place yet because the project is before the first pilot.

63

5. Case Studies

5.7. BMW - Traceability of the Supply Chain

Meta Information

Interviewee Felix Gerbig
Position Blockchain Engineer / Software Engineer
Company BMW Group
Company Size Large; Small Team
DLT Experience Through Master thesis; 1.5 Years. Bitcoin before
Company founded 1916

The Project

Summary of the Project in one Sentence

Part Chain is about traceability in the whole supply chain of BMW

Project State

Extended Pilot Phase: Post PoC (Development)

Problem Statement

Part Chain is a B2B system in which BMW and its suppliers can share and track vehicle
and component information between the participants. In case of a recall, BMW needs to
know exactly which components have been installed. This knowledge is not completely
available yet, but only partially. For example, BMW knows which airbags and tires are
installed, but it is very difficult or even impossible to find out which sub-components
are installed in the airbag because only the T1 supplier has this knowledge. In case of a
recall, the whole history of a part has to be traced back, and there are much information
and too many inconsistencies, which in turn leads to delays in this time-critical process.

How the Problem is solved

Part Chain links all components on a ledger, and in case of a recall, the complete supply
chain can be fully tracked. For example, BMW now knows that these three light modules
were installed in a headlamp and then in the vehicle.

On the one hand, component information such as production time, production
location, supplier and component ID, and manufacturer company is stored in the form
of a hash and on the Ledger. When the data is called, it can be verified that the data has
not been changed.

On the other hand, the Ledger is used as a public access control, in which the business
relationships are mapped, so that it can be ensured that information is only passed on to
companies that should have it. For example, a supplier is not in a business relationship

64

5.7. BMW - Traceability of the Supply Chain

with BMW, and this information is stored in the Ledger. Now, this supplier tries to write
data to BMW but cannot do so because there is no business relationship.

The Ledger is also used as a kind of global lookup. It is stored in which supplier has
built which component so that the recipient of the component can look up who built it.
BMW offers two options for joining the network. Either a new supplier hosts a fabric
node themselves, including all additional software needed for Part Chain or they use the
offering "trust as a service," which offers an API of BMW and a link to a corresponding
frontend.

Asset Production Workflow: A Supplier produces an asset. The asset is then regis-
tered in Part Chain in two steps: Asset details are stored in an Off-Chain database, and
the Private Data Collection (PDC) of the supplier and the Proof-Of-Ownership (Hash of
the asset details) is stored together with the Membership Service Provider (MSP) Id of
that supplier on the Ledger. The Asset is then shipped and received.

Asset Lookup Workflow: The process of looking up a part on the ledger must be
connected to the physical process of scanning an item. For this, every part has its own
unique 30-digit Id, which is printed by the supplier on the part. The scan of the part
allows everyone to look up this unique id and the corresponding part on the network
using the functions of the Chaincode. The unique id is only stored as a hash on the
Ledger itself, so the only supplier that knows the unique id can look it up.

Child Part Data Storing/Asset Exchange: Once BMW receives an asset and scans it,
the corresponding vehicle information is written into the PDC of the supplier, and an
event is emitted. The event prompts the supplier to write the data about the scanned
part into the PDC of BMW after the vehicle information written by BMW is verified
by the supplier using the Ledger. This exchange works because the PDCs of every
participant is write-only.

Data Privacy/Data Visibility Concept: It is possible to control down to the individual
component in fine granularity, which information a supplier sees and which not. BMW
has the information for a vehicle off-chain, and the suppliers write the information
for the individual components into the PDC of BMW. The supplier only sees in the
PDC of BMW exactly for those vehicles for which he is a supplier, and he only sees the
components for which he was the supplier.

Availability of the Project

The project will be open source starting January 2021

Justification for DLT

In general, the problem would be solvable with a traditional system, as there are no
trust issues. BMW and its suppliers have known and trusted each other for decades.

For BMW, DLT is a framework to initiate a new way of thinking. So that data can be
shared across company boundaries. A paradigm shift from "Yours and Mine" to "Our"
should take place.

65

5. Case Studies

The supplier does not necessarily want BMW to have all its data, so equal rights
should be established so that the supplier also has an advantage from the system because
BMW instructed that the supplier also passes on the data. So, in the end, everyone gets
a piece of the cake, and there is no central authority that governs the data.

The data of the T2 and T3 suppliers are out of BMW’s reach, but this data is also
crucial for tracking the whole supply chain, and this new approach would give those
suppliers an incentive to put their data in the system.

What the Customer says

The supplier "Automotive Lighting" liked the system that much that they are now also
supporting development. At the time of the interview, no other suppliers have been
onboarded yet.

Technology Choices

The Platform

Part Chain uses Hyperledger Fabric 2.1

Used Frameworks and Design Pattern

Part Chain utilizes the following Frameworks and Design Pattern:

• Microservice architecture

• One channel concept

• One Chaincode

Public or Private

The Part Chain team decided on a private Ledger because business-critical data is stored
on the Ledger, which cannot be public. Access control and privacy are major points
in Part Chain, which is not possible with public Ledgers. The team decided against
a public Ledger with encrypted data because encrypted data is not easily searchable,
and therefore, the main feature of this project – the tracking of an item throughout the
supply chain – would be much harder to implement.

Justification for the Platform Choice

For the Team, Hyperledger Fabric is the only permissioned blockchain to be taken seri-
ously for enterprise software because of its big community, maturity, and its continuous
development. Furthermore, it contains all the required features for BMW, such as access
control and private data collections. Lastly, Hyperledger Fabric is open-source, which is
a major point because BMW aims to have the full stack open source.

66

5.8. Bernstein - Secure the Ownership of Intellectual Property

Used Frameworks and Design Pattern

The Part Chain project can be represented using the Feature catalog:
Identity Management: Certificate based Authentication
Information Broadcasting: Event Emits and Event Listeners
Unique Asset Transfer
Unique Asset Management
Code execution on the Blockchain: Execute-order-validate Architecture Pattern
Storing verifiable Data Off-Chain: Hash Anchoring Pattern

Development Process

General Approach

Part Chain is developed with an agile Scrumban approach. However, there are no
planned sprints. There are internal reviews and planning and a single merge to produc-
tion every week.

Used Tools

In Part Chain, the following tools are used:

• Jira, Bitbucket and Confluence (Atlassian Suite)

• CI/CD with AWS native

Deployment Process

Part Chain follows monthly release cycles for deployment on production. If there are
changes to the Chaincode, it will be manually re-deployed.

5.8. Bernstein - Secure the Ownership of Intellectual Property

Meta Information

Interviewee Marco Barulli
Position Founder
Company Bernstein
Company Size Small
DLT Experience Started with Bitcoin in 2010
Company founded 2016

The Project

Summary of the Project in one Sentence

Secure the Ownership of Intellectual Property

67

5. Case Studies

Project State

Shipped (Production)

Problem Statement

Registering and proofing the intellectual property rights of a project can be tedious
because it contains steps such as creating a trail of evidence of the innovation processes
going on in the company and creating the tail so that its integrity is beyond any doubt.

There is a lot of know-how and non-core technology that needs protection around
the patentable knowledge in any company. There can be a situation where the need
to proof changing things quickly and efficiently is required. For example, in fashion,
it may be necessary to prove that you have been working on a new garment from the
initial sketches to the final CAT-models for production, the brand and marketing plans,
and everything in between. It may be necessary to prove that this specific design is
yours, which is easier when the whole innovation chain is available. With this proof,
you can attack the counterfeit product on an intellectual property level and ask them for
statutory damages and financial damages.

How the Problem is solved

Bernstein is a gateway to the Bitcoin Blockchain. It allows an innovator to create a
transaction to proves the existence, integrity, and control of ownership over any digital
file.

Users can create a project in their innovation process, press a button, and a certificate is
created and saved on the Bitcoin-Blockchain. If a user changes the project like modifying
or creating a file and presses the button again, another certificate will be created linked
to the previous one to create a chain of certificates. They will end up having a time
machine where they can move back and forth in time, proving what the status of the
knowledge in the project was.

From the user’s perspective, it is pressing a button to get a certificate every time one
is requested. However, this creates not only the certificate but also an official EU and
Chinese digital timestamp, which is useful in legal procedures.

The certificate creation workflow functions the following: A transaction is created
and propagated to the Bitcoin-Network. This transaction has three outputs. Bernstein
controls one, one is derived from the rightsholder’s actual data, so the digital fingerprint
of the data is used to create one of the transaction outputs. The last output is derived
from the credentials of the user.

That transaction includes the following information: Proof that certain data repre-
sented by the second signature was existing. Additionally, the information about when
the network approved the transaction and that the actual user of the data can only spend
it.

For the workflow to work, Bernstein creates a Bitcoin-Wallet for every user that signs
up. They specifically create a hierarchical deterministic wallet. Within this hierarchical

68

5.8. Bernstein - Secure the Ownership of Intellectual Property

deterministic wallet, a new branch is assigned to every innovation project that the user
creates within the Bernstein-Interface. Bernstein initiates this wallet with funds (about
30 000 satoshi, which equals 5.40$ as of 11.12.2020). Those funds are used every time
the user initiates the certification creation to create a transaction like mentioned before.

The system of Bernstein is designed to complete work in the browser. Every trans-
action is created and signed in the browser and then pushed to the network. So, in
addition to being a hierarchical deterministic wallet, it is also a non-custodial wallet. In
DLT, there is a distinction between custodial and non-custodial wallets. In custodial
wallets, the company providing the wallet has control over the private keys that hold
the funds, wherein in a non-custodial wallet, the user has direct access to the private
keys to control the funds.

Bernstein uses a Zero-Knowledge-Architecture, which means that all the cryptographic
functions for managing the encryption of the data are done right in the client’s browser.
With this approach, Bernstein never gets access to the client’s data and the client,
therefore, is the sole owner of his data and the hierarchical deterministic wallet.

This data can be verified either by using the process of Bernstein, which is centralized,
or by following their guide, which is a five-step process:

1. Compute the hash of the project as sha256sum.

2. Create a Bitcoin private-key from the hash created in Step 1.

3. Derive the associated Bitcoin public-key

4. Create the Bitcoin MultiSig address with the project data public-key, owner public-
key, and Bernstein’s public-key

5. Validate against the Blockchain by finding an identical address in the list of outputs
of the transaction

Using the decentralized and non-custodial approach, the certificates are still valid
even if Bernstein went out of business.

Availability of the Project

Closed Source

Justification for DLT

Blockchain enables decentralized public registries where Bernstein can store and verify
Intellectual Property (IP)-Assets without relying on any central authority. This use-case
was not solvable without Blockchain-Technology. According to Mr. Barulli, "Blockchain
is a publicly available registry that is uncensorable, resilient and open to everyone and
that is exactly why we need the Blockchain".

69

5. Case Studies

What the Customer says

Bernstein has paying customers that are very happy with the current system. The
general opinion of customers is very polarized. For example, some IP-Lawyers are
willing to have a tool like this because it enables them to do great things for the client.
However, others do not care about it because they file and prosecute for patents and
trademarks.

Technology Choices

The Platform

Bernstein uses Bitcoin

Used Frameworks and Design Pattern

None, besides from the ones mentioned in the Feature Catalog

Public or Private

For Mr. Barulli, private Blockchains were never the right choice as, in his opinion,
those do not offer benefits compared to other cryptographic solutions that have been
out for years. In general, the team only considers Blockchain-Technology and not the
generalization of DLT.

Justification for the Platform Choice

According to Mr. Barulli, there was no other public platform available when they
started the project in 2015, with the other possibility only being an early-stage Ethereum
network. Because of "the openness for security issues," the team did not feel comfortable
choosing Ethereum at that time and went with Bitcoin.

Bitcoin-like Blockchains such as Litecoin were not considered because of their imma-
turity. The team did not see the benefits of slightly lower fees for the project as they
have never been an issue. It was more critical for Bernstein to have a sizeable and active
community behind the Blockchain of choice.

Used Frameworks and Design Pattern

The Project of Bernstein can be represented using the Feature catalog:
Cryptocurrency Storing: UTXO Pattern
Cryptocurrency Transfer: Confirmation Pattern, Single Signature Send
Identity Management: Asymmetric Cryptography
Storing verifiable Data Off-Chain: Hash Anchoring Pattern

70

5.8. Bernstein - Secure the Ownership of Intellectual Property

Development Process

General Approach

Bernstein uses an agile development approach with sprints. A focus is set on testing
within the Bernstein team.

Used Tools

Bernstein uses the following tools to improve their development efforts:

• Jira for the general development approach

• GitHub for storing the Sourcecode

• Notion for sharing information

71

6. Summary and Evaluation

In this chapter, a summary for the use-case studies is given, and the direct answers to
the research questions are given.

6.1. Statistical evaluation of the Case Studies

In this work, we conducted eight use-case studies.
Of the interviewees, four had the title Founder, two Chief Technology officer, and one the

title Software Engineer and Scientific Employee, respectively.
Furthermore, six companies that the interviewees are working for are small (3-12

people), and two are medium (13 - 50).
All teams that the interviewees are working on were created within the last five

years. However, two companies have been founded before the year 2000. Each of the
interviewees had at least one and a half years of experience with DLT at the interview
time.

Figure 6.1.: State of the Projects

From the 8 projects, one is in the Planning phase, four in the development phase and
three in the production phase.

Five projects used permissioned platforms with two Hyperledger Fabric uses and one
use of each Hyperledger Besu, Kaleido, and Parity Ethereum. Two projects decided

73

6. Summary and Evaluation

Figure 6.2.: Platform Distribution

on a permissionless platform, with the platform of choice being Bitcoin Mainnet and
Ethereum Mainnet. One project in the planning phase has not decided on a platform
yet (Use-case 6.1).

The feature usage of the feature catalog is depicted in A.2 (appendix). The total use
of the features is given on the Y-Axis, and the single features are named on the X-Axis.
The projects are indicated by coloring.

All interviewees claim to use an agile and iterative development process.

6.2. Summary

In this work, we have shown that the different distributed ledger technologies can be
split into their respective features (section 2.1.1, section 2.1.2).

In section 2.2 we divided business applications related to DLT into the categories
Cryptocurrency, DLT-based Business Problem Solvers, and Ecosystem Software and
have chosen to focus on DLT-based Business Problem Solvers for this thesis because
those are the most relevant for economic use-cases.

The feature summary in chapter 4 divided common features of distributed ledger
system into functional and non-functional features and explained them briefly. We
discovered twelve functional feature categories: Identity Management, Unique Asset
Management, Unique Asset Transfer, Code Execution on the Blockchain, Information
Broadcasting, Storing verifiable Data Off-Chain: Hash Anchoring Pattern, Storing
Data On-Chain and its Usage, Interoperability, Governance, Cryptocurrency Minting,
Cryptocurrency Storing and Cryptocurrency Transfer. Furthermore, we presented the
forces and drawbacks of the non-functional features Scalability, Privacy, and Security.

Additionally, we presented eight use case studies that were created by interviewing

74

6.3. Evaluation

industry experts. The main goal for these is to present meta information, an overview
of the project, technology choices, and the development process of the use-case. This
is to raise awareness for the decision that teams are currently creating new distributed
ledger systems and to give justifications why DLT is needed in certain use-cases.

6.3. Evaluation

This section reviews the research questions that were asked at the beginning of this
work and boil an answer down to its essence and present it.

Q1 - What are common features that distributed ledger applications share?

a) Which applications that use distributed ledger technology are being used and
created at the moment?
We can only partly answer this question as it is pretty broad. In this work, we
presented eight projects that are currently either being created or used. IBO -
Product Tracing (5.1), CashOnLedger - Payment processing (5.2), CodeNotary
- Create Trust in Digital Objects (5.3), Lakoma - Insurance of Sustainability
(5.4), Chaincentive - Digital Incentives (5.5), FfE - Proof of Origin for Electricity
(5.6), BMW - Traceability of the Supply Chain (5.7) and Bernstein - Secure
the Ownership of Intellectual Property (5.8). Contradictory to the approach
presented in section 1.3 to only use the results of the literature review to
create the feature catalog and not to describe projects in this work.

b) Which distributed ledger technology do these applications use?
As presented in section 6.1 and section 6.2, the projects use Hyperledger
Fabric (2), Hyperledger Besu (1), Kaleido (1), Parity Ethereum (1), Bitcoin
Mainnet (1), and Ethereum Mainnet (1).

c) Is there related work regarding patterns for distributed ledger technology?
We found a pattern catalog in section 3.3 and summarized the most important
patterns.

Q2 - How can these features be categorized and formalized?

a) Which technologies are used most and how are they implemented?
We can not give a qualified answer to this question yet as more research is
required answering this question. This will be part of the future work.

b) Which different categories do the features fit in?
We identified 15 different feature categories in chapter 4 divided into 12
functional features (section 4.1) and three non-functional features (section
4.2).

c) How can these features be summarized to understand for no DLT savvy
engineer?
We presented several features for each category in section 4.1 and section 4.2

75

6. Summary and Evaluation

respectively, which are summarized and easy to understand for developers
that are new to DLT.

Q3 - Which decisions are made in the current DLT developments?

a) Which problems are the projects that are currently in development solving?
We identified three comprehensive and distinct problems:

* cross-organisational data storage to enable use cases like product and
supply chain tracing (5.1, 5.7)

* proof of origin, ownership or authenticity of assets (5.3, 5.4, 5.6, 5.8)

* payment processing (5.2, 5.5)

b) What are re-occurring questions in the architecture of enterprise DLT applica-
tions?
We found several decisions that are made creating enterprise DLT applica-
tions. First, the decision between a permissioned or permissionless platform.
Second, the specific platform of the category permissioned, permissionless,
or the decision to create an own platform. Third, frameworks and design
patterns within the platform of choice.

Q4 - How can a feature summary be verified?

a) Which technology features of the catalog are implemented in business appli-
cations?
We evaluated our - limited - dataset of use-cases and concluded that Iden-
tity Management, Unique Asset Management, Unique Asset Transfer, Code
Execution on the Blockchain, and Storing verifiable Data Off-Chain: Hash An-
choring are the most commonly used features. We provide the full statistical
evaluation in figure A.2 (appendix).

b) Are there features used in nearly every application and rare features that are
only used in a limited number of applications?
We singled out Storing Data On-Chain and its Usage, Interoperability, Gover-
nance, and Cryptocurrency Minting to be used less frequently than the other
functional features.

c) Can the relevance of the features be derived from the use-case studies?
We can only derive a tendency from the use-cases regarding the feature
catalog. Additionally, we limited this work to DLT-based Business Problem
Solvers as defined in section 2.2. This limitation gives better results for the
relevance of the features regarding the defined category. It especially can
not derive a relevance over the whole DLT spectrum, specifically including
permissionless Blockchains defined as Cryptocurrency in section 2.2.

Q5 - What are characteristics for proper DLT applications?

76

6.3. Evaluation

a) Why is DLT needed for solving the specific issues?
Aggregating all use-case studies we receive the following list of reasons why
DLT is needed for solving specific issues:

* Elimination of third parties for profit

* The Blockchain is uncensorable

* Sharing data and their business benefits across company borders

* Many actors with different needs on a single platform can securely
interact with each other

* Privacy of the data and transparency of the correctness

* Pseudo-anonymity and digital identities

* Tamper-proof and immutable data storage

b) Could DLT Projects also be realized without DLT and still solve the same
issues?
The use-case of CashOnLedger (5.2) could be solved without DLT. However,
DLT allows for a higher degree of automation, and with the requirements
of CashOnLedger, it is the best technology choice. All other interviewees
claimed that their use-case would not be possible without DLT.

c) Would it be possible that projects are easier to implement and execute without
DLT while still solving the same issues?
In our - again - limited dataset, we have not found a single project that would
be easier to implement without DLT, rather, one that utilizes DLT to solve a
non-DLT problem more efficiently.

77

7. Future Work and Conclusion

7.1. Future Work

In this work, we presented a feature catalog and use-case studies.
Future work’s primary goal is to expand the existing catalog on both the functional

and non-functional side of it. The first step would be to expand the feature set to find
new functional features. The second step would be to enrich each existing feature with a
more detailed description, uses, and real-world examples to finally transform the feature
catalog into a pattern catalog.

GAMMA [14] gives a framework for describing patterns which we propose to use in
this pattern catalog with slight modifications.

Gamma et al. Proposed
Pattern Name Pattern Name
Intent Intent
Also Known As -
Motivation Motivation
Applicability Applicability
Structure Structure
Participants Participants
Collaborations Collaborations
Consequences Forces
Implementation Implementation
Sample Code Sample Code
Known Uses Known Uses
Related Patterns -
- DLT Spectrum Position
- Relevance

Table 7.1.: Proposed Pattern Structure [14]

Additionally, a radar chart should be created for each pattern to describe the position
of the pattern in the DLT spectrum.

Furthermore, a map where the patterns can be positioned should be created after the
pattern catalog has been finished. In this map, the different patterns can be clustered
and organized even better.

Also, a lot more use-case studies have to be conducted to receive more data. We also

79

7. Future Work and Conclusion

propose to include the categories Cryptocurrencies and Ecosystem Software as defined in
section 2.2 in the use-case studies to gain more insight on the full field of DLT instead
of only on the enterprise level. Because at the time of writing, the Cryptocurrencies
and Ecosystem Software categories are the far more relevant ones when compared by
investment money.

Lastly, the use-cases should ultimately be judged according to reasonableness by DLT
experts instead of just presenting them to the audience. We did not feel comfortable
making a judgment for the use-cases at the time of writing.

7.2. Conclusion

First we conclude, that it is possible to partition DLT by features instead of just into the
categories public, private, permissionless and permissioned. Furthermore, we have shown
that there are no clear boundaries of the features and specific implementations between
the before mentioned categories, but instead, it is possible to mix and match common
permissioned and permissionless features to create new platforms.

Furthermore, we were only able to identity a small quantity of related work regarding
the generalization of technology into functional and non-functional features and their
refining into generally applicable patterns.

Therefore, we conclude that a lot more work has to be done on scientifically processing
and categorizing use-cases in the DLT space. For a real comparison of the reasonableness
of use-cases and their categorization and break down in features, a few dozens if not a
hundred case studies are needed for the data not to be biased.

Additionally, we discovered, that the non-functional features in DLT are not just
features that can be improved on each new iteration but that they are instead forces
working against each other that have to be balanced for the specific use-case to receive
the best product.

We see the feature catalog as a first step to partitioning the DLT space and have set a
generalization level at which features should be turned into design patterns. However,
we want to stress that the evaluation given in this work lacks generalization. With
eight other use-cases, we might have come to entirely different results in the evaluation
regarding the usage of the feature catalog, and therefore the evaluation about the
quantity of the appearance of the features should be taken with a grain of salt.

80

A. Appendix

A.1. Blockchain Applications

Figure A.1.: Mindmap abstraction of the different types of blockchain applications. [8]

81

A. Appendix

A.2. Blockchain Attributes

Table A.1.: Analysis of attributes and prerequisites of blockchain versus traditional
databases. [8]

82

A.3. Features of the Catalog used by the projects

A.3. Features of the Catalog used by the projects

Figure A.2.: Features of the Catalog used by the projects

83

A. Appendix

A.4. Interview Questionnaire

1. Meta Information

• Who are you?

• What company are you working for?

• Is it a small, medium or big company?

• What is you DLT background?

• How long have you been in DLT?

2. Overview of the Project

• Which problem are you solving?

• Could you summarize your project in one sentence?

• Is your project open source? // Why not?

• Why could this problem not be solved without DLT?

• Could the problem be solved without DLT?

• What are your customers saying?

3. Technology Choices

• Which platform are you using // Did you create a new Platform?

• Did you use existing frameworks/patterns designing your product?

• Could you explain the decisions that led to choosing the platform

• What core features of the platform do you use?

• Did your decision process include deciding between permissioned and per-
missionless ledgers?

• What would happen on a platform change?

4. Questions to the Catalog

• From your experience do you see any missing categories or technology?

• Is there a category or technology that you would remove?

• Would such a catalog be beneficial for your work?

5. Development Process

• Could you outline your general development process?

• Could you describe the tools you are using to develop the Product?

• Could you describe your deployment process?

84

List of Figures

1.1. Publications of Blockchain and DLT related work 3

2.1. Block structure . 8
2.2. Blockchain Architecture . 8

4.1. Contract events . 23
4.2. Off-chain Data Storage Pattern . 24
4.3. Reverse Oracle . 26
4.4. Example UTXO transfers . 32
4.5. Confirmation Pattern . 33

5.1. GOR Process . 60
5.2. The Architecture of the proposed Platform 61

6.1. State of the Projects . 73
6.2. Platform Distribution . 74

A.1. Blockchain Applications . 81
A.2. Features of the Catalog used by the projects 83

85

List of Tables

3.1. Blockchain Network Characteristics . 15
3.2. Blockchain Comparison . 16

7.1. Proposed Pattern Structure . 79

A.1. Blockchain Attributes . 82

87

Bibliography

[1] H. Adams, N. Zinsmeister, and D. Robinson. “Uniswap v2 core.” In: URl: https://uniswap.
org/whitepaper. pdf (2020).

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al. “Hyperledger fabric: a
distributed operating system for permissioned blockchains.” In: Proceedings of the
thirteenth EuroSys conference. 2018, pp. 1–15.

[3] A. M. Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurrencies. " O’Reilly
Media, Inc.", 2014.

[4] A. M. Antonopoulos and G. Wood. Mastering ethereum: building smart contracts and
dapps. O’reilly Media, 2018.

[5] A. Bogensperger and A. Zeiselmair. “Updating renewable energy certificate mar-
kets via integration of smart meter data, improved time resolution and spatial
optimization.” In: 2020 17th International Conference on the European Energy Market
(EEM). IEEE. 2020, pp. 1–5.

[6] V. Buterin et al. “Ethereum white paper.” In: GitHub repository 1 (2013), pp. 22–23.

[7] V. Buterin. Privacy on the Blockchain. 2016. url: https://blog.ethereum.org/
2016/01/15/privacy-on-the-blockchain/ (visited on 01/15/2016).

[8] F. Casino, T. K. Dasaklis, and C. Patsakis. “A systematic literature review of
blockchain-based applications: current status, classification and open issues.” In:
Telematics and Informatics 36 (2019), pp. 55–81.

[9] Coinmarketcap. All Cryptocurrencies. 2020. url: https://coinmarketcap.com/
all/views/all/ (visited on 10/04/2020).

[10] Coinmarketcap. Today’s Cryptocurrency Prices by Market Cap. 2020. url: https:
//coinmarketcap.com/ (visited on 10/06/2020).

[11] J. Elliott. IBM Mainframes–45+ Years of Evolution. 2010.

[12] Etherscan. Top Accounts by ETH Balance. 2020. url: https://etherscan.io/
accounts/c/2 (visited on 10/04/2020).

[13] T. L. Foundation. Hyperledger. 2020. url: https://www.hyperledger.org/ (visited
on 10/29/2020).

[14] E. Gamma. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

89

https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://coinmarketcap.com/all/views/all/
https://coinmarketcap.com/all/views/all/
https://coinmarketcap.com/
https://coinmarketcap.com/
https://etherscan.io/accounts/c/2
https://etherscan.io/accounts/c/2
https://www.hyperledger.org/

Bibliography

[15] M. Herlihy. “Atomic cross-chain swaps.” In: Proceedings of the 2018 ACM symposium
on principles of distributed computing. 2018, pp. 245–254.

[16] Hyperledger. A Blockchain Platform for the Enterprise. 2020. url: https://hyperledger-
fabric.readthedocs.io/en/latest/.

[17] Hyperledger. A Blockchain Platform for the Enterprise. 2020. url: https://hyperledger-
fabric.readthedocs.io/en/latest/identity/identity.html.

[18] Hyperledger. A Blockchain Platform for the Enterprise. 2020. url: https://hyperledger-
fabric.readthedocs.io/en/latest/ledger/ledger.html#ledgers-facts-and-

states.

[19] Hyperledger. Hyperledger - Advancing business blockchain adoption through global
open source collaboration. 2020. url: https://www.hyperledger.org/ (visited on
10/04/2020).

[20] Hyperledger. Hyperledger Fabric 1.0 is Released! 2017. url: https://www.hyperledger.
org/blog/2017/07/11/hyperledger- fabric- 1- 0- is- released (visited on
11/07/2017).

[21] Hyperledger. Listening to events with Fabric Network. 2020. url: https://hyperledger.
github.io/fabric-sdk-node/release-1.4/tutorial-listening-to-events.

html.

[22] S. King and S. Nadal. “Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.”
In: self-published paper, August 19 (2012), p. 1.

[23] Y. Liu, D. He, M. S. Obaidat, N. Kumar, M. K. Khan, K.-K. R. Choo, et al.
“Blockchain-based identity management systems: A review.” In: Journal of Network
and Computer Applications (2020), p. 102731.

[24] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.org/bitcoin.pdf.
2009.

[25] G. W. Peters and E. Panayi. “Understanding modern banking ledgers through
blockchain technologies: Future of transaction processing and smart contracts
on the internet of money.” In: Banking beyond banks and money. Springer, 2016,
pp. 239–278.

[26] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain instant payments.
2016.

[27] D. Pulse. Aave. 2020. url: https://defipulse.com/aave (visited on 09/12/2020).

[28] D. Pulse. Curve Finance. 2020. url: https://defipulse.com/curve- finance
(visited on 09/12/2020).

[29] D. Pulse. Flexa. 2020. url: https://defipulse.com/flexa (visited on 09/12/2020).

[30] D. Pulse. Synthetix. 2020. url: https://defipulse.com/synthetix (visited on
09/12/2020).

90

https://hyperledger-fabric.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/en/latest/identity/identity.html
https://hyperledger-fabric.readthedocs.io/en/latest/identity/identity.html
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html#ledgers-facts-and-states
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html#ledgers-facts-and-states
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html#ledgers-facts-and-states
https://www.hyperledger.org/
https://www.hyperledger.org/blog/2017/07/11/hyperledger-fabric-1-0-is-released
https://www.hyperledger.org/blog/2017/07/11/hyperledger-fabric-1-0-is-released
https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-listening-to-events.html
https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-listening-to-events.html
https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-listening-to-events.html
https://defipulse.com/aave
https://defipulse.com/curve-finance
https://defipulse.com/flexa
https://defipulse.com/synthetix

Bibliography

[31] D. Pulse. yearn.finance. 2020. url: https://defipulse.com/yearn.finance (visited
on 09/12/2020).

[32] J. B. Rothnie Jr, P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, T. A. Landers, C.
Reeve, D. W. Shipman, and E. Wong. Introduction to a system for distributed databases
(SDD-1). 1980.

[33] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, and B. C. Ooi. “A Transactional
Perspective on Execute-order-validate Blockchains.” In: Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2020, pp. 543–557.

[34] N. Szabo. Smart Contracts. 1994. url: https://web.archive.org/web/20140413000357/
http://szabo.best.vwh.net/smart.contracts.html (visited on 11/18/2020).

[35] F. Tao, Q. Qi, A. Liu, and A. Kusiak. “Data-driven smart manufacturing.” In:
Journal of Manufacturing Systems 48 (2018), pp. 157–169.

[36] J. E. William Entriken Dieter Shirley. EIP-721. 2020. url: https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-721.md (visited on 11/18/2020).

[37] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica. “{DIZK}: A distributed
zero knowledge proof system.” In: 27th {USENIX} Security Symposium ({USENIX}
Security 18). 2018, pp. 675–692.

[38] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber. “A pattern collection for
blockchain-based applications.” In: Proceedings of the 23rd European Conference
on Pattern Languages of Programs. 2018, pp. 1–20.

[39] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang. “An overview of blockchain
technology: Architecture, consensus, and future trends.” In: 2017 IEEE international
congress on big data (BigData congress). IEEE. 2017, pp. 557–564.

91

https://defipulse.com/yearn.finance
https://web.archive.org/web/20140413000357/http://szabo.best.vwh.net/smart.contracts.html
https://web.archive.org/web/20140413000357/http://szabo.best.vwh.net/smart.contracts.html
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Research Questions
	Approach
	Outline

	Fundamentals
	Distributed Ledger Technologies
	Public Ledgers on the Example of Bitcoin
	Private Ledgers on the Example of Hyperledger Fabric
	Comparison between public and private Ledgers

	Business Applications

	Related Work
	A systematic literature review of blockchain-based applications: Current status, classification and open issues
	An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends
	A Pattern Collection for Blockchain-based Applications

	Feature Summaries
	Functional Features
	Identity Management
	Unique Asset Management
	Unique Asset Transfer
	Code Execution on the Blockchain
	Information Broadcasting
	Storing verifiable Data Off-Chain: Hash Anchoring Pattern
	Storing Data On-Chain and its Usage
	Interoperability
	Governance
	Cryptocurrency Minting
	Cryptocurrency Storing
	Cryptocurrency Transfer

	Non-Functional Features
	Scalability
	Privacy
	Security

	Case Studies
	IBO - Product Tracing
	Cash on Ledger - Payment processing
	CodeNotary - Create Trust in Digital Objects
	Lakoma - Insurance of Sustainability
	Chaincentive - Digital Incentives
	FfE - Proof of Origin for Electricity
	BMW - Traceability of the Supply Chain
	Bernstein - Secure the Ownership of Intellectual Property

	Summary and Evaluation
	Statistical evaluation of the Case Studies
	Summary
	Evaluation

	Future Work and Conclusion
	Future Work
	Conclusion

	Appendix
	Blockchain Applications
	Blockchain Attributes
	Features of the Catalog used by the projects
	Interview Questionnaire

	List of Figures
	List of Tables
	Bibliography

