PIA - A Generic Model and System
for Interactive Product and Service Catalogs

Florian Matthes and Ulrike Steffens

Software Systems Institute,
Technical University Hamburg-Harburg,
D-21073 Hamburg, Germany
{f .matthes, ul.steffens}@tu-harburg.de
http://www.sts.tu-harburg.de/

Abstract. This text motivates and defines a generic model for interac-
tive (online or offline) product catalogs. Based on a detailed requirements
analysis, the data model is defined using an object-oriented design no-
tation and the query language for expressing customer interests on the
catalog is defined using techniques from fuzzy set theory. The model
provides the basis for the implementation of a generic, highly-interactive
catalog management system which is designed to be interfaced with rela-
tional databases, information-retrieval engines and special-purpose index
structures.

1 Introduction and Motivation

An ever increasing number of enterprises is using digital media like online web
servers or offline CD-ROMs as part of their communication with (potential)
customers. Interactive digital communication media have the potential to close
the gap between two extreme communication modes. One extreme is the direct,
one-to-one conversation between an individual customer and a well-trained sales
person. The other extreme is the mass distribution of anonymous information
to the customer via broadcast media like advertisements, product fact sheets or
product catalogs. In this paper, we present a generic data, language and system
model for interactive (online or offline) product catalogs that act as active as-
sistants to help customers find items (products, services, information resources)
matching their very personal interests and preferences. In particular, the system
is capable of establishing and sustaining a long-term customer relationship which
may lead to a valuable learning process involving customers, catalog maintainers
and information providers.

We chose to name this model and system PIA (personal information assis-
tant) emphasizing the active role of the system, driving a conversation from
an initial (fuzzy) customer request towards a detailed mutual understanding of
the (mis-)match between the customer’s personal preferences and the available
corporate services and products. This should be seen in contrast to a more tradi-
tional data-centered view of such product cataloges as index structures or search
engines.

As a consequence, our work focuses on those objects and algorithms that are
visible from the catalog users’ perspective (customers, maintainers and providers)
and that are relevant for the long-term cooperation between these users taking
into account the inevitable evolution of customer interests and of the catalog
contents and organization. At the present stage of our work, we are less inter-
ested in identifying a restricted query language with strict algebraic properties
which can be exploited for clever query optimization, but we prefer to provide
customers with a rich (but formally defined) language of predicates and con-
nectives for the interaction with the catalog which can also help the catalog
maintainer and the information provider to learn from these customer needs.

In this paper, we abstract from the specific terminology used in particular
application domains (business, trade, library management, knowledge manage-
ment, etc.) and focus on the strong commonalities in the information structures
and interaction patterns with catalogs in these domains. We therefore talk gener-
ically of a catalog of items with properties. The catalog items do not need to be
physical objects described by numeric or discrete values, they can as well be
service descriptions (trips offered by a travel agency, financial and insurance
services, ...) or descriptions of information resources (bibliographic data, news
articles, image descriptors, software components, ...). Each property of an item is
defined by a value for an attribute. An attribute is associated with a domain which
can be a numeric, a discrete, a full-text or a special-purpose domain defined by
the catalog maintainer. A customer expresses his/her interest interactively as
alternatives, each of which combines several criteria. Each criterion is expressed
by a parameterized predicate on a single attribute.

Our model is designed to be applicable to a rather homogeneous product
catalog of a single producer (e.g., all cars produced by BMW, all books published
by Springer) but also to a heterogeneous catalog integrating diverse products of
many providers with no common property schema (e.g., all products at Harrods
in London, all documents in a library).

An important assumption of our work is the fact that PIA only provides de-
cision support for a customer. Therefore, we do not have to take into account the
problem of decision making based on fuzzy requirements and partial information.

The main contributions of our work presented in this paper are

— the conceptualization and formalization of the generic objects and cooper-
ative processes involved (like interest, alternative, criterion, attribute, do-
main, score, offer, decision, notification etc.), as described in Chapter 2 and
in Chapter 3,

— the conceptualizition and formalization of generalized fuzzy query operators
in a query language which permits combined similarity queries ranging over
numeric, discrete and full-text domains and also supporting semi-structured
data objects (see Chapter 4)

— the identification of supporting (commercially available) technologies and
their consistent integration in an overall system architecture with well-defined
component interfaces, demonstrated by a prototypical PTA implementation
with an elaborate interactive front-end (see Chapter 5).

2 User Groups of Personal Information Assistents and
their Requirements

As explained in the introduction, we can distinguish three classes of cooperating
actors interacting with PTA: Customers approach the system to easily find prod-
ucts best suited for their interests. Providers employ the system as a show-case
or electronic marketplace, publishing information on the products they offer.
Maintainers act as mediators, keeping the catalog in a form that supports a
long-term provider-customer relationship.

The goals of a customer are

— to gain an understanding of the items in the catalog and their properties
by browsing, inspecting individual items, asking for representative samples,
viewing summaries or ranked lists according to his/her personal criteria,

— to refine incrementally his/her personal interests from initial fuzzy qualita-
tive requirements to more detailed quantitative criteria possibly structured
into decision alternatives,

— to obtain specific offers from the provider taking into account his/her per-
sonal preferences,

— to decide on follow-up actions involving the matching items (buy a product,
request a service, make use of a piece of information, enter a negotiation
process using a different communication media, request notifications on new
similar items becoming available in the future),

— to be able to return at a later point in time and to easily resume a previous
interaction with the assistant and being recognized as an individual customer
with a particular past conversation history.

The goals of a provider are

— to clearly arrange all items available, being able to capture and emphasize
their diversity and not being forced to fit them into a rigid common property
schema,

— to provide multiple access paths to the same item in order to give the cus-
tomer maximum freedom in his/her decision process,

— to learn from and to recall the personal interests of individual customers,

— to identify and to quantify larger customer groups with shared preferences
or interests,

— to learn from the reactions of customers to offers made.

The goals of a catalog maintainer are

— to integrate information from multiple providers,

— to detect and to resolve mismatches in attribute names, mesasuring units,
or in the terminology used by multiple providers,

— to accomodate the evolution of domains, attributes and properties over time,
with minimal disruption of existing customer relationships,

— to develop and enforce a consistent terminology for a smooth communication
between customers and providers.

3 Design of a Generic Object Model for Personal
Information Assistants

Our model makes use of two complementary formalisms: First, the central se-
mantic concepts like customer interest, criterion, item or property are represented
as objects in an object-oriented data model. They can be mapped to values in
(standard relational) databases, copied as structured values across the network
and be associated with each other. We use the unified modeling language UML
[1] and the standardized base types of Java to formally describe the static se-
mantics of the PIA model. The main PIA concepts are summarized in Fig. 1
and will be explained successively within this chapter.

The dynamic semantics of the model relies heavily on fuzzy set theory [2,
3], as a second formalism employed in our work. For example, an interest i is
formalized as a matching method ¢.score() which assigns a score (a real number
from the interval [0,1]) to a given item. A score of 1 expresses a perfect match
while a score of 0 is assigned to items that are irrelevant w.r.t. to this interest.

3.1 Modeling the Catalog Users

The top of Figure 1 is a description of the three classes of actors cooperating with
a PIA. Customer, Maintainer and Provider are subclasses of a common super-
class Actor. A standard login procedure can be used to authorize and to identifiy
maintainers and providers. However, immediate identification of customers may
not be desirable and can be delayed until a later conversation phase, for exam-
ple, when a subscription request is issued by a customer with a personal e-mail
address. At the beginning of an anonymous interactive session, a new customer
profile is created that can be merged with another customer profile, as soon
as the identity of the customer can be determined (method mergeWith of class
customer).

3.2 Modeling the Catalog Contents

A PIA catalog is a collection of items (see classes on the right of Fig. 1). For
communication purposes between customer, provider and maintainer, each item
has to be assigned a printable unique catalogID. In practice, the choice of a
naming scheme for catalog items is very important for the long-term evolution of
the catalog (e.g., to identify sucessive versions of a product), but in the examples
of this paper, simple integer numbers will be used.

An item in the catalog does not need to capture all properties of an item but
there may be further information on the item itself available elsewhere. In PIA,
an attribute details is provided by objects of class item which can hold the URL
of further information sources. This URL can also reference the item itself in
case it is a purley digital artifact (a document, a piece of software, or a digital
image).

In PIA, each item is described by a set of properties. A property is a pair
consisting of an attribute and a value, for example:

Actor

-name : String
-e-mail : String
-details : URL

D

has as arguments

Common Name Space

+toString() : String

Fig. 1. Overview of the PTA Object Model

Customer has Maintainer Provider
o.n Mutual Understanding
+mergeWith(other : Customer) : void
1.n 1.1
Preference
has i is responsible for
1.n 0..n |-name : String 0..n
has -value : String
Interest Catalog
-name : String -description : URL
-cutoffScore : float 0.1 Decision . .
_cutoffSize : int lea is responsible for
-op : OrLikeAggregationOperator -exportedAs : URL
+score(item : Item) : float ol1
i consists of
Offer 0.n
structured into
1.n
-size @ int
Item
0..n
Alternative score based on Q T
-cataloglD : String
-weight : float is a collection of -details : URL _
-op : AndLikeAggregationOperator 0..n - +valueOf(a : Attribute) : Value
+score(item : Item) : float i.n
Match 0..n
-score : float
combines has
1..n
1.n
- Attribute
Criterion
0..n — 0.n Property
—— description : URL
-ngl‘:lafk;at | 1.1 |[-name : String 1.1
-negated : boo
9 - - - +min/max/avgValue() : float
+score(item : Item) : float +numberOfitems() : int
0.n
0..n0..n 0.n
1.1 - with
nas arguments d?--N fIsI}
Predicate Domain
-arity : int =
-name : String -name : String .
-description : URL +newValue(s : String) : Value
+score(i : Item, a|: Attribute, args : Value[]) : float 1.1 1.1
0..n
is defined on
0..n Value 1.1

(1845, { (product name, BMW 3828i), (product category, sports car),
(price, (30000, USD)), (average fuel consumption, (11 1/100km)),
(mazimum speed, (230 km/h)), (SRS, present),

(GPS, optional), ...})

Each attribute is identified by its name (e.g., SRS) and may have an optional
link (URL) to a detailed description of the semantics of the attribute. For exam-
ple, it should be explained what a SRS is or what measuring technique is used
to determine the fuel consumption of a car, etc. Such descriptions play a central
role in conversations between customers and sales persons. They contribute sig-
nificantly to the customer’s learning process and help her/him to get acquainted
with the interactive catalog.

Each attribute is based on a domain that defines the universe of values avail-
able for the attribute and a set of predicates defined on values of the universe.
Multiple attributes may share the same domain (e.g., average fuel consumption
and fuel consumption for city traffic are both based on the domain VolumePer-
Length).

In our model, the product category of an item is defined as a regular property
of the item. In particular, there is no typing or schema enforced on items of a
certain product category. As a consequence, an information provider is free to
attach arbitrary properties to an item or to omit properties for attributes where
the values are unknown, unspecified, or simply not favorable.

3.3 Modeling Domains and Values

Despite the lack of schema constraints for product attributes, PIA enforces a
large number of constraints on domains and values which are essential for the
consistency and usability of the catalog. Domains and values exist indepent of
concrete items, they define possible properties and they constitute the common
language for the communication between customer and provider. The mainte-
nance of domains and their associated objects (measuring units, discrete values,
predicates, similarity functions etc.; see bottom of Fig. 1) is the task of the
catalog maintainer.

Each domain has a unique name in the catalog and provides a newValue
method which is similar to a constructor in object-oriented programming lan-
guages. The method returns a value of the domain identified by a textual de-
scription passed as an argument to the method. Such a value-identifying string
is called a literal in programming language terminology and is required in PTA to
convert textual descriptions submitted by customers, maintainers and providers
into internal value representations supporting efficient storage and retrieval. For
example, the domain fuel consumption defines a method new Value which given
the string ”12.8 1/100 km” returns a value that represents a fuel consumption
of 12.3 liters per 100 kilometers.

PTA distinguishes three built-in classes of domains with distinct value repre-
sentation. A concrete catalog assistant built with PIA contains a large number

of domains each of which belongs to one of these three classes and has been
defined and customized interactively by the catalog maintainer.

Numeric Domain A Numeric Domain describes numeric values represented
internally as floating point numbers. A numeric domain may impose a (fixed)
upper or lower bound on the admissible values. A numeric domain d can
either describe ordinal numbers (d.isOrdinal, like the number of seats in
a car) or it contains values that describe quantitative properties of items
(like their length or their speed) which are expressed using a measuring
unit (centimeter, inch, hour, second). Therefore, each numeric domain is
associated with exactly one measuring unit (e.g. miles per hour). This unit
can be regarded as a kind of reference unit for all other measuring units that
measure the same physical phenomenon (e.g. meters per second or kilometers
per hour). Values for a numeric domain expressed in these derived measuring
units are converted by PIA via a sequence of offset and factor calculations
involving intermediate measuring units to the desired reference unit. This
modeling is motivated by the requirement to allow customers and providers
to work with their preferred measuring units and to also provide active
assistance during interactive user input.

Discrete Domain A Discrete Domain consists of a finite number of discrete
values repesented by literals (or by aggreed-upon iconic visual representa-
tions), for example:

TV Norm = {PAL, Secam, NTSC}

In many cases, discrete values used by providers and customers describe
overlapping concepts and over time the set of discrete values evolves, includ-
ing specialization and generalization of individual concepts. For the purpose
of catalogs, it is therefore highly desirable to be able to arrange the dis-
crete values in a single rooted tree such that the children of a discrete value
specialize the concept of their parent.

TV Norm = (Any TV Norm, {
(PAL, { PAL B/G, PAL I, PAL L}),
(Secam, {Secam B/G, Secam D/K, Secam L}),
(NTSC, {...})}

The root of the hierarchy and the other inner nodes of the tree can be used
by customers and providers as property values to denote approximations
of existing values or discrete values not (yet) added to the domain by the
catalog maintainer (e.g. after the release of a new PAL TV norm). This is
again an example for a learning process where the catalog maintainer de-
pends crucially on input (in this case notifications about exceptional values)
from customers and providers to decide on ways how to improve the catalog.

Full-Text-Domain A Full-Text Domain consists of full-text values with no
further restriction on the contents of these strings. A catalog may feature

distinct full-text domains to distinguish string values expressed in different
languages (e.g. in English or in German). Strings and their domains are
modeled as subclasses FullText Value and FullTextDomain of the PIA classes
Value and Domain, respectively (compare Fig. 1).

There is a tradeoff between the use of full-text domains and the use of discrete
domains since the maintenance of a set of discrete values puts a burden on
the catalog maintainer and the information providers who have to agree on
this common vocabulary. On the other hand, customers are eager to gain a
deeper understanding of the search space which is better supported by the
organized structure provided by discrete domains. A run-time conversion
(evolution) of a catalog domain from a full-text to a discrete domain and
vice versa should therefore be supported.

For specific product catalogs, it may also be necessary to define additional
refined domains, for example, to describe the domain of person name. By ap-
propriate subclassing of the classes FullTextDomain, FullTextValue and Full-
TextPredicate, a catalog builder can choose a canonical internal representation
for person names and can define specific predicates on person names (is sim-
ilar to, sounds like, has family name, has first name, has low edit distance).
Other examples of special-purpose domains are dates of the gregorian calendar
or longitude/latitude coordinates on the globe.

The concept of domains could also be extended to support set-valued do-
mains (colorset is a set of color) and aggregate domains (address is an aggregate
of street, number, and address) by an appropriate subclassing of the classes
domain and value to introduce set and record type and value constructors, re-
spectively. This extension would lead to an orthogonal type system where type
constructors can be nested to arbitrary depth (e.g. to define sets of records with
set attributes). However, this generalization would add significant complexity to
the model and its implementation.

3.4 Modeling Customer Interests

A customer may have several unrelated interests (e.g., buy a book, find a present
for a friend) pertaining to the same catalog. Therefore, PIA maintains a set of
interests per customer which are distinguished by name (see classes on the left
of Fig. 1).

As a first cut, each interest can be described by a (non-empty) set of criteria,
for example:

{(product category, is, convertible car, very important),
(price, is not much higher than, (15000, USD), normal),
(mazimum speed, is more than, (160 km/h), normal),
(fuel consumption, is not too high, (), normal),

(color, not(is), (yellow), normal),

(number of seats, is between, (2, /), normal)
(SRS, is, (present), normal),

(GPS, is, (optional), not so important) }

In our model, each criterion is expressed by a predicate on an attribute of the
desired item(s) with an associated weight. Each attribute and predicate specified
in a criterion has to be defined previously by the maintainer of the catalog (see
Sec. 3.3 and Chapter 4). Each predicate can be negated expressing the fact that
the customer is interested (most) in those items that do not satisfy the predicate.

The weight of a criterion is intended to capture the relative importance of
a criterion w.r.t. to the other criteria contributing to the interest. Technically
speaking, a weight is a numeric value in the interval [0..1]. In order o simplify the
interaction with customers, weights are denoted by literals chosen from a fixed
(small) set of names (e.g., very important, important, normal, less important,
not so important or simply essential, nice to have).

Before the exact semantics and properties of predicates, criteria and of the
dynamic combination of criteria are defined in Chapter 4, we have to further
refine the notion of a customer interest.

A simple ”conjunctive” combination of (negated) criteria is sufficient in the
early stages of the customer’s decision making process where he/she is exploring
the space of items available and he/she is zooming in or out of the space by
interactively adding or removing criteria or modifying predicate parameters.
However, as a result of this refined understanding, customers tend to formulate
alternatives each of which is in turn described by a combination of (negated)
criteria. The decision which alternative is to be pursued further is made by
a direct comparison of the items matching these alternatives. For example, a
customer could formulate the alternative to either buy a light-weight laptop with
a long battery lifetime or a fast desktop PC with a 3D graphics accelerator.

In PIA, a customer interest can therefore be described as a (non-empty) set
of alternatives each consisting of a set of (negated) criteria. An item can match
the customer’s interest if it matches one (or several) of the alternatives. This
”disjunctive” combination of alternatives and the semantics of weights assigned
to individual alternatives are described in Chapter 4.

Especially when searching catalogs with large amounts of items, a customer
may want to restrict the number of potentially suitable items returned by the
system. Thus, the information assistant provides the possibility to equip a cus-
tomer interest either with a cutoff score, returning only those items for which
the evaluation results in a score higher than the cutoff score, or a cutoff size,
returning no more than the specified number of items.

A possible generalization of our model is to add support for more customer-
centered cumulative criteria, like the ones used in the following statement of
interest:

{(product category, is, car, normal),
(performance, is very high, normal),
(comfort, is not too low, normal),
(lifetime, is high, important)}

These cumulative and qualitative criteria would be based on predicates on
numeric domains defined by the catalog maintainer. The corresponding attribute

values of items in the catalog could either be provided explicitly for each item
or be derived via heuristic functions from other attribute values of the same
item. Formal techniques for relating customer-centered qualitative criteria and
product-centered quantitative criteria has been studied extensively since the
mid-eighties in engineering sciences (quality function deployment, house of qual-
ity diagram) [4].

A distinguished property of our model is the fact that the product category
is captured as an ”ordinary” attribute on a discrete domain as described in Sec.
3.3. The intended positive effect of this uniformity is the fact that a customer
can combine fuzzy predicates on the product category attribute with other pred-
icates using weights, negation, conjunctive and disjunctive aggregation without
being constrained by static schema information. Moreover, this uniformity makes
it easy to implement catalog brokers that integrate the contents from several au-
tonomous catalogs.

3.5 Modeling Mutual Understanding between Customer and
Provider

The evaluation of a customer interest, as sketched in the previous section and
detailed in the next chapter, leads to a set of matches which serve as a founda-
tion for the establishment of a mutual understanding between the information
provider and the customer (see classes in the center of Fig 1). Each match in-
tegrates an item and a score resulting from the scoring method of the interest
applied to this item.

The evaluation may span one or more catalogs and produces a number of
matches corresponding to the number of evaluated items or limited by some
cutoff number or cutoff score defined by the user. The sequence of matches
ordered by decreasing score is called an offer. A PIA offer may not only be
displayed in the user interface, but it may also be saved by the customer for
subsequent examination, or it may be re-created automatically after fixed time
intervals as the result of a customer’s subscription. It is also possible to compute
cumulative figures (frequency, min, max, median, ..) over an offer or to perform
statistical cluster analysis on the offer.

Examining an offer, the customer selects one or several items following her /his
personal (subjective) rating. A decision with regard to a match can be observed
only if the customer takes some action. As we abstract from any follow-up actions
outside the field of decision support like e.g. putting a product in a shopping cart,
we define that a decision is taken, if the customer expicitly marks the respective
match as valuable.

Decisions are administered by the information assistant, because the may
provide useful hints on the personal understanding that a customer may have of
an item and on her /his habits formulating interests. The decisions are, therefore,
recursively connected with their preceding interest where they can be used for
supporting relevance feedback functionality [5] .

4 Fuzzy Matching between Customer Interests and
Catalog Items

In Section 3.4 and in the left-hand part of the UML diagram of Fig. 1 we defined
the (abstract) syntax for the customer interests (=fuzzy queries) by typed trees.
In this section, we inductively define the semantics of customer interests by a
query evaluation function which computes a numeric score for a given query tree
(i.e., an object of class Interest) and for a given catalog item based on the item’s
properties (its attribute / value bindings).

In our object-oriented model, the score function is decomposed into (a hi-
erarchy of) score methods defined in the three classes of the query tree nodes.
The score for a given Item i and a given Interest x is thus defined as the value
x.score(i) which is computed bottom-up from the scores of all predicates in the
tree applied to i taking fuzzy negations, fuzzy and weighted conjunctions and
finally fuzzy and weighted disjunctions into account.

The evaluation of fuzzy predicates involving negation, disjunction and con-
junction is defined in Section 4.3. The underlying definition and evaluation of
simple predicates, i.e. predicates involving only a single attribute of an item is
explained in Section 4.2. Together, these sections define the generic semantics
of an implementation of the PTA query engine which is parameterized by the
particular choice of the basic domains and their predicates (technically defined
as class files dynamically linked to the PIA kernel).

4.1 Capturing Similarity through Numeric Scores

A severe limitation of boolean predicates underlying classical (relational and
object-oriented) database models is the difficulty to adequately model fuzzy
customer interests. For example, a user interested in an item with a price of
less than 100$ would certainly be willing to pay 101$ for an item that matches
perfectly all other criteria imposed on the item. It is therefore common practice
in information retrieval and multimedia databases to use numeric scores in the
interval [0,1] to model user interests [6,5, 7].

However, different research communities have associated different (partially
incompatible) interpretations with the values returned from such score func-
tions, such astThe fuzzy set interpretation [2, 8], the spatial interpretation orig-
inally used in text databases, the metric interpetation [9], or the probabilistic
interpretation underlying advanced information retrieval systems [10].

Our goal in the design of the PIA model and system was to allow a maximum
freedom in the formulation and combination of predicates while still preserving a
minimum semantic consensus necessary to build a meaningful user interface, an
efficient query evaluator, user profile manager, persistence manager etc. There-
fore we constrained the system to a boolean combination of atomic fuzzy queries.
More specifically, we allow n-ary (weighted) disjunctions of n-ary (weighted) con-
junctions which leads to a model that is very similar to the work of [7].

4.2 Definition and Evaluation of Simple Fuzzy Predicates on
Numeric, Discrete and Full-Text Domains

This section describes the semantics of simple predicates which are used by
customers as building blocks in expressions to articulate their personal interests,
as explained in Section 3.4.

If a customer defines a criterion on an attribute a with domain d, he/she can
only make use of predicates defined on d by the catalog maintainer. For example,
it is not allowed to evaluate the numeric predicate is greater than on an attribute
a that takes values of a discrete domain like TV Norm which does not define
an order on its elements. This constraint is enforced already by the PIA front
end through simple typing rules. As a consequence of this domain restriction,
one can distinguish three kinds of predicates, called numeric, discrete and full-
text predicates. Their superclass Predicate captures the common properties of
all predicates (see Fig. 1).

For example, if Length is a numeric domain, a boolean equality predicate can
be defined for that domain as follows using a Java-like syntax for the function
definition:

(is exactly, 2, (Length, Length),
float score(ltem i, Attribute a, Value[] args) {
Value val = i.valueOfAttribute(a);
if (val == null) return 0.0; // attribute a not defined for item i
if (val.numericValue == args[0].numericValue) return 1.0;
return 0.0; })

The predicate is ezactly is defined on the domain Length and requires a second
argument of domain Length. The function returns the value 0 if the item 7 does
not have an attribute ¢ or if the (numeric) attribute value does not exactly match
the numeric attribute value specified as an argument. Otherwise, the value 1 is
returned to indicate an exact match. This example also illustrates that standard
boolean predicates (=,>,>,...) can be captured in our model by restricting the
set of admissible score values returned to elements from the binary set {0,1}.

As described in Section 3.4, a customer could then use this (parameterized)
predicate to express his/her interest in items that have an exact width of 10 cm
and an exact height of 15 cm (assuming that the attribute width and are both
based on the domain Length):

{(width, is exactly, (10 cm), normal),
(, is exactly, (15 cm), normal)}

This way, a predicate can be applied to different attributes and it can also
verify whether an item posesses the indicated attribute at all.

In the following, we illustrate the expressive power and uniformity of the
PIA model by giving examples of predicates on numeric, discrete and full-text

Predicate Name

Vector of Argument Domains

is as large as possible; is (very) large;

is average; is as small as possible;
is (very) small

is exactly; is approximately;

is (strictly) larger than;

is (strictly) smaller than

is exactly between; is between

(NumericDomain,)

(NumericDomain, NumericDomain)
(NumericDomain, NumericDomain,
NumericDomain)

domains. We start with a list of generic conver fuzzy predicates on numeric

domains:

On a discrete domain consisting of a single-rooted hierarchy of values the
following predicates can be defined generically:

Predicate Name

Vector of Argument Domains

is an exact value; is vague (DiscreteDomain)

is exactly; is subsumed by
subsumes; is similar to
is one of; subsumes one of;
is subsumed by one of

(DiscreteDomain, DiscreteDomain)

(DiscreteDomain, DiscreteDomain/])!

In order to define the exact semantics of these predicates we prefer to use
the model of fuzzy relations and fuzzy partitions (as analogues of mathematical
relations and partitions derived from mathematical sets) [11].

Modern information retrieval engines provide efficient index support to return
scores for the following predicates on full-text domains:

Predicate Name

Vector of Argument Domains

is empty
contains the word; contains a word

(Full-Text Domain)

starting with; contains the stemmed word (Full-Tezt Domain, Full-Text Domain)

contains x near y; contains x followed
by y not more than k words apart
contains a passage of k words

which contain the words

(Full-Text Domain, Full-Text Domain,
NumericDomain,)

(Full-Text Domain, NumericDomain,
Full-Text Domain[])

4.3 Definition and Evaluation of Complex Fuzzy Predicates

As explained already in the introduction of this chapter, the score function defin-
ing the semantics of a query is decomposed into (a hierarchy of) score methods
defined in the three classes of the query tree nodes The score for a given Item
i and a given Interest x is thus defined as the value x.score(i) which is com-
puted bottom-up from the scores of all predicates in the tree applied to i taking
fuzzy negations, fuzzy and weighted conjunctions and finally fuzzy and weighted
disjunctions into account.

A criterion describes the (possibly negated) application of a predicate onto
an attribute. A unary predicate (e.g.isEmpty()) does not require any further ar-
guments while most predicates (e.g. isApproximately(a)) can be parameterized
by the customer with additional values.

class Criterion {
Predicate predicate; Attribute attribute; Value[| arguments;
float weight; bool negated;
float score (Item i) {
if (negated) { return 1.0 - predicate.score(i, attribute, arguments);}
else { return predicate.score(i, attribute, arguments);}}

}

The score method for a criterion is computed by evaluating the score method
of the predicate with the given arguments on the given attribute. For a given
score s a negated criterion returns the score 1-s.

A single alternative describes a weighted conjunction of criteria. In the litera-
ture one can find a large number of different aggregation functions that compute
a score for a weighted ”conjunction” of scores [12,7]. Some of these aggregation
operators are sensitive to the order of their subterms [13] so that we chose to
represent the subterms by a vector and not by a set.

class Alternative {
Criterion[] criteria; AndLikeAggregationOperator op; float weight;
float score (Item i) {
float[] cs = new float[criteria.size()] ;
float[| cw = new float]criteria.size()] ;
for (int j= 0, j j criteria.size(), j++) {
c=criterial[j]; cs[j]=c.score(i); cw[j]=c.weight;

return op(i, cs, cw);}

The score method for an alternative is computed by evaluating the score
method of the criteria and then passing the results together with the weights
of the subterms to the AndLikeAggregationOperator op. [7] describes desirable
algebraic properties of weighted aggregation operators.

Finally, a customer interest is described as a weighted disjunction of alter-
natives.The score method for an interest is computed analogously by evaluating
the score method of the alternatives and then passing the results together with
the weights of the subterms to the OrLikeAggregationOperator op.

class Interest {
Alternative[| alternatives; OrLikeAggregationOperator op;
float cutoffScore; int cutoffSize;
float score (Item i) {
float[] as = new float[alternatives.size()];
float| | aw = new float[alternatives.size()];
for (int j= 0, j j alternatives.size(), j++) {
a=alternatives[j]; as[j]=a.score(i); aw[j]=a.weight;

return op(i, as, aw);}

5 The PIA Software Architecture

The PIA object model serves as a framework for different query evaluation strate-
gies, implementations of numeric scoring functions, and persistent storage tech-
nologies for semistructured data (see Fig. 2). In this paper, we intentionally do
not target the implementation of these components, which are critical for both
query efficiency and effectiveness, but instead rely on already existing solutions
referred to in chapter 4. The object model itself defines a clear-cut interface to
these components which enables the smooth integration of supporting technol-

ogy.

PLA P
pEde mion
Appdi Loyl

Dhznay
Eaniavian L
Dipirreenbon

Fueryg
P s birs

Sareriliette gl
Parmuinei
s

Fig. 2. Overview over the PIA Software Architecture

In the current state of our project, the PIA system is run as a Java Swing ap-
plication communicating via RMI with the server containing the object-oriented

catalog model. Other implementations based on Java applet or servlet technol-
ogy are also imaginable and could be realized with little effort. Catalog data is
imported via an XML import filter and can also be exported into XML files.
Although, from our point of view, XML is suitable for the representation of ob-
jects in a personal information assistant, we still plan to realize filters for other
well-accepted exchange formats, too.

5.1 Interaction with the System

The prototype’s user interface is implemented by the use of the Java Foundation
Classes (JF'C, also known as Swing). The large number of graphical components
available in Swing eases the task of giving the interface a clear, understand-
able structure which is essential for non-expert users of a personal information
assistant.

| | i S e —-

Fig. 3. The Inteactive Query Interface for PIA Customers

Taking the viewpoint of a PTA customer first, one can detect four large icons
on the left side of the window, allowing the user to decide between four differ-
ent activities. He/she can formulate an interest, evaluate this interest, change
his/her personal preferences, or subscribe for periodical notifications on special
offers according to his/her interests. These icons remain visible throughout the
customer’s session. Providers and maintainers are faced with similar activity
panels representing their specific activities with the PTA system.

During a session, the information assistant stays in close interaction with
the customer (and all other users). It provides e.g. tool tip information for the
different graphical components that can be used. Furthermore, a status line at
the bottom of the window displays messages important for the current state of
usage (e.g. number of items matching the current query).

Formulating the query (see Fig. 3), the customer is being equipped with infor-
mation on the catalog. In the table next to the activity panel, all the attributes
currently available in the catalog are displayed together with the frequency by
which they appear. In this way, the customer is able to estimate how effective
the choice of a certain property in the formulation of his/her interest can be
with respect to the current catalog contents. The current interest can be seen
on the right of the window, where the desired criteria are shown together with
their weight. The interest can be extended by clicking on one of the attributes
in the attribute table on the left. As a result, an editor window opens. The cus-
tomer now can choose one of the predicates available for the attribute’s domain
and afterwards enter the necessary argument values. As soon as he/she has fin-
ished, the new property will appear in the panel on the right. The status line
is updated, now stating the number of items which would be retrieved from the
catalog for the current interest, so that the customer knows how effective the
query would be. The customer may now decide to refine the interest or to eval-
uate it. Evaluation is triggered by pressing the respective button in the activity
panel.

pifimih e il i il =gl S EE—] I |
v [T B o e o e
—_— iy A]t Y N e

e Ll e & el P
Bok Fighidy rdubidd
CI T

Tl]

oo s i

Fig. 4. The Interactive Evaluation Interface for PIA Customers

The evaluation returns a list of items ranked by their relevance for the interest
(see Fig. 4). Each item is connected with a link leading to the URL containing
the detailed item description. In this way, the customer is offered a quick access
to generic decision support as expected from a personal information assistant.
Using URLs here guarantees that the descriptions can also be stored and updated
by the information provider, who, in many cases, owns the deeper understanding
of the objects’ semantics. Having inspected the list of results, the customer may
decide to reformulate his/her interest, which he can simply do by pressing the

query button on the left again. The program then returns to the query window,
still showing the interest formulated before. Of course, both the formulation
and the evaluation of interests are also accessible for catalog maintainers and
information providers.

The window for browsing and updating personal preferences can be reached
by pressing the third button in the activity panel. Here, the customer is offered
a tabbed pane consisting of different cards for different kinds of preferences.
Among others, it is possible to choose preferred measuring units for domains or
to view, refine or delete stored interests.

Modalities for periodical notification on new offers can be settled by pressing
the last button on the activity panel. The customer has the choice between two
different kinds of subscription. On the one hand, he/she can receive a general
list of special offers generated from time to time for all PIA customers. On the
other hand, he/she can subscribe to offers according to his own special interests
stored witin the system.

il
Ll L
g
s
i
| C o rp— T
o dem
e
Cmaw 1ol
Y
a =
) i F -
£ -} I
4 "
Enannnd
—

Fig. 5. The Interactive Interface for PIA Maintainers

The major task of PIA catalog maintainers is to keep the domains and at-
tributes within the system in a state adequate to the needs of customers and
providers. Thus, the maintainer’s activity panel includes three buttons for brows-
ing and updating discrete, full-text and numeric domains, as well as one button
for the maintenance of attributes (see Fig. 5). The structure of the windows
hiding behind these buttons is always very similar. The maintainer can choose
one domain or attribute respectively from the table in the upper part of the win-
dow. Clicking on the desired line opens an editor window. This editor window
allows to change the characteristics of domains and of attributes. For example,
the maintainer can change the name of a domain, rearrange its value space, or
add or delete predicates. He/she hereby is restricted to updates allowed by the
system. In this way, a kind of type checking according to the PIA object model
is realized.

Although PTA information providers would usually not type in product in-
formation item by item, they are still offered an interface of their own, which can
be especially practical in cases, when some incorrect information has come into
the catalog before, via some import filter. The provider then has the opportunity
to bring the catalog back to a consistent state using this interface.

6 Concluding Remarks

This paper does not propose yet another fuzzy query model or fuzzy predicate
semantics but it defines the syntax and semantics of a generic framework for
the implementation of interactive catalogs which do not require information
providers to adhere to a strict data model and which allow customers to combine
in an intuitive and flexible way fuzzy predicates over numeric, discrete and full-
text domains.

With our initial implementation of the query engine we target small to
medium-sized corporate catalogs (up to 10* items with up to 10? attributes)
where a semi-naive evaluation strategy suffices to yield acceptable interactive
system performance in single-user mode. In this scenario, usability and flexibility
of the interactive query interface are more important than raw query execution
speed. We closely follow recent developments in database research on optimized
access to semi-structured data [14,15], on similarity indexing [9] and on fuzzy
query evaluation techniques [7] which may provide significant potential for query
evaluation improvements.

Our model and system architecture has been influenced heavily by our expe-
rience gained in building interactive web catalogs (e.g. electronic marketplaces
for classified ads [16]) and we are currently transfering results of this research
back into industrial projects with partners from the German media industry.

Acknowledgements

This work has been carried out as part of the Kolibri project funded by the DFG
programme V3D2 under grant DFG Schm 450/7-1. Additional funding has been
provided by Pastel (Esprit Project 22552).

References

1. M. Fowler and K. Scott. UML Distilled - Applying the Standard Object Modeling
Language. Addison-Wesley Publishing Company, 1997.

2. Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

3. Siegfried Gottwald. Fuzzy Sets and Fuzzy Logic: Foundations of Application — from
a Mathematical Point of View. Verlag Vieweg, Wiesbaden, Germany, 1993.

4. Y. Akao. Quality Function Deployment: Integrating Customer Requirements into
Product Design. Productivity Press, Cambridge, 1990.

5. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Tokio, 1983.

N

10.

11.

12.

13.

14.

15.

16.

C. J. van Rijsbergen. Information Retrieval. Butterworths, 1979.

R. Fagin. Fuzzy queries in multimedia database systems. In J. Paredaens, edi-
tor, Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, Seattle, Washington, pages 1-10. ACM Press,
1998.

H. J. Zimmermann. Fuzzy Set Theory and its Applications. Kluwer Academic
Press, Boston, MA, 2nd edition, 1993.

Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method
for similarity search in metric spaces. In Proceedings of the 23rd International
Conference on Very Large Databases, Athens, Greece, pages 426—435, 1997.

H. R. Turtle and W. B. Croft. A comparison of text retrieval models. Computer
Journal, 35(3):279-290, 1992.

H. L. Larsen and R. R. Yager. The use of fuzzy relational thesauri for classificatory
problem solving in information retrieval and expert systems. IEEE Transactions
on Systems, Man, and Cybernetics, 23(1):31-41, 1993.

Sadaaki Miyamoto. Fuzzy Stes in Information Retrieval and Cluster Analysis.
System Theory, Knowledge Engineering and Problem Solving. Kluwer Academic
Press, 1990.

R. Yager. On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):183—
190, 1988.

S. Abiteboul. Querying semi-structured data. In F. Afrati and P. Kolaitis, editors,
Proceedings ICDT 97, 6th International Conference, Delphi, Greece, Lecture Notes
in Computer Science, pages 1-18. Springer-Verlag, 1997.

Sophie Cluet. Modeling and querying semi-structured data. In SCIE 1997, pages
192-213, 1997.

Higher Order GmbH. Reference list of Tycoon Adbase installations, 1999.
http://www.higher-order.de/Produkte/AdBase/Referenzen.html.

