
ADeX: A Tool for Automatic Curation of Design
Decision Knowledge for Architectural Decision

Recommendations
Manoj Bhat∗, Christof Tinnes∗, Klym Shumaiev∗, Andreas Biesdorf†, Uwe Hohenstein† and Florian Matthes∗

∗ Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
{manoj.mahabaleshwar,christof.tinnes,klym.shumaiev,matthes}@tum.de

†Siemens AG - Corporate Technology, Otto-Hahn-Ring 6, München 81739, Germany
{andreas.biesdorf,uwe.hohenstein}@siemens.com

Abstract—Software architecture can be seen as a set of
architectural design decisions. These decisions, especially their
rationale, play an important role in understanding software
systems and constraints that are imposed on future design
decisions. Documenting and managing these design decisions
takes a lot of effort and is therefore often neglected by software
architects. Following our vision to avoid explicit architectural
knowledge management, we present an innovative tool used in
industrial practise that is able to automatically recover design
decisions from natural language text. The identified design deci-
sions are then used to automatically derive further architectural
knowledge, including related quality attributes and architectural
elements to inhibit architectural erosion. By automatically enrich-
ing architectural knowledge and providing recommendations, the
tool offers effective support for software architects in the decision-
making process. The knowledge base of the tool is automatically
kept up to date with information from different systems used by
architects during the software development lifecycle process.

Keywords-Architectural design decision; Architectural decision
support; Architecture Knowledge Management; Tool; Recom-
mendation;

I. INTRODUCTION

The state of the art in software architecture is to consider
software architecture not only as the overall structure of
the software but as a set of architectural design decisions
(ADDs) [1]. These ADDs capture the rationale of the decision-
making outcome. Since ADDs introduce design rules and
constraints on software architecture, it is essential that these
ADDs, including their rationale, are available and accessible
to software architects to make informed future ADDs.

The importance of documenting software architecture has
often been stressed in the literature [2]. There are already tools
for the management and retrieval of architectural knowledge
(AK). For example, semantic wiki-based tools like Archi-
Mind [3] and ArchiMedes [4] not only enable architects to
store AK but also enable them to maintain the metadata and
relationships. With tools such as Archium [1], the architecture
can be constructed as a set of ADDs, and the tool can be
used to capture alternatives for design decisions. A detailed
comparison of a plethora of AK management (AKM) tools is
given in [5] and [6].

Unfortunately, even though, architects understand the bene-
fits of documenting design decisions, in practice, those de-

cisions are rarely documented [7], and they are lost over
time. In an attempt to resolve this dilemma, two apparent
approaches are typically used in industrial practice: (a) either
setting incentives for architects to improve their willingness
to document their decisions or (b) automatically capturing or
generating architectural documentation. In fact, AK is already
implicitly captured in artifacts that are the results of the day-to-
day activities of software architects and developers, e.g., issues
in Issue Management Systems (IMS), meeting minutes, chat
histories, and source code commits. Based on the learnings
from the existing AKM tools, the future research directions
proposed in literature (e.g., from [8]), and in collaboration
with our industry partner (a software architecture definition
department within a large multinational company), we have
developed “ADeX” (Amelie - Decision Explorer) over the last
four years. We target the bottom-up approach to AKM with the
focus on automating the AK curation process. We agree with
Tang et al. regarding the fact that ADDs are not explicitly
recorded [9] and the existing AKM tools are considered
intrusive since they require architects to manually document
ADDs which can be tedious and expensive. ADeX, therefore,
aims to automatically extract, enrich, and generate specific
views on AK to support architects’ decision-making process.
The tool is based on a conceptual framework described in
detail in [10].

II. USE CASES FOR A DECISION EXPLORER

ADeX is designed to be used by architects and developers,
but project managers can also profit from the information
provided by this tool. ADeX supports the following main use
cases (which have been derived from [11]):
UC1: To quickly get insights into a project, users can obtain
an overview of design decisions including their classification
according to the decision types, affected quality attributes,
and architectural elements (AEs).
UC2: Users can obtain an overview of AEs used in the
project and their relevance. This use case could be used for
insights into the project or staffing purposes (since it shows
applied technologies and concepts).
UC3: To see the dynamics and evolution of a project, users
can perform retrospective analyses of design decisions,



quality concerns, and AEs, i.e., the overview from UC1 and
UC2 are aggregated year-wise. This use case gives insights
into which quality concerns and AEs are becoming less or
more relevant.
UC4: To assist users in choosing technologies to realize a
design decision, they get suggestions about possible software
solutions for a selected design decision.
UC5: To assist users during design space exploration,
alternative solutions for a design decision are recommended.
UC6: Users get suggestions about experts who can be
involved in solving new design concerns.
UC7: For each decision, users obtain a list of similar decisions
made in the past. It supports the reuse of design decisions.

We have developed ADeX mainly for three purposes:
Firstly, ADeX is used for getting insights especially into large
software-intensive projects. Architects and developers can use
ADeX to browse through projects and get a quick overview of
the already made design decisions. These design decisions are
automatically identified, for instance, from issues in an IMS.
Further related information regarding those design decisions
can be explored, such as the affected quality attributes or
AEs (concepts like databases or concrete technologies like
SQL). An overview of the concepts and technologies used in
a project could also be used by project managers for staffing
purposes. Secondly, ADeX is used to support architects and
developers during the decision-making process. For instance,
unresolved design concerns from an IMS are extracted into
ADeX’s knowledge base, and after preprocessing, architects
get recommendations for resolving those concerns. ADeX
helps users answer questions such as “who should be involved
in decision making?” and “which similar decisions have been
made in the past?”. Furthermore, architects instead of explor-
ing the solution space, often choose solutions (e.g., software
products) based on their intuition and past experiences (the
so-called availability bias [12]). We, therefore, integrated an
automatic recommendation mechanism that shows software
solutions and alternatives related to AEs in a given design
decision. This triggers the mental process of architects and
helps them to reflect on their choices.

III. ARCHITECTURE

The architecture of ADeX is based on the conceptual
framework for architectural decision making, which has been
described in [10]. ADeX is a collaborative web application.
The user interfaces (UIs) are designed according to Google’s
Material Design1. The back-end of ADeX follows a microser-
vice architecture. For persistence, the MongoDB2 and a meta-
model based system called SocioCortex [13] are used. The
domain model of AK maintained within SocioCortex can
be adapted at runtime to fit the needs of different software
engineering projects. SocioCortex provides REST-APIs which
are used by other ADeX components as shown in Figure 1.

1https://material.io/design/
2https://www.mongodb.com/

Fig. 1. High-level architecture of ADeX

A. SyncPipes

SyncPipes is a model-based extract-transform-load (ETL)
component that allows integrating various data sources, trans-
forms the imported data to align with a target data model, and
loads the transformed data into the target system. The source
and target data models are described using JSON-Schema.
SyncPipes uses a handler, which starts a synchronization job
that triggers the ETL process based on specific events or
regular time intervals to keep the sources and the system
synchronized. For ADeX, the SyncPipes’s target system is the
AKM system (SocioCortex), and the source systems include
JIRA, Github issues, MS Project, and Enterprise Architect.
The pipelines within SyncPipes can be configured via a front-
end web application, and the configurations are stored in a
MongoDB database.

B. Document Classifier

Document Classifier is used to classify textual data (e.g.,
extracted from JIRA via SyncPipes) as design decisions using
supervised machine learning (ML). The classification is done
in a two-phase process (cf. [14] for details). In the first
phase, a binary classifier automatically labels a given issue
as either a “design decision” or “not a design decision”. In
the second phase, design decisions are further classified into
one of the three decision categories (structural, behavioral,
and non-existence/ban decision). Using the Weka library,
summary and description of issues are preprocessed, and
the vector representations of the issues are generated. These
vector representations are fed into a Support Vector Machine
(SVM) classifier which labels those corresponding issues. The
Document Classifier component is implemented using a Java-
based web application framework3. Information related to
the classification pipelines is stored in MongoDB, and the
classification models are persisted on the file system. The
classification of issues as design decisions is a prerequisite
for other functionalities that follow.

C. AKRec - Architectural Knowledge Recommender

The AKRec component and the corresponding front-end
(see below) address the use cases described in the previous

3https://www.playframework.com/



section. It uses the identified design decisions within a project
and enriches them with information such as affected quality
attributes, AEs, alternative options, and individuals’ expertise
on specific AEs. Furthermore, this component serves as a mid-
dleware which invokes all the preprocessing steps, aggregates
results, and provides them to the client application for pre-
sentation. AKRec uses the DBPedia ontology for identifying
and annotating AEs within the textual description of design
decisions. The annotators are based on the UIMA framework4.
Using the DBPedia ontology, alternative choices for a given
AE are determined by executing complex SPARQL queries
(cf. [15] for details). Therefore, the AEs, alternatives, and
software solutions don’t need to be manually maintained but
are automatically retrieved from external sources. Annotations
for each design decision and their recommendations are also
stored in the MongoDB. Persisting this information in the
database improves the performance of the application since for
already annotated design decisions the expensive annotation
and querying steps can be omitted.

To capture the rationale behind design decisions, quality
attributes (from ISO/IEC 25010) are automatically mapped to
the identified design decisions. To map the quality attributes
to design decisions, we use a string-matching algorithm to
find synonyms and keywords for each the quality attribute in
the textual description of design decisions. The mappings are
persisted in the MongoDB as well.

In order to recommend experts who can be involved in deci-
sion making, architects’ and developers’ expertise about AEs
are quantified using an expertise matrix. The AEs contained in
the design decisions are the columns of this matrix and rows
represent architects and developers. Each matrix entry is then
computed as the number of design decisions which contain
the corresponding AE and are resolved by the corresponding
architect or developer. The rows represent the expertise of a
single architect and are called expertise profile (EP). To make
expert recommendations for new design concerns, a frequency
vector, called concept vector (CV), of the AEs within the
textual description of the concern is computed. The score
for each expert is then computed as score = ‖EP ◦ CV ‖,
where “◦” is the entry-wise multiplication of the two vectors. It
should be noted that the expertise matrix can not only be used
to identify people with expertise but also helps to distribute
knowledge among team members and therefore prevent the
formation of knowledge islands or hotspots. The expertise
matrix for each project is persisted in the MongoDB. See [16]
for a detailed description of the recommendation algorithm.

D. Document Clustering

The Document Clustering component creates and persists a
document cluster model of all the identified design decisions
using an unsupervised machine learning algorithm. These
clusters of similar design decisions are created using the
Word2Vec representation of design decisions’ description and

4https://uima.apache.org/

K-means clustering algorithm thereafter. A new design con-
cern is compared with the persisted cluster model to identify
similar design decisions made in the past5. Those identified
similar decisions are ranked according to their similarity score
and presented to the users as described below.

E. AMELIE - Decision Explorer client

This component is the main front-end of ADeX. The
AKRec component exposes its annotation and recommenda-
tion services as REST-APIs to this client. Figure 2 shows one
viewpoint (related to quality attributes) within this component.
The front-end is built using the node.js6 environment and relies
on React7 for its UI components. For graphical visualization,
the D3.js8 library is used. The front-end features the following
views: First, in the projects overview page, users can browse
and search through a list of projects (which is again automat-
ically extracted using the SyncPipes component). From the
project import view, users can trigger the import of JIRA issues
(or other project information such as tasks from MS Project or
Github, requirements from Enterprise Architect or Excel files).
Furthermore, the decision classification, clustering, annotation,
and computation of the expert matrix is automatically triggered
by the import operation. Second, in the quality attributes view,
as shown in Figure 2, an overview of design decisions is given
including their classification and affected quality attributes.
Third, the AEs view presents a bubble chart diagram of the
identified AEs; the bubble size is proportional to the frequency
of the AEs affected by design decisions. The quality attributes
view and the AEs view incorporate a time slider feature, where
users can browse the affected quality concerns or AEs year-
wise. Fourth, the expert matrix view depicts the expertise of
architects and developers for the AEs. Using an integrated
search, users can find individuals who have expertise in
specific topics. Fifth, in the expert recommender view, a list
of architects and developers sorted according to their expertise
score is recommended to address open design concerns. Sixth,
in the design decisions view, users can browse through all the
design decisions identified within a project. This view shows
the title, description, quality attributes, architectural elements,
decision categories, and the status of each design decision.
Clicking on a design decision leads to the final annotation and
alternatives view. In this view, the description of the selected
design decision is annotated with AEs and selecting an AE
lists the possible alternatives and software solutions. Users can
also add, update, or remove these recommendations. For the
selected design decision, another tab below the recommenda-
tions view shows a list the similar design decisions along with
the similarity scores. The online version of the tool is available
here: https://amelietor-9f8c3.firebaseapp.com

5See the Master thesis for a detailed description about the approach and
the algorithm parameters: https://wwwmatthes.in.tum.de/pages/l2inbfu3sbe7

6https://nodejs.org/en
7https://reactjs.org/
8https://d3js.org



Fig. 2. The quality attributes view on design decisions (x-axis represents
quality Attributes, y-axis indicates the count of related design decisions)

IV. EVALUATION, CONCLUSION AND OUTLOOK

In this paper, we have presented the tool named ADeX
for the automatic curation of design decisions and supporting
architects and developers during the decision-making process.
The tool follows our idea that forcing software architects
to document their design decisions is often unreasonable
and therefore, bottom-up approaches to software architecture
documentation and AK curation should be the way forward
for AKM in industrial settings. Various components within
ADeX have been developed over the last four years in collab-
oration with and our industry partner who provided practical
feedback. Hence, the components have been evaluated both
qualitatively and quantitatively. The quantitative evaluation
of the components has been discussed in their respective
publications referred earlier. For instance, we have shown in
[14] that design decisions can be automatically extracted from
issues with an accuracy (F-score) of 91.29%, AEs can be
automatically annotated with an accuracy of 84%, and with an
accuracy of 79.64% experts can be recommended to address
specific design concerns.

Regarding the qualitative evaluation, we received feedback
comprising of areas of improvement, positive, as well as, neg-
ative aspects of ADeX from architects and developers in five
different industrial projects. For instance, concerning the AEs
view, architects suggested that heightening the relationships
between AEs in the bubble chart would benefit the impact
analysis of decisions on related AEs. Similarly, even though
we present related similar decisions made in the past, it was
suggested that identifying the type of relationships among sim-
ilar decisions would be beneficial. We are currently working
on this suggestion to automatically extract relations (such as
related to, decomposes into, constraints, and contradicts) from
the data sources. Finally, with regards to the expertise matrix,
even though the benefits of such a matrix with the integrated
search was mentioned, at least three architects commented the
following: “some people [architects and developers] might not
be happy that you measure their expertise”. We do realize that
special care must be taken and workers’ council needs to be

involved in setting up and using such a system in industry.
For future work, we plan to integrate some of the function-

ality into the commonly used design, development, and project
management software and processes. Furthermore, since AK
reuse reduces the design costs and also improves the quality,
another important step for our future work is to investigate
how to transfer and reuse AK between different projects.

REFERENCES

[1] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in WICSA 2005. IEEE, 2005, pp. 109–120.

[2] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford, Documenting
Software Architectures Views and Beyond. Addison-Wesley Profes-
sional, 2003.

[3] K. A. de Graaf, “Annotating software documentation in semantic wikis,”
in Proceedings of the fourth workshop on Exploiting semantic annota-
tions in information retrieval. ACM, 2011, pp. 5–6.

[4] R. C. de Boer, “Archimedes publication and integration of architectural
knowledge,” in ICSAW 2017. IEEE, 2017, pp. 268–271.

[5] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar, “A
comparative study of architecture knowledge management tools,” J. Syst.
Softw., vol. 83, no. 3, pp. 352–370, 2010.

[6] M. Shahin, P. L. P. Liang, and M. Khayyambashi, “Architectural design
decision: Existing models and tools,” 2009 Joint WICSA & ECSA, no.
March, pp. 293–296, 2009.

[7] J. F. Hoorn, R. Farenhorst, P. Lago, and H. Van Vliet, “The lonesome
architect,” J. Syst. Softw., vol. 84, no. 9, pp. 1424–1435, 2011.

[8] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years
of software architecture knowledge management: Practice and future,”
J. Syst. Softw., vol. 116, pp. 191–205, 2016.

[9] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of architecture
design rationale,” J. Syst. Softw., vol. 79, no. 12, pp. 1792–1804, 2006.

[10] M. Bhat, K. Shumaiev, and F. Matthes, “Towards a framework for man-
aging architectural design decisions,” in Proc. 11th ECSA: Companion
Proc. ACM, 2017, pp. 48–51.

[11] J. Xu, “Improving the usability of an integrated decision
support system for design decision making,” Master’s thesis,
Technical University of Munich, Germany, 2018. [Online]. Available:
https://wwwmatthes.in.tum.de/pages/1r15fyryyv3gc

[12] A. Manjunath, M. Bhat, K. Shumaiev, A. Biesdorf, and F. Matthes, “De-
cision making and cognitive biases in designing software architectures,”
in ICSA-C 2018. IEEE, 2018, pp. 52–55.

[13] T. Reschenhofer, M. Bhat, A. Hernandez-Mendez, and F. Matthes,
“Lessons learned in aligning data and model evolution in collaborative
information systems,” in IEEE/ACM ICSE-C. IEEE, 2016, pp. 132–141.

[14] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes,
“Automatic extraction of design decisions from issue management
systems: a machine learning based approach,” in ECSA 2017. Springer,
2017, pp. 138–154.

[15] M. Bhat, K. Shumaiev, A. Biesdorf, and F. Matthes, “An ontology-based
approach for software architecture recommendations,” in 23rd AMCIS
2017, Boston, MA, USA, August 10-12, 2017, 2017.

[16] M. Bhat, K. Shumaiev, K. Koch, U. Hohenstein, A. Biesdorf, and
F. Matthes, “An expert recommendation system for design decision
making: Who should be involved in making a design decision?” in ICSA
2018. IEEE, 2018, pp. 85–8509.


