
FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Design and Prototypical Implementation

of a Web-based Spreadsheet System

for Managing and Analyzing Semi-structured Data

Alexander Meissner

FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Design and Prototypical Implementation of a Web-based Spreadsheet System

for Managing and Analyzing Semi-structured Data

Konzeption und prototypische Umsetzung eines webbasierten Spreadsheet-Systems

zur Verwaltung und Analyse semi-strukturierter Daten

Author: Alexander Meissner
Supervisor: Prof. Dr. Florian Matthes
Advisor: Thomas Reschenhofer, M.Sc.
Date: October 15, 2015

Erklärung

Ich versichere, dass ich diese Master’s Thesis selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

I confirm that this master’s thesis is my own work and that I have documented all sources
and material used.

München, den 15.Oktober 2015, Alexander Meissner

iv

“There’s something that happens with the collection of a large amount of data when it’s
dumped into an Excel spreadsheet or put into a pie chart. You run the risk of

completely missing what it’s about.” — Aaron Koblin

Acknowledgments

Dedicated to Family, Friends and the One.

v

Abstract

Today’s enterprises are heavily reliant on the use of spreadsheets (e.g., Microsoft Excel)
in order to enable end-users to interactively analyze and visualize certain data sets on
their own. The intuitive UI of spreadsheets enables that even non-IT-affine users are able
to design complex spreadsheets. This spreadsheet virtue has led to the rise of spreadsheet
use in many critical functions of organizations. It has also led to the increased risk of
organizational department failure due to the error-proneness of spreadsheets. Numerous
studies have been conducted to explore different approaches to solving this issue.

Based on the current research conducted in the field of error prevention for spreadsheets
and solutions that already exist, this thesis sets out to develop its own approach to the
prevention of errors in the form of a prototype, specifically with the ability of handling
complex linked data. This is attempted by making use of an existing prototype of a
data-table control, a functional domain-specific language (DSL) as well as a Hybrid Wiki
REST API. It is in solving the issue of how complex linked data types are managed by
spreadsheets that one not only introduces new approaches to collecting and displaying
data in this field of research but also advances the field of spreadsheet error prevention.

vi

Contents

I. Introduction 1

1. Problem Statement 2
1.1. Motivation . 2
1.2. Research Question . 4
1.3. Research Method . 5
1.4. Outline . 7

2. Environment 9
2.1. Business Needs . 9
2.2. Existing Technology . 10

3. Knowledge Base 13
3.1. Terminology . 13
3.2. Errors in Spreadsheets . 14
3.3. Type Checking and Model Approaches . 14

3.3.1. Inferring Templates from Spreadsheets 16
3.3.2. ClassSheets . 16
3.3.3. Label and Unit Approaches . 16
3.3.4. The Assertion Approach . 17
3.3.5. Data Mapping Approach . 18
3.3.6. The Visual Approach . 18
3.3.7. Service-Orientated Architecture (SOA) to Control Information Flow 18

3.4. Hybrid Wikis . 19
3.4.1. Current State . 19
3.4.2. Hybrid Wikis and the Spreadsheet Prototype 21
3.4.3. The SocioCortex Architecture . 22

3.5. Attributes of the SocioCortex . 23
3.5.1. Data Types . 23
3.5.2. Additional Properties . 23

vii

Contents

II. Conceptual Design 25

4. Conceptual Design 26
4.1. SocioCortex Sheet Smart Layer (SocioCortex SSL) 26

4.1.1. SC Angular Library . 27
4.1.2. SCSSL Architecture . 28

4.2. SCSSL Controller Functions . 28
4.2.1. SCSSL Number - Number Transformation Functions 30
4.2.2. SCSSL Date - Date Transformation Functions 30
4.2.3. SCSSL Enum - Enumerable Support Functions 31
4.2.4. SCSSL Rich String - WYSIWYG Transformations 31
4.2.5. SCSSL Derived Attribute Support Functions 31
4.2.6. SCSSL Text - Text Countdown / Validation Function 32
4.2.7. SCSSL Referenced Entity Support Functions 32
4.2.8. SCSSL No Type Support Functions 32

4.3. SCSSL UI . 33
4.3.1. Number UI . 36
4.3.2. Date UI . 38
4.3.3. Enum UI . 39
4.3.4. Entity Reference UI . 40
4.3.5. No Type UI . 41
4.3.6. Derived Attribute UI . 41
4.3.7. Rich String UI (WYSIWYG), Image UI & Text UI 41

4.4. SCSSL Multiplicity Handler . 42
4.4.1. Multiplicity Transformation Function 42
4.4.2. Multiplicity User Interface . 43

4.5. SCSSL UI Overall Mockup . 44

III.Software Design and Implementation 45

5. Software design 46
5.1. AngularJS Framework . 46
5.2. Spreadsheet Framework . 47

5.2.1. The Wijmo Framework . 48
5.2.2. The Flexgrid from the Wijmo Framework 50
5.2.3. SC Angular Library in Detail . 50

viii

Contents

5.3. The SC Sheet Directive . 51
5.4. Bootstrap Loading Process . 53

5.4.1. The scBaseObject . 53
5.4.2. Multiplicity Loading . 53
5.4.3. Linked Entity Data . 55

5.5. scEntityData, scAttributes and scSet Objects 55
5.6. Editing Process for Controls . 56

5.6.1. The Editing Process for Controls (SCSSL) 56
5.6.2. The No Type Process . 58
5.6.3. The Reference Type Process . 58

5.7. Widget Editing Process (SCSSL UI) . 59
5.7.1. Implementation of SCSSL Date UI 60
5.7.2. Implementation of SCSSL Enum UI 60
5.7.3. Implementation of the SCSSL Number UI 61
5.7.4. Implementation of other UI elements 61

6. Evaluation 62
6.1. Prototype Issues . 62

6.1.1. Using a closed source framework . 62
6.1.2. Ongoing development of the SocioCortex Framework 63
6.1.3. Insufficient AngularJS and Wijmo Knowledge 63
6.1.4. Time-frame and Underestimation of Scope 63

6.2. Critical Reflection . 63

7. Conclusion 65
7.1. Future work . 66

ix

List of Figures

1.1. Left: Image of VisiCalc - The very first spreadsheet program. Right: Image
of Microsoft Excel, spreadsheet market leader with a market share of 94%
in the 2000s. [35]. 3

1.2. Adaptated Version of the Design Science Research Framework [40] 6

3.1. Type Checking and Model Approaches . 15
3.2. The Hybrid Wiki data model by Matthes et al.[33] 21
3.3. The SocioCortex Architecture [1] . 22

4.1. SocioCortex and Spreadsheet 2.0 Components 27
4.2. The Social Cortex Smart Sheet Layer Architecture 29
4.3. High-fidelity mockup of the a Spreadsheet 2.0 table. 33
4.4. Type Conversion & Widget Display Flowchart 34
4.5. Low-fidelity wireframes of a number stepper widget (Number UI) 36
4.6. High-fidelity mockup of the number widget 36
4.7. Low-fidelity wireframes of a number stepper multiplicity widget (Number

UI) . 37
4.8. Low-fidelity wireframe of a date picker widget (Date UI) 37
4.9. High-fidelity mockup of a date picker . 38
4.10. Low-fidelity wireframe of a selector widget (Enum UI) 39
4.11. High-fidelity mockup of a selector widget (Enum UI) 39
4.12. Low-fidelity wireframe of the entity reference UI. 40
4.13. High-fidelity wireframe of the entity reference UI. 40
4.14. Low-Fidelity Mockup of the MxL derived attribute column 41
4.15. Low-fidelity wireframe of the multiplicity widget 43
4.16. Multiple Values Mockup . 43
4.17. High Fidelity Mockup of SCSSL UI Overall Mockup 44

5.1. Bootstrap Loading Process . 54
5.2. Example of $scope.scBaseObject . 55
5.3. Example of $scope.scset . 56

x

5.4. Steps involved in the editing process. 57
5.5. Prototypical implementation of the SCSSL Date UI 60
5.6. Prototypical implementation of the SCSSL Enum UI 61
5.7. Prototypical implementation of the SCSSL Enum UI 61

List of Tables

1.1. Design Science Research Guidelines in the context of the thesis. 6

2.1. Comparison of Existing Technologies . 12

3.1. Attribute Types of SocioCortex . 24

5.1. Comparison of different spreadsheet and grid tables 49
5.2. Parameters for the SC Sheet Directive . 52
5.3. Overview of scsslCtrl functions . 59

xi

Part I.

Introduction

1

1. Problem Statement

1.1. Motivation

Since the advent of the first spreadsheet computer program (VisiCalc see: Figure 1.1) in
1978 [31], spreadsheets have assisted humanity in visualizing and manipulating various
quantities of data. Although in the early days spreadsheets may have proven difficult to
master, over the years the knowledge barrier to entry has decreased. This has resulted in
even the laggard individuals to master the basic functionality of a spreadsheet. Because
of this, from an information systems perspective, spreadsheets form a vital part of any
business or organization as their use ranges from “financial reporting to workload planning
to general administration” [32]. They have become such a commonplace in society that
they are often misused for tasks that they are not suited for which often results in errors.
This is commonly referred to as the golden hammer anti-pattern [12].

Initially Microsoft Excel and Lotus were among the most popular systems available,
however, over the past 20 years. Microsoft Excel has become the dominant market leader
with a market share of 94% in the 2000s [35]. Today 1 in 7 people on the planet use
Microsoft Office (which includes Excel) [3] and spreadsheets are “used in a huge majority
of firms in the US and Europe”[32]. However, the expansion of the web and the birth
of Web 2.0 have led to the emergence of web-based spreadsheet applications like Google
spreadsheets and Zoho Docs that offer functionality similar to Microsoft Excel. Differently
to Excel in which one has to buy from Microsoft, Google and Zoho offer this software at
no cost and at the convenience of just using a web browser. This has not only resulted in
Microsoft having to reinvent its office package but also has led to the rise of many new
innovations.

Even though all of these spreadsheet applications have been built on the same premise
of simple data modeling and transformations, their structure has not been changed in
many years. Over the years the interface has become more intuitive (e.g., Microsoft office
introducing “Ribbon-style” user interface [8]), yet there are still problems that remain with
this archaic concept. These problems range from erroneous data entries to usability.

2

1. Problem Statement

Figure 1.1.: Left: Image of VisiCalc - The very first spreadsheet program. Right: Image
of Microsoft Excel, spreadsheet market leader with a market share of 94% in
the 2000s. [35].

Specifically with regard to the erroneous data entry topic, there is an increasing number
of research papers written about this topic and this is an indication for its severity. Panko
[28] states that 94% of spreadsheets have errors and the average cell error rate is 5.2%.
Although this number is refuted by another study (Powel et al. [30]) which claims that
a more accurate cell error rate is 1.3%, it still shows that this issue is prevalent. Powel’s
study showed the following error distribution: 37.7% of errors are hard-code related[30],
32.9% are reference errors[30], 21.9% are logic errors[30] while the rest 7.3% percent are
split among the errors of type copy/paste, omission and data input[30].

Numerous industry spreadsheet failure examples are a testament to how erroneous spread-
sheets can

• cause share prices to fall as seen in the case of AstraZeneca which had confidential
data embedded in template which ultimately lead to a loss of 0.4 in their share
price[2].

• cause the lowering estimate of VaR in Basel II models by JP Morgan in 2013 by
not reviewing the logic behind their spreadsheets and just resorting to manual copy
and pasting[2].

• cause a $6 million accounting error and $12,500 audit fee because of a bad spread-
sheet link in the Knox County Trustee’s Office, US in 2011[2].

The issues of erroneous input data represent one of many other categories of spreadsheet
issues. Matthes et al. [32] have categorized 20 of the most prevalent shortcomings as
follows:

3

1. Problem Statement

• Readability and understandability of the spreadsheet

• Extendability

• Manageability

• Collaboration and multi-user support

• Data

• Processes

The purpose of this thesis is to specifically focus on the specific problem area of “Data”.
Specifically the implementation of a spreadsheet prototype that is capable of handling
complex data types and assists users with input by the use of data modeling.

It is in solving the issue of how complex data types are managed by spreadsheets that
one not only introduces new approaches to collecting and displaying data in the field of
research but also advances the field of spreadsheet error prevention. Errors in spreadsheets
are on the rise, and solving this issue will, from an Information Systems viewpoint, be
essential to many organizations as they form such a critical part of them because of their
increasing use in critical business applications[9].

1.2. Research Question

The research question that arises and that will be attempted to be answered is:

• What is a model driven approach to managing complex linked data in order to prevent
erroneous input in web-based spreadsheet systems?

This consists of four main elements:

Web-Based Spreadsheets These are equivalent to traditional spreadsheet systems yet
are accessible through web browsers which make them available from anywhere and
allow for multi-user collaboration.

Model-Driven Approach This an approach that makes use of a model for the specifica-
tion and classification of data.

Complex Linked Data As apposed to basic cell types in spreadsheets, complex linked
data can contain multiple elements that consist of the primary type or other complex
types. One could specify it is a composition of data types. An example of a complex

4

1. Problem Statement

type is an address field. This can consist of a field for the address, a field for the
city, a field for the suburb and a field for the postal code.

Erroneous Input Spreadsheets, stigmatized with the Golden Hammer [12] pattern, typ-
ically contain erroneous input. Erroneous input ranges from incorrectly formatted
cells and number to invalid information.

These four elements establish the outset for this thesis, and the development of the pro-
totype will be discussed in further detail.

1.3. Research Method

To accomplish the creation of a spreadsheet prototype the design science research method-
ology is used. This methodology can be used in Information Systems research to develop
a prototype or artifact based on the existing knowledge of:

1. people, organizations and technology (“Relevance”): It is in the investigation of
people, organizations and the technology that one can establish the business need.

2. research foundations and methodologies (“Rigor”): The current research leads to
the collection of existing knowledge that can be applied in the development of the
artifact.

The research methodology then proposes the development of an artifact which is then
assessed, tested and refined in iterative cycles based on feedback from testing. Eventually,
the refinement of the artifact leads to a prototype that can be applied to the business
environment. Similarly, the knowledge which is gained in the iterative development can
be added to the existing “Knowledge Base”. Hevner et al. [40] define Design-Science
Research Guidelines which is followed in this thesis as follows in Table 1.1.

Design science research can be represented graphically as seen in the Figure 1.2, which
defines the build up of this thesis which will be discussed in the outline.

5

1. Problem Statement

Guideline
1: Design as an Artifact A viable artifact in the form of a prototype will be

created which attempts to answer the research question.
2: Problem Relevance We will sets out to solve problems as indicated in[32]

which refers to business problems that occur with the use
of spreadsheets.

3: Design Evaluation It was planned that the quality, utility and efficacy of the
design artifact (the prototype) would be carefully
reviewed by third parties.

4: Research Contributions This thesis will also set out to show the clear and
verifiable contributions that arise through the prototype.

5: Research Rigor To design and develop the prototype we will be looking
at the current knowledge base. See Chapter 2.

6: Design as a Search
Process

The prototype will be developed by making use of all
available knowledge whilst satisfying laws in the problem
environment.

7: Communication of
Research

Even though the prototype is of a very technical nature
this thesis will try to ensure that it is suitable for both
“technology-orientated and management orientated
audiences”. [40]

Table 1.1.: Design Science Research Guidelines in the context of the thesis.

Figure 1.2.: Adaptated Version of the Design Science Research Framework [40]

6

1. Problem Statement

1.4. Outline

This thesis is developed based on the design science research concept. Similar to artifacts
that are developed on the two pillars of “Environment” and “Knowledge Base”, this thesis
is from the onset dealing with these two pillars.

In the “Environment” (Chapter 2) section, existing scenarios are analyzed and business
needs are determined. In addition to the needs mentioned in the Motivation chapter,
additional ones are discussed. Here we will also be highlighting people and organizations
that interact with spreadsheets and attempt to establish an overall stakeholder image.

Following this, existing technologies are examined and evaluated in detail. Depending
on the business needs, solutions may already exist which cater toward the prevention of
errors, and it is imperative that these are covered as they might be missing from the
current research.

Succeeding the examination of the “Environment” is the “Knowledge Base” which is ex-
plored. The “Knowledge Base” for this topic is deeply rooted in research. Studies with
similar approaches are assessed and discussed. Specifically model-driven approaches are
examined. This thesis explores the existing foundations and methodologies that have
been researched in the past and defines applicable knowledge and principles that can be
used in the construction of a prototype.

After covering the “Knowledge Base” and the “Environment”, this thesis discusses the
envisioned concept (Chapter 3). A detailed approach is presented which also encapsulates
mockups that range from low fidelity and high fidelity. These mockups should provide a
detailed picture of the final concept as well as provide a glimpse into its functionality.

This detailed concept is then be used in the implementation of the prototype (Chapter 4),
and the implemented solution is discussed. While discussing the prototypical implemen-
tation, a detailed chronological plan, will accompany the discussion. Problem areas and
issues that arose from the implementation of the described concept are also highlighted.

Unfortunately, because of a range of issues that occurred in the implementation phase,
actual evaluation did not take place. According to design science research, this should
take place in order to critically evaluate the proposed prototypical solution. However, as
this thesis forms part of a dissertation on the topic of Spreadsheet 2.0, this evaluates a
future prototype that will be built on this thesis. Therefore, in the last chapter (Chapter
6), we conclude with a summary that focuses on the research question and a discussion
concerning the prototype. This will eventually be followed by the outlook in the field of

7

1. Problem Statement

the study of "static type checking" in spreadsheets and how this thesis has contributed
to the current research.

8

2. Environment

Following the Design Research Framework that was mentioned in the previous chapter,
this chapter sets out to analyze and define the business needs of organisations that are
impacted by the research question. Henver et al. [40] stipulate that: “In it are the goals,
tasks, problems, and opportunities that define business needs as they are perceived by
people within the organization.” Thus, in exploring this premise, we can establish the
environment. We briefly explore the stakeholders, organizational processes and strategies
affected by errors in spreadsheets. Lastly, we take a look at the current technology and
existing implementations that already exists, and that try to solve the problems that
organizations have.

2.1. Business Needs

According to Baskara [10] spreadsheets are ubiquitous in large organizations as they heav-
ily rely on them for data analysis, management reporting, and decision making. Many
spreadsheet error horror stories[2] like the ones that are mentioned in the motivation,
about AstraZeneca, JP Morgan and Knox County Trustee’s Office listed which are listed
on the website of the European Spreadsheet Interest Group, reflect the notion that spread-
sheet use not only is ubiquitous in every department of an organization but spans over
all industries ranging from government to financial and academic. “Within certain large
sectors, spreadsheets play a role of such critical importance that without them, companies
and markets would not be able to operate as they do at present“ [17].

Thus, spreadsheet errors affect all levels of organizations and all business processes. Fi-
nancial and reporting processes are however severely impacted by spreadsheet errors, and
thus the need to resolve and fix these errors becomes an essential business need for an
organization to function. And while a few market sectors control risks relating to spread-
sheet use relatively well, the sectors of financial markets, fund management, investment
research, and financial reporting remain of grave concern as spreadsheet risks are relatively
uncontrolled[17], yet spreadsheets play such a critical role.

9

2. Environment

2.2. Existing Technology

After exploring the business needs, it is essential, for conciseness to also explore the
existing technology. The reason for exploring existing technologies lies in the fact that
even though much research is conducted in the field of erroneous input, some of the
proposed solutions are already implemented in commercial software due to the fact that
they solve a business need. In an investigation of similar technologies that tackle the
problem of complex data and error handling, six have come to light worth mentioning:

Slate 1Slate is a Microsoft Excel add-in that allows for users to evaluate complex spread-
sheets by displaying a cells data through a structure interactive tree. By making
use of the interactive tree users will not only be able to trace back how formulas
are derived, but also allows for easy checking of inconsistencies. A problem with
slate however still is that it it is built on the primary structured data and therefore
unable to handle complex types. This is a problem that many of the other software
solutions have as well.

ZK Spreadsheet Server 2 The ZK Spreadsheet Server is standalone server software that
allows for real-time collaboration. It features a simple version of an online spread-
sheet. It does however feature “3-D cell” which is its contiguous blocks of cells
reference feature. Furthermore it boasts external book reference support, sorting,
filtering, formulating and auto-filtering.

Google Sheets 3 This is one of the state of the art online spreadsheets available. As with
many others it supports cell formulas typically found in most desktop spreadsheet
packages. Additionally, even though it lacks support in the front end intuitiveness
department, it does however feature many more unique integrations and support for
querying types ranging from simple arrays to complex database models4. To solve
its inability to supply widgets for input assistance, Google makes use of Google
Forms5. Google Forms assists users when entering data and displays the result as a
data set in Google Sheets.

Zoho Sheet 6 The Zoho Docs Suite features a whole range of online collaboration options,
amongst these the Zoho Sheet. The Zoho sheet, similarly to Google Sheets features

1https://useslate.com/
2http://www.zkoss.org/
3http://www.google.com/sheets
4https://support.google.com/docs/table/25273?hl=en
5https://www.google.com/forms/about/
6https://www.zoho.com/docs/sheet.html

10

2. Environment

basic spreadsheet functionality to handle formulas and numbers. Additionally this
software allows users to categorize data by making use of filters and also supports
data validation.

Excel Web App 7 Excel web app is part of Office 365. Microsoft with Excel is, as
mentioned previously, playing catchup to other systems that have been available in
web-based form. It does, however, have Sharepoint integration which allows for it
to query from a Sharepoint Wiki site and does therefore resemble a similarity to the
prototypical implementation with the Hybrid Wiki System SocioCortex.

Smartsheet 8 Smartsheet is a web based spreadsheet that contains all the standard
functionality of a spreadsheet. Smartsheet allows for columns to be grouped and
aggregated. Similarly to Google sheets, Smartsheet also features a web form editor
to accompany users with entering data in a standardized way. In addition to the
base functionality, Smartsheet allows for Excel importing and widgets like date
picker or enumerable values. A critical look at Smartsheet shows that it contains
elements like the widgets and cell grouping, that are essential for standardizing data
and ensure consistency. However, it does lack the data linkage from other sources.
It also has the problem, of being hosted on an external server and causing vendor
lock-in issues to prevail.

Table 2.1 shows a summary of how these systems (and others) are compared to one
another. The Excel web app is the front runner in this area based on its Sharepoint
integration, yet it does still not entirely support Hybrid Wikis. Some cover the basic
functionality, some even supply the option for widget support. All however do not support
the complex linked data. Complex Linked Data is a type consisting of a schema that
changes and can be referenced to and from other entities. This type will be elaborated
on in the following chapter.

7https://office.live.com/start/Excel.aspx?omkt=en-US
8https://www.smartsheet.com

11

2. Environment

Existing
Technology

Web
Based

Real-
time

Collabo-
ration

Widget
Sup-
port

Complex
Linked
Data9

Notes

LibreOffice10 No No No No

MS Excel11 No No No No Uses “Flash Fill” to
predict users final

outcome

Apache
OpenOffice Calc

12

No No No No Natural language formulas
and uses wizards to guide
users through different

processes

ZK Spreadsheet
Server 13

Yes Yes No No Own installation, not
cloud hosted

Slate 14 No No No No Interactive tree

Google Sheets
Google Sheets 15

Yes Yes No No Provides Google forms for
input consistency

Zoho Sheet 16 Yes Yes No No

MS Excel Web
App 17

Yes Yes Yes No Allows for linked data to
be imported from

Sharepoint

Smartsheet 18 Yes Yes Yes No Provides web forms for
input consistency

Table 2.1.: Comparison of Existing Technologies

9Complex Linked Data is covered in Chatper 3 and refers to users being able to reference and edit data
which is of a complex (composed of different types) type.

10http://www.libreoffice.org
11http://office.microsoft.com/en-gb/excel
12https://www.openoffice.org/product/calc.html
13http://www.zkoss.org/
14https://useslate.com/
15http://www.google.com/sheets
16https://www.zoho.com/docs/sheet.html
17https://office.live.com/start/Excel.aspx?omkt=en-US
18https://www.smartsheet.com

12

3. Knowledge Base

In this Chapter we will examine the current knowledge base. This consists of all the
research currently conducted in the field of error prevention and detection in spreadsheets.
Initially, the base premise of developing solutions that reduce errors in spreadsheets is
explored. Following the exploration of different approaches in academic literature, we
focus at the proposed models in research specifically those of type systems. To conclude,
as this thesis builds on the research conducted in the area of Hybrid Wikis and the
SocioCortex from the sebis Chair at the Technical University of Munich, we explore
these constructs and concentrate distinctly on their architecture and their attribute type
systems.

3.1. Terminology

This thesis covers terms like spreadsheet, cell and value which are very commonly used
and, due to this fact, might evoke the thought that no explanation or elaboration is
needed. However, to prevent ambiguity, we will cover many of the terms in this section:

Spreadsheet A computer program that provides a user interface consisting of a collection
of worksheets.

Worksheet A table which consists of columns and rows similar to an NxN matrix. The
limit of the maximum number of columns or rows depends on the software. A unique
cell exists at the intersection of a columns and a row.

Table A synonym for “worksheet”.

Cell A field for storing values, formulas and references to other cells.

Formula Formula are spreadsheet instructions which could be regarded as “programming
code”. Formulas are often very basic as non programmers interact with them.

Value A representation of data in a cell. This value is normally entered in the spreadsheet
manually.

13

3. Knowledge Base

Unit A secondary attribute or dimension assigned to a value which describes it. Examples
of units: “cm, kg, inch”.

Label A label is an arbitrary category or type given to a value to describe it.

Schema A definition of a type that is applied to data.

3.2. Errors in Spreadsheets

One of the essential differences that one has to be aware of is that spreadsheets are de-
veloped in a different manner compared to conventional programs. While conventional
programs are dictated by specifications (i.e. real-world-problems that are solved by spec-
ifying a solution and testing), a spreadsheet program is driven by trial and error. This
means that one has to cater for an additional level of complexity within a spreadsheet
and its ability to handle errors.

Current research in the domain of solving errors in spreadsheets can be split into two
categories: “Testing and auditing” by using test case systems (e.g., the “What You See Is
What You Test” approach [34]) and “static type checking.”

Testing and auditing is presently seen as an approach that not only is inaccurate [29]
and ineffective but also involves the high overhead of requiring a user to invest additional
effort. Users become strained because of the lack of automation[15] which could prevent
this by speeding up the process.

A better approach is that of model-based systems and static type checking [15]. The
model-driven approaches do not only allow for automation but also provide more definition
of the data. Figure 3.1 represents a portion of research being done in this field which will
be further elaborated on.

3.3. Type Checking and Model Approaches

In the next section, we explore different types of checking and model approaches. These
approaches range from being proactive, that is, determining a set of framework or model
before the data is being entered such as ClassSheets or the Assertion approach, to being
reactive, that is, modeling data that has already been entered into a spreadsheet by
inference or classifying label or units.

14

3. Knowledge Base

Type Checking
and

Model
Approaches

Assertions

XL Analyst

Inferring
Templates

from
Spread-
sheets

L Sheets

Label
and Unit

UCheck

SLATE

XeLda

Class
Sheets

MDSheet

Data
Mapping

Mapping
Maaster

Visual
Approach

Vitsl

SOA to
control

information
flow

Figure 3.1.: Type Checking and Model Approaches
Note: the diagram above represents a map of all the approaches that will be discussed in
the next part. Its purpose is to create an overview. Overlapping of certain concepts and
models might occur.

15

3. Knowledge Base

3.3.1. Inferring Templates from Spreadsheets

Abrahams et. al. [4] proposed the solution, as data is not always modeled in a spreadsheet,
to identify regions of “similarity” within worksheets. Then buy grouping these, templates
are inferred based on the grouped properties. This approach allows for data to be modeled
retrospectively which is vital when dealing with legacy tables.

3.3.2. ClassSheets

Jorge Mendes [26] defines ClassSheets as “high level, object-oriented formalism to specify
the business logic of spreadsheets.” With ClassSheets business logic can be modeled
and expressed in business object structure which is similar to UML. In ClassSheets, it
is possible to define types of values for the columns in a spreadsheet. Then with this
information, a model is established that will form the foundation of the spreadsheet and
its values. One of the issues that ClassSheets faces is that for every change that is made
to the model, the resulting table would have to be regenerated.

3.3.2.1. MDSheet

MDSheets [18] allow for a solution to this problem. By making use of “semantic”, “com-
binator” and “layout” rules, the MDSheet adds forward and backward transformation
capabilities to ClassSheets. This allows for increased legacy spreadsheet support and
assists end users in the safe and correct input of data[18].

3.3.3. Label and Unit Approaches

By making use of labels [16] or units [6] input data receives context and additional infor-
mation which can categorise it and prevent errors. One could say that the information
here is modeled based on the label applied to it or the unit of measurement that it has.
These models have resulted in the introduction of SLATE and UCheck.

3.3.3.1. SLATE - “A Spreadsheet Language for Accentuating Type Errors”

SLATE[16] (not to be confused with the Slate Microsoft Excel add-in highlighted in
the existing technologies chapter) separates the unit from the object of measurement,

16

3. Knowledge Base

and defining new semantics for spreadsheets so that both the unit and the object of
measurement are taken into consideration[16]. In SLATE every cell object is split up into
three attributes: a value, a unit and a label. Slate for instance allows users to indicate
that they have “25 kg of Copper.” Here 25 would be the value, “kg” the unit and copper
the label. By adding dimensions of units and labels SLATE is able to display when values
that are being added together are incorrect. This allows for users to add more specificity
to data. By the use of a unit or label indications, cells can be categorized and become a
“type”. A problem with slate however still is that it it is built on the primary structured
data (string, integer) and therefore unable to handle complex types such as dates and
lists. Moreover, SLATE only transforms labels and dimensions and does not identify
errors through additional logic.

3.3.3.2. UCheck

UCheck[4] is a system that provides unit checking for spreadsheet formulas. According
to Abrahams and Erwig [4], UCheck uses a two-step process for error correction. The
first step involves inferring labels automatically to cells, and the latter step then involves
assigning units to those inferred cells based on the prior inference. The system then carries
out automated checking on the formulas and identifies problems based on a defined unit
system[20].

3.3.3.3. XeLda

XeLda[7], a tool for highlighting errors in cell input, is nearly identical to SLATE. On
the basis of comparisons of labels to other labels and units to other units XeLda can pick
up if there if a clash between the two and alerts the users to this issue. Its difference to
SLATE is that it is a tool that can be utilized in MS Excel.

3.3.4. The Assertion Approach

Burnett et al. [14] propose a solution for the reduction of errors in spreadsheets by
defining assertions prior to the users’ input which limit it to those assertions being made.
By making use of a particular syntax users are able to predefine conditions such as ranges
or certain sets of numbers that should be accepted as input. These would then apply to
user input as post conditions when executing a cell or as preconditions to “cells further
down stream”[14]. This can model a user’s input from the outset and efficiently allows

17

3. Knowledge Base

the user to debug more effectively. The studies also showed that end users did not only
understand the assertion but like them as a concept.

3.3.5. Data Mapping Approach

While the Assertion Approach deals with defining rules, O’Connor et al. [27] explore
the angle of data mapping. Specifically with regard to the Web Ontology Language
(OWL). Their developed declarative OWL mapping language (called Mapping Master or
M2) allows users to define OWL entities from within a spreadsheet by making use of
the correct syntax. It supports referencing, entity mapping, and missing value handling.
One of the reasons for the development of M2is the matter that this DSL should support
complex spreadsheets that do not conform to the entity-per-row assumption [27]. (This
construct will be revisited later again in this thesis as the SocioCortex modeling language
MxL.)

By making use of mappings one is able to bind table data displayed in cells to a certain
data source. Making use of such concepts allows for the view of data to change yet allows
for the source to stay constant. It also provides an increase in the amount of information.
M2provides a range of benefits for spreadsheets ranging from financial spreadsheets to
ontological ones to international disease classification.

3.3.6. The Visual Approach

The Visual Approach, which is similar to the ClassSheet approach, confers that spread-
sheets can be conceptually split into two phases[5]. The first being the creation of a
model or template that defines cell headers and formulas. The second is when data is
entered into this template. On the basis of this reasoning Abraham et al. [5] developed
a tool, called the Vitsl editor, which provides a GUI approach for the establishment of
spreadsheet templates.

3.3.7. Service-Orientated Architecture (SOA) to Control

Information Flow

As apposed to changing the actual spreadsheet software and with ever more organizations
having to satisfy requirements of Section 404 of the Sarbanes-Oxley Act, this specifically
stipulates that the company should be “maintaining an adequate internal control structure

18

3. Knowledge Base

and procedures for financial reporting” [39] which has resulted in research that covers
the intersection between spreadsheets and the actual data that is inserted. Samar et
al. [36] propose the implementation of service-orientated architecture after analyzing the
bottlenecks and pitfalls of current systems. On the basis of their analysis many of the
errors occur in the input process through either “copy pasting” being a “manual process,
with high error and no validation” [36] or using importers such as ODBC, web query or
simple csv. While simple csv, xls imports tend to break linkage to the original data, more
complex importers are often too complicated and business users lack certain knowledge
to use them.

The SOA solution developed by Samar et al. [36] adds a new layer to the spreadsheet
paradigm which lets the spreadsheet still behave and do what it primarily does. However,
by making use of Excel Plug-ins it is possible to add another layer to the spreadsheet
paradigm that connects the data of a spreadsheet to services. This layer features data
access, orchestration, transformation, security and resource management.

3.4. Hybrid Wikis

We have looked at many different approaches to solving the issue of erroneous input.
A few of these concepts will be used and embedded in this thesis such as the assertion
approach and the data mapping approach. Before we commence with the conceptual
part of this thesis it is important to still address one additional topic: Hybrid Wikis.
Hybrid Wikis are important to cover as this thesis build up on such a system, namely
“SocioCortex” which forms the cornerstone of the Spreadsheet 2.0. Hence, it is essential
to briefly explore this concept and the current state of its research.

3.4.1. Current State

HybridWiki “A lightweight approach for data and information management within en-
terprises facilitating structuring of content for business users.”[25]

The hybrid wiki concept aims to solve the problem of unstructured wikis - specifically
unstructured content. Prior to the hybrid wiki, numerous research was conducted in
the area of templating wikis [21, 19] and semantic wikis [37, 38, 13]. The hybrid wiki
builds on this knowledge and extends it with its own paradigm: As opposed to traditional
wikis which only support simple pages with rudimentary menthods of input (e.g., text

19

3. Knowledge Base

and tagging), hybrid wikis allow for users to extend and enhance basic page information,
Matthes et. al. [25] defined hybrid wikis to allow for users to assign attributes and type
tags.

Attributes Key value pairs that consist of an attribute name and a value. Attributes
allow for additional content to be added to the page as page content.

Type Tags Allow for information on pages to be defined and categorized. By making use
of type tags pages containing information, for example, about a team member or
knowledge page become team member pages or knowledge pages.

The assumption of the Hybrid Wiki is that data evolves over time and it is the model
which has to be adjusted for the data not vice versa. Both attributes and types can be
related to data and allow for more structure, yet they are not necessary for the data to
exist.

Figure 3.2 shows the Hybrid Wiki data model. The Hybrid Wiki allows for types to be
defined, which may have several attributes also defined which create a model (also referred
to as schema) that is then applied to the unstructured data[33]. According to Matthes
et. al.,[33] unstructured data and schema structure is applied to one another in real-time
to provide the requested output of information.

20

3. Knowledge Base

Figure 3.2.: The Hybrid Wiki data model by Matthes et al.[33]

3.4.2. Hybrid Wikis and the Spreadsheet Prototype

As mentioned in the paper by Matthes et al. the purpose of a hybrid wiki is to “enable
all users to enter structured data, in contrast to a two-phase process where inexperienced
users enter textual content that is later enriched with annotations by experts”[25]. This
thesis aims to achieve this by making use of a widely used tool, like a spreadsheet, for
enabling all users to interact with the hybrid wiki and its contents. The addition of a
spreadsheet for the management of a hybrid wiki does not only mean that users do not
have to learn new concepts, as experience spreadsheet users already possess the needed

21

3. Knowledge Base

skills an knowledge, but will also by making use of spreadsheet concepts will also allow
for an increase in efficiency when populating data into a Hybrid Wiki.

The current version of the Hybrid Wiki developed at the SEBIS chair is called SocioCor-
tex. Besides the Hybrid Wiki, SocioCortex brings with it Social integration, Semantic
integration and Content integration [1]which add an enhanced sphere of collaborative
activities.

3.4.3. The SocioCortex Architecture

Figure 3.2 depicts the current SocioCortex architecture. SocioCortex offers specific layers
of functionality which is shown by the different colors. All of these layers interact with
data and message connectors as well as functionality for bulk dumping and loading of data.
The SocioCortex is accessible via a REST API which allows a range of web application
to interact with the different layers.

Figure 3.3.: The SocioCortex Architecture [1]

22

3. Knowledge Base

3.5. Attributes of the SocioCortex

3.5.1. Data Types

As this concept builds up on SocioCortex it will encompass the current data types that
SocioCortex offers. However, this can be extended to encapsulate other types as well.
The attributes of SocioCortex currently support the following types shown in Table 4.1

The attributes of SocioCortex are defined by specified attribute types which allow for
change. If an attribute experiences a type change in its lifespan, the data it holds will
not cease to exist or prevent this change. The rationale for this, is that a system like
SocioCortex needs to adapt its structure based on its data and not the reverse. This leads
to the system indicating which values need to be adjusted in order for them to adhere to
the type structure and not forcing the user to have to migrate the data.

3.5.2. Additional Properties

In addition to the attribute type definitions, SocioCortex caters for the following addi-
tional properties:

Mutliplicity A user is able to define the multiplicity of an attribute. The current choice
consists of at least, at most and exactly one value. In addition to this, the option
of selection any amount of values is also allowed.

ReadOnly Users are able to define whether objects are able to be edited or not.

Show in Tables By selecting this option users are able to select whether or not options
should be shown in tables.

Default Values Every attribute can have default values defined that will show when a
user initially does not fill anything in.

23

3. Knowledge Base

Type Description Examples
Text Also referred to as a string value, the

purpose of this type is to store short key
values.

Names,
Telephone
Numbers

Boolean This data type can only have two possible
values.

true, false

Long Text This data type can be seen as one of the
primitive wiki types. The differentiation
between Text and Long Text is its storage
capacity.

Lone pieces of
information,
Articles,
Biographies

Number Also referred to as an integer value, the
purpose of this type is to store numbers
which can be used in calculations.

12; 99; 200

Date Defines a data type of type date which can
then be used as an attribute.

07.07.2015

Enumeration Defines a list of options. End-Users select
an option from a list of predefined options.

Option A, Option
B, Option C

Image Defines images that can be stored in the
system.

Profile pictures,
charts, graphic
content.

Reference This is a link to another SocioCortex
object. Any object can be referenced.

Other content
pieces or entities

Rich String A rich string is usually used for a
WYSIWYG editor. Rich Strings contain
code that help with the formatting of the
object. Currently only HTML is supported.

<i>This text
consists of
italics</i>

No Type Entities can also have “no type” definitions.
These can then at a later stage be more
defined. The “No Type” type allows for any
type of input to be entered, i.e. it can
consist of date, references and text entities.

08.07.2015
22
Names

Table 3.1.: Attribute Types of SocioCortex

24

Part II.

Conceptual Design

25

4. Conceptual Design

In the following chapter we explore a conceptual design which sets out to solve the ini-
tial research question. We introduce the concept of the SocioCortex Sheet Smart Layer
Framework which accomplishes the rending of widgets and conversion of data between
SocioCortex and a Spreadsheet framework. After exploring this concept, its architecture
and components, we make use of mockups to demonstrate features, specifically widget
design that interacts with the SocioCortex and the Spreadsheet framework.

4.1. SocioCortex Sheet Smart Layer (SocioCortex SSL)

This thesis is concerned with the front end experience of the SocialCortex which will be
managed by making use of the spreadsheet paradigm. This resulted in the conception of
the SocialCortex Smart Layer model (See Figure 4.1).

The SocialCortex Smart Layer or SCSSL sits between the SocialCortex and a spreadsheet
framework, and is used for front end management. SCSSL provides the spreadsheet
framework with widget support as well as SocioCortex type handling and mapping.

As mentioned previously, the SocioCortex attributes and their types are defined in a back
end web interface, however when developing a prototype toward Spreadsheet 2.0 there is a
need to supply additional logic in the front end which assists users with their input before
it it is being sent to the SocioCortex REST API: SCSSL provides this logic. For every type
that exists in the SocialCortex a front end model is proposed to be developed. Additional
front end logic is also required to assist the user when editing the spreadsheet.

SCSSL is built up similar to the Model-View-Controller concept. The “controller” is
represented by the “SCSSL Controller Functions” and the “Multiplicity Handler”. The
“SCSSL UI” could represent the “view” whilst the defined types from SocioCortex represent
the “model”. A graphical representation of the role that SCSSL has in conjunction with
the SocioCortex and Spreadsheet 2.0. paradigm is reflected in figure 4.1.

26

4. Conceptual Design

Figure 4.1.: SocioCortex and Spreadsheet 2.0 Components

On the web side: the SocioCortex Rest API and SocioCortex are positioned in the cloud
and accessible on a predefined endpoint. Locally (or client side) - three main components
will interact: the SC Angular Library, the spreadsheet framework used in Spreadsheet 2.0
and SocioCortex SSL (SCSSL). We will further on explore these in more detail, specifically
SCSSL.

4.1.1. SC Angular Library

SC Angular is a framework used at the Sebis Chair of the Technical University of Munich.
Initially programmed by Patrick Bürgin for his master thesis, SC Angular allows for
front end components to authenticate and communicate with the SocioCortex REST
API. Furthermore it provides wrappers, unwrappers and utility functions for fetching and
handling multiple SocioCortex objects. The SC Angular Framework will be used as the
main communication framework between SCSSL and SocioCortex. A more in-depth look
at SC Angular and its integration is covered in the “Implementation” chapter (Chapter
5).

27

4. Conceptual Design

4.1.2. SCSSL Architecture

Figure 4.1 describes the SCSSL containing components of transformation functions and
user interface. SCSSL transformation or controller functions are responsible for sanitizing
and handling data between the SCSSL UI Widgets and the SC Angular library. The
SCSSL UI is responsible for rendering widgets that handle input data from the Spreadsheet
2.0. For every SocioCortex type different handlers, widgets and transformation functions
are defined which are shown in Figure 4.2 and which form the SCSSL library.

4.2. SCSSL Controller Functions

The rationale for having front-ended transformational (controller) functions is the fact
that there might exist a discrepancy between user input shown in the spreadsheet table
and the data coming from SocioCortex. It is important therefore to “sanitize” data both
ways by making use of transformation functions. Furthermore transformation functions
also specifically allow for a table raw edit mode:

Table Raw Edit Mode This mode allows for users to be able to edit table cell values
directly without making use of widgets. It allows for keyboard only navigation and
cell editing. I.e. Instead of displaying a date picker widget to select the date by
tabbing through the options - Table Raw Edit Mode allows for users to edit the value
of a date in a cell directly. This mode still makes use of transformation functions
but bypasses the SCSSL UI. The rational for the existence of raw table mode lies
in assumption that keyboard only navigation and input is more efficient than using
a mouse, especially when it comes to user interfaces[24].

Widget Edit Mode This mode allows for users to be able to edit table cell values by
making use of SCSSL UI Widgets.

Transformation functions are the first step in a two prong implementation approach. They
are necessary for text to object conversions which need to occur for some of the widgets
that need to show. A date picker widget, for example, requires date objects as input
and output while a number picker would need an integer or a float. Both of these would
therefore require the initial data from SocioCortex to be converted from strings to their
respective types.

Transformational functions also add a layer of error handling to the input as they perform
the sanitization which will attempt to also interpret the data that is passed to it.

28

4. Conceptual Design

SocioCortex
Sheet

Smart Layer
(SCSSL)

SCSSL UI

Countdown
UI

Number
UIDate UIEnum UIImage UIWYSIWYG

UI

Referenced
Entity
UI

No Type
UI

SCSSL
Controller
Functions

Text
Countdown

Number
Trans.

Date
Trans.

Enum
Support

WYSIWYG
Trans.

No Type
Support

Derived
Attribute
Support

Referenced
Entity
Support

Multiplicity
Handler

Multiplicity
Trans.
Func.

Multiplicity
UI

Figure 4.2.: The Social Cortex Smart Sheet Layer Architecture

29

4. Conceptual Design

We further explore the transformational functions in detail that are required for the
interaction between the SocioCortex and the Spreadsheet 2.0.

4.2.1. SCSSL Number - Number Transformation Functions

The number transformations should be concerned with the SocioCortex attribute of type
number. These number transformations are responsible for:

1. Internationalization - As some countries use “,” while others use “.” to separate
decimals this can cause issues with formulas and input. These will be filtered and
sanitized so that different formats are allowed.

2. Four digit and higher separators sanatization - Similarly to internationalization,
four digit (1.000 for a thousand) and greater (1.000.000 for a million) numbers are
separated by fullstops or spaces which can result in incorrect input and output. The
number transformation will sanitize this and make sure that strings of this nature
are convertible to integers or floats.

3. Natural language numbers - For numbers one to ten this transformation will also
be responsible to convert numbers written in natural language to number format.

4. Conversion of SocioCortex Number to Integer or Float

The SCSSL number transformations should prevent erroneous input and ensure stability
of the Spreadsheet 2.0. The default format for numbers in the spreadsheet should be float
based.

4.2.2. SCSSL Date - Date Transformation Functions

Date attributes in SocialCortex take the unstandardized form of DD.MM.YYYY. This
format can cause problems when being used in conjunction with a date widget which is
one of the core purposes of the SCSSL Date. Furthermore SCSSL is responsible for:

1. Sanatization of different date formats: Whether DD/MM/YYY or DD-MM-YYYY
or DD.MM.YYYY the SCSSL makes sure that these can be converted from and to
objects of Javascript type “date”.

2. Internationalization - These date transformations should be able to take into account
MM-DD-YYYY and DD-MM-YYYY depending on the international setting that a
user has set in the front end.

30

4. Conceptual Design

3. Natural language dates - Initial handing of natural language dates i.e. September
21st, 21 Sept should also be supported. The current year will be used if the year is
not supplied.

The default format for dates in the spreadsheet should be be MM/DD/YYYY.

4.2.3. SCSSL Enum - Enumerable Support Functions

The SocioCortex attributes of type “enumerable” should be able to take on values of
a predefined list. These can be used to show status indicators for entities for instance.
Support for these on the Spreadsheet 2.0 side is supported by the SCSSL Enum Controller.
Not only should the SCSSL Enum functions support the UI elements with the list of
possible defined values, but they should also provide validation support. The purpose of
these functions should be to initially bind the model of enumerated attribute to the table
cell.

4.2.4. SCSSL Rich String - WYSIWYG Transformations

WYSIWYG transformations should be similar to text transformations. The main purpose
of these transformations should be to prevent security concerns and erroneous input that
is parsed to the SocioCortex. These transformations will sanitize input received from a
WYSIWYG editor. A further issue that exists is the one of incorrectly closed code tags
which will also be handled by these functions.

4.2.5. SCSSL Derived Attribute Support Functions

In SocialCortex one can define derived attributes. Derived attributes are useful as they
can hold aggregated information and formulas defined in the the DSL of the SocioCortex
using a language called MxL. Currently it is planned the SCSSL supports MxL 2.0. The
“Derived Attribute” support functions should assist in creating new columns from MxL
queries.

31

4. Conceptual Design

4.2.6. SCSSL Text - Text Countdown / Validation Function

As the text field from the SocioCortex has a limited amount of characters it is important
to have a function that checks the character limit of a plain text field before sending it to
SocioCortex. SCSSL text functions assure us that text is correctly sanitized before being
submitted to SocioCortex.

4.2.7. SCSSL Referenced Entity Support Functions

Entities should be able to reference each other in SocioCortex by utilizing attributes
of type “reference”. In the sheet these values should be displayed wrapped with “{}”
separators and be linked via a hot key to the page of the entity. The entity reference
functions should support the user by querying the SocioCortex REST API and displaying
the results via the UI widget. Furthermore, these support functions should validate
incorrect input and prevent users from referencing incorrect content.

4.2.8. SCSSL No Type Support Functions

A SocioCortex “No Type” attribute can represent anything from date, number, text to
enumerated and referenced.

The no type support functions are concerned with detecting the type of a cell input based
on a cell analysis. If one for instance enters 12 - this should be detected as a number.
However, if one then proceeds to enter 12-12-2015 - this should then be detected as a
“date”. Based on the detected type, the Object sent to the SocioCortex should have the
correct attached type and the correct widget. Moreover, it should display the second time
a user tries to edit the value.

As the type detection of the No Type support works similar to a programming language
“switch” statement, the order is important. The following order applies to the type de-
tection (1 = high priority, 6 = low priority):

1. Enum Detection

2. Referenced Entity Detection

3. Date Detection

4. Number Detection

32

4. Conceptual Design

5. Rich String Detection

6. Text Detection

Furthermore, No Type support should integrate with many of the above functions and
SCSSL UI elements to offer extended hybrid cell editing. If one for instance enters a
date, this should get converted to the correct format by making use of the SCSSL date
transformation functions.

4.3. SCSSL UI

Figure 4.3.: High-fidelity mockup of the a Spreadsheet 2.0 table.

The next section is mainly concerned with the UI Widgets that show up when editing
content in the sheet.

Depending on the type of column and the type of field different widgets may show up. If,
for example, an attribute had initially the “no type” type and was populated with data
- the type of data entered (and corresponding widget shown) should be determined and
set by the SCSSL UI functions. However, if the attribute then changed from “no type” to
date - the UI should force a date picker to be shown whenever editing any cell content.

The decision making process to determine which widget to display is shown in Figure 4.3.
If the schema is of the type “no type”, then the text in the cell should be analyzed and a
widget displayed based on the result of the interpretation. If a schema type does already
exist and is not equal to the cell type then it should be attempted to converted the value
of the cell to the parent schema type. Should this not be possible, then the value of the

33

4. Conceptual Design

Start

Input Cell Type / Value / Schema Type

Schema Type = "No Type"?
Determine Cell
Type based
on Cell Value

Schema Type = Cell Type?

Cell Value Convertible?

Clear Cell Value

Convert
Cell Type to
Schema Type

Output Cell Type / Value

Stop

yes

no

yes

no

yes

no

Figure 4.4.: Type Conversion & Widget Display Flowchart

34

4. Conceptual Design

cell should be cleared and the widget for the schema shown. For the best user experience,
the system should still display the initial value somewhere when editing.

In the following we further explore different UI Widgets (specifically Number, Date, Enum,
Reference & No Type). We also provide mockups for the individual widgets which based
on the table found in Figure 4.4. It depicts a typical order/quantity spreadsheet that one
might find in the industry. It does however also feature linked products that are displayed
in the “Referenced Products” column.

35

4. Conceptual Design

4.3.1. Number UI

Figure 4.5.: Low-fidelity wireframes of a number stepper widget (Number UI)

The Number UI should support users with entering integers and float based numbers
into the table. Instead of allowing user to directly change a cells value by typing in a
value, the Number UI should provide the user with the option of increasing or decreasing
a number value by pressing buttons which increase or decrease the value. Figure 4.6
depicts a number stepper widget that allows users to increase and decrease the number
based on which arrow is clicked. I.e. If the arrow pointing up is clicked, the number will
increase and vice versa with the arrow pointing down.

The Number UI widget also filters for input and only allows numbers as input.

Figure 4.6.: High-fidelity mockup of the number widget

In the case of an attribute allowing multiple numbers, a multiplicity widget should be
shown with multiple number steppers as indicated in Figure 4.7. The SCSSL Multiplicity
Handler and the UI that it offers is discussed in chapter 4.8.

36

4. Conceptual Design

Figure 4.7.: Low-fidelity wireframes of a number stepper multiplicity widget (Number UI)

Figure 4.8.: Low-fidelity wireframe of a date picker widget (Date UI)

37

4. Conceptual Design

4.3.2. Date UI

One of the many problems that spreadsheets have is the ability to support users with
different input dates. Many different date formats and notations lead to wrong inputs
and erroneous data. Even though these are being converted to a certain extent by the
transformation functions to and from date objects, in the front end, there is also a need
to assist the user when entering the correct date formats. In SCSSL, we propose to solve
this problem by making use of input assistance in the form of a date picker. Date pickers
are widgets that pop-up with a calendar from which a user can then select a date.

A rudimentary date picker concept is shown in Figure 4.8. As seen in this figure, the user
can alternate between the months by making use of the arrows at the top next to the
date. At the same time the days are shown from which the user can make a selection.
Upon selecting the day the widget will disappear and cell below that hold the value of
the selected date.

A high-fidelity version of the Date UI is show in Figure 4.9. The date picker here shows
up upon being selected by the cell which is a drop-down.

Figure 4.9.: High-fidelity mockup of a date picker

38

4. Conceptual Design

4.3.3. Enum UI

Figure 4.10.: Low-fidelity wireframe of a selector widget (Enum UI)

The enumeration user interface (or Enum UI) should provide widgets that show the user
with a restricted list of predefined options from which a selection should be made. This
list is displayed in the form of a drop down widget. The predefined options are set when
creating attributes in SocioCortex and are displayed on a column by column basis.

Figure 4.10 depicts a low-fidelity version of a drop-down list. As represented in the figure,
the user should choose between “Open”, “Pending” and “Closed”. A user is also able to
directly type in a value into the field which will then be filtered by the Enum UI to only
contain the specified values.

Figure 4.11 is an improved version of the drop down designed based on material design.
The drop down list shown has all the available options and highlights the current selected
option in blue.

Figure 4.11.: High-fidelity mockup of a selector widget (Enum UI)

39

4. Conceptual Design

4.3.4. Entity Reference UI

Figure 4.12.: Low-fidelity wireframe of the entity reference UI.

As mentioned previously, it is possible to reference other entities in SocioCortex by using
attributes which are of type “reference”. These references to linked data should make use
of an auto-complete widget to allow the user to quickly find the referenced entity. The
auto-complete widget should query the SocioCortex REST API via the SCSSL Referenced
Entity Support Functions. SocioCortex would return a list of possible results for the user.
If a user then selects a specified result, the entity ID of that result is saved in the cell.
Figure 4.12 demonstrates what this should look like when the input cell is highlighted
and presents a range of drop-down options sorted alphabetically.

A field containing multiple should display a list of auto-complete fields for users to select
their referenced entities. Every referenced entity is linked as indicated in Figure 4.13
by the different font color. Therefore, once clicked (in conjunction with a hot-key), the
link should open a page for the linked entity. Selecting the cell without any hot-key
should open up the auto-complete editor or the multiplicity widget with the multiple
auto-complete fields.

Figure 4.13.: High-fidelity wireframe of the entity reference UI.

40

4. Conceptual Design

4.3.5. No Type UI

Figure 4.3 demonstrates what a column of “No Type” could resemble. As seen by the
data entered into the last column, it could consist of any nature. Populated data can
consist of a range of dates, numbers, text to references. With the No Type UI we set out
to support the complex issue of supporting different data on a cell by cell basis.

4.3.6. Derived Attribute UI

In Figure 4.14 we see the process of a derived attribute being added to the table. The
process is being handled by the Derived Attribute UI and should allow the user to open up
the “Add derived attribute” dialog by clicking on the (+) sign. The user is then prompted
to enter an MxL query which could then already be validated in the dialog box. If the
query is valid and the user has entered a column name, the “Add” option will then be
activated for the user to click. If the user proceeds a new read-only column will be added
to the table with the result of the users query for every entity object.

Figure 4.14.: Low-Fidelity Mockup of the MxL derived attribute column

4.3.7. Rich String UI (WYSIWYG), Image UI & Text UI

This thesis mainly focuses on the rending of numbers, dates, enumerables and referenced
linked data in a spreadsheet scenario and therefore will only highlight the functionality
of the Rich String UI (WYSIWYG), Image UI and the Text UI. It will however not be
concerned about the implementation of these as these either do not contribute to solving
the research problem or they fall outside the scope of implementation. They are however
mentioned for purposes of completeness and can be extended with future research.

41

4. Conceptual Design

4.4. SCSSL Multiplicity Handler

As SocioCortex attributes are not only single value but also allow for for multiplicity we
have to add support for multiple entries in the SCSSL framework. This is handled by the
multiplicity handler which consist of a transformation function and a UI handler.

4.4.1. Multiplicity Transformation Function

The initial functionality of the multiplicity handler is to allow for users to efficiently add,
remove and edit multiple values. As the display of the spreadsheet is of a one dimensional
nature (flat data format), it is necessary to have a transformation function which is
responsible for mapping single value cells to multiple objects. This would allow for users,
without the use of widgets, to navigate through the spreadsheet and change values at an
individual cell level. It also handles the display of the cell values.

Conceptually proposed is using principles of flat data formats (CSV or tab separated) to
map cell values to multiple values. For this we introduce the “[“ and “]” separator. Note:
This separator should changeable if it does conflict with actual data. By making use of
this seperator a multiple date object such as:

1 {

2 1: Object

3 name: "MultiDate"

4 type: "date"

5 values: Array[3]

6 0: "10.07.2015"

7 1: "31.07.2015"

8 2: "02.06.2015"

9 }

would be represented as [10.07.2015][31.07.2015][02.06.2015] in the cell of a table. Simi-
larly numbers (e.g. [1,56][2,44][5,65]) or any other attribute types (eg. [text1][text2][text3])
would also be separated by the separator.

The purpose of the transformation function is to “watch” the table array for changes. Upon
the table array changing it should update the original object and submit the changes to So-
cioCortex. In the example above if the cell containing “[10.07.2015][31.07.2015][02.06.2015]”
changes the middle date to “[10.07.2015][31.07.2016][02.06.2015]” or (even removes a date

42

4. Conceptual Design

such as “[10.07.2015][31.07.2015]”) - these changes would reflect on the main object through
the transformation function which would then submit the data.

4.4.2. Multiplicity User Interface

Figure 4.15.: Low-fidelity wireframe of the multiplicity widget

The user interface component of the SCSSL Multiplicity Handler conceptually should
make use of the drop-down list paradigm with input boxes. On the right of every row (-)
signs could be placed to accommodate users with removing a value. In addition to the (-)
signs, a (+) sign at the end of the list is envisioned to allow users to add more rows. A
mockup can be seen in Figure 4.15.

The SCSSL Multiplicity Handler UI is responsible for displaying a UI widget that uses
the flat data cell value to improve the user experience when using the sheet.

Figure 4.16.: Multiple Values Mockup

43

4. Conceptual Design

4.5. SCSSL UI Overall Mockup

Lastly for a better overall understanding of the implementation of the SC Sheet: Figure
4.17

This figure shows a high fidelity mockup of SCSSL when implemented with a user interface
like Angular Material. The process for opening a table would involve selecting the type
to be edited from the left menu. This would then load the table in the background.

Figure 4.17.: High Fidelity Mockup of SCSSL UI Overall Mockup

44

Part III.

Software Design and Implementation

45

5. Software design

In the following Chapter, the approach that was taken to implement the proposed concept
from Chapter 4, will be discussed. As the SocioCortex makes use of a REST based API,
developing a JavaScript client-side application seemed like the most suitable approach to
a solution. This solution was to be implemented in JavaScript by making use of existing
web patterns and frameworks like AngularJS and Wijmo and design patterns like Google
Material design. Google Material design is implemented for AngularJS by the AngularJS
Material Library.

5.1. AngularJS Framework

AngularJS is a modern JavaScript Framework which is based on the concepts of MVC,
however it is closer to an MVVM (Model-view Model-view) Architecture. This framework
was chosen for the first prototypical implementation as it assists developers to rapidly
develop state of the art front end applications by supplying:

1. Two way data binding

2. Templates

3. Dependency injection

4. Directives

5. Services

AngularJS will mainly assist on the client side with handling data from REST APIs (in
our case SocioCortex API) and rendering data on the client side. This will be needed
when implementing the SCSSL UI to render widgets to collect input data.

As opposed to other frameworks like Cappuccino and Knockout, Angular is maintained
by Google and its engineers[22]. This assures the framework to be of a certain code
quality with projected long term support. It also ensures its adoption among developer

46

5. Software design

communities. Features [22] like those listed above make it the current cutting edge tech-
nology to make use of when designing a complex type spreadsheet. In conjunction with
the spreadsheet, these features help with the display, rendering and mapping of data from
SocioCortex to a spreadsheet framework.

5.2. Spreadsheet Framework

From the outset it was important to develop a solution which would not only support
AngularJS and be browser based, but also be intuitive. Intuitive meaning that as we
are replicating a spreadsheet system, spreadsheet functionality should exist that users are
used to. This functionality is reflected in the spreadsheet use of keys (i.e. a spreadsheet
should not only be navigable by clicking but also by making use of “up”, “down”, “left” and
“right” arrows. Furthermore users are used to being able to drag and drop columns and
rows; as well as sort columns which is one of the features that the spreadsheet framework
should not lack. In addition to the normal features of a spreadsheet it should also support
and display information in a new way and handle the SCSSL UI widgets. To summarize
- the solution should supply the following:

1. Direct cell editing

2. Navigation and edit support by the use of keyboard keys

3. Custom fields - Ability to display various content

4. Allow for the use of data-bindings

Initially the approach of developing a spreadsheet grid was tested. This consisted of a
table being generated with input fields which were repeated with the ng-repeat directive
in AngularJS. This construct did initially work, yet creating many bindings for every cell
(input box) started to slow the program down and another solution was investigated.
Trying to use, because of speed considerations, D319 as the rendering engine for fields
was a better solution. However, developing the entire spreadsheet logic and making the
spreadsheet match the capabilities of real spreadsheet software seemed problematic, as the
wheel would have to be reinvented which would involve many more hours of development.
Therefore, it was decided to look at frameworks already available which could offer such
functionality.

19http://d3js.org/

47

5. Software design

Non AngularJS frameworks where tested like SlickGrid20, jqGrid21, BackgridJS 22 and
ClusteriseJS 23. The idea here was to use these on top of the AngularJS framework.

A collection of AngularJS spreadsheets frameworks where also investigated. Amongst
other the following are quite notable: UI Grid24, Wijmo FlexGrid 25, ngTable 26 and
Smart table27 . Figure 5.1 shows a comparison between all of these frameworks.

Eventually the Wijmo framework was chosen as the framework of choice to use as the
Spreadsheet 2.0 framework that would interact with SCSSL. Not only did this framework
fulfill all the conditions above but also catered for the use of widgets and provided copy
paste from excel support.

5.2.1. The Wijmo Framework

The Wijmo5 is a package of over 40 UI JavaScript controls that are developed in HTML5
and support AngularJS. The company behind Wijmo5, GrapeCity, have been developing
Wijmo for jQuery since 201028. The Wijmo package consists of 4 components: Core,
DataGrid, Input and Data Visualization which contain the following29:

Core Base Control, Globalization, CollectionView, Themes, Clipboard, Events and Vali-
dation

Data Grid FlexGrid and FlexGrid Extensions (Filter, GroupPanel, DetailRow)

Input ListBox, ComboBox, AutoComplete, Menu, Calendar, InputDate, InputTime, In-
putNumber, InputMask, ColorPicker and InputColor

Data Visualisation FlexChart, FlexPie LinearGauge, RadialGauge, BulletGraph and
FlexChart Extensions (RangeSelector, Analytics, Annotations)

For the spreadsheet framework we made use of the core components for the data bindings,
the DataGrid for the FlexGrid (which is our base spreadsheet control) and the input

20https://github.com/mleibman/SlickGrid
21http://www.guriddo.net/demo/guriddojs/
22http://backgridjs.com/
23http://nexts.github.io/Clusterize.js/
24http://jspreadsheets.com/ui-grid.html
25http://wijmo.com/5/docs/topic/wijmo.grid.FlexGrid.Class.html
26http://ng-table.com/
27https://github.com/lorenzofox3/Smart-Table
28http://wijmo.com/welcome-to-wijmo-5/
29http://wijmo.com/products/wijmo-5/

48

5. Software design

Fr
am

ew
or
k

V
er
si
on

D
ir
ec
t

C
el
l

E
di
ti
ng

K
ey
bo

ar
d

N
av
ig
a-

ti
on

Su
pp

.

C
us
to
m

F
ie
ld
s

W
id
ge
ts

Su
pp

.
A
ng

ul
ar
JS

&
D
at
a

B
in
di
ng

Su
pp

.

So
ur
ce

E
xc
el

C
op

y
P
as
te

Su
pp

or
t

U
pd

at
ed

N
ot
es

Sl
ic
k
G
ri
d

?
Y
es

Y
es

N
o

N
o

N
o

O
pe

n
N
o

05
-0
3-
20

14
P
ro
vi
de

s
“M

S
E
xc
el

lik
e”

lo
ok

an
d
fe
el
.

jq
G
ri
d

5
N
o

N
o

N
o

N
o

N
o

O
pe

n
N
o

03
-0
8-
20

15
Fr
ee

fo
r
no

n
co
m
m
er
ci
al

pu
rp
os
es
.

B
ac
kg

ri
dJ

S
0.
3.
5

Y
es

N
o

N
o

N
o

N
o

O
pe

n
N
o

21
-0
1-
20

14
D
at
ag

ri
d
w
it
h

“e
di
t
in

pl
ac
e”

ce
lls
.

C
lu
st
er
is
eJ
S

0.
12

.0
N
o

N
o

N
o

N
o

N
o

O
pe

n
N
o

14
-0
8-
20

15
O
pt
im

iz
ed

fo
r

la
rg
e
da

ta
se
ts
.

ag
-G

ri
d

2.
2.
0

Y
es

Y
es

Y
es

N
o

Y
es

O
pe

n
N
o

03
-1
0-
20

15

W
ijm

o
F
le
xg

ri
d

5.
20

1
Y
es

Y
es

Y
es

Y
es

Y
es

C
lo
se
d

Y
es

28
-0
8-
20

15
Ja
va
Sc

ri
pt

ba
se
d

fr
am

ew
or
k
w
it
h

A
ng

ul
ar
JS

w
ra
pp

er
.
V
er
y

go
od

su
pp

or
t.

ui
-g
ri
d

3.
0.
6

Y
es

N
o

Y
es

Y
es

Y
es

O
pe

n
N
o

03
-1
0-
20

15
Sw

ap
s
ou

t
ce
ll

in
pu

t
bo

xe
s
an

d
w
id
ge
ts

as
ce
ll

re
ce
iv
es

fo
cu

s.
U
se
s
no

jQ
ue

ry
.

ng
T
ab

le
1.
0.
0-

be
ta
.6

N
o

N
o

N
o

N
o

Y
es

O
pe

n
N
o

03
-1
0-
20

15
Li
m
it
ed

su
pp

or
t.

Sm
ar
t
ta
bl
e

2.
1.
3

N
o

N
o

N
o

N
o

Y
es

O
pe

n
N
o

10
-0
9-
20

15

Ta
bl
e
5.
1.
:C

om
pa

ri
so
n
of

di
ffe

re
nt

sp
re
ad

sh
ee
t
an

d
gr
id

ta
bl
es

49

5. Software design

component for making use of some of the Wijmo widgets such as the InputNumber,
InputDate and ListBox.

5.2.2. The Flexgrid from the Wijmo Framework

The FlexGrid forms part of Wijmo Data Grid component. It is a full-featured grid which
supplies users with all the functionality and user experience found in the usual spreadsheet
application. One is even able to copy and paste directly from Microsoft Excel into Wijmo
FlexGrid.

5.2.3. SC Angular Library in Detail

Initially, in the early versions of the prototype, all of the connection handling was done
as an SCSSL utility function which made use of Angular $http.get and other functions
for connection and data request handling. The issue however was that the endpoints and
responses of SocioCortex seemed to be limited which would need to either be re-parsed
or sanitized for use. Other issues where that multiple requests needed to be made for the
querying of mutiple data results.

Patrick Bürgin30, then for his Thesis: “Design and Prototypical Implementation of a
Dashboard System for Visualizing Semi-Structured Data in a Traceable Way” created the
SC Angular library which dealt with many of the issues (e.g., connection management,
wrapping and unwrapping of responses) encountered whilst developing for SocioCortex.
Not only was this library of a superior quality to the previously implemented prototype
SCSSL solutions since it made use of testing frameworks such as Jasmine31 which help with
the establishment of finding out when the SocioCortex API changes break an application;
but Patrick Bürgin was also a month ahead with his implementation which meant that
some of the functions needed in future for the SCSSL had already been implemented.
Also, due to its cleanly written nature, adding functionality to SC Angular is effortless.
This lead to the adoption to the SC Angular (v0.6.3) library as the communication library
(layer) between SCSSL and SocioCortex. (As seen in Chapter 4, Figure 4.1)

SC Angular comes with three services: scCore, scCrud, scMxl and scUtils which are
further elaborated on as they are required by SCSSL.

30https://wwwmatthes.in.tum.de/pages/16qwn6mc8kei2/Master-s-Thesis-Patrick-Buergin
31http://jasmine.github.io/

50

5. Software design

scCore This is the connection handler for SocioCortex. It deals with authentication,
request and URL handling.

scCrud This is responsible for CRUD operations on the SocioCortex REST API. This
allows users to find, create, update and remove as well as supplying users with the
crud functions for entities, groups, users, type and workspaces.

scMXL This service is responsible for handling all MxL related communication.

scUtils This deals with wrapping and unwrapping objects as well as recursive requests.

SCSSL mainly makes use of scCore for the connection establishment; scCrud for fetching
workspaces, types, attributes and entities from SocioCortex; and scUtils for its object
handling functionality.

5.3. The SC Sheet Directive

Initially in the first prototype it was attempted to load SCSSL UI Widgets which were
implemented on top of a Wijmo FlexGrid directive. The Flexgrid directive would allow
for cell types and the data source to be defined. It would then bind the Flexgrid to the
data and render the result. This is an example of the implementation code:

1 <!-- Example of Flexgrid implmentation with a binding on "data" -->

2 <wj-flex-grid items-source="data"></wj-flex-grid>

This meant that the SCSSL UI would need to load on top of the Flexgrid. This limited
the functionality because the directive options and controller functions were defined by
the Wijmo directive. Furthermore, it was experienced that the ability to add columns
could only be implemented from the AngularJS controller, as recreating the grid would
only be possible from the controller. This ability was needed by SCSSL to implement
adding additional attribute types.

The solution to this problem was the SocioCortex Sheet (abbr. “scsheet”) directive. With
scsheet all the functionality was moved into the controller which resulted in more control
and better modularisation.

1 <!-- Example of of the scsheet directive -->

2 <scsheet ng-typeid="1clqy1q3yk2v3" ng-use-url="true" ng-mode="widget" ng-show-

inconsitencies="true" ng-editable="true"></scsheet>

51

5. Software design

Table 5.2 further elaborates on the input parameters for the SC Sheet Directive.

Parameter Required Input
Parameter

Default
Value

Property Description

ng-typeid 1clqy1q3yk2v3
(Type ID)

Required
if URL
is not
set

Specifies the type identifier that should be
used to load all the content entities from

SocioCortex into the FlexGrid.

ng-use-url true/false
(Type ID

parameter via
URL)

This option allows for the passing of the
last URL parameter to the grid. (ex.
http://127.0.0.1:54251/index.htm#
/sheet/types/1clqy1q3yk2v3 uses

1clqy1q3yk2v3 as type identifier as it is the
last parameter)

ng-mode rawtext/widget rawtext This property allows for defining the table
editing mode. “rawtext” will only make of

the transformation functions whilst “widget”
would show the SCSSL UI.

ng-show-
inconsistencies

true/false false This property allows for setting of
displaying inconsistency of types.

ng-editable true/false true This property allows for one to make the
SC Sheet editable or not.

ng-add-new-
row

true/false false This property grant the ability to add new
rows.

ng-allow-sort true/false false This allows for sorting of table values.
ng-group-
values

true/false false This allows for the grouping of similar cell
values.

Table 5.2.: Parameters for the SC Sheet Directive

It should lastly be noted that the SCSSL, specifically SC Sheet requires SC Angular,
Wijmo and Wijmo Angular to function.

52

5. Software design

5.4. Bootstrap Loading Process

To initially generate the SC Sheet with entities from the request type, involves a Bootstrap
loading process. This process is show in Figure 5.1. We start with the type id as the first
input requirement. This parameter is then passed to the scInitialise function which then
triggers the following bootstrap process:

1. First all the $scope variables and objects are initialized (existing ones destroyed and
recreated) with the scInitialScope function. This also destroys current controls that
might exist as well as a Wijmo Flexgrid instance.

2. Then the scGetColumns function fetches the schema structure of the current type.
This also determines the columns of the Wijmo Grid (e.g., type of column for every
attribute) and will also preset enumerable drop-down widgets if the widget mode is
switched on.

3. A new wijmo.collections.CollectionView object is then created from the getData
function which fetches and parses the current entities. This object is bound to
$scope.data object.

4. The scBuildGrid then builds the spreadsheet Grid from the $scope.data object.

5.4.1. The scBaseObject

In the scGetColumns function the schema of the current type is not only received and
stored for the column definitions, but also for the scBaseObject. The $scope.scBaseObject
is an object that reflects the schema for the type. One could look at it as an empty entity
for the type. All entities should have this schema. It is then used as an initialization
template object in the creation of $scope.data for all its entities as shown in the Figure
5.2. This is needed as SocioCortex does not send empty objects which causes Wijmo not
to enable the empty cells for editing.

5.4.2. Multiplicity Loading

During the getData loading phase if an entity does have multiple objects for an attribute
it will parse these objects to the scsslMultiCtrl.serializeData function. This will then
serialize them into a string and add them to the $scope.data object. In the implementation
the delimiter has changed from the initial double “[“ “]” notation to a single “|” notation.

53

5. Software design

F
ig
ur
e
5.
1.
:B

oo
ts
tr
ap

Lo
ad

in
g
P
ro
ce
ss

54

5. Software design

1 {
2 scBaseObject: Object
3 sName: ""
4 sFullName: ""
5 nTel: ""
6 bDay: ""
7 rDay: ""
8 sEmail: ""
9 eEtatus: ""

10 uid: ""
11 }

Figure 5.2.: Example of $scope.scBaseObject

5.4.3. Linked Entity Data

Also during the getData loading phase the linked data fields (or of type “reference”) are
formatted. In this process the fields are reformatted to render links that open the entity
that they reference.

5.5. scEntityData, scAttributes and scSet Objects

As Wijmo does change the structure of the $scope.data when it initializes a table on
it, a second object called the $scope.scEntityData object stores the response of entity
data that comes from SocioCortex. This allows for a clean storage of the data which is
used for certain functions. Similarly the attributes and their properties are stored in the
$scope.scAttributes object.

The $scope.scset (see Figure 5.3 for an example) is the object which is used as status
indications. The bootstrap process for instance returns the results from every function
to the $scope.scset object. This allows for lock mechanisms to be put in place to prevent
race conditions as many of the functions make promises that will be full-filled at a later
stage. Race conditions occur predominantly when fetching and sending requests to and
from SocioCortex.

55

5. Software design

1 {
2 scset: Array[0]
3 IsColumns: true
4 IsGridBuilt: true
5 IsInitialised: true
6 currentTypeID: "1clqy1q3yk2v3"
7 getData: true
8 length: 0
9 numColumns: 11

10 }

Figure 5.3.: Example of $scope.scset

5.6. Editing Process for Controls

Once all the data is loaded into the $scope.data object and the spreadsheet is rendered,
a user can then click around and attempt to edit one of the fields. This will then initiate
the edit process.

The initial editing process is concerned with the conversion of the fields in the table from
Wijmo to SocioCortex. This does not include any SCSSL UI elements being rendered
(For the SCSSL UI process see: 5.7 Widget Editing Process).

When the data is loaded and the Flexgrid is rendered a handler is added to the $scope.data
object which handles events when the collection changes. This handler is referred to as
the collectionChanged handler from Flexgrid. The use of this handler was decided due to
performance issues that might have been encountered if one implemented a change post to
the server on every key stroke. Hence, whenever a cell changes (leaves focus), a function
is called which then sends the input to the correct transformation function. This function
is called scTransform.

5.6.1. The Editing Process for Controls (SCSSL)

scTransform can be seen as a “router” that takes the row object (as every row is an entity
which will be sent be sent back to SocioCortex) of the currently edited row and determines
the edited cell value. Then it will go through the following Steps before passing the change
onto SC Angular to send to SocioCortex REST API (see Figure 5.2):

• It will initially check if the $scope.data object has changed by comparing it to
$scope.scEntityData

56

5. Software design

F
ig
ur
e
5.
4.
:S

te
ps

in
vo

lv
ed

in
th
e
ed

it
in
g
pr
oc
es
s.

57

5. Software design

• If it has: It will pass the currently edited cell value to the multiplicity controller
function scsslMultiCtrl.unserializeData which returns the cell value in the form of
individual objects. (Step 1)

• Step 2: These are then passed to the correct editing process controller functions
(seen in Table 5.3). These functions then perform data validation and conversions
of input data. Should the validation succeed, the input will then be converted if
needed before being returned to the SocioCortex. Should the value be invalid, the
user will be notified and the focus of the edited cell reset.

• Step 3: If the validation succeeds, the object is then sent to the to the editing
process conversion controller functions which will convert it into the right format if
needed.

• Step 4: The returned value is then wrapped in the correct request JSON format
with the correct entity structure and passed to SC Angular scCrud.entities to be
sent to SocioCortex.

5.6.2. The No Type Process

In the case that the column of the Wijmo grid is of the type “no type”, scTransform will
try to determine the type with the scsslCtrl.detType function. The returned type is then
parsed to the applicable conversion functions (e.g. dateConvertToSC, numberConvert-
ToSC) before being sent to SocioCortex.

5.6.3. The Reference Type Process

Changing references involves checking if entities referenced already exist in the Socio-
Cortex system before allowing such a change to be posted. The functionality of sc-
sslCtrl.refCheck, scsslCtrl.refResolve andscsslCtrl.refConvertToSC is described in Table
5.3, however it is in an complete state and therefore cannot be fully utilized. This is also
indicated in Figure 5.4 by the dashed lines around the functions.

58

5. Software design

Function Affects
Type Description

Not
fully
imple-
mented

scsslCtrl.dateCheck Date
Checks if the date is the

correct format or in a format
that is convertible.

scsslCtrl.numberCheck Number
Checks if the number is the
correct format or in a format

that is convertible.

scsslCtrl.enumCheck Enum Checks if the value is in the
list of allowed list of values.

scsslCtrl.refCheck Reference Queries SocioCortex to check
if reference exists. *

scsslCtrl.detType No Type Returns the assumed type
based on input value.

scsslCtrl.dateConvertToSC Date Converts a multitude of
different date formats.

scsslCtrl.numberConvertToSC Number Converts a multitude of
different number formats.

scsslCtrl.refResolve Reference Performs a lookup on
SocioCortex for linked data. *

scsslCtrl.refConvertToSC Reference

Converts the displayed data
(e.g. “{1245t9zmnoca8}”) into
SC Angular linked data format

(e.g.
“entities/1245t9zmnoca8”).

*

Table 5.3.: Overview of scsslCtrl functions

5.7. Widget Editing Process (SCSSL UI)

The widget assisted editing process occurs on top of the SCSSL implementation mentioned
in Chapter 5.6. It is invoked by the scBuildGrid function that presets a custom widget
control for every column (in Wijmo widgets are implemented on a column by column basis)
based on a number of factors. Using the flowchart from Figure 4.3 for the decision making
process the scBuildGrid creates for every column an scCustomGridEditor instance.

59

5. Software design

5.7.0.1. scCustomGridEditor

This function is the key to displaying widgets. It consists of different handlers from
“keystroke” events to “focus” (getting and losing) events. These events specify what should
happen to the widget when one interacts with it.

The most important aspect of the scCustomGridEditor is the “_beginningEdit” proto-
type. This prevents the loading of the Flexgrid built-in editor and replaces it with the
SCSSL UI editor. We then switch between the different editors based on the column
type.

5.7.1. Implementation of SCSSL Date UI

Figure 5.5 shows the implementation of the SCSSL UI widget. Here one can see how
the dates are converted between date objects (e.g., 7/7/2015), which are required for the
widget and SocioCortex dates (26.03.2010) are converted. The date pop-up appears below
the cell allowing the user to select a date.

Figure 5.5.: Prototypical implementation of the SCSSL Date UI

5.7.2. Implementation of SCSSL Enum UI

Below, in Figure 5.6 one can see the implemented version of the Enum UI. This loads its
values when the grid is built in the scBuildGrid function.

60

5. Software design

Figure 5.6.: Prototypical implementation of the SCSSL Enum UI

5.7.3. Implementation of the SCSSL Number UI

Figure 5.7 shows the prototypical implementation for the number widget. This currently
allows only for whole numbers to be incrementally added or subtracted.

Figure 5.7.: Prototypical implementation of the SCSSL Enum UI

5.7.4. Implementation of other UI elements

An initial start was made with displaying multiple elements and linked data, however
they proved to be more challenging than expected and therefore more time is needed to
complete them in the future. The next chapter will further elaborate on the issues that
where experienced.

61

6. Evaluation

This chapter unfortunately does not discuss the evaluation in the context of a research
study or group testing. This is due to the fact that the prototype is was not completed
in time for the evaluation phase.

In raw text mode, the prototype fetches data from SocioCortex and displays it. Editing
and saving in raw text mode also works without any issues. However, even though widgets
for single versions of data types such as date, number, enumerable do show up, in widget
mode the prototype fails to display multiplicity options. The following section will present
the reasons for the incomplete prototype.

Furthermore, as this thesis forms part of a larger study on the creation of Spreadsheet
2.0, the evaluation will also critically evaluate the implemented prototype and discuss its
part in the greater research study. Finally this chapter will conclude with suggestions for
this research study.

6.1. Prototype Issues

In the following chapter we will touch on some of the issues experienced when coming up
with a prototype. These range from framework licensing to testing.

6.1.1. Using a closed source framework

In choosing Wijmo Flexgrid as a framework multiple problems where encountered. Due
to its closed source approach, the framework support was limited and dependent on Com-
ponentOne, the company that creates Wijmo. Every issue had to be raised in their forum
and troubleshooting the Wijmo code is not possible due to its minified and concatenated
state. Also, the fact that Wijmo does not only cater for AngularJS and had documentation
for AngualrJS, JQuery and Knockout seemed to, at times, also create confusion.

62

6. Evaluation

6.1.2. Ongoing development of the SocioCortex Framework

Ongoing development made the implementation of certain functionality on the SCSSL side
problematic as error codes were received from the SocioCortex REST API that would not
assist in debugging the problem. Furthermore, support tickets had to be opened for
feature requests and bugs which could take a while to be implemented. However, the
fact that individuals where directly approachable and by having bi-weekly SocioCortex
meetings helped in resolving issues.

6.1.3. Insufficient AngularJS and Wijmo Knowledge

With previous basic AngularJS knowledge and many years of web development experience
it was assumed that the prototype that was to be developed would be possible. The reality
however was different in that there was still a learning curve to AngularJS, not to mention
the Wijmo Framework.

6.1.4. Time-frame and Underestimation of Scope

Initially the proposed solution should have been achievable in the planned time-frame
however the process of getting better accustomed to AngularJS and Wijmo took longer
than expected. Also functionality like multiple option, date, number and reference widgets
turned out to be more complicated to implement than previously expected and increased
the scope of the prototype.

6.2. Critical Reflection

Reflecting on the prototype that was created it is evident that this prototype requires
testing and validation. This prototype was implemented in a short time frame and is still
therefore very rough.

For the overall concept there are four aspects that would need to be highlighted and
elaborated on:

1. The use of Raw Text Mode versus UI widgets: It is in implementing both that
one is able to assess which mode is better. Initially for keyboard heavy users the
raw text mode did have its appeal since one was able to rapidly change cell values

63

6. Evaluation

without wasting time clicking. The SCSSL UI however also had its appeal to the
user with indirectly forcing the user to adopt a type model by limiting the input UI.
Ultimately this argument can depend on the device of the end-user. If the end-user
is desktop affine, raw text mode is better suited. Looking at the current trend in
technology which seems to advance in the mobile and tables space, the UI widget
mode is distinctively better suited for these devices. With widgets that pop-up and
control the input without the use of keyboards is identical to tablets input currently.
So in summary both are necessary and their use depends on the devices that the
end-user utilizes.

2. Designing the system to be push based instead of pull: Currently one of the flaws
of the implementation is the fact that the AngularJS API fetches the content from
the SocioCortex REST API. With the numerous changes that occur via other web-
clients, it is foreseeable in future that conflicts will occur which need to be handled
on the client side. Since a table locking would defeat the distributed purpose of
the SocioCortex, the solution of converting the SocioCortex REST API into a push
server would allow for instant updates on all devices that implement the push pro-
tocol.

3. The approach to model data retrospectively: This aspect of the SocioCortex makes
it one of the few of its kind. In the development of the prototype we enforced a
model onto data depending on how it was defined. Thus, doing the opposite of what
SocioCortex does. The “No type” column attempts to solve this issue, yet from the
outset one would still have to define a type which one then populates with data.
Essentially one would have to allow users to define and move data from one type to
another to be able to offer the user full flexibility.

4. Different types in fields and their usefulness: Modeling types for the sake of modeling
data and showing date pickers and number counters might be useful for one use case,
however it might also prove to be ineffective in another case. One would need to
look at these different use cases and critically assess if widgets like date pickers are
fit for the right purpose.

64

7. Conclusion

In this thesis we have attempted to create a prototypical web-based spreadsheet to reduce
errors when entering data. This was done by following the Design Science Research
approach.

Initially the environment was explored. It was established that spreadsheet-use is on the
rise especially when it comes to organizational critical applications and that spreadsheets
also seem to be error prone. Thus, it has become an important business need to address
and to find a solution to. By exploring current technologies, it was found that many
technological solutions already exist, which might have come about to resolve this issue.
It was also found, based on comparisons, that current solutions might be able to provide
web based, real time-collaboration systems with widget support. However, they all lacked
the integration of Complex Linked Data.

After the in-depth analysis of the business needs, processes and technology in the environ-
ment chapter we turned to academia and assessed the knowledge base. This consisted of
a number of proactive and reactive solutions to prevent error occurrence in spreadsheets.
We also looked at Hybrid Wikis as the SocioCortex Hybrid Wiki is the system that the
prototype for this thesis extended. In the SocioCortex we then specifically highlighted its
attribute types (e.g. text, number, date) as it was these that this thesis built up on.

After the establishment of the Environment which demonstrated the business needs and
the knowledge base which showed the applicable knowledge, we set out to develop a
concept for the prototype. The SocioCortex Sheet Smart Layer (SCSSL) was created
which, based on the MVC paradigm had SCSSL transformation functions and controllers,
SCSSL UI widgets for the “view” part and took data types from SocioCortex as the
model. The SCSSL would exists between the SocioCortex REST API and the spreadsheet
framework. By making use of high and low fidelity mockups every single SCSSL UI was
visualized. Furthermore, the multiplicity handling of the attribute types was addressed
before concluding the introduction chapter with an overview mockup for the full system.

We then continued with the actual conception of the prototype. After an intense as-
sessment for the best solution a spreadsheet control we then settled for one called the

65

7. Conclusion

Wijmo Flexgrid. Flexgrid did not only support AngularJS, direct cell editing and widget
support for the spreadsheet rendering, but was also backed by a team which updated the
components on a frequent basis. Flexgrid was then used as a front-end control to the
implementation of SCSSL which was then explored in detail. The functionality of the
scsheet was then explored.

Unfortunately, even though it is stipulated in the design science research methodology,
we did not get to the evaluation phase of the prototype due to the issue of the prototype
not reaching a stable version that could be tested due to problems that were encountered.
These were then explored and critically reflected upon. Further more other issues where
highlighted.

In the beginning of this thesis we set out to solve the question of: What is a model
driven approach to managing complex linked data in order to prevent erroneous input in
web-based spreadsheet systems? The concept and prototype developed for this thesis is
indeed a first approach to solving the issue. By implementing a middle layer solution for
the filtering and sanitizing content can assist with incorrectly entered data. Furthermore,
the implementation of the SCSSL widgets bind the input to a certain format and allow
for minimal deviation. There are however edge cases which have not been tested and
could lead to the detriment of data. Therefore, the current implementation must still be
assessed, evaluated and refined through future iterations to establish its validity to solving
the research question.

As this thesis extends the current research being done in the form of a PhD dissertation,
it only fills a small void in the problems that spreadsheets have, as these issues do not
only affect data but a wide range of other issues as well.

7.1. Future work

Due to the fact that this thesis contributes to a larger dissertation, more work in this field
will most certainly be required. The prototype would need to be extended to support
multiple types and provide better support for the MxL language. Over and above that, as
the SCSSL concept and prototype is integrated with the SocioCortex, one has to establish
if this concept is indeed an efficient way of editing wikis and modeling information. There
might exist a range of other options such as third party input integration, natural language
input recognition or AI models that create models based on analysis of many existing
spreadsheets.

66

7. Conclusion

Moreover, due to the Wijmos Framework mentioned issue of closed source software and
limited support it would also be beneficial to re-visit other spreadsheet frameworks. Whilst
doing a compilation of frameworks, a newer framework called “Handsontable”32 turned
out to be of a promising nature. Handsontable not only has the same features as Wijmo
Flexgrid but it also is open-source. It has a rising community of adopters and supporters;
and is inexpensive to use. Furthermore, projects like “nghandsontable33” are already
written to fill the void of Angular support.

Lastly, it is imperative that one conducts evaluations and user testing in order to empir-
ically validate the concept proposed and prototype created in this thesis.

Spreadsheets are in essence a construct from the “stone age” of computers.
At their core they have conceptually not changed much at all in functionality,
nor in user interface design. They will be with us for many years to come and
therefore it is imperative to solve issues that they present. It is in addressing
these problems that one seeks to reduce the risk of failure for many organiza-
tions and industries in the future. Therefore any refinement in this area will
be of great value to its users.

32http://handsontable.com/
33https://github.com/handsontable/ngHandsontable

67

Bibliography

[1] October 2015. URL https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/

SocioCortex. (Cited on pages x and 22.)

[2] October 2015. URL http://www.eusprig.org/horror-stories.htm. (Cited on
pages 3 and 9.)

[3] September 2015. URL http://news.microsoft.com/bythenumbers/index.HTML.
(Cited on page 2.)

[4] Robin Abraham and Martin Erwig. Type inference for spreadsheets. In Proceedings
of the 8th ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 73–84. ACM, 2006. (Cited on pages 16 and 17.)

[5] Robin Abraham, Martin Erwig, Steve Kollmansberger, and Ethan Seifert. Visual
specifications of correct spreadsheets. In Visual Languages and Human-Centric Com-
puting, 2005 IEEE Symposium on, pages 189–196. IEEE, 2005. (Cited on page 18.)

[6] Yanif Ahmad, Tudor Antoniu, Sharon Goldwater, and Shriram Krishnamurthi. A
type system for statically detecting spreadsheet errors. In Automated Software Engi-
neering, 2003. Proceedings. 18th IEEE International Conference on, pages 174–183.
IEEE, 2003. (Cited on page 16.)

[7] Tudor Antoniu, Paul Steckler, Shriram Krishnamurthi, Erich Neuwirth, Matthias
Felleisen, et al. Validating the unit correctness of spreadsheet programs. In Software
Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on, pages
439–448. IEEE, 2004. (Cited on page 17.)

[8] Wynn Bailey, Brenda Dillon, Matthew Labarge, John Taylor, Khushwant Gill, Don-
ald S Lloyd, and Wade M Person. Ribbon-style user interface for a software applica-
tion, March 27 2008. US Patent App. 12/056,902. (Cited on page 2.)

[9] Kenneth R Baker, Stephen G Powell, Barry Lawson, and Lynn Foster-Johnson. Com-
parison of characteristics and practices amongst spreadsheet users with different levels
of experience. arXiv preprint arXiv:0803.0168, 2008. (Cited on page 4.)

68

https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex
https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex
http://www.eusprig.org/horror-stories.htm
http://news.microsoft.com/bythenumbers/index.HTML

Bibliography

[10] Sasa Baskarada. How spreadsheet applications affect information quality. Journal of
Computer Information Systems, 51(3):77–84, 2012. (Cited on page 9.)

[11] Anil Bhansali, Rohit V Wad, Eric Michelman, and Wyatt T Riley. Method and
system for allowing multiple users to simultaneously edit a spreadsheet, December 21
1999. US Patent 6,006,239.

[12] William H Brown, Raphael C Malveau, and Thomas J Mowbray. Antipatterns:
refactoring software, architectures, and projects in crisis. 1998. (Cited on pages 2
and 5.)

[13] Michel Buffa and Fabien Gandon. Sweetwiki: semantic web enabled technologies in
wiki. In Proceedings of the 2006 international symposium on Wikis, pages 69–78.
ACM, 2006. (Cited on page 19.)

[14] Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg Rothermel, Jay Summet,
and Chris Wallace. End-user software engineering with assertions in the spreadsheet
paradigm. In Proceedings of the 25th international conference on Software engineer-
ing, pages 93–103. IEEE Computer Society, 2003. (Cited on page 17.)

[15] Chris Chambers and Martin Erwig. Dimension inference in spreadsheets. In Visual
Languages and Human-Centric Computing, 2008. VL/HCC 2008. IEEE Symposium
on, pages 123–130. IEEE, 2008. (Cited on page 14.)

[16] Michael J Coblenz, Andrew J Ko, Brad Myers, et al. Using objects of measurement
to detect spreadsheet errors. In Visual Languages and Human-Centric Computing,
2005 IEEE Symposium on, pages 314–316. IEEE, 2005. (Cited on pages 16 and 17.)

[17] Grenville J Croll. The importance and criticality of spreadsheets in the city of london.
arXiv preprint arXiv:0709.4063, 2007. (Cited on page 9.)

[18] Jácome Cunha, João Paulo Fernandes, Jorge Mendes, and João Saraiva. Mdsheet:
A framework for model-driven spreadsheet engineering. In Proceedings of the 34th
International Conference on Software Engineering, pages 1395–1398. IEEE Press,
2012. (Cited on page 16.)

[19] Angelo Di Iorio, Fabio Vitali, and Stefano Zacchiroli. Wiki content templating. In
Proceedings of the 17th international conference on World Wide Web, pages 615–624.
ACM, 2008. (Cited on page 19.)

[20] Martin Erwig and Margaret Burnett. Adding apples and oranges. In Practical Aspects
of Declarative Languages, pages 173–191. Springer, 2002. (Cited on page 17.)

69

Bibliography

[21] Anja Haake, Stephan Lukosch, and Till Schümmer. Wiki-templates: adding structure
support to wikis on demand. In Proceedings of the 2005 international symposium on
Wikis, pages 41–51. ACM, 2005. (Cited on page 19.)

[22] Nilesh Jain, Priyanka Mangal, and Deepak Mehta. Angularjs: A modern mvc frame-
work in javascript. Journal of Global Research in Computer Science, 5(12):17–23,
2015. (Cited on pages 46 and 47.)

[23] Brian Knight, David Chadwick, and Kamalesen Rajalingham. A structured method-
ology for spreadsheet modelling. arXiv preprint arXiv:0805.4218, 2008.

[24] David M Lane, H Albert Napier, S Camille Peres, and Anikó Sándor. Hidden costs of
graphical user interfaces: Failure to make the transition from menus and icon toolbars
to keyboard shortcuts. International Journal of Human-Computer Interaction, 18(2):
133–144, 2005. (Cited on page 28.)

[25] Florian Matthes, Christian Neubert, and Alexander Steinhoff. Hybrid wikis: Em-
powering users to collaboratively structure information. ICSOFT (1), 11:250–259,
2011. (Cited on pages 19, 20, and 21.)

[26] Jorge Mendes. Classsheet-driven spreadsheet environments. In Visual Languages and
Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on, pages 235–236.
IEEE, 2011. (Cited on page 16.)

[27] Martin J O’Connor, Christian Halaschek-Wiener, and Mark A Musen. Mapping
master: A flexible approach for mapping spreadsheets to owl. In The Semantic
Web–ISWC 2010, pages 194–208. Springer, 2010. (Cited on page 18.)

[28] Raymond R Panko. What we know about spreadsheet errors. Journal of End User
Computing, 10:15–21, 1998. (Cited on page 3.)

[29] Amit Phalgune, Cory Kissinger, Margaret Burnett, Curtis Cook, Laura Beckwith,
and Joseph R Ruthruff. Garbage in, garbage out? an empirical look at oracle mistakes
by end-user programmers. In Visual Languages and Human-Centric Computing, 2005
IEEE Symposium on, pages 45–52. IEEE, 2005. (Cited on page 14.)

[30] Stephen G Powell, Kenneth R Baker, and Brian E Lawson. Errors in operational
spreadsheets: A review of the state of the art. In System Sciences, 2009. HICSS’09.
42nd Hawaii International Conference on, pages 1–8. IEEE, 2009. (Cited on page 3.)

[31] Daniel J Power. A history of microcomputer spreadsheets. Communications of the
Association for Information Systems, 4(1):9, 2000. (Cited on page 2.)

70

Bibliography

[32] Thomas Reschenhofer and Florian Matthes. An empirical study on spreadsheet short-
comings from an information systems perspective. In Business Information Systems,
pages 50–61. Springer, 2015. (Cited on pages 2, 3, and 6.)

[33] Thomas Reschenhofer, Ivan Monahov, and Florian Matthes. Type-safety in ea model
analysis. In Enterprise Distributed Object Computing Conference Workshops and
Demonstrations (EDOCW), 2014 IEEE 18th International, pages 87–94. IEEE, 2014.
(Cited on pages x, 20, and 21.)

[34] Gregg Rothermel, Lixin Li, Christopher DuPuis, and Margaret Burnett. What you
see is what you test: A methodology for testing form-based visual programs. In
Proceedings of the 20th international conference on Software engineering, pages 198–
207. IEEE Computer Society, 1998. (Cited on page 14.)

[35] Marton Sakal and Veselin Pavlicevic. Spreadsheets-how it started. Management, 9
(4):09–14, 2003. (Cited on pages x, 2, and 3.)

[36] Vipin Samar and Sangeeta Patni. Controlling the information flow in spreadsheets.
arXiv preprint arXiv:0803.2527, 2008. (Cited on page 19.)

[37] Sebastian Schaffert. Ikewiki: A semantic wiki for collaborative knowledge manage-
ment. In Enabling Technologies: Infrastructure for Collaborative Enterprises, 2006.
WETICE’06. 15th IEEE International Workshops on, pages 388–396. IEEE, 2006.
(Cited on page 19.)

[38] Adam Souzis. Building a semantic wiki. Intelligent Systems, IEEE, 20(5):87–91,
2005. (Cited on page 19.)

[39] United States Code. Sarbanes-oxley act of 2002, pl 107-204, 116 stat 745. Codified
in Sections 11, 15, 18, 28, and 29 USC, July 2002. (Cited on page 19.)

[40] R Hevner von Alan, Salvatore T March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS quarterly, 28(1):75–105, 2004. (Cited
on pages x, 5, 6, and 9.)

71

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Motivation
	Research Question
	Research Method
	Outline

	Environment
	Business Needs
	Existing Technology

	Knowledge Base
	Terminology
	Errors in Spreadsheets
	Type Checking and Model Approaches
	Inferring Templates from Spreadsheets
	ClassSheets
	Label and Unit Approaches
	The Assertion Approach
	Data Mapping Approach
	The Visual Approach
	Service-Orientated Architecture (SOA) to Control Information Flow

	Hybrid Wikis
	Current State
	Hybrid Wikis and the Spreadsheet Prototype
	The SocioCortex Architecture

	Attributes of the SocioCortex
	Data Types
	Additional Properties

	Conceptual Design
	Conceptual Design
	SocioCortex Sheet Smart Layer (SocioCortex SSL)
	SC Angular Library
	SCSSL Architecture

	SCSSL Controller Functions
	SCSSL Number - Number Transformation Functions
	SCSSL Date - Date Transformation Functions
	SCSSL Enum - Enumerable Support Functions
	SCSSL Rich String - WYSIWYG Transformations
	SCSSL Derived Attribute Support Functions
	SCSSL Text - Text Countdown / Validation Function
	SCSSL Referenced Entity Support Functions
	SCSSL No Type Support Functions

	SCSSL UI
	Number UI
	Date UI
	Enum UI
	Entity Reference UI
	No Type UI
	Derived Attribute UI
	Rich String UI (WYSIWYG), Image UI & Text UI

	SCSSL Multiplicity Handler
	Multiplicity Transformation Function
	Multiplicity User Interface

	SCSSL UI Overall Mockup

	Software Design and Implementation
	Software design
	AngularJS Framework
	Spreadsheet Framework
	The Wijmo Framework
	The Flexgrid from the Wijmo Framework
	SC Angular Library in Detail

	The SC Sheet Directive
	Bootstrap Loading Process
	The scBaseObject
	Multiplicity Loading
	Linked Entity Data

	scEntityData, scAttributes and scSet Objects
	Editing Process for Controls
	The Editing Process for Controls (SCSSL)
	The No Type Process
	The Reference Type Process

	Widget Editing Process (SCSSL UI)
	Implementation of SCSSL Date UI
	Implementation of SCSSL Enum UI
	Implementation of the SCSSL Number UI
	Implementation of other UI elements

	Evaluation
	Prototype Issues
	Using a closed source framework
	Ongoing development of the SocioCortex Framework
	Insufficient AngularJS and Wijmo Knowledge
	Time-frame and Underestimation of Scope

	Critical Reflection

	Conclusion
	Future work

