
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329715294

Toward an Integrated Process Model for Smart Contract Engineering

Conference Paper · December 2018

CITATIONS

0
READS

155

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Systematic reviews in software engineering View project

NaPiRE: Naming the Pain in Requirements Engineering View project

Bernhard Waltl

Technische Universität München

18 PUBLICATIONS 35 CITATIONS

SEE PROFILE

Horst Treiblmaier

MODUL University Vienna

114 PUBLICATIONS 764 CITATIONS

SEE PROFILE

Ulrich Gallersdörfer

Technische Universität München

4 PUBLICATIONS 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Horst Treiblmaier on 17 December 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/329715294_Toward_an_Integrated_Process_Model_for_Smart_Contract_Engineering?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/329715294_Toward_an_Integrated_Process_Model_for_Smart_Contract_Engineering?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Systematic-reviews-in-software-engineering?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/NaPiRE-Naming-the-Pain-in-Requirements-Engineering?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernhard_Waltl?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernhard_Waltl?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernhard_Waltl?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Horst_Treiblmaier?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Horst_Treiblmaier?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/MODUL_University_Vienna?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Horst_Treiblmaier?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ulrich_Gallersdoerfer?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ulrich_Gallersdoerfer?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ulrich_Gallersdoerfer?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Horst_Treiblmaier?enrichId=rgreq-f5da6839afbb6648a26036e024464f7d-XXX&enrichSource=Y292ZXJQYWdlOzMyOTcxNTI5NDtBUzo3MDQ4NTM3MjI1NDYxODFAMTU0NTA2MTYzMTk4OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

 Toward an Integrated Process Model for SC Engineering

 Pre-ICIS SIGBPS 2018 Workshop on Blockchain and Smart Contract, San Francisco

Toward an Integrated Process Model for

Smart Contract Engineering

Christian Sillaber

christian.sillaber@acm.org

Zicklin Center at Wharton

Pennsylvania, USA

Bernhard Waltl

b.waltl@tum.de

Technical University Munich

Dept. of Information Systems

Munich, Germany

Horst Treiblmaier

horst.treiblmaier@modul.ac.at

MODUL University Vienna

Dept. of Int. Management

Vienna, Austria

Ulrich Gallerdörfer

ulrich.gallersdoerfer@tum.de

Technical University Munich

Department of Informatics

Munich, Germany

Michael Felderer

michael.felderer@uibk.ac.at

University of Innsbruck

Department of Computer Science

Innsbruck, Austria

Abstract

Engineering smart contracts for trustless, append-only, and decentralized digital

ledgers allows mutually distrustful parties to transform legal requirements into

immutable and formalized rules. We present an integrated process model for

engineering blockchain-based smart contracts, which explicitly accounts for the

immutability of the trustless, append-only, and decentralized digital ledger ecosystem

and overcomes several limitations of traditional software engineering process

models. Applying such a model when engineering smart contracts will help software

engineers and developers to streamline and better understand the overall engineering

process of decentralized digital ledgers in general and the blockchain in particular.

Keywords: Smart Contract, Development Process Model, Software Engineering,

Blockchain, Distributed Ledger Technology

Introduction

Blockchain technology and distributed ledger technology (DLT) has recently gained a lot of attention

in the IS community. The immutable, trustless model of decentralized computation and transaction

handling that is provided by the blockchain strives to ensure fairness for all participating parties. The

huge amount of monetary value involved increases the demand for structured software development

processes and quality assurance. Highly publicized incidents such as the DAO attack illustrate that (1)

mailto:michael.felderer@uibk.ac.at

 Toward an Integrated Process Model for SC Engineering

 Pre-ICIS SIGBPS 2018 Workshop on Blockchain and Smart Contract, San Francisco

the ad-hoc style of engineering is not suitable for such high value transactions, (2) current software

engineering approaches do not ensure a sufficient level software quality, and (3) these approaches are

either unsuitable or misaligned for the idiosyncrasies of blockchain technology (Atzei et al., 2016).

Traditional software engineering focuses on principles for developing high-quality software systems

and maintaining the systems as they evolve in real-world environments. Software that does not evolve

will not be able to keep up with changing requirements and will become outdated over time. This has

profound implications for existing software process models. They address the increasing need for

change and evolution by introducing iterative, incremental, and evolutionary approaches (Beck et al.,

2001). Post-deployment changes are typically realized by re-entering the regular development

activities, which eventually result in a new version or a patch that is released during scheduled down-

times. This process is structured by change management activities (Stark, 2015). All changes that

happen after the development time are no longer possible when smart contracts are published in a

DLT environment and become immutable. In this extended abstract, we develop a smart contract

engineering process that clearly outlines the different elements and artifacts. It can serve as a tool for

various strategic and operational activities since it helps in defining priorities, managing risks,

expectations and time frames.

Related Work

Although the term blockchain is relatively new, its underlying concepts are not and have been studied

extensively from different perspectives. Smart contract engineering is built on the technological

foundation of smart contracts as well as on state-of-the-art software engineering with a focus on

blockchain technology. The term smart contracts was coined by Nick Szabo (1997) and describes how

the computer-based execution of contracts between two parties can be secured without a third party.

In a DLT context, the correct execution is enforced among other mechanisms, by a so-called

consensus protocol.

The IEEE 1074-1995 Standard defines a process as a set of steps that can be executed in a certain

predefined sequential, parallel, or conditional order (IEEE, 1995). Various process models cover the

order and frequency of phases in software projects. Those phases typically include planning, analysis,

design, implementation, testing, and maintenance. Waterfall models progress sequentially through

these phases, iterative models are typified by repeated execution of the waterfall phases, in whole or

in part (Braude and Bernstein, 2016). Other than these phase-oriented process models, agile process

models are based on the principles of individuals and interaction, working software, customer

collaboration as well as fast response to change (Beck et al., 2001; Lee and Xia, 2010). A more recent

trend is to combine phase-oriented with agile process models to obtain hybrid software engineering

process models. Modern software engineering approaches rely heavily on the (re-)use of software

patterns. Patterns are collections of abstract best practices of software code that engineers can easily

adapt. These best practices are the result of previous software engineering experience and allow

faster, more secure, and more reliable software development.

 Process Model Development

Methodology

We conducted interviews on smart contract development with eleven industry experts. The primary

goal of the interviews was to get a better understanding of how the study participants develop smart

contracts and which processes, artifacts, and tools they apply. We used a Delphi study approach and

the findings from the first round were evaluated and refined in a second round. Each interview was

recorded and transcribed. Based on our findings, we develop the smart contract engineering process in

a stepwise manner. First, we discuss the conceptual base and describe the main types of artifacts that

emerged from the interviews. Second, we integrate the findings from the qualitative interviews with

several software developers. Third, we discuss various roles, activities, and artifacts and, fourth, we

incorporate these components into one integrative model.

 Toward an Integrated Process Model for SC Engineering

 Pre-ICIS SIGBPS 2018 Workshop on Blockchain and Smart Contract, San Francisco

Conceptual Base

We followed a design science approach to precisely define the respective steps of the process model.

March and Smith (1995) differentiate between four types of artifacts, namely constructs, models,

methods, and instantiations. Constructs, which consist of language and vocabulary specifying

problems and solutions, form the baseline design science vocabulary. They specify the general entities

including the attributes and relationships among each other. Models are descriptions and

representations of real-world phenomena with a focus on utility. The steps needed to execute a

specific process are called methods, which are procedures solving problems and developing solutions.

Instantiations are the realizations of artifacts within their respective environments. The mapping of

these artifacts to the domain of smart contract engineering is shown in Table 1.

Table 1. Mapping of Artifacts

Table 1. Mapping of Artifacts

Artifact Manifestation Artifact Manifestation

Construct  Trustless, append-only,

decentralized, digital ledgers

(TADDL)

 Cryptocurrency assets

 Smart contract execution engine

 Smart contract expression language

 Actors

 Wallets

Method  Smart contract engineering (sub-)

activities

 Iterations of the engineering process

 Simulation activities

 Test methods for smart contracts

Model  Smart contract code, templates and

patterns

 Transaction schemes

 Digital representation of assets

 Consensus and reward algorithms

 Interactions via transactions,

function calls, oracle inputs

Instantiation  Instance of the smart contract

engineering process with its

activities

 Operationalized smart contracts

 Results from smart contract test

scenarios

 Results from smart contract

executions and simulations

Roles, Activities, and Artifacts

The Rational Unified Process (RUP) can be used to formally describe an engineering process. It is

document-centric and reflects the smart contract development process. It can be used to differentiate

between three distinctive elements: First, roles pertain to individuals or groups performing activities

of the process. Second, activities summarize a unit of work that must be performed. The outcome

results in the creation or update of artifacts, which can be concepts, smart contract code, or

performance reports. Third, artifacts denote the input and output of activities. Artifacts are created,

modified, and used by the roles during the procedure and are either the final product, parts of it, or

intermediate results.

Smart contract lifecycles start with an implementation phase during which requirements are

transformed into an implementation, verified against the requirements, and either approved for release

or modified again (Sillaber and Waltl, 2017). Once the smart contract is approved, it is published on

the TADDL in the submission stage. In this phase, the smart contract is submitted and distributed

within the TADDL network. From now on, every entity with access to the TADDL can retrieve the

contract and share it with other nodes. Once the smart contract has been spread throughout the

network and is accepted by general consensus (i.e., it persists on the network), reverting or changing

the contract requires high effort. The contract is now ready to be executed. The execution stage of

smart contracts is performed by miners or other participants of the TADDL, since the smart contract

code is now accessible for all participants. The smart contract is retrieved from the TADDL and

executed by the respective node. Based on a given input, the output (e.g., a return value, a state

transition, or a set of transactions) of a smart contract is computed, which is then stored and

distributed within the network. In the finalization stage the smart contract expires. This can happen

 Toward an Integrated Process Model for SC Engineering

 Pre-ICIS SIGBPS 2018 Workshop on Blockchain and Smart Contract, San Francisco

either because the parties actively declare the smart contract as invalid or because of intrinsic

conditions that make further executions impossible (e.g., time expiration).

An Integrated Smart Contract Engineering Process

Figure 1 combines and summarizes all our findings and shows the integrated smart contract

engineering process. In the conceptualization phase the preliminary scope and the goals of the smart

contract are defined. All involved parties agree on what will and what will not be part of the contract

and can be directly derived from traditional contractual requirements. The problem definition should

also state the desired economic outcome(s). In the next phase, the conceptual model is created. The

conceptual model defines classes of objects (e.g., wallets) and the desired relations between these

objects and outcomes (e.g., transactions). The construction of the conceptual model will most likely

uncover incomplete and contradictory aspects of the problem definition. Additionally, the modeling

process may raise new questions for the involved parties to answer and resolve through negotiation. In

either case, the problem definition should be adjusted.

After the conceptual modeling phase, the implementation phase starts. Here, the conceptual model is

mapped onto an executable model as existing smart contract patterns are identified, adapted and

combined. An executable smart contract is not necessarily immediately correct and has to be

reviewed, tested, and verified. Verification and simulation of the smart contract against the scope and

stakeholder requirements are necessary to check whether the code contains errors, including

programming errors and wrong parameters. For verification purposes (“Simulation, testing, code

review”), various scenario-based executions can be simulated step-by-step in a private blockchain.

Apart from verification, validation of the smart contract is also required.

Starting from the consolidated and validated smart contract, an instance of the smart contract can be

frozen and submitted for execution in the live environment. Finally, in the approval and execution

phases, the published smart contract is approved by the parties and executed in the TADDL and has to

be monitored during runtime. In case its behavior deviates from the requirements, change

management mechanisms have to be activated – in extreme cases the deactivation of the smart

contract – and a new smart contract hast to be created to better meet the stakeholders’ requirements.

Although the smart contract becomes immutable after it has been submitted to the TADDL

environment, the environment itself often provides capabilities to influence the outcome of smart

contracts (e.g., through a function registry or call delegation). The smart contract’s runtime behavior

is constantly monitored and managed in a change management process. Once the smart contract has

reached the end of its life (e.g., by executing the “self-destruction” operation in the Ethereum

blockchain), proper finalization can be confirmed in the finalization phase by validating whether the

desired outcomes have been reached. In practice, many phases will overlap.

Figure 1. Integrated Smart Contracts Engineering Process. (SC … Smart Contract)

 Toward an Integrated Process Model for SC Engineering

 Pre-ICIS SIGBPS 2018 Workshop on Blockchain and Smart Contract, San Francisco

 Discussion, Implications, and Limitations

The integrated process model for smart contracts can help to improve the quality of smart contracts.

This is crucial since immutable bugs in smart contracts have been exploited in previous attacks. Our

proposed smart contract engineering process is generic and is applicable to a wide variety of

distributed ledger technologies. It is based on traditional software engineering process models and

methodologies that have been successfully applied in a wide variety of use cases. While the analysis,

design, and implementation phases align with our proposed conceptualization and implementation

phases, special care has to be given to the testing phase, which has to be conducted and finished

before publishing the smart contract. Iterative software engineering process models typically iterate

sequentially through the aforementioned four phases. The implementation phase proposed in this

paper iterates through a pattern selection and adaption, development, consolidation, review, testing,

and simulation phase, aligning this process activity with iterative software engineering process

models. The integrated model can immediately be applied in real-world industry settings. It can

improve applied smart contracts engineering processes and serve as a basis for critically investigating

such processes in great detail, which is of practical value for any industry that needs to react fast while

at the same time ensuring sufficient software quality. We see two major limitations of this research

which deserve further attention. First, there are no validated measurements for the concepts of the

process activities. Second, due to a lack of established best practices in smart contracts engineering,

an empirical evaluation of the hypothesized artifacts was not feasible at the time of publication.

 Conclusion and Future Research

In this paper, we develop an integrative process model for smart contract engineering and describe its

activities, roles and artifacts. We argue that conventional software engineering process models do not

provide adequate support for the trustless, append-only, and decentralized environment in which

smart contracts are executed. Traditional process models do not account for the immutability of smart

contracts after they are submitted because they assume a (mostly) frictionless transition between

software releases and allow for modifications of existing software releases. Our smart contract

engineering process accounts for these peculiarities of blockchain-based software development and

consists of five sequential phases: conceptualization, implementation, approval, execution and

finalization. These phases result from the properties of the underlying blockchain ecosystem. Future

research needs to investigate if and how the engineering process model can be tailored to different

software engineering methodologies (e.g., Scrum, V-model). Furthermore, it is necessary to integrate

this framework with existing work on testing and quality assurance in software engineering.

References

Atzei, N., Bartoletti, M., & Cimoli, T. (2017). A survey of attacks on ethereum smart contracts. In Principles of

Security and Trust (pp. 164-186). Springer, Berlin, Heidelberg.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,

Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K.,

Sutherland, J., Thomas, D. 2001. "Manifesto for Agile Software Development," http://agilemanifesto.org/,

accessed April 20, 2018.

Braude, E. J. and Bernstein, M. E. 2016. Software Engineering. Long Grove, IL: Waveland Press.

IEEE. 1995. 1074-1995 - IEEE Standard for Developing Software Life Cycle Processes, IEEE,

https://ieeexplore.ieee.org/document/490501/, accessed March 20, 2018.

Lee, G. and Xia, W. 2010. "Toward Agile: An Integrated Analysis of Quantitative and Qualitative Field Data on

Software Development Agility, " MIS Quarterly (34:1), pp. 87-114.

March, S. T. and Smith, G. F. 1995. "Design and Natural Science Research on Information Technology,"

Decision Support Systems (15:4), pp. 251–266.

Sillaber, C. and Waltl, B. 2017. "The Life Cycle of Smart Contracts in Blockchain Ecosystems," Datenschutz

und Datensicherheit – DuD (41:8), pp. 497-500.

Stark, J. 2015. Product Lifecycle Management, London: Springer.

Szabo, N. 1997. The Idea of Smart Contracts. Nick Szabo’s Papers and Concise Tutorials.

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/s

zabo.best.vwh.net/idea.html, accessed May 1, 2018.

View publication statsView publication stats

https://www.researchgate.net/publication/329715294

