
Design and Implementation of E-Mail

Agent

Project

submitted by

MOHIUDDIN SYED FAISAL

Information and Communication Systems

Masters Program

Supervisors:

Prof. Dr. Florian Matthes

Dipl.-Inf. Ulrike Ste�ens

Kiwi Logic: Mr. Olaf Voss

Technische Universitaet Hamburg-Harburg

Arbeitsbereich Softwaresysteme

Contents

1 Introduction 5

2 Intelligent Agent 7
2.1 Electronic Commerce Agents . 8
2.2 Business Application Agents . 8
2.3 Interface Agents . 9

3 Knowledge and Human Problem Solving 11
3.1 Knowledge . 11
3.2 An Overview of the Cognitive Cycle 12
3.3 The Human Problem Solving Process 14

4 Expert Systems 17
4.1 Components of an expert system 17

4.1.1 Knowledge Base . 20
4.2 Technical characteristics of expert systems 21

4.2.1 Developer Interface . 21
4.2.2 Debugging Utilities . 21
4.2.3 User Interface . 22

5 Types Of Tools 23
5.1 Rule-Based Tools . 23
5.2 Frame-Based Tools . 23
5.3 Fuzzy Logic Tools . 23
5.4 Induction Tools . 24
5.5 Cased-Based Reasoning Tools . 24
5.6 Domain-Speci�c Tools . 24

6 Expert System Concepts 25
6.1 Case-Based Reasoning (CBR) . 25

6.1.1 Introduction . 25
6.1.2 Representing a Case . 26
6.1.3 Indexing Cases . 26
6.1.4 Similarity Matching . 28

1

6.1.5 CBR and Rule-Based Reasoning (RBR) 28
6.1.6 CBR and Model-Based Reasoning 28

6.2 Model-Based Reasoning (MBR) 29
6.3 Rule Based System . 30

6.3.1 Forward and Backward chaining 31
6.3.2 The recognize act cycle 32
6.3.3 Writing a rule base . 33

7 Bot 34
7.1 Introduction . 34

7.1.1 Technical applications of a Bot 35
7.2 Lingubot . 35

7.2.1 Structure of LinguBot . 35
7.3 Working of LinguBot . 42

8 Design and implementation of E. mail agent 45
8.1 The "intelligence" of a Lingubot lies in its rule base. 45
8.2 UML . 47

9 Conclusion 53

2

List of Figures

2.1 Customer Support Agent . 9

3.1 Knowledge-Cognitive Cycle . 13
3.2 Human Capability of Reasoning 15
3.3 Hierarchy of Knowledge . 16

4.1 Components of Expert System 18

6.1 CBR Architecture . 27
6.2 Rule Based System . 30
6.3 Recognize-Act Cycle . 32

7.1 A LinguBot . 35
7.2 LinguBot Architecture . 36

8.1 E-Mail Application . 46
8.2 Use Case Diagram 1 . 48
8.3 Use Case Diagram 2 . 49
8.4 Class Diagram . 50
8.5 Activity Diagram . 51

3

Acknowledgement

I am thankful to KIWI LOGIC, which incidentely has won 1 million DM for
being the best start up internet company, for o�ering me an opportunity to
undertake my project, on the hottest topic in IT �eld.

It was of a tremendous experience to work in a jovial and interactive atmo-
sphere, with prompt advice and help from all employees of Kiwi logic .

I am thankful to Mr. Rainer and Mr. Olaf Voss on their contributions in
my completion of project.

I thank Mrs. Ulrike Ste�ens for having supervised my project and helping
me in all possible ways and for allotting her time in �rst preference to me at
times of dire need and also for having exercised patience at the time of my
pause.

I thank Prof. Dr Florian Mathias for his support that he provided Me an
opportunity to do project in industry related to E.commerce.

Mohiuddin Syed Faisal

M.S (ICS)

4

Chapter 1

Introduction

The pace of our daily life has been increasing for several decades. Our needs
have multiplied as new products have appeared and then been replaced after
a few years, or even months of existence by a more fashionable product or
one of higher performance. the life cycle of technologies used in consumer and
professional software products are becoming shorter. This acceleration is an
inherent fact of our consumer society.

Natural language interpretation will transform the way people use the Inter-
net. It will help companies to take full advantage of the potential of e-commerce
by making it more natural and easy to communicate with websites. Natural
language interpretation is essential for taking advantage of the full commercial
potential of the Internet. Within a few years, the World Wide Web has devel-
oped into an economic force that is transforming virtually every business and
is changing our day-to-day life dramatically. Still, most people have diÆculty
understanding this rapid development. They have trouble using the Internet to
their advantage.

So far, three out of four people in the USA do not use the Internet at all,
and those who do have a hard time �nding the information they are looking for.
Two out of three online shopping transactions get canceled. The largest part of
the enormous potential e-commerce revenues seems still out of reach.

The reason for this is that using the Internet is still far from being easy and
natural.

Many websites o�er hundreds of pages of information, but can not answer
user questions directly. They often have keyword search, but do not really
understand what kind of information the customer wants. They have e-mail
buttons, but can not respond to "instant messages", and users often have to
wait for days until they get an answer to their e-mails, if they get it at all. Most
websites feature nice graphics and animation, but still appear technical, cold
and unemotional to most users. They provide detailed information on where
users clicked, but still most companies do not know what their customers were
looking for, let alone what they think of their products.

There are two ways of solving this problem. One involves human online

5

help, for example through online call centers using voice-over-I p or "live chat"-
techniques. This certainly is a good way to help users, but it is also very
expensive. Often capacity is limited, forcing users to wait or denying them the
service during peak times.

The other way relies on creating a natural language interpretation system
that is able to answer typed user questions, using some kind of "arti�cial in-
telligence" technology. Such a system can deliver instant information about
companies and products on demand, without forcing the user to specify the
request in certain syntax. A well-designed natural language system can increase
online sales by answering last minute questions, preventing users from abandon-
ing their shopping carts. It can even act as a virtual salesperson, recommending
products based on the user's individual needs and using cross-selling methods.
It saves money by answering user questions directly, preventing unnecessary
e-mails and help line calls. It also o�ers a lot of fun: By displaying a certain
"personality", it can create a strong emotional relation to customers.

The motivation of Project was to improve the performance of Knowledge
based agent " Lingubot " at Kiwi logic. Sometimes customer is in hurry and he
does not want to wait for a long for his e-mail enquiry. Then After Implementing
my application the user can write e-mail to the semi automatic agent and receive
the reply without any delay, all the time and he also does not need any computer
know how.

6

Chapter 2

Intelligent Agent

If an application performs an intelligent task automatically that is of the sort
that one could imagine a person performing manually, then the application can
be called an agent. So, an agent is now a label for an application belonging to
a certain class, the class of applications that automate intelligent tasks people
could perform manually[1].

An agent is delegated to perform some task for the user and is given con-
straints under which it can operate . The agents processing is attributable to
knowledge of the task and the domain in which the task is situated. An agent
can also learn to perform a given task . For example, an agent that uses some
software tool to perform tasks could learn properties of the tool that would
enable it to use the tool more e�ectively over time. Similarly, an agent that
performs in some domain can learn properties of the domain that enable it to
perform tasks more e�ectively over time.

The use of intelligent agent technology on the Internet is growing rapidly, the
explosive expansion of information on the Internet, particularly, on the World
Wide Web, and the lack of organization and quality control of that information
has led to the urgent need for an intelligent and personalized way[2] to �nd and
use only the speci�c Internet information in which one is interested. Intelligent
agents provide the one possible solution for this growing problem.

There are several, partially overlapping ways in which intelligent agents are
being utilized on the Internet. These include:

� Searching the Internet for information pertinent to the user

� Retrieving information in a desired frequency and manner

� Filtering information, selecting only the appropriate items of interest

� Present information in a desired form

� Alerting the user when information of interest is available

� Alerting the user when speci�c events occur or when a parameter reaches
a particular value

7

� Speeding use of the Internet for the user. For example when an Internet
user is reading one web page, intelligent agent software anticipates the
next request by loading linked pages into the browser. Then when the
user selects a link, the new page loads as if it were already in the cache.

� Aiding in the management of World Wide Web sites

Many additional types of agent applications are being developed and deployed
as well, including applications in electronic commerce and business.

2.1 Electronic Commerce Agents

Intelligent agents enable new and improved approaches to electronic commerce.
Agents can aid a user in searching for a product or service of interest. For
example, agent searches online bookstores to �nd information and prices for a
particular book, or to �nd a list of books on a particular topic. Also, agent
systems have been developed to aid a user in the selection of Recorded music.
By explicit input from the user and by monitoring the user's selections over
time, they learn the user's music preferences and then suggest for purchase CDs
that likely would be of most interest to the user.

Agent systems can provide personalized shopping, aiding both the shopper
and the vendor. Agent-enabled electronic shopping services have been developed
to learn an Internet shopper's browsing and shopping habits. Then they can
assist the user by allowing each vendor's display to be customized in a way that
is most convenient to the shopper, while also aiding the vendor by allowing the
vendor to individualize the marketing of its products.

2.2 Business Application Agents

Intelligent agent technology is being used in a wide variety of applications related
to business operations. Agent-based systems are in use in customer service,
human resources, manufacturing, sales, and several other areas.

Intelligent agents are being used as automated customer service agents, pro-
viding information to customers without the need for human intervention. For
example, intelligent agents are used in systems to provide banking information
to bank customers and information on the status of shipments to customers of
shipping companies. Customer service systems such as they are less expensive
than human customer service personnel. They are often faster in providing
standard requested information, and they allow the human customer service
personnel to be used to provide answers to more diÆcult or unusual requests.
Another major advantage of the agent systems is that they can o�er some degree
of intelligent service to customer 24 hours a day, 7 days a week.

Figure 2.1 , illustrates a customer support agent that carries out a dialog
with users on the Web to solve routine hardware and software problems. For
example, a user may be having trouble with a printer or a word-processing

8

Figure 2.1: Customer Support Agent

application. Instead of calling a help desk about the problem, the user could
have a dialog with the support agent on the Web. The support agent becomes
the �rst line of response to customer problems. The agent is meant to only
address relatively simple problems that are easy for the user to specify and can
be resolved without complex steps.

The agent starts the dialog by asking the user a question. The set of possible
answers to the question are also providing. Since the goal is to keep the dialog
simple, questions have three to four possible answers. For example, the question
may ask the type of printer being used. The user selects one response from
the available choices. The user's response tells the agent a single fact about
the problem. The user can also indicate that the question is irrelevant to the
problem.

The response to each question is added to the representation of the user's
problem being assembled by the agent. The agent's knowledge base contains
additional knowledge about the class of problems it can resolve. This domain
knowledge allows the agent to infer additional knowledge about the user's prob-
lem. For example, knowing what printer the user has, the agent could infer that
this type of printer has been having ribbon problems. Then the agent could ask
the user to check if the ribbon is properly installed.

The agent's representation of problems consists of a set of problems at-
tributes with speci�ed values. The solution to a problem is represented as a
text �le describing the solution. Essentially, the purpose of the dialog is to
enable the agent to understand the user's problem. This understanding is rep-
resented as the values of attributes that underlie the questions he user Is asked.
When the user's problem matches the stored representation of a problem in the
knowledge base, the agent retrieves the corresponding solution �le and provides
the contents of the �le to the user.

2.3 Interface Agents

There are two general types of interface agents. One class of interface agents
helps users by �ltering various data sources. For example, consider an interface

9

agent that intelligently �lters a user's electronic mail. If the mail agent is any
good, it weeds out messages that the user is unlikely to �nd useful. The main
bene�t provide by this type of an interface agent is a reduction of the amount
of data that users need to process.

Interface agents for data reduction generally are built as rule-based programs
that apply pro�le to the items in the data sources. The pro�le is a speci�cation
of the attributes of desirable items in the data source. For example, a mail agent
can use a set of rules that is applied to an incoming message to determine its
usefulness for a user.

Interface agents for mediating in the use of applications are usually built as
knowledge-based systems. A mediating agent has knowledge of the application
that it uses and knowledge of the tasks that it solves using the application. The
agent reduces the input task into a set of actions that can be performed using
the application. The essential idea is to have the mediating agent automate the
activity of manually using and application to perform a task. In the general
case, a mediating agent constructs two di�erent types of plans. One plan cor-
responds to the set of operations required to achieve the task. The second plan
corresponds to the actions performed using the applications.

10

Chapter 3

Knowledge and Human

Problem Solving

Knowledge System may be roughly de�ned as
"Computer programs which use knowledge represented explicitly to solve

problems[3]." Based on this de�nition, one can argue that the two most im-
portant focal points of Knowledge System are knowledge and the process of
solving problems. For this reason, before describing Knowledge System char-
acteristics, it is important to understand the meaning of knowledge as well as
its involvement in the problem solving process and to recognize the existence of
some important activities underlying this process in order to comprehend the
working method and the architecture of knowledge system.

3.1 Knowledge

"Knowledge is the sum of perceptions of an individual about aspects of some
named universe of discourse at a particular time [4]". As such, we regard knowl-
edge as being everything that an individual (e.g., a person) knows about a
speci�c universe at a given time. The universe of discourse (also denoted ap-
plication domain or simply domain) may be any part of the actual universe
depicted in �ction, a universe existing in an individual's beliefs, etc. Thus,
a "particular knowledge" must always be associated with these three di�erent
things (an individual, a domain, and a time) in order to be distinguishable.

This is quite an obvious observation. Two di�erent persons generally have
di�erent knowledge of the same domain. Distinct domains generate clearly
distinct knowledge. And the domain knowledge of an individual usually changes
with the time since people commonly observe new things, make conclusions, etc.
so that they change their perceptions of the aspects of this domain.

The above de�nition of knowledge ignores some interesting philosophical con-
siderations as, for example, what we really mean by saying that one " knows"
something. Is " knowing" associated with a kind of individual's beliefs? Does it

11

translate only conscious things. However, these and other philosophical consid-
erations are beyond the scope of this work. The de�nition of knowledge chosen
here is in some sense not a philosophical one but a working de�nition, which
is in reasonable agreement with the meaning ascribed to it in everyday usage.
And it can serve as a basis for the design of computer systems working with this
understanding of the notion of knowledge. Knowledge is of primary importance
in expert system. According to Wirth's classic expression

Algorithms + Data Structures = Programs
For expert system is
Knowledge +Inference=Expert Systems.

If we describe in form of hierarchy, then knowledge is a part of this hierar-
chy, Figure 3.3. The bottom part is the noise, consisting of items that are of
no interest and which obscure data. The next higher level is data, which are
items of potential interest. Processed data are information, which is of interest.
Next is knowledge, which represents very specialized information. For exam-
ple knowledge in rule based systems are de�ned as the rules that are activated
by facts to produce new facts or conclusions. This process of inferring is the
second essential part of an expert system. Above knowledge is Meta knowl-
edge where one meaning of the pre�x "meta" means above. Meta knowledge is
knowledge about knowledge and expertise. An expert system may be designed
with knowledge about several di�erent domains. Meta knowledge would specify
which knowledge base was applicable.

3.2 An Overview of the Cognitive Cycle

Knowledge is for us, people, important because almost everything that we do
is in some way based on the knowledge, which we have stored in our brains.
In other words, people apply knowledge in order to achieve their goals. Hence,
the process of problem solving is, for this reason, also a routine of applying
knowledge, in this case, with the purpose of �nding out problem solutions.

The ability of applying knowledge consciously is surely one of the most
obvious skills that set people apart from the other creatures, which inhabit this
planet. However, people can only apply the knowledge that they have, i.e.,
people are not able to execute tasks with which they are not familiar.

This observation suggests that application might be the most important but
is not the only human activity involving knowledge, which is signi�cant in this
context. In truth, application is just one of four activities which together build
what we are going to call a cognitive cycle a sequence of human activities through
which knowledge passes when people apply it to solve problems. Because of this,
in trying to understand this process, it is also necessary to analyse the phases
of this cycle.

Furthermore, the above observations suggest that several kinds of knowledge
exist and are used di�erently depending of the goal to be achieved. For example,
the knowledge applied to solve mathematical problems is completely di�erent

12

Figure 3.1: Knowledge-Cognitive Cycle

from that used to acquire the mathematical knowledge and even more to that
utilized to bake a cake. Since we are focusing on knowledge system, only the kind
involved in the human problem solving process is of interest for this work. For
this reason, we disregard the several existing kinds of knowledge concentrating
on those involved with problem solving.

As such, the �rst important phase in this context is the process of acquiring
knowledge, i.e., the set of knowledge used to solve problems. Knowledge must
be represented and organized in some form in our brains so that we are able to
�nd and apply it when needed.

Once memorized, it is then ready to be applied in the next phase: the human
problem solving processes itself. People basically solve problems by thinking.
This means the active transformation of memorized knowledge to create new
one that is, in turn, used to achieve a goal.

Once the goal has been achieved, people usually automatically assimilate
the new knowledge that they have inferred during the solving process. However,
assimilation is not enough to keep this information available over many years.
It is also important to transmit it to other people.

The transmission of new knowledge generally involves explaining to people

13

how one came to this acquaintance. Explanation is therefore the fourth and last
phase in this context. As people are having things explained, knowledge is once
again being acquired so that the whole cycle is then completed, Figure 3.1.

3.3 The Human Problem Solving Process

In order to understand the human problem solving process, we need to dis-
tinguish between two di�erent types of operations that are applied during a
thinking process. The �rst one can be translated as the human capability of
reasoning, i.e., drawing inferences from current knowledge. In other words, mak-
ing conclusions (i.e., generating new knowledge) by interpreting the knowledge
stored in our brains.

Clearly, making conclusions is not suÆcient to solve problems in an adequate
way. It is above all necessary to make the right conclusions at the right time.
This is achieved by using the second capability that we have, of guiding our
reasoning processed. In some way, people also have the capability of determining
a sequence of reasoning operations which, when applied over a domain, derive
the expected solutions.

Surely, this second capability is the most important one for solving problems.
By purely reasoning making, people would also come to the expected result,
however, in a very ineÆcient way since many unnecessary conclusions would be
also made. In order to solve problems in a fast and clear manner, it is therefore
necessary to guide our reasoning process so that only he relevant conclusions
are inferred Figure 3.2.

The task of solving problems in particular domains is actually the goal of
any computer program. Most existing conventional programs (i.e., those out
of Al �elds) perform this task according to a form of decision-making logic
embedded into their code, which cannot really accommodate signi�cant amounts
of knowledge. Generally, these programs manipulate two types of knowledge
organized respectively in two di�erent forms: data and algorithms. The latter
determines the ways in which speci�c kinds of problems are worked out, and
data de�nes values for parameters that characterize the particular problem at
hand.

Firstly, people organize their knowledge in a separate entity (our brain) and
access it to reason out speci�c problems. And secondly, the human problem
solving process, organized on two or three levels, depending on the existence
and use of Meta knowledge. In a philosophical sense, wisdom is the peak of all
knowledge. Wisdom is the Meta knowledge of determining the best goal of life
and how to obtain them.

14

Figure 3.2: Human Capability of Reasoning

15

Figure 3.3: Hierarchy of Knowledge

16

Chapter 4

Expert Systems

Expert system is a branch of AI that makes extensive use of specialized knowl-
edge to solve problems at the level of a human expert. An expert is a person
who has expertise in a certain area. That is, the expert has knowledge or special
skills that are not known or available to most people.

So we can say that
Expert Systems "Are computer programs which attempt to reach a level

of performance by means of solving problems comparable to that of a human
expert in some specialized application domain"[5].

The knowledge in expert systems may be either expertise, or knowledge,
which is generally available from books, magazines, and knowledgeable persons.
The term expert system, knowledge base system or knowledge based expert
system are often used synonymously. Most people use expert system simply
because it's shorter, even though there may be no expertise in their expert
system, only general knowledge.

4.1 Components of an expert system

An expert system consists of the following components, Figure 4.1.
User Interface is the mechanism by which the user and the expert system

communicate. Explanation facility explains the reasoning of the system to a
user. Working memory is a global database of facts used by the rules.

Inference engine makes inferences by deciding which rules are satis�ed by
facts or objects, prioritizes the satis�ed rules, and executes the rule with the
highest priority. Agenda is a prioritized list of rules created by the inference
engine, whose patterns are satis�ed by facts or objects in working memory.

Knowledge acquisition facility is an automatic way for the user to enter
knowledge in the system rather than by having the knowledge engineer explicitly
code the knowledge. The knowledge acquisition facility is an optional feature
on many systems. In some expert systems tools the tool can learn by rule
induction through examples and automatically generate rules. Depending on the

17

Figure 4.1: Components of Expert System

18

implementation of the system, the user interface may be a simple text oriented
display or a sophisticated high resolution, bit mapped graphical display. The
knowledge base is also called the production memory in a rule based expert
system . As a very simple example, consider the problem of deciding to cross
a street . the production s for the two rules are as follows, where the arrows
mean that the system will perform the actions on the right of the arrow if the
conditions on the left are true.

The light is red {> stop
The light is green{> go
The productions rules can be expressed in an equivalent pseudo

code IF THEN format as:

Rule: Red light IF
The light is red
THEN
Stop

Rule: Green light IF
The light is green
THEN
Go
Each rule is identi�ed by a name. Following the name is the IF part of the

rule . The section of the rule between the IF and THEN part of the rule is
called by various names such as antecedent, conditional part or left hand side
(LHS): The individual condition

The light is green Is called a conditional element or a pattern. The
logical combination of conditional element is called antecedent

In a rule-based system, the inference engine determines which rule antecedents,
if any are satis�ed by the facts . two general methods of inferencing are com-
monly used forward

Chaining and backward chaining as the problem solving strategies of expert
systems. Other methods used for more speci�c needs may include means-end
analysis, problem reduction, back tracking, plane generate test, hierarchical
planning and the least commitment principle, and constraint handling. [6] For-
ward chaining is reasoning from facts to the conclusions resulting from those
facts. For example if we see that it is raining before leaving home (the fact),
then we should take an umbrella.

Backward chaining involves reasoning in reverse from a hypothesis, a poten-
tial conclusion to be proved, to the facts which support the hypothesis. For
example, if we have not looked outside and someone enters with wet shoes and
an umbrella your hypothesis is that it is raining. In order to support this hy-
pothesis, we could ask the person if it was raining . if the response is yes, then
the hypothesis is proven true and becomes a fact. Hypothesis can be viewed as a

19

fact whose truth is in doubt and needs to be established. Depending on design,
an inference engine will do either forward or backward chaining. The working
memory may contain facts regarding the current status of the traÆc light such
as the light is green or the light is red. Either or both of these facts may be in
working memory at the same time . if the traÆc light is working normally, only
one fact will be in memory. However it is possible that both facts may be in
working memory if there is a malfunction in the light. Notice the di�erence be-
tween the knowledge base and the working memory. Facts do not interact with
one another. The fact the light is green has no e�ect on the fact the light is red.
Instead our knowledge of traÆc light says that if both facts are simultaneously
present then there is a malfunction in the light. If there is a fact the light is
green in working memory, the inference engine will notice that this fact satis�es
the conditional part of the green light rule and put this rule on the agenda.
If a rule has multiple patterns, then all of it patterns must be simultaneously
satis�ed for the rule to be placed on the agenda. Some patterns may even be
satis�ed by specifying the absence of certain facts in working memory. A rule
whose patterns are all satis�ed is said to be activated or instantiated. Multiple
activated rules may be on the agenda at the same time . in this case the infer-
ence engine must select one Rule for �ring . The term �ring comes from neuron
physiology, the study of the nervous system. An individual nerve cell or neuron
emits an electrical signal when stimulated . no amount of further stimulation
can cause the neuron to �re again for a short time period. This phenomenon is
called refraction. Rule based expert systems are built using refraction in order
to prevent trivial loops. That is if the green light rule kept �ring on the same
fact over and over again, the expert system would never accomplish any useful
work. Various methods have been invented to provide refraction. Each fact is
given a unique identi�er called a time tag when it is entered in working memory.
After a rule has �red on a fact, the inference engine will not �re on that fact
again because its time stamp has been used.

4.1.1 Knowledge Base

From technical perspective, no other factor is more important when selecting a
shell than its knowledge base coding facility. This facility de�nes how you can
represent the knowledge (e.g., rules, frames, decision trees). It is also important,
however, to consider other knowledge base utilities that may be available, such
as inexact reasoning and procedural processing capabilities.

Knowledge Representation: Shells for building knowledge-based systems can
be classi�ed according to the way they represent knowledge. The most popular
categories are: rule-based Frame-based, case examples for induction or CBR,
and fuzzy logic. Some shells o�er multiple ways of representing knowledge.

Inexact Reasoning [7]: One of the trademarks of expert system technology is
the ability to solve problems involving uncertain or unknown information, and
inexact knowledge, This requires that the expert system be equipped with some
inexact reasoning mechanism, such as certainty factors, the Shafer-Dempster
method, and in rare occasions a Bayesian approach.

20

Procedural processing capability: In some applications there is a need to
write procedural code. Functions might be need, or in a frame-based system,
methods required to support message passing. Most of the shells, with the
exception of frame-based ones, provide limited procedural processing capability.
Frame based shells, the larger ones usually provide a Rich environment for
creating procedural code to support the knowledge processing activity.

4.2 Technical characteristics of expert systems

4.2.1 Developer Interface

The various shells o�er di�erent levels of capabilities for the expert system
designer to develop and re�ne the system. The smaller tools usually provide
limited development features, while the more sophisticated ones, though more
diÆcult to learn, provide a wider choice of knowledge representation methods,
inference techniques, and user interface design alternatives. Various levels of
debugging methods are also provided. Come shells also provide extensive on-
line help that can greatly assist in system development.

Knowledge Base Creation. There are two broad ways of creating a knowledge
base. Some shells require you to type the entire knowledge base, much in the
same way as using a word processor. One advantage with using this approach
is that you can print and review the knowledge. Other shells provide an incre-
mental approach, where individual pieces of knowledge are created and added
to the knowledge base. To create a rule, for example, the designer might select
from a menu a create-rule item, and be presented with a rule-entry form to be
�lled out. The advantage of this approach is that the shell aids with system de-
velopment. However, it can be diÆcult to determine the new rule's relationship
with existing knowledge, unless the shell provides a good rule-browsing utility.

4.2.2 Debugging Utilities

Debugging utilities allow the designer to check and debug the system. One
of the more common and valuable utilities is rule tracing. Following a session
with the system, this utility provides a trace through all of the rules processed,
including their processing order and information provided by the user.

On-line Help: Having a good manual that provides the instruction needed
to build the expert system is obviously a valuable resource for the designer.
Some shell vendors have gone a step Further and provide system development
help on-line. While developing the system, the designer can access this utility
to obtain aid in the e�ort. This aid might simply be in the form Of text that
provides help on the requested item. In more advanced on-line help utilities,
you can paste a template of a knowledge element (e.g., a function) directly into
the system, and then edit it as needed.

21

4.2.3 User Interface

Display Type: The early expert systems all relied on a text-based display. Ques-
tions were posed to the user in text and answers were provided via keyboard
typing or by selecting from a menu. Today, most shells provide a graphical-
user-interface (GUI) that permits the user to interact through a point-and-click
method. Since most computer users today are more accustomed to a GUI, and
computer novices �nd the interaction more intuitive, a shell o�ering a GUI is
usually preferable.

Information Entry: There is a wide range of methods by which the user can
enter information into the system. Ti may be as simple as typing an answer to
some question, or as extensive as �lling out an entire form. A question might be
posed requiring a single answer, or one that permits the user to select multiple
answers from a list. Graphical input components typically available are radio
buttons, check boxes, forms, scroll bars, and pushbuttons. Some shells provide
limited default ways for entering information, while others permit the designer
to choose from a variety of methods while creating the display from scratch.

Information Display: The expert system must be able to display its �ndings
to the user. This information might be the �nal conclusion, or intermediate
�ndings discovered during the session. Typical ways of displaying information
are message boxes, value boxes, radio buttons, check boxes, forms, and graphics.

Interface Control: The user must always feel in control of the session. This
includes an easy way of starting and ending a session, and readily accessible
ways of activating needed control during the session. Some shells o�er default
methods for managing these tasks, while others require the designer to develop
the techniques. For a graphical interface, this control is typically done with
pushbuttons or a menu-select scheme. A user may also request other special
features, such as save-case and what-if. The save-case feature permits the user
to save the context of the present session, either for reporting requirements or
for later what-if system testing. The what-if feature allows the user to change an
answer to some question from a completed session; in order to see what impact
the new answer might have on the �nal results.

22

Chapter 5

Types Of Tools

5.1 Rule-Based Tools

Rule-based tools use if then rules to represent knowledge. These rules are pro-
cessed through a backward or forward chaining process, or a combination of
the two (called bi-directional inference). Some tools permit the coding of inex-
act rules and inexact inferring, possibly using con�dence factors and processing
methods found in the certainty theory.

5.2 Frame-Based Tools

Frame-based tools represent knowledge in frames. Each frame captures descrip-
tive and behavioral information on some object, in slots and methods, respec-
tive. Knowledge processing may be accomplished through an interaction of the
frames using a technique such as message passing, or through an interaction of
frames with a set of rules using a shell that is often referred to as a hybrid tool.

5.3 Fuzzy Logic Tools

Fuzzy logic expert system tools represent knowledge in fuzzy rules and fuzzy
sets. Fuzzy rules, like ones found in the rule-based systems, are if-then struc-
tures. However, they include statements that contain fuzzy variables with cor-
responding fuzzy values that are represented mathematically in a fuzzy set. It
is the term "mathematically" that separates fuzzy logic tools from the symbolic
rule-based ones. Processing of these rules relies upon a mathematical approach
based in the principles of fuzzy logic.

23

5.4 Induction Tools

Induction tools generate rules from examples. They are products of AI research
in machine learning. A developer enters a large set of examples from the domain
under consideration, where each example contains values for a set of domain
features, and a single result characterizing the example. The induction tool
then uses an algorithm, such as ID3, to generate a rule or a decision tree. In
operation, a user enters information about a current problem and the system
then determines the probable result.

5.5 Cased-Based Reasoning Tools

Cased-based reasoning tools are somewhat recent additions to the toolbox of
the knowledge engineer. In practice, they serve a role similar to induction
tools in that they use past experiences to solve current problems. Given an
input speci�cation of a problem, the system will search its case memory for an
existing case that matches the input speci�cation. It may Find an exact match
and immediately go to a solution. Even if an exact match can not be found, the
system applies a matching algorithm in order to �nd a case that is most similar
to the input speci�cation.

5.6 Domain-Speci�c Tools

The early shells were general-purpose tools and were o�ered to address a broad
range of problem solving activities. In many instances, however, it was found
that although the tool was �ne for one activity, it was inadequate for another
one. To address this situation, the AI community, including both software
vendors and researchers, turned their attention to developing domain-speci�c
tools. Domain speci�c tool is designed to be used to develop an expert system
for a particular problem-solving activity. It provides special features to the
developer that is tailored for producing an expert system for the activity. For
example G2 is a Graphical object-oriented environment for building intelligent
process management solutions. Its natural language editor allows users to enter
rules, models and procedures that describe real time operations.

24

Chapter 6

Expert System Concepts

The characteristics of expertise include fast and accurate performance, usually
in narrow domain of knowledge. In addition, an expert can explain and justify
the recommendation or result, as well as explain the reasoning process lead-
ing to the result. Further, experts quickly learn from experience, resulting in
improved performance. Expertise implies the ability to solve unique and un-
usual cases-often reasoning from basic principles or a model, or from a body
of experience structured into cases or rules. Finally, experts often must rea-
son under uncertainty and apply common sense and general world knowledge
to the situation. In order to identify potential ES applications, it is useful to
distinguish between types of ES. Very often one type of ES may be a much
better choice depending on several factors. The situation particulars, degree of
structure in the domain knowledge, the knowledge representation schema, and
user characteristics. There are three general types of ES.

1. Case based

2. Rule based

3. Model based

6.1 Case-Based Reasoning (CBR)

6.1.1 Introduction

No matter what type of problem-solving task it is, people usually have more
con�dence in you when you say that you have done that particular task many
times before, i.e., you have the experience. Why? Because by having done that
task before, it means that you are able to do another similar task. It is also
a well-known fact that human experts solve problems by relying on their past
experiences in solving similar problems. This is especially true in areas such as
law and medicine. It was from this idea of reusing past experiences to solve new
or current problems that an Arti�cial Intelligence approach called Case-Based

25

Reasoning was born. CBR is sometimes classi�ed under Machine learning, and
supports knowledge acquisition and problem solving.

CBR Concepts - Figure 6.1

1. A new problem or case is analyzed and represented in a form such that
the CBR system can retrieve relevant past cases. The goal is to retrieve
useful cases, that is, those that have the potential to provide a solution to
the new problem at hand.

2. Once relevant cases are retrieved, they are ranked and the best subset, or
most promising cases, is returned to the user for browsing.

3. Very often, an old case does not �t the new one exactly, hence, it is
necessary to modify or make changes to an old solution to �t the new
problem situation. The process of making these changes may range from
a minor substitution of values, to structural changes. What adaptation,
and how it is to be done, depends on domain knowledge.

4. The initial solution to the new cases is then proposed to the user.

5. The proposed solution is tested or evaluated, and improvements made on
it. Feedback is obtained and analyzed. If it does not perform as expected,
and explanation of the anomalous results is given. Follow-up procedures
include explaining failures and attempts to repair them are stored, so that
future failures can be predicted and avoided.

6. The new case is updated into the case library for future use. By adding
new situations into the case library, the system is actually carrying out
an incremental learning process. This is especially useful for dynamic
domains that need to keep up with the times.

6.1.2 Representing a Case

A case could resemble a database entry, with a list of characteristics or features
describing a particular situation. A case is usually complete by itself, or may
be connected to a set of sub cases. How are cases de�ned and represented`?
There are many ways of representing a case. Including predicate representa-
tions, frames, or even entire resembling database record. In general, there are
three features that need to be captured: the problem-situation description, the
solution, and the outcome. The problem-situation is essentially a description of
the characteristics of the problem, the context, or situation in which it occurs.
The representation must match the reasoning goals of the system.

6.1.3 Indexing Cases

In order for the case-based reasoning system to retrieve similar cases, labels
must be assigned to a case to identify it as an appropriate case to be retrieved,

26

Figure 6.1: CBR Architecture
27

given a particular situation. Hence, indexes signify which cases are relevant and
are potentially able to provide a solution to a problem.

6.1.4 Similarity Matching

Given the particulars of a new case, the case-based reasoning system looks
at all the existing cases and retrieves those very similar ones. Matching each
individual feature of the new case with all the existing cases identi�es most
similar ones. One such matching process is known as nearest-neighbor matching.

6.1.5 CBR and Rule-Based Reasoning (RBR)

Rules of the form IF-THEN-ELSE cover a single aspect of knowledge, whereas
a case cover a particular problem-solving situation. It is sometimes diÆcult for
a domain expert to come up with rules to problem solving, whereas cases are
actually examples of a particular situations. Hence in general, acquiring case is
easier than rules.

RBR has some inherent weaknesses:

� Past experiences are not learned.

� New, novel problems that deviate from the norm cannot be solved.

� Maintaining a large rule based is diÆcult and time consuming

Wrong information in rules must be individually edited, and every time a new
rule is added, there is a risk of redundancy or contradiction. Deleting a rule may
interrupt the reasoning process, whereas removing an individual case does not
have the same extent of consequences. Hence, RBR systems are more diÆcult
to maintain, and more diÆcult to update to keep up with rapidly changing
domains.

6.1.6 CBR and Model-Based Reasoning

Model-Based reasoning emphasizes the usage of large chunks of general knowl-
edge, based on models that cover the normative situations. Model-Based rea-
soning is normally used for well-understood domains that could be accurately
represented in a formal language, and which tends to be static. Hence, building a
Model is time consuming, and so is maintaining it. In combining Model-Based
reasoning with CBR, the model-based reasoning handles the well-understood
components.

Case based reasoning should be used when

� The solution alternatives can be explicitly enumerated

� Numerous examples of worked cases exist that cover domain knowledge

28

� No domain model or theory exists

� Expert represent domain in terms of cases

� Human expert is not available

� Situational information are con
icting, or missing.

� Knowledge is volatile and dynamic

� Domain knowledge and expertise already captured by past cases

� Workforce experience and performance are low

� Need a fast way to acquire domain knowledge

� Want to illustrate an outcome or explanation with an example

6.2 Model-Based Reasoning (MBR)

MBR provides a representational and conceptual framework for knowledge that
de�nes both knowledge structures and inferring methods. MBR de�nes and
structure relevant domain objects/concepts, their attributes, and their behavior
in order to organize work in complex domains and perform simulations. MBR
also de�nes the relationship between the objects in case of class hierarchies,
composition and causation. The most basic knowledge structure, governing all
types of knowledge, is the "Object Attribute Value" triple.

MBR encompasses, represents, and organizes all type of knowledge, including
CBR and RBS, as well as databases, text, images, and other media. Types of
MBR are object-based, frame-based and domain speci�c. MBR models can also
be categorized as quantitative or qualitative. MBR requires a well-understood
and well-structured domain theory. In simulation, MBR components are often
so tightly linked together that MBR has a limited value without a completed
model. MBR is also very useful for organizing and structuring complex domains
and processes.

Model-Based reasoning should be used when:

� A consensus framework of concepts and domain theory exists

� Business processes, methods, and events needed to be represented and
modelled

� Want to represent and organize large scale, complex system

� Want to simulate performance and side e�ects from future work system
design

� Want to control, monitor, and measure informational work
ows

29

Figure 6.2: Rule Based System

� Want to represent, organize and integrate elements of knowledge reposi-
tories and related performance support systems

� System navigation and presentation is important

� Environment and data are relatively dynamic

� IT infrastructure uses client/server architecture

� Results from knowledge elicitation and acquisition need to be organized.

6.3 Rule Based System

At kiwi logic the rule base reasoning system exists. The system was evaluated
and used as a platform for my application. Consider the following example of
rule-based system (Figure 6.2).

If the antenna to transmitter coaxial cable has been disconnected from the
antenna port, then examine the coaxial cable connecter for any signs of breakage,
discoloration, or fraying . if such such signals are detected, then remove and
replace the connecter via the procedure. Otherwise connect the RF generator to
the antenna port and initiate the test sequence. If the RF generator is connected
to the antenna port, then turn it on and set the frequency to 220.5 Megacycles.
If the generator has been on for at least 2 minutes and the frequency is stable
then initiate the test.

Examining these few steps carefully, we may note that the contents of each
step represent extracts from the knowledge base of an electrical engineer with
speci�c expertise in the testing of RF systems. Note carefully that each step
consists of one or more IF -THEN type Of statements. That is if a particular
situation exists, then take certain action. Such a statements form the basis
of rule-based systems. Which in turn used as foundation of existing expert
systems.

30

The transformation of one pattern to another in a rule-based language is
understood to represent an IF-THEN implication. IF There is rain And we are
in Spain THEN We must be on the plain

Or Operations to be performed: IF Block A is on block B And A has nothing
on top of it THEN Take block A o� block B

6.3.1 Forward and Backward chaining

The previous section covered only one of the possible uses of rules. We made
the assumption that the current pattern is matched to the left hand side of the
rule and is transformed into the new pattern on the right hand side. But what
would happen if our initial data were the sentence

The chilly bird
ew south And we wanted to �nd out whether the sentence
was grammatically correct?

To answer this question, we can use the same set of rules that we used to
generate grammatical sentences. One way to do this to start generating all
possible grammatical sentences from the symbol S until we have generated the
sentence in the question. Or we can imagine the arrow in the rules pointing
in the opposite direction and thus make the reverse implications to reduce the
sentence �rst to grammatical structures such as Noun and adjective and �nally
to the symbols shows the process of proving the sentence to be grammatically
correct by using the rules in the opposite directions. The ways we have used the
grammar rules from left to right to generate a sentence and from right to left to
prove the correctness of sentence are simple examples of forward and backward
chaining.

Forward-chaining problems usually have a large number of data in their
initial state from which a solution must be constructed. There is neither single
nor optimal goal state-there is only a set of constraints to which the goal must
conform. At each step in a forward chaining process the question is "what is
the next step to take to move closer to the goal".

Backward-chaining problems start with a hypothesis or goal and derive the
substantiating evidence for that conclusion . at each step in backward chaining
process the question is "what must be true in order for the current state to
be true. Backward chaining problems are those for which a set of solution is
known and for which the current case must be classi�ed as one of The known
solutions. Diagnostic problems are the most common examples of backward
chaining problems.

One way to tell whether a problem should be solved by forward or backward
chaining is to look at its initial and goal states . if the initial states contains
many facts that must be synthesized into a solution, then forward chaining is
appropriate. If there is a description of a current state that must be analyzed to
�nd the facts in the database that support the state, then backward chaining is
more suitable. Some problems are best solved using a combination of backward
and forward chaining. OPS5 execute rules in a forward-chaining fashion, and
can Also be programmed for backward chaining . An OPS5 program can create

31

Figure 6.3: Recognize-Act Cycle

data that represent a goal (forward chaining) and can nothen determine whether
that goal can be con�rmed (backward chaining).

6.3.2 The recognize act cycle

Until now we referred rule interpreter as the black box that is responsible for
driving the execution of a rule based program. now we take more precise an close
look at rule interpreter. The act cycle has three steps match, select and act.
Time tags are assigned to each working memory element by the rule interpreter
to identify WMEs uniquely. Time tags are used in the recognize -act cycle.
Especially during con
ict resolution. A rule is considered successfully matched
when all of its positive condition elements are matched by WMEs and there are
no WMES in working memory that match the rules negated condition elements
. the result of a successful match is an instantiation. The result of a match
step is a con
ict set that contains all the instantiations that are eligible for
execution. During the con
ict resolution step a single instantiation is chosen to
execute. The decision criteria and the method used to choose a rule are called a
con
ict resolution strategy. There are many strategies a rule based system can

32

employ in choosing an instantiation from the con
ict set, such as the �rst rule
to enter the con
ict set or the rule with the highest priority number. During
the act phase the actions on the RHS (right hand side) of the rule are executed
in the order they are written, (Figure 6.3). Any changes to working memory
are immediately re
ected in the con
ict set.

6.3.3 Writing a rule base

To write a rule base we can start by writing rules in English. From the English
rules we can write experimental rules. Alternating between the two representa-
tions gives us a sense of the correct element class representation for the problem.
The rule base contains the rules; attribute declarations and an optional start
up statements. Then we should provide a set of commands with which we can
interact with our program and with recognize act cycle.

33

Chapter 7

Bot

7.1 Introduction

A bot is a software tool for digging through data. You give a bot directions and
it brings back answers. The word is short for robot of course, which is derived
from the Czech word robota meaning work. The idea of robots as humanoid
machines was �rst introduced in Karel Capek's 1921 play "R.U.R.," where the
playwright conceived Rossum's Universal Robots. Sci-� writer Isaac Asimov
made them famous, beginning with his story I, Robot (1950) and continuing
through a string of books known as the Robot Series On the Web, robots have
taken on a new form of life. Since all Web servers are connected, robot-like
software is the perfect way to perform the methodical searches needed to �nd
information. For example, Web search engines send out robots that crawl from
one server to another, compiling the enormous lists of URLs that are the heart
of every search engine. Shopping bots compile enormous databases of products
sold at online stores. The term bot has become interchangeable with agent,
to indicate that the software can be sent out on a mission, usually to �nd
information and report back. Strictly speaking, an agent is a bot that goes out
on a mission. Some bots operate in place; for example, a bot in Microsoft Front
Page automates work on a Web page. Bots have great potential in data mining,
the process of �nding patterns in enormous amounts of data. Because data
mining often requires a series of searches, bots can save labour as they persist
in a search, re�ning it as they go along. Intelligent bots can make decisions
based on past experiences, which will become an important tool for data miners
trying to perfect complex searches that delve into billions of data points.

Bots were not invented on the Internet, however. Robotic software is gen-
erally believed to have been created in the form of Eliza, one of the �rst public
displays of arti�cial intelligence. Eliza is a computer programmer that can en-
gage a human in conversation: Eliza asks the user a question, and uses the
answer to formulate yet another question. Arti�cial intelligence is an advanced
form of computer science that aims to develop software capable of processing

34

Figure 7.1: A LinguBot

information on its own, without the need for human direction.

7.1.1 Technical applications of a Bot

The advantages of including a Bot on our Web site are numerous. A short
list would include: assisting in Web site navigation, conducting e-commerce,
o�ering quick and eÆcient responses to customers' Frequently Asked Questions,
and providing entertaining and unique customer support.

7.2 Lingubot

A LinguBot, Figure 7.1, is a virtual personality that chats online with users.
It recognizes and responds appropriately to natural language-that is, the way
people talk. In addition to understanding natural language, a LinguBot uses
graphics to reveal emotions appropriate to the conversation.

7.2.1 Structure of LinguBot

The system consists of the Lingubot Web Engine and the Lingubot Creator
(Figure 7.2). The Lingubot Web Engine parses the user input and, by applying
pattern-matching technology, looks up the appropriate answers in the knowl-
edge base. The rules, which make up the knowledge base, are de�ned using the
Lingubot Creator. All dialogues are recorded in a transcript database. The Lin-
gubot Creator also provides tools for conveniently analyzing these transcripts,
enabling the author to continuously improve the performance of the Lingubot.

35

Figure 7.2: LinguBot Architecture

Knowledgebase have three essential elements: Recognitions, Answers, and
Macros. Together they form, a �le with . LBF as an extension. The LinguBot
Engine breaks user input into sentences and the sentences into words. The
software checks to see which parts of that input it recognizes, then gives the
user an appropriate Answer. It is the author's task to anticipate and write
these Recognitions and Answers.

A Knowledgebase also includes images, scripts, and a variety of Web deploy-
ment attributes. It is only after being published that a Knowledgebase becomes
a Bot.

As in any pattern-matching system, the "intelligence" of a Lingubot lies in
its rule base, which has to be speci�cally designed for a certain purpose. That
means that the performance of the system is de�ned by how many rules it has
and how well those rules are written

Basically, the author of a Lingubot has to think of all the di�erent ques-
tions users might ask the system, turn those possible questions into recognition
patterns and write the appropriate answers. This is a highly creative process,
comparable more to writing a book than to writing a software program.

Recognition

Recognition is one of the three essential elements comprising a Knowledgebase.
It is by means of Recognitions that a Bot "understands." Recognitions identify
speci�c user input and select appropriate responses.

Upon receiving user input, the Web Engine checks it against all Recognitions

36

to determine the Recognition best suited to process the input and provide an
Answer. If the user input satis�es Recognition's condition, but that Recognition
can not provide an Answer, the search continues. If the conditions of two or
more Recognitions are met by the user input, the Recognition with the higher
Rank is given precedence.

An appropriate Answer is selected from those in the Answer box. (A given
Recognition may have up to 9999 Answers.) The Answer selection process takes
Answer Rank, Additional Conditions, and any relevant scripts into considera-
tion.

The central recognition: There will always be unexpected user inputs. To
make it possible for our Lingubot to give an answer, there should be a recog-
nition that is always true and has a very high ranking in accordance with its
inexactness. If this recognition is ful�lled, we know that all of the other recog-
nitions have not taken e�ect. At this point, we should give the dialog a new
turn and address one of our active topics or of the Lingubot's special area. The
number of answers on this may and should be very large.

The basic Recognitions The basic Recognition Module (recognitions.kef)
contains hundreds of useful Recognitions. This Module relies upon the basic
Macros, and therefore requires that macros. kef is imported into the same
Knowledgebase. It does not include Answers.

Description The Description �eld is used to illustrate or summarize the
Recognition's contents or context. Descriptions can be used to state in plain
English what user input the Recognition is intended to anticipate. When you
use the Wizard, it's a good idea to state the anticipated user input exactly the
way in which it is most likely to be stated.

EXAMPLES
Good Descriptions Bad Descriptions

How old are you? Age question
Tell me about Widget Works. They want to know about our co.
Please send me a catalogue. Catalog Request

Comment. In this �eld you may explain or comment on the Recognition.
Creator will process nothing in this �eld, the Comment �eld serves as a place
for your own notes. You may leave this �eld blank if you prefer. It's possible
to search the Comment �eld, so it's a good place to record information that
identi�es the Recognition in ways not covered by the Description.

EXAMPLES OF POSSIBLE COMMENT FIELD USAGE

37

Comment : User inquiries about new products

Comment : Follow up recognition to Answer #55

Comment : Only active if User Age is under 13.

Comment : Identi�es user age and stores in User Age variable

In the Navigation Box
Navigation
You may navigate through Recognitions using the arrow buttons (< >) in

the upper right corner of the Recognition window. The buttons (j<) and (>j)
jump to the �rst and last Recognitions of the Knowledgebase, respectively. You
may also enter the Recognition # of a known Recognition into the numeric �eld
between the arrows and strike Enter to navigate directly to a known Recognition.

User can write his own Knowledge Bases In order to ease the intro-
duction into working with the LinguBot Creator, the software includes pre-
fabricated Macro, Recognition, and Answer Modules (data �les with the ex-
tension . KEF). They can be imported into our own Knowledge Bases, then
adapted and expanded according to our requirements.

Engine The Web Engine is the "brain" of the Bot. Its operation is summa-
rized below.

One The Engine divides the user input into sentences, then into words.
Words go through automatic spelling correction and are identi�ed
within spelling tolerance parameters.

Two The Engine searches all Recognitions and identi�es all Recognitions
whose Conditions are satis�ed by the user input.

Three The Engine compares the Recognition Ranks of all satis�ed Recog-
nitions. Beginning with the highest-ranked Recognition and pro-
ceeding to the lowest-ranked, it identi�es the best Answer. In doing
so, it takes Answer Rank, repeatability, Additional Conditions, and
any relevant scripts into consideration.

Four The appropriate Answer is issued.

Macro Macros are one of the three essential elements of each Knowledgebase,
along with Recognitions and Answers. A Macro is a summary of a complex
Condition. Macros are typically lists of synonyms, �gures of speech, idioms,
or thematically connected keywords. Macros can be used in any Condition
�eld. The Wizard tries to generalize user input examples using Macros. Macro
Variables can be de�ned to catch and store that part of the user input recognized
by the Macro.

Macros can be accessed by choosing Macros from the View menu, or by
double-clicking on any Macro Name in a Condition �eld.

38

AMacro is shorthand for Condition writing. Each Macro is itself a Condition
that can be used like any other Condition. Macros make the life of the Bot
author much easier. They help you eÆciently anticipate the wide variety of
user input.

The basic Macros The basic Macro Module (macros.kef) contains hun-
dreds of useful Macros.

Macro description When building a new Macro, the Wizard will use the
text in the Description �eld as the user input example from which to generalize.

Any given Recognition should recognize as many user input variations as
possible. (A "how old are you" Recognition, for example, should recognize
variants of "how old are you," "what's our age," "how many years have you
been alive," and so on.) The Wizard helps build Recognitions and built in
Macros from user input examples by searching for existing Macros that appear
to match them, whether whole or in part. Macros are only included in this search
process if they have been marked "Suitable for Generalization" in the Macro
window. The Wizard will not consider macros that are not marked "Suitable
for Generalization".

The Macro Descriptions in the English language Knowledgebase provided by
Kiwi logic follow a very speci�c format, as illustrated in the following examples:

A Syns for good, nice, pleasant... See also BAD (a), NICE (a)

n List of New York Neighbourhoods... See also other geographical
macros

V Syns for eats, consume, devour... See also DRINK (v)

pv Vars of He will

The �rst part of each Description is its part of speech.

a Adjective or adverb (hot, cold, big, small)

art Article (the, a)

conj Conjunction (and, or, but)

excl Exclamation (Wow!, Listen!, Shut up!)

int Interrogative (Who is, What are, When will)

n Noun (house, animal, computer)

p Preposition (near, toward, from)

pn Pronoun (you, he, they)

pv Pronoun-Verb (he will, you may, we can)

39

v Verb or action (to run, to eat, to laugh)

The second is its category.

Syns for { Synonyms for..

Vars of { Variants of..

List of {, erg

List of... for example...

List of { incl Syns e.g. {

List of... including Synonyms, for example...

Lastly, there are generally cross-references referring you to other related Macros
within the Kiwi logic English language Knowledgebase. These are generally
synonyms, antonyms, or related keywords.

Memory Lingubot Creator will issue each Answer only once, unless it is
explicitly marked as repeatable (in the Answer window). Once issued, non-
repeatable answers will not be issued again until the Bot's Memory lapses-in
other words, until the Bot "forgets" that it has already used that answer. The
Bot's "Memory" is set in the Misc tab of the Options window, in number of
"Submits" (user inputs). The larger the number of Submits, the longer the Bot
will converse before "forgetting" having issued a particular answer.

EXAMPLE

Recognition: how+old+are+you

Answer: I'm old enough to know better.

Repeatable: No

Memory: 60 Submits

For the following example the default is 60
If the user's �fth input is "How old are you," they'll receive the Answer:

"I'm old enough to know better." If their fortieth or sixty-�fth input is again
"How old are you," this recognition will be passed over because the Bot will
"remember" having issued its only Answer to this Recognition less than 60 user
inputs ago. (Recognitions without valid, active Answers are treated the same as
Recognitions without any Answers at all: they are ignored.) If the sixty-sixth
user input is "How old are you," however, the Answer will be issued again,
because the Bot will have "forgotten" that it issued the Answer 61 user inputs
ago.

Please note that this has no impact on transcripts, which will record the
entirety of the dialog regardless of the Memory setting.

40

Answer window An Answer is LingurBot's response to the user input. Specif-
ically, it's the response to the user input recognized by the Recognition with
which it's associated. While a single Recognition may have thousands of An-
swers associated with it, only one Answer will be provided to the user each time
the Recognition is triggered.

Answer # Each Answer is assigned a unique ID number, which is located in
the upper right corner of the Answer window. As in the case with Recognitions,
these numbers cannot be changed and once deleted will not be re-used. Under-
standing the assorted uses of Answer-IDs will save you time when authoring,
so that we know the identi�er of every Answerand their use can help the Bot
converse more naturally.

Dialog History In the upper left corner of the Answer page, this box docu-
ments the conversation history up to this point, using the text from the Recog-
nition and Additional Condition windows (as briefed below). Description �elds
to represent user input, and Answer text for the Bot's responses. The Dialog
History is purely informative, and cannot be edited. It is modi�ed automatically
when the Description or Answer �elds themselves are edited.

Answer Text This �eld contains the Answer that will be presented to the
user. You may format texts with the aid of HTML tags. You may also include
variables. Line feed is automatic when the Answer is issued through the Web
server. Manually inserted line feeds (carriage returns) will be ignored.

Additional Condition Additional Conditions are "sub conditions" that can
�ne-tune the selection of an Answer within a given Recognition. The button
text will be red if there is an Additional Condition assigned to that Answer.

Answer Rank It is possible to generate several di�erent Answers to the same
Recognition. The Answer Rank determines the order in which Answers will be
given in successive uses of a given Recognition. This parameter can take on
any whole-number value between 1 and 9999. The value 1 has the highest
priority and the value 9999 has the lowest. When multiple Answers for the
same Recognition are assigned the same Rank, the Answers are given to the
user in a random order.

Repeatable Checking Repeatable on a particular Answer allows that Answer
to be given again the next time the Bot recognizes the Condition. By default,
Answers are not repeatable, and will only be given once. Recognitions that have
only one Answer therefore become "inactive" once that answer has been given.
Exception: If the number of user inputs entered in the Memory Option expires
after the Answer was given, even non-repeatable Answers can be re-issued

41

7.3 Working of LinguBot

The Web Engine breaks the user's input into sentences and the sentences into
words. It only checks the recognitions for each sentence in the order of its
ranking. Sentences are generally ranked according to their priority. The higher-
ranking sentences have high and low ranking sentences have low priority. Recog-
nition is correct if the sentence ful�ls the conditions that were formulated in the
recognition window. After completing the process for all sentences, it issues the
answer that is assigned the recognition with the lowest ranking. The number of
recognitions and the answers assigned form the knowledge base of the Lingubot.
This is prepared by the text composer. It is his/her task to write recognitions
and answers that match.

We can Compose Texts for a Lingubot.
A Lingubot

� has a character and an area of knowledge

� has "active" topics that it initiates on its own

� Carries on dialogs in its very personal tone and in its own personal fashion

� Learns through dialogs

Character and area of knowledge:

First of all, we jointly establish the reactions of the Lingubot with regard to its
tone and content. In this process, we have to carefully plan ahead of time in
order to be able to write recognitions and answers to frequent or expected user
inputs. What is necessary here is not only an exact recognition of sentences, but
also less speci�c conditions such as those that are ful�lled when certain words
appear.

Active topics:

The dialog with the user is made more vivid by the fact that the Lingubot ac-
tively takes part in developing the conversation and not only answers questions.
The Lingubot states something on its own or asks the user questions in the hope
of being able to react to the user inputs it prompts in this fashion. In order to
be able to compose the recognitions for inputs such as these ahead of time, it is
necessary to remember some exemplary dialogs.

Dialogs:

Test the Lingubot as early as possible and as frequently as possible with a lot of
di�erent human testers. If the group of testers is too small, there is the danger
the testers can not think of anything anymore or only something very special.
Then the Lingubot does not learn anything or it requires a lot of e�ort to learn
to adapt to the dialog behaviour of a special group. Beyond this, guessing at

42

user inputs as mentioned naturally involves suppositions so that we may have
to invest a lot of work in writing recognitions that do not come to bear because
the users react di�erently than expected. Tests are also a helpful corrective
measure here.

Function of knowledge base

The recognitions and the answers assigned to them form the basis for the knowl-
edge base of the Lingubots. Basically, we only require recognitions and answers
for

� Beginning the dialog

� Saying hello and goodbye

� The area of knowledge

� Knowledge on the person and character of the Lingubot

� Small-talk

� The central recognition (refer section 7.2).

The more precisely we recognise a user input, the better we can react to it.
However, the number of inputs that are not recognized based upon a deviating
formulation if they have almost the same content increases with the precise-
ness of the recognition. Therefore, apart from recognizing whole sentences, we
should also write recognitions for the important areas of knowledge that react to
a special word. The answers assigned have to adapt themselves to the precise-
ness of the recognition. The Lingubot Creator has a "base of basic knowledge"
that contains a series of "ready-to-use" recognitions. As an option, it also con-
tains patterns for important recognitions in the areas of product and company
information that only have adapted to the focal point of our Lingubot.

Beginning the dialog: We require several sentences for the beginning of
the dialog so that users can be greeted in a di�erent fashion in further dialogs.
Our Lingubot will say something at the beginning of a dialog without having
to react to the user input. We should take advantage of this by getting the user
in the mood of our topic with our greeting and/or setting the basic direction
and tone for the dialog. We will soon note that the users of the Lingubot will
ensure that the mood and topic change abruptly.

Saying hello and goodbye: Is a part of most dialogs.

Area of knowledge: The Lingubot has a special area and active topics.
Therefore, we require recognitions for the questions and remarks that the users
enter (either spontaneously or prompted).

43

Knowledge on the person and character of the Lingubot: Our Lin-
gubot will be asked a number of questions on its person, its task and technical
background.

Small-talk: Users not only want to talk about the Lingubot's special
area, but they also just want to talk to it (especially if it has an interesting
personality). Of course, there are almost an uncounted number of potential
topics here. Therefore, we should ensure that there is the right mixture of exact
and inexact recognitions and co-ordinate our answers with this. In this fashion,
our Lingubot can make more exact and detailed statements on some topics while
only treating others rather shortly.

44

Chapter 8

Design and implementation

of E. mail agent

This project describes further e�orts for enhancement of the e-mail. The mail
agent is autonomous, customized, personalized and long lived.

The agent fetches itself regularly after time from POP3 mailbox using post
oÆce protocol. After processing "reading, scanning the receive mail, the agent
created in each case new e-mail reply which consists of asking questions from
client and send to a human user, who if necessary complete and modify it and
send back to the client, Figure 11. The agent is universally applicable and it
is knowledge-based application. The above goal was achieved using the Rule
based knowledge base systems and the application was implemented using the
C++ Borland builder.

Natural language interpretation is essential for taking advantage of the full
commercial potential of the Internet.

8.1 The "intelligence" of a Lingubot lies in its
rule base.

A pattern usually consists of strings and logical operators. A string represents
a keyword or part of a word. For example, the pattern [I+love+you] would
match with any sentence that contains those three words in the same order, for
example "I do not love you" or "I do not care whether you love me, you fool!" Of
course, there are many di�erent operators, like the not-operator [!] that can be
used to exclude certain words (for example the "do not" in the example above).
It is also possible to specify how many words are allowed in a sentence that are
not contained in the pattern, in order to prevent misunderstandings like in the
second example.

For example, the pattern [(I+love+you)&! (do not/not)] With a speci�ed
maximum "no hit"-value of 2 would match with the sentences "I love you", "I

45

Figure 8.1: E-Mail Application

46

really love you" and "I love you very much", but not with "I do not love you"
or "I love Paul instead of you".

One problem that authors often encounter is that users may put questions in
many di�erent ways. For example, the question "What is the price of product
XYZ" can also be put as "How much does product XYZ cost" or "What do
I have to pay for product XYZ" or even "How much bucks is product XYZ".
Since the rule has to match all of those (and more) questions, the resulting
pattern can be quite complex. Here is a real world example, taken from the
"Marc" Lingubot Kiwi logic developed for Olympus:

((((((((how/hwo/hou/hows/howz/how's/hows'))+
(much/muhc))/howmuch/hwomuch)&
(money/cash/dough/bread/pesetas//quid/cents/euro/euros/dm/f$g
/usd/penny/quarter/dime/nickle))
/((((how/hwo/hou/hows/howz/how's/hows')
/(what/wot/waht/wat/waddya/whut)
/(((what/wot/waht/wat/waddya/whut)+is)
/whats/what's/wats/wat's/wots/wot's/wahts/waht's/wotz))&
(expensive/expencive/much/muhc/cost/costs/(does+cost)
&glasses/shades/sunnies/sunglasses)/((it/one)&^eytrek)/fe-tg)!fe.t.g)

Note that a large part of the complexity of this pattern results from the fact
that it also recognizes common misspellings, for example "hwo" instead
of "how".

8.2 UML

User will refer to the person talking to Lingubot Botnic will stand for the person
or company Pop 3 it fetches mail and using fetch mail use case and calling class
kstring function divide mail in sentences. Engine input stores the question in
local variable and then call the engine. Engine reply question by calling react
function and then call engine output Engine output stores all questions given
by engine and �nally call smtp. That concatenates all answers in the form of
mail and sends it back to client. Bot consisting of a web engine that loads a
standard knowledge base (i.e.lbf �le containing the identi�cation and standard
answers) the answers may be saved in as �les in database.

Activity Diagram - Figure 8.5

Here the pop3 fetches the mail in the beginning of activity. Divide sentences
function is called to split mail into sentences. Set user input is calling in order
to store sentences and then get user input is called. C Engine calls the React
method to provide the answer to each question. CEngineoutput calls the set
replies function to store and then get replies method . if all the questions replied
then it send to smtp through send mail, otherwise it sends again back to Get
user Input to get answer.

Classes and member functions used in e-mail agent

47

Figure 8.2: Use Case Diagram 1

48

Figure 8.3: Use Case Diagram 2

49

Figure 8.4: Class Diagram

50

Figure 8.5: Activity Diagram

51

Kstring.cpp To split up the incoming e-mail into sentences
Divide sentences(Kstring sx Input,const CKStr Vec &vAbk)

CEngine

React() To get an answer to sentence. Priority of the return xChosen
Recognition has to be compared to the threshold to check if the recognition was
good enough.

VoidCengine::React(CengineInput*xEngineInput,
CengineOutput*xEngineOutput, CsessionData*xSessionData, CabstractEngi-

neEnvironment*xAbstractEngineEnvironment, Crecogntion*&xRecogntion, bool
xbls Mybot).

Cengineinput Input sentences of mail have to be put here.
Request Mode has to be set to RM NORMAL
Created before call of a Cengine::React

CEngineOutput Answer can be found here
Created before call of a Cengine::React

CSessionData,CAbstract Engineenvironment Created before call of
Cengine::React

Dummy objects only created before calling Cengine::React, After getting
answer they will be destroyed.

52

Chapter 9

Conclusion

Natural language search engine technology has years to go to �t comfortably in
a space that aggregates structured and unstructured information. Conventional
natural language processing technology is simply not up to the task. Not yet
now, may be not yet ever. For one thing, just performing an exhaustive syntactic
parse of a document (even a sentence) is still an inexact science.

It's also language dependent in a very deep way that is English as an example
can be sliced at many di�erent angles to reveal all manner of di�erent types of
variation . we can say that there is technical English, business English, legal
English and so on, as well as American English, British English, Australian
English, Jamaican English, Asian English. Furthermore we can say that there
are hundreds of distinct variants within each of those types of categories, and
we can add that there are various (defective) forms of a language that we also
need to address. For instance, just because our colleague is not a native English
speaker and might make occasional grammatical errors in e-mail does not mean
that we cannot understand what he writes. A smart bot /mail agent should be
independent of the rules of any speci�c human language.

Natural language interpretation system has fully taken the charge of human
being, the agent is Still not completely automatic. We still need some customer
services personal to handle acute problems.

I suggest that case based reasoning could be applied as an alternative, be-
cause it can handle a particular Problem. Despite of the limitations of Natural
language system the advantages are so great that it transform way people inter-
act with websites quite fundamentally. Combined the upcoming speech recogni-
tion technology, it will soon enable people to speak to machines and use mobile
Internet devices.

53

Bibliography

[1] David Prerau,Mark Adler, Intelligent Agent Technology, The Handbook of
applied expert systems/Jay Lebowitz,editor, 1998 by CRC press LLC.

[2] Pablo Noriega,Carles Sierra, Lecture Notes in Arti�cial Intelligence, Sub-
series of Lecture notes in Computer Science, First International workshop
May 1998.

[3] Giarratano Rile, Expert Systems Principles and Programming, Second Edi-
tion, 1993

[4] Thomas A Cooper, Nancy Wogrin, Rule based Programming with OPS5,
1988, by Morgan Kaufman Publishers Inc.

[5] Edited by Gerhard Weiss, A Modern Approach to Distributed Arti�cial
Intelligence, 1999.

[6] Gheorghe Tecuci, Building Intelligent Agents, 1998 by Acedemic press.

[7] James P.Ignizio, An Introduction to Expert Systems, 1991 by McGraw-Hill.

[8] Tom Swans, Mastering Borland C++, Second edition, Sams Premier.

[9] Win Runner, Users guide version 6.0.

[10] Kent Reisdorph, Teach yourself Borland C++ Builder 4, Borland Press.

[11] An approach to Knowledge base Management.

[12] Martin Fowler, UML Distilled edition Addison Wesley Longman, Inc.

54

