
Chair of Software Engineering for Business Information Systems (sebis)
Faculty of Informatics
Technische Universität München
wwwmatthes.in.tum.de

Enhancing Business Process Mining
with Distributed Tracing Data
in a Microservice Architecture
Jochen Graeff (B.Sc.) | 21.08.2017 | Master thesis final presentation
Advisor: Martin Kleehaus

Agenda

Motivation
Research questions
Approach
§ Build sample architecture
§ Instrument sample architecture
§ Develop activity generation algorithm
§ Set-up extended architecture
§ Analysis creation

Live Demo
Evaluation
§ Benefits
§ Limitations

© sebisJochen Graeff – Master thesis final presentation 2

Motivation

How does user behaviour and
system behaviour influence each other?

© sebisJochen Graeff – Master thesis final presentation 3

BUSINESS LAYER

APPLICATION LAYER>

Is there a gap between the layers?

© sebisJochen Graeff – Master thesis final presentation 4

S
6

S
9

S
1

S
4

S
2

S
3

S
7

S
5

S
8Application

Layer

Business transactions

Run-time behavior

User session

Business
Layer Reserve

car
Show

Details

Search
cars

End
rental

Book
car

Process discovery of
multiple sessions

Search cars

Reserve
car

Book car

Show detailsReport Issue

<

Process
Mining

Span ID 1

Span ID 2

Span ID 3

S1

S2

S3

Distributed
Tracing

Analysis of
single trace

Transparency

Research questions

RQ1. How can a relationship between business activities and a distributed
application architecture be established?

RQ2. What data has to be extracted and how has it to be mapped to enable
and store the relationship knowledge?

RQ3. How can business process mining be extended with technical aspects in
order to uncover

a) user and system throughput times for business activity executions and,
b) correlations between business process performance and system

behaviour?

© sebisJochen Graeff – Master thesis final presentation 5

?

?

?

Build sample architecture

Jochen Graeff – Master thesis final presentation

- Car sharing
platform

- Spring Cloud
microservice
architecture

- 3 x infrastructure
services

- 6 x business
services

1Build
sample
architecture

Build sample architecture

© sebisJochen Graeff – Master thesis final presentation 7

EUREKA
DISCOVERY
SERVICE

:8761

CONFIGURA-
TION

SERVICE

:8888

API

ACCOUNTING
SERVICE

:6060

CARS
SERVICE

:9090

MAPS
SERVICE

:6061

NOTIFICA-
TIONS

SERVICE

:6063

PAYMENTS
SERVICE

:5050

USER
SERVICE

:5050

API

API

API

API

API

API

ZUUL
EDGE

SERVICE

:8762

API

WEBUI
SERVICE

:5050

API

API
Business services

Infrastructure services

HTTP

Front-end services

Database access

Instrument sample architecture

© sebisJochen Graeff – Master thesis final presentation 8

- Car sharing
platform

- Spring Cloud
microservice
architecture

- 3 x infrastructure
services

- 6 x business
services

1Build
sample
architecture 2 Instrument

sample
architecture 3

- Add Spring Cloud
Sleuth to every
business service

- append sessionID
to span in
controller of webui
service

Instrument sample architecture

- Instrument every business service with
spring cloud sleuth in order to generate span data in the
applications

§ Add dependency spring-cloud-starter-zipkin
§ Set sampling rate

© sebisJochen Graeff – Master thesis final presentation 9

BUSINESS
SERVICE

API

WEBUI
SERVICE

API

- Instrument service (as for business services)
- Append sessionID in every webui service endpoint

definition: tracer.addTag("sessionID", sessionID);

Develop activity generation algorithm

© sebisJochen Graeff – Master thesis final presentation 10

- Car sharing
platform

- Spring Cloud
microservice
architecture

- 3 x infrastructure
services

- 6 x business
services

1Build
sample
architecture 2 Instrument

sample
architecture 3

Develop
activity
generation
algorithm

- Spring Cloud
Sleuth

- append sessionID
to span in
controller of webui
service

- definition of
required attributes
and foreign for
event log

- Definition of
healthy/failed
activities

- user and system
activities

- inputs: spans,
annotation &
mapping table

Activity generation

© sebisJochen Graeff – Master thesis final presentation 11

CASE ID ACTIVITY START_TS END_TS DURATION TYPE SERVICE_NAME

12345 Book car 07/06/17
12:45:32.000

07/06/17
12:45:32.800

800 ms user webui-service

12345 http:/initializeb
ooking

07/06/17
12:45:32.200

07/06/17
12:45:32.700

500 ms system accounting-service

12345 http:/handlecar
booking

07/06/17
12:45:32.400

07/06/17
12:45:32.500

100 ms system cars-serivice

12345 Unlock car 07/06/17
12:37:32.400

07/06/17
12:37:35.400

3000 ms user webui-service

...

TRAC
E
ID

SPA
N
ID

PAREN
T
ID

NAME TIMESTAMP DURATIO
N

a a null http:/bookcar 07/06/17
12:45:32.000

800 ms

a b a initialize 07/06/17
12:45:32.100

600 ms

a c b http:/initializebookin
g

07/06/17
12:45:32.200

500 ms

a d c http:/handlecarbooki
ng

07/06/17
12:45:32.400

100 ms

b b null http:/opencar 07/06/17
12:37:32.400

3000 ms

spans table (zipkin)

activities table

annotations table (zipkin)
TRAC
E
ID

SPA
N
ID

KEY VALUE

a a http.method GET

a a cs

a a cr

a a sessionID 12345

a b ss

mapping table
technical
_activity

pretty
_name

is_
activit
y

calls
_service

http:/bookcar Book car 1 webui-
service

http:/initializebook
ing

http:/initialize
booking

1 accounting-
service

http:/handlecarbo
oking

http:/handlec
arbooking

1 cars-service

http:/opencar Unlock car 1 webui-
service

http:/findroute Find route 1 webui-
service

Setup extended architecture

© sebisJochen Graeff – Master thesis final presentation 12

- Car sharing
platform

- Spring Cloud
microservice
architecture

- 3 x infrastructure
services

- 6 x business
services

1Build
sample
architecture 2 Instrument

sample
architecture 3Develop log

generation
algorithm 4 Setup

extended
architecture

- Spring Cloud
Sleuth

- append sessionID
to span in
controller of webui
service

- definition of
required attributes
and foreign for
event log

- Definition of
healthy/failed
activities

- user and system
activities

- inputs: spans,
annotation &
mapping table

- Deploy MySQL
- Deploy Zipkin
- Deploy Celonis
- Build log

generation service
that executes the
algorithm

3
Develop
activity
generation
algorithm

ZIPKIN
DISTRIBUTED
TRACING
SERVICE

:9411

API

ACTIVITIES
GENERATION
SERVICE

:6064

API

Setup extended architecture

© sebisJochen Graeff – Master thesis final presentation 13

EUREKA
DISCOVERY
SERVICE

:8761

CONFIGURA-
TION

SERVICE

:8888

API

ACCOUNT-
ING

SERVICE

:6060

CARS
SERVICE

:9090

MAPS
SERVICE

:6061

NOTI-
FICATIONS
SERVICE

:6063

PAYMENTS
SERVICE

:5050

USER
SERVICE

:5050

API

API

API

API

API

API

ZUUL
EDGE

SERVICE

:8762

WEBUI
SERVICE

:5050

API

APIBusiness services

Infrastructure services

HTTP

Front-end services

Database access

MySQL
Database

Extended services

API CELONIS
PROCESS
MINING
TOOL

:9000

Analysis creation

© sebisJochen Graeff – Master thesis final presentation 14

- Car sharing
platform

- Spring Cloud
microservice
architecture

- 3 x infrastructure
services

- 6 x business
services

1Build
sample
architecture 2 Instrument

sample
architecture 3Develop log

generation
algorithm 4 Setup

extended
architecture 5 Analysis

Creation

- Spring Cloud
Sleuth

- append sessionID
to span in
controller of webui
service

- definition of
required attributes
and foreign for
event log

- Definition of
healthy/failed
activities

- user and system
activities

- inputs: spans,
annotation &
mapping table

- Deploy MySQL
- Deploy Zipkin
- Deploy Celonis
- Build log

generation service
that executes the
algorithm

- Configure data
model

- Configure
continuous data
load

- Create 4 analysis
with
§ Business
§ Application
§ Cross-Domain
§ Single Activity

views on the
process

3
Develop
activity
generation
algorithm

Analysis creation

© sebisJochen Graeff – Master thesis final presentation 15

Live Demo

© sebisJochen Graeff – Master thesis final presentation 16

Benefits

© sebisJochen Graeff – Master thesis final presentation 17

Cross-domain
analysis

Provides a more
holistic view between
the business and
application layer

Resource-efficient
data source

Resource-efficient
(easy to implement)
input source for
process mining in
microservice
architectures

Portability

Approach transferable
to different
architectures with
limited effort (i.a. due
to OpenTracing
standard)

Ubiquity

Ubiquitous through
distributed tracing
becoming a standard
tool for microservice
debugging

Flexibility on process
perspectives

Process scope
flexibility through
appending spans with
arbitrary IDs

Bottom up process
discovery

Bottom up process
discovery in legacy
systems

Limitations

© sebisJochen Graeff – Master thesis final presentation 18

System under survey
(SUS)

Approach only tested
on SUS
- Single architecture
- Data volume
- Data contents

Process visualisation
of system activities

Petri nets not a
suitable visualisation
method for system
activities

Performance
overhead

Necessity for
SampingRate=1.0 for
capturing whole
process instances
leads to performance
overhead

Real-time event
handling

Presented prototype
only generates event
log and reloads data
model every 5 min

Backup

§ Workflow of activity generation and data reloading
§ Related work
§ Process Mining
§ Inputs for activity generation
§ Distributed tracing
§ User request and span/trace context
§ ‚End car rental‘ user activity sequence diagram

© sebisJochen Graeff – Master thesis final presentation 19

Workflow of activity generation and data reloading

© sebisJochen Graeff – Master thesis final presentation 20

User

Perform clicks
in front-end

Trigger manual
activity
generation

Log generation service

Trigger
scheduled
activity
generation

~ 5
min

Execute
activity
generation
algortihm

MySQL

Write
activities

table

Write
trace_span

table

Write
technical_
activities

table

Insert new
entry into

reload_trigger
table

PMT

Check for
new entry in
reload_trigger

table

Reload
data model

~ 5
min

Related work

5.3.
R

elated
w

ork

Table 5.2.: Classification of related work

Log
origin

Activity
types

Captured
behaviour

Type of work Evaluation
environ-
ment

System
architecture

Language
independ-
ence

(Near)
real-
time

Poggi et al. [53] Web logs User
Activities

Business Algorithm
evaluation

Real-life
event logs

No n/a No

Abe & Kudo [7] Web logs User
activities

Business Framework Real-life
event logs

n/a n/a No

Bruckmann et al. [13] n/a User
Activities,
system
activities

Business
and
system

Architecture
proposal

n/a n/a n/a Yes

Leemans & van der
Aalst [41]

Joinpoint-
pointcut
model
instru-
mentation

User
activities

System Instrumentation
strategy,
implementation

Real-life
event logs

Yes Yes No

Rubin et al. [59] Custom
instru-
mentation

User
activities,
system
activities

User and
system

Experimental Real-life
event logs

No n/a No

Proof-of-concept
prototype of this work

Distributed
tracing
instru-
mentation

User
activities,
system
activities

Business,
user and
system

Instrumentation
strategy,
architecture
description,
implementation

Simulated
user
requests
on testing
system

Yes Yes Yes

95

© sebisJochen Graeff – Master thesis final presentation 21

Process mining

© sebisJochen Graeff – Master thesis final presentation 22

Event Log
TIMESTAMP ACTIVITY CASE ID
2016-03-05 22:38:41.868 SEARCH CARS #1234
2016-03-05 23:46:32.306 REPORT ISSUE #5678
2016-03-05 23:47:42.321 RESERVE CAR #1234
2016-03-05 23:53:12.354 SHOW DETAILS #9012
...

Search cars

Reserve car

Book car

Show detailsReport issue

<

“The idea of process mining is to discover, monitor and improve real
processes (i.e., not assumed processes) by extracting knowledge from
event logs readily available in today's (information) systems.”

IEEE CIS Task Force on Process Mining

There are three Classes of Process Mining:

1. Process Discovery
2. Conformance Checking
3. Extension

Develop activity generation algorithm

© sebisJochen Graeff – Master thesis final presentation 23

spans table (zipkin)
name
span_id
trace_id
start_ts
parent_id
duration
...

annotations table (zipkin)
span_id
trace_id
a_key
a_value
a_timestamp
...

mapping table
technical_activity
pretty_nametype
is_activity
calls_service

1 has 1..*

activities table
sessionID
activity
start_ts
end_ts
duration
trace_id
span_id
service name
failure
sorting
type
...

1 has 1..* 1..* has 1

Distributed tracing

© sebisJochen Graeff – Master thesis final presentation 24

The path taken
through a simple
servicing system on
behalf of user
request X.

The causal and
temporal relationship
between four spans
of a trace.

Sigelman et al. (2010). Dapper, A Large Scale Distributed Systems Tracing Infrastructure. Google Research

time

SERVICE C
TraceID = 100
SpanID = 103
ParentID = 101

SERVICE B
TraceID = 100
SpanID = 102
ParentID = 101

SERVICE A
TraceID = 100
SpanID = 101
ParentID = 100

FRONT-END
TraceID = 100
SpanID = 100
ParentID = null

user

FRONTEND
SERVICE

SERVICE A

SERVICE B SERVICE C

rpc1

rpc2 rpc3

requestX responseX

User request and span/trace context

© sebisJochen Graeff – Master thesis final presentation 25

ZUUL
SERVICE

ACCOUNTING
SERVICE

CARMANAGEMENT
SERVICE

requestrequestrequest

responseresponseresponse

TraceID =	a
SpanID =	a
sr

TraceID =	a
SpanID =	c
cs

TraceID =	a
SpanID =	b

TraceID =	a
SpanID =	c
cr

TraceID =	a
SpanID =	a
ss

TraceID =	a
SpanID =	b

TraceID =	a
SpanID =	c
sr

TraceID =	a	
SpanID =	e
cs

TraceID =	a
SpanID =	d

TraceID =	a
SpanID =	e
cr

TraceID =	a
SpanID =	c
ss

TraceID =	a
SpanID =	d

TraceID =	a
SpanID =	e
sr

TraceID =	a
SpanID =	f

TraceID =	a
SpanID =	e
ss

TraceID =	a
SpanID =	f

‚End car rental‘ user activity

CARS
SERVICE

locks
car

ACCOUNTING
SERVICE

PAYMENT
SERVICE

ZUUL
SERVICE

NOTIFICATION
SERVICE

GET /lockCar

User

GET /endRental

GET /handlePayment

PUT /notifyUser

GET /finalizeBooking

notifies
user

handles
payment

finalizes
booking

© sebisJochen Graeff – Master thesis final presentation 26

