
Uncertainty expressions in software architecture group decision
making

Explorative study

Klym Shumaiev
Technical University of Munich

Boltzmannstr. 3
Garching b. Muenchen, Germany

85748
klym.shumaiev@tum.de

Manoj Bhat
Technical University of Munich

Boltzmannstr. 3
Garching b. Muenchen, Germany

85748
manoj.mahabaleshwar@tum.de

Oleksandra Klymenko
Technical University of Munich

Boltzmannstr. 3
Garching b. Muenchen, Germany

85748
alexandra.klymenko@tum.de

Andreas Biesdorf
Siemens CT

Otto-Hahn-Ring 6
Munich, Germany 81739

andreas.biesdorf@siemens.com

Uwe Hohenstein
Siemens CT

Otto-Hahn-Ring 6
Munich, Germany 81739

uwe.hohenstein@siemens.com

Florian Matthes
Technical University of Munich

Boltzmannstr. 3
Garching b. Muenchen, Germany

85748
matthes@in.tum.de

ABSTRACT
Software architecture can be seen as a set of architectural design
decisions (ADDs) that shape the resulting software solution. To
make an ADD, stakeholders follow some organization- or team-
specific group decisions making process. In this study, we aimed
to advance the understanding of how ADDs are made by observ-
ing and learning how architects handle uncertainties in real-life
settings. We employed a multiple-case studies research method.
First, we examined the discussions in task management systems
of three software engineering projects. Second, we conducted in-
terviews with the projects’ software architects to investigate (a)
uncertainties expressed in the observed discussions and (b) how
those uncertainties are comprehended by their respective authors
or readers. We systematically analyzed the interviews and derived
different types of uncertainties as well as proposed a hypothesis
that should be verified in the future work. Results of our qualitative
study show how uncertainty is used and perceived by the software
architects in the group decision-making process.

CCS CONCEPTS
• Software and its engineering → Software implementation
planning; Agile software development; Software maintenance tools;

KEYWORDS
Uncertainty, software architecture decision-making, group-decision
making, architecture sustainability

ACM Reference format:
Klym Shumaiev, Manoj Bhat, Oleksandra Klymenko, Andreas Biesdorf, Uwe
Hohenstein, and Florian Matthes. 2018. Uncertainty expressions in software
architecture group decision making. In Proceedings of The 4th Workshop on
Sustainable Architecture, Madrid, Spain, September 2018 (ECSAW’18), 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ECSAW’18, September 2018, Madrid, Spain
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A software architecture (SA) can be seen as a set of architectural
design decisions (ADDs) that shapes the resulting software solu-
tion [9]. The industrial case-studies [20, 25, 26] show that architec-
tural decision making (ADM) is a group activity. To make an ADD,
stakeholders follow some organization- or team-specific group de-
cisions making (GDM) processes [28]. An important step in GDM
includes establishing a shared understanding of the goals, the re-
quirements, the design problems, the existing system’s behavior, ar-
chitectural elements, and context such as assumptions, constraints,
and tradeoffs. Moreover, studies [25, 26] show that teams of archi-
tects and developers predominantly use unstructured approaches,
in particular, discussions to arrive at consensus during ADM.

On the one hand, choosing discussions seems to be intuitive
for stakeholders while making group decisions; it does not require
any initial training for the participants and everyone is familiar
with it as they would have experienced it in daily lives. Discussions
provide a lot of freedom to the participants and the lack of any fixed
structure allows them to think openly and communicate without
being constrained by any decision-making process. On the other
hand, freedom comes with cost; making group decisions can be less
effective and can impair the quality of a decision by introducing
flaws like (1) information asymmetry: discussions do not encourage
any systematic participation of the stakeholders, which can bias
the information shared in the group [4]; (2) lower accountability:
acceptance of excessive informality in groups due to the absence of
informationmanagement and control protocols [24]; 3) architectural
knowledge evaporation [26].

One way to improve the GDM process in SA is to adopt struc-
tured approaches or introduce some structure in certain phases
of discussions (for example, facilitating stakeholders to rely on an
expert or a tool to channel a discussion in a structured manner). To
enable this shift, researches see potential in conducting more em-
pirical studies, that help to deepen the understanding of industrial

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ECSAW’18, September 2018, Madrid, Spain Shumaiev et al.

GDM practices and specific needs that can enhance the effective-
ness of the decision-making process through tools, GDM methods,
structural changes in groups, etc.

In our empirical study, we focus on a particular phenomenon,
expressions of uncertainty in the process of architectural GDM.
We borrow the definition of uncertainty from the work of Jordan
et al. [10], where they refer to expressed uncertainties as situa-
tions when individuals have a sense of wonder, doubt, or unease
about how the future will unfold, what the present means, or how
to interpret the past. For instance, during the process of GDM in
SA, stakeholders can be uncertain about possible consequences of
the changes made to the architectural elements, the likelihood of
external environmental changes (hosting infrastructure or users’
input); they can be unsure about their knowledge or understanding,
can be ambivalent about their choices, preferences, or values; and
can perceive that they hold incomplete, contradictory, ambiguous,
or untrustworthy information. Furthermore, since uncertainty in
human life is ubiquitous, multifaceted, and unavoidable, the discus-
sions during GDM in SA would also capture these feelings, shaped
and revealed in the form of natural language.

The goal of our study is to identify uncertainty expressions in
dialogs of stakeholders during the GDM process, and document
writers’ intention in using uncertainty expressions, and readers’
perception of those uncertainties. The results of our exploratory
empirical study can be reused in order to derive strategies for de-
signing approaches and tools, that guide stakeholders towards a
structural GDM process in SA.

2 RELATEDWORK
There is a plethora of studies in the context of software development
that proposes approaches to deal with uncertainties. Due to the
broadness of the term, we explicitly differ our work from studies [7,
14], that approach uncertainty as a quantifiable property, that can
be simulated in the early phases of requirements engineering and
ADM process. In theory, if such approaches were applied to a GDM
process, then they would introduce structure in GDM.

H. Yang et al. [30] focus on speculative statements in require-
ments captured in natural language. Results of their work show
that automatic identification of uncertainty expressions in require-
ment specifications can be done with a high accuracy (more than
80%). In this regard, authors point out that future research should
help to understand what effect uncertainty has on requirements’
(mis-)understanding, do stakeholders have to clarify speculative re-
quirements as early as possible or just leave it “as-is” for architects
and developer to have a larger design space to explore solutions.

In the same work, authors present advances made by natural
language processing (NLP) communities in detecting uncertainty
expressions for different domains [16, 18]. Moreover, we found
similar evidences in more recent works [15, 23]. Nevertheless, to the
best of our knowledge, there is no work on automatic detection of
uncertainty expressions in the artifacts of ADM or GDM containing
textual information.

C. Yang et al. [29] draw SA research community’s attention to the
phenomenon of architectural assumptions (AAs) and their manage-
ment in industry. In their work, authors interview 21 architects and
conduct a set of workshops to explore the role of AAs in designing

SA. Authors speculate that uncertainty could be a key element of
an AA and its elimination might transform these AAs into ADDs.
Authors conclude that there are no approaches or tools, which help
architects to manage AAs. Thus, we see our work as a step towards
understanding how AAs can be identified and managed.

The study performed by Jordan et al. [10] shows how discussions
are formed and the role uncertainty expressions play in discussions.
In their exploratory study, researchers observe students interacting
in a computer-mediated environment to construct an understand-
ing of new concepts from the course readings. Results of the study
demonstrated that students enjoyed discussions and had a belief
that it contributed to their learning. Contrary to the opinion that
learning is a process of reducing uncertainty, authors propose to
treat learning as the process of cultivating uncertainties in dis-
cussions. Authors explain how students during their discussions
managed to create an open space for idea exploration using uncer-
tainty expressions: “The expression of uncertainty possibly enabled
computer-mediated discourse participants to play with new intellec-
tual ideas without running into the risk of sounding like a know-it-all,
of being impolite, or being held accountable for their claims.”.

3 APPLICATION OF A MULTIPLE-CASE
STUDIES DESIGN

We followed a multiple-case studies design adopted from the work
of Yin et al. [31]. The strength of themultiple-case studies design lies
not only in its ability to demonstrate consistent patterns of behavior
but also, and perhaps more importantly, in its ability to uncover
new divergent themes [32]. Exploration of these themes powered
by the replication process, which is a cornerstone of multi-case
studies design and can be seen as conducting a set of independent
experiments on related topics [31]. In contrast to a single case study
design, the presence of the replication process in multiple-case
studies allows researchers not only to observe the phenomenon in
unique settings but also to build a preliminary theory that describes
a phenomena [5]. We performed our study in eight consequent
steps as illustrated in Figure 1 and elaborated those steps in the
subsequent subsections.

3.1 Determining study boundaries
Through a survey [26], Rekha and Muccini showed that 87% of the
respondents acknowledged that there is an omission of major deci-
sions and 40% of them mentioned that such omission happen quite
often. Such responses indicate that quite often, ADDs in projects
stay implicit, which makes it difficult not only to identify final
decisions, but also to recover the process of how those decisions
were made. Thus, to study the GDM process in SA, researchers
have to be real-time observers, participating in face-to-face meet-
ings between stakeholders [27], study chat communications [1], or
explore the content of task management systems (TMS) [3], and
its relationship to the source code[21]. In our study, we focus on
task management systems due to several reasons: 1) there is ev-
idence of their wide adoption within industrial and open-source
software engineering projects [3, 22]; 2) discussions within TSM
are chronologically organized around specific problems and often
contain records of communication between architects and other

Uncertainty expressions in software architecture group decision making ECSAW’18, September 2018, Madrid, Spain

3. Design
interview
protocol

1. Determine
study boundaries

5.a Case study 2
(interviews 3 ,4)

2. Select relevant
projects

4.a Case study 1
(interviews 1,2)

6.a Case study 3
(interview 5)

4.b Analyze data

6.b Analyze data

5.b Analyze data

7. Draw cross-
case conclusions

8. Develop
hypothesis and

implications

Figure 1: Steps in a multiple-case studies design

stakeholders; 3) relative accessibility of TMS in comparison to other
artifacts (like, emails).

3.2 Sample selection
The selection of cases for further investigation was restricted to soft-
ware engineering projects, where 1) software architects involved
in the software engineering projects were ready to participate in a
qualitative study; 2) TMS was used during the development process
and we were able to access its data; and 3) tasks in TMS contained
common attributes that relate to the decision rationale and con-
tributed to the final ADD.

While first two restrictions were dictated by the willingness of
practitioners to cooperate with us, the third one required a pre-
liminary study of the content in each of the project’s TMS. Two
authors of this paper used filtering and sorting functionalities of the
TMS to check if candidate projects had tasks consisting of textual
description and stakeholders discussions around them. Tasks were
classified as leading to ADDs, if their textual description or any
comment in the task matched the classification rules summarized in
an ADD annotator guideline 1 which was also used in our previous
work on automatic extraction of ADDs [3]. For example, a task
containing discussions should be labeled as an ADD, if stakeholders
discuss adding or removing plugins/libraries, altering the process
flow or the functionality of certain components, adding/removing
classes or methods, etc. Furthermore, English had to be the main
language of communication in TMS. As a result of our preliminary
study of the available projects’ TMSs, only three projects (described
in Section 4) met the sample selection criteria.

3.3 Data collection
Each of the selected projects were considered as a unique environ-
ment for an individual case study. Each case study has a number of
interviews with project stakeholders who were involved in ADM in
those projects. To initiate the first case study (step 4a in Figure 1),
an initial interview protocol was designed (step 3) which resulted in
1https://wwwmatthes.in.tum.de/file/39cg0w3tgji7

4 questions about
interviewee’s

expertise

11 questions about
decision making

process in the project

10 questions about
uncertainty cues

discovered in the tasks
printouts

Figure 2: Interview blocks

three interview blocks (cf. Figure 2) comprising of 25 questions2. In
total, 5 interviews with practitioners were conducted sequentially
by the first and the third authors of this paper.

The first interview block contained questions about the pro-
fessional experience of interviewees, how long they have been
involved in the project, and what their role in the project. The
second block included questions about how many developers are
involved in the project and what communication means they used,
how decision-making process was organized, and how elaborate
were technical specifications in the projects. The first two blocks of
interviews helped us to study how GDM process was organized and
how practitioners perceived their role and roles of their colleagues
during discussions.

In the third interview block, we aimed to discuss with intervie-
wees particular occurrences of uncertainty expressions in the ADM
process. Therefore, tasks from each project were filtered and sorted.
Priority was given to those tasks where an interviewee was actively
participating and contained relatively a large number of comments.
Depending on the amount of comments in the task, the number of
printed tasks per case study differed from 3 to 6 (due to the con-
straint that only a few tasks could be discussed with interviewees
in a limited amount of time). Eventually, all selected tasks from
specific projects were printed twice before each interview. Final
printouts contained textual description of the task and discussions
around it; all meta-information related to the task, for example, type
of the task (bug, feature, blocker), priority, creation date, authors
of the task, assignee, and commentators were also included.

2https://wwwmatthes.in.tum.de/file/1p3sf2cd0ak81

ECSAW’18, September 2018, Madrid, Spain Shumaiev et al.

The second copy of each tasks’ printout was used by two authors
of this paper to manually annotate the occurrences of uncertainty in
textual descriptions and comments. The annotation process adhered
to a guideline used in the study on linguistic uncertainty [6]. For
instance, a statement must be labeled as “uncertain” if it contains
cues that match one of the uncertainty cues from the set compiled
by Hyland et al. (e.g., guess, think, probably, etc.) [8]. A real-world
example of such an uncertain statement can be: "I’m assuming that
this change was unintentional, so I thinkwe should probably revert.".
Another rule is that questions inherently include uncertainty and,
therefore, they were not annotated as uncertain statements.

At the beginning of the third interview block, printouts without
annotations were given to the interviewees. We asked interviewees
to manually annotate statements, that in their opinion contained
uncertainty and to justify why they considered them as uncertain
(Task 1). To avoid study biases, interviewees were not provided
with any definition of the term “uncertainty” beforehand. As soon
as the annotation process was completed, interviewees were given
the second printout of the same task containing already highlighted
annotations. In this way, interviewees were able to compare both
the printouts (Task 2) and we had a chance to ask the following
questions:

• How do they interpret uncertainty cues that hadn’t been
highlighted by them?

• How do they interpret their own uncertainties in the com-
ments or task descriptions?

• How do they interpret uncertainties expressed by their team-
mates in the same task?

• Would they rephrase statements that contain uncertainties?
• How did the expressed uncertainties influence their under-
standing of the problem?

• If and how did the expressed uncertainties influence their
decisions in the context of current task?

Neither the interview questions nor the printouts were provided
to the participants before the interview, except for interview 5,
where the questions catalog was forwarded to the participant due
to legal reasons. For 3 out of 5 interviewees, it was possible to
find examples of their own comments which included uncertainty
cues, so that some first-hand feedback could be obtained and later
compared with the teammate’s perception of the same uncertainty
cue. More time was spent on discussions related to the project’s
organization and how ADDs are made within projects, rather than
on the exploration of uncertainties in tasks. This was caused by the
eagerness of interviewees to dive deeper into the topic and authors’
conscious unwillingness to interrupt them. As a result, interviews
took longer time than planned - around 80 minutes on an average.

3.4 Data analysis
An important feature of the multiple-case studies design is that
it naturally enforces the employment of a “constant-comparative”
method, which is characterized as an iterative process of data collec-
tion, analysis, comparison, and revision during the entire study [2].
The replication strategy helps to identify possible patterns in data
and explore them by returning to the field for more data. In Figure 1,
the iterative process is illustrated using dashed lines.

Following our study design, after each interview, we revised the
notes that had been taken during the interviews and extended them
by transcribing interview highlights captured in audio recordings.
Information was codified and linked to the printouts used during
the interviews. As a result, observations made after each interview
could be reused for asking additional or clarifying questions in the
upcoming interviews. In case interviewees were participants of
the same case study, we were able to omit some general questions
about the project’s organization in the later iterations.

As soon as all the interviews were performed, all transcripts
were reviewed again, common responses were grouped and used
as evidence to support the derived hypothesis described in the
next Section. We counted all uncertainty expressions annotated by
practitioners during the interviews and the number of sentences in
tasks’ descriptions, and discussions around them.

4 FINDINGS
As illustrated in the Figure 1, we conducted three case studies. In
each case study, we analyzed specific software engineering projects
with unique organizational and development environments as de-
scribed below.

4.1 Case study 1 (CS1): A healthcare
management system

The first two interviewees had been involved in the development
of a healthcare management system for the European hospitals. At
the time of the interviews, the duration of the project was eighteen
months, the project team consisted of ten contributors spread over
six European countries, and used one shared TMS, in particular,
a Jira instance containing 318 tasks. For the interviews, we got in
touch with two of the contributors, who were located in the same
office and were responsible for the development of the data storage
layer for the entire system. The other eight contributors were lo-
cated in five other cities and had to rely on the work performed by
those two contributors, since the data layer was the most critical
and integral part of the system.

Interviewee 1 is a software architect. With five years of pro-
fessional experience, he has been involved in this project since its
initiation. As the team is geographically distributed, a lot of effort
was spent on clarifying with other contributors how the communi-
cation protocol between the clients and the storage layer should be
implemented. At the beginning of the project, all communications
were done via e-mails. Later, the contributors switched to a web-
communication tool for a more direct communication with less
waiting time. The TMS had been introduced to the project around
three months before the interviews were held and therefore, con-
tained a rather small amount of tasks. According to Interviewee 1,
currently, there is a disagreement on how to use the TMS and how
to document tasks in the project. Team members are encouraged
to put all the tasks in TMS, however, this is usually done after pre-
liminary discussions via a web-conference tool. Nevertheless, we
were able to identify tasks, where Interviewee 1 was contributing
to the discussions that led to ADDs.

Interviewee 2 with six years of professional experience per-
forms the role of a software developer and has been working on
this project for the last twelve months, supporting Interviewee

Uncertainty expressions in software architecture group decision making ECSAW’18, September 2018, Madrid, Spain

1 in the development phase. In his case, we were able to detect
tasks where he was responsible for the implementation but was
not taking part in discussions within those tasks. Therefore, we
were not able to identify any discussions in TMS, where he himself
was personally involved, though there were tasks assigned to him
and he was responsible for them. As a consequence, to observe
how Interviewee 2 would perceive uncertainties expressed by his
teammate, we asked Interviewee 2 to annotate and comment on
uncertainty expressions in the tasks where Interviewee 1 had been
involved in the discussions.

4.2 Case study 2 (CS2): A platform for mobility
services

The goal of this software engineering project was to develop a
software platform that enables building innovativemobility services
for urban spaces (for example, providing optimal mobility options
for individuals and reducing traffic congestion in cities with more
than a million inhabitants). This project had lasted for two years.
During that time period, the number of teammembers in the project
grew from six to fourteen developers. However, at the time of the
interview, it had decreased to seven contributors and most of them
were collocated in the same office. The team used Jira as a TMS,
which contained 1,232 tasks.

Interviewee 3 performed the role of a software developer and
had been involved in making ADDs within the project. He had
seven years of professional experience and had joined the project a
year ago.

Interviewee 4 joined the project six months ago and performed
the role of a software architect with four years of professional
experience.

Mostly, ADDs within this project were made in face-to-face meet-
ings. If the participants were not available in the same office, then a
web-conference tool was used. Interviewee 4 mentioned that there
was a Wiki page for each of the architecture element. After dis-
cussions, each team member responsible for a specific architecture
element would document the ADDs in the corresponding Wiki
pages. However, our request to access those Wiki pages was de-
clined due to security reasons. Interviewee 3 described how tasks in
Jira were created: “Usually, we sit down, discuss, and after we have al-
ready decided, we create a task in Jira. Therefore, in my case, my tasks
were always clear to me.”. However, interviewees acknowledged that
most of the time uncertainties arise when someone creates a task
for someone else without preliminary discussions and therefore,
some of the tasks contain comments towards clarifying those un-
certainties.

4.3 Case study 3 (CS3): An open-source
database management system

In the third case study, we investigated the development of an open-
source distributed NoSQL database management system that has
been developed for more than ten years. The development process
in the project includes a decentralized community of developers
from around the globe. The team which consists of twenty four
contributors, out of which, around ten to fifteen contributors are
active. The project contributors actively use Jira as the TMS tool,
which contained 14,193 tasks at the time of the interview. The

project is not strictly hierarchical; there is no single responsible
person and everything is based on merit. However, there is a Project
Management Chair (PMC) which has regular members and an
implicit project lead who may give a general direction to the project.

With eleven years of professional experience, Interviewee 5 has
been actively contributing to the project in the role of a software
developer for the past two years.

Since the team of contributors is widely distributed, most of
the discussions that lead to ADDs happen asynchronously via Jira.
Though, when developers want to short-circuit something and
discuss smaller questions (as Interviewee 5 put it, “do not deserve
to be historically noted in Jira”), IRC channel may be used with
someone who is currently online from the same time-zone. In case
a decision is made in IRC, it is then documented in the TMS.

4.4 Uncertainty expressions in ADM
discussions

In Table 1, we present the number of the investigated tasks per
each case study along with the number of comments, sentences,
and uncertainties in each ADM discussion around those tasks. Each
interview took around eighty minutes. On average around hun-
dred and thirteen sentences were annotated and discussed by each
interviewee. As Jira was the main communication tool in CS3, it
contained the largest number of sentences, messages, and uncertain-
ties in comparison to other cases. Therefore, during the interview,
it was possible for Interviewee 5 to annotate only one task and
its discussions. In total, six tasks were annotated by interviewees
in CS1 and five tasks in CS2. Unfortunately, only one interviewee
from CS3 agreed to participate in this case study.

As the goal of our study was to explore the phenomenon of
uncertainty expressions in discussions from the perspective of prac-
titioners, during the interview, we provided participants with pres-
elected tasks that contained at least two uncertainty cues identified
by us in the data collection phase. Thus, the numbers presented in
Table 1 should not be treated as a normal distribution of uncertain-
ties over the whole number of tasks in the corresponding projects.
Nevertheless, data in Table 1 should give an overview of the task
discussions that were presented to the interviewees in each of the
case studies.

Based on the responses of the interviewees, one of the main
observations made in our studies is that “quite often, uncertainty
expressions in discussions are not used to express uncertainty itself”.
Below we list some observed examples, where interviewees shared
with us their intentions behind using uncertainty expressions in
their discussions.

(1) Feedback trigger - politely sharing a possible solution with
the group to get feedback. In CS1, one of the task’s comments
contained “To solve this issue, we think that the more efficient
way is to...”. Interviewee 2 did not consider this comment to
be uncertain. He argued that “they discussed it already in a
group, came up with this solution, and wanted to share it with
the group. So this is more like a feedback trigger.”

(2) Preference - polite expression of a preference among multi-
ple alternatives. For instance, in CS3, a colleague of Intervie-
wee 5 wrote: “In my opinion, the useFiltering name is a bit

ECSAW’18, September 2018, Madrid, Spain Shumaiev et al.

Table 1: Numbers of comments and uncertainties analyzed per CS

CS1 CS2 CS3
Tasks Tasks Tasks

T1 T2 T3 T4 T5 T6 Total T1 T2 T3 T4 T5 Total T1 / Total

Task Description
Number of sentences 2 5 6 5 9 3 30 6 2 2 1 1 12 2
Number of uncertainty cues 0 0 0 2 0 0 2 1 0 0 0 0 1 0

Comments
Number of comments 5 4 7 8 8 2 34 9 2 5 6 2 24 36
Number of sentences 15 8 19 13 24 8 87 33 27 18 13 14 105 146
Number of uncertainty cues 4 4 2 3 2 3 18 6 3 4 3 3 19 38
Number of uncertainty cues per
comment 0,80 1,00 0,29 0,38 0,25 1,50 0,53 0,67 1,50 0,80 0,50 1,50 0,79 1,06

confusing, we should use allowFiltering instead.” As Intervie-
wee 5 explained: “There were two solutions, both would work,
and he wouldn’t say that it is completely wrong to do it the
other way, but he would prefer this way. So this is a preference
rather than uncertainty.”

(3) Reassurance - use of uncertainty expressions for the sake of
reassurance, in case, the expressed certain assumption turns
out to be false. For example, one of the observed statements
in CS1 was:“It seems to be that the error ismaybe related with
not refreshed token.” When Interviewee 2 was asked to reflect
on this statement made by his teammate, he claimed that it
was not uncertainty and provided the following explanation:
“You write it like this, so that, if in the end, if it is not really an
error, you don’t look like an idiot and you have a back door.”

(4) Figure of speech - personal preference to use a figure of
speech to a make statements, generally, more polite. For
example, in CS3, on Interviewee 5’s own statement in the
task’s discussion: “I’ve implemented a fast prototype locally
and it seems to fit both the cases.”, he commented that “It
[usage of ‘seems’] was a figure of speech, I didn’t want to look
like I was overly confident.”

We also observed cases where interviewees admitted to be uncer-
tain or stated that the author of the comment expressed uncertainty.
For example, in Task 1 (T1) of CS1, Interviewee 1 demonstrated
uncertainty in regards to his colleague’s decision to implement
changes to the functionality of the system: “... I’m still not sure
if it should be part of the backend [implementation], ...”, which was
immediately followed by the assumption on how it could be im-
plemented: “..., but it would work this way if the request of a patient
would be discarded on the backend while requesting professional in-
formation.” . As Interviewee 1 explained: “He [his colleague] was
really new to the project and he didn’t understand this big picture
[showing layered architecture of the system].”. Therefore, Interviewee
1 wanted to express his uncertainty towards previously made ADD.

In CS3, Interviewee 5 chose to perform the task (T1) to improve
the current functionality of the system. According to Interviewee 5,
T1 was one of his first tasks since his involvement in the project. He
was experiencing lots of uncertainties in the decisions that he was

taking during implementation of that task. Interviewee 5 followed
an iterative development process. He created small patches to the
system and submitted them for code review. At the same time, he
commented after each submission to the T1, explained his decisions,
as well as, expressed his uncertainty towards the behavior of the
system that could be affected by his changes. As Interviewee 5
explained: “In complex projects, you are never 100% certain, you kind
of understand what is going on, but it can always happen that there
is a certain facet/aspect, that you are missing. The more complex the
system is, the harder it is to be 100% sure about something.”. Here are
some examples of uncertain statements towards the implementation
details expressed by Interviewee 5 in T1:

• “I’m still not sure if the handling of multi-columns is correct,
since their SliceRestriction::addRowFilterTo is not permitted in
the moment.”

• “..., I am most likely missing something, but at least so far
the collection types aren’t allowed to be primary key at all ...”

Moreover, as indicated by Interviewee 5, the reviewer of T1 was
also expressing uncertainty towards the implementation details:

• “I guess that problem will also happen for CONTAINS and
CONTAINS KEY restrictions as they cannot be used to build a
Clustering, but can be used to filter...”

• “Instead of modifying getRowFilter, I think that you should
add ClusteringColumsRestrictions to inrexRestrictions if filter-
ing is allowed and some clustering columns restrictions require
filtering.”

Interviewee 5 commented on the reviewer’s last statement: “Prob-
ably he checked it but he was not 100% sure. So he was giving me the
general direction, but he didn’t really do 100% of the work to make
sure it’s correct”.

In CS3, Interviewee 5 also identified uncertainty towards the
estimates of time and complexity of implementation of certain
decisions. For example, “I’m not sure how fast I can pull it out”, “I
am making changes that you have listed, hope to have them ready
shortly”. In some cases, participants of the discussion expressed
uncertainty on a meta-level; towards their understanding of the

Uncertainty expressions in software architecture group decision making ECSAW’18, September 2018, Madrid, Spain

previously provided information or assumption, such as, “I think,
you are just asking me about views here, so I’ll answer that”.

In CS2, Interviewee 4 identified suggestions made by his col-
league regarding architectural changes to be uncertain. For instance,
“In public subnet, I suggest to have reverse proxies only,...” .

In CS1, we observed authority biases. Interviewee 2 expressed
his assumption saying: “Since Interviewee 1 is writing this, I think
he is already pretty sure that this is a backend issue.” However, dur-
ing the discussion with Interviewee 1 about the same uncertainty
expression, he stated that he had actually been uncertain.

In general, irrespective of who authored the uncertainty expres-
sions in discussions (be it the interviewee himself or one of his/her
teammates), disambiguation of uncertainty expressions in discus-
sions required certain cognitive effort from the interviewees and
even then, in some cases, interviewees were uncertain if they per-
ceived and identified uncertainty expressions correctly. Moreover,
all the interviewees mentioned that in their daily lives they never
paid so much attention to uncertainty cues but rather acted on
them unconsciously.

5 DISCUSSION
Treating the SA artifact as a set of ADDs is a well-established
practice among researchers. However, to the best of our knowl-
edge, researches do not have any well-established measurements
for objectively differentiating “good” and “bad” ADDs. Especially
when ADDs are made in different project contexts and organiza-
tional environments. One way to evaluate ADDs is to measure
their sustainability over time; similar to the measurements per-
formed over source-code artifacts (modularization, architecture de-
cay, code smells) [11, 13], systems’ functionality [12], and life-span
of technologies used to develop software systems [17]. Focusing
on uncertainty expressions, their disambiguation, and their evo-
lution throughout team communications contributes to a better
understanding of how sustainable ADDs could be made in soft-
ware projects, particularly when stakeholders rely on unstructured
discussions. In parallel, studies related to decision-making con-
tribute to better understanding of organizational and stakeholders’
behavioral aspects influencing the sustainability of SAs [19, 33].

The number of comments and the number of sentences in each
task shown in Table 1 reflect on the way stakeholders communicate
with each other in a project. For instance, the largest number of
communication messages (comments and sentences) were observed
in CS3, where stakeholders communicated mostly using TMS, con-
trary to the first two case studies, where TMSs was rather used
in an ‘ad-hoc’ manner. In each of the studied software engineer-
ing projects, we found discussions around ADDs that contained
uncertainty expressions.

Based on the interviewees’ responses, we observed that uncer-
tainty constructs are used by architects in group discussions to
express not only subjective estimates with regards to ADDs but
also to trigger feedback regarding the proposed ADDs and to ex-
press their preferences in a polite way.

In this study, we only focused on one type of communication ar-
tifact – discussions in TMS. Discussions in TMS are mostly explicit
and provide evidence of teams’ negotiations to address design con-
cerns. However, tracing uncertainty expressions during the entire

life-span of ADDsmust also involve the observation of synchronous
interactions, which can be done by recording audio during team
meetings and transcribing them thereof. Those transcriptions can
then be used to create conversation coherence graphs for further
analysis (similar to the study by Jordan et al. [10]). However, to
create such graphs for analysis, [human] annotators would have to
be aware of the different types of uncertainty expressions in ADM
as presented in this study.

As Interviewee 4 put it: “In most cases, it’s always about miss-
ing knowledge. During development, you always have to get rid of
uncertainty by collecting knowledge”. One could suggest that early
detection and elimination of the uncertainties in discussions could
help to make discussions more productive. However, guided by the
observations of Jordan et al. [10] and based on our observations of
discussions in TMS, we are rather inclined to suggest that uncer-
tainty expressions usually provoke the involvement of stakeholders
in a project. The existence of uncertainty expressions in discussions
could lead to stakeholders asking new questions for clarification
and unearthing new design alternatives during the process.

Architects who might act as facilitators of group discussions
might also consider cultivating [certain] uncertainty expressions
in those discussions. Thus, participants of group discussions would
stay motivated to resolve the expressed uncertainties, acquire new
architectural knowledge, and in the end, make informed sustainable
ADDs. However, to (in)validate such a hypothesis, further research
on the analysis of stakeholders’ communication in group decision
making process has to be performed. Such studies should take into
consideration the types of uncertainties presented in this paper as
well as the challenges of disambiguating uncertainty expressions.

Interviewees in our study admitted that as the rule of thumb
they use uncertainty expressions so that they do not look overly
confident in front of their colleagues. Using uncertainty expressions
in discussions rather seems to be an unconscious activity. Further
studies need to be performed to understand how architects commu-
nicate doubts during decision making and if and how such behavior
could influence architects’ preference not only while choosing one
of the alternative decision choices but also while involving those
individuals who communicate doubts in a subsequent GDM process.

6 CONCLUSIONS
In this paper, we examined the discussions in task management
systems of three software engineering projects and conducted in-
terviews with two software architects and three software engineers
to investigate uncertainties expressed in those discussions and how
those uncertainty expressions are comprehended by their respec-
tive authors and readers. We systematically analyzed the interviews
and documented different types of uncertainties in architectural
decision making. We observed and presented how practitioners re-
act to their own uncertainties and uncertainties of their colleagues.
Furthermore, we also discussed the challenges of disambiguating
uncertainty expressions in discussions.

The results of this work can be used for further investigation of
GDM in SA, in particular, how uncertainty expressions influence
the process of ADD making in software engineering teams. For ex-
ample, the findings relate uncertainty to communication techniques

ECSAW’18, September 2018, Madrid, Spain Shumaiev et al.

that aim to elicit important information by querying and trigger-
ing for more information. Moreover, for instance, communication
techniques of architects may include expressions of uncertainty
as invitations to other stakeholders to come forward, explain and
complete missing knowledge.

REFERENCES
[1] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge. 2018. How do devel-

opers discuss rationale?. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 357–369. https://doi.org/10.1109/
SANER.2018.8330223

[2] Strauss Anselm and Juliet Corbin. 1998. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Thousand Oaks, California: Saga
Publication (1998).

[3] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, and Uwe Hohenstein. [n. d.].
Automatic Extraction of Design Decisions from Issue Management Systems
: A Machine Learning Based Approach. ([n. d.]). https://doi.org/10.1007/
978-3-319-65831-5_10

[4] Felix C Brodbeck, Rudolf Kerschreiter, Andreas Mojzisch, and Stefan Schulz-
Hardt. 2007. Group decision making under conditions of distributed knowledge:
The information asymmetries model. Academy of Management Review 32, 2
(2007), 459–479.

[5] Kathleen M. Eisenhardt. 1989. Building Theories from Case Study Research. The
Academy of Management Review 14, 4 (1989), 532–550. http://www.jstor.org/
stable/258557

[6] Richárd Farkas, Veronika Vincze, György Móra, János Csirik, and György Szarvas.
2010. The CoNLL-2010 Shared Task: Learning to Detect Hedges and Their
Scope in Natural Language Text. In Proceedings of the Fourteenth Conference on
Computational Natural Language Learning — Shared Task (CoNLL ’10: Shared
Task). Association for Computational Linguistics, Stroudsburg, PA, USA, 1–12.
http://dl.acm.org/citation.cfm?id=1870535.1870536

[7] C. Ghezzi, L. S. Pinto, P. Spoletini, and G. Tamburrelli. 2013. Managing non-
functional uncertainty via model-driven adaptivity. In 2013 35th International
Conference on Software Engineering (ICSE). 33–42. https://doi.org/10.1109/ICSE.
2013.6606549

[8] Ken Hyland. 1994. Hedging in academic writing and EAF textbooks. English for
specific purposes 13, 3 (1994), 239–256.

[9] Anton Jansen and Jan Bosch. 2005. Software architecture as a set of architec-
tural design decisions. In 5th Working IEEE/IFIP Conf. on Software Architecture
(WICSA’05). IEEE, 109–120.

[10] Michelle E Jordan, Diane L Schallert, Yangjoo Park, SoonAh Lee, Yueh-
hui Vanessa Chiang, An-Chih Janne Cheng, Kwangok Song, Hsiang-Ning Rebecca
Chu, Taehee Kim, and Haekyung Lee. 2012. Expressing uncertainty in computer-
mediated discourse: Language as amarker of intellectual work. Discourse Processes
49, 8 (2012), 660–692.

[11] Heiko Koziolek. 2011. Sustainability Evaluation of Software Architectures: A
Systematic Review. In Proceedings of the Joint ACM SIGSOFT Conference – QoSA
and ACM SIGSOFT Symposium – ISARCS on Quality of Software Architectures –
QoSA and Architecting Critical Systems – ISARCS (QoSA-ISARCS ’11). ACM, New
York, NY, USA, 3–12. https://doi.org/10.1145/2000259.2000263

[12] H. Koziolek, D. Domis, T. Goldschmidt, and P. Vorst. 2013. Measuring Architecture
Sustainability. IEEE Software 30, 6 (Nov 2013), 54–62. https://doi.org/10.1109/
MS.2013.101

[13] Duc Le, Daniel Link, Arman Shahbazian, and Nenad Medvidovic. 2018. An empir-
ical study of architectural decay in open-source software. In In IEEE International
Conference on Software Architecture (ICSA) 2018. IEEE.

[14] Emmanuel Letier, David Stefan, and Earl T. Barr. 2014. Uncertainty, Risk, and
Information Value in Software Requirements and Architecture. In Proceedings of
the 36th International Conference on Software Engineering (ICSE 2014). ACM, New
York, NY, USA, 883–894. https://doi.org/10.1145/2568225.2568239

[15] Xiujun Li, Wei Gao, and Jude W Shavlik. 2014. Detecting semantic uncertainty
by learning hedge cues in sentences using an HMM. InWorkshop on Semantic
Matching in Information Retrieval (SMIR. World Scientific, 11.

[16] Marc Light, Xin Ying Qiu, and Padmini Srinivasan. 2004. The language of bio-
science: Facts, speculations, and statements in between. In HLT-NAACL 2004
Workshop: Linking Biological Literature, Ontologies and Databases.

[17] Robert C Martin. 2002. Agile software development: principles, patterns, and
practices. Prentice Hall.

[18] Ben Medlock and Ted Briscoe. 2007. Weakly supervised learning for hedge
classification in scientific literature. In ACL, Vol. 2007. Citeseer, 992–999.

[19] Nils Brede Moe, Aybüke Aurum, and Tore Dybå. 2012. Challenges of shared
decision-making: A multiple case study of agile software development. Informa-
tion and Software Technology 54, 8 (2012), 853–865.

[20] V. S. Rekhav and H. Muccini. 2014. A Study on Group Decision-Making in
Software Architecture. In 2014 IEEE/IFIP Conference on Software Architecture.

185–194. https://doi.org/10.1109/WICSA.2014.15
[21] Arman Shahbazian, Youn Kyu Lee, Duc Le, and Nenad Medvidovic. 2017. Uncov-

ering Architectural Design Decisions. arXiv preprint arXiv:1704.04798 (2017).
[22] Christoph Johann Stettina and Werner Heijstek. 2011. Necessary and Neglected?:

An Empirical Study of Internal Documentation in Agile Software Development
Teams. In Proceedings of the 29th ACM International Conference on Design of
Communication (SIGDOC ’11). ACM, New York, NY, USA, 159–166. https://doi.
org/10.1145/2038476.2038509

[23] György Szarvas, Veronika Vincze, Richárd Farkas, György Móra, and Iryna
Gurevych. 2012. Cross-genre and Cross-domain Detection of Semantic Un-
certainty. Comput. Linguist. 38, 2 (June 2012), 335–367.

[24] D. A. Tamburri, R. Kazman, and H. Fahimi. 2016. The Architect’s Role in
Community Shepherding. IEEE Software 33, 6 (Nov 2016), 70–79. https:
//doi.org/10.1109/MS.2016.144

[25] Dan Tofan, Matthias Galster, and Paris Avgeriou. 2013. Difficulty of Architectural
Decisions – A Survey with Professional Architects. In Software Architecture,
Khalil Drira (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 192–199.

[26] Smrithi Rekha V and Henry Muccini. 2018. Group decision-making in software
architecture: A study on industrial practices. Information and Software Technology
101 (2018), 51 – 63. https://doi.org/10.1016/j.infsof.2018.04.009

[27] Hans van Vliet and Antony Tang. 2016. Decision making in software architecture.
Journal of Systems and Software 117 (2016), 638–644.

[28] Andrew H Van De Ven and Andre L Delbecq. 1974. The effectiveness of nom-
inal, Delphi, and interacting group decision making processes. Academy of
management Journal 17, 4 (1974), 605–621.

[29] Chen Yang, Peng Liang, Paris Avgeriou, Ulf Eliasson, Rogardt Heldal, and Patrizio
Pelliccione. 2017. Architectural Assumptions and Their Management in Industry –
An Exploratory Study. Springer International Publishing, Cham, 191–207. https:
//doi.org/10.1007/978-3-319-65831-5_14

[30] Hui Yang, Anne De Roeck, Vincenzo Gervasi, AlistairWillis, and Bashar Nuseibeh.
2012. Speculative requirements: Automatic detection of uncertainty in natural
language requirements. In Requirements Engineering Conference (RE), 2012 20th
IEEE International. IEEE, 11–20.

[31] Robert K Yin. 1994. Case study research: Design and Methods, Applied social
research methods series, 5. Biography, Sage Publications, London (1994).

[32] Lisl Zach. 2006. Using a multiple-case studies design to investigate the
information-seeking behavior of arts administrators. Library trends 55, 1 (2006),
4–21.

[33] Carmen Zannier and Frank Maurer. 2007. Social factors relevant to capturing
design decisions. In Proceedings of the Second Workshop on SHAring and Reusing
architectural Knowledge Architecture, Rationale, and Design Intent. IEEE Computer
Society, 1.

https://doi.org/10.1109/SANER.2018.8330223
https://doi.org/10.1109/SANER.2018.8330223
https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1007/978-3-319-65831-5_10
http://www.jstor.org/stable/258557
http://www.jstor.org/stable/258557
http://dl.acm.org/citation.cfm?id=1870535.1870536
https://doi.org/10.1109/ICSE.2013.6606549
https://doi.org/10.1109/ICSE.2013.6606549
https://doi.org/10.1145/2000259.2000263
https://doi.org/10.1109/MS.2013.101
https://doi.org/10.1109/MS.2013.101
https://doi.org/10.1145/2568225.2568239
https://doi.org/10.1109/WICSA.2014.15
https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1109/MS.2016.144
https://doi.org/10.1109/MS.2016.144
https://doi.org/10.1016/j.infsof.2018.04.009
https://doi.org/10.1007/978-3-319-65831-5_14
https://doi.org/10.1007/978-3-319-65831-5_14

	Abstract
	1 Introduction
	2 Related work
	3 Application of a multiple-case studies design
	3.1 Determining study boundaries
	3.2 Sample selection
	3.3 Data collection
	3.4 Data analysis

	4 Findings
	4.1 Case study 1 (CS1): A healthcare management system
	4.2 Case study 2 (CS2): A platform for mobility services
	4.3 Case study 3 (CS3): An open-source database management system
	4.4 Uncertainty expressions in ADM discussions

	5 Discussion
	6 Conclusions
	References

