

Technische Universität München

Department of Informatics

Master’s Thesis in Information Systems

Prototypical Implementation and Assessment of Related-

ness Search in Laws, Judgments and Commentaries

Philipp Pickel

Technische Universität München

Department of Informatics

Master’s Thesis in Information Systems

Prototypical Implementation and Assessment of Related-

ness Search in Laws, Judgments and Commentaries

 Prototypische Implementierung und Bewertung einer

Ähnlichkeitssuche über Gesetze, Urteile und Kom-

mentare

Author: Philipp Pickel

Supervisor: Prof. Dr. Florian Matthes

Advisor: Bernhard Waltl

Submission date: 15.12.2016

I confirm that this master's thesis is my own work and I have documented all

sources and material used.

Garching b. München, 15.12.2016 ________________________

Place, Date Signature

III

Abstract

The number of legal documents is rapidly growing and most of them are available in digital

format. These documents are often the basis of a legal expert’s daily work. He often needs to

find certain documents, but cannot oversee the huge amount of data without computer aid.

The starting point of such a search is frequently an already found document.

Therefore, this thesis provides a prototypical implementation of a relatedness search for legal

documents. Beforehand different approaches to identify similarity in texts are discussed by

looking at related work and their approaches. These approaches use various techniques from

natural language processing and machine learning. They differ in complexity and underlying

models.

To ease the effort of implementation, a concept for the architecture of the similarity search is

developed. The main goal of the architecture is to allow adding further similarity methods as

easily as possible. Also approaches for persistence and visualization are described in this the-

sis.

Three of the techniques discussed in the literature review are prototypically implemented.

Additionally, a similarity search provided by the database elasticsearch is integrated as further

point of reference. The described concepts for architecture, persistence and visualization are

also realized.

After the implementation is done, the results provided by the different similarity methods are

assessed. This is done via a questionnaire, in which the participants rank the search results

according their relevance towards a source document. Based on these relevance rankings the

performances of the relatedness methods are compared.

In the end a summary of the findings of this thesis is given. Also starting points for further

research in this field are shortly mentioned.

IV

Table of Contents

Abstract .. III

List of Figures .. VI

List of Listings .. VII

List of Tables ... VIII

List of Abbreviations .. IX

1 Introduction ... 1

1.1 Motivation ... 1

1.2 LEXIA ... 3

2 Research Objectives .. 6

3 Research Method .. 7

4 Data ... 9

4.1 Beck-online dataset .. 9

4.2 DATEV dataset .. 10

4.3 German Federal Laws .. 13

5 Related Work .. 14

5.1 Bag of Words ... 14

5.2 N-gram ... 18

5.3 NLP Annotations ... 20

5.4 Word Embeddings ... 22

5.5 Citation Network ... 25

5.6 Bayesian Network .. 27

5.7 Topic Modeling ... 30

5.8 Method comparison ... 32

6 Concepts .. 35

6.1 Recommendation System .. 35

6.1.1 Architecture .. 35

6.1.2 Persistence .. 36

6.1.3 Visualization ... 38

6.2 Similarity of Documents .. 39

6.2.1 Bag of Words ... 39

6.2.2 NPChunk .. 40

V

6.2.3 Word Embeddings .. 40

7 Implementation ... 41

7.1 Architecture ... 41

7.2 Similarity Methods .. 45

7.2.1 Bag of Words ... 45

7.2.2 NPChunk .. 46

7.2.3 Word Embeddings .. 46

7.2.4 More like this ... 47

7.3 Data retrieval ... 48

7.4 Visualization .. 50

8 Assessment .. 53

8.1 Technical assessment ... 53

8.2 Functional assessment ... 57

8.2.1 Survey design ... 57

8.2.2 Results .. 58

9 Conclusion and outlook .. 63

Appendix .. 65

Functional assessment questionnaire .. 65

Functional assessment results ... 70

BGB § 280 .. 70

BGB § 434 .. 72

BGB § 985 .. 74

StGB § 242 .. 76

Bibliography ... 78

VI

List of Figures

Figure 1: LEXIA components .. 3

Figure 2: LEXIA data model .. 4

Figure 3: LEXIA user interface .. 5

Figure 4: Research Method .. 8

Figure 5: Document types of DATEV dataset ... 10

Figure 6 Document distribution over time of DATEV dataset .. 11

Figure 7: Institution that issued judgments in DATEV dataset ... 12

Figure 8: Example of a VSM ... 15

Figure 9: Clustering based on vectors .. 17

Figure 10: CBOW and Skip-gram .. 22

Figure 11: Word vectors ... 23

Figure 12: Bayesian Network ... 27

Figure 13: Inference Network .. 28

Figure 14: Topics extracted from Yale Law Journal .. 30

Figure 15: Similarity Method ... 36

Figure 16: Similarity methods class diagram ... 41

Figure 17: DocumentRelation class ... 42

Figure 18: Bag of words execution example .. 43

Figure 19: Data retrieval query .. 48

Figure 20: Start similarity computing process ... 50

Figure 21: List view of results .. 51

Figure 22: Network view of results .. 52

Figure 23: Preprocessing time for different number of articles ... 53

Figure 24: Comparison time for different number of paragraphs .. 54

Figure 25: Impact of number of words on preprocessing time .. 55

Figure 26: Query time for DocumentRelations .. 56

Figure 27: Boxplot of standard deviations ... 58

Figure 28: Average relevance ratings ... 59

Figure 29: Boxplots for relevance ratings .. 61

Figure 30: New LEXIA components ... 63

file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492850
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492851
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492852
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492853
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492854
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492855
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492856
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492857
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492858
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492859
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492860
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492861
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492862
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492863
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492864
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492865
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492866
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492867
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492868
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492869
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492870
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492871
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492872
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492873
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492874
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492875
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492876
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492877
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492878
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492879

VII

List of Listings

Listing 1: Example texts ... 14

Listing 2: Word set ... 14

Listing 3: Word vectors .. 15

Listing 4: Trigrams ... 18

Listing 5: BGB § 437 ... 25

file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492880
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492881
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492882
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492883
file:///C:/Users/Philipp/Dropbox/Uni%20privat/Masterarbeit/Ausarbeitung/Masterarbeit.docx%23_Toc469492884

VIII

List of Tables

Table 1: Method comparison .. 32

Table 2: Persistence alternatives .. 37

IX

List of Abbreviations

BGB Bürgerliches Gesetzbuch

CBOW Continuous Bag-of-Words

DAG Directed Acyclic Graph

EDA Exploratory Data Analysis

LDA Latent Dirichlet Allocation

NER Named Entity Recognition

NLP Natural Language Processing

NP Noun Phrase

POS Part-Of-Speech

Ruta Rule-based Text Annotation

sebis Software Engineering for Business Information Systems

StGB Strafgesetzbuch

UIMA Unstructured Information Management Architecture

1

1 Introduction

1.1 Motivation

In Germany about 1.6 million civil cases are heard every year [1]. The lawyers of accuser and

accused try to add weight to their perspective of things with sound arguments. In the Anglo-

American region most of these arguments refer to past cases, since there is a case law in

place. The legal system in Continental Europe is not based on case law, but rather on the in-

terpretation of the applicable laws. Nevertheless, the influence of past judgments on the legal

practice in Continental Europe and therefore also in Germany must not be neglected.

Especially judgments issued by High Courts, such as the Bundesgerichtshof in Germany, of-

ten have an announcement effect. The Bundesgerichtshof sometimes adds its decision an in-

terpretation of the law. Such fundamental judgments can become common law, and therefore

have a huge impact on future decisions. However, also other past cases can be used as guid-

ance by lawyers.

Finding such similar cases and other related legal documents is consequently an important

task in a legal expert’s daily work. The number of available documents is enormous and a

considerable part of them can already be retrieved in a digital format. The already mentioned

Bundesgerichtshof, for example, publishes every month about 300 judgments on its website
1
.

In addition to the websites of single courts, there are databases that aggregate most of the le-

gal documents. Regarding German legal documents, the most important databases are juris

and beck-online. Juris, which is majoritarian owned by the Federal Republic of Germany,

grants access to more than 2.5 million documents from the legal domain [2]. The database of

beck-online, which is part of the publishing company C.H. Beck, contains over four million

legal documents [3].

This enormous amount of available documents indicates that a legal expert cannot possibly be

able to search them all without computer aid. Therefore, the goal of this thesis is to find an

approach to help finding related legal documents given a document as a starting point of the

search. This will be referred to as relatedness or similarity search throughout this thesis, while

the two terms are seen as interchangeable.

Legal documents are a combination of structured and unstructured data. The structured part is

the often similar format. A judgment, for example, consists in most cases of the tenor, the

facts describing the case, information about courts of lower instances, guiding principles and

the reasons for the decision. The unstructured part is the text itself. This needs to be prepared,

so that a computer system can work with it. Approaches from machine learning and natural

language processing (NLP) can and will be used in this thesis to address this problem. The use

of these methods is especially promising because legal documents have only few grammatical

or spelling mistakes in general.

1
 www.bundesgerichtshof.de

2

There is a multitude of possible useful techniques available to estimate the relatedness of doc-

uments. Therefore, this thesis will give an overview over promising approaches with different

technical background. Three of these methods will be then prototypically implemented and

their results will be assessed. The assessment will be conducted using a questionnaire. Therein

the participants rank the results provided by the similarity methods according their relevance

towards a source document. This hopefully helps to understand what makes a good similarity

search regarding legal documents.

The similarity methods will be embedded in some kind of recommender system that provides

a suitable architecture for the methods. Also things such as persistence and visualization are

considered in the thesis.

3

1.2 LEXIA

This thesis will not be greenfield development but will be further development of the LEXIA

system. As stated by Waltl et al., LEXIA is a “Data Science Environment for Semantic Anal-

ysis of German Legal Texts” [4]. It has been developed by the chair of Software Engineering

for Business Information Systems
2
 (sebis) at the TU München as part of the interdisciplinary

research program Lexalyze
3
. This project wants to make use of synergies between the legal

domain and computer science.

LEXIA already provides some capabilities, from which this thesis will make use throughout

its progress. To get a first overview, the different components and subcomponents of LEXIA

are shown in Figure 1. The interactions of these components are denoted by arrows connect-

ing them. The illustration presents the state of LEXIA at the beginning of this thesis. A short

description of the most important components regarding this thesis will be given in the fol-

lowing.

With the help of the Importer, legal documents in different file formats such as PDF or XML

can be loaded into the system. This is done by different importer classes tailored to the file

format and the structure of the text, which differs greatly between judgments, laws and con-

tracts. The imported data are then stored in an elasticsearch database. This schema-free full-

text search database already provides a search engine. Schema-free means that the schema of

the data does not need to be defined a priori. The schema is derived from the objects that are

2
 wwwmatthes.in.tum.de

3
 www.lexalyze.de

Figure 1: LEXIA components

Source: Waltl et al. [4]

4

indexed to the database. This allows more flexibility on changing data models in the applica-

tion.

The capabilities of the database are capsulated in the Data Store component. Between the

Data Store and other components there is the Data Access Layer. Its purpose is to transform

the query results of the database into java objects the other components can work with.

The data model for the imported legal documents can be seen in Figure 2. The different types

of legal documents such as Law, Judgment and Contract are all derived from one abstract

class LegalDocument. These LegalDocuments consist of LegalDocumentContents which can

be SectionContainers and Sections. The SectionContainer and Section represent the inherent

structure of legal documents, which was mentioned in chapter 1.1. For example, a Section can

be an article of a law or the reasoning in a judgment. For each Section there can be Annota-

tions. These Annotations are the result of NLP, which can be performed by the component

Data and Text Mining Engine.

The Data and Text Mining Engine is one of the central components of LEXIA. It is based on

the Apache UIMA (Unstructured Information Management Architecture) framework. This

framework provides a reference implementation for processing unstructured data [5]. LEXIA

uses the architecture for NLP tasks. These tasks use a pipeline model by which it is possible

to easily add or remove steps from the NLP task. As indicated in the graphic, possible steps

are, for example, the use of a Tokenizer, POSTagger, Lemmatizer or NERecognizer. Addi-

tionally, the Data and Text Mining Engine makes use of the Apache Ruta (Rule-based Text

Annotation). This part of the UIMA enables the LEXIA component to find complex semantic

patterns [6]. These patterns are defined in so-called Ruta scripts which can be added to the

previously mentioned pipelines. The prototypical implementation described within this thesis

will repeatedly make use of the Data and Text Mining Engine.

Since this system should not only be used by computer scientists but rather also by experts

from the legal domain, LEXIA provides a graphical user interface. This user interface com-

Figure 2: LEXIA data model

Source: Based on [4]

5

prises views to import legal data, start NLP processes or define Ruta scripts, but also the re-

sults of these processes are visualized by the user interface. For example, a user has the possi-

bility to look at the imported legal documents and have the annotations, resulting from the

NLP, highlighted. An example of this is shown in Figure 3. Since this thesis will extend the

possibilities to process the legal documents, the prototypical implementation will also include

an expansion of the graphical user interface.

The components which have not been mentioned so far, i.e. the Modelling Component, the

Execution and Reasoning Engine and the Exporter, are of no or only little interest to this the-

sis. Therefore, they will not be described in detail.

Figure 3: LEXIA user interface

Source: Waltl et al. [4]

6

2 Research Objectives

The introduction chapter gave some insights on the reasons why research is needed in this

field and in what environment this thesis will take place. The reminder of this chapter shortly

describes the four research questions on which this thesis will orient itself.

What approaches can be used to measure similarity between two legal documents or

parts of it?

The processing of unstructured information made great progress in the last decade. NLP and

machine learning are to be named in this context. Several approaches have been used to iden-

tify similarity of texts. Chapter 5 introduces seven of them. Therefore, this chapter will de-

scribe how the basic approaches work based on related literature. Special attention will be

given to papers already dealing with legal documents. This will then be concluded by a com-

parison of the different methods.

What is a suitable approach to provide such similarity methods?

It is important for every application to have a consistent architecture. This ensures easier

maintainability and expandability. Best practices and proven concepts help to achieve a good

fundamental structure of a recommender system enclosing the similarity methods. The con-

cept of the architecture and further design decisions described in chapter 6.1 try to meet this

goal and answer the above question. While the concept is more universally applicable, chapter

7.1 explains the concrete prototypical implementation added to LEXIA.

How can the results of a similarity search be presented to a user?

The user interface is one of the most crucial points of an application. It often plays an im-

portant role in the user’s decision to work with an application or not. Therefore, there is a

need to not only provide the right information but also to present it in an easily comprehensi-

ble format. Chapter 6.1.3 discusses two possible approaches with slightly different use cases.

The implementation of them is then described in chapter 7.4 with the aid of screenshots.

How well do selected similarity methods perform?

The results of the implemented relatedness methods need to be assessed. This can give an

insight into which method delivers the best results regarding legal documents. The assessment

can also be used as a starting point for further optimization of the methods or as comparable

figure. The process of the assessment is described in chapter 8.2.

7

3 Research Method

This thesis explores the usage of NLP and machine learning to get insights into the similarity

of legal documents. To accomplish this goal some techniques of exploratory research will be

used. “Exploratory research is a first step, conducted with the expectation that additional re-

search will be needed to provide more conclusive evidence” [7]. So, regarding LEXIA, this

thesis is a starting point to provide a relatedness search.

The data from the legal field is quite broad. An example is the test data for this thesis de-

scribed in chapter 4. Data itself can be the starting point for a hypothesis. This approach is

named exploratory data analysis or short EDA. The term was primarily coined by John Tuk-

ey. In his book he claims that statistical hypothesis testing is emphasized too much in the field

of statistics [8]. He wanted data to be used not only to confirm existing hypothesis but also to

derive new hypothesis. So EDA “is used to identify systematic relations between variables

when there are no (or not complete) a priori expectations as to the nature of those relations”

[9].

The variables in this thesis are unstructured data in the form of texts from the legal domain,

which are then prepared by NLP and machine learning. The relation to be found is which sim-

ilarities in the prepared data suggest similarity of the whole texts. Just by reading the texts one

can make assumptions about what makes them similar or not. Examples of what could indi-

cate similarity are the use of the same words or the use of similar syntactical constructions.

Also the position of a word seems to have an impact on the similarity.

To have these ideas in a more formalized way, they are embedded in a literature review. Since

others have already researched the field of text similarity, their findings and suggested meth-

ods are an important ingredient to this thesis. The key outcomes of the literature review are an

overview over several similarity methods in general, insights into methods that have already

been used in the legal domain and a comparison of the methods.

So, as indicated in Figure 4, the associations seen in the data, the approaches of NLP and the

literature review lead to a set of similarity methods. The descriptions of them are in turn the

starting point for the further research in this thesis.

As also shown in the graphic, the implementation of some of these methods is the next step.

Therefore, first a concept for the architecture must be created. This concept has to allow an

easy integration and adaption of further methods as one central design issue.

As a last step, the implemented methods are assessed, which is also shown in the illustration

of Figure 4. While the literature review to derive suitable similarity methods uses a more

qualitative approach, the assessment of the implemented methods happens in a more quantita-

tive process. Each result of each method gets evaluated to receive an estimate of the quality

for each suggestion.

8

This might lead to the result that one method always provides better suggestions than the oth-

ers. Then one could conclude that this is probably the best method for a similarity search. But

since this is exploratory research, such a finding would need to be evaluated in further re-

search.

Even if none of the implemented methods can constantly perform better than the others the

research done would still be valuable as a starting point for other investigations. The data of

the assessment might be useful for improving the implemented methods. They could also be

used as comparable figure for further methods.

Figure 4: Research Method

Source: Own illustration

9

4 Data

As written in the motivation (see chapter 1.1), there is a huge amount of legal data in digital

format. For this thesis, only a subset of these data can be used as sample data. The documents

used originate from different sources. These sources are the already mentioned beck-online

(see chapter 1.1) and the DATEV, which is a German IT service provider for tax consultants

and lawyers dealing with tax law [10]. Additionally, all German federal laws are available.

It is important to get a first insight into the data corpus to get an understanding of what kind of

documents one is dealing with. Also, this can give first hints what makes a document similar

to another one.

4.1 Beck-online dataset

The documents of this dataset are an export from two searches in the beck-online database.

For the first search the preferences were set to judgments referring to the stock corporation

law, which were pronounced by the Bundesgerichtshof. The judgments for the second search

refer to tenancy law and were also issued by the Bundesgerichtshof. The exports are given in

HTML format.

The dataset consists of more than 900 judgments regarding stock corporation law and over

700 judgments referring to tenancy law. Therefore, the dataset is quite small, but since these

judgments were issued by the highest civil court in Germany, they have a high relevance for

these two fields of law.

The creation dates of the documents span a time between the years 1951 and 2015. About

three quarters of the judgments in this dataset were issued after the year 2000 and therefore

represent the latest interpretation of the norms, but also the changes over time can be traced

with this distribution.

A problem of this dataset is the inconsistent use of HTML, which makes it hard to parse the

documents. Thus, it takes quite some effort to get these data into a format one can work with

in further steps.

Additionally, some of the documents represent only parts of the judgments. In some cases, for

example, only the facts or extracts of the reasons for the decision are available. This needs to

be kept in mind when working with this dataset.

Despite the problems with inconsistency and fragmentariness, the dataset is useful as sample

data for this thesis. It provides documents of high relevance over a long period of time. Fur-

thermore, dealing with such problems is close to the real use case.

10

4.2 DATEV dataset

This dataset is provided by the DATEV and is a mix of different kinds of legal documents.

The set consists of more than 132,000 documents, which are saved in an easy to parse XML

format. In the XML there are some metadata besides the text itself. These metadata include,

among other things, the document type, the creation date and the institution this document

was created by. As this is a huge amount of data, it is worth taking a deeper look into the pro-

vided metadata.

As seen in Figure 5, the majority with 47,359 documents are judgments which are of special

interest for this thesis. Also present in high quantity are essays (28,966), notes (15,506) de-

crees (7,509), resolutions (7,336) and short articles (6,203). The remaining 19,802 documents

are divided into 45 further document types. This shows the great variety in document types

which needs to be considered when working with this dataset because similarity between dif-

ferent types might be harder to measure.

Another important piece of information about one document is the date it was issued. Since

laws and also the interpretation of one law changes over time, the more recent documents

might have a higher relevance than older ones. Figure 6 shows this distribution over time. Not

surprisingly, the number of documents created each year rises until the year 2000. Since the

year 2000 about 4000 documents have been added to the dataset each year. This corresponds

to the fact that documents were consistently saved in digital format starting in the late 90s.

The drop for the year 2016 results from the circumstance that the year was not over when the

data was provided for this thesis.

Judgment

36%

Essay

22%

Note

12%

Decree

5%

Resolution

5%

Short Article

5%

Others

15%

Figure 5: Document types of DATEV dataset

Source: Own illustration

11

As already mentioned the judgments from this dataset are of special interest. Therefore, Fig-

ure 7 shows which institutions issued the judgments. Most of them (17,323) were pronounced

by the highest court for tax law in Germany, the Bundesfinanzhof. The high courts for tax law

of states like Niedersachsen or Baden-Württemberg are also often present as well as courts for

tax law in big cities such as Munich. The remaining 10,771 judgments show a broad variety in

the institution they were issued by. They spread themselves over 161 further institutions.

Therefore, all levels of courts regarding tax law are covered by this dataset. However, the

main focus is still on the judgments pronounced by high courts, which provide high relevance

and are used as guidance for lower legal authorities.

A look on which norms the legal documents refer to shows the expectable results. Since the

DATEV is specialized in tax law, most norms mentioned come from the Einkom-

menssteuergesetz, the German income tax act. But also the Grundgesetz (constitution), Ak-

tiengesetz (stock corporation act), Handelsgesetzbuch (commercial code) or Abgabenordnung

(fiscal code) are repeatedly referred to in the dataset.

All in all, the dataset provides decent sample data for this thesis because of its variety in

document types, institutions and dates the documents were issued. Additionally, the XML

format allows an easy handling of the data. The only small point of criticism is the

concentration on only one field of law, but as this thesis only wants to provide a

prototypically implementation, this does not seem to be a relevant problem.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1
9
1

9

1
9
2

3

1
9
2

7

1
9
3

1

1
9
3

5

1
9
3

9

1
9
4

3

1
9
4

8

1
9
5

2

1
9
5

6

1
9
6

0

1
9
6

4

1
9
6

8

1
9
7

2

1
9
7

6

1
9
8

0

1
9
8

4

1
9
8

8

1
9
9

2

1
9
9

6

2
0
0

0

2
0
0

4

2
0
0

8

2
0
1

2

2
0
1

6

Figure 6 Document distribution over time of DATEV dataset

Source: Own illustration

12

Bundesfinanzhof

36%

Finanzgericht

München

7% Niedersächsisches

Finanzgericht

6%

Finanzgericht

Münster

5%

Finanzgericht

Düsseldorf

5%

Reichsfinanzhof

5%

Finanzgericht Köln

5%

Finanzgericht

Baden-Württemberg

4%

Finanzgericht

Rheinland-Pfalz

4%

Others

23%

Figure 7: Institution that issued judgments in DATEV dataset

Source: Own illustration

13

4.3 German Federal Laws

There are more than 1,800 German federal laws
4
, all of which can be found on the internet.

As an example, the website gesetze-im-internet.de, which is associated with already men-

tioned juris (see chapter 1.1), provides most of them in an easy to parse XML format.

This dataset only consists of laws, while the two previously described mainly contained

judgments. These two document types differ fundamentally. Laws have much shorter passag-

es of continuous text, since they are much more divided into paragraphs and subparagraphs.

This leads to only 50 to 60 words per paragraph on average.

The number of paragraphs can be very different from law to law. The Hopfengesetz for exam-

ple consists of only six paragraphs, while the Bürgerliche Gesetzbuch (BGB) contains 2402

legal norms. In such huge laws many different fields of law are touched. So many paragraphs

are not related to each other. This is the reason why a similarity search to a whole law does

not make sense in most cases.

Although some sections of one law are not related to each other, there are often explicit refer-

ences. These explicit references indicate a connection between two paragraphs, which leads to

the assumption that they are similar in some ways.

All in all the good availability and data format make German federal laws an excellent testing

data set for this thesis. Also, some of these laws are well known to every legal expert, where-

by an assessment of a similarity search is made much easier.

4
 Search on juris.de for document type “Gesetz”, federal and title documents only

14

5 Related Work

After the look into the test data in the previous chapter, which hinted some possible factors

indicating similarity, this chapter deals with the already existing literature regarding text simi-

larity. Seven different approaches are discussed. In the process each approach is described and

some of its usage in earlier research is highlighted. A special attention is paid to usage in the

legal domain.

5.1 Bag of Words

The consideration that the occurrence of the same words in different texts can indicate simi-

larity of those texts is quite obvious. The approach to count the occurrences of words is called

bag of words. The term can be traced back to Zellig Harris [11] who used it in a linguistic

context.

The basic procedure is as follows: all words of the two texts that want to be compared are put

into one set. According to this set and the frequency a word occurs in each text, the texts are

transformed to vectors. To make this approach a similarity measure one can calculate the sim-

ilarity of the vectors. The similarity of this approach is symmetric.

For an example the two texts in Listing 1 are used.

These two texts lead to the following set of words shown in Listing 2.

(1) John likes to play football. Mary likes to watch movies.

(2) John likes to watch football games on TV.

Listing 1: Example texts

Source: Own illustration

[

“John”,

“likes”,

“to”,

“play”,

“football”,

“Mary”,

“watch”,

“movies”,

“games”,

“on”,

“TV”

]

Listing 2: Word set

Source: Own illustration

15

The vector representation of the example texts is shown in Listing 3. The position in the vec-

tor indicates which word was counted by referring to the position in the set shown in Listing

2. So, for example, the first position in the vector represents how often the word “John” oc-

curs in each text.

The similarity of these two vectors can be calculated using the cosine similarity but also other

similarity measures for vectors would be applicable. The formula for the cosine similarity

cos(θ) between two vectors A and B is defined as follows:

𝑐𝑜𝑠(𝜃) =
𝐴 ∗ 𝐵

‖𝐴‖ ∗ ‖𝐵‖
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 ∗ √∑ 𝐵𝑖
2𝑛

𝑖=1

Using this formula the similarity value of the example texts would be 0.66.

The representation of texts as vectors is commonly known as vector space model (VSM). The

VSM using a bag of words approach was strongly influenced by Salton & McGill [12]. They

also suggested using the cosine similarity of the vectors to determine the overall similarity of

the texts.

A visualization for such a VSM is shown in Figure 8. Each document 𝐷1 to 𝐷3 is described by

(1) [1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0]

(2) [1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1]

Listing 3: Word vectors

Source: Own illustration

Figure 8: Example of a VSM

Source: Salton, Wong, Yang [44]

16

its terms 𝑇1 to 𝑇3. The angles between these vectors indicate the similarity of the documents

shown.

The bag of words approach is often used as basis for further processing in classification and

information retrieval applications. So, a lot of extensions to this approach exist.

The most common extensions include stopword lists, stemming and lemmatization. A stop-

word list usually contains words that are very common in a language but do not transfer

meaning on their own. For English, such a list would for example contain words like “and”,

“the” and “a”. The words from the stopword list then are not considered for the set of words

and therefore are not part of the vectors representing the text.

Stemming and lemmatization pursue a similar goal. They want to eliminate different forms of

the same word. An example for different forms of the same word would be “go”, “goes”,

“went” and “going”. In a naïve bag of words approach these would be treated as four different

words, even though they have almost the same meaning.

Stemming tries in a heuristic process to reduce the different forms to one base form by mostly

chopping off suffixes. These heuristic approaches often have problems with irregular word

forms like “went”. A well-known algorithm for stemming was introduced by Porter [13].

Lemmatization has a cleaner approach. It tries to return the base dictionary form, which is

called lemma. This is done by the use of a vocabulary and a morphological analysis of the

words. By this technique also “went” should be detected as form of “go”. But this is a more

expensive process regarding performance than stemming [14].

One interesting further extension was introduced by Corley & Mihalcea [15]. They did not

want to rely only on identical words but also make use of semantic similar words. Therefore,

they first identify similar words in the texts they want to compare. The word similarity is ex-

pressed by a score. For example the words “fill” and “complete” achieve a score of 0.86. This

example is taken from their paper. Identical words would have a score of 1.0. These word

similarity scores then are used to compute the overall similarity of the two texts.

In the research regarding texts from the legal domain, bag of words is repeatedly used to rep-

resent these texts as vectors. Based on such vectors, a clustering for huge data corpora was

done [16]. The researchers could successfully visualize the clusters and concluded that their

“system is very helpful for data analysis offering quick insight into the structure of the visual-

ized corpus” [16].

Clustering and similarity search using a bag of words approach are very alike. While the simi-

larity search determines a similarity value based on the angle between two vectors, the clus-

tering uses all vectors to find similar ones to put them in one cluster. A clustering based on

vectors can be seen in Figure 9. An “x” represents a text vector, while the dots indicate a clus-

ter centroid. The vectors in one cluster have a small angle between them and therefore have a

high cosine similarity.

17

All in all, the bag of words approach is widely used to represent texts. But the set approach

and the vectorization lead to one of the methods biggest shortcomings: the word order is lost.

This valuable information also cannot be conserved by any extension of this approach. The

consideration of the information provided by the word order can only be done by other tech-

niques which will be discussed later.

Figure 9: Clustering based on vectors

Source: Salton, Wong, Yang [44]

18

5.2 N-gram

The approaches of n-grams and bag of words to determine text similarity have many parallels.

However, by using n-grams the loss of word order, which is a big shortcoming of bag of

words, can be partly overcome.

In general the procedure is to divide texts into fragments. The sequence of n consecutive

fragments then is called n-gram. A fragment can be a letter, a word, a morpheme, a syllable or

something similar [14].

After the division into fragments the similarity of the texts can be expressed by the Dice coef-

ficient d, for example. For two texts a and b the formula is the following:

𝑑(𝑎, 𝑏) =
2 ∗ |𝑇(𝑎) ∩ 𝑇(𝑏)|

|𝑇(𝑎)| + |𝑇(𝑏)|

while T(x) is the set of n-grams contained in the text x [17].

Another regularly used similarity measure is the Jaccard index J, which has the following

formula [18]:

𝐽(𝑎, 𝑏) =
|𝑇(𝑎) ∩ 𝑇(𝑏)|

|𝑇(𝑎) ∪ 𝑇(𝑏)|

In the following example a word is considered a fragment and the value of n is set to three.

An n-gram with the value of three for n is often also referred to as “trigram”. Again both texts

from Listing 1 (see chapter 5.1) are used for the following example.

By splitting the texts the trigrams shown in Listing 4 arise. The “*” indicates an empty space

in the example.

T(1) = {

“* * John”, “* John likes”, “John likes to”, “likes to play”, “to play football”,

“play football Mary”, “football Mary likes”, “Mary likes to”, “likes to watch”,

“to watch movies”, “watch movies *”, “movies * *”

}

T(2) = {

“* * John”, “* John likes”, “John likes to”, “likes to watch”, “to watch football”,

“watch football games”, “football games on”, “games on TV”, “on TV *”, “TV * *”

}

T(1) ∩ T(2) = {

“* * John”, “* John likes”, “John likes to”, “likes to watch”

}

Listing 4: Trigrams

Source:Own illustration

19

According to the Dice coefficient the similarity of these two texts is 0.36. Of course, this val-

ue cannot be compared to the similarity value calculated in chapter 5.1 but only to other Dice

coefficients. The similarity value also differs greatly depending on the size of n. For n = 1,

which is almost identical to bag of words, the Dice coefficient would have a value of 0.56.

The Jaccard index for this example has a value of 0.22.

As long as a word is considered as a fragment one might have problems with the different

forms of one word. Since this problem is identical to the one discussed for bag of words in the

previous chapter, also the solutions are the same. Therefore, stemming and lemmatization are

also often utilized when using n-grams.

The problem of different forms of one word has a much smaller impact when letters are con-

sidered as fragments. That is the case because the division of words into short sequences of

letters performs implicitly some kind of stemming. Therefore, this approach works throughout

most languages without adaption [14].

Cavner & Trenkle also use n-grams of letters to perform a text categorization [19]. To achieve

this they do not put the number of n-grams contained in both texts into relation to the total

number of n-grams in the text like in the example before, but rather use the n-gram frequency

distribution of the texts. The approach is based on the idea that if one is “comparing docu-

ments from the same category they should have similar N-gram frequency distributions” [19].

To get the frequency distribution they compute all n-grams that occur in a text and count the

frequency of each n-gram. Then the n-grams are ranked from the most to the least frequent

one. As distant measure an out-of-place value is calculated. For each n-gram the rank in one

text is subtracted from the rank in the other text. The absolute values of these differences are

then summed up for the out-of-place value.

With some adaptions this idea could also be used as the basis of a similarity measure for two

texts. One adaption would be a standardization of this out-of-place measure. Also, the value

for n would need good consideration.

20

5.3 NLP Annotations

In contrast to the approaches of bag of words and n-grams described in the previous chapters,

with NLP annotations one can make use of the texts’ semantics to compare them. Therefore,

the text is not only tokenized, but part-of-speech (POS) tagging, named entity recognition

(NER) and pattern finding are, for example, also used.

POS tagging allows assigning a particular part of speech to each word in a text, as the name

already suggests. POS tagging is mostly used as a basis to find more complex syntactical con-

structions. These more complex syntactical constructions then often give also insights into the

semantics of the text.

Lame uses NLP to find legal terms in the French Codes [20]. She defines legal terms “as

terms labeling world objects apprehended by law and artifacts created by law” [20]. These

terms are found by using syntactical analysis. This approach is paired with statistical analysis

to make a step towards a legal ontology relying on text-based NLP.

There are also examples that use NER to understand documents from the legal domain. One

of them is introduced by Dozier et al. [21]. NER tries to recognize named entities like per-

sons, places, companies, etc. and classify them to the according semantic type. Dozier et al.

apply their implementation of NER to judgments from the American case law. They are able

to extract amongst others the names of judges, attorneys and courts. In a second step they link

these found entities to each other, which they describe as named entity resolution. The link

between two entities is found by the co-occurrence in one document. Named entity resolution

can help to understand how the found entities interact with each other.

NLP provides a multitude of ways to get a better understanding of texts. Often various con-

cepts are combined to create a new application. Schweighofer for example envisions a “dy-

namic electronic legal commentary” [22] based on NLP. This should be achieved with the

help of powerful world and legal ontologies derived by NLP. Also the linking between legal

documents should be executed by computer systems and periodically updated.

While the vision of Schweighofer seems to be bit more far off, NLP already provides today a

lot of useful tools. These tools can also be used as the basis of a similarity search. By using

NLP it is possible to find occurrences of syntactical constructions like the previously men-

tioned legal terms across multiple texts. In a second step the frequency of occurrence can be

transformed into a VSM. Based on the similarity of these vectors representing the texts the

relatedness of the texts can be calculated. The possibilities of which syntactical construction

underlies such a VSM are almost endless and also multiple constructions can be considered

for the text similarity. These different constructions can even be weighted differently to get a

widely adjustable method that determines the similarity of two texts.

21

For each syntactical construction that is used the creator has a certain semantic in mind that is

expressed by this construction. Therefore, this method implicitly takes semantics into account

for the comparison.

Also the approach of NER and named entity resolution can be turned into a similarity meas-

ure. The resolution produces a graph showing the interactions of different entities. The edges

of this graph can be weighted according the frequency of co-occurrence of two entities. Such

a graph would additionally allow considering transitive relations of two entities for the simi-

larity score.

All in all, NLP annotations provide a wide range of possibilities to get insights into texts,

which then can be transferred into an estimation of the similarity of texts. To obtain such a

similarity value suitable syntactical patterns can be used, as well as the approaches of NER.

22

5.4 Word Embeddings

The basic idea of word embeddings is to represent a word as a vector of real numbers. The

vectors are calculated based on the idea that similar words are used in similar contexts. For

the vector calculation a training dataset is needed. The approach of word embeddings must

not be confused with the approach described in chapter 5.1, where a whole text is expressed

as a vector of natural numbers.

The number of dimensions of the vectors plays an important role for the quality and the com-

puting time. The higher the number of dimensions, the higher the quality but also the pro-

cessing time. The increase in quality becomes more marginal with every dimension added.

Typically, a number of dimensions between 100 and 1000 is used.

The calculation of the word vectors relies on a neural network architecture. While neural natu-

ral languages models are a quite old idea that dates back to the year 1986 [23], word embed-

dings gained new traction in recent years because of more efficient algorithms. Important

work in this field was done by Bengio et al. [24] and even more influential was the work of

Mikolov et al. [25].

Mikolov et al. introduced two architectures for the training phase. One is the continuous bag-

of-words (CBOW) model and the other one is the continuous skip-gram model. Using CBOW

the current word is predicted from a window of surrounding context words. The window size

can be chosen arbitrarily. This architecture is shown in Figure 10 on the left side. On the right

side of the graphic skip-gram is visualized. Using this architecture the model predicts the sur-

Figure 10: CBOW and Skip-gram

Source: Mikolov et al. [25]

23

rounding window of context words based on the current word.

In a further paper Mikolov et al. proofed that the skip-gram model outperforms earlier ap-

proaches [26]. The training dataset contained about 30 billion words and the dimensionality

was set to 1000. Using the skip-gram model the training phase was completed in a shorter

amount of time and the vectors provided better results than all other tested approaches.

The implementation of the algorithms suggested by Mikolov et al. is commonly referred to as

word2vec. They made their code available as an open source project
5
 for further research in

this field.

In the word vectors computed by the before mentioned techniques the meanings of these

words are somehow encoded. Therefore, similar words have similar vectors. So the similarity

of words can be expressed by the cosine similarity of the vectors, which was already men-

tioned in chapter 5.1. But the representation as mathematical vector even allows using basic

algebraic operations like addition and subtraction.

One can for example test that vector(”King”) - vector(”Man”) + vector(”Woman”) results in a

vector close to the representation of “Queen” [25]. Also the term vector(“Prince”) – vec-

tor(“Man”) + vector(“Woman”) results in a vector near the vector of the expected word

“Princess”. A simplified illustration of this phenomenon can be seen in Figure 11.

So word embeddings provide the ability to find similar words based on their vectors and to

perform algebraic operations on them. But this thesis does not want to compare only words or

find relationships between them but rather find the similarity of whole texts. Since a text con-

5
 code.google.com/p/word2vec

Figure 11: Word vectors

Source: Based on [25]

24

sists of multiple words, it seems to be a viable option to represent the text as the sum of the

word vectors.

The vector sum representing a text then can be compared to the vector sum representing an-

other text for example via cosine similarity to obtain a similarity measure for those two texts.

This approach has some advantages over the already discussed methods using vectors and

their similarity.

One advantage is that the vectors of similar words are similar by definition. This leads to few-

er problems with different forms of the same word. Another advantage is that the word order

is considered at least implicitly when the texts that shall be compared are also the training

dataset. This is the case because the context is considered when calculating the word vectors.

25

5.5 Citation Network

Texts often explicitly refer to other texts. Especially in the legal domain this is very common.

In the reasoning of a judgment often the laws and paragraphs the decision was based on are

mentioned. Also similar cases are sometimes stated. References are as well given within one

law. An example is given in Listing 5 showing the section BGB §437. The explicit references

are: “§ 439”, “§§ 440, 323 und 326 Abs. 5”, “§ 441”, “§ 440, 280, 281, 283 und 311a” and “§

284”.

Such explicit references can be found with the help of pattern matching done by regular ex-

pressions or using Apache Ruta (see chapter 1.2). As one can see from the example in Listing

5 the explicit references can look quite differently. There can be references to only one other

paragraph or to multiple paragraphs. Then the multiple section numbers can be divided by

commas or “und”. Additionally, the subsection can be given like in “326 Abs. 5”. Therefore,

the search patterns can get quite complex and this example does not even consider references

across different documents.

When all references are found with a suitable pattern, the references then can be merged into a

citation network. For a similarity search all outgoing references would be considered. If one

document is mentioned multiple times it would be ranked higher than a document that is only

referred to once. Also transitive references could be considered. As an example, if document

A references document B and document B references document C, then document C might be

also relevant to document A.

Winkels et al. use a similar approach to create a citation network over 13,311 documents from

the Dutch immigration law [27]. Not only do they use the texts themselves, but they also uti-

lize some of the given metadata. The used metadata include the date of the decision, the field

of law and the court it was issued. To find the references they use regular expressions and

achieve a recall of 87% and a precision of 99%. In the paper it is stated that the resolving of

references over document boundaries is not that easy as already suspected in this chapter. It is

for example especially hard when not the name of the law is mentioned but only “that law”

referring to the last mentioned law. Another problem is the usage of abbreviations for laws.

§ 437 Rechte des Käufers bei Mängeln

Ist die Sache mangelhaft, kann der Käufer, wenn die Voraussetzungen der folgenden Vorschriften

vorliegen und soweit nicht ein anderes bestimmt ist,

1. nach § 439 Nacherfüllung verlangen,

2. nach den §§ 440, 323 und 326 Abs. 5 von dem Vertrag zurücktreten oder nach § 441 den

Kaufpreis mindern und

3. nach den §§ 440, 280, 281, 283 und 311a Schadensersatz oder nach § 284 Ersatz vergebli-

cher Aufwendungen verlangen

Listing 5: BGB § 437

Source: Bürgerliches Gesetzbuch

26

After they overcame these problems Winkels et al. achieved a recall of 85% and a precision of

95% for their reference resolving. The resolved references then add up to a network.

To indicate that one case can refer multiple times to one law they add weights to edges of

their network. The weight W is calculated as: 𝑊 =
1

𝑛
 where n is the number of occurrences.

Therefore, the “lower the weight, the stronger the impact on the network is” [27].

The use of a citation network is especially in the legal domain an interesting approach. That is

the case because references are very common in legal documents and the naming of docu-

ments is quite consistent. Judgments for example have file numbers and laws have in most

cases only one name they are referred to. Additionally, metadata is often given, which can be

used. The court and the date a judgment was issued are often provided. Then the higher the

court is, the higher the relevance of the judgment, holds probably true. The same applies to

the date: the newer, the better.

27

5.6 Bayesian Network

A Bayesian network is a directed acyclic graph (DAG). The nodes of this graph represent

random variables in the Bayesian sense. An edge indicates a conditional dependency between

the two nodes. Each node possesses a probability function. This function takes a set of values

represented by the node’s parents as an input and outputs the probability of the variable repre-

sented by the node.

An example for such a Bayesian network can be seen in Figure 12. This example is taken

from a publication of Heckerman [28]. The network models the detection of credit-card fraud.

Fraud, Age and Sex are conditionally independent in this example, while Gas and Jewelry are

dependent. The exact construction of such a network and the underlying mathematical consid-

erations can be learned from the paper mentioned above. The explanation of those is out of

scope for this thesis.

Turtle & Croft use a Bayesian network for information retrieval [29]. They also call it “infer-

ence network”. The basic idea is that “given a set of prior probabilities for the roots of the

DAG, these networks can be used to compute the probability or degree of belief associated

with all remaining nodes” [29].

Their basic model is shown in Figure 13. It consists of two component networks: a document

network and a query network. While the document network is only built once for the docu-

ment corpus, the query network is built for each information need. The nodes 𝑑1 to 𝑑𝑖 repre-

Figure 12: Bayesian Network

Source: Heckerman [28]

28

sent the documents, while 𝑡1 to 𝑡𝑗 represent the texts. There is a one-to-one relationship be-

tween these two set of nodes. The text nodes point to several representation nodes 𝑟1 to 𝑟𝑘.

These representation nodes contain information extracted from the texts in the text nodes, for

example phrases or metadata. Since different texts can include the same phrase, there are links

from different text nodes to the same representation node.

“The query network is an “inverted” DAG with a single leaf that corresponds to the event that

an information need is met” [29]. While 𝑞1 and 𝑞2 divide the information need I, they are

themselves divided into query concept nodes 𝑐1 to 𝑐𝑚. The document and the query network

are joined by the links between the document representation nodes and the query concept

nodes.

The whole network represents the dependence of the belief that the information need is met

mediated by the document representations and query concepts. So if all documents are equally

likely to be observed one gets as a result the probability that the document corpus fulfills the

information need. To gain the probability that a certain document 𝑑𝑙 meets the information

need, one needs to attach evidence to the network by asserting 𝑑𝑙 = 𝑡𝑟𝑢𝑒. By repeating this

Figure 13: Inference Network

Source: Turtle & Croft [29]

29

step for each document one can calculate the probability for each document to meet the in-

formation need. The documents then can be ranked according their probability to answer the

user’s information need [30].

The previously described idea of “inference networks” can be quite easily transformed into a

method to determine the similarity of documents. For the similarity method the document

network can be created in the same way. The basis for the information need and therefore the

query network is one of the documents. After each document of the corpus has been the basis

of the query network, the similarities between every pair of documents has been determined.

The method implies great space for adaption. The selection of the representation nodes can be

adjusted to the document corpus. As a representation single words, phrases or NLP annota-

tions (see chapter 5.3) could be used. Additionally, also metadata can be part of the represen-

tation nodes.

The big flexibility in a concrete implementation of this concept justifies its also high com-

plexity.

30

5.7 Topic Modeling

Topic modeling is a probabilistic method like the already discussed word embeddings (see

chapter 5.4) and Bayesian network (see chapter 5.6). The basic idea is that every text is about

one or more topics. If a text is about a certain topic can be determined by the frequency cer-

tain words are used. In a text that can be assigned to the topic “computer” for example it is

more likely that the terms “computer”, “cpu” or “application” occur than in texts that do not

belong to this topic. Each topic can be seen as a probability distribution over words. One doc-

ument can have more than one topic.

The topics are seen as hidden structure of a text. For a corpus of documents the words de-

scribing a topic can be extracted. Figure 14 shows the results of such an extraction for the

Yale Law Journal. In total 20 topics were extracted whereof the top eight are shown with their

most frequent words. The words’ positions along the x-axis denote the specificity to the doc-

uments. For example “earnings” is more specific than “tax” in the topic shown in the upper

left [31].

There are several approaches to determine topics in text corpora. One of the most well-known

ones is Latent Dirichlet Allocation (LDA) which was described by Blei, Ng and Jordan in

2003 [32]. This approach uses a bag of words assumption and therefore does not include the

order of words in its considerations. Wallach suggested an extension of this technique using

n-grams instead of bag of words to include the word order [33].

Another assumption of LDA is that the ordering of the documents does not matter. Therefore,

the change of topics over time cannot be understood by this approach. Dynamic topic model-

ing tries to overcome this shortcoming. Blei & Lafferty described one possible implementa-

Figure 14: Topics extracted from Yale Law Journal

Source: Blei [31]

31

tion of a dynamic topic model in 2006 [34].

Lin & Wilbur proposed a document similarity ranking for PubMed
6
 based on topic models in

2007 [35]. PubMed is database for biomedical literature with over 26 million entries. Their

approach based on the consideration “that the relatedness of documents is mediated through

topics” [35]. They describe the relatedness of two documents as the product of the probability

that one is interested in document c given topic 𝑠𝑗, the probability that one is interested in

document d given topic 𝑠𝑗 and the probability of topic 𝑠𝑗, summed across all topics. This idea

is then turned into a formula to calculate the similarity of two documents. After some evalua-

tion they state that their system “is able to effectively retrieve related articles” [35].

Another approach to use topic modeling to determine text similarity was suggested by Quan

et al. [36]. It was designed for short texts but might also be applicable for longer ones. The

basic idea is that especially in short texts there are only few word co-occurrences and there-

fore the similarity scores using a VSM are low. Their suggestion is to use topic models to find

words that are with a certain probability in the same topic. For the words in the same topic the

value in the feature vector is increased which leads to a higher similarity score. In experi-

ments they could prove that this approach performs well.

Topic modeling is one of the more complex approaches discussed in this thesis but can be

used as the basis of a similarity method of its own as described by Lin & Wilbur. But it can

also be used to overcome shortcomings of other similarity methods as shown by Quan et al.

6
 www.ncbi.nlm.nih.gov/pubmed

32

5.8 Method comparison

In the previous chapters different possible methods to obtain the similarity of two texts were

discussed. Table 1 provides an overview of these different approaches and compares them in

different categories. For the assessment only the basic approaches without extensions were

taken into account

The different categories are: Preprocessing, Text Coverage, Word Order, Set or Probabilistic,

Symmetric and Complexity.

Preprocessing describes what needs to be done before the according technique can be made

use of. While bag of words and n-grams only need a very simple preprocessing with a To-

kenizer, the NLP annotations use a POS tagger, NER or Ruta. Ruta can also be used for the

Citation network as well as regular expressions. Word embeddings, Bayesian network and

topic modeling all have their specific algorithms to construct their basic data.

Text Coverage deals with how much of the text is taken into consideration by each technique.

As one can see from the table the methods bag of words, n-gram, word embeddings and topic

modeling make use of the full text. Using the full text states that the maximum of the infor-

mation given is used, but this might not always be useful because of words that transport no

meaning of their own. So these approaches except topic modeling often use stopword lists,

which were described in chapter 5.1 and then do not use the full text. Topic modeling sorts

out such meaningless words without further guidance. For NLP annotations and Bayesian

Table 1: Method comparison

Source: Own illustration

Method Preprocessing Text

Coverage

Word

Order

Set or Prob-

abilistic

Symmetric Com-

plexity

Bag of

Words

Tokenizer Full No Set Yes Low

N-gram

Tokenizer Full Partly Set Yes Low

NLP Anno-

tations

POS, NER,

Ruta

Varying Yes Set Yes Medium

Word Em-

beddings

Word vectors,

e.g. word2vec

Full Implicit Probabilistic Yes High

Citation

Network

Regex or Ruta Low No Set No Low

Bayesian

Network

Network crea-

tion

Varying No Probabilistic No High

Topic Mod-

eling

Topics,

e.g. LDA

Full No Probabilistic Yes High

33

network the concrete implementation decides how much of the text is used. Therefore, they

are described with “varying”. The citation network only uses a very small part of the text

since there are normally only few references in a text.

The category Word Order wants to give an overview if the word order is considered in the

computation of a method. While bag of words, citation network, Bayesian network and topic

modeling do not include the word order at all, n-gram does this at least partly. Of course, this

only applies when at least bigrams are used. The higher the n of the n-grams is, the higher the

impact of the word order. The “implicit” stated for word embeddings refers to the fact that the

word order is considered while computing the vectors, but has no impact when the word vec-

tors are summed up to get a vector representing the whole text. NLP annotations is the only

method out of the described ones that can take the word order fully into account. But the con-

crete implementation then needs to take care of that.

With Set or Probabilistic it is stated whether the similarity is computed by leaning on a set or

a probabilistic approach. For word embeddings this is answered with “probabilistic” because

the calculation of the vectors is based on a probabilistic model. For the other two probabilistic

techniques a probability value is directly taken to describe the similarity of two documents.

The set approaches on the other hand all rely on counting how often a certain pattern occurs

and calculate based on that a relatedness value.

Symmetric states if the similarity value from document 𝑑1 towards document 𝑑2 is the same

as the value from 𝑑2 towards 𝑑1. This is only for citation network and Bayesian network not

the case. This characteristic should be kept in mind when using one of the methods. For

asymmetric methods the processing time might increase because the similarity value between

two documents must be calculated twice. On the other hand this asymmetry provides further

insights into the document corpus.

The last category is Complexity. This refers to both the complexity of understanding the con-

cept and the complexity of the computation, since these two positively correlate. With higher

complexity one hopes to get also a higher quality in the output. But this relation does not al-

ways hold true. Therefore, it is an important part of consideration to think about the quality

needed for the output and take an according method.

The low complexity of bag of words, n-gram and citation network can already be sensed by

the comparatively straightforward preprocessing methods being a tokenizer or regular expres-

sions. This makes the concept easy to understand and leads to fast implementations. Also the

absence of complex probabilistic models reduces complexity.

While the method using NLP annotations does not have any probabilistic model as well, it is

nevertheless classified as medium complex. This is due to the higher effort to understand the

concepts of POS tagging or NER as well as their higher computations costs. But NLP is a

well-developed field of research and there are numerous reference implementations to carry

out the previously mentioned tasks.

34

The three probabilistic approaches fall into the group of high complexity. Understanding the

underlying mathematics of these methods takes some effort. These approaches could also fill

a thesis on their own. This complexity of concept probably also leads to a higher processing

complexity. Therefore, they all have specialized algorithms, which try to reduce the pro-

cessing times. Especially in the case of word embeddings this was achieved in recent years.

This method comparison does not want to argue that one technique is superior to the other,

but help to get a feeling when what method might be a good fit. This is heavily influenced by

the texts at hand as well as the needed quality in the outcome. Also combinations of the dis-

cussed method are possible and sometimes a reasonable alternative.

35

6 Concepts

6.1 Recommendation System

In order to get an easy to use and easy to extend recommender system it is important to think

about the key concepts upfront. In the following these concepts are described which will later

be implemented (see chapter 7).

6.1.1 Architecture

The main goal of the architecture is to make adding additional methods that determine the

similarity between documents as straightforward as possible. Therefore, one needs to think

about which processing steps all similarity methods have in common. Thereof the later pro-

gram flow can be derived.

The process of computing the similarity can be roughly divided into three steps for each simi-

larity method. These steps can be described as preprocessing, actual comparison and postpro-

cessing.

The first phase is the preprocessing. Some of the already mentioned methods (see chapter 5)

need for example NLP to later make the comparison. Others for instance need the transfor-

mation into word vectors. Also part of this phase is the deletion of output of earlier runs of the

comparison method. All these tasks which have to be done before the actual comparison can

take place are part of the step preprocessing.

The comparison of documents itself is the second step. In this phase each document is com-

pared to each other document according to the chosen method. Also for the subparts, called

Section in the data model (see chapter 1.2), the similarity needs to be computed.

In the third step a postprocessing takes place. Possibly needed actions are standardization of

the resulting values or the clean-up of temporary data. Also part of the postprocessing is the

persistence of the results. This topic is further discussed in chapter 6.1.2.

Due to this division into three phases an architecture where each step is easily interchangeable

seems to provide the best solution for the previously stated requirements. The program flow

stays then always the same from the perspective of the invoking instance. This can be

achieved by a pipeline paradigm.

The broadest definition of the pipeline concept states that the output of one part of the pipe-

line is the input of the next part of the pipeline [37]. Figure 15 illustrates this basic structure

each similarity method should have. Using this paradigm each method can have its own im-

plementation of each step without looking different from the outside. The three processing

steps might be triggered from the outside.

36

Since the number of documents that need to be compared can be huge, it is reasonable to

write the results of the preprocessing to disc, which is usually not intended in the pipeline

pattern. However, this approach allows reusing the outcomes of the preprocessing and keeps

the occupied main memory reasonably small.

Another advantage of such a pipeline like architecture is that it makes the program easier to

be executed in parallel. To use parallelization, a synchronization point after each step would

be needed. This assures that for example the preprocessing of a document has already been

done before the document gets compared.

Parallelization would be a must in a real life application to be able to handle huge amounts of

data. But for the implementation of this thesis it is out of scope and gets only theoretical atten-

tion in the concept.

6.1.2 Persistence

In order to persist the results of the comparison of documents there are several possible alter-

natives. They will be discussed in the following.

The easiest alternative is not writing the similarities to disc but to calculate them on the fly

when requested. However, this approach has some serious drawbacks. The computation of the

similarity can take quite some time especially when expensive preprocessing like NLP is

needed. Long waiting times are a severe threat for the user experience. Additionally, the work

load for the server is unnecessarily increased.

Another alternative is saving the results of the comparison in one huge adjacency matrix. This

solves the problem of computing the same similarities again and again. But also in this ap-

proach the waiting time can be long, since this matrix grows with the factor n² and always

needs to be loaded as a whole. This can also lead to running out of memory. Furthermore this

matrix is probably only sparsely populate which makes this approach inefficient.

Figure 15: Similarity Method

Source: Own illustration

37

Adding the similarities as an attribute is a further possible approach. The attribute would most

likely be an array of the similarity value for each document in the corpus. In this case the clas-

ses LegalDocument and LegaDocumentContent of the data model (see chapter 1.2) would be

extended. This alternative raises similar problems like the approach discussed before. The

array would only be sparsely populated and can only be searched after it has been loaded as a

whole. This is faster than loading the whole matrix, but still probably not the best solution for

this kind of problem.

To save each similarity as an own object is another possible solution. This alternative avoids

the downsides of the before considered approaches. The objects can be saved in a database in

a way that they can be queried. Therefore, not the whole data must be loaded to find the most

similar documents. So the waiting time for the user is reduced. Another advantage is that ad-

ditional attributes that describe the relation between the two compared documents can be easi-

ly added. This gives more room for further development.

 Loading

Time

Main Mem-

ory Usage

Searchable Additional

Attributes

Disc

Usage

No Persistence High Low No Yes None

Matrix Medium High No No Medium

Attribute Medium Medium No No Medium

Object Low Low Yes Yes High

Table 2: Persistence alternatives

Source: Own illustration

A comprehension of each persistence alternative is given in Table 2. Based on this compre-

hension the best solution is evaluated.

The option of no persistence must be rejected because of the high loading time, although the

low main memory usage, the possibility to add additional attributes to the document relation

and no disc usage plead for this approach.

A medium loading time is denoted for the adjacency matrix and the alternative to save the

similarity values as attribute. This is paid with high or medium main memory usage, medium

disc usage and the loss of adding additional attributes. This tradeoff, however, does not make

these options viable.

The remaining option to save the similarity values in own objects provides a low loading

time, which makes it preferable above the others. Also the low main memory usage, the pos-

sibility to search the adequate relations directly in the database and the possibility to add fur-

ther attributes plead for this alternative. The only drawback of high disc usage can be neglect-

ed because disc space is not an expensive good.

So, the similarity values will be saved in objects in the later implementation.

38

6.1.3 Visualization

The user interface is an important part of every application. Therefore, the recommender sys-

tem should fit into the existing design of LEXIA. Furthermore it should be easy to use and

intuitive.

The user needs on the one hand an interface to start the process of computing the similarities

between the given documents. This can be kept quite plain only providing the most important

information to the user.

On the other hand, which is much more important, the results of the similarity search need to

be displayed. For this problem there are two solutions that come quickly to mind. A simple

table that shows the most similar documents is one proven solution for displaying search re-

sults. A fancier way of visualizing the results is a network graph.

The network graph can illustrate different similarity values by different distances to the start-

ing node. Additionally, it allows seeing the similarities between the results of the search or

displays the most similar documents to one of the result documents. Such a network structure

gives the user more insight into the analyzed dataset. It can display the connections between a

lot of documents in a denser fashion than a table.

39

6.2 Similarity of Documents

After the basic concept of the recommendation system was discussed in the previously chap-

ter, this chapter deals with the concept of the similarity methods that get implemented in this

thesis. First of all it needed to be decided which of the possible methods discussed in chapter

5 should be implemented. It was decided that a variation of bag of words, an approach relying

on NLP annotations and word embeddings should be realized. The decision was based on the

different complexities of the techniques and the already existing capabilities provided by

LEXIA.

6.2.1 Bag of Words

As described in chapter 5, bag of words is a quite simple technique. This makes it straight-

forward to implement. Therefore, it can be used as a baseline for the more complex methods.

In this thesis not the basic approach will be implemented but a version with some modifica-

tions.

One modification is that only nouns will be counted. This decision resolves some of the issues

attached to the bag of words approach that were shortly mentioned in chapter 5.1. One of

these issues is the handling of particles and similar words which contain no information with-

out their context. This is often tackled by list of words that should be ignored. But this way

the next problem arises, that is, which words should be part of the list. Another problem is the

appearance of the same word in different conjugations or declinations. Since the test data are

in German and show therefore more conjugations and declinations than in English, this is

even more serious. Also the obvious solution using stemming or lemmatization does not al-

ways work well on German texts. The declination of the noun on the other hand provides val-

uable information because there is, for example, a great difference between acting as the sub-

ject or the object of a sentence.

This decision was encouraged by the fact that LEXIA already provides a POS tagger. So the

implementation effort increases only slightly by this decision, while the expected quality of

output rises clearly.

Another modification is that not all nouns present in the document corpus are used to describe

the vectors but only the ones that are contained in the two texts which are compared. This

shortens the vectors by leaving out some zeros and does not change the output of the similari-

ty measure.

Not a real modification but a specification is that the cosine similarity is used to determine the

similarity of the vectors in the VSM. This is due to the wide spread usage of this measure for

bag of words approaches.

40

6.2.2 NPChunk

The second method, which will be implemented, leans even more on NLP than the previously

discussed version of bag of words. This corresponds to the capabilities in this field provided

by LEXIA. It can be put in the category of methods using NLP annotations described in chap-

ter 5.3. As also noted there, this approach has a medium complexity.

The method uses instead of single nouns so-called noun phrases to measure the similarity be-

tween texts. Noun phrases are commonly abbreviated as NP and defined as a group of words

with a noun as its head [38]. Since this method uses chunks of words that represent NPs, it is

henceforth referred to as NPChunk.

Based on the NPs found in the texts, vectors are created for a VSM similar to the bag of

words approach. Also the similarity value is calculated by using the cosine similarity again.

So, the first two approaches differ only in the words used to create vectors.

This method will give in the assessment a good indication whether it is worth to seek out for

more complex syntactical constructions to determine relatedness.

6.2.3 Word Embeddings

As third method an approach using word embeddings will be implemented. Unlike the two

previously described techniques, this one has an underlying probabilistic model. This was

already mentioned in chapter 5, as well as the higher complexity of this approach.

This method will not be built from scratch but uses an implementation developed at the sebis

chair of the TU München. The implementation uses the approach of word2vec that has al-

ready been mentioned in chapter 5.4. It was developed using Python.

It provides the possibilities to upload text documents and to compute the word vectors based

on them. Then one can retrieve the most similar words to an input word. Much more interest-

ing for this thesis is that one can also request the similarity of two documents in the uploaded

collection. The relatedness of two documents is calculated by summing up the word vectors

for each document and comparing the resulting vectors by using the cosine similarity. All of

this functionality can be accessed via a RESTful API.

Therefore, the implementation done in this thesis will mainly deal with using the API via

HTTP. Additionally, the results need to be transformed into a format LEXIA can work with.

This must happen using the architecture proposed in chapter 6.1.1.

For the assessment this method is interesting to get a comparison between set and probabilis-

tic based techniques. Also, it represents some of the newer trends in research in the fields of

NLP.

41

7 Implementation

7.1 Architecture

As described in chapter 6.1 the expandability of the recommender system is a central design

issue. To address this requirement all methods to compute the similarity inherit from one ab-

stract super class. This can be seen in the class diagram in Figure 16.

The super class RelatednessMethod defines that each child class needs to implement a few

methods. In order to identify each similarity technique a child class must implement the

method getMethodName. The methods runPreProcessing, compareDocuments and runPost-

Processing map to the three steps – preprocessing, comparison, postprocessing - identified in

chapter 6.1.1. This abstraction allows having always the same program flow no matter what

similarity method needs to be executed. Therefore, further similarity techniques can be easily

added.

Figure 16: Similarity methods class diagram

Source: Own illustration

42

As an addition there is a deleteRelations method required by the super class. This method

should check if there are already similarities computed with the specified similarity approach

and delete them. Thereby no duplicates can emerge by running the same similarity method

several times.

The techniques implemented in BagOfWords and NPChunk have some resemblance. So there

is another abstract class called CosineSimilarity they inherit from. This approach makes some

methods accessible to both of them and thereby avoids the duplication of code. The imple-

mentations of these similarity techniques are more precisely described in chapter 7.2.1 respec-

tively chapter 7.2.2.

For the persistence an additional class was introduced as described in chapter 6.1.2. Its prop-

erties can be seen in Figure 17. The mentioned advantage of adding attributes that describe

the relationship is used to specify the document part that is compared. That allows distin-

guishing between the comparison of whole documents or only parts of it. So it is possible to

use the inherent structure of legal documents to improve the results of the similarity search.

These inherent structures where described in chapter 1.1.

In order to allow saving asymmetric similarity measures as well as symmetric ones the attrib-

ute value always refers to the similarity from ld1 respectively article1 towards ld2 respective-

ly article2. This means on the other hand that also for symmetric similarity measures two

DocumentRelations need to be saved for one comparison.

Figure 17: DocumentRelation class

Source: Own illustration

43

The DocumentRelation class offers a bulkInsert method. This method makes use of the Bulk

API of elasticsearch [39]. Since every document part is compared to every other document

part, the number of DocumentRelations rapidly grows with each document imported to the

system. Therefore, the insert into the database can only be handled in reasonable time with

such a bulk operation. The maximum bulk size was set to 10,000 after tests showed that big-

ger bulk sizes lead to a performance decrease.

As mentioned before the program flow stays always the same regardless of which similarity

technique is executed. The process is shown in Figure 18 exemplarily by the execution of

BagOfWords.

The starting point of the program flow is the user who makes a call to the RelatednessCon-

troller via the angular frontend of LEXIA. In the call the desired similarity technique is speci-

fied by a string. In this example case it is ‘BagOfWords’. According to the transferred string a

new instance of the class BagOfWords is created.

Inside this instance first the deleteRelations method is called to remove already existing Doc-

umentRelations from earlier runs. This method itself queries the elasticsearch database to de-

Figure 18: Bag of words execution example
Source: Own illustration

44

lete these entries. It makes use of the Delete by Query Plugin of elasticsearch [40]. Using this

plugin one can avoid loading and deleting each database entry individually. As the name sug-

gests the entries to delete are specified by a query. The deletion of all matching entries is done

in one operation; however, it can take some time according to how many DocumentRelations

are present in the database.

After the old DocumentRelations have been deleted the preprocessing for the comparison can

start. In the case of BagOfWords and NPChunk the preprocessing consists of NLP. This step

utilizes LEXIA’s capabilities in this field. The resulting annotations are then saved in the da-

tabase for usage in the next step.

WordEmbeddings does not use NLP in its preprocessing and so there are also no annotations

to store. However, this difference does not change the program flow seen from the perspective

of the RelatednessController because it just calls the runPreProcessing functionality without

needing to know what happens there.

In the next step for each two documents the similarity value is computed while using the re-

sults of the preprocessing. Not only the similarity of the whole documents but also of its sub

parts like articles in laws or statement of facts in judgments is determined. The similarity is

expressed by a score between zero and one while zero is no similarity and one is identity. The

result of the compareDocuments method is a list of DocumentRelation objects which then are

saved to the database.

After the DocumentRelations have been saved the method executing the postprocessing is

called. In the case of BagOfWords no actions need to be performed. Afterwards the instance

of BagOfWords is discarded. If everything ran without an error a success message is send to

the user.

Since this is a long running process the user also has the possibility to track the process on a

periodically updated view of the LEXIA frontend. Every before mentioned method updates

the status displayed in this view.

45

7.2 Similarity Methods

The underlying concept of each method was described in chapter 6.2. The general program

flow to compute the similarity between documents has been described in the previous chapter.

However each concrete implementation of the similarity concepts has some noteworthy fea-

tures, which will be described in the following.

7.2.1 Bag of Words

The approach of counting word occurrences to determine the similarity of two texts is quite

straightforward and easy to implement. The only questions to answer are: which words one

counts and how the score is calculated.

As described in chapter 6.2.1 the choice was made to count only nouns. These nouns then get

transformed into a VSM. According to the vectors representing the nouns the text similarity is

calculated using the cosine similarity.

In order to find all nouns in a document the present implementation performs POS tagging.

The functionality to perform such an action was already implemented in LEXIA before the

start of this thesis. The method runPipeline in the class CosineSimilarity shown in Figure 17

in chapter 7.1 serves as wrapper to access the NLP capabilities of LEXIA. As also described

in chapter 7.1 the found nouns are saved to the database in the preprocessing step. Therefore,

this expensive operation does not need to be executed multiple times and the resulting annota-

tions also do not need to be held in memory which could otherwise lead to out of memory

exceptions.

In the comparison step the nouns of the documents that are to be compared are loaded and

accordingly assigned. This is done by the methods loadAnnotations and loadArticlesAndAd-

dAnnotation which are defined in the super class RelatednessMethod. By defining them in the

super class other similarity methods using NLP annotations can also access them.

After the nouns are loaded, the number of occurrences of each noun in each document and

each part of the documents is counted. The result is retained in a vector for each document

and document part. Then the cosine similarity between these vectors is computed to get the

similarity score. This is done as mentioned before by using the cosine similarity. The formula

for the cosine similarity is given in chapter 5.1.

Since the vectors are all in positive space due to their creation process, the resulting similarity

values are in the desired range between zero and one. These values are then saved in Docu-

mentRelation objects in the database.

In the runPostProcessing method no action is taken. A possible action in this step would have

been to delete the annotations produced in the preprocessing. It was decided not to do that

46

because creating the POS tags is an expensive task. So if only one document is added to the

document corpus it is possible to only compute the POS tags for this added document and

then compare the documents. Otherwise the POS tags for all documents would need to be

computed again.

7.2.2 NPChunk

The implementations of NPChunk and BagOfWords have a lot in common. That is why they

share the common parent class CosineSimilarity. NPChunk also uses the NLP capabilities

provided by LEXIA. In this case not only a POS tagging is used but also the UIMA Ruta

component [6].

“The UIMA Ruta language is an imperative rule language extended with scripting elements”

[6]. UIMA Ruta therefore allows finding more complex syntactical constructions such as NPs.

As described in chapter 6.2.2 this method wants to find NPs and calculate a text similarity

based on them.

The definition of a NP includes a lot of syntactical constructions. For the sake of simplicity

and hopefully higher precision this thesis only takes noun phrases with adjectives into consid-

eration. Therefore, the rule used in the implementation searches for an arbitrary number of

adjectives followed by one noun.

Similar to the implementation of bag of words the occurrences of each noun phrase then are

counted. The results are converted to vectors afterwards. To determine the similarity score the

cosine similarity is used again.

7.2.3 Word Embeddings

As described in chapter 6.2.3 this similarity technique uses an implementation developed at

the sebis chair of the TU München. The implementation is based on word2vec and its REST-

ful API is used to add word embeddings as a similarity method to LEXIA.

The API provides methods to upload texts, get the similarity score between two texts and to

delete texts via HTTP calls. So in the runPreProcessing method the texts of the documents

that are to be compared are uploaded in bulk via HTTP POST. In this step it can also be speci-

fied how many dimensions the vectors should have, if the words should be stemmed and if a

stopword list should be used. For this thesis it was decided to use 200 dimensions and to forgo

using stemming or a stopword list. After this upload is done the word embeddings implemen-

tation computes the vectors and determines the similarity.

47

The compareDocuments method queries each similarity value via HTTP GET. The results are

then saved in the database. In runPostProcessing the before uploaded texts are deleted to

clean up the remote application.

7.2.4 More like this

In contrast to the methods mentioned before this method is not implemented using the archi-

tecture described in chapter 7.1. That is the case because it uses the capabilities provided by

elasticsearch itself. This part of elasticsearch is called More Like This Query and is part of its

Query DSL [41]. This similarity method is also used as comparable figure for the methods

described before, since this is developed by full text search specialists.

This similarity method is initiated by a query to the elasticsearch database that is formatted in

JSON. One part of the JSON object is the text to which similar texts should be found. Inside

the database the following happens. For the input text the top terms with the highest tf-idf

score are determined. The top n of these terms are then taken as input for a search on the elas-

ticsearch index. The terms are connected with a logical OR. The number of terms to use can

be stated as one parameter of the More Like This Query. For this thesis the n was set to 25.

The most similar documents are the documents with the highest score regarding the OR-

Query. Elasticsearch is based on Lucene and therefore the scoring model of Lucene is used to

determine the score. This scoring mechanism also works with tf-idf [42].

Beneath the number of top terms that should be used there are a few other parameters to

tweak the quality of the results. One is the minimum term frequency below which the term

from the input text will be ignored. This is set to one. Also set to one is the minimum docu-

ment frequency. As in the other methods no stopword list was used which is a further option

of the query.

An important difference to the techniques described before is that this one generates the re-

sults and the score on the fly. It does not need to compute the score a priori for every docu-

ment to have a reasonable response time. This is possible because of the indexing done by

elasticsearch while saving one document.

48

7.3 Data retrieval

After describing how the similarity data is computed and saved it is also important to know

how it is retrieved. Since the data is saved as objects with multiple attributes, each of these

attributes can be specified in the query.

The attributes that always need to be part of the query are ld1, relatednessMethod and

ld1DocumentType. Since elasticsearch is not an object database only the IDs of the Le-

galDocuments and Sections are written to the database and are therefore queried.

Specifying further attributes gives the user the possibility to narrow down the results accord-

ing to his preferences. One example might be that he only wants to see judgments in the re-

sults. So he would set the field ld2DocumentType to Judgment.

Figure 19: Data retrieval query

Source: Own illustration

49

As touched on in chapter 7.2.4 the more complex queries in elasticsearch are expressed as

JSON objects. In Figure 19 one can see such a complex query.

In this query first of all the offset for the result set is defined by the field from (line 02). The

more interesting part happens afterwards. The array must, starting in line 05, contains all con-

ditions that must be fulfilled to match. Each condition is represented by one object and they

are connected by a logical AND. The relatednessMethod is set to ‘BagOfWords’ in line 08.

For ld1 (line 20) and article1 (line 25) ids are specified. These ids identify the document and

its section to which similar paragraphs are searched. In this query only articles are of interest.

So the documentPart is set to Article in line 41. The requested articles should be part of doc-

uments of the type Law, Judgment, Patent or GenericLegalDocument. This is stated in the

lines 30 to 35. In the end the results are sorted by value in descending order which is defined

in line 49.

In order to get java objects the result that is a JSON object needs to be interpreted. Additional-

ly, the ids for LegalDocuments and Sections in each result must be resolved to the object they

refer to. Then the application can work with them again and send them as response to the user.

50

7.4 Visualization

For the visualization part there was on the one hand the need to have an input screen to start

the process of computing the similarities. On the other hand also the results need to be dis-

played. As described in the chapter before the user can make some adjustments to the query.

These options need also to be displayed.

As shown in Figure 20 the site to start the computing process is kept very simple. In the

dropdown the user can choose which similarity method shall be executed. The checkbox pre-

processing needed gives the user the option to skip the preprocessing step. This might be use-

ful to save some time if the annotations for BagOfWords or NPChunk are already in the data-

base. The submit button leads to an asynchronous call of the RelatednessController. There-

fore, the user can move on to other sites of the application without interrupting the similarity

computing process.

To view the results the user has two possibilities as described in the concept in chapter 6.1.3.

The first one is a list representation where the user can look through the paginated results. The

second possibility is a network view. Starting with one node the graph can be further expand-

ed according to the interests of the user.

Figure 21 shows the list view. On the left side the user can select the query options described

in chapter 7.3. In the upper part, that is named Views, the different similarity methods are dis-

played which include Bag of Words, NPChunk, Word Embeddings and More Like This. The

other menu points named Plain, Semantics and References provide information about the se-

lected document respectively document part that are not related to similarity and therefore not

part of this thesis. Beneath the method selection the user can include or exclude certain docu-

ment types and document parts. These options are displayed below the heading Recommenda-

tions. In the picture the user is only interested in documents of the type Judgment and only the

document part Statement of Facts.

Figure 20: Start similarity computing process

Source: Own illustration

51

The upper part of the content on the right side is occupied by the selected text. Also the para-

graph name, the document name and the date of the text are shown there. Below this the re-

sults of the similarity search are displayed starting with the heading Recommendations. They

are shown in a table ordered from higher to lower similarity score. For each result the name of

the paragraph, the document name, the promulgation date, the score and a text preview are

shown. The [more] link directly leads to the paragraph of the document. A maximum of ten

results are shown at a time. An arrow below the table that cannot be seen in the image allows

moving to the next ten results.

An example of the network view is shown in Figure 22. The screen in this view is divided into

three parts. On the left there are statistics and filter options, in the middle the graph itself is

displayed and on the right side the text of a paragraph can be shown.

The statistics on the left side give an overview of how many nodes are present in the graph.

Additionally, the average, the maximum and the minimum similarity score of the edges is

displayed. Beneath these statistics the user can choose filters for the graph nodes. These filters

are similar to the ones in the list view. So the user can decide which document types and

which document parts should be shown in the graph as nodes. In contrast to the list view also

a similarity threshold can be stated. Then only documents with a similarity score higher than

the threshold will appear in the network graph.

The graph in the middle shows the nodes and their connections to each other. Each node has

its paragraph number displayed as identifier. On mouseover the whole paragraph name is

shown in the top left corner of the graph box.

In the network graph the following applies: the smaller the distance between two connected

nodes is the higher is their similarity score. But twice the distance does not mean that it is half

Figure 21: List view of results

Source: Own illustration

52

the similarity score. Otherwise nodes would often overlap and the graph would not be reada-

ble at all.

On right click of a node a context menu appears. It gives the user various possibilities to work

on the graph. Remove article deletes the selected node from the network. With Show para-

graph the user can choose to display the text of the selected paragraph on the right side. Then

the node and the corresponding text get the same background color. Recommendations and

More Like This expand the graph. The first one uses the results of the method BagOfWords

while the other one uses the method MoreLikeThis. The ten documents with the highest simi-

larity score nodes are then added if they are not already part of the graph. Then connections to

the selected node are drawn.

These two described views support different use cases. The list view gives the user an exact

analysis on one document. The network view on the other hand has a more explorative ap-

proach. The user can get a quick overview of his data and see the interconnections of the doc-

uments.

Figure 22: Network view of results

Source: Own illustration

53

8 Assessment

The assessment of the previously described implementation is divided into two parts. One part

deals with the technical aspect of the implementation and will be more quantitative. The other

part revolves around the question how good the results of the similarity search are. This will

be done via a questionnaire.

8.1 Technical assessment

The in chapter 6.1.1 stated objective of the architecture to be easily expandable is fulfilled by

the implemented architecture described in chapter 7.1. While it took more than four weeks to

set up the architecture and implement the first similarity method, the following methods only

took about two working days each to be added to the system.

An important piece of technical data for a software application is always the performance and

therefore the responsiveness of the application. Since it was decided in the concept (see chap-

ter 6.1) to compute the similarities a priori and then retrieve the results from the database,

these two steps will also be independently assessed.

For the performance assessment four German laws with different numbers of paragraphs were

used. These laws were the Bürgerliches Gesetzbuch (BGB) with 2402 paragraphs, the Straf-

gesetzbuch (StGB) with 532 paragraphs, the Verwaltungsgerichtsordnung (VwGO) with 205

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

D
u

ra
ti

o
n

 in
 s

Number of Paragraphs

BagOfWords

NPChunk

WordEmbeddings

Figure 23: Preprocessing time for different number of articles

Source: Own illustration

54

paragraphs and the Produkthaftungsgesetz (ProdHaftG) with 19 paragraphs. One paragraph

contains between 50 and 60 words on average.

Before the comparisons themselves can take place, the preprocessing needs to run. Figure 23

shows the time needed to run the preprocessing relating to the number of paragraphs in the

document. For all three implemented methods the correlation seems to be linear. The prepro-

cessing of WordEmbeddings does take the least time because it does not need POS tagging.

NPChunk runs longer than BagOfWords because on top of the POS tagging a Ruta script is

executed. All methods take quite some time in the preprocessing step, NPChunk for example

over half an hour for the BGB. This justifies the decision to save the results of the prepro-

cessing.

In the comparison step each paragraph of a law is compared to each paragraph of the same

law. This leads to
𝑛∗(𝑛−1)

2
 comparisons of document parts for symmetric methods and

𝑛 ∗ (𝑛 − 1) comparisons for assymetric ones. So for BagOfWords processing the BGB

2,883,601 comparisons of paragraphs need to take place. In Figure 24 the quadratic relation-

ship of processing time and number of paragraphs is shown exemplarily for BagOfWords. But

it is also true for NPChunk and WordEmbeddings.

In order to get a better understanding of how the number of words in each paragraph impacts

the performance also parts of the DATEV dataset described in chapter 4.2 were tested. There-

fore, different numbers of judgments were randomly chosen for test datasets. The four sets

consisted of 30, 150, 300 and 1498 paragraphs. One paragraph contained between 500 and

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000

D
u

ra
ti

o
n

 in
 s

Number of Paragraphs

BagOfWords

Figure 24: Comparison time for different number of paragraphs

Source: Own illustration

55

600 words on average. The average paragraph is therefore ten times longer than the average

paragraph of the laws tested before.

For each of the test datasets the similarity method BagOfWords was computed. The prepro-

cessing times are shown in Figure 25 by the blue line. The data is extrapolated which is dis-

played as black line. So it can be better compared to the already known processing times of

the German laws which are shown in red. One can see that the increase of words per para-

graph leads to an increase in preprocessing time. But this happens in a much smaller magni-

tude than the increase in the number of words. While the word count was increased by a fac-

tor of about ten, the preprocessing time only increased by a factor of about 1,3.

The impact of increased paragraph length on the comparisons themselves is for BagOfWords

and NPChunk tremendously bigger. The time for the comparison of two paragraphs is in-

creased by a factor of about 50. This is due to the increased number of annotations that need

to be loaded from the database. This in turn leads to longer vectors for each paragraph and

therefore more time is needed to create those. Also the calculation of the cosine similarity of

those vectors takes longer because of their increased length. In the end this adds up to a factor

that is much higher than the factor the word count grew with.

All processing times were measured with a single machine setup. The machine was equipped

with an Intel Core i7-6500U processor, eight GB of DDR3 RAM and a 500 GB SSD.

Watching the resource monitor of the machine one could see that alternately the processor and

the disc were under heavy load. This is due to the fact that elasticsearch has its index divided

into segments. These segments need to be merged from time to time so that all segments have

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000

D
u

ra
ti

o
n

 in
 s

Number of Paragraphs

Datev Judgments

German Laws

Linear (Datev Judgments)

Figure 25: Impact of number of words on preprocessing time

Source: Own illustration

56

an equal size and only a maximum number of segments exists. The merge of two segments

implies that the whole data of the two segments need to be rewritten [43]. This explains the

heavy load on the disc in periodic intervalls. Since a lot of DocumentRelation objects need to

be inserted in a row, this characteristic of elasticsearch slows the process down. This indicates

that another database system storing the DocumentRelation data might speed up the process of

computing the similarities between documents, especially when the number of documents and

document parts is high.

Also from a retrieval perspective a relational database system storing the similarities might

have been a better choice. Due to the conception of elasticsearch as full-text search database it

is not as fast as a relational database when a query filters on exact matches in different fields.

Another problem of elasticsearch is handling such queries on a huge amount of data. Figure

26 shows this. The query times for less than two million DocumentRelations are in a reasona-

ble range with less than a second as maximum. But a further increase of objects in the data-

base leads to long loading times with over seven seconds at about 7.2 million entries in the

database.

On the other hand, elasticsearch handles the More Like This queries even for bigger datasets

in a small amount of time. Therefore, it is a good idea to store the texts themselves in such a

full-text search engine.

In conclusion, one can say that for a real life application with a huge document corpus the

load of computing the similarities needs to be distributed to several machines. Otherwise this

process would take ages. Also there must be some thinking of which kind of data should be

stored in which kind of database. That is important to minimize query times.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000000 4000000 6000000 8000000

Lo
ad

in
g

ti
m

e
 in

 m
s

Number of DocumentRelations in database

Figure 26: Query time for DocumentRelations

Source: Own illustration

57

8.2 Functional assessment

The objective of the functional assessment was to get a perception of how good the sugges-

tions of the different similarity methods were. Therefore, a questionnaire was created using

google forms
7
. The questionnaire could be filled out and submitted online which made it more

convenient for the participants.

8.2.1 Survey design

In the questionnaire the participants should evaluate how relevant a legal norm is in relation to

another norm on a scale from one to four. The rating one stated that the norm was not rele-

vant, while four indicated that the norm was very relevant. If a participant was not familiar

with one of these norms he could also give no answer.

The norms for which the suggestions were evaluated were BGB §§ 280, 434, 985 and StGB §

242. For each of these source paragraphs and each method the ten most similar paragraphs

within the same law were taken to be assessed. In some cases there were less than ten sugges-

tions made by a method which lead to fewer paragraphs that needed to be evaluated. All in all

there were 93 norms that needed to be evaluated against a base norm. The participants did not

know which suggestion was produced by which method. The whole questionnaire can be

found in the appendix.

It was decided to use these four before mentioned methods because they are quite well known

by most people working or studying in the legal domain. So the participants did not need to

read long texts before they could give a relevance estimate. This in turn leads to a shorter time

needed to fill out the questionnaire which increases the chance of getting answers. These ad-

vantages could not be provided by judgments. That is why they were left out in the process of

the functional assessment.

In order to get reliable answers but also answers from different points of views the link to the

questionnaire was mailed to several experts from the legal domain. Additionally, it was posted

in forums and groups for law students.

At the end there were twelve answers submitted. For the further assessment only eleven of

them were consider because one answer rated every legal norm relation with a relevance of

three. Since this cannot be considered as a serious opinion, this one is left out. Otherwise it

would have led to a biased analysis.

The questions on further relevant paragraphs were only answered by two participants. Since

this is not significant, this part of the questionnaire is left out in the further assessment.

7
 www.google.de/intl/de/forms/about/

58

8.2.2 Results

The first thing to evaluate is how much the participants agreed on the relevance of each norm

towards the source norm. Therefore, the standard deviation for each relevance rating was cal-

culated. In Figure 27 a boxplot of the standard deviations for the 93 questions can be seen. It

shows that there was broad consensus with standard deviations as low as 0.3 on some norms.

But the boxplot also shows that there was great disagreement on other norms with a standard

deviation up to 1.14.

The median has a value of 0.62 and the interquartile range is 0.34. This suggests that in the

majority of cases the agreement on the relevance of one norm was quite broad. Apart from the

outliers with a high standard deviation, one can say that the ratings given by the participants

are reliable and reproducible.

Figure 28 presents the average relevance ratings. They are divided by source norm, similarity

method and how many suggestions were taken into account. Top 3 means that only the results

of the similarity search with the three highest similarity scores were taken. Top 5 and Top 10

work accordingly with the five respectively ten highest scoring suggestions.

NPChunk delivered for the source norms BGB § 434 and StGB § 242 only three results and

for BGB § 985 no result at all. Therefore, these averages are left blank.

A positive outcome that can be seen in Figure 28 is that the average relevance ratings of the

Top 3 are in most cases better than those of the Top 5 and the Top 5 in turn is on average bet-

ter than the Top 10. This means that the scoring of the similarity methods from better to worse

seems to work. However a look into the raw data, which is provided in the appendix, shows

that also in the Top 3 there are sometimes suggestions with an average relevance rating below

0,0

0,2

0,4

0,6

0,8

1,0

1,2

St
an

d
ar

d
 D

ev
ia

ti
o

n

Figure 27: Boxplot of standard deviations

Source: Own illustration

59

1.5. Nevertheless it can be stated that the probability to find a highly relevant suggestion in

the Top 3 is higher than in the Top 10.

One finding that can also be derived from the graphs in Figure 28 is that there is no method

implemented that constantly performs better than the others. In addition, which method has

the best average relevance rating often depends on whether one is considering the Top 3, Top

5 or Top 10.

BagOfWords outscores all other methods with its results for BGB §§ 434 and 985 regardless

of how many suggestions are taken into account. But it is outperformed by MoreLikeThis and

NPChunk on the results for §StGB 242 where WordEmbeddings has similar average ratings

like BagOfWords. Also the Top 3 and Top 5 suggestions of MoreLikeThis on BGB § 280 re-

ceive higher average ratings than the ones of BagOfWords. Then again the Top 10 average

0
0,5

1
1,5

2
2,5

3
3,5

4

BGB § 280

Top 3 Top 5 Top 10

0
0,5

1
1,5

2
2,5

3
3,5

4

BGB § 434

Top 3 Top 5 Top 10

0
0,5

1
1,5

2
2,5

3
3,5

4

StGB §242

Top 3 Top 5 Top 10

0
0,5

1
1,5

2
2,5

3
3,5

4

BGB § 985

Top 3 Top 5 Top 10

Figure 28: Average relevance ratings

Source: Own illustration

60

rating on the search results for this norm is matched by WordEmbeddings.

NPChunk delivers no or only few results apart from BGB §280 as source norm. The few sug-

gestions that are made are also in many cases not relevant. The only exception are the three

suggestion made for StGB § 242 with an average relevance rating of 3.33. The bad overall

performance of NPChunk might be traced back to the small number of words per paragraph.

The low amount of words leads to only a little number of noun phrases that can be found. This

in turn makes finding equal noun phrases in other norms more unlikely which leads to fewer

and worse results.

There is always a method that performs better than WordEmbeddings. But on the other hand,

there is also always a method that has an average relevance rating as bad as or worse than

WordEmbeddings. For this method there might be the most potential for improvement with

only little effort. With adjusting the various parameters that can be set for this method the

performance might increase drastically.

MoreLikeThis seems to be quite unreliable. It has the best ratings for its suggestions for BGB

§280 and StGB §242. On the other hand, its performance is the worst of the four methods for

BGB §§ 434 and 985. Also for this method an adjustment of the parameters might help. How-

ever, since this is a built-in feature of elasticsearch, one has the least control over what is hap-

pening.

All in all for every source norm at least one method achieves an average rating for its Top 3

and Top 5 of 3.0 or higher. This means that the suggestions are at least slightly relevant on

average which is an encouraging result. The Top 3 are in three out of four cases even above

3.5 indicating a really good performance.

But the averages do not show the whole picture. The boxplots in Figure 29 give an impression

of how wide spread the relevance estimates of the suggestions were. For the graphs all given

suggestions by each method were included. So it is not surprising that for NPChunk, which

mostly did not provide ten suggestions, the ranges are smaller.

In most cases the whiskers span nearly the whole rating scale. This means that almost always

the search results include very relevant but also irrelevant suggestions. Looking at the for the

most part high interquartile range one can see that these are not only outliers. Therefore, the

suggestions are mostly a broad mix of relevant and irrelevant ones.

A desirable look of the boxplot represents the one for BagOfWords for BGB § 985. The low-

est rating is still above 2.0 and the median is above 3.0. Also the interquartile range is low

with 0.9. This means that the average is high while there are only few downward outliers

which are also in still acceptable scope. So it is not surprising that these suggestions have the

highest average for a Top 10 in this assessment.

But a high average in the relevance rating does not show another important fact: what very

relevant norm is not suggested by a method in its Top 10. For this purpose one needs to have

61

again a look at the raw data. There one can see that no method has all paragraphs that are

highly relevant, i.e. has an average relevance rating above 3.5, in its Top 10 suggestions. Even

BagOfWords for BGB § 985 misses the norm BGB § 994 which has a relevance rating of 3.6.

This paragraph is only found on position 44 of the search results.

Another interesting finding that can be derived from the results is the fact that all methods

perform better on short paragraphs than on long ones. This is quite surprising since one could

think that more input leads to a higher precision in the output. But BGB § 985 consists of only

eleven words and the average relevance rating of the methods’ Top 10 suggestions is always

above 2.5. BGB § 434, on the other hand, contains 218 words and the suggestions do not

reach a higher relevance rating than 2.2. BGB § 280 and StGB § 242 lie somewhere in be-

tween consisting of 73 respectively 36 words. Also the average ratings for these norms are

between the ones of BGB § 985 and BGB § 434. Getting a deeper understanding why this is

1,0

1,5

2,0

2,5

3,0

3,5

4,0

BGB § 280

1,0

1,5

2,0

2,5

3,0

3,5

4,0

BGB §434

1,0

1,5

2,0

2,5

3,0

3,5

4,0

BGB §985

1,0

1,5

2,0

2,5

3,0

3,5

4,0

StGB §242

Figure 29: Boxplots for relevance ratings

Source: Own illustration

62

the case might be a first step for further improvement of the methods. Also a further investiga-

tion if this correlation holds true for other paragraphs or is just a coincidence in the test data

would be needed.

In conclusion the results of the assessment show that it is possible to find relevant norms giv-

en a source norm with the implemented similarity methods. The quality of the results varies

from source norm to source norm and from method to method. Unfortunately no method

could prove itself superior to the others.

The more naïve approaches of BagOfWords and MoreLikeThis performed better than the

more sophisticated ones of NPChunk and WordEmbeddings. As already mentioned NPChunk

might have suffered from the short paragraphs while the search results of WordEmbeddings

might be dramatically improved by adjusting the parameters. This could even be made on the

basis of the results of this assessment.

63

9 Conclusion and outlook

In this thesis a prototypical implementation and assessment of a relatedness search for legal

documents was described. Therefore, a literature review of related work was done to find

techniques that can determine similarity of texts. Special attention was paid to papers that

already dealt with documents from the legal domain. A comparison of these methods con-

cluded this part of the thesis.

The prototypical implementation was a further development of LEXIA. For this purpose three

approaches of the before discussed techniques were selected. Additionally, it was made use of

a feature of the elasticsearch database to get another comparison method. Attention was also

given to the architectural design within these techniques were implemented. The design was

first described in a more general manner. Then the concrete implementation in LEXIA fol-

lowed.

From a technical point of view the architectural design provided the expected benefits and

eased the implementation of further similarity methods. However there were also some tech-

nical shortcomings. Especially the time needed to compute the similarities for a huge data

corpus needs to be named.

For the functional assessment a questionnaire was designed to evaluate the search results of

the different similarity methods. The participants filling out this questionnaire work or study

in the legal domain. The results of the assessment showed that the implemented methods were

able to find similar texts. But the methods also suggested not relevant texts. In the assessment

no implemented method could constantly outperform the other methods.

Figure 30 shows the components of LEXIA at the end of this thesis. In comparison to the state

at the beginning of this thesis (see chapter 1.2) the Similarity Engine was added. It interacts

Figure 30: New LEXIA components

Source: Based on [4]

64

with the Data and Text Mining Engine and the Data Access Layer.

Further progress for LEXIA could be made into different directions. One possibility is to tack-

le the issues with the processing time. Faster processing could be achieved by introducing

parallelization and distributing tasks across several machines. The implemented architecture

already divides the process into tasks that are independent apart from a few needed synchro-

nization points. Another way to boost performance might be the use of another database sys-

tem for certain data. Reducing the processing time would enable the users of LEXIA to com-

pute the similarities for bigger datasets which might lead to more meaningful results.

Another way of advancing LEXIA lies in the implementation of further similarity methods.

Maybe more sophisticated techniques deliver better results than the ones implemented in this

thesis. These new methods would need to be evaluated again. But also with the results of the

assessment in this thesis one could improve the already existing methods. By adjusting pa-

rameters one could try to find all relevant texts. But one must be careful that no overfitting

occurs.

So hopefully this thesis can provide a useful foundation for further development of a related-

ness search in the legal domain.

65

Appendix

Functional assessment questionnaire

Evaluation einer Ähnlichkeitssuche über Gesetze

Im Rahmen von Forschungsarbeiten an der TU München & Lexalyze wird die Leistungsfä-

higkeit computergestützter Methoden für den Bereich semantischer Analyse von Gesetzen,

Urteilen und Kommentare untersucht. Ein Teilaspekt ist die Analyse von Ähnlichkeiten und

Abhängigkeiten zwischen Normen. Hierzu wurden verschiedene computergestützte Verfahren

entwickelt. Diese berechnen, basierend auf unterschiedlichen analytischen und linguistischen

Verfahren, Ähnlichkeiten und semantische Abhängigkeiten zwischen Gesetzesnormen (Para-

graphen).

Um die Güte der Verfahren bewerten und vergleichen zu können, bitten wir Sie, sich kurz für

deren Evaluation Zeit zu nehmen. Es werden Ihnen Vorschläge zu 4 Normen (BGB §§ 280,

434, 985, StGB § 242) angezeigt, deren Relevanz Sie in Bezug auf die Ausgangsnorm bewer-

ten sollen.

Die Evaluation dauert ca. 15 - 20 Minuten. Falls Sie sich zu einer Norm nicht äußern wollen,

können Sie diese auch einfach freilassen.

66

1. BGB §280 Schadensersatz wegen Pflichtverletzung

 1 2 3 4 k.A.

§ 282 Schadensersatz statt der Leistung wegen Verletzung einer Pflicht

nach § 241 Abs. 2

□ □ □ □ □

§ 281 Schadensersatz statt der Leistung wegen nicht oder nicht wie ge-

schuldet erbrachter Leistung

□ □ □ □ □

§ 326 Befreiung von der Gegenleistung und Rücktritt beim Ausschluss

der Leistungspflicht

□ □ □ □ □

§ 1243 Rechtswidrige Veräußerung □ □ □ □ □

§ 634 Rechte des Bestellers bei Mängeln □ □ □ □ □

§ 1165 Freiwerden des Schuldners □ □ □ □ □

§ 283 Schadensersatz statt der Leistung bei Ausschluss der Leistungs-

pflicht

□ □ □ □ □

§ 437 Rechte des Käufers bei Mängeln □ □ □ □ □

§ 78 Festsetzung von Zwangsgeld □ □ □ □ □

§ 312a Verhältnis zu anderen Vorschriften □ □ □ □ □

§ 284 Ersatz vergeblicher Aufwendungen □ □ □ □ □

§ 289 Zinseszinsverbot □ □ □ □ □

§ 867 Verfolgungsrecht des Besitzers □ □ □ □ □

§ 825 Bestimmung zu sexuellen Handlungen □ □ □ □ □

§ 678 Geschäftsführung gegen den Willen des Geschäftsherrn □ □ □ □ □

§ 536c Während der Mietzeit auftretende Mängel; Mängelanzeige durch

den Mieter

□ □ □ □ □

§ 823 Schadensersatzpflicht □ □ □ □ □

§ 675 Entgeltliche Geschäftsbesorgung □ □ □ □ □

§ 628 Teilvergütung und Schadensersatz bei fristloser Kündigung □ □ □ □ □

§ 341 Strafversprechen für nicht gehörige Erfüllung □ □ □ □ □

§ 340 Strafversprechen für Nichterfüllung □ □ □ □ □

§ 323 Rücktritt wegen nicht oder nicht vertragsgemäß erbrachter Leis-

tung

□ □ □ □ □

§ 285 Herausgabe des Ersatzes □ □ □ □ □

§ 267 Leistung durch Dritte □ □ □ □ □

§ 275 Ausschluss der Leistungspflicht □ □ □ □ □

§ 380 Nachweis der Empfangsberechtigung □ □ □ □ □

§ 311a Leistungshindernis bei Vertragsschluss □ □ □ □ □

§ 808 Namenspapiere mit Inhaberklausel □ □ □ □ □

§ 432 Mehrere Gläubiger einer unteilbaren Leistung □ □ □ □ □

§ 1281 Leistung vor Fälligkeit □ □ □ □ □

Gibt es weitere Paragraphen, die Sie in Verbindung mit BGB §280 für relevant halten?

Bewertung von 1 (nicht

relevant) bis 4 (sehr relevant)

67

2. BGB §434 Sachmangel

 1 2 3 4 k.A.

§ 433 Vertragstypische Pflichten beim Kaufvertrag □ □ □ □ □

§ 243 Gattungsschuld □ □ □ □ □

§ 445 Haftungsbegrenzung bei öffentlichen Versteigerungen □ □ □ □ □

§ 2183 Haftung für Sachmängel □ □ □ □ □

§ 476 Beweislastumkehr □ □ □ □ □

§ 697 Rückgabeort □ □ □ □ □

§ 949 Erlöschen von Rechten Dritter □ □ □ □ □

§ 1042 Anzeigepflicht des Nießbrauchers □ □ □ □ □

§ 694 Schadensersatzpflicht des Hinterlegers □ □ □ □ □

§ 966 Verwahrungspflicht □ □ □ □ □

§ 633 Sach- und Rechtsmangel □ □ □ □ □

§ 997 Wegnahmerecht □ □ □ □ □

§ 312b Fernabsatzverträge □ □ □ □ □

§ 957 Gestattung durch den Nichtberechtigten □ □ □ □ □

§ 1044 Duldung von Ausbesserungen □ □ □ □ □

§ 702a Erlass der Haftung □ □ □ □ □

§ 932 Gutgläubiger Erwerb vom Nichtberechtigten □ □ □ □ □

§ 443 Beschaffenheits- und Haltbarkeitsgarantie □ □ □ □ □

§ 934 Gutgläubiger Erwerb bei Abtretung des Herausgabeanspruchs □ □ □ □ □

§ 648a Bauhandwerkersicherung □ □ □ □ □

§ 357 Rechtsfolgen des Widerrufs und der Rückgabe □ □ □ □ □

§ 2109 Unwirksamwerden der Nacherbschaft □ □ □ □ □

§ 1905 Sterilisation □ □ □ □ □

§ 438 Verjährung der Mängelansprüche □ □ □ □ □

§ 495 Widerrufsrecht □ □ □ □ □

§ 81 Stiftungsgeschäft □ □ □ □ □

§ 309 Klauselverbote ohne Wertungsmöglichkeit □ □ □ □ □

§ 595 Fortsetzung des Pachtverhältnisses □ □ □ □ □

§ 308 Klauselverbote mit Wertungsmöglichkeit □ □ □ □ □

Gibt es weitere Paragraphen, die Sie in Verbindung mit BGB §434 für relevant halten?

Bewertung von 1 (nicht

relevant) bis 4 (sehr relevant)

68

3. BGB §985 Herausgabeanspruch

 1 2 3 4 k.A.

§ 986 Einwendungen des Besitzers □ □ □ □ □

§ 1007 Ansprüche des früheren Besitzers, Ausschluss bei Kenntnis □ □ □ □ □

§ 988 Nutzungen des unentgeltlichen Besitzers □ □ □ □ □

§ 1000 Zurückbehaltungsrecht des Besitzers □ □ □ □ □

§ 850 Ersatz von Verwendungen □ □ □ □ □

§ 1001 Klage auf Verwendungsersatz □ □ □ □ □

§ 1006 Eigentumsvermutung für Besitzer □ □ □ □ □

§ 1005 Verfolgungsrecht □ □ □ □ □

§ 931 Abtretung des Herausgabeanspruchs □ □ □ □ □

§ 935 Kein gutgläubiger Erwerb von abhanden gekommenen Sachen □ □ □ □ □

§ 2185 Ersatz von Verwendungen und Aufwendungen □ □ □ □ □

§ 869 Ansprüche des mittelbaren Besitzers □ □ □ □ □

§ 1100 Rechte des Käufers □ □ □ □ □

§ 904 Notstand □ □ □ □ □

§ 2185 Ersatz von Verwendungen und Aufwendungen □ □ □ □ □

§ 1002 Erlöschen des Verwendungsanspruchs □ □ □ □ □

§ 2362 Herausgabe- und Auskunftsanspruch des wirklichen Erben □ □ □ □ □

§ 994 Notwendige Verwendungen □ □ □ □ □

Gibt es weitere Paragraphen, die Sie in Verbindung mit BGB §985 für relevant halten?

Bewertung von 1 (nicht

relevant) bis 4 (sehr relevant)

69

4. StGB §242 Diebstahl

 1 2 3 4 k.A.

§ 303 Sachbeschädigung □ □ □ □ □

§ 289 Pfandkehr □ □ □ □ □

§ 246 Unterschlagung □ □ □ □ □

§ 259 Hehlerei □ □ □ □ □

§ 293 Fischwilderei □ □ □ □ □

§ 249 Raub □ □ □ □ □

§ 324 Gewässerverunreinigung □ □ □ □ □

§ 223 Körperverletzung □ □ □ □ □

§ 317 Störung von Telekommunikationsanlagen □ □ □ □ □

§ 167a Störung einer Bestattungsfeier □ □ □ □ □

§ 265 Versicherungsmißbrauch □ □ □ □ □

§ 248c Entziehung elektrischer Energie □ □ □ □ □

§ 223 Körperverletzung □ □ □ □ □

§ 107c Verletzung des Wahlgeheimnisses □ □ □ □ □

§ 253 Erpressung □ □ □ □ □

§ 108 Wählernötigung □ □ □ □ □

Gibt es weitere Paragraphen, die Sie in Verbindung mit StGB §242 für relevant halten?

Bewertung von 1 (nicht

relevant) bis 4 (sehr relevant)

70

Functional assessment results

BGB § 280

Method: BagOfWords

Similarity Search Result Average Relevance Rating

§ 282 Schadensersatz statt der Leistung wegen Verletzung

einer Pflicht nach § 241 Abs. 2 3,45
§ 281 Schadensersatz statt der Leistung wegen nicht oder

nicht wie geschuldet erbrachter Leistung 3,82
§ 326 Befreiung von der Gegenleistung und Rücktritt beim

Ausschluss der Leistungspflicht 2,45

§ 1243 Rechtswidrige Veräußerung 1,40

§ 634 Rechte des Bestellers bei Mängeln 3,09

§ 1165 Freiwerden des Schuldners 1,18
§ 283 Schadensersatz statt der Leistung bei Ausschluss der

Leistungspflicht 3,82

§ 437 Rechte des Käufers bei Mängeln 3,64

§ 78 Festsetzung von Zwangsgeld 1,27

§ 312a Verhältnis zu anderen Vorschriften 1,55

Method: NPChunk

Similarity Search Result Average Relevance Rating

§ 284 Ersatz vergeblicher Aufwendungen 3,09

§ 289 Zinseszinsverbot 2,00

§ 867 Verfolgungsrecht des Besitzers 1,09

§ 825 Bestimmung zu sexuellen Handlungen 1,18

§ 678 Geschäftsführung gegen den Willen des Geschäftsherrn 1,73
§ 536c Während der Mietzeit auftretende Mängel; Mängelan-

zeige durch den Mieter 2,09

§ 823 Schadensersatzpflicht 2,18

§ 675 Entgeltliche Geschäftsbesorgung 1,91
§ 628 Teilvergütung und Schadensersatz bei fristloser Kündi-

gung 1,64

Method: WordEmbeddings

Similarity Search Result Average Relevance Rating

§ 282 Schadensersatz statt der Leistung wegen Verletzung

einer Pflicht nach § 241 Abs. 2 3,45
§ 281 Schadensersatz statt der Leistung wegen nicht oder

nicht wie geschuldet erbrachter Leistung 3,82

§ 341 Strafversprechen für nicht gehörige Erfüllung 1,55

71

§ 326 Befreiung von der Gegenleistung und Rücktritt beim

Ausschluss der Leistungspflicht 2,45

§ 340 Strafversprechen für Nichterfüllung 1,64
§ 323 Rücktritt wegen nicht oder nicht vertragsgemäß er-

brachter Leistung 3,09

§ 285 Herausgabe des Ersatzes 3,00

§ 267 Leistung durch Dritte 1,45

§ 275 Ausschluss der Leistungspflicht 3,09

§ 380 Nachweis der Empfangsberechtigung 1,30

Method: MoreLikeThis

Similarity Search Result Average Relevance Rating

§ 283 Schadensersatz statt der Leistung bei Ausschluss der

Leistungspflicht 3,82
§ 282 Schadensersatz statt der Leistung wegen Verletzung

einer Pflicht nach § 241 Abs. 2 3,45
§ 281 Schadensersatz statt der Leistung wegen nicht oder

nicht wie geschuldet erbrachter Leistung 3,82

§ 311a Leistungshindernis bei Vertragsschluss 2,91

§ 808 Namenspapiere mit Inhaberklausel 1,18

§ 285 Herausgabe des Ersatzes 3,00

§ 267 Leistung durch Dritte 1,45

§ 432 Mehrere Gläubiger einer unteilbaren Leistung 1,45

§ 1281 Leistung vor Fälligkeit 1,36

72

BGB § 434

Method: BagOfWords

Similarity Search Result Average Relevance Rating

§ 433 Vertragstypische Pflichten beim Kaufvertrag 3,82

§ 243 Gattungsschuld 2,82

§ 445 Haftungsbegrenzung bei öffentlichen Versteigerungen 2,36

§ 2183 Haftung für Sachmängel 2,45

§ 476 Beweislastumkehr 3,55

§ 697 Rückgabeort 1,45

§ 949 Erlöschen von Rechten Dritter 1,36

§ 1042 Anzeigepflicht des Nießbrauchers 1,30

§ 694 Schadensersatzpflicht des Hinterlegers 1,40

§ 966 Verwahrungspflicht 1,40

Method: NPChunk

Similarity Search Result Average Relevance Rating

§ 633 Sach- und Rechtsmangel 3,18

§ 997 Wegnahmerecht 1,30

§ 312b Fernabsatzverträge 2,00

Method: WordEmbeddings

Similarity Search Result Average Relevance Rating

§ 957 Gestattung durch den Nichtberechtigten 3,82

§ 633 Sach- und Rechtsmangel 2,82

§ 1044 Duldung von Ausbesserungen 2,36

§ 702a Erlass der Haftung 2,45

§ 997 Wegnahmerecht 3,55

§ 932 Gutgläubiger Erwerb vom Nichtberechtigten 1,45

§ 443 Beschaffenheits- und Haltbarkeitsgarantie 1,36
§ 934 Gutgläubiger Erwerb bei Abtretung des Herausgabean-

spruchs 1,30

§ 648a Bauhandwerkersicherung 1,40

§ 357 Rechtsfolgen des Widerrufs und der Rückgabe 1,40

73

Method: MoreLikeThis

Similarity Search Result Average Relevance Rating

§ 2109 Unwirksamwerden der Nacherbschaft 1,18

§ 1905 Sterilisation 1,09

§ 438 Verjährung der Mängelansprüche 3,64

§ 495 Widerrufsrecht 1,73

§ 81 Stiftungsgeschäft 1,20

§ 309 Klauselverbote ohne Wertungsmöglichkeit 2,27

§ 633 Sach- und Rechtsmangel 3,18

§ 595 Fortsetzung des Pachtverhältnisses 1,20

§ 308 Klauselverbote mit Wertungsmöglichkeit 2,09

74

BGB § 985

Method: BagOfWords

Similarity Search Result Average Relevance Rating

§ 986 Einwendungen des Besitzers 3,90

§ 1007 Ansprüche des früheren Besitzers, Ausschluss bei

Kenntnis 3,40

§ 988 Nutzungen des unentgeltlichen Besitzers 3,70

§ 1000 Zurückbehaltungsrecht des Besitzers 3,60

§ 850 Ersatz von Verwendungen 2,20

§ 1001 Klage auf Verwendungsersatz 3,10

§ 1006 Eigentumsvermutung für Besitzer 3,50

§ 1005 Verfolgungsrecht 2,50

§ 931 Abtretung des Herausgabeanspruchs 2,50

§ 935 Kein gutgläubiger Erwerb von abhanden gekommenen

Sachen 3,00

Method: WordEmbeddings

Similarity Search Result Average Relevance Rating

§ 986 Einwendungen des Besitzers 3,90

§ 1001 Klage auf Verwendungsersatz 3,10

§ 850 Ersatz von Verwendungen 2,20

§ 931 Abtretung des Herausgabeanspruchs 2,50

§ 1007 Ansprüche des früheren Besitzers, Ausschluss bei

Kenntnis 3,40

§ 988 Nutzungen des unentgeltlichen Besitzers 3,70

§ 2185 Ersatz von Verwendungen und Aufwendungen 1,80

§ 869 Ansprüche des mittelbaren Besitzers 2,10

§ 1100 Rechte des Käufers 1,30

§ 904 Notstand 1,50

Method: MoreLikeThis

Similarity Search Result Average Relevance Rating

§ 986 Einwendungen des Besitzers 3,90

§ 2185 Ersatz von Verwendungen und Aufwendungen 1,60

§ 1007 Ansprüche des früheren Besitzers, Ausschluss bei

Kenntnis 3,40

§ 850 Ersatz von Verwendungen 2,20

§ 1002 Erlöschen des Verwendungsanspruchs 2,50

75

§ 2362 Herausgabe- und Auskunftsanspruch des wirklichen

Erben 1,80

§ 1001 Klage auf Verwendungsersatz 3,10

§ 931 Abtretung des Herausgabeanspruchs 2,50

§ 994 Notwendige Verwendungen 3,60

76

StGB § 242

Method: BagOfWords

Similarity Search Result Average Relevance Rating

§ 303 Sachbeschädigung 2,10

§ 289 Pfandkehr 2,30

§ 246 Unterschlagung 3,90

§ 259 Hehlerei 3,20

§ 293 Fischwilderei 1,90

§ 249 Raub 3,80

§ 324 Gewässerverunreinigung 1,30

§ 223 Körperverletzung 1,40

§ 317 Störung von Telekommunikationsanlagen 1,10

§ 167a Störung einer Bestattungsfeier 1,10

Method: NPChunk

Similarity Search Result Average Relevance Rating

§ 246 Unterschlagung 3,90

§ 289 Pfandkehr 2,30

§ 249 Raub 3,80

Method: WordEmbeddings

Similarity Search Result Average Relevance Rating

§ 249 Raub 3,80

§ 265 Versicherungsmißbrauch 1,30

§ 293 Fischwilderei 1,90

§ 248c Entziehung elektrischer Energie 3,40

§ 246 Unterschlagung 3,90

§ 303 Sachbeschädigung 2,10

§ 289 Pfandkehr 2,30

§ 223 Körperverletzung 1,40

§ 107c Verletzung des Wahlgeheimnisses 1,10

§ 317 Störung von Telekommunikationsanlagen 1,10

77

Method: MoreLikeThis

Similarity Search Result Average Relevance Rating

§ 249 Raub 3,80

§ 246 Unterschlagung 3,90

§ 248c Entziehung elektrischer Energie 3,40

§ 289 Pfandkehr 2,30

§ 259 Hehlerei 3,20

§ 265 Versicherungsmißbrauch 1,30

§ 303 Sachbeschädigung 2,10

§ 253 Erpressung 2,40

§ 108 Wählernötigung 1,11

78

Bibliography

[1] Statistisches Bundesamt, Statistisches Jahrbuch 2015, Wiesbaden.

[2] juris GmbH, "juris.de," [Online]. Available: http://www.juris.de. [Accessed 20 06

2016].

[3] U. Wesel and H. D. Beck, 250 Jahre rechtswissenschaftlicher Verlag C.H.Beck: 1763-

2013, C.H.Beck, 2015.

[4] B. Waltl, F. Matthes, T. Waltl and T. Grass, "LEXIA - A Data Science Environment for

Semantic Analysis of German Legal Texts," in IRIS: Internationales Rechtsinformatik

Symposium, Salzburg, 2016.

[5] The Apache Software Foundation, "Apache UIMA," [Online]. Available:

https://uima.apache.org. [Accessed 15 09 2016].

[6] The Apache Software Foundation, "Apache UIMA Ruta," [Online]. Available:

https://uima.apache.org/ruta.html. [Accessed 06 11 2016].

[7] W. Zikmund, B. Babin, J. Carr and M. Griffin, Business Research Methods, Cengage

Learning, 2013.

[8] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley Publishing Company, 1977.

[9] T. Hill, P. Lewicki and P. Lewicki, Statistics: methods and applications: a

comprehensive reference for science, industry, and data mining, StatSoft, Inc., 2006.

[10] DATEV eG, "DATEV," [Online]. Available: www.datev.de. [Accessed 23 August

2016].

[11] Z. S. Harris, "Distributional structure," Word, pp. 146-162, 1954.

[12] G. Salton and M. McGill, Introduction to modern information retrieval, New York:

McGraw-Hill, 1983.

[13] M. Porter, "An algorithm for suffix stripping," Program, pp. 130-137, 1980.

[14] W. Stock, Information Retrieval, München: Oldenbourg, 2007.

[15] C. Corley and R. Mihalcea, "Measuring the semantic similarity of texts," Proceedings

of the ACL workshop on empirical modeling of semantic equivalence and entailment,

79

pp. 13-18, 2005.

[16] B. Fortuna, M. Grobelnik and D. Mladenic, "Visualization of text document corpus,"

Informatica, 2005.

[17] G. Kondrak, "N-gram similarity and distance," in International Symposium on String

Processing and Information Retrieval, Springer, 2005, pp. 115-126.

[18] M. Levandowsky and D. Winter, "Distance between sets," Nature, pp. 34-35, 1971.

[19] W. Cavnar and J. Trenkle, "N-gram-based text categorization," Ann Arbor MI, pp. 161-

175, 1994.

[20] G. Lame, "Using NLP techniques to identify legal ontology components: concepts and

relations," in Law and the Semantic Web, Springer, 2005, pp. 169-184.

[21] C. Dozier, R. Kondadadi, M. Light, A. Vachher, S. Veeramachaneni and R. Wudali,

"Named entity recognition and resolution in legal text," in Semantic Processing of

Legal Texts, Springer, 2010, pp. 27-43.

[22] E. Schweighofer, "Semantic indexing of legal documents," in Semantic Processing of

Legal Texts, Springer, 2010, pp. 157-169.

[23] G. Hinton, "Learning distributed representations of concepts," Proceedings of the

eighth annual conference of the cognitive science society, 1986.

[24] Y. Bengio, R. Ducharme, P. Vincent and C. Jauvin, "A neural probabilistic language

model," journal of machine learning research, pp. 1137-1155, Februar 2003.

[25] T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient estimation of word

representations in vector space," arXiv preprint arXiv:1301.3781, 2013.

[26] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean, "Distributed

representations of words and phrases and their compositionality," Advances in neural

information processing systems, pp. 3111-3119, 2013.

[27] R. Winkels, A. Boer, B. Vredebregt and A. van Someren, "Towards a Legal

Recommender System," in Jurix, 2014.

[28] D. Heckerman, "Bayesian networks for data mining," Data mining and knowledge

discovery, pp. 79-119, 1997.

[29] H. Turtle and B. Croft, "Inference networks for document retrieval," in Proceedings of

the 13th annual international ACM SIGIR conference on Research and development in

80

information retrieval, 1989, pp. 1-24.

[30] H. Turtle and B. Croft, "Evaluation of an inference network-based retrieval model,"

ACM Transactions on Information Systems (TOIS), pp. 187-222, 1991.

[31] D. Blei, "Probabilistic topic models," Communications of the ACM, pp. 77-84, 2012.

[32] D. Blei, A. Ng and M. Jordan, "Latent dirichlet allocation," Journal of machine

Learning research, pp. 993-1022, 2003.

[33] H. Wallach, "Topic modeling: beyond bag-of-words," in Proceedings of the 23rd

international conference on Machine learning, ACM, 2006, pp. 977-984.

[34] D. Blei and J. Lafferty, "Dynamic topic models," in Proceedings of the 23rd

international conference on Machine learning, ACM, 2006, pp. 113-120.

[35] J. Lin and J. Wilbur, "PubMed related articles: a probabilistic topic-based model for

content similarity," BMC bioinformatics, 2007.

[36] X. Quan, G. Liu, Z. Lu, X. Ni and L. Wenyin, "Short text similarity based on

probabilistic topics," Knowledge and information systems, pp. 473-491, 2010.

[37] J. S. Greenfield, Distributed programming paradigms with cryptography applications,

Springer Science & Business Media, 1994.

[38] N. Chomsky, Syntactic structures, Walter de Gruyter, 2002.

[39] Elasticsearch, "BulkAPI | Elasticsearch," [Online]. Available:

https://www.elastic.co/guide/en/elasticsearch/guide/current/bulk.html. [Accessed 28 10

2016].

[40] Elasticsearch, "Delete by Query | Elasticsearch," [Online]. Available:

https://www.elastic.co/guide/en/elasticsearch/plugins/2.0/delete-by-query-usage.html.

[Accessed 03 11 2016].

[41] Elasticsearch, "More Like This Query | Elasticsearch," [Online]. Available:

https://www.elastic.co/guide/en/elasticsearch/reference/2.0/query-dsl-mlt-query.html.

[Accessed 06 11 2016].

[42] The Apache Software Foundation, "TFIDF Similarity (Lucene API)," [Online].

Available:

https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/search/similarities/TFIDF

Similarity.html. [Accessed 07 11 2016].

81

[43] Elasticsearch, "Segment Merging | Elasticsearch," [Online]. Available:

https://www.elastic.co/guide/en/elasticsearch/guide/current/merge-process.html.

[Accessed 10 11 2016].

[44] G. Salton, A. Wong and C.-S. Yang, "A vector space model for automatic indexing,"

Communications of the ACM, pp. 613-620, 1975.

