Extracting Semantic Relationships from Unstructured Textual Data in E-Learning Video Script

George Elfayoumi, Alejandro Bravo de la Serna, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla

29.04.2024

ПП

Final Presentation: Application Project with FAST AI Movies

Chair of Software Engineering for Business Information Systems (sebis) Department of Computer Science School of Computation, Information and Technology (CIT) Technical University of Munich (TUM) wwwmatthes.in.tum.de

sebis

Outline

Introduction

Motivation

Recap: Chapter Segmentation

Recap: Keyphrase Extraction

Semantic Relation Classification

Conclusion

Appendix

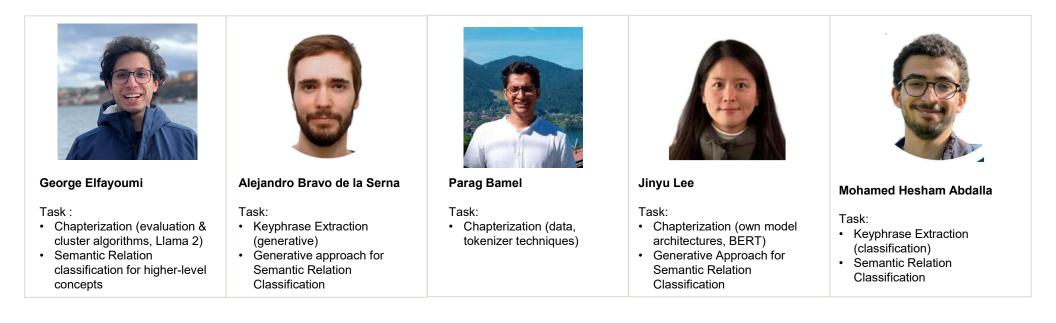
240429 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

ТШП

© sebis 2

Introduction

Team Members (Data Engineering and Analytics Master Students)



пп

Introduction

NLP Application Project @ FAST AI Movies

- ✓ Young, TUM-affiliated Start-Up FAST AI Movies
- ✓ Software-as-a-Service (SaaS) for e-Learning Video Generation

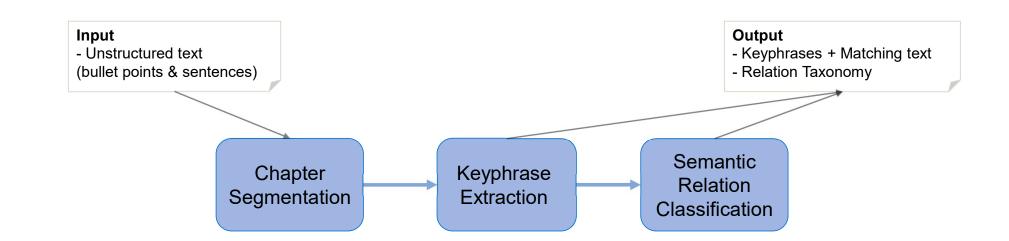
Script of an e-learning video

Animated training video

ПШ

Motivation

Project Overview



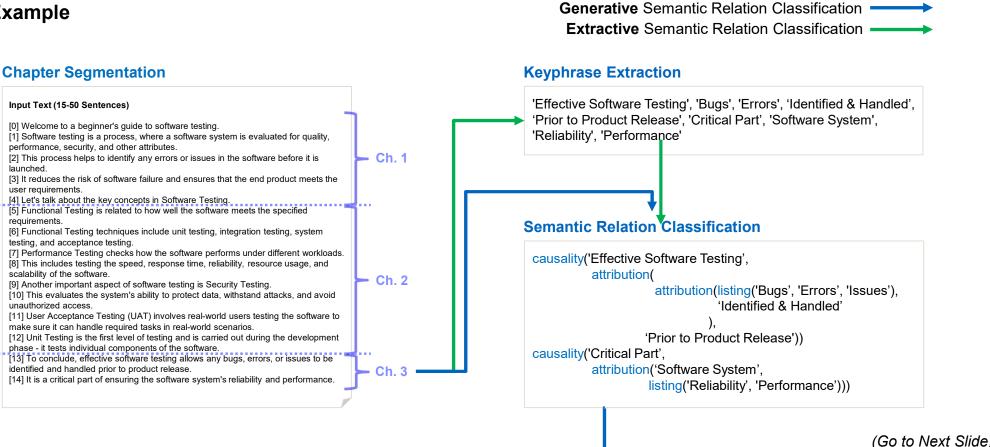
Main Goal:

Create a **comprehensive nested hierarchy** to capture **semantic relationships among keyphrases within a text**, which can be used for visual information representation of e-learning videos. → Reduce/Remove "human-in-the-loop" in this process.

пп

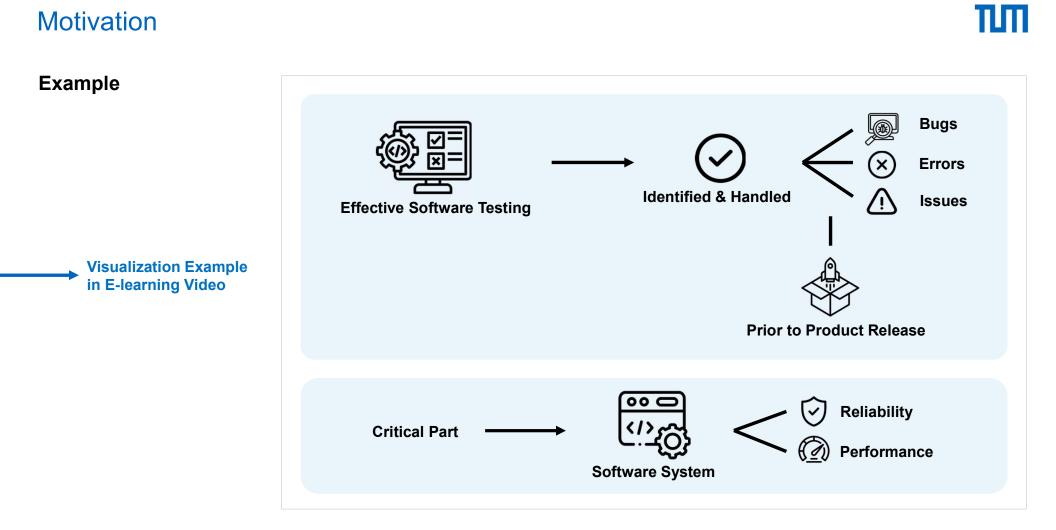
Motivation

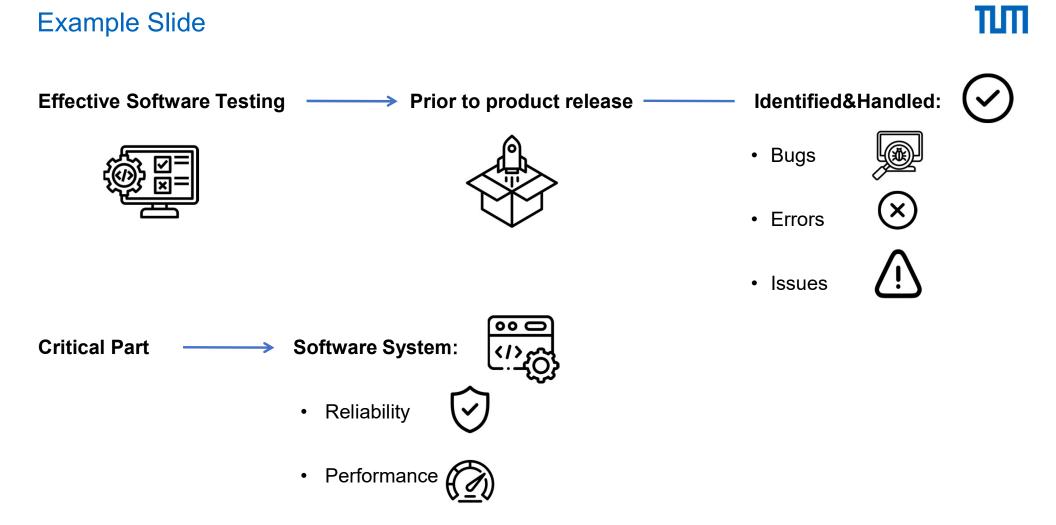
Example

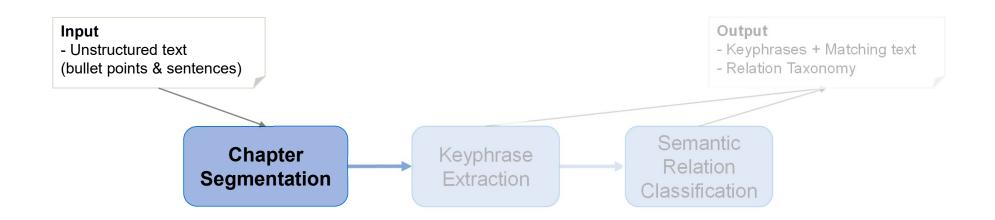


240429 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

© sebis 6



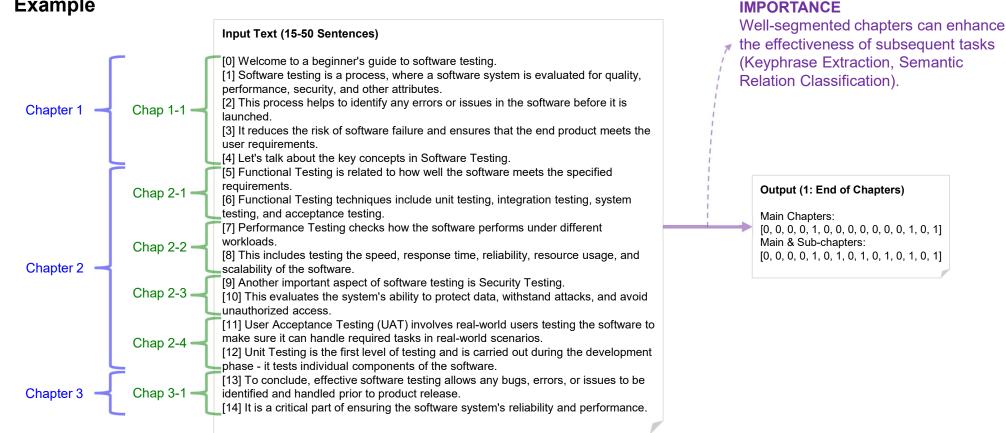


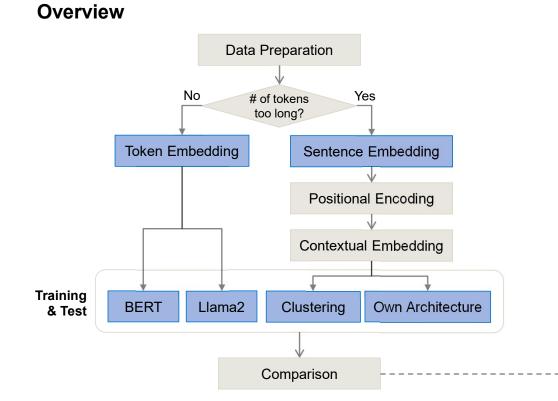


240429 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

ТЛ

Example



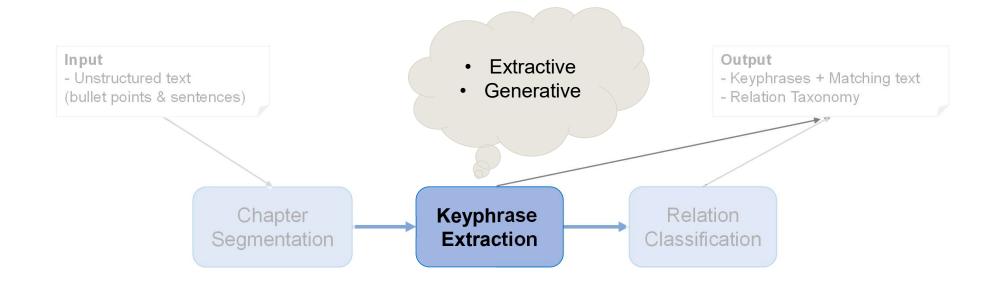


--- ► Result Table

Me	Methods			
	Louvain	54.62		
	DBSCAN	51.52		
Clustering	MeanShift	51.25		
Clustering	Aggolmerative	54.06		
	HDBSCAN	51.10		
	OPTICS	51.77		
	FF-net	52.22		
Sentence-level Architecture	Transformer Encoder	63.10		
	Bi-directional LSTM*	66.36		
Token-level	BERT	75.90		
Architecture	Llama2-13B	74.81		

*Benchmarking: Koshorek, Omri, et al. (2018)

Recap: Keyphrase Extraction



Recap: Keyphrase Extraction

ПΠ

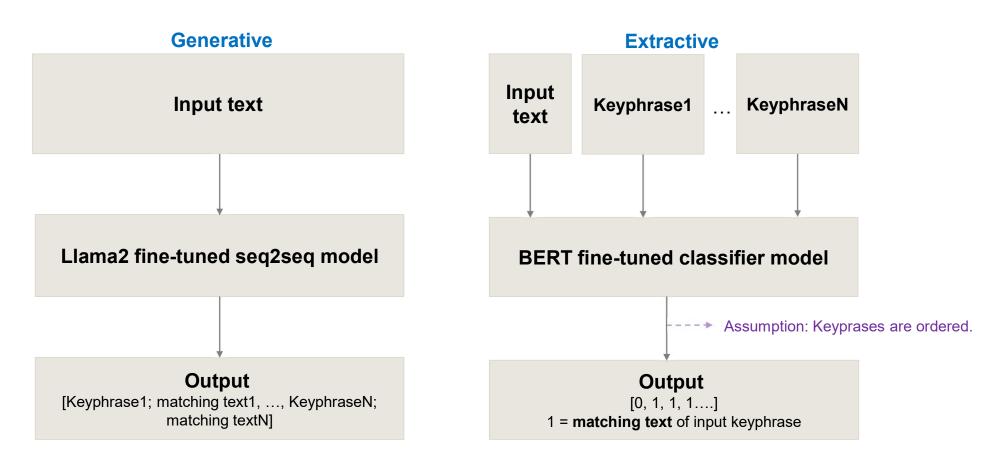
- What and Where are the Keyphrases in the text?
- Keyphrases are not only words found in the text but can also rephrasings of parts of senteces.

To conclude, effective software testing allows any bugs, errors, or issues to be identified and handled prior to product release. It is a critical part of ensuring the software system's reliability and performance.

Keyphrase: Effective Software Testing Matching Text: effective software testing

Keyphrase: Bugs Matching Text: any bugs, errors, or issues Keyphrase: Identified & Handled Matching Text: to be identified and handled

Recap: Keyphrase Extraction



240429 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

© sebis 14

Recap: Keyphrase Extraction: Results

- Extractive:

Prediction off by	Accuracy	Precision	Recall	F1
0 (base)	98%	96%	86%	91%
1	99%	98%	91%	94%
2	99%	98%	94%	96%

Generative:

_

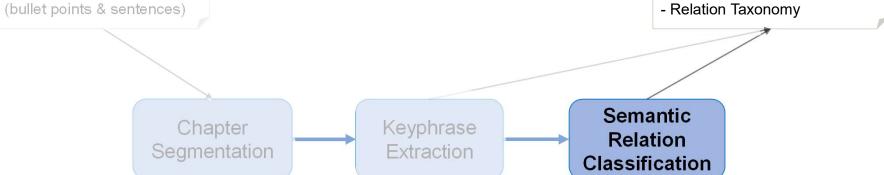
Matching text score	Keyphrase score	Matching and keyphrase related	Matching text found on original text	
66%	49%	98%	100%	

240429 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

ТШ

Input

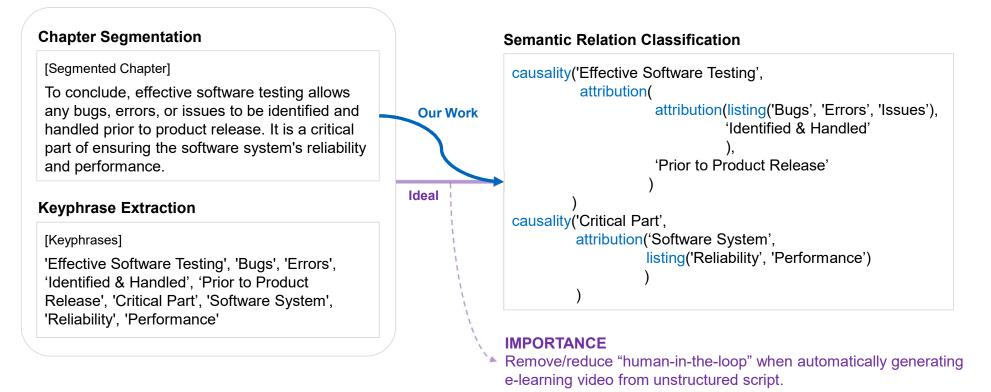
- Unstructured text



240429 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

٦Π

Example



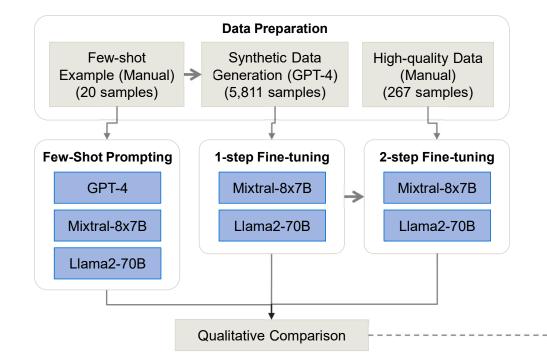
ТШ

- The dataset SciERC (*) defines 6 relation categories.
- SciERC only takes into account binary relations.

SciERC	Ours	Example	Visualization (without Keyphrase Icons)
Compare	Comparison	Unlike the quantitative prior, the qualitative prior is often ignored	Quantitative Qualitative Prior Prior
Conjuction	Listing	NLP applications such as machine translation and language generation.	NLP Machine Translation Applications Language Generation
Used-for	Causality	The TISPER system has been designed to enable many text applications.	TISPER Many Text Applications
Feature-of			
Hyponoym-of	Attribution	Prior knowledge of the model.	Prior Knowledge — Model
Part-of			

(*) [Multi-Task Identification of Entities, Relations, and Coreference for Scientific Knowledge Graph Construction](https://aclanthology.org/D18-1360) (Luan et al., EMNLP 2018)

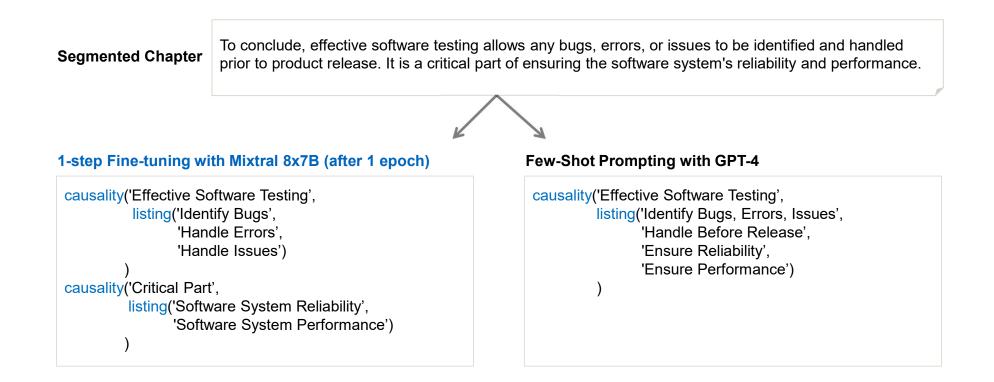
Overview



Result Table	9		
Ме	thods	Тор-1 (%)	Тор-3 (%)
	GPT-4	22.22	53.33
Few-Shot Prompting	Mixtral-8x7B	0.00	22.22
1 0	Llama2-70B	0.00	4.44
1-step	Mixtral-8x7B (after 1 epoch)	44.44	84.44
Fine-tuning	Mixtral-8x7B (after 5 epoch)	13.33	60.00
2-step	Mixtral-8x7B (from 1 epoch)	11.11	40.00
Fine-tuning	Mixtral-8x7B (from 5 epoch)	8.88	35.55

ТШ

Qualitative Comparison



- Token-based models typically outperform sentence-level models in Chapter Segmentation, where established methods such as BERT remain crucial and achieve best performance.
- Traditional methods like BERT remain important when tackling well-defined supervised tasks such as Keyphrase Extraction.
- LLMs such as Llama2 and Mixtral proves good performance in few shot generation tasks as shown in the generative approach of Keyphrase Extraction and Semantic Relation Classification.
- Our **fine-tuned Mixtral** model for Semantic Relation Classification **surpasses** the few-shot prompting with **GPT-4**.
- Keyphrase Extraction can be used in the future for extractive relation classification.

TLIT sebis

Prof. Dr. Florian Matthes

Technical University of Munich (TUM) TUM School of CIT Department of Computer Science (CS) Chair of Software Engineering for Business Information Systems (sebis)

Boltzmannstraße 3 85748 Garching bei München

+49.89.289.17132 matthes@in.tum.de wwwmatthes.in.tum.de

Keyphrase Extraction: Generative Results

Matching text score	Keyphrase score	Matching and keyphrase related	Matching text found on original text
66%	49%	98%	100%

Example:	Metric	Score	Explanation
Text: issues to be identified and handled prior to product release.	Matching text	75%	Text matches except for the preposition <i>to.</i>
Expected Keyphrase: Identified & Handled	Keyphrase	100%	Keyphrase has same meaning.
Keyphrase Extracted: Identified	Matching and Keyphrase related	100%	Keyphrase meaning extracted from the matching text found.
and Handled Matching Text Extracted: be identified and handled	Matching text found on original text	100%	Matching text exists in the original text.

Keyphrase Extraction: Position Matching (Extractive)

Given Input:

TEXT: "The E-Learning platform is specially developed to support our employees. It is user-friendly and accessible, so employees can learn quickly and retain information. The available topics include safety measures, operational guidelines, customer service, and more."

KEYPHRASE: "Specialized E-Learning Platform"

OTHER KEYPHRASES: ["Accessible Learning", "Safety and Operations Training"]

Model Input:

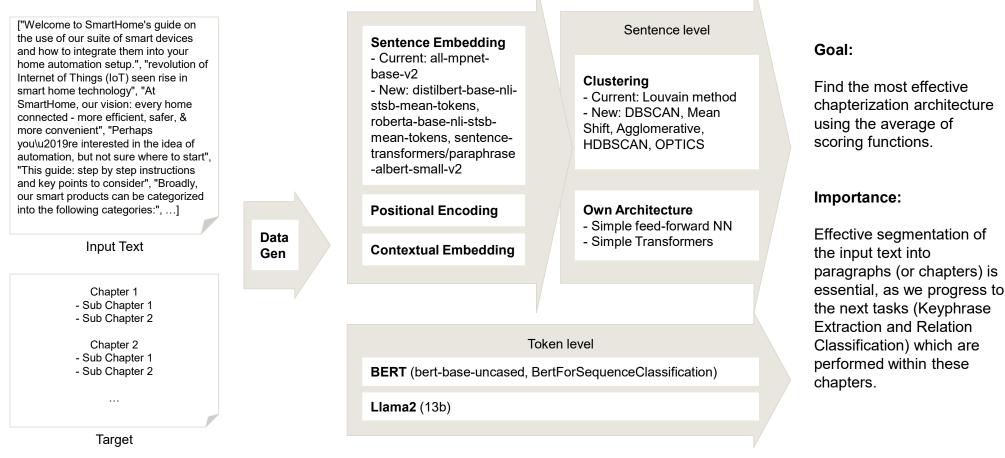
"[CLS] The E-Learning platform is specially developed to support our employees. It is userfriendly and accessible, so employees can learn quickly and retain information. The available topics include safety measures, operational guidelines, customer service, and more. [SEP] Accessible Learning [KEYPHRASE_START] Specialized E-Learning Platform [KEYPHRASE_END] Safety and Operations Training [SEP]"

Model Output:

ignored

Chapter Segmentation

Overview



Scoring Functions

PK:

- sliding window-based method
- While sliding the window, the algorithm determines whether the two ends of the window are in the same or different segments in the ground truth segmentation, and increases a counter if there is a mismatch. The final score is calculated by scaling the penalty between 0 and 1 and dividing the number of measurements.
- Challenges with the Pk Evaluation Metric:
 - False negatives are penalized more than false positives.
 - Does not take the number of boundaries into consideration. If there are multiple boundaries inside the window, Pk doesn't consider that.
 - o Sensitive to the variation in segment size.
 - Near-miss errors are penalized too much.

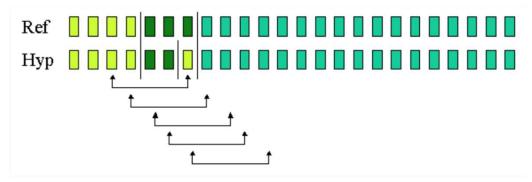


Figure: Sliding window over reference and predictions (Pevzner and Hearst - 2002)

https://www.assemblyai.com/blog/text-segmentation-approaches-datasets-and-evaluation-metrics/

Scoring Functions

WindowDiff:

- · sliding window-based method
- for each position of the window of size k, we simply compare how many boundaries are in the ground truth, and how many boundaries are predicted by the Topic Segmentation model.
- · How it solves PK problems:
 - penalize FPs and FNs more equally
 - Not skip full misses
 - Less harshly penalize near misses
 - Reduce its sensitivity to internal segment size variance.
- · Challenges with the WindowDiff Evaluation Metric:
 - o Penalize errors less at the beginning and end of segmentations
 - o Are biased towards favouring automatic segmentations with either few or tightly-clustered boundaries
 - Are not symmetric (meaning that they cannot be used to produce a pairwise mean of multiple manual segmentations)

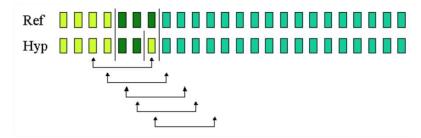


Figure: Sliding window over reference and predictions (Pevzner and Hearst - 2002)

https://www.assemblyai.com/blog/text-segmentation-approaches

Scoring Functions

Segmentation Similarity:

- Instead of using windows, a new metric edit distance called boundary edit distance which differentiates between full and near misses.
- Boundary edit distance models full misses as the addition/deletion of a boundary, and near misses as n-wise transpositions.
- The usage of an edit distance that supported transpositions to compare segmentations was an advancement over window-based methods
- Challenges with Segmentation Similarity:
 - S is sensitive to variations in the total size of a segmentation, leading it to favour very sparse segmentations with few boundaries.
 - S produces **overly optimistic values** due to its normalization. This can make it challenging to interpret the results accurately.
 - S uses **string reversals** (e.g., turning "ABCD" into "DCBA") to handle transpositions. This method makes it difficult to analyze individual pairs of boundaries between segmentations.

Result

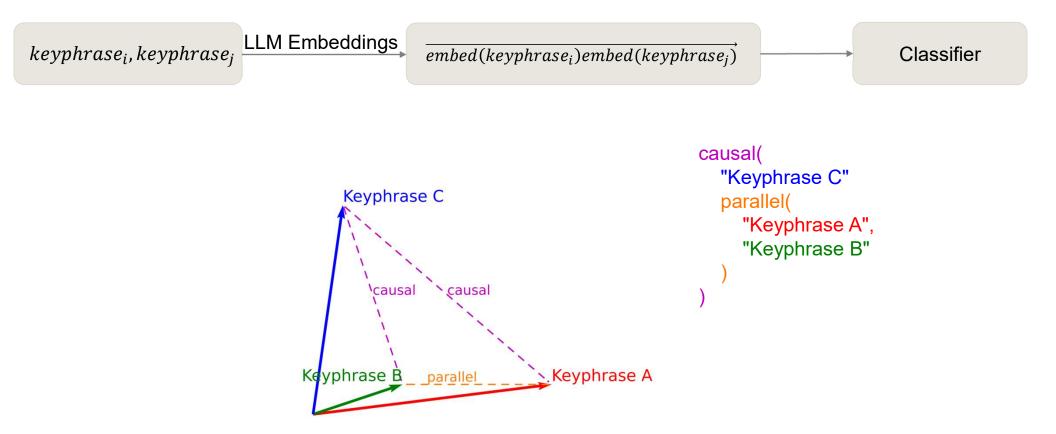
ТUП

w/ = withw/o = without pos = positional encoding cont(avg) = contextual embedding (average) cont(conc) = contextual embedding (concatenation)

		Sentence-level						Token-level				
	SC	Clustering					Own Architecture			TOKCH-ICVCI		
METHODS		Louvain [Current] w/o pos w/ cont(conc) w/ wiki-350	DBSCAN w/o pos w/ cont(conc) w/ wiki-350	Mean Shift w/o pos w/ cont(conc) w/ wiki-350	Agglomerativ w/o pos w/ cont(conc) w/ wiki-350	w/o pos	OPTICS w/o pos w/ cont(conc) w/ wiki-350	FF-Net w/o pos w/ cont(conc) w/ wiki-10k	Transformers w/o pos w/ cont(conc) w/ wiki-10k	Bi-directional LSTM (*paper) w/ wiki-10k	BERT w/ our data (165)	Llama2-13B
	tiling_score (FAST AI Movies)	0.795	0.457	0.548	0.613	0.654	0.513	0.12674	0.60331	0.60015	0.84508	0.7649
	Boundary Similarity (segeval)	0.1402	0.0002	0.084	0.121	0.053	0.023	0.25545	0.34269	0.41317	0.65000	0.6384
RES	Segmentation Similarity (segeval)	0.8257	0.891	0.847	0.862	0.812	0.8754	0.90832	0.89813	0.90990	0.83750	0.8292
sco	WindowDiff (segeval)	0.48	0.6136	0.524	0.542	0.4875	0.582	0.64649	0.62682	0.68031	0.67384	0.7186
	Pk (segeval)	0.49	0.614	0.5595	0.565	0.54858	0.595	0.67417	0.68392	0.71422	0.78853	0.7894
	Average Score	0.54618	0.51516	0.5125	0.5406	0.511	0.51768	0.52223	0.63097	0.66355	0.75899	0.7481

*paper: Text Segmentation as a Supervised Learning Task (Koshorek, Omri, et al.)

Relation Classification: Extractive Approach



пп

ТШП

BEFORE THIS PAGE, WE KEEP IT AS APPENDIX. AFTER THIS, WE WILL DELETE.

240129 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

© sebis 31

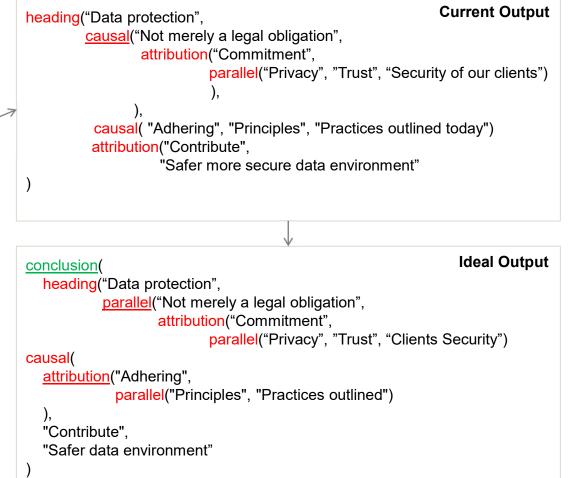
Motivation

Unstructured text

To conclude, data protection isn't merely a legal obligation; it is a testament to our commitment to ensuring the privacy, trust, and security of our clients. By adhering to the principles and practices outlined today, we can contribute to a safer, more secure data environment at MunichInsure.

Main Goal

Create a **comprehensive nested hierarchy** to capture **semantic relationships among keyphrases in a text**, facilitating a more nuanced and structured representation of their contextual connections.

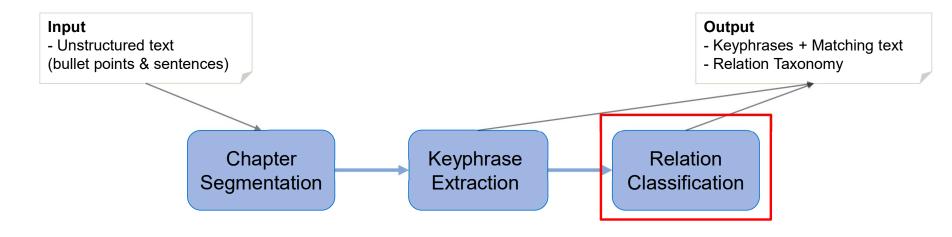


Motivation

Motivation

Challenges	Main Goal
Difficult to capture semantic relationships among keyphrases in a text. → "human-in-the-loop" is necessary in the current process.	 Create a comprehensive nested hierarchy to capture semantic relationships among keyphrases in a text , facilitating a more nuanced and structured representation of their contextual connections.

System Components (Our Tasks Only)



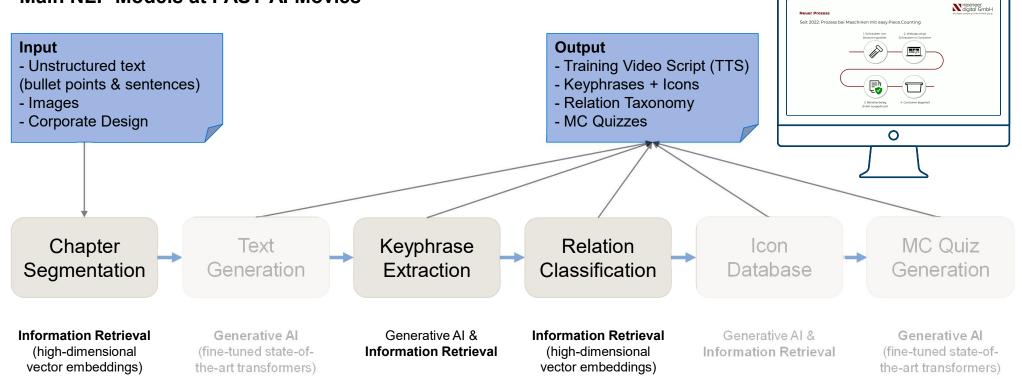
231004 NLP Application Project @ FAST AI Movies

٦Π

System Components

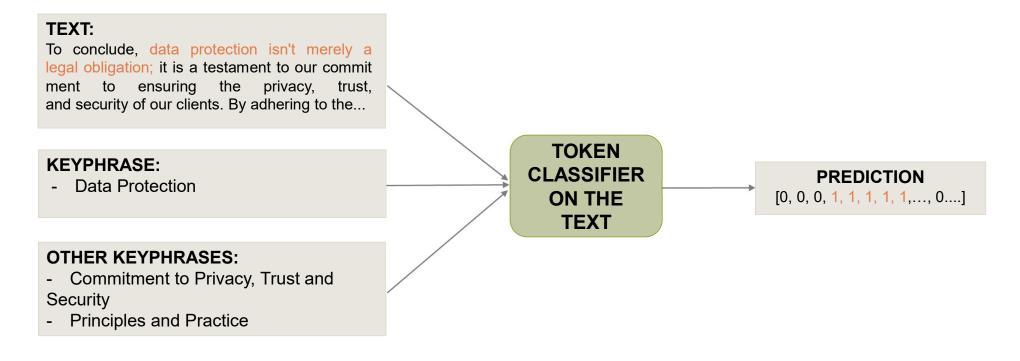
ТШ

Main NLP Models at FAST AI Movies



Keyphrase Extraction: Position Matching (Extractive)

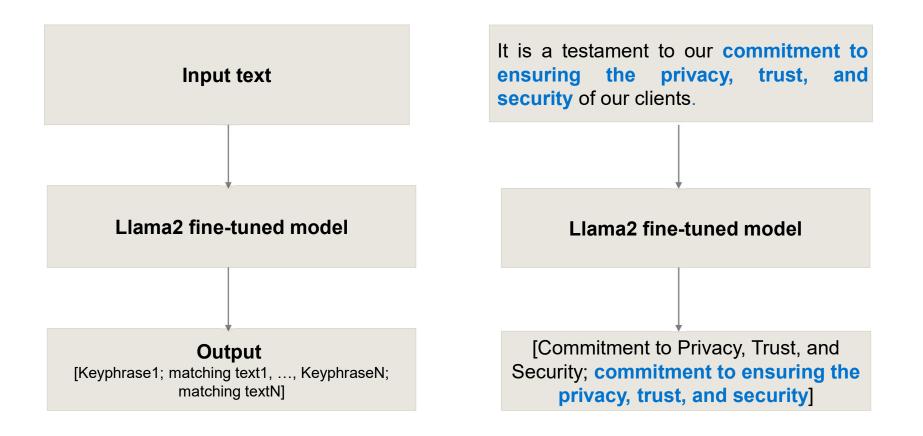
- Predict the matching text of a given keyphrase.
- Expects Keyphrases are already there. (fall back for generetive)



240129 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

ПΠ

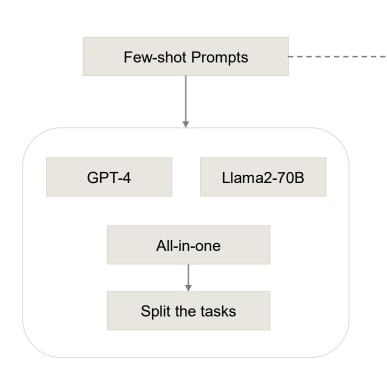
Keyphrase Extraction: Generation with Matching text (Generative)



Relation Classification: Generative Approach

• Chapterization (Topic Segmentation) as a **binary classification problem**, where each sentence is classified as boundary sentence or not.

Chapterization Evaluation Metrics



Few-shot Example

Input:

- Rules

- Example 1

- Example 2

The machine works on the rotary vane principle. The oil seals the gaps, lubricates the vanes and takes away compression heat. In order to avoid reverse rotation after switching off, the machine is equipped with a non-return valve, abbreviated as NRV. In order to avoid solids from entering, the machine is equipped with an inlet screen. Exhaust filters separate the oil from the discharged gas.

Output:

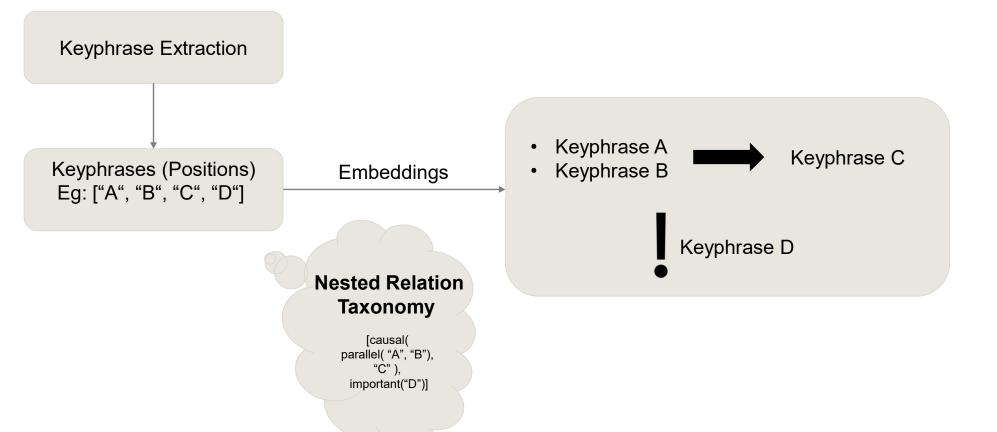
information#["Rotary Vane Principle"]#{attribution(["Oil"], listing(["Sealing Gaps"], ["Lubricating Vanes"], ["Reducing Compression Heat"]))} concept{causality(["Avoid Reverse Rotation"], ["Non-Return Value NRV"])} concept{causality(["Avoid Solids Entering\"], ["Inlet Screen"])} concept{causality(["Exhaust Filters"], ["Separate Oil from Gas"])}

Tasks

- 1. Retrieve Elements (Keyphrases)
- 2. Relations Classification
 - : Causality, Attribution, Comparision, Parallelism, Enumeration
- 3. Concepts Classification
 - : Information, Important, Conclusion, Process, Concept, Heading

ТЛП

Relation Classification: Extractive Approach

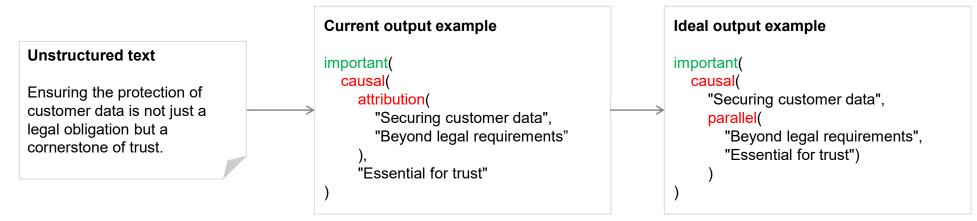


240129 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

пп

Motivation

Motivation

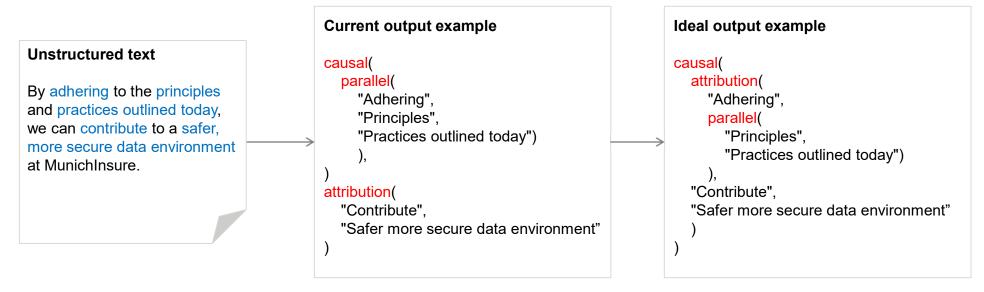


Main Goal

Create a **comprehensive nested hierarchy** to capture **semantic relationships among keyphrases in a text**, facilitating a more nuanced and structured representation of their contextual connections.

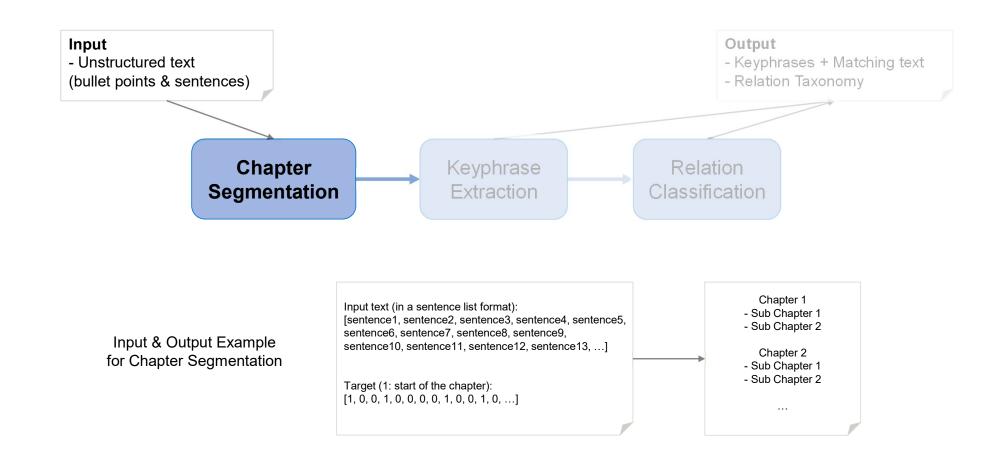
Motivation

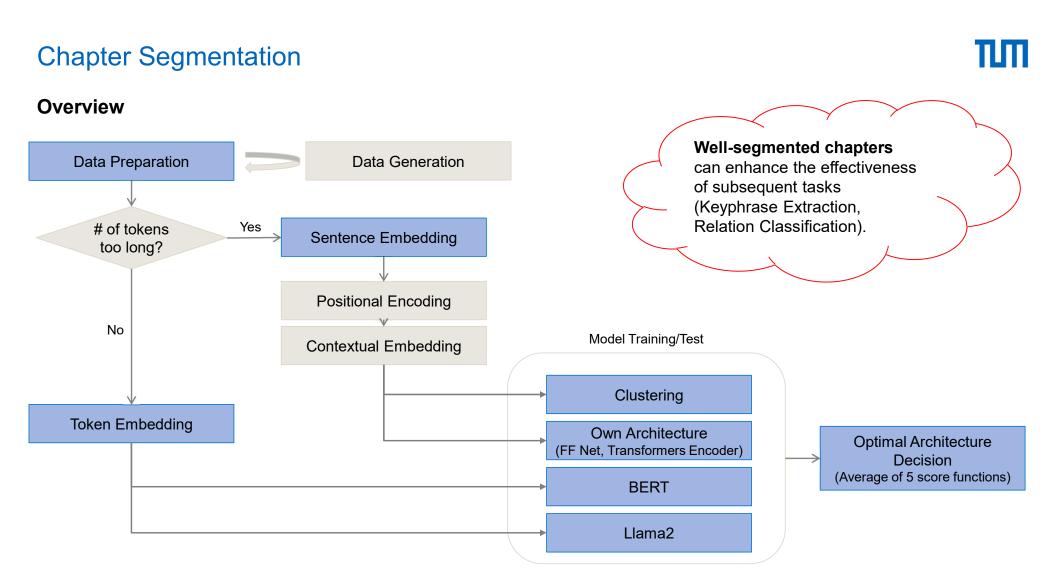
Motivation



Main Goal

Create a **comprehensive nested hierarchy** to capture **semantic relationships among keyphrases in a text**, facilitating a more nuanced and structured representation of their contextual connections.

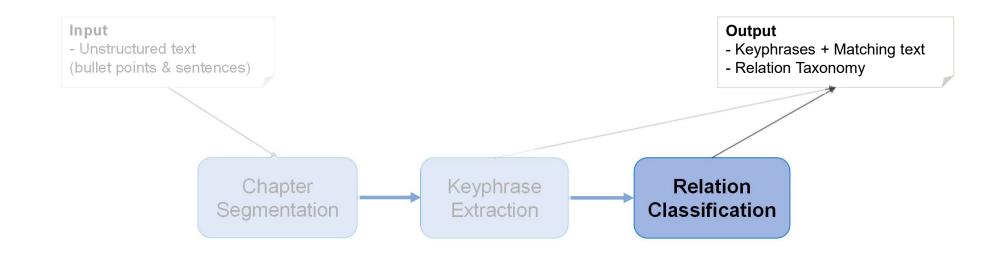




240129 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

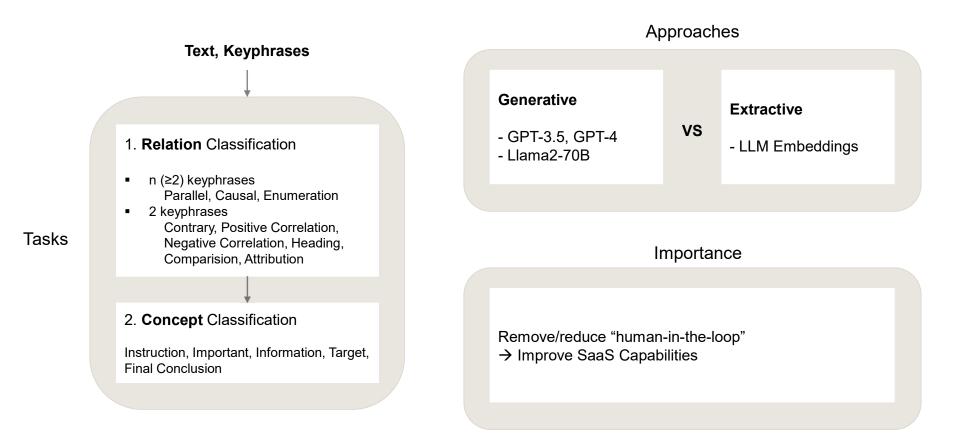
© sebis 43

ТШП



Semantic Relation Classification

Overview

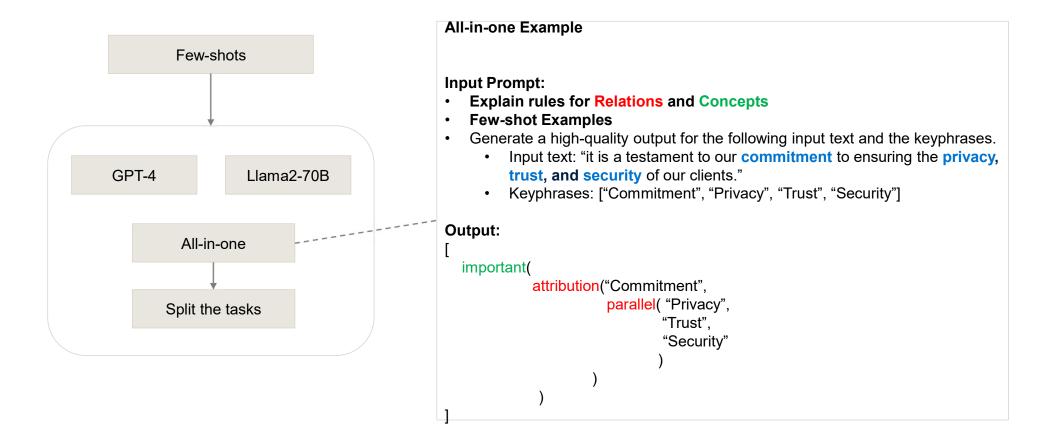


240129 | George Elfayoumi, Alejandro Bravo, Parag Bamel, Jinyu Lee, Mohamed Hesham Ibrahim Abdalla | Extracting Semantic Relationships from Unstructured Textual Data in eLearning Video Scripts

© sebis 45

ТЛП

Semantic Relation Classification: Generative Approach



ТШП

Input Text [0] Welcome to a beginner's guide to software testing.

[1] Software testing is a process, where a software system is evaluated for quality, performance, security, and other attributes.

[2] This process helps to identify any errors or issues in the software before it is launched.

[3] It reduces the risk of software failure and ensures that the end product meets the user requirements.

[4] Let's talk about the key concepts in Software Testing.

[5] Functional Testing is related to how well the software meets the specified requirements.

[6] Functional Testing techniques include unit testing, integration testing, system testing, and acceptance testing.

[7] Performance Testing checks how the software performs under different workloads.

[8] This includes testing the speed, response time, reliability, resource usage, and scalability of the software.

[9] Another important aspect of software testing is Security Testing.

[10] This evaluates the system's ability to protect data, withstand attacks, and avoid unauthorized access.

[11] User Acceptance Testing (UAT) involves real-world users testing the software to make sure it can handle required tasks in real-world scenarios.

[12] Unit Testing is the first level of testing and is carried out during the development phase - it tests individual components of the software.

[13] To conclude, effective software testing allows any bugs, errors, or issues to be identified and handled prior to product release.

[14] It is a critical part of ensuring the software system's reliability and performance.

 Output
 Main Chapters: [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]

 Main & Sub-chapters: [0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

Our Model (Fine-tuned Mixtral-8x7B Instruct Model)	Few-shot Prompting with GPT-4

Main Chapter 2 - Input Text: Functional Testing is related to how well the software meets the specified requirements. Functional Testing techniques include unit testing, integration testing, system testing, and acceptance testing. Performance Testing checks how the software performs under different workloads. This includes testing the speed, response time, reliability, resource usage, and scalability of the software. Another important aspect of software testing is Security Testing. This evaluates the system's ability to protect data, withstand attacks, and avoid unauthorized access. User Acceptance Testing (UAT) involves real-world users testing the software to make sure it can handle required tasks in real-world scenarios. Unit Testing is the first level of testing and is carried out during the development phase - it tests individual components of the software.

Output: concept{'Software Testing'}[attribution('Functional Testing', 'Specified Requirements')] concept[listing('Unit Testing', 'Integration Testing', 'System Testing', 'Acceptance Testing')] concept[attribution('Performance Testing', listing('Speed', 'Response Time', 'Reliability', 'Resource Usage', 'Scalability'))] concept[attribution('Security Testing', listing('Protect Data', 'Withstand Attacks', 'Avoid Unauthorized Access'))] concept[attribution('User Acceptance Testing (UAT)', 'Real-World Scenarios')] concept[attribution('Unit Testing', 'Development Phase')]	Output: concept{'Functional Testing'}[attribution('Meets Specified Requirements', listing('Unit Testing', 'Integration Testing', 'System Testing', 'Acceptance Testing'))] concept{'Performance Testing'}[listing('Speed', 'Response Time', 'Reliability', 'Resource Usage', 'Scalability')] concept{'Security Testing'}[listing('Data Protection', 'Withstand Attacks', 'Avoid Unauthorized Access')] concept{'User Acceptance Testing (UAT)'}[causality('Real-World Users', 'Real-World Scenarios')] concept{'Unit Testing'}[attribution('First Level of Testing', 'Individual Components'), causality('During Development Phase', 'Individual Components')]
--	--

Main Chapter 3 - Input Text: To conclude, effective software testing allows any bugs, errors, or issues to be identified and handled prior to product release. It is a critical part of ensuring the software system's reliability and performance.

conclusion[causality('Effective Software Testing', listing('Identify Bugs', 'Handle	Output: conclusion[causality('Effective Software Testing', listing('Identify Bugs, Errors, Issues', 'Handle Before Release', 'Ensure Reliability', 'Ensure Performance'))]
---	---

Chapter Segmentation

- While the clustering methods align with the existing Louvain method, BERT classifier achieves a notable ca.
 21% improvement in scores.
- \rightarrow Will finalize the method after evaluating the performance with Llama-2.

Keyphrase Extraction

- Generetive approach produces meaningful keyphrases but not always identical to the ground truth. However, matching text is always in the text.
- Position matching through simple token classification achieves up to 95% F1 score.
- → Combining both approaches is the way forward.

Our project is **mainly practical and giving good empirical results**, however it is a challenge to compare the performance based on standardized metrics.