
Empirical Studies to Identify Best Practices for Addressing Recurring
Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development

NIKLAS REITER, Technische Universität München, Germany

Over the past decades, the emergence of agile development methods has

transformed the way software is developed. Even though systems are getting

more and more complex, companies have to develop and release software

faster and at the same time increase the quality. Due to the proven success

of agile methods, companies also try to make use of these benefits in large-

scale agile software development projects. However, this represents a risk

and is often associated with challenges such as managing silos, complex

functional dependencies between systems and establishing an agile way of

working for multiple teams. Especially enterprise and solution architects face

a large number of problems. Regardless of their importance, there is a lack

of research on the concerns and best practices involved. Based on a mixed-

methods research design we provide an overview of typical concerns and

present five best practices of enterprise and solution architect in large-scale

agile development.

CCS Concepts: • Software and its engineering→Agile software devel-
opment.

Additional Key Words and Phrases: concerns, large-scale agile development,

patterns

ACM Reference Format:
Niklas Reiter. 2019. Empirical Studies to Identify Best Practices for Ad-

dressing Recurring Concerns of Enterprise Architects and Solution Archi-

tects in Large-Scale Agile Development. 1, 1 (September 2019), 24 pages.

https://doi.org/0000001.0000001_2

1 Introduction
The increasingly rapid and frequent changes in market conditions,

technical and regulatory changes and the necessity to reduce costs,

force large IT organizations to carry out complex business trans-

formations at more and more frequent intervals [Ross et al. 2006].

Software development is playing an increasingly important role,

as companies are forced to develop software faster and react to

changing customer requirements [Besson and Rowe 2012; Gerster

et al. 2018]. For years, methodologies such as Waterfall or the Spi-

ral Model have been used to develop software and create business

value [Boehm 1988; Royce 1987]. However, these methodologies

often involve long planning phases with a Big Design Up Front

(BDUF) and large documentation efforts and are not designed to

adapt to changing requirements, unexpected events or even the

interaction with customers within a software development project

[Schwaber 1997]. Therefore, it is not without reason that the use

of agile methods has strongly increased over the last two decades

Author’s address: Niklas Reiter, Technische Universität München, Garching bei

München, 85748, Germany, niklas.reiter@tum.de, matthes@tum.de.

© 2019 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in , https://doi.org/

0000001.0000001_2.

[Maiden and Jones 2010; VersionOne 2019]. Especially agile meth-

ods such as Extreme Programming [Beck and Gamma 2000] and

Scrum [Schwaber and Beedle 2002] are able to solve these chal-

lenges by emphasizing collaboration within teams, active customer

involvement, change tolerance and iterative delivery of features

[Dingsøyr and Moe 2014a; Kettunen 2007]. They are designed for

small, self-organized and collaborative teams that work closely with

customers, incrementally develop software products and deliver

multiple releases within a project [Boehm and Turner 2005a; Dyba

and Dingsoyr 2009].

Nevertheless, the usage of agile methods in the context of large-

scale agile development is difficult as they introduce new challenges

such as the coordination between teams [Petersen and Wohlin

2010], the right balance between emergent and intentional architec-

ture [Dingsøyr et al. 2014; Uludağ et al. 2017], handling distributed

projects and lack of know-how on how to do architecting for man-

aging and building complex software systems [Dingsøyr and Moe

2014b; Leffingwell 2007; Rost et al. 2015; Uludağ et al. 2018]. In addi-

tion, the role of architects in agile methods is often not described

explicitly which is not surprising as the Agile Manifesto states that

the best architecture emerges from self-organizing teams, mainly

through coding and refactoring activities [Beck et al. 2001].

Therefore, the role of enterprise and solution architects in this con-

text is very important as they have to maintain a high-level and

holistic vision of enterprise solutions and development initiatives,

align individual program and product strategies with enterprise

objectives, report technology and architecture requirements / is-

sues to enterprise architects for alignment and issue resolution and

work closely with ATs by providing guidance through business and

technical road maps are becoming increasingly important [Uludag

et al. 2019b; Uludağ et al. 2017]. Despite the relevance of enterprise

and solution architects for large-scale agile software development,

current concerns and best practices are not covered by literature yet.

This paper aims to fill this research gap by providing a collection

of recurring concerns and best practices of enterprise and solution

architects based on a mixed-methods research approach.

The remainder of this paper is structured as follows. Section 2 de-

scribes the research approach following the pattern-based design

research (PDR) method. In Section 3 an overview of related work

in the field of large-scale agile software development is given. In

addition, related patterns languages are described. It follows an

elaboration of the large-scale agile development pattern language in

Section 4. In Section 5 we provide an overview of identified concerns

and best practices and present five patterns. Section 6 contains a

discussion of our main findings. Finally, in Section 7, a summary of

the results and an outlook for possible future research in this area

is given.

, Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2

2 • Uludağ, Ö. et al

Grounding theories
Organized collection of reusable

practice-proven solutions

guide & structure
Solution
design

Configured
design

Instantiated
solution

establish

Theory
(academics)

Practice
(industry)

Observations

select

Δ deviations

pa
tte

rn
-b

as
ed

th

eo
ry

 b
ui

ld
in

g

Design
Theories

Pattern
Language

Pattern
Candidates

configure

learn

observe &
conceptualize

Fig. 1. Pattern-based design research [Buckl et al. 2013]

2 Research Approach
The goal of this paper is to document best practices that address

recurring concerns of enterprise and solution architects in large-

scale agile development. For this purpose, we followed the pattern-

based design research (PDR) method as recommended by [Buckl

et al. 2013] to balance the rigor and relevance of the research. The

PDR method builds on established concepts such as design theory

and patterns and allows researchers to theorize and learn from the

intervention at the industry partners while conducting developmen-

tal research. As shown in Fig. 1, the PDR method consists of four

phases: observe & conceptualize, pattern-based theory formation &
nexus instantiation, solution design & application and evaluation &
learning. Within the observe & conceptualize phase, best practices for
recurring concerns are observed and documented according to a typ-

ical pattern structure (see Section 4). In phase pattern-based theory
formation & nexus instantiation these pattern candidates are then

conceptualized using grounding theories. A pattern can develop

from this if the Rule of Three 1 applies. This states that a documented

pattern must refer to at least three known applications in practice

to ensure the reusability of the solution provided [Coplien 1996],

which are then integrated into the large-scale agile development

pattern language. Design theories can be developed by documenting

appropriate context and problem descriptions. Pattern candidates,

patterns, the pattern language and design theories together form

an organized knowledge base of reusable and proven solutions. In

the solution design & application phase, typical stakeholders select

patterns based on their individual concerns and adapt them to the

specific terminology of the company. After their configurations, pat-

terns can be defined within the case society. During the evaluation
& learning phase, deviations between the actual and the original pat-

tern configuration are recognized and documented. With the help

of the deviations, patterns or best practices can be either identified

or developed further.

3 Related Work and Pattern Languages
The following section provides an overview of current pattern lan-

guages for agile and / or large-scale agile software development.

An overview created by the authors of the LSADPL ([Uludag et al.

1
The rule of three states that a documented pattern must refer to at least three known

uses in practice to ensure the re-usability of the provided solution.

2019a]) was taken as a foundation and extended by missing sample

languages based on an extensive literature research.

The number of current scientific papers on this topic is low, al-

though the question "Architecture and Agility - How much Design

is Sufficient for Different Problem Classes" was already classified by

researchers as the second most burning question at the XP Confer-

ence in 2010 [Freudenberg and Sharp 2010]. Since then, the topic of

agility has gained further importance in large-scale agile develop-

ment projects as a study by Version One has confirmed. According

to the 12th survey, more than 51% of all interviewees work with

agile methods [VersionOne 2018]. This emphasizes the relevance of

this research area. Nevertheless, there is still a lack of knowledge,

especially about challenges and success factors [Alsaqaf et al. 2019;

Uludag et al. 2018].

In 2016, researchers began to investigate large-scale agile transfor-

mations. Among other things, 35 challenges and 29 success factors

from a sample of 42 organizations were described in a systematic

overview [Dikert et al. 2016]. While requirement engineering and

change resistance were identified as the most critical challenges,

soft factors such as coaching and training of agile models / meth-
ods and management support played a key role among the greatest

success factors. These results were confirmed in a literature search

conducted by [Kalenda et al. 2018]. For a validation in practice, a soft-

ware company was specifically selected that currently worked on

the scaling of agile methods. Thereby the following challenges were

identified: Complete organization-wide integration, quality assurance,
change resistance and speed of implementation strategy. Further suc-
cess factors are: Corporate culture, hands-on experience and agile
views and values. [Uludag et al. 2018] conducted a comprehensive

analysis of a total of 73 papers. The researchers identified around

14 different typical stakeholders and 79 challenges. The latter were

grouped into 11 categories. Tab. 2 describes an overview of related

patterns languages.

4 Large-Scale Agile Development Pattern Language
With the usage of agile methods in large-scale agile development

projects, new challenges arise. First, due to the involvement of an in-

creased number of entities/stakeholders, communication and coordi-

nation is more complex and requires greater effort. Second, the more

products are involved in a project, the higher is the number of depen-

dencies which makes the architectural implementation/integration

difficult [Boehm and Turner 2005b; Dikert et al. 2016; Paasivaara

and Lassenius 2014]. In order to solve these problems and to fully ex-

ploit the advantages of agility in large environments [Kettunen and

Laanti 2008] there are first attempts to solve these challenges with

scalable agile frameworks [Alqudah and Razali 2016; Dingsøyr et al.

2019]. Other methods, such as research studies that explain how

to meet challenges of large-scale agile development, are difficult to

find in the literature today. In order to address this gap, the goal is

to identify recurring concerns and document best practices in this

context based on the idea of [Alexander 1977]. This is followed by a

description of the structure of the pattern language (see Fig. 2).

The latter distinguishes three different types of patterns:

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 3

Table 1. Overview of Related Pattern Languages

Source Scope & Goal Focus on agile development Number of patterns Pattern categories Pattern example

[Coplien 1995]

Collection of patterns for shaping a

new organization and its development

processes

Partially 42

(1) Process Patterns;

(2) Organizational Patterns;

- CODE OWNERSHIP

- GATEKEEPER

- FIRE WALLS

[Harrison 1996]

Collection of patterns for

creating effective software

development teams

No 4 -

- UNITY OF PURPOSE

- DIVERSITY OF MEMBERSHIP

- LOCK’EM UP TOGETHER

[Ambler 1998]

Patterns for medium to large-scale

object-oriented software development

Partially 18

(1) Task Process Patterns;

(2) Stage Process Patterns;

(3) Phase Process Patterns;

- ENHANCE AND ENSURE QUALITY OF TECHNICAL REVIEW

- ITERATIVE PROGRAMMING TASKS / ACTIVITIES

- ONLY BUILD WORKING AND TESTABLE SOFTWARE

[Beedle et al. 1999] Collection of Scrum Patterns Yes 3 -

- SPRINT

- BACKLOG

- SCRUM MEETINGS

[Taylor 2000]

Collection of patterns for

creating product software

development environments

No 9

(1) Establishing a Production Potential;

(2) Maintaining a Production Potential;

(3) Preserving a Production Potential;

- DELIVERABLES TO GO

- PULSE

- BOOTSTRAPPING

[Coplien and Harrison 2004]

Collection of organizational

patterns that are combined into

a collection of four pattern languages

Yes 94

(1) Project Management;

(2) Piecemeal Growth;

(3) Organizational Style;

(4) People and Code;

- SKILL MIX

- DEMO PREP

- FEW ROLES

[Bozheva and Gallo 2005]

Patterns originating from different

agile methodologies with special

focus on rationale for applying the patterns

Yes 39

(1) Implementation & Testing;

(2) Design;

(3) Resource Organization;

(4) Contract Management;

(5) Software Process Improvement;

(6) Project and Requirements Management;

- INGRIDIENT GATHERING

- CUSTOMER COMMUNICATION

- REVIEWING WORK PRODUCTS

- BUILD MODELS (PROTOTYPES)

[Elssamadisy 2007] Collection of patterns of Agile Practice Adoptions Yes 9

(1) Pattern to Business Value Mappings;

(2) Pattern to Smell Mappings;

- AUTOMATED DEVELOPER TESTS

- TEST-LAST AND TEST-FIRST DEVELOPMENT

- CONTINOUS INTEGRATION

- SIMPLE DESIGN

- AUTOMATED FUNCTIONAL TESTS

- COLLECTIVE CODE OWNERSHIP

[Elssamadisy 2008]

Collection of patterns for

successfully adopting agile

practices

Yes 38

(1) Feedback Practices;

(2) TechnicalPractices;

(3) Supporting Practices;

(4) The Clusters;

- REFACTORING

- CONTINUOUS INTEGRATIO

- SIMPLE DESIGN

[Beedle et al. 2010]

Collection of the most essential

best practices of Scrum

Yes 11 -

- DAILY SCRUM

- SPRINT BACKLOG

- SPRINT REVIEW

[Keutzer et al. 2010]

Pattern Language for Engineering (Parallel)

Software, that can help to increase quality and

performance by pulling the essential set of design patterns

Yes 56

(1) Structural Patterns;

(2) Computational Patterns;

(3) Algorithm strategy Patterns;

(4) Implementation Strategy Patterns;

(5) Parallel execution Patterns;

- ITERATIVE REFINEMENT

- EVENT BASED, IMPLICIT INVOCATION

- BACKTRACK BRANCH AND BOUND

- RECURSIVE SPLITTING

- STRICT DATA PAR

- TASK GRAPH

- COLLECTIVE COMMUNICATION

[Lescher 2010]

Patterns to build a globally distributed

team and make communication and

collaboration effective

Partially 5

(1) Kick-Off and Teambuilding;

(2) Project Communication;

- FOCUS ON DIRECT COMMUNICATION

- ESTABLISH COORDINATION MECHANISM

- CREATE COMMUNITIES

[Välimäki 2011]

Enhancing performance of project

management work through improved

global software project management practice

Partially 18

(1) Directing a Project;

(2) Starting up a Project;

(3) Initiating a Project;

(4) Controlling a Stage;

(5) ManagingStage Boundaries;

(6) Closing a Project;

(7) Managing Product Delivery;

(8) Planning;

- COLLOCATED KICK-OFF

- CHOOSE ROLES IN SITES

- ITERATION PLANNING

[Monasor et al. 2013]

Pattern language for pedagogical patterns in

Global Software Development, that can

help to build a custom set of practices

No -

(1) Cultural Patterns;

(2) Communication and Interaction Patterns;

(3) Patterns for Project Management;

(4) Testing Patterns;

(5) Requirements Engineering Patterns

- UNPRODUCTIVE PRODUCTIVITY

- HESITANT TO ALWAYS SAY YES

- OWNING RATHER THAN MODULARIZING

- MULTI -LEVEL DAILY MEETINGS

- SYNCHRONIZED TEST ENVIRONMENTS

- USE BIDIRECTIONAL CROSS REFERENCES

[Sutherland et al. 2014]

Pattern language for Hyperproductive

Software Development. Patterns for problems

of Scrum teams that hinder them to finish early

Yes No

(1) Getting Ready for a Sprint;

(2) Dealing with Disruptive Problems During a Sprint;

(3) Becoming Hyper-Productive;

- STABLE TEAMS

- YESTERDAY’S WEATHER

- SWARMING: ONE PIECE CONTINUOUS FLOW

- HAPPINESS METRIC

- TEAMS THAT FINISH EARLY ACCELERATE FASTER

[Kausar and Al-Yasiri 2015]

Patterns for distributed teams using

agile methods with special focus on

offshoring scenarios

Yes 15

(1) Management Patterns;

(2) Communication Patterns;

(3) Collaboration Patterns;

(4) Verification Patterns;

- SCRUM OF SCRUM

- FOLLOW THE SUN

- COLLABORATIVE PLANNING POKER

- CENTRAL CODE REPOSITORY

- LOCAL PAIR PROGRAMMING

[Ruy et al. 2015]

Pattern language to provide a stronger sense of connection

between the patterns due to expressing relations such as

dependence, temporal precedence of application

Partially 27

(1) Patterns of Work Units;

(2) Patterns of Human Resources;

(3) Patterns of Work Products;

- STAKEHOLDER ALLOCATION

- CLEAR STAKEHOLDER DEFINITION

- ORGANIZATIONAL / PROJECT TEAM DEFINITION

- CLEAR ROLE DEFINITION OF TEAMS

[Javed et al. 2016]

Pattern language for construction and maintenance of

software architecture traceability links to requirements

and source code

Partially 5 -

- INITIAL TRACEABILITY CONSTRUCTION

- TRACEABILITY COMPLETION

- CONTINOUS TRACEABILITY MAINTENANCE

- ON-DEMAND TRACEABILITY MAINTENANCE

- TRACEABILITY QUALITY CHECKS

[Mitchell 2016]

Collection of patterns to address

agile transformation problems

Yes 54

(1) Patterns of Method;

(2) Patterns of Responsibility;

(3) Patterns of Representation;

(4) Anti-Patterns;

- LIMITED WIP

- KANBAN SANDWICH

- CONTROLLED FAILURE

[ScrumPLoP 2019]

Body of pattern literature around

agile and Scrum communities

Yes 234(10)

(1) Value Stream;

(2) Team;

(3) Sprint;

(4) Process Improvement;

(5) ProductOrganization;

(6) Distributed Scrum;

(7) Scaling Scrum;

(8) Scrum Core;

(9) Misc;

- SCRUM MASTER

- SCRUM OF SCRUMS

- PORTFOLIO STANDUP

[Uludag et al. 2019a]

Collection of recurring concerns and

patterns of typical stakeholders in large-scale

agile development

Yes 70

(1) Culture and Mindset;

(2) Enterprise Architecture;

(3) Geographical Distribution;

- STRICTLY SEPARATE BUILD AND RUN STAGES

- COMMUNITY OF PRACTICE

- ITERATION DEPENDENCY MATRIX

- DON’T USE AGILE AS A GOLDEN HAMMER

, Vol. 1, No. 1, Article . Publication date: September 2019.

4 • Uludağ, Ö. et al

© sebis 11811127 - Large-Scale Agile Development Pattern Language

Stakeholders

Concerns

e.g., enterprise architect,

solution architect

e.g., considering integration issues / dependencies

with other teams, verifying and controlling the

compliance of ATs with architecture principles,

dealing with technical debts

Viewpoint Patterns
e.g., architecture solution space, business

capability map, weighted shortest job first

Coordination Patterns

Methodology Patterns

Principles

e.g., community of practice,

principle based intentional architecture,

build the simplest architecture that can possibly

work

CO1

e.g., don’t use BDUF, don’t be a PowerPoint architect,

don’t communication via documents only

P1

!

Anti-Patterns
Ant1

M1

V3 V4V1 V2

Report

C2

?
C4

?
C3

?
C1

?

S2S1

Fig. 2. Conceptual overview of the proposed pattern language

• Coordination Patterns (CO-Patterns) define coordination
mechanisms that are proven solutions for recurring coordi-

nation problems such as dependencies between activities or

the management of tasks or resources.

• Methodology Patterns (M-Patterns) define concrete steps
that are proven solutions to a problem.

• Viewpoint Patterns (V-Patterns) define proven solutions

for visualizing information such as documents, boards, met-

rics, models, and reports.

In addition, the pattern language contains four additional concepts:

• Anti-Patterns define solutions that are unfavourable or harm-

ful to the success of a software project. Anti-patterns repre-

sent the counterpart to patterns.

• Principles provide a common direction for action with the

help of rules and guidelines to address specific concerns.

• Stakeholders are defined as persons who have an interest

in the project and/or are actively involved in the large-scale

agile development [Uludağ et al. 2018].

• Concerns describe challenges of stakeholders. They can be

categorized as different topics such as risks or responsibilities

[42010:2011(E) 2011] and addressed by different Patterns,
Anti-Patterns or Principles.

In the literature different pattern forms exist. Among the most

common pattern forms are the Alexandrian Form, Gang of Four

Form, Coplien Form and the Fowler Form [Ernst 2010; Fowler 2006].

Each pattern form has certain advantages and disadvantages [Ernst

2010] depending on the context and field of application. This means

that there is no optimal form. When selecting or creating a new pat-

tern form, a researcher should pay special attention to the context

and the goal and incorporate his own experiences [Buschmann et al.

2007b; Ernst 2010]. According to [Fowler 2006] the selection process

is a personal decision and should also consider one’s writing style

and the ideas to be conveyed. The template defined by [Buschmann

et al. 1996; Ernst 2010] provides a good basis for large-scale agile

development patterns. Fig. 3 describes the underlying conceptual

model. It contains the key elements with which concepts and pat-

terns of the model language are documented. Each element has a

identifier and a name which simplifies referencing. There is also a

section for stakeholders with a list of synonyms and related names

called alias. For organizations there are two more sections called

category and scaling level. It describes the category on the one hand

and the organizational level at which a group company operates on

CO-Pattern V-Pattern
type
data collection

M-Pattern

LSAD Pattern
identifier
name
alias
summary
example
context
problem
forces
solution
variants
consequences
other standards
known uses

Concern
identifier
name
category
scaling level

Principle
identifier
name
alias
summary
type
binding nature
example
context
problem
forces
variants
consequences
other standards
known uses

LSAD Anti-Pattern
identifier
name
alias
summary
example
context
problem
forces
general form
consequences
revised solution
other standards

Stakeholder
identifier
name
alias

see also
* *

see also
* *

see also

*

*
see also

*

*
see also

*

*

is addressed by

*

*
is addressed by
*

*is addressed by

*

*

has
*

*

Fig. 3. Conceptual model of the Large-Scale Agile Development Pattern
Language [Uludag et al. 2019a]

the other. In addition, principles, patterns and anti-patterns consist

of eight common sections: First, in section example, a current practi-
cal example in the form of a project or product in which this pattern

is/was used is illustrated. This is followed by a description of the

conditions under which the problem occurs in section context. In sec-
tion problem the problem itself is described in more detail. In section

forces the question why the problem is difficult to solve is answered.

Section summary describes how the problem should be solved. The

consequences section lists the advantages and disadvantages associ-

ated with the solution (=pattern), while the optional other standards
and see sections contain references to other solutions and frame-

works. The alias section contains a list of synonyms. Principles and

patterns consist of both variants and known uses which list variants

and alternatives as well as proven applications in practice. The type
and binding nature sections explicitly indicate whether the topics

are recommended or mandatory by principles. The solution section

explains the recommended solution for a pattern. In addition, there

are specific sections, such as general form and revised solution, which
apply only to anti-patterns. These include approaches that reinforce

the problem at hand. For the V-patterns described above, the type
and data collection sections provide a way to list the visualization

concept and the collection processes required to create it. To illus-

trate the maturity of a pattern, identified patterns are marked with

a star notation similar to [Buschmann et al. 2007a]. Depending on

the number of stars, the effect of a pattern for a problem is lower or

higher. The higher the number of stars, the more effective a pattern

is for a particular problem. More precisely, the marking with no

star symbolizes that the pattern can be a solution for an observed

problem but must still be significantly revised in order to achieve an

effectiveness. A star means that the pattern addresses a real prob-

lem but has yet to mature. Two stars indicate that the pattern in its

current form effectively addresses a problem.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 5

Table 2. Overview of Related Pattern Languages

Step Research Design Approach according to Goal Outcome related to this paper Published Articles

1 Structured Literature Review [Vom Brocke et al. 2009]

Identifying recurring concerns of

stakeholders in large-scale agile development

List of 26 recurring concerns of enterprise and solution architects [Uludağ et al. 2018]

2 Case Study [Runeson and Höst 2009; Yin 2017]

Investigating the role of enterprise

architects in large-scale agile development

and their collaboration with agile teams

List of X recurring concerns and X good

practices and pattern candidates of enterprise architects

[Uludag et al. 2019a], [Uludag et al. 2019b]

3 Expert Interviews [Bogner et al. 2009]

Identifying recurring concerns and

best practices of enterprise and solution

architects in large-scale agile development

List of X recurring concerns and X good

practices and pattern candidates of enterprise and solution architects

-

Table 3. Overview of interview partners

Organization No. Case Study interviews No. Expert interviews Roles

CarCo 20 3

Chief Technology Officer, Enterprise Architect,

Group Lead IT, Product Owner, Requirements Engineer,

Solution Architect, Scrum Master

RetailCo 5 3

Chapter Lead Business Process Architecture,

Chief Scrum Master, Enterprise Architect,

Product Owner, Solution Architect, Scrum Master,

GlobalInsureCo 12 -

Agile Developer, Chapter Lead

Agile Coaching,

Enterprise Architect

TechCo - 3 Enterprise Architect, Solution Architect

ConsultCo - 1 Solution Architect

SoftCo - 3 Enterprise Architect, Solution Architect

ITCo 4 - Enterprise Architect, Product Owner

PublicInsureCo 4 -

Agile Developer, Enterprise Architect,

Head of IT Governance, Head of IT

Governance Department

5 Recurring Concerns and Best Practices
In order to identify recurring concerns and best practices, a mixed-

methods research design in linewith the recommendations of [Tashakkori

and Teddlie 2010] was applied consisting of three distinct phases

(see Tab. 2).

At first a structured literature review according to [Vom Brocke

et al. 2009] was conducted to identify recurring concerns of stake-

holders in large-scale agile development [Uludağ et al. 2018]. The

latter were summarized in a list which formed the basis for the next

steps. In step two, the [Runeson and Höst 2009; Yin 2017] case study

approach was used. With the help of semi-structured interviews

the relevance of the elements identified from the literature was

examined and validated in practice. New or previously unknown

challenges and best practices were included in the list and used in

subsequent interviews. The approach to conduct semi-structured

interviews was specifically chosen to allow interviewees to answer

questions as openly as possible and without any guidance. This was

achieved through a combination of open and closed questions. In

step three, expert interviews according to [Bogner et al. 2009] were

performed. Based on the gathered data from previous steps, recur-

ring concerns, best practices and pattern candidates of enterprise

and solution architects were identified. In order to facilitate the

triangulation of the observers, an interview was usually conducted

by at least two researchers in a personal conversation [Runeson

and Höst 2009]. Tab. 3 gives a detailed overview of the number of

interviews.

As shown in Fig. 4, a total of 35 recurring concerns were observed

by developers, enterprise architects and solution architects. 16 out

of 35 concerns have already been identified in the structured lit-

erature review and confirmed as a concern by the case study and

expert interviews. Within the case study, additional 9 concerns were

identified and added. By conducting expert interviews, another 10

previously unknown concerns could be identified and added to the

list.

Fig. 5 provides an overview of identified best practices. In to-

tal, we identified 65 pattern candidates consisting of 16 Principles,

3 Coordination-Patterns, 19 Methodology-Patterns, 18 Viewpoint-

Patterns and 9 Anti-Patterns. The application of the rule of three ac-

cording to [Coplien 1996], resulted in a total of 43 patterns consisting

of 11 Principles, 3 Coordination-Patterns, 12 Methodology-Patterns,

10 Viewpoint-Patterns, and 7 Anti-Patterns.

Fig. 6 shows the current version of our large-scale agile develop-

ment language which is part of a specially defined prototypical web

application and can be found under
2
. Furthermore five nodes are

highlighted which represent the best practices that are described in

section 5. More information about the large-scale agile development

patterns and concepts can be found in Appendix A.

2
https://scaling-agile-hub.sebis.in.tum.de/#/patterns

, Vol. 1, No. 1, Article . Publication date: September 2019.

https://scaling-agile-hub.sebis.in.tum.de/##/patterns

6 • Uludağ, Ö. et al

0 5 10 15 20 25 30

No. of Interviewees

C-9: How to find the right balance between architectural improvements and business value?; n = 26; o = 8

C-67: How to deal with a lack of understanding of architecture?; n = 26; o = 8

C-6: How to deal with technical debts?; n = 23; o = 8

C-51: How to ensure that agile teams adhere to architecture-related activities?; n = 22; o = 8

C-73: How to establish a common architectural direction across the organization?; n = 21; o = 8

C-72: How to deal with architecture-related uncertainties and risks?; n = 20; o = 8

C-85: How to align enterprise architecture and product management?; n = 19; o = 8

C-75: How to deal with communication gaps between EA and AT?; n = 19; o = 6

C-69: How to verfiy and control the compliance of ATs with architecture principles?; n = 19; o = 8

C-71: How to decompose monolithic systems?; n = 18; o = 8

C-77: How to identify hotspots within the architecture?; n = 17; o = 7

C-80: How to align business and IT?; n = 16; o = 6

C-78: How to ensure that architecture check-ins are controlled?; n = 16; o = 6

C-2: How to consider integration issues and dependencies with other teams?; n = 16; o = 7

C-21: How to manage dependencies to other existing environments?; n = 16; o = 7

C-81: How to create scalable software?; n = 15; o = 6

C-27: How to manage and share knowledge about system components and dependencies?; n = 15; o = 8

C-38: How to facilitate standardization across agile teams?; n = 15; o = 5

C-26: How to align and communicate architectural decisions?; n = 14; o = 7

C-74: How to balance intentional and emergent architecture?; n = 13; o = 6

C-40: How to apply agile practices for developing/maintaining legacy systems?; n = 14; o = 6

C-25: How to manage and integrate heterogenous subsystems of different development teams?; n = 12; o = 6

C-68: How to deal with centralized and top-down architectural decision?; n = 12; o = 5

C-84: How to migrate applications to the cloud?; n = 11; o = 7

C-82: How to integrate internal and external cloud?; n = 11; o = 5

C-79: How to decide whether to make or buy?; n = 11; o = 6

C-8: How to ensure that non functional requirements are considered by the development team?; n = 11; o = 6

C-64: How to define a lightweight review process for adopting new technology?; n = 11; o = 8

C-34: How to ensure the reuse of enterprise assets?; n = 10; o = 6

C-70: How to assign systems to business domains?; n = 9; o = 5

C-76: How to deal with the reduced time for planning architectures?; n = 7; o = 4

C-14: How to create a proper upfront architecture design of the system?; n = 7; o = 5

C-83: How to develop software systems that are open for third parties?; n = 4; o = 2

C-57: How to decompose agile teams in smaller independent teams?; n = 4; o = 4

Identified in interviewsIdentified in case studyIdentified in literature n = No. interviewees; o = No. organizations

C-86: How to deal with the new working methodology as an architect within agile environments?; n = 14; o = 8

Fig. 4. Recurring concerns identified

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 7

P - 18

Collocate

Architects with

Agile Teams

**

P - 19

IT Systems

Communicate

through Services

P - 20

End to End

Responsibility

**

P - 21

Loose Coupling of

Systems

P - 21

Reuse is

Preferable to Buy,

which is

Preferable to Make

**

P - 22

Reuse

Redundancy

**

P - 23

Applications rely

on One

Technology Stack

P - 24

Build the Simplest

Architecture that

Can Possibly

Work

P - 32

IT Systems

Communicate

through Services

P - 25

Use

Microservices

**

P - 26

API First

P - 27

Cloud First

P - 28

Use Direct

Communication

P - 29

Develop

Competition

Critical Software

Systems Inhouse

P - 30

Strictly Separate

Build and Run

Stages

P - 31

Composition Over

Inheritance

CO - 2

Community of

Practice

CO - 15

Center of

Excellence

CO - 16

Lunch Talk

M - 22

Agile Architecture

Governance

Approach

M - 23

Enterprise

Architecture

Governance

Service

**

M - 24

Architecture

Governance

through

Institutional

Pressure

**

M - 25

Architectural

Thinking

M - 26

Add Principles

to DoD

M - 27

Quality

Gate

**

M - 28

Principle based

Intentional

Architecture

M - 29

Supporting

Architect

M - 30

Architectural

Spike

M - 31

Agile

Collaboration

Environment

**

M - 32

Architecture

Gate

**

M - 33

Collaborative

Architecture

Decision Making

M - 34

Architectural

Runway

**

M - 35

Empowered

Community of

Practice

M - 36

Plan Additional

Time for Enablers

M - 37

Domain Driven

Design

M - 38

Business

Capability Centric

Teams

**

M - 39

Pair Programming

M - 40

Defining

Architecture

Principles as Quality

Gate Policies

V - 19

Architecture

Solution Space

V - 20

Business

Domain Map

V - 21

Business

Capability Map

V - 22

Technical Debt

Backlog

**

V - 23

Communication

Diagram

V - 24

Context

Map

*

V - 25

Data

Diagram

**

V - 26

Weighted

Shortest Job

First

V - 27

Number of

API Calls

**

V - 28

Number of

Changes of

Architecture

Models

V - 29

Number of

Consulting

Requests

**

V - 30

Number of

Dependencies

V - 31

Number of

Releases

**

V - 32

Number of

Version Skippings

V - 33

System

Diagram

V - 34

Time to Feature

Delivery

**

V - 35

Total Cost of

Ownership

**

V - 36

Technology

Radar

A - 11

Don’t Use Best

of Breed

**

A -12

Don’t be a

PowerPoint

Architect

A - 13

Don’t Use Big

Design Up Front

A - 14

Don’t Separate

between

Enterprise and

Software

Architecture

A - 15

Don’t Build an

Ivory Tower

A - 16

Don’t Overshoot

Coordination

Meetings

**

A - 17

Don’t Use Indirect

Communication

A - 18

Don’t Force

Requirements

Without Support

A - 19

Don’t Create Data

Silos

Pattern Principle
Coordination

Pattern

Methodology

Pattern

Viewpoint

Pattern

ID

Name

Occurrence

Anti

Pattern

Fig. 5. Recurring Principles, Patterns and Anti-Patterns identified

, Vol. 1, No. 1, Article . Publication date: September 2019.

8 • Uludağ, Ö. et al

© sebisNiklas Reiter - Guided Research: Final Presentation 14

Recurring Concerns and Best Practices - Relationship

C-85C-6 C-9 C-25

P-31P-30

C-67 C-71 C-79 C-80C-73 C-81 C-82C-72 C-75C-26 C-69

P-26 P-28 P-29

C-68 C-74

P-24

C-14 C-76

V-36

Defining

Architecture

Principles as

Quality

Gate Policies

Composition

Over Inheritance

Strictly Separate

Build and Run

Stages

API First Use Direct

Communication

Develop Competition

Critical Software

Systems Inhouse

Technology

Radar
Build the Simplest

Architecture that Can

Possibly Work

C-34 C-38

V-21

Business

Capability Map

V-19 V-20

Architecture

Solution Space

Business

Domain Map

C-86

C-16C-2 A-14 A-18A-15 A-17 A-19A-12

Lunch TalksCommunity Of

Practice
Don’t Separate

Between Enterprise

and Solution

Architecture

Don’t build an

Ivory Tower

Don’t Use

Indirect

Communication

Don’t Force

Requirements

Without Support

Don’t Create

Data Silos
Don’t be a

PowerPoint

Architect

M-25

Architectural

Thinking

M-38M-37M-30M-29 M-41M-40M-33

Plan

Additional

Time for Enabler

Collaborative

Architecture

Decision Making

Domain

Driven Design

Architectural

Spike

Supporting

Architect
Pair

Programming

M-22 M-28M-26

Agile Architecture

Governance

Approach

Add Principles to

Definition

of Done

Principle

Based

Intentional

Architecture

Fig. 6. Pattern language for enterprise and solution architects *

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 9

5.1 Principle: Build the Simplest Architecture that can Possibly Work (P-24) *

Principle Overview
Alias Simplest Architecture

Summary Build the Simplest Architecture that can Possibly Work ensures that

the creation of an architecture does not consume too much time and causes no

delay of development.

Type Software Architecture

Recommended Binding Nature

5.1.1 Example
Five agile teams of RetailCo develop a new product. At the beginning of the project, an architect is asked to create and provide a target picture

as quickly as possible. Due to the trade-off between quality vs. time, the architect struggles.

5.1.2 Context
Constantly changing requirements in large-scale agile development force developers and architects to adapt or even discard software

architectures at more and more frequent intervals. Even though agile teams commit to agile software development, it happens often, that

architects try to build the optimal architecture or lose themselves in details. This is problematic, because detailed plannings delay the start of

development and result in a decrease of velocity. Therefore, architects need to be able to create temporary architectures in a short amount of

time.

5.1.3 Problem
The following concerns are addressed by Build the Simplest Architecture that can Possibly Work:

• C-14: How to create a proper upfront architecture design of the system?
• C-71: How to decompose monolithic systems?
• C-76: How to deal with the reduced time for planning architectures?
• C-81: How to create scalable software?

5.1.4 Forces
The following forces influence Build the Simplest Architecture that can Possibly Work:

• Attention to detail: Architects tend to spend a lot of time working on one single architecture to make it perfect which delays the start of

development.

• Tradeoff between quality and time: When creating architectures in agile environments, there is always the tradeoff between quality and

time because time for planning architectures is limited. This especially affects cross-cutting aspects like security and scalability of a

product because it involves all architecture layers and is either achieved in total or not.

• Lack of planning and conception phase: Due to release pressure and constant change, time is critical which makes it difficult for architects

to cover all aspects, uncertainties and risks in detail and at the same time keep the development pace.

5.1.5 Variants
A variant of Build the Simplest Architecture that can Possibly Work could not be identified.

5.1.6 Consequences
The following benefits of Build the Simplest Architecture that can Possibly Work are known:

• Development of software is faster

• More time for support and enablement of agile teams

The following liabilities of Build the Simplest Architecture that can Possibly Work are known:

• Quality of architecture decreases

• Architecture-related uncertainties and risks increase

5.1.7 See Also
In order to create a software architecture according to Build the Simplest Architecture that can Possibly Work, the following V-Patterns

should be considered:

• V-19: Architecture Solution Space

• V-36: Technology Radar

, Vol. 1, No. 1, Article . Publication date: September 2019.

10 • Uludağ, Ö. et al

5.1.8 Other Standards
An alternative would be to build the software architecture based on agile principles. Furthermore, architects should use iterative development

processes as applied in The Agile Model Driven Development (AMDD) lifecycle for software projects to develop architectures in agile environments

[Larman and Basili 2003; Ruparelia 2010].

5.1.9 Known Uses
The following uses of Build the Simplest Architecture that can Possibly Work are known:

• CarCo

• ItCo

• PublicInsureCo

• RetailCo

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 11

5.2 CO-Pattern: Lunch Talks (CO-16) *

CO-Pattern Overview
Alias Business Lunch

Summary A Lunch Talk provides an option to schedule ad hoc meetings at a time where participants

are per se highly available (i.e. lunch time).

5.2.1 Example
SoftCo is in the middle of a tight scheduled software development project. After a meeting with the customer, a major technical requirement

needs to be changed. The responsible solution architect does not know how to implement the change properly into the existing solution. In

order to get help, he tries to organize a meeting but due to tight schedules, most of the experts are not available during regular business hours.

5.2.2 Context
Developers and architects are bound to a tight schedule, especially in an agile environment. In critical times, for example when an upcoming

release is close or if a system is causing problems every day’s agendas are fully booked. 100% of the capacity is allocated and there remains no

time for additional and ad hoc meetings.

5.2.3 Problem
The following concerns are addressed by Lunch Talks:

• C-25: How to manage and integrate heterogeneous subsystems of different development teams?
• C-26: How to align and communicate architectural decisions?
• C-72: How to deal with architecture-related uncertainties and risks?
• C-85: How to align enterprise architecture and product management?

5.2.4 Forces
The following forces influence Lunch Talks:

• Co-location is not always guarantied: Often, members of the same development team are not located at the same physical location

which makes face-to-face communication and collaboration among the team members difficult.

• Difficult to schedule ad hoc meetings in an agile environments: Architects and developers are bound to tight schedules, which makes

it difficult to schedule meetings. But, important architectural challenges or problems (e.g. security) need to be taken care of quickly.

Often, there is no time left to schedule a meeting in advance for the next couple of weeks. Time is critical and during lunch break, no

one is occupied or in a meeting. Due to the fact, that a break has a defined time box, ad hoc lunch talks are perfectly suited for such

matters. In addition, it does not slow down or restrict the work of the participants involved in any way.

5.2.5 Solution
In order to have a successful/Setting up a Lunch Talk some rules should be considered.

• Have a clear objective: The discussion should mainly focus on working practices and stick to the defined objective. In the best case,

different best practices are discussed leading to a working solution.

• Only invite experts: Only invite colleagues that are experts in that specific field of discussion and know what they talk about.

• Keep the number of people as small as possible: Keeping the number of participants as small as possible reduces the probability to ramble

off and talk about theoretical concepts.

• Keep the meeting short: In order to achieve the defined objective, a meeting should be short. Participants should try to achieve the goal

in the given time. Furthermore, keeping the meeting short increases the motivation to participate.

• Choose regular lunch time and place: When setting up the meeting, regular lunch times should be considered. Furthermore, the place

should be in close distance to the office to keep travel times to a minimum. A suitable place for a Lunch Talk is the organizations

canteen.

5.2.6 Variants
A Lunch Talk can be set up for a variety of domains such as architecture related topics, testing or management related topics [Lee and Yong

2010]. A Lunch Talk exists in three forms:

• Ad hoc
• Optional (weekly, monthly, quarterly)
• Scheduled

5.2.7 Consequences
The following benefits of Lunch Talk are known:

• Breaking up information silos

, Vol. 1, No. 1, Article . Publication date: September 2019.

12 • Uludağ, Ö. et al

• Less formal

• More creative setting

• Saving time through no planning in advance

• Enabling knowledge transfer

The following liabilities of Lunch Talk are known:

• Taking away important time to rest

• Quality of results during lunch might be lower

• Aversion against meetings during lunch time can make the organization difficult

• Providing right incentives to give up a lunch break is challenging

5.2.8 See Also
Lunch Talk may be applied in combination with the following M-Patterns:

• M-33: Collaborative Architecture Decision Making

5.2.9 Known Uses
The following uses of Lunch Talk are known:

• RetailCo

• SoftCo

• TechCo

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 13

5.3 V-Pattern: Architecture Solution Space (V-19) *

V-Pattern Overview
Alias Architecture Box, Product Solution Space

Summary Architecture Solution Space describes architectural constraints, dependencies and

boundary conditions for a large-scale software development project and is created collabo-

ratively by experienced architects and developers.

Type Board

5.3.1 Example
At the beginning of a software development project at RetailCo, the enterprise and solution architect have to define the necessary minimum

requirements for the new software product. The latter include the ability to integrate the product seamlessly into the existing product

landscape while complying to existing architectural specifications. The architects are struggling because they have to find a tradeoff between

minimum requirements and at the same time not restricting the developers’ freedom of decision regarding implementation.

5.3.2 Context
Due to the agile transformation, organizations have to create and design architectures differently. Especially, if the organization has just started

with the transformation and the maturity is low, the field of tension between enterprise architecture management and agile methods is large. On

the one hand, the teams should have maximal autonomy. On the other hand, there must be enterprise architecture management specifications

in order to create a sustainable architecture without creating monolithic systems. Balancing intentional and emergent architecture becomes

one of the major challenges. If there is no framework, this can lead to chaos, high costs and dissatisfaction of employees.

5.3.3 Problem
The following concerns are addressed by Architecture Solution Space:

• C-6: How to deal with technical debts?
• C-25: How to manage and integrate heterogeneous subsystems of different development teams?
• C-34: How to ensure the reuse of enterprise assets?
• C-38: How to facilitate standardization across agile teams?
• C-69: How to verify and control the compliance of agile teams with architecture principles?
• C-72: How to deal with architecture-related uncertainties and risks?
• C-81: How to create scalable software?

5.3.4 Forces
The following forces influence Architecture Solution Space:

• Field of tension between enterprise architecture management and agile Methods: Agility thrives on autonomy and freedom of decision,

while enterprise architecture management depends on strict guidelines. Both contradict each other and are therefore difficult to combine,

especially in large-scale agile development projects.

• Complete overview of existing solutions is missing: Especially in large organizations, a complete overview of already existing solutions is

lacking. This is one of the reasons why the reuse of enterprise assets is difficult to ensure.

• Agility restricts the ability for detail or to achieve certain requirements in a short amount of time: For example, achieving scalability

is only possible in a continuous process which can not be achieved to full extent in one simple sprint. Scalability affects all layers:

infrastructure, domain, application and presentation layer. Therefor, relevant requirements must be defined in advance and be part

of the Architecture Solution Space: which is difficult because in agile environments there is less time for planning architectures

and identifying possible risks or uncertainties. Hence, not all aspects can be considered and architects have to find a tradeoff between

quality and time.

5.3.5 Solution
In general, the Architecture Solution Space describes architectural constraints, dependencies and boundary conditions for a large-scale

software development program and is created collaboratively by experienced architects and developers. At the beginning of the development

program, it just contains minimal but essential requirements such as security constraints. As development progresses, new important elements

are added. The definition of a minimal Architecture Solution Space in advance not only ensures the compliance with essential architectural

standards, guidelines and dependencies but also to keep costs caused by expensive adaptions to a minimum. In addition, it decreases the field

of tension between enterprise architecture management and agile methods by allowing agile teams to develop architecture intentionally

without strong restrictions.

A Architecture Solution Space can contain the following elements:

• Purpose and target

, Vol. 1, No. 1, Article . Publication date: September 2019.

14 • Uludağ, Ö. et al

• Definitions of relevant terms and abbreviations

• Architecture goals

• References to applications that can be reused

• Dependencies to other applications

• Architecture principles and guidelines

5.3.6 Variants
Architecture Solution Space can either be created by architects only or collaboratively with agile teams.

5.3.7 Consequences
The following benefits of Architecture Solution Space are known:

• Visualizes dependencies

• Provides guidance

• Helps revealing unplanned risks and dependencies in advance

• Provides a clean framework

• Helps not to restrict freedom of developers

• Reduces the costs caused by expensive adaptions or reworks

The following liabilities of Architecture Solution Space are known:

• High manual effort during its creation

• Only effective if created collaboratively by experiences architects and developers

• After the Common Planning, it might be abandoned

• Less effective if not maintained properly

• Control of adherence is difficult

• No consequences in case of non-compliance

• Strongly relies on the intrinsic motivation of developers and architects

5.3.8 Data Collection
Architecture Solution Space is created collaboratively by experienced architects and developers. At the beginning of a large-scale software

development program, it just contains the minimal necessary requirements. As the development progresses,further requirements are added.

5.3.9 See Also
Architecture Solution Space is connected to the following M-Patterns:

• M-28: Principle based intentional Architecture

• M-30: Architectural Spike

• M-41: Define Architecture Principles asQuality Gate Policies

5.3.10 Known Uses
The following uses of Architecture Solution Space are known:

• CarCo

• GlobalInsureCo

• ItCo

• PublicInsureCo

• RetailCo

• SoftCo

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 15

5.4 M-Pattern: Principle Based Intentional Architecture (M-28) *

M-Pattern Overview
Summary Principle Based Intentional Architecture provides an agile architecture approachwith

a good trade off between traditional enterprise architecture practices and agile methods.

Type Software Architecture

5.4.1 Example
At TechCo, five agile teams have to develop a large software system using agile methods. As a requirement, the system should be integratable

into the existing landscape and follow the architectural direction of the company. Directly in the beginning, one enterprise architect and

one solution architect use a structured approach to design an architecture target picture without involving the agile teams. During the

development phase, the team struggles due to functional redundancy and has to adapt the architecture several times.

5.4.2 Context
With the application of agile methods, long planning and conception phases of traditional architecture approaches no longer exist. Whereas

traditional development models such as Waterfall Model and Spiral Model impose a structured design approach leading to extensive early

architecture work, agile methods force agile teams to develop architectures iteratively and perform constant software tests based on current

requirements. Often, organizations struggle to balance emergent and intentional architecture because in practice, emergent architecture is

rather suitable on team level but difficult to achieve on program level where several agile teams are involved. Emergent architecture design

implies that architecture is designed incrementally, just as little as possible, just in time and at the last possible moment. In a big software

system development project involving several agile teams, this can lead to functional redundancy, divergence of architecture and hence,

increase the complexity. In order to overcome these challenges, principles and guidelines such as Loose Coupling of Systems as part of the

intentional architecture design are essential.

5.4.3 Problem
The following concerns are addressed by Principle Based Intentional Architecture:

• C-38: How to facilitate standardization across agile teams?
• C-68: How to deal with centralized and top-down architectural decision?
• C-73: How to establish a common architectural direction across the organization?
• C-74: How to balance intentional and emergent architecture?
• C-76: How to deal with the reduced time for planning architectures?

5.4.4 Forces
The following forces influence Principle Based Intentional Architecture:

• Field of tension between enterprise architecture management and agile Methods: Agile methods provide autonomy and freedom of decision,

while enterprise architecture management depends on direct and control. Both contradict each other and are therefore difficult to

combine, especially in large-scale agile development projects.

• Avoiding analyses paralysis: Architectural principles close the gap between strategic goals and actual implementation decisions. By

focusing on important core aspects when creating a future-oriented enterprise architecture, "analysis paralysis" can be prevented. In

addition, the focus allows to carefully decide what to design and manage in a top-down approach and what to leave to emergence.

• Local optimization and focus: Agile software development teams tend to focus more on achieving a specific and local optimum. Thus, the

overview of overarching and enterprise-wide objectives is often lost. With the influence of a structure-driven force such as enterprise

architecture management, this problem can be counteracted.

5.4.5 Solution
Principle Based Intentional Architecture describes a way to create software architectures in an agile environment with the use of/based

on architecture principles. In contrast to detailed architecture specifications, principles such as Build the Simplest Architecture that can

Possibly work can prevent anti-patterns such as Don’t Use Big Design Up Front. Furthermore principles provide guidance for developers

and architects to achieve a specific future architecture design. In a large-scale agile development project, principles should be defined using a

collaborative approach according to [Uludag et al. 2019c]. With the help of a Community of Practice, a tradeoff between global and local

optimum can be achieved as enterprise architects and agile teams are part of the community and represent both, bottom-up and top-down

perspectives [Uludag et al. 2019c].

As shown in Fig. 7, the approach consists of seven phases. (1) Derive Drivers describes how drivers for establishing architecture principles

and guidelines should be identified. Enterprise architects should analyze sources and collect relevant inputs such as business objectives and

values whereas agile teams should make use of their own implementation experience and agreements within the team. In that way, bottom-up

and top-down approaches are combined providing benefits from both sides. (2) Determine principles and guidelines defines how principles

and guidelines are created. With the help of the in (1) Derive Drivers identified drivers, both agile teams and enterprise architects should

, Vol. 1, No. 1, Article . Publication date: September 2019.

16 • Uludağ, Ö. et al

Guideline

Set B

Agile Teams

Top-down, strategical perspective

(“global optimum”)

Bottom-up, operational perspective

(“local optimum”)

Enterprise Architects

Determine principles and

guidelines

Determine principles

and guidelines

Specify and classify

Apply principles and guidelines

Determine drivers

• Goals and objectives

• Values

• (Legal) constraints

• Potential risks and rewards

Determine drivers

• Implementation experience

• Issues

• Team-specific agreements

• Technical innovation

team representativesarchitect representative(s)

Handle changes

Vote and accept

Guideline

Set A

use identified

drivers to GuidelineGuideline

KPIKPI

Principle

KPIKPI

1

1..n

1..n

Guideline

Set C

suggest

candidates

1 1

2 2

3

4 5

7

use identified

drivers to

suggest

candidates
validate and propose

new principles or

guidelines

give feedback

6 Manage compliance

document usage

Assist with applying principles5

6 Manage compliance
collect feedback

monitor usage

Fig. 7. Collaborative approach overview [Uludag et al. 2019c]

create a list of possible architecture principles. Afterwards relevant principles should be selected for further specification. (3) Specify and
classify combines specification and classification of principles. In order to create principles that are most useful for a specific target group, key

performance indicators should be defined as fulfillment criteria. If a principle needs to be specified even further for development, it is possible

to transform it into one or more guidelines. (4) Vote and accept describes the process of validation. In order to establish effective principles

and guidelines, a clear validation process is mandatory. With the help of a Community of Practice consisting of representatives of agile

teams and enterprise architects, principles and guidelines can be discussed in detail. A democratic vote should decide, whether or not, a

principle is adopted. (5) Apply principles and guidelines defines the application of principles and guidelines. First, enterprise architects should

support agile teams during the realization of principles or guidelines that have been accepted by the community. Second, in return, agile

teams should provide feedback on applied guidelines. In order to increase the intrinsic motivation of agile teams to adhere to architecture

principles a gamification approach can be applied where each agile team gets a "digital" belt where a specific color indicates the success

stories of compliance. (6) Manage compliance emphasizes how acceptance issues of agile teams to adhere to principles and guidelines can be

solved. First, agile teams should be responsible to adhere to principles. Second, agile teams should be able to neglect to a specific guideline or

principle. Both involves a documentation effort, as the community must be informed directly in order to be able to identify implementation

or specification issues. In addition, the organization should try to perform as much automated testing as possible as manual compliance is

highly time consuming. (7) Handle changes describes how changes should be handled. One of the most important things is to involve the

experience of agile teams in the change process and provide feedback mechanisms where people can comment on specific principles, request

changes or have discussions. Furthermore, enterprise architects should collect feedback from stakeholders that have an impression on the

actual consequences of governance activities. All feedback should be considered by the community. Guideline or principles that only require

minor changes should be adapted whereas bigger changes should lead to the creation of new ones.

5.4.6 Variants
A variant of Principle Based Intentional Architecture is that the definition of architectural principles is only done by architects, rather

than in collaboration with agile teams.

5.4.7 Consequences
The following benefits of Principle Based Intentional Architecture are known:

• Provides guidance for development to achieve a specific future architecture design

• Facilitates creation of intentional architecture

• Provide solution space enabling agile teams to develop software within guideline while not restricting freedom of decision

• Prevent big design up front with applying the principle P-24: Build the Simplest Architecture that can Possibly Work

The following liabilities of Principle Based Intentional Architecture are known:

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 17

• Lack of control mechanisms to ensure compliance of architecture principles

• No adherence to architecture principles due to resistance of agile teams

• Lack of assessment criteria for defining architecture principles

• Requires support and enablement through enterprise architects

• Lack of feedback mechanisms during implementation

5.4.8 See Also
Principle Based Intentional Architecture is related to the following M-Patterns:

• M-22: Agile Architecture Governance Approach

• M-26: Add Principles to Definition of Done

• M-41: Define Architecture Principles asQuality Gate Policies

Additionally Principle Based Intentional Architecture is closely linked to the V-Pattern:

• V-19: Architecture Solution Space

5.4.9 Other Standards
[Fischer et al. 2010] emphasizes to use architecture principles as part of a lightweight framework to support large-scale agile software

development.

5.4.10 Known Uses
The following uses of Principle Based Intentional Architecture are known:

• CarCo

• GlobalInsureCo

• ItCo

• PublicInsureCo

• RetailCo

• SoftCo

• TechCo

, Vol. 1, No. 1, Article . Publication date: September 2019.

18 • Uludağ, Ö. et al

5.5 Anti-Pattern: Don’t be a PowerPoint Architect (A-12) *

Anti-Pattern Overview
Alias Architects don’t code, Architects Play Golf

Summary Don’t be a PowerPoint Architect shows why providing high level architecture artifacts

is causing problems in an agile environment.

5.5.1 Example
Three agile teams from CarCo want to start developing a new product and need technical support to create the architecture. The specification

of requirements by the product owner includes the application of a new technology. In addition, since the application has to execute crucial

payment operations, the team must identify as many architecture-related uncertainties and risks as possible in advance. As only little expertise

is available within the team, an enterprise architect is contacted to clarify the necessary technical concerns. The architect cannot answer the

questions and only provides some high level artifacts such as diagrams, UML models and a general Word document with around 300 pages.

After further inquiry, the development joint determines that the enterprise architect does not have the necessary technical know-how to

answer the questions.

5.5.2 Context
In traditional software development projects architects were involved in long conception and planning phases and mainly created high level

artifacts such as system diagrams and data models. Furthermore, software was mainly developed using linear sequential models, where each

phase depends on the deliverables of the previous one. In the course of agile transformation, the requirements have changed and hence the

working methodology. Conception and planning phases are short and development teams have to handle changing requirements in a short

amount of time. Therefor it is necessary, that architects provide detailed technical guidance instead of high level abstract artifacts which do

not provide sufficient support [Kulak and Li 2017].

5.5.3 Problem
The following concern is addressed by Don’t be a PowerPoint Architect:

• C-86: How to deal with the new working methodology as an architect within agile environments?

5.5.4 Forces
The following forces occur in the context of Don’t be a PowerPoint Architect:

• Agile environment changes working methodology of architects: With the application of agile methods, long conception and planning

phases are obsolete and due to constantly changing requirements, software architectures often have to be adapted within a short

amount of time which requires architects and developers to work closely together. Especially architects in traditional organizations are

affected as they are specialized rather in rough planning and less in technical implementation. Furthermore, the change of working

methodology incorporates a shift from indirect communication to direct communication.

• Architects need to have a deep technical understanding: With the approach of new technologies and development cycles getting shorter,

agile teams have to develop software faster and often use new technologies. Therefor, architects need to be able to provide detailed

technical support and to be able to identify architecture related risks and hotspots in advance.

5.5.5 General Form
After the success of a difficult large-scale agile development project, the organization was curious to identify the reasons for success. A survey

among agile teams involved in that development project showed that especially the support of the enterprise architect played a major role. Not

only did he have profound knowledge about the technologies but also provided detailed architecture related descriptions and code snippets.

Thanks to the technical detail of the artifacts provided by the enterprise architect, the agile team had no difficulties during development. As

a result, the organization believes, that all upcoming development projects should have an enterprise architect with the above mentioned

characteristics to ensure project success.

5.5.6 Consequences
The following benefits of Don’t be a PowerPoint Architect are known:

• Decreases communication gap between architect and agile team

• Increases acceptance of agile teams

• Increases understanding of architecture

• Increases intrinsic motivation to adhere to architecture principles

The following liabilities of Don’t be a PowerPoint Architect are known:

• Support and enabling takes a lot of time

• Architects need to have enough capacity

• Requires a broad and deep skill set which is rare

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 19

5.5.7 Revised Solution
The most important aspect of the revised solution is: Try to avoid Don’t be a PowerPoint Architect. This can be achieved by a few steps:

• Coaching and mentoring: To ensure a sufficient support with detailed technical artifacts, organizations need to provide coaching and

mentoring for enterprise architects.

• Ensure sufficient capacity: To solve the capacity problem, first, organizations must adapt accordingly and increase the number of

enterprise architects. Second, a phase wise supporting approach should be used to help as many agile teams as possible.

• Lack of feedback: Often, organizations do not implement proper feedback mechanisms and/or make them a mandatory requirement.

Therefore, agile teams are not able to provide proper feedback about the work of enterprise architects. Hence, the misconception of

ineffective artifacts provided by enterprise architects can not be uncovered.

• Change hiring strategy: Support and enablement require new skills such as deep technical know-how of old and especially new

technologies and social skills to overcome the acceptance problem of enterprise architects by agile teams. Therefore, when hiring

enterprise architects, these characteristics should be mandatory.

5.5.8 Known Uses
The following uses of Don’t be a PowerPoint Architect are known:

• CarCo

• ItCo

• PublicInsureCo

• RetailCo

• TechCo

5.5.9 See Also
The anti-pattern Don’t be a PowerPoint Architect is strongly connected to the M-Pattern Supporting Architect.

5.5.10 Other standards
[Kulak and Li 2017; Subramaniam and Hunt 2006] emphasize that architects must be able to write code in order to provide sufficient support.

"They typically come in during the beginning of a project, draw all kinds of diagrams, and leave before any serious implementation
takes place. There are many "PowerPoint architects" out there, and they aren’t effective because of lack of feedback."

According to [Subramaniam and Hunt 2006], establishing feedback mechanisms for developers can help overcome this problem.

, Vol. 1, No. 1, Article . Publication date: September 2019.

20 • Uludağ, Ö. et al

6 Discussion
In the following, the main key findings are discussed.

Increase of agilemethods in large-scale development projects
leads to Anti-Patterns/changes working methodology: Most

of the interviewed organizations adopted agile methods such as

Scrum and XP for developing large software systems. Since the

agile development methodology focuses on being adaptive rather

than predictive organizations had to change traditional ways of

developing software such as Big Design Up Front. We observed that

especially traditional enterprise architects in large organizations,

are used to long conception and planning phases where detailed ar-

chitectures were planned. According to the interviewees, nowadays

architectures have to be developed within a short amount of time

and less detail as it can delay the development of the software (see

Anti-Pattern Don’t Use Big Design Up Front).

While in some organizations the distance between enterprise ar-

chitects and agile teams has decreased significantly, there are still

some outliers. Some of the agile teams complained about enter-

prise architects that provide too complex architecture models with

a wrong level of abstraction and hence, no impact. In line with [Van

Der Raadt et al. 2008] this situation is referred to as the "ivory tower"

syndrome. Similar to the anti-pattern "modeling for the modeling’s

sake" defined by [Ambler 2008] we identified, that enterprise ar-

chitects should be developing architectures in close collaboration

with agile teams (see Anti-Pattern Don’t Build an Ivory Tower)

and use direct communication in order to provide sufficient sup-

port and prevent misunderstandings (see Anti-Pattern Don’t use

Indirect Communication). Furthermore, we noticed that a lot of

agile teams and solution architects are tired of high-level diagrams

and architecture models provided via PowerPoint since the lack of

detail hinders the effectiveness. In accordance with [Kulak and Li

2017] we discovered that architects should be able to write code on

a regular basis in order to provide sufficient technical support to

agile teams (Anti-Pattern Dont́ be a PowerPoint architect).

Role of the supporting architect is getting more and more
popular: Similar to [Drews et al. 2017] we observe that the work-

ing methodology of enterprise architects among more and more

organizations have changed from direct and control to support and

enablement within the agile transformation. In particular, because

long planning and conception phases have disappeared due to the

use of agile methods. As described in the M-Pattern Supporting

Architect, based on our results, enterprise architect must still be

able to maintain an enterprise-wide focus. This is particularly im-

portant for large-scale agile development projects, as agile teams

can also gain an understanding of the entire architecture. Further-

more, we have discovered that especially the collaboration between

enterprise architects and agile teams is increasingly important in

order to ensure development speed or solve architectural challenges

in a short amount of time. Therefore, enterprise architects need to

have different characteristics such as the ability to code for short

demonstration, provide delivery pipelines and architectural spikes

to reduce architectural uncertainties and risks [Kulak and Li 2017;

Uludag et al. 2019b]. Furthermore social skills are necessary to learn

about the developers and their strength and weaknesses which is

important in order to increase the intrinsic motivation to adhere to

architecture principles.

Architecture solution space helps to balance intentional and
emergent architecture: According to the interviewed organiza-

tions finding the balance between emergent and intentional archi-

tecture is one of the major challenges in large-scale agile develop-

ment projects [Uludağ et al. 2017; Waterman 2014] as emergent

architecture is rather suitable on team level but difficult to achieve

on program level where several agile teams are involved. We ex-

perience, that although most of the agile teams try to follow the

emergent design principle of the Agile Manifesto [Beck et al. 2001]

a lot of developers want to be part of the creation of an intentional

architecture. The problem at hand originates from the application of

agile methods. The latter imply that an architecture should evolve

incrementally rather than forced through a direct structuring force.

In a large-scale agile software development project, this can lead to

redundancy, increase of complexity of architecture and huge costs

through redesign efforts. Similar to [Uludag et al. 2019c] our re-

sults indicate that balancing intentional and emergent architecture

requires not only a close collaboration between agile teams and

architects but also some architectural guidance. With the help of

the V-Pattern Architecture Solution Space this balance can be

achieved as it allows agile teams to move within a certain space and

intentionally develop architectures without strong restrictions.

Compliance to architecture related activities is difficult: To
date, the interviewed organizations have hardly found any solutions

for compliance to architecture related activities. This is also due

to the fact that, for example, monitoring agile teams in a scaled

environment is becoming increasingly difficult. For this reason, or-

ganizations must consider other methods or solutions such as the

M-Pattern Architectural Thinking [Winter 2014]. Note that this

should not be confused with classical enterprise architecture man-

agement because architectural thinking promotes the individual

decision maker within the organization to take responsibility [Aier

et al. 2015]. In order to facilitate architectural thinking successfully,

we emphasize to establish an architectural thinking in an organi-

zation similar to [Weiss et al. 2013; Winter 2014]. Furthermore, the

focus should be on both, long-term and short-term goals. In accor-

dance with [Lattanze 2011; Ross and Quaadgras 2012] organizations

should offer enterprise architecture management training programs

to help establish the long-term goal of an architectural perspective

in the entire organization. It has to be considered, however, that

training should not only promote the understanding of architecture

but also anchor the importance of architecture firmly in the mindset.

Another possibility would be to use the M-Pattern Architecture

Governance through Institutional Pressure which was high-

lighted by some of the interviewees. They argued, that compliance

can only be achieved if employees understand the benefits of ad-

herence. This is consistent with the [Uludag et al. 2019c] approach,

which recommends an enhanced collaborative approach. A gamifi-

cation approach is used to ensure the necessary intrinsic motivation.

On the one hand, awards for compliance exert a normative pressure

on agile teams. On the other hand, through transparency, other

, Vol. 1, No. 1, Article . Publication date: September 2019.

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 21

agile teams experience mimetic pressures. With this approach it is

possible to persuade agile teams to check and motivate themselves

[Uludag et al. 2019c].

7 Conclusion and Outlook
Due to the success of agile methods in small, autonomous and in-

dependent teams, companies try to make use of these benefits in

large-scale agile software development projects while building com-

plex software systems [Alqudah and Razali 2016; Dingsøyr et al.

2014]. Given the heterogeneity of large-scale projects and the chang-

ing state of methods and frameworks, this area is particularly prone

to practice-oriented design research. Furthermore, the scaling of

agile methods is accompanied by many architectural challenges

such as managing dependencies of different systems and balancing

intentional and emergent architecture [Dikert et al. 2016; Dingsøyr

et al. 2019; Uludag et al. 2018]. Especially enterprise architects and

solution architects are confronted with some unprecedented chal-

lenges [Uludag et al. 2018]. Despite the importance of this area for

the success of large-scale agile development projects, the literature

lacks both a description of challenges and best practices.

To close this research gap, the proposed model language was used.

The latter provides a structure for documenting challenges and best

practices and includes concerns, principles, coordination patterns,

methodology patterns, viewpoint patterns and anti-patterns of typi-

cal stakeholders in the agile environment. With the help of a case

study and expert interviews, 19 concerns and 43 patterns were iden-

tified. Five of the latter were presented in this paper.

This paper leaves room for future research. Since the pattern lan-

guage is based on the Rule of Three to distinguish between pat-

tern candidates and actual patterns, additional quantitative studies

should be conducted in other organizations to generalize and val-

idate the results, identify further concerns and best practices and

measure the incidence of various views and opinions.

References
ISO/IEC/IEEE 42010:2011(E). 2011. Systems and software engineering – Architecture

description. Technical Report. ISO/IEC/IEEE.
Stephan Aier, Nils Labusch, and Patrick Pähler. 2015. Implementing architectural

thinking. In International Conference on Advanced Information Systems Engineering.
Springer, 389–400.

Christopher Alexander. 1977. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, New York.

Mashal Alqudah and Rozilawati Razali. 2016. A review of scaling agile methods in large

software development. International Journal on Advanced Science, Engineering and
Information Technology 6, 6 (2016), 828–837.

Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. 2019. Quality requirements chal-

lenges in the context of large-scale distributed agile: An empirical study. Information
and software technology 110 (2019), 39–55.

Scott Ambler. 2008. Enterprise Modeling Anti-Patterns. Agile Modeling. http://www.

agilemodeling.com/essays/enterpriseModelingAntiPatterns.htm. Accessed: 2019-

09-01.

Scott W Ambler. 1998. Process patterns: building large-scale systems using object technol-
ogy. Cambridge University Press.

Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham,

Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, et al.

2001. Manifesto for agile software development. (2001).

Kent Beck and Erich Gamma. 2000. Extreme programming explained: embrace change.
addison-wesley professional.

Mike Beedle, James O. Coplien, Jeff Sutherland, Jens C. Østergaard, Ademar Aguiar,

and Ken Schwaber. 2010. Essential Scrum Patterns. In 14th European Conference on
Pattern Languages of Programs. The Hillside Group, Irsee, 1–17.

Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland. 1999.

SCRUM: An Extension Pattern Language for Hyperproductive Software Develop-

ment. Pattern Languages of Program Design 4 (1999), 637–651.

Patrick Besson and Frantz Rowe. 2012. Strategizing information systems-enabled

organizational transformation: A transdisciplinary review and new directions. The
Journal of Strategic Information Systems 21, 2 (2012), 103–124.

Barry Boehm and Richard Turner. 2005a. Management challenges to implementing

agile processes in traditional development organizations. IEEE software 22, 5 (2005),
30–39.

Barry W Boehm. 1988. A spiral model of software development and enhancement.

Computer 5 (1988), 61–72.
Barry W. Boehm and Richard Turner. 2005b. Management challenges to implementing

agile processes in traditional development organizations. IEEE Software 22, 5 (2005),
30–39.

Alexander Bogner, Beate Littig, and Wolfgang Menz. 2009. Introduction: Expert in-

terviews. An introduction to a new methodological debate. In Interviewing experts.
Springer, 1–13.

Teodora Bozheva and Maria Elisa Gallo. 2005. Framework of agile patterns. In European
Conference on Software Process Improvement. Springer, 4–15.

Sabine Buckl, Florian Matthes, Alexander W. Schneider, and Christian M. Schweda.

2013. Pattern-Based Design Research – An Iterative Research Method Balancing

Rigor and Relevance. In 8th International Conference on Design Science Research in
Information Systems. Springer, Berlin, 73–87.

Frank Buschmann, Kevlin Henney, and C. Schmidt Douglas. 2007a. Pattern Oriented
Software Architecture Volume 4: A Pattern Language for Distributed Computing. John
Wiley & Sons, Chichester.

Frank Buschmann, Kevlin Henney, and C. Schmidt Douglas. 2007b. Pattern Oriented
Software Architecture Volume 5: On Patterns and Pattern Languages. John Wiley &

Sons, Chichester.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.

1996. Pattern-Oriented Software Architecture Volume 1: A System of Patterns. John
Wiley & Sons, Chichester.

James O. Coplien. 1995. A Generative Development-process Pattern Language. In

Pattern Languages of Program Design, James O. Coplien and Douglas C. Schmidt

(Eds.). ACM, New York, 183–237.

James O. Coplien. 1996. Software Patterns: Management Briefs. Cambridge university

Press, Cambridge.

James O. Coplien and Neil B. Harrison. 2004. Organizational Patterns of Agile Software
Development. Addison-Wesley, Boston.

Kim Dikert, Maria Paasivaara, and Casper Lassenius. 2016. Challenges and Success

Factors for Large-Scale Agile Transformations: A Systematic Literature Review.

Journal of Systems and Software 119 (2016), 87–108.
Torgeir Dingsøyr, Davide Falessi, and Ken Power. 2019. Agile Development at Scale: The

Next Frontier. IEEE Software (2019). Special Issue: Large-Scale Agile Development.

Torgeir Dingsøyr and Nils Moe. 2014a. Towards Principles of Large-Scale Agile Develop-
ment. Springer, Berlin, 1–8.

Torgeir Dingsøyr and Nils Brede Moe. 2014b. Towards principles of large-scale agile

development. In International Conference on Agile Software Development. Springer,
1–8.

Torgeir Dingsøyr, Nils Brede Moe, Roberto Tonelli, Steve Counsell, Cigdem Gencel, and

Kai Petersen. 2014. Agile Methods. Large-Scale Development, Refactoring, Testing, and
Estimation: XP 2014 International Workshops, Rome, Italy, May 26-30, 2014, Revised
Selected Papers. Vol. 199. Springer.

Paul Drews, Ingrid Schirmer, Bettina Horlach, and Carsten Tekaat. 2017. Bimodal

enterprise architecture management: The emergence of a New EAM function for a

BizDevOps-based fast IT. In 2017 IEEE 21st International Enterprise Distributed Object
Computing Workshop (EDOCW). IEEE, 57–64.

Tore Dyba and Torgeir Dingsoyr. 2009. What do we know about agile software devel-

opment? IEEE software 26, 5 (2009), 6–9.
Amr Elssamadisy. 2007. Patterns of Agile Practice Adoption. Lulu. com.

Amr Elssamadisy. 2008. Agile Adoption Patterns: A Roadmap to Organizational Success.
Addison-Wesley, Boston.

Alexander M. Ernst. 2010. A Pattern-based Approach to Enterprise Architecture Manage-
ment. Dissertation. Technische Universität München, München.

Christian Fischer, Robert Winter, and Stephan Aier. 2010. What is an enterprise archi-

tecture principle? In Computer and Information Science 2010. Springer, 193–205.
Martin Fowler. 2006. Writing Software Patterns. https://www.martinfowler.com/

articles/writingPatterns.html. Accessed: 2019-02-02.

Sallyann Freudenberg and Helen Sharp. 2010. The top 10 burning research questions

from practitioners. Ieee Software 27, 5 (2010), 8–9.
Daniel Gerster, Christian Dremel, and Prashant Kelker. 2018. " Agile meets non-agile":

Implications of adopting agile practices at enterprises. (2018).

Neil B. Harrison. 1996. Organizational Patterns for Teams. In Pattern Languages of
Program Design 2, John M. Vlissides, James O. Coplien, and Norman L. Kerth (Eds.).

Addison-Wesley, Boston, 345–352.

, Vol. 1, No. 1, Article . Publication date: September 2019.

http://www.agilemodeling.com/essays/enterpriseModelingAntiPatterns.htm
http://www.agilemodeling.com/essays/enterpriseModelingAntiPatterns.htm
https://www.martinfowler.com/articles/writingPatterns.html
https://www.martinfowler.com/articles/writingPatterns.html

22 • Uludağ, Ö. et al

Muhammad Atif Javed, Srdjan Stevanetic, and Uwe Zdun. 2016. Towards a pattern

language for construction and maintenance of software architecture traceability

links. In Proceedings of the 21st European Conference on Pattern Languages of Programs.
ACM, 24.

Martin Kalenda, Petr Hyna, and Bruno Rossi. 2018. Scaling agile in large organizations:

Practices, challenges, and success factors. Journal of Software: Evolution and Process
30, 10 (2018), e1954.

Maryam Kausar and Adil Al-Yasiri. 2015. Distributed agile patterns for offshore software

development. In 12th International Joint Conference on Computer Science and Software
Engineering (JCSSE), IEEE.

Petri Kettunen. 2007. Extending Software Project Agility with new Product Develop-

ment Enterprise Agility. Software Process: Improvement and Practice 12, 6 (2007),
541–548.

Petri Kettunen and Maarit Laanti. 2008. Combining agile software projects and large-

scale organizational agility. Software Process: Improvement and Practice 13, 2 (2008),
183–193.

Kurt Keutzer, Berna L Massingill, Timothy G Mattson, and Beverly A Sanders. 2010. A

design pattern language for engineering (parallel) software: merging the PLPP and

OPL projects. In Proceedings of the 2010 Workshop on Parallel Programming Patterns.
ACM New York, NY, USA, 1–8.

Daryl Kulak and Hong Li. 2017. The Journey to Enterprise Agility: Systems Thinking and
Organizational Legacy. Springer.

Craig Larman and Victor R Basili. 2003. Iterative and incremental developments. a brief

history. Computer 36, 6 (2003), 47–56.
Anthony J Lattanze. 2011. Infusing architectural thinking into organizations. IEEE

software 29, 1 (2011), 19–22.
Seiyoung Lee and Hwan-Seung Yong. 2010. Distributed agile: project management in a

global environment. Empirical Software Engineering 15, 2 (2010), 204–217.

Dean Leffingwell. 2007. Scaling software agility: best practices for large enterprises.
Pearson Education.

Christian Lescher. 2010. Patterns for global development: how to build one global team?.

In Proceedings of the 15th European Conference on Pattern Languages of Programs.
ACM, 6.

Neil Maiden and Sara Jones. 2010. Agile Requirements Can We Have Our Cake and Eat

It Too? IEEE Software 27, 3 (2010), 87–88.
Ian Mitchell. 2016. Agile Development in Practice. TamaRe House, London.

Miguel J Monasor, Aurora Vizcaíno, Mario Piattini, John Noll, and Sarah Beecham. 2013.

Towards a global software development community web: Identifying patterns and

scenarios. In 2013 IEEE 8th International Conference on Global Software Engineering
Workshops. IEEE, 41–46.

Maria Paasivaara and Casper Lassenius. 2014. Communities of practice in a large

distributed agile software development organization âĂŞ Case Ericsson. Information
and Software Technology 56, 12 (2014), 1556 – 1577. Special issue: Human Factors in

Software Development.

Kai Petersen and Claes Wohlin. 2010. The effect of moving from a plan-driven to an

incremental software development approach with agile practices. Empirical Software
Engineering 15, 6 (2010), 654–693.

JW Ross and A Quaadgras. 2012. Enterprise architecture is not just for architects. CISR
Research Briefings 7, 9 (2012).

Jeanne W Ross, Peter Weill, and David Robertson. 2006. Enterprise architecture as
strategy: Creating a foundation for business execution. Harvard Business Press.

Dominik Rost, Balthasar Weitzel, Matthias Naab, Torsten Lenhart, and Hartmut Schmitt.

2015. Distilling best practices for agile development from architecture methodology.

In European Conference on Software Architecture. Springer, 259–267.
Winston W Royce. 1987. Managing the development of large software systems: con-

cepts and techniques. In Proceedings of the 9th international conference on Software
Engineering. IEEE Computer Society Press, 328–338.

Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case

study research in software engineering. Empirical software engineering 14, 2 (2009),

131.

Nayan B Ruparelia. 2010. Software development lifecycle models. ACM SIGSOFT
Software Engineering Notes 35, 3 (2010), 8–13.

Fabiano B Ruy, Ricardo A Falbo, Monalessa P Barcellos, Giancarlo Guizzardi, and

Glaice KS Quirino. 2015. An ISO-based software process ontology pattern language

and its application for harmonizing standards. ACM SIGAPP Applied Computing
Review 15, 2 (2015), 27–40.

Ken Schwaber. 1997. Scrum development process. In Business object design and imple-
mentation. Springer, 117–134.

Ken Schwaber and Mike Beedle. 2002. Agile software development with Scrum. Vol. 1.

Prentice Hall Upper Saddle River.

ScrumPLoP. 2019. Published Patterns. https://sites.google.com/a/scrumplop.org/

published-patterns/. Accessed: 2019-08-17.

Venkat Subramaniam and Andy Hunt. 2006. Practices of an agile developer: Working in
the real world. Pragmatic Bookshelf.

Jeff Sutherland, Neil Harrison, and Joel Riddle. 2014. Teams that finish early accelerate

faster: a pattern language for high performing scrum teams. In 2014 47th Hawaii

International Conference on System Sciences. IEEE, 4722–4728.
Abbas Tashakkori and Charles Teddlie. 2010. Sage handbook of mixed methods in social

& behavioral research. sage.
Paul Taylor. 2000. Capable, productive, and satisfied: Some organizational patterns for

protecting productive people. In Pattern Languages of Program Design 4, John M.

Vlissides, James O. Coplien, and Norman L. Kerth (Eds.). Addison-Wesley, Boston,

611–636.

Ömer Uludag, Nina Harders, and Florian Matthes. 2019a. Documenting Recurring

Concerns and Patterns in Large-Scale Agile Development.. In In 24th European
Conference on Pattern Languages of Programs.

Ömer Uludağ, Matheus Hauder, Martin Kleehaus, Christina Schimpfle, and Florian

Matthes. 2018. Supporting large-scale agile development with domain-driven design.

In International Conference on Agile Software Development. Springer, 232–247.
Ömer Uludag, Martin Kleehaus, Christoph Caprano, and Florian Matthes. 2018. Iden-

tifying and structuring challenges in large-scale agile development based on a

structured literature review. In 2018 IEEE 22nd International Enterprise Distributed
Object Computing Conference (EDOC). IEEE, 191–197.

Ömer Uludag, Martin Kleehaus, Niklas Reiter, and Florian Matthes. 2019b. What to

Expect from Enterprise Architects in Large-Scale Agile Development? A Multiple-

Case Study. (2019).

Ömer Uludağ, Martin Kleehaus, Xian Xu, and Florian Matthes. 2017. Investigating

the role of architects in scaling agile frameworks. In 2017 IEEE 21st International
Enterprise Distributed Object Computing Conference (EDOC). IEEE, 123–132.

Ömer Uludag, Sascha Nägele, and Matheus Hauder. 2019c. Establishing Architecture

Guidelines in Large-Scale Agile Development Through Institutional Pressures: A

Single-Case Study. (2019).

Ömer Uludağ, Martin Kleehaus, Christoph Caprano, and Florian Matthes. 2018. Iden-

tifying and Structuring Challenges in Large-Scale Agile Development Based on a

Structured Literature Review. In 22nd International Enterprise Distributed Object
Computing Conference. IEEE, Stockholm, 191–197.

Antti Välimäki. 2011. Pattern Language for Project Management in Global Software
Development. Tampere University of Technology, Tampere.

Bas Van Der Raadt, Sander Schouten, and Hans Van Vliet. 2008. Stakeholder perception

of enterprise architecture. In European Conference on Software Architecture. Springer,
19–34.

VersionOne. 2018. 12th Annual State of Agile Report. Technical Report. VersionOne.
VersionOne. 2019. VersionOne Inc.13th annual state of agile report. https://www.

stateofagile.com/. Accessed: 2019-08-15.

Jan Vom Brocke, Alexander Simons, Bjoern Niehaves, Kai Riemer, Ralf Plattfaut, Anne

Cleven, et al. 2009. Reconstructing the giant: on the importance of rigour in docu-

menting the literature search process.. In Ecis, Vol. 9. 2206–2217.
Michael Grant Waterman. 2014. Reconciling agility and architecture: a theory of agile

architecture. (2014).

Simon Weiss, Stephan Aier, and Robert Winter. 2013. Institutionalization and the

effectiveness of enterprise architecture management. Association for Information

Systems.

RobertWinter. 2014. Architectural thinking. Business & Information Systems Engineering
6, 6 (2014), 361–364.

Robert K Yin. 2017. Case study research and applications: Design and methods. Sage
publications.

A Pattern Language for Enterprise and Solution Architects

A.1 Stakeholders
• S-1: Development Team

• S-2: Product Owner
• S-3: Scrum Master

• S-4: Software Architect
• S-5: Test Team
• S-6: Product Manager

• S-7: Program Manager

• S-8: Agile Coach
• S-9: Enterprise Architect
• S-10: Business Analyst
• S-11: Solution Architect

• S-12: Portfolio Manager

• S-13: Support Engineer
• S-14: UX Expert

, Vol. 1, No. 1, Article . Publication date: September 2019.

https://sites.google.com/a/scrumplop.org/published-patterns/
https://sites.google.com/a/scrumplop.org/published-patterns/
https://www.stateofagile.com/
https://www.stateofagile.com/

Empirical Studies to Identify Best Practices for Addressing Recurring Concerns of Enterprise Architects and Solution Architects in
Large-Scale Agile Development • 23

A.2 Concerns
• C-2: How to consider integration issues and dependencies with
other teams?

• C-6: How to deal with technical debts?
• C-8: How to ensure that non functional requirements are con-
sidered by the development team?

• C-9: How to find the right balance between architectural im-
provements and business value?

• C-14: How to create a proper upfront architecture design of the
system?

• C-21: How to manage dependencies to other existing environ-
ments?

• C-25: How to manage and integrate heterogeneous subsystems
of different development teams?

• C-26: How to align and communicate architectural decisions?
• C-27: How to manage and share knowledge about system com-
ponents and dependencies?

• C-34: How to ensure the reuse of enterprise assets?
• C-38: How to facilitate standardization across agile teams?
• C-40: How to apply agile practices for developing/maintaining
legacy systems?

• C-51: How to ensure that agile teams adhere to architecture-
related activities?

• C-57: How to decompose agile teams in smaller independent
teams?

• C-64: How to define a lightweight review process for adopting
new technology?

• C-67:How to deal with a lack of understanding of architecture?
• C-68: How to deal with centralized and top-down architectural
decision?

• C-69: How to verify and control the compliance of ATs with
architecture principles?

• C-70: How to assign systems to business domains?
• C-71: How to decompose monolithic systems?
• C-72: How to deal with architecture-related uncertainties and
risks?

• C-73: How to establish a common architectural direction across
the organization?

• C-74: How to balance intentional and emergent architecture?
• C-75: How to deal with communication gaps between EA and
AT?

• C-76: How to deal with the reduced time for planning architec-
tures?

• C-77: How to identify hotspots within the architecture?
• C-78: How to ensure that architecture check-ins are controlled?
• C-79: How to decide whether to make or buy?
• C-80: How to align business and IT?
• C-81: How to create scalable software?
• C-82: How to integrate internal and external cloud?
• C-83: How to develop software systems that are open for third
parties?

• C-84: How to migrate applications to the cloud?
• C-85: How to align enterprise architecture and product man-
agement?

• C-86: How to deal with the new working methodology as an
architect within agile environments?

A.3 Anti-Patterns
• A-11: Don’t Use Best of Breed

• A-12: Don’t be a PowerPoint Architect

• A-13: Don’t Use Big Design Up Front

• A-14:Don’t Separate between Enterprise and Software

Architecture

• A-15: Don’t Build an Ivory Tower

• A-16: Don’t Overshoot Coordination Meetings

• A-17: Don’t Use Indirect Communication

• A-18: Don’t Force Reqirements Without Support

• A-19: Don’t Create Data Silos

A.4 Principles
• P-18: Collocate Architects with Agile Teams

• P-19: IT Systems Communicate through Services

• P-20: End to End Responsibility

• P-21: Loose Coupling of Systems

• P-22: Reuse is Preferable to Buy, which is Preferable

to Make

• P-23: Applications rely on One Technology Stack

• P-24: Build the Simplest Architecture that Can Possi-

bly Work

• P-25: Use Microservices

• P-26: API First
• P-27: Cloud First

• P-28: Use Direct Communication

• P-29: Develop Competition Critical Software Systems

Inhouse

• P-30: Strictly Separate Build and Run Stages

• P-31: Composition Over Inheritance

• P-32: IT Systems Communicate through Services

A.5 M-Patterns
• M-22: Agile Architecture Governance Approach
• M-23: Enterprise Architecture Governance Service
• M-24:ArchitectureGovernance through Institutional

Pressure

• M-25: Architectural Thinking
• M-26: Add Principles to DoD

• M-27:Quality Gate

• M-28: Principle based Intentional Architecture

• M-29: Supporting Architect

• M-30: Architectural Spikes
• M-31: Agile Collaboration Environment

• M-32: Architecture Gate
• M-33: Collaborative Architecture Decision Making

• M-34: Architectural Runway
• M-35: Empowered Community of Practice

• M-36: Plan Additional Time for Enablers

• M-37: Domain Driven Design

• M-38: Business Capability Centric Teams
• M-39: Collaborative Adoption of new Technologies

, Vol. 1, No. 1, Article . Publication date: September 2019.

24 • Uludağ, Ö. et al

• M-40:DefiningArchitecture Principles asQualityGate

Policies

A.6 CO-Patterns
• CO-1: Community of Practice
• CO-15: Center of Excellence

• CO-16: Lunch Talk

A.7 V-Patterns
• V-19: Architecture Solution Space

• V-20: Business Domain Map

• V-21: Business Capability Map

• V-22: Technical Debt Backlog

• V-23: Communication Diagram

• V-24: Context Map

• V-25: Data Diagram

• V-26:Weighted Shortest Job First

• V-27: Number of API Calls

• V-28: Number of Changes of Architecture Models

• V-29: Number of Consulting Reqests

• V-30: Number of Dependencies

• V-31: Number of Releases

• V-32: Number of Version Skippings

• V-33: System Diagram

• V-34: Time to Feature Delivery

• V-35: Total Cost of Ownership

• V-36: Technology Radar

, Vol. 1, No. 1, Article . Publication date: September 2019.

	Abstract
	1 Introduction
	2 Research Approach
	3 Related Work and Pattern Languages
	4 Large-Scale Agile Development Pattern Language
	5 Recurring Concerns and Best Practices
	5.1 Principle: Build the Simplest Architecture that can Possibly Work (P-24) *
	5.2 CO-Pattern: Lunch Talks (CO-16) *
	5.3 V-Pattern: Architecture Solution Space (V-19) *
	5.4 M-Pattern: Principle Based Intentional Architecture (M-28) *
	5.5 Anti-Pattern: Don't be a PowerPoint Architect (A-12) *

	6 Discussion
	7 Conclusion and Outlook
	References
	A Pattern Language for Enterprise and Solution Architects
	A.1 Stakeholders
	A.2 Concerns
	A.3 Anti-Patterns
	A.4 Principles
	A.5 M-Patterns
	A.6 CO-Patterns
	A.7 V-Patterns

